WorldWideScience

Sample records for activates toll-like receptor

  1. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  2. The phosphoproteome of toll-like receptor-activated macrophages

    Weintz, Gabriele; Olsen, Jesper Velgaard; Frühauf, Katja;

    2010-01-01

    Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of...... identified 1850 phosphoproteins with 6956 phosphorylation sites, two thirds of which were not reported earlier. LPS caused major dynamic changes in the phosphoproteome (24% up-regulation and 9% down-regulation). Functional bioinformatic analyses confirmed canonical players of the TLR pathway and highlighted...... other signalling modules (e.g. mTOR, ATM/ATR kinases) and the cytoskeleton as hotspots of LPS-regulated phosphorylation. Finally, weaving together phosphoproteome and nascent transcriptome data by in silico promoter analysis, we implicated several phosphorylated TFs in primary LPS-controlled gene...

  3. Hypothermia Reduces Toll-Like Receptor 3-Activated Microglial Interferon-β and Nitric Oxide Production

    Tomohiro Matsui; Yukari Motoki; Yusuke Yoshida

    2013-01-01

    Therapeutic hypothermia protects neurons after injury to the central nervous system (CNS). Microglia express toll-like receptors (TLRs) that play significant roles in the pathogenesis of sterile CNS injury. To elucidate the possible mechanisms involved in the neuroprotective effect of therapeutic hypothermia, we examined the effects of hypothermic culture on TLR3-activated microglial release of interferon (IFN)- β and nitric oxide (NO), which are known to be associated with neuronal cell deat...

  4. Murine retroviruses activate B cells via interaction with toll-like receptor 4

    Rassa, John C.; Meyers, Jennifer L.; Zhang, Yuanming; Kudaravalli, Rama; Susan R Ross

    2002-01-01

    Although most retroviruses require activated cells as their targets for infection, it is not known how this is achieved in vivo. A candidate protein for the activation of B cells by either mouse mammary tumor virus (MMTV) or murine leukemia virus is the toll-like receptor 4 (TLR4), a component of the innate immune system. MMTV caused B cell activation in C3H/HeN mice but not in C3H/HeJ or BALB/c (C.C3H Tlr4lps-d) congenic mice, both of which have a mutant TLR4 gene. This activation was indepe...

  5. Counteracting Interactions between Lipopolysaccharide Molecules with Differential Activation of Toll-Like Receptors

    Hajishengallis, George; Martin, Michael; Schifferle, Robert E.; Genco, Robert J.

    2002-01-01

    We investigated counteracting interactions between the lipopolysaccharides (LPS) from Escherichia coli (Ec-LPS) and Porphyromonas gingivalis (Pg-LPS), which induce cellular activation through Toll-like receptor 4 (TLR4) and TLR2, respectively. We found that Ec-LPS induced tolerance in THP-1 cells to subsequent tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) induction by Pg-LPS, though the reverse was not true, and looked for explanatory differential effects on the signal tr...

  6. Proteolytic cleavage in an endolysosomal compartment is required for Toll-like receptor 9 activation

    Park, Boyoun; Brinkmann, Melanie M.; Spooner, Eric; Lee, Clarissa C.; Kim, You-Me; Ploegh, Hidde L.

    2008-01-01

    Toll-like receptors (TLRs) activate the innate immune system in response to pathogens. Here we showed that TLR9 proteolytic cleavage is a prerequisite for TLR9 signaling. Inhibition of lysosomal proteolysis rendered TLR9 inactive. The C-terminal fragment of TLR9 thus generated included a portion of the TLR9 ectodomain, as well as the transmembrane and cytoplasmic domains. This cleavage fragment bound to the TLR9 ligand CpG, and, when expressed in Tlr9−/− dendritic cells, restored CpG-induced ...

  7. Nuclear Factor-κB: Activation and Regulation during Toll-like Receptor Signaling

    Ruaidhrí J. Carmody; Youhai H. Chen

    2007-01-01

    Toll-like receptors (TLRs) recognize distinct microbial components to initiate the innate and adaptive immune responses. TLR activation culminates in the expression of appropriate pro-inflammatory and immunomodulatory factors to meet pathogenic challenges. The transcription factor NF-κB is the master regulator of all TLR-induced responses and its activation is the pivotal event in TLR-mediated activation of the innate immune response. Many of the key molecular events required for TLR-induced NF-κB activation have been elucidated. However, much remain to be learned about the ability of TLRs to generate pathogen-specific responses using a limited number of transcription factors. This review will focus on our current understanding of NF-κB activation by TLRs and potential mechanisms for achieving a signal-specific response through NF-κB.

  8. HIGH GLUCOSE INDUCES TOLL-LIKE RECEPTOR EXPRESSION IN HUMAN MONOCYTES: MECHANISM OF ACTIVATION

    Objective: Hyperglycemia induced inflammation is central in diabetes complications and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses as well as inflammation. However, there is a paucity of data examining the expression a...

  9. Murine retroviruses activate B cells via interaction with toll-like receptor 4

    Rassa, John C.; Meyers, Jennifer L.; Zhang, Yuanming; Kudaravalli, Rama; Ross, Susan R.

    2002-01-01

    Although most retroviruses require activated cells as their targets for infection, it is not known how this is achieved in vivo. A candidate protein for the activation of B cells by either mouse mammary tumor virus (MMTV) or murine leukemia virus is the toll-like receptor 4 (TLR4), a component of the innate immune system. MMTV caused B cell activation in C3H/HeN mice but not in C3H/HeJ or BALB/c (C.C3H Tlr4lps-d) congenic mice, both of which have a mutant TLR4 gene. This activation was independent of viral gene expression, because it occurred after treatment of MMTV with ultraviolet light or 2,2′-dithiodipyridine and in azidothymidine-treated mice. Nuclear extracts prepared from the lymphocytes of MMTV-injected C3H/HeN but not C3H/HeJ mice showed increased nuclear factor κB activity. Additionally, the MMTV- and Moloney murine leukemia virus envelope proteins coimmunoprecipitated with TLR4 when expressed in 293T cells. The MMTV receptor failed to coimmunoprecipitate with TLR4, suggesting that MMTV/TLR4 interaction is independent of virus attachment and fusion. These results identify retroviral proteins that interact with a mammalian toll receptor and show that direct activation by such viruses may initiate in vivo infection pathways. PMID:11854525

  10. Toll-like receptors in neonatal sepsis.

    O'Hare, Fiona M

    2013-06-01

    Toll-like receptors are vital transmembrane receptors that initiate the innate immune response to many micro-organisms. The discovery of these receptors has improved our understanding of host-pathogen interactions, and these receptors play an important role in the pathogenesis of multiple neonatal conditions such as sepsis and brain injury. Toll-like receptors, especially TLRs 2 and 4, are associated with necrotizing enterocolitis, periventricular leukomalacia and sepsis.

  11. Toll-Like Receptor 9-Activation during Onset of Myocardial Ischemia Does Not Influence Infarct Extension

    Ohm, Ingrid Kristine; Gao, Erhe; Belland Olsen, Maria; Alfsnes, Katrine; Bliksøen, Marte; Øgaard, Jonas; Ranheim, Trine; Nymo, Ståle Haugset; Holmen, Yangchen Dhondup; Aukrust, Pål; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Aim Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known. Methods and Results The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice. Conclusion Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R. PMID:25126943

  12. Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways.

    Xie, Song-Zi; Hao, Ran; Zha, Xue-Qiang; Pan, Li-Hua; Liu, Jian; Luo, Jian-Ping

    2016-08-01

    The present work aimed at investigating the pattern recognition receptor (PRR) and immunostimulatory mechanism of a purified Dendrobium huoshanense polysaccharide (DHP). We found that DHP could bind to the surface of macrophages and stimulate macrophages to secrete NO, TNF-α and IL-1β. To unravel the mechanism for the binding of DHP to macrophages, flow cytometry, confocal laser-scanning microscopy, affinity electrophoresis, SDS-PAGE and western blotting were employed to verify the type of PRR responsible for the recognition of DHP by RAW264.7 macrophages and peritoneal macrophages of C3H/HeN and C3H/HeJ macrophages. Results showed that toll-like receptor 4 (TLR4) was an essential receptor for macrophages to directly bind DHP. Further, the phosphorylation of ERK, JNK, Akt and p38 were observed to be time-dependently promoted by DHP, as well as the nuclear translocation of NF-κB p65. These results suggest that DHP activates macrophages via its direct binding to TLR4 to trigger TLR4 signaling pathways. PMID:27112877

  13. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models.

    Zhang, Xiaorui; Qi, Chunhui; Guo, Yan; Zhou, Wenxia; Zhang, Yongxiang

    2016-09-20

    Toll-like receptor (TLR) 4 is an important polysaccharide receptor; however, the relationships between the structures and biological activities of TLR4 and polysaccharides remain unknown. Many recent findings have revealed the primary structure of TLR4/MD-2-related polysaccharides, and several three-dimensional structure models of polysaccharide-binding proteins have been reported; and these models provide insights into the mechanisms through which polysaccharides interact with TLR4. In this review, we first discuss the origins of polysaccharides related to TLR4, including polysaccharides from higher plants, fungi, bacteria, algae, and animals. We then briefly describe the glucosidic bond types of TLR4-related heteroglycans and homoglycans and describe the typical molecular weights of TLR4-related polysaccharides. The primary structures and activity relationships of polysaccharides with TLR4/MD-2 are also discussed. Finally, based on the existing interaction models of LPS with TLR4/MD-2 and linear polysaccharides with proteins, we provide insights into the possible interaction models of polysaccharide ligands with TLR4/MD-2. To our knowledge, this review is the first to summarize the primary structures and activity relationships of TLR4-related polysaccharides and the possible mechanisms of interaction for TLR4 and TLR4-related polysaccharides. PMID:27261743

  14. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    Bo Yoon Chang

    2015-10-01

    Full Text Available Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE. MFE stimulated the production of cytokines, nitric oxide (NO and tumor necrosis factor-α (TNF-α and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase and nuclear factor-κB (NF-κB signaling pathways downstream from toll-like receptor (TLR 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK cell activity, cytotoxic T lymphocyte (CTL activity and IFN-γ production. Immunoglobulin G (IgG antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  15. Activation of toll like receptor-3 induces corneal epithelial barrier dysfunction.

    Wei, Jie; Jiang, Hua; Gao, Hongrui; Wang, Guangjie

    2015-06-01

    The epithelial barrier is critical in the maintenance of the homeostasis of the cornea. A number of eye disorders are associated with the corneal epithelial barrier dysfunction. Viral infection is one common eye disease type. This study aims to elucidate the mechanism by which the activation of toll like receptor 3 (TLR3) in the disruption of the corneal epithelial barrier. In this study, HCE cells (a human corneal epithelial cell line) were cultured into epithelial layers using as an in vitro model of the corneal epithelial barrier. PolyI:C was used as a ligand of TLR3. The transepithelial electric resistance (TER) and permeability of the HCE epithelial layer were assessed using as the parameters to evaluate the corneal epithelial barrier integrity. The results showed that exposure to PolyI:C markedly decreased the TER and increased the permeability of the HCE epithelial layers; the levels of cell junction protein, E-cadherin, were repressed by PolyI:C via increasing histone deacetylase-1 (HDAC1), the latter binding to the promoter of E-cadherin and repressed the transcription of E-cadherin. The addition of butyrate (an inhibitor of HDAC1) to the culture blocked the corneal epithelial barrier dysfunction caused by PolyI:C. In conclusion, activation of TLR3 can disrupt the corneal epithelial barrier, which can be blocked by the inhibitor of HDAC1. PMID:25912142

  16. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-01-01

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. PMID:27470911

  17. Rice Bran Feruloylated Oligosaccharides Activate Dendritic Cells via Toll-Like Receptor 2 and 4 Signaling

    Chi Chen Lin

    2014-04-01

    Full Text Available This work presents the effects of feruloylated oligosaccharides (FOs of rice bran on murine bone marrow-derived dendritic cells (BMDCs and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4 or TLR-2 but not DCs from mice with mutated TLR4 or TLR2. The mechanism of action of FOs may be mediated by increased phosphorylation of ERK, p38 and JNK mitogen-activated protein kinase (MAPKs and increased NF-kB activity, which are important signaling molecules downstream of TLR-4 and TLR-2. These data suggest that FOs induce DCs maturation through TLR-4 and/or TLR-2 and that FOs might have potential efficacy against tumor or virus infection or represent a candidate-adjuvant approach for application in immunotherapy and vaccination.

  18. Rice bran feruloylated oligosaccharides activate dendritic cells via Toll-like receptor 2 and 4 signaling.

    Lin, Chi Chen; Chen, Hua Han; Chen, Yu Kuo; Chang, Hung Chia; Lin, Ping Yi; Pan, I-Hong; Chen, Der-Yuan; Chen, Chuan Mu; Lin, Su Yi

    2014-01-01

    This work presents the effects of feruloylated oligosaccharides (FOs) of rice bran on murine bone marrow-derived dendritic cells (BMDCs) and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4) or TLR-2 but not DCs from mice with mutated TLR4 or TLR2. The mechanism of action of FOs may be mediated by increased phosphorylation of ERK, p38 and JNK mitogen-activated protein kinase (MAPKs) and increased NF-kB activity, which are important signaling molecules downstream of TLR-4 and TLR-2. These data suggest that FOs induce DCs maturation through TLR-4 and/or TLR-2 and that FOs might have potential efficacy against tumor or virus infection or represent a candidate-adjuvant approach for application in immunotherapy and vaccination. PMID:24762969

  19. Hypothermia Reduces Toll-Like Receptor 3-Activated Microglial Interferon-β and Nitric Oxide Production

    Tomohiro Matsui

    2013-01-01

    Full Text Available Therapeutic hypothermia protects neurons after injury to the central nervous system (CNS. Microglia express toll-like receptors (TLRs that play significant roles in the pathogenesis of sterile CNS injury. To elucidate the possible mechanisms involved in the neuroprotective effect of therapeutic hypothermia, we examined the effects of hypothermic culture on TLR3-activated microglial release of interferon (IFN-β and nitric oxide (NO, which are known to be associated with neuronal cell death. When rat or mouse microglia were cultured under conditions of hypothermia (33°C and normothermia (37°C with a TLR3 agonist, polyinosinic-polycytidylic acid, the production of IFN-β and NO in TLR3-activated microglia at 48 h was decreased by hypothermia compared with that by normothermia. In addition, exposure to recombinant IFN-β and sodium nitroprusside, an NO donor, caused death of rat neuronal pheochromocytoma PC12 cells in a concentration-dependent manner after 24 h. Taken together, these results suggest that the attenuation of microglial production of IFN-β and NO by therapeutic hypothermia leads to the inhibition of neuronal cell death.

  20. Trichomonas vaginalis infection activates cells through toll-like receptor 4.

    Zariffard, M Reza; Harwani, Sailesh; Novak, Richard M; Graham, Parrie J; Ji, Xin; Spear, Gregory T

    2004-04-01

    While Trichomonas vaginalis infection can cause inflammation and influx of leukocytes into the female genital tract, the molecular pathways important in inducing these effects are not known. This study determined if infection with T. vaginalis activates cells through toll-like receptor 4 (TLR4). Genital tract secretions from infected women stimulated TNF-alpha production by cells with functional TLR4 (350 pg/ml) but significantly less by cells that are unresponsive to TLR4 ligands (44 pg/ml, P = 0.001). Secretions collected after clearance of infection also induced significantly lower responses by cells with functional TLR4 (136 pg/ml, P = 0.008). TNF-alpha responses were not reduced by Polymyxin B and did not correlate with beta(2)-defensin levels, indicating that stimulation of cells was not through lipopolysaccharide or beta(2)-defensin. These studies show that T. vaginalis infection results in the appearance in the genital tract of substance(s) that stimulate cells through TLR4, suggesting a mechanism for the inflammation caused by this infection. PMID:15093558

  1. Rice Bran Feruloylated Oligosaccharides Activate Dendritic Cells via Toll-Like Receptor 2 and 4 Signaling

    Chi Chen Lin; Hua Han Chen; Yu Kuo Chen; Hung Chia Chang; Ping Yi Lin; I-Hong Pan; Der-Yuan Chen; Chuan Mu Chen; Su Yi Lin

    2014-01-01

    This work presents the effects of feruloylated oligosaccharides (FOs) of rice bran on murine bone marrow-derived dendritic cells (BMDCs) and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4) or TLR-2 but not DCs from mice with ...

  2. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease

    Song YanXia

    2011-09-01

    Full Text Available Abstract Helminth infection may modulate the expression of Toll like receptors (TLR in dendritic cells (DCs and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD. Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD.

  3. Titanium particles activate Toll-like Receptor 4 independently of lipid rafts in RAW264.7 murine macrophages

    Islam, Andrew S.; Beidelschies, Michelle A.; Huml, Anne; Greenfield, Edward M.

    2010-01-01

    Adherent PAMPs (pathogen-associated molecular patterns) act through Toll-like receptor2 (TLR2) and TLR4 to increase the biological activity of orthopaedic wear particles in cell culture and animal models of implant loosening. This study tested whether this is dependent on TLR association with lipid rafts as reported for the response to soluble TLR ligands. For this purpose, RAW264.7 murine macrophages were activated by exposure to titanium particles with adherent PAMPs, soluble lipopolysaccha...

  4. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2.

    Becker, Ingeborg; Salaiza, Norma; Aguirre, Magdalena; Delgado, José; Carrillo-Carrasco, Nuria; Kobeh, Laila Gutiérrez; Ruiz, Adriana; Cervantes, Rocely; Torres, Armando Pérez; Cabrera, Nallely; González, Augusto; Maldonado, Carmen; Isibasi, Armando

    2003-08-31

    Toll-like receptors (TLRs) mediate the cellular response to conserved molecular patterns shared by microorganisms. We report that TLR-2 on human NK cells is upregulated and stimulated by Leishmania major lipophosphoglycan (LPG), a phosphoglycan belonging to a family of unique Leishmania glycoconjugates. We found that purified L. major LPG upregulates both mRNA and the membrane expression of TLR-2 in NK cells. Additionally, IFN-gamma and TNF-alpha production and nuclear translocation of NF-kappaB was enhanced. The activation effect was more intense with LPG purified from infectious metacyclic parasites than from noninfectious procyclic Leishmania. Since the difference between the molecules derived from these two stages of the parasite growth cycle lies exclusively in the number of phosphosaccharide repeat domains and in the composition of glycan side chains that branch off these domains, we propose that TLR-2 possibly distinguishes between phosphorylated glycan repeats on LPG molecules. The effect of LPG on cytokine production and on membrane expression of TLR-2 could be blocked with F(ab')2 fragments of the mAb against LPG (WIC 79.3). Confocal microscopy demonstrated the co-localization of LPG and TLR-2 on the NK cell membrane. Binding of LPG to TLR-2 in NK cells was demonstrated by immunoprecipitations done with anti-TLR-2 and anti-LPG mAb followed by immunoblotting with anti-LPG and anti-TLR-2, respectively. Both antibodies recognized the immune complexes. These results suggest that NK cells are capable of recognition of, and activation by, Leishmania LPG through TLR-2, enabling them to participate autonomously in the innate immune system and thereby increasing the effective destruction of the parasite. PMID:12946842

  5. Counteracting Interactions between Lipopolysaccharide Molecules with Differential Activation of Toll-Like Receptors

    Hajishengallis, George; Martin, Michael; Schifferle, Robert E.; Genco, Robert J.

    2002-01-01

    We investigated counteracting interactions between the lipopolysaccharides (LPS) from Escherichia coli (Ec-LPS) and Porphyromonas gingivalis (Pg-LPS), which induce cellular activation through Toll-like receptor 4 (TLR4) and TLR2, respectively. We found that Ec-LPS induced tolerance in THP-1 cells to subsequent tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) induction by Pg-LPS, though the reverse was not true, and looked for explanatory differential effects on the signal transduction pathway. Cells exposed to Pg-LPS, but not to Ec-LPS, displayed persisting expression of IL-1 receptor-associated kinase without apparent degradation, presumably allowing prolonged relay of downstream signals. Accordingly, cells pretreated with Pg-LPS, but not with Ec-LPS, were effectively activated in response to subsequent exposure to either LPS molecule, as evidenced by assessing nuclear factor (NF)-κB activity. In fact, Pg-LPS primed THP-1 cells for enhanced NF-κB activation and TNF-α release upon restimulation with the same LPS. This was a dose-dependent effect and correlated with upregulation of surface TLR2 expression. Furthermore, we observed inhibition of NF-κB-dependent transcription in a reporter cell line pretreated with Ec-LPS and restimulated with Pg-LPS (compared to cells pretreated with medium only and restimulated with Pg-LPS), but not when the reverse treatment was made. Although Pg-LPS could not make cells tolerant to subsequent activation by Ec-LPS, Pg-LPS inhibited Ec-LPS-induced TNF-α and IL-6 release when the two molecules were added simultaneously into THP-1 cell cultures. Pg-LPS also suppressed P. gingivalis FimA protein-induced NF-κB-dependent transcription in the 3E10/huTLR4 reporter cell line, which does not express TLR2. This rules out competition for common signaling intermediates, suggesting that Pg-LPS may block component(s) of the TLR4 receptor complex. Interactions between TLR2 and TLR4 agonists may be important in the

  6. The biology of Toll-like receptors.

    Means, T K; Golenbock, D T; Fenton, M J

    2000-09-01

    In 1997, a human homologue of the Drosophila Toll protein was described, a protein later to be designated Toll-like receptor 4 (TLR4). Since that time, additional human and murine TLR proteins have been identified. Mammalian TLR proteins appear to represent a conserved family of innate immune recognition receptors. These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in the activation of genes that mediate innate immune defenses. Numerous studies have now identified a wide variety of chemically-diverse bacterial products that serve as putative ligands for TLR proteins. More recent studies have identified the first endogenous protein ligands for TLR proteins. TLR signaling represents a key feature of innate immune response to pathogen invasion. PMID:10817965

  7. Poke Weed Mitogen Requires Toll-Like Receptor Ligands for Proliferative Activity in Human and Murine B Lymphocytes

    Bekeredjian-Ding, Isabelle; Foermer, Sandra; Kirschning, Carsten J.; Parcina, Marijo; Heeg, Klaus

    2012-01-01

    Poke weed mitogen (PWM), a lectin purified from Phytolacca americana is frequently used as a B cell-specific stimulus to trigger proliferation and immunoglobulin secretion. In the present study we investigated the mechanisms underlying the B cell stimulatory capacity of PWM. Strikingly, we observed that highly purified PWM preparations failed to induce B cell proliferation. By contrast, commercially available PWM preparations with B cell activity contained Toll-like receptor (TLR) ligands suc...

  8. DMPD: Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways inmacrophage activation. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17502339 Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways ...May 14. (.png) (.svg) (.html) (.csml) Show Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent ...pathways inmacrophage activation. PubmedID 17502339 Title Crosstalk among Jak-STA...T, Toll-like receptor, and ITAM-dependent pathways inmacrophage activation. Authors Hu X, Chen J, Wang L, Iv... File (.svg) HTML File (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file wit

  9. S6K1 Negatively Regulates TAK1 Activity in the Toll-Like Receptor Signaling Pathway

    Kim, So Yong; Baik, Kyung-Hwa; Baek, Kwan-Hyuck; Chah, Kyong-Hwa; Kim, Kyung Ah; Moon, Gyuyoung; Jung, Eunyu; Kim, Seong-Tae; Shim, Jae-Hyuck; Greenblatt, Matthew B.; Chun, Eunyoung; Lee, Ki-Young

    2014-01-01

    Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is a key regulator in the signals transduced by proinflammatory cytokines and Toll-like receptors (TLRs). The regulatory mechanism of TAK1 in response to various tissue types and stimuli remains incompletely understood. Here, we show that ribosomal S6 kinase 1 (S6K1) negatively regulates TLR-mediated signals by inhibiting TAK1 activity. S6K1 overexpression causes a marked reduction in NF-κB and AP-1 activity induced by stimulation...

  10. DMPD: Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15031527 Toll-like receptor 3: a link between toll-like receptor, interferon and viruses... (.csml) Show Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. PubmedID 1503...1527 Title Toll-like receptor 3: a link between toll-like receptor, interferon and viruses

  11. Evidence for Activation of Toll-Like Receptor and Receptor for Advanced Glycation End Products in Preterm Birth

    Taketoshi Noguchi

    2010-01-01

    Full Text Available Objective. Individuals with inflammation have a myriad of pregnancy aberrations including increasing their preterm birth risk. Toll-like receptors (TLRs and receptor for advanced glycation end products (RAGE and their ligands were all found to play a key role in inflammation. In the present study, we reviewed TLR and RAGE expression, their ligands, and signaling in preterm birth. Research Design and Methods. A systematic search was performed in the electronic databases PubMed and ScienceDirect up to July 2010, combining the keywords “preterm birth,” “TLR”, “RAGE”, “danger signal”, “alarmin”, “genomewide,” “microarray,” and “proteomics” with specific expression profiles of genes and proteins. Results. This paper provides data on TLR and RAGE levels and critical downstream signaling events including NF-kappaB-dependent proinflammatory cytokine expression in preterm birth. About half of the genes and proteins specifically present in preterm birth have the properties of endogenous ligands “alarmin” for receptor activation. The interactions between the TLR-mediated acute inflammation and RAGE-mediated chronic inflammation have clear implications for preterm birth via the TLR and RAGE system, which may be acting collectively. Conclusions. TLR and RAGE expression and their ligands, signaling, and functional activation are increased in preterm birth and may contribute to the proinflammatory state.

  12. Toll-like receptors in neurodegeneration

    Owens, Trevor

    2009-01-01

    Innate pattern recognition receptors are implicated in first-line defense against pathogens but also participate in maintenance of tissue homeostasis and response to injury. This chapter reviews the role of Toll-like receptors (TLRs) in neuronal and glial responses that are associated with...... neurodegeneration. Accompanying roles for infection and inflammation, involvement in clinical neurodegenerative disorders, and heterogeneity of glial response are discussed. A "strength of signal" hypothesis is advanced in an attempt to reconcile evolutionarily selected and therefore likely beneficial effects of...... TLR signaling in the nervous system with capability for neurotoxocity and gliotoxicity....

  13. Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors.

    Pone, Egest J

    2016-01-01

    Toll-like receptors (TLRs) are expressed in B lymphocytes and contribute to B-cell activation, antibody responses, and their maturation. TLR stimulation of mouse B cells induces class switch DNA recombination (CSR) to isotypes specified by cytokines, and also induces formation of IgM(+) as well as class-switched plasma cells. B-cell receptor (BCR) signaling, while on its own inducing limited B-cell proliferation and no CSR, can enhance CSR driven by TLRs. Particular synergistic or antagonistic interactions among TLR pathways, BCR, and cytokine signaling can have important consequences for B-cell activation, CSR, and plasma cell formation. This chapter outlines protocols for the induction and analysis of B-cell activation and antibody production by TLRs with or without other stimuli. PMID:26803633

  14. Toll-Like Receptors in Angiogenesis

    Karsten Grote

    2011-01-01

    Full Text Available Toll-like receptors (TLRs are known as pattern-recognition receptors related to the Toll protein of Drosophila. After recognition of pathogen-associated molecular patterns of microbial origin, the TLRs alert the immune system, and initiate innate and adaptive immune responses. The TLR system, though, is not confined solely to the leukocyte-mediated immune defense against exogenous pathogens. Besides myeloid cells, TLR expression has been reported in multiple tissues and cell types, including epithelial and endothelial cells. Moreover, despite the microbial patterns that are commonly accepted as TLR ligands, there is increasing evidence that TLRs also recognize host-derived molecules. In this regard, recent studies point to an involvement of TLRs in various chronic inflammatory disorders and cardiovascular diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, and even cancer. A common feature of these disorders is an enhanced so-called inflammation-induced angiogenesis. However, inflammation-induced angiogenesis is not solely a key component of pathogen defense during acute infection or chronic inflammatory disorders, but also plays a critical role in repair mechanisms, e.g., wound healing and subsequent tissue regeneration. Interestingly, the latest research could coincidentally demonstrate that TLR activation promotes angiogenesis in various inflammatory settings in response to both exogenous and endogenous ligands, although the precise mode of action of TLRs in this context still remains ambiguous. The objective of this review is to present evidence for the implication of TLRs in angiogenesis during physiological and pathophysiological processes, and the potential clinical relevance for new treatment regimes involving TLR modulation.

  15. Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation

    Miguel Angel Burguillos

    2015-03-01

    Full Text Available Inflammatory response induced by microglia plays a critical role in the demise of neuronal populations in neuroinflammatory diseases. Although the role of toll-like receptor 4 (TLR4 in microglia’s inflammatory response is fully acknowledged, little is known about endogenous ligands that trigger TLR4 activation. Here, we report that galectin-3 (Gal3 released by microglia acts as an endogenous paracrine TLR4 ligand. Gal3-TLR4 interaction was further confirmed in a murine neuroinflammatory model (intranigral lipopolysaccharide [LPS] injection and in human stroke subjects. Depletion of Gal3 exerted neuroprotective and anti-inflammatory effects following global brain ischemia and in the neuroinflammatory LPS model. These results suggest that Gal3-dependent-TLR4 activation could contribute to sustained microglia activation, prolonging the inflammatory response in the brain.

  16. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor- stimulated macrophages

    Walk RM

    2012-11-01

    Full Text Available Ryan M Walk,1,2 Steven T Elliott,2 Felix C Blanco,2 Jason A Snyder,2 Ashley M Jacobi,3 Scott D Rose,3 Mark A Behlke,3 Aliasger K Salem,4 Stanislav Vukmanovic,2 Anthony D Sandler21Department of Surgery, Walter Reed Army Medical Center, Washington, DC, USA; 2Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, USA; 3Integrated DNA Technologies, Coralville, IA, USA; 4Division of Pharmaceutics, University of Iowa, Iowa City, IA, USAAbstract: Toll-like receptor (TLR agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α, a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10, a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10.Keywords: toll-like receptors, innate immunity, IL-10

  17. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain

    Lewis, Susannah S.; Hutchinson, Mark R; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R

    2013-01-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex ...

  18. Mycoplasma lipoproteins and Toll-like receptors

    Ling-ling ZUO; Yi-mou WU; Xiao-xing YOU

    2009-01-01

    Mycoplasmas, the smallest free-living, self-replicating bacteria with diameters of 200 to 800 nm, have been reported to be associated with human diseases. It is well known that the mycoplasma lipoprotein/peptide is able to modulate the host immune system, whose N-terminal structure is an important factor in inducing immunity and distinguishing Toll-like receptors (TLRs). However, there is still no clear elucidation about the pathogenic mechanism of mycoplasma lipoprotein/peptide and the signaling pathway. Some researchers have focused on understanding the structures of these proteins and the relationships between their structure and biological function. This review provides an update on the research in this field.

  19. Toll-Like Receptors and Myocardial Inflammation

    Yan Feng

    2011-01-01

    Full Text Available Toll-like receptors (TLRs are a member of the innate immune system. TLRs detect invading pathogens through the pathogen-associated molecular patterns (PAMPs recognition and play an essential role in the host defense. TLRs can also sense a large number of endogenous molecules with the damage-associated molecular patterns (DAMPs that are produced under various injurious conditions. Animal studies of the last decade have demonstrated that TLR signaling contributes to the pathogenesis of the critical cardiac conditions, where myocardial inflammation plays a prominent role, such as ischemic myocardial injury, myocarditis, and septic cardiomyopathy. This paper reviews the animal data on (1 TLRs, TLR ligands, and the signal transduction system and (2 the important role of TLR signaling in these critical cardiac conditions.

  20. Immune activation by medium-chain triglyceride-containing lipid emulsions is not modulated by n-3 lipids or toll-like receptor 4

    Olthof, E.D.; Gulich, A.F.; Renne, M.F.; Landman, S.; Joosten, L.A.B.; Roelofs, H.M.; Wanten, G.J.A.

    2015-01-01

    BACKGROUND: Saturated medium-chain triglycerides (MCT) as part of the parenteral lipid regimen (50% MCT and 50% long chain triglycerides (LCT)) activate the immune system in vitro. Fish oil (FO)-derived n-3 fatty acids (FA) inhibit saturated FA-induced immune activation via a toll-like receptor (TLR

  1. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia

    Fellner, Lisa; Irschick, Regina; Schanda, Kathrin; Reindl, Markus; Klimaschewski, Lars; Poewe, Werner; Wenning, Gregor K; Stefanova, Nadia

    2013-01-01

    Alpha-synucleinopathies (ASP) are neurodegenerative disorders, characterized by accumulation of misfolded α-synuclein, selective neuronal loss, and extensive gliosis. It is accepted that microgliosis and astrogliosis contribute to the disease progression in ASP. Toll-like receptors (TLRs) are expressed on cells of the innate immune system, including glia, and TLR4 dysregulation may play a role in ASP pathogenesis. In this study we aimed to define the involvement of TLR4 in microglial and astr...

  2. Fibrinogen, an endogenous ligand of Toll-like receptor 4, activates monocytes in pre-eclamptic patients.

    Al-ofi, Ebtisam; Coffelt, Seth B; Anumba, Dilly O

    2014-06-01

    Pre-eclampsia (PE) remains the leading cause of pregnancy-associated mortality and morbidity, urging the need for a better understanding of its aetiology and pathophysiological progression. A key characteristic of PE is a systemic, exaggerated, inflammatory condition involving abnormal cytokine levels in serum, altered immune cell phenotype and Th1/Th2-type immunological imbalance. However, it is unknown how this heightened inflammatory condition manifests. We previously reported increased expression of the lipopolysaccharide receptor, Toll-like receptor 4 (TLR4), on monocytes from PE patients compared with normotensive, pregnant patients (NP). This upregulation of TLR4 on PE monocytes was accompanied by a hyper-responsiveness to bacterial TLR4 ligands. To determine whether non-microbial, endogenous TLR4 ligands also activate monocytes from PE patients, we investigated the expression of host-derived TLR4 ligands and the response of monocytes to these endogenous ligands. Plasma levels of fibrinogen - but not fibronectin or heparan sulphate - were higher in PE patients than in NP. Exposure to fibrinogen was associated with significantly increased production of inflammatory cytokines by monocytes from PE patients. Interestingly, this effect was not observed with NP monocytes. Our findings suggest that the fibrinogen-TLR4 axis might play an important role in the atypical activation of monocytes observed in PE patients that may contribute to the exaggerated inflammatory condition. PMID:24661950

  3. Role of Toll-like receptor 4 in inflammatory reactions of hippocampal neurons

    Yae Hu; Jiahui Mao; Yu Zhang; Ailing Zhou

    2013-01-01

    Lipopolysaccharide stimulates Toll-like receptor 4 on immune cells to produce immune mediators. Toll-like receptor 4 is also expressed by non-immune cells, which can be stimulated by lipopolysaccharide. However, whether Toll-like receptor 4 is expressed by primary cultured hippocampal neurons and its specific role in lipopolysaccharide-induced neuroinflammation is currently undefined. In this study, Toll-like receptor 4 antibody blocking was used to analyze the Toll-like receptor 4 signaling pathway and changes in inflammation of lipopolysaccharide stimulated hippocampal neurons. Immunofluorescence showed that Toll-like receptor 4 protein was mainly located in the membrane of hippocampal neurons. Quantitative reverse transcription-PCR and western blot assay showed that after stimulation of lipopolysaccharide, the mRNA and protein levels of Toll-like receptor 4 and the mRNA levels of interleukin-1β and tumor necrosis factor-α were significantly increased. In addition, there was increased phosphorylation and degradation of kappa B α inhibitor in the cytosol and increased nuclear factor-κB p65 expression in the nuclei. Pretreatment with Toll-like receptor 4 antibody could almost completely block this increase. These experimental findings indicate that lipopolysaccharide participates in neuroinflammation by stimulating Toll-like receptor 4/nuclear factor-κB pathway in hippocampal neurons, which may be both "passive victims" and "activators" of neuroinflammation.

  4. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  5. Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts.

    McLetchie, Shawna; Volpp, Bryan D; Dinauer, Mary C; Blum, Janice S

    2015-12-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency linked with mutations in the multi-subunit leucocyte NADPH oxidase. Myeloid-derived phagocytic cells deficient in NADPH oxidase fail to produce sufficient levels of reactive oxygen species to clear engulfed pathogens. In this study we show that oxidase also influences B-cell functions, including responses to single-stranded RNA or unmethylated DNA by endosomal Toll-like receptors (TLRs) 7 and 9. In response to TLR7/9 ligands, B-cell lines derived from patients with CGD with mutations in either the NADPH oxidase p40(phox) or p47(phox) subunits produced only low levels of reactive oxygen species. Remarkably, cytokine secretion and p38 mitogen-activated protein kinase activation by these oxidase-deficient B cells was significantly increased upon TLR7/9 activation when compared with oxidase-sufficient B cells. Increased TLR responsiveness was also detected in B cells from oxidase-deficient mice. NADPH oxidase-deficient patient-derived B cells also expressed enhanced levels of TLR7 and TLR9 mRNA and protein compared with the same cells reconstituted to restore oxidase activity. These data demonstrate that the loss of oxidase function associated with CGD can significantly impact B-cell TLR signalling in response to nucleic acids with potential repercussions for auto-reactivity in patients. PMID:26340429

  6. MR imaging and T2 measurements in peripheral nerve repair with activation of Toll-like receptor 4 of neurotmesis

    Zhang, Xiang; Zhang, Fang; Lu, Liejing; Li, Haojiang; Wen, Xuehua; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China)

    2014-05-15

    To investigate the role of MR imaging in neurotmesis combined with surgical repair and Toll-like receptor 4 (TLR4) activation. Forty-eight rats received subepineurial microinjection of the TLR4 agonist lipopolysaccharide (LPS, n = 24) or phosphate buffered saline (PBS, n = 24) immediately after surgical repair of the transected sciatic nerve. Sequential fat-suppressed T2-weighted imaging and quantitative T2 measurements were obtained at 3, 7, 14 and 21 days after surgery, with histologic assessments performed at regular intervals. T2 relaxation times and histological quantification of the distal stumps were measured and compared. The distal stumps of transected nerves treated with LPS or PBS both showed persistent enlargement and hyperintense signal. T2 values of the distal stumps showed a rapid rise to peak level followed by a rapid decline pattern in nerves treated with LPS, while exhibiting a slow rise to peak value followed by a slow decline in nerves treated with PBS. Nerves treated with LPS exhibited more prominent macrophage recruitment, faster myelin debris clearance and more pronounced nerve regeneration. Nerves treated with TLR4 activation had a characteristic pattern of T2 value change over time. Longitudinal T2 measurements can be used to detect the enhanced repair effect associated with TLR4 activation in the surgical repair of neurotmesis. (orig.)

  7. MR imaging and T2 measurements in peripheral nerve repair with activation of Toll-like receptor 4 of neurotmesis

    To investigate the role of MR imaging in neurotmesis combined with surgical repair and Toll-like receptor 4 (TLR4) activation. Forty-eight rats received subepineurial microinjection of the TLR4 agonist lipopolysaccharide (LPS, n = 24) or phosphate buffered saline (PBS, n = 24) immediately after surgical repair of the transected sciatic nerve. Sequential fat-suppressed T2-weighted imaging and quantitative T2 measurements were obtained at 3, 7, 14 and 21 days after surgery, with histologic assessments performed at regular intervals. T2 relaxation times and histological quantification of the distal stumps were measured and compared. The distal stumps of transected nerves treated with LPS or PBS both showed persistent enlargement and hyperintense signal. T2 values of the distal stumps showed a rapid rise to peak level followed by a rapid decline pattern in nerves treated with LPS, while exhibiting a slow rise to peak value followed by a slow decline in nerves treated with PBS. Nerves treated with LPS exhibited more prominent macrophage recruitment, faster myelin debris clearance and more pronounced nerve regeneration. Nerves treated with TLR4 activation had a characteristic pattern of T2 value change over time. Longitudinal T2 measurements can be used to detect the enhanced repair effect associated with TLR4 activation in the surgical repair of neurotmesis. (orig.)

  8. Microbial Hijacking of Complement–Toll-like Receptor Crosstalk*

    WANG Min; Krauss, Jennifer L.; Domon, Hisanori; Hosur, Kavita B.; Liang, Shuang; Magotti, Paola; Triantafilou, Martha; Triantafilou, Kathy; Lambris, John D.; Hajishengallis, George

    2010-01-01

    Recent evidence suggests that complement and Toll-like receptors (TLRs) crosstalk to coordinate innate immunity. We report a novel immune subversion mechanism involving microbial exploitation of the ability of complement and TLRs for communication. Porphyromonas gingivalis, a major oral and systemic pathogen expressing complement C5 convertase-like activity, was shown to synergize with C5a for cAMP elevation resulting in macrophage immunosuppression and enhanced pathogen survival in vitro and...

  9. Lubricin/Proteoglycan 4 binds to and regulates the activity of Toll-Like Receptors In Vitro.

    Iqbal, S M; Leonard, C; Regmi, S C; De Rantere, D; Tailor, P; Ren, G; Ishida, H; Hsu, Cy; Abubacker, S; Pang, D Sj; Salo, P T; Vogel, H J; Hart, D A; Waterhouse, C C; Jay, G D; Schmidt, T A; Krawetz, R J

    2016-01-01

    Proteoglycan 4 (PRG4/lubricin) is secreted by cells that reside in articular cartilage and line the synovial joint. Lubricin may play a role in modulating inflammatory responses through interaction with CD44. This led us to examine if lubricin could be playing a larger role in the modulation of inflammation/immunity through interaction with Toll-like receptors (TLRs). Human Embryonic Kidney (HEK) cells overexpressing TLRs 2, 4 or 5 and surface plasmon resonance were employed to determine if full length recombinant human lubricin was able to bind to and activate TLRs. Primary human synovial fibroblasts were also examined using flow cytometry and Luminex multiplex ELISA. A rat destabilization model of osteoarthritis (OA) was used to determine if lubricin injections were able to regulate pain and/or inflammation in vivo. Lubricin can bind to and regulate the activity of TLRs, leading to downstream changes in inflammatory signalling independent of HA. We confirmed these findings in vivo through intra-articular injections of lubricin in a rat OA model where the inhibition of systemic inflammatory signaling and reduction in pain were observed. Lubricin plays an important role in regulating the inflammatory environment under both homeostatic and tissue injury states. PMID:26752378

  10. Toll-like receptors of deuterostome invertebrates

    Honoo eSatake

    2012-02-01

    Full Text Available Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates including a sea urchin (222 TLR-related gene candidates and amphioxus (72 TLR-related gene candidates. Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, an ascidian, Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and -2, were shown to possess hybrid functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating the confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates of deuterostome invertebrates, and provide insight into an evolutionary process of TLRs.

  11. Toll-like receptor 2 or toll-like receptor 4 deficiency does not modify lupus in MRLlpr mice.

    Simon J Freeley

    Full Text Available Systemic lupus erythematosus is an autoimmune disease with a high morbidity and nephritis is a common manifestation. Previous studies in murine lupus models have suggest a role for Toll-like receptor 2 and 4. We examined the role of these molecules in MRL lpr mice which is one of the most established and robust murine models. We compared disease parameters in Toll-like receptor 2 or Toll-like receptor 4 deficient mice with their littermate controls. We found no difference in the severity of glomerulonephritis as assessed by histology, serum creatinine and albuminuria when Toll-like receptor 2 or Toll-like receptor 4 deficient MRLlpr mice were compared with Toll-like receptor sufficient controls. We also found similar levels of anti-dsDNA and anti-ssDNA antibodies. These results show that Toll-like receptor 2 and Toll-like receptor 4 do not play a significant role in MRLlpr mice, and therefore they may not be important in human lupus.

  12. Prenatal activation of toll-like receptor-4 dampens adult hippocampal neurogenesis in an IL-6 dependent manner

    Abdeslam eMouihate

    2016-06-01

    Full Text Available Prenatal immune challenge has been associated with alteration in brain development and plasticity that last into adulthood. We have previously shown that prenatal activation of toll-like receptor 4 by LPS induces IL-6-dependent STAT-3 signaling pathway in the fetal brain. Whether this IL-6-dependent activation of fetal brain results in long lasting impact in brain plasticity is still unknown. Furthermore, it has been shown that prenatal LPS heightens the hypothalamic-pituitary-adrenal (HPA response in adulthood. In the present study we tested whether LPS administration during pregnancy affects neurogenesis in adult male offspring. Because corticosterone, the end-product of HPA axis activity in rats, alters neurogenesis we tested whether this enhanced HPA axis responsiveness in adult male offspring played a role in the long lasting impact of LPS on neurogenesis during adulthood. Pregnant rats were given either LPS, or LPS and an IL-6 neutralizing antibody (IL-6Ab. The newly born neurons were monitored in the subventricular zone (SVZ and the dentate gyrus (DG of the hippocampus of adult male offspring by monitoring doublecortin and T-box brain protein 2 expression: two well-established markers of newly born neurons. Prenatal LPS decreased the number of newly born neurons in the DG, but not in the SVZ of adult offspring. This decreased number of newly born neurons in the DG was absent when IL-6Ab was co-injected with LPS during pregnancy. Furthermore, administration of a corticosterone receptor blocker, RU-486, to adult offspring blunted the prenatal LPS induced decrease in newly born neurons in the DG.These data suggest that maternally triggered IL-6 plays a crucial role in the long lasting impact of LPS on adult neurogenesis.

  13. Toll-like receptor expression and activation in astroglia: differential regulation by HIV-1 Tat, gp120, and morphine

    El-Hage, Nazira; PODHAIZER, Elizabeth M.; Sturgill, Jamie; Hauser, Kurt F.

    2011-01-01

    In this study we determine whether morphine alone or in combination with HIV-1 Tat or gp120 affects the expression of Toll-like receptors (TLRs) by astrocytes and to assess whether TLRs expressed by astrocytes function in the release of inflammatory mediators in vitro. TLR profiling by immunofluorescence microscopy, flow cytometry, in-cell westerns, and RT-PCR showed that subpopulations of astrocytes possessed TLR 2, TLR3, TLR4, and TLR9 antigenicity. Exposure to HIV-1 Tat, gp120, and/or morp...

  14. Lactobacilli inhibit interleukin-8 production induced by Helicobacter pylori lipopolysaccharide-activated Toll-like receptor 4

    Chao Zhou; Feng-Zhen Ma; Xue-Jie Deng; Hong Yuan; Hong-Sheng Ma

    2008-01-01

    AIM: To investigate the effect of Lactobacillus bulgaricus (LBG) on the Toll-like receptor 4 (TLR4) pathway and interleukin-8 (IL-8) production in SGC-7901 cells treated with Helicobacter pyloriSydney strain 1 lipopolysaccharide (H pyloriSS1-LPS).METHODS: SGC-7901 cells were treated with H pyIoriSS1-LPS in the presence or absence of pretreatment for 1 h with viable LBG or supematant recovered from LBG culture MRS broth (LBG-s). Cellular lysates were prepared for Western blot with anti-TLR4,anti-transforming growth factor β-activated kinase 1 (TAK1), anti-phospho-TAK1, anti-nuclear factor κB (NF-κB), anti-p38 mitogen-activated protein kinase (p38MAPK), and anti-phospho-p38MAPK antibodies.The amount of IL-8 in cell culture medium was measured by ELISA.RESULTS: H pyloriSS1-LPS up-regulated the expression of TLR4, stimulated the phosphorylation of TAK1, subsequently enhanced the activation of NFκB and the phosphorylation of p38MAPK in a timedependent manner, leading to augmentation of IL-8 production in SGC-7901 cells. Viable LBG or LBG-s pretreatment attenuated the expression of TLR4,inhibited the phosphorylation of TAK1 and p38MAPK,prevented the activation of NF-κB, and consequently blocked IL-8 production.CONCLUSION: H pyloriSS1-LPS induces IL-8production through activating TLR4 signaling in SGC-7901 cells and viable LBG or LBG-s prevents H pyloriSS1-LPS-mediated IL-8 production via inhibition of the TLR4 pathway.

  15. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages

    Meyerhans Andreas

    2010-09-01

    Full Text Available Abstract Background Investigations on pulmonary macrophages (MΦ mostly focus on alveolar MΦ (AM as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM, are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. Methods Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. Results IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG. Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6. Conclusion AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response.

  16. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    Bo Yoon Chang; Seon Beom Kim; Mi Kyeong Lee; Hyun Park; Sung Yeon Kim

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (...

  17. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Yao Linli; Kan Enci Mary; Lu Jia; Hao Aijun; Dheen S Thameem; Kaur Charanjit; Ling Eng-Ang

    2013-01-01

    Abstract Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rat...

  18. Src Kinases Are Required for a Balanced Production of IL-12/IL-23 in Human Dendritic Cells Activated by Toll-Like Receptor Agonists

    Kuka, Mirela; Baronio, Roberta; Valentini, Sara; Monaci, Elisabetta; Muzzi, Alessandro; Aprea, Susanna; De Gregorio, Ennio; D'Oro, Ugo

    2010-01-01

    Background Pathogen recognition by dendritic cells (DC) is crucial for the initiation of both innate and adaptive immune responses. Activation of Toll-like Receptors (TLRs) by microbial molecular patterns leads to the maturation of DC, which present the antigen and activate T cells in secondary lymphoid tissues. Cytokine production by DC is critical for shaping the adaptive immune response by regulating T helper cell differentiation. It was previously shown by our group that Src kinases play ...

  19. Toll-like receptors:function and roles in asthma

    周林福; 殷凯生

    2004-01-01

    @@ Asthma is a chronic airway inflammatory disease involved with multiple susceptible genes for atopy. Toll-like receptors (TLRs), an ancient though newly characterized and evolutionarily conserved immune receptor family, activate the mononuclear phagocyte system via both myeloid differentiation marker 88 (MyD88)-dependent and -independent signaling pathways. TLRs might play a key role in asthma by recognition of pathogenic microorganisms, activation of innate immunity, regulation of adaptive immunity, and induction of immune tolerance. For future immunotherapy of asthma, it is promising to develop novel immune regulators by selectively targeting blockade of TLRs.

  20. CCL-34, a synthetic toll-like receptor 4 activator, modulates differentiation and maturation of myeloid dendritic cells.

    Fu, Shu-Ling; Lin, Chun-Cheng; Hsu, Ming-Ling; Liu, Sheng-Hung; Huang, Yu-Chuen; Chen, Yu-Jen

    2016-03-01

    CCL-34, a synthetic α-galactosylceramide analog, has been reported as an activator of toll-like receptor 4 (TLR4) in macrophages. TLR4 is highly expressed in dendritic cell (DC) and several TLR4 agonists are known to trigger DC maturation. We herein evaluated the effect of CCL-34 on DC maturation. Human CD14+ monocyte-derived immature DC were treated with CCL-34, its inactive structural analog CCL-44, or LPS to assess the DC maturation. CCL-34 induced DC maturation according to their characteristically dendrite-forming morphology, CD83 expression and IL-12p70 production. The allostimulatory activity of DC on proliferation of naive CD4+CD45+RA+ T cells and their secretion of interferon-γ was increased by CCL-34. Phagocytosis, an important function of immature DC, was reduced after CCL-34 treatment. All these effects related to DC maturation were evidently induced by positive control LPS but not by CCL-44 treatment. TLR4 neutralization impaired human DC maturation triggered by CCL-34. The induction of IL-12, a hallmark of DC maturation, by CCL-34 and LPS was only evident in TLR4-competent C3H/HeN, but not in TLR4-defective C3H/HeJ mice. CCL-34 could further elicit the antigen presentation capability in mice inoculated with doxorubicin-treated colorectal cancer cells. In summary, CCL-34 triggers DC maturation via a TLR4-dependent manner, which supports its potential application as an immunostimulator. PMID:26883191

  1. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice.

    Liu, Tong; Han, Qingjian; Chen, Gang; Huang, Ya; Zhao, Lin-Xia; Berta, Temugin; Gao, Yong-Jing; Ji, Ru-Rong

    2016-04-01

    Increasing evidence suggests that Toll-like receptor 4 (TLR4) contributes importantly to spinal cord glial activation and chronic pain sensitization; however, its unique role in acute and chronic itch is unclear. In this study, we investigated the involvement of TLR4 in acute and chronic itch models in male mice using both transgenic and pharmacological approaches. Tlr4 mice exhibited normal acute itch induced by compound 48/80 and chloroquine, but these mice showed substantial reductions in scratching in chronic itch models of dry skin, induced by acetone and diethylether followed by water (AEW), contact dermatitis, and allergic contact dermatitis on the neck. Intrathecal (spinal) inhibition of TLR4 with lipopolysaccharide Rhodobacter sphaeroides did not affect acute itch but suppressed AEW-induced chronic itch. Compound 48/80 and AEW also produced robust alloknesis, a touch-elicited itch in wild-type mice, which was suppressed by intrathecal lipopolysaccharide R sphaeroides and Tlr4 deletion. Acetone and diethylether followed by water induced persistent upregulation of Tlr4 mRNA and increased TLR4 expression in GFAP-expressing astrocytes in spinal cord dorsal horn. Acetone and diethylether followed by water also induced TLR4-dependent astrogliosis (GFAP upregulation) in spinal cord. Intrathecal injection of astroglial inhibitor L-α-aminoadipate reduced AEW-induced chronic itch and alloknesis without affecting acute itch. Spinal TLR4 was also necessary for AEW-induced chronic itch in the cheek model. Interestingly, scratching plays an essential role in spinal astrogliosis because AEW-induced astrogliosis was abrogated by putting Elizabethan collars on the neck to prevent scratching the itchy skin. Our findings suggest that spinal TLR4 signaling is important for spinal astrocyte activation and astrogliosis that may underlie alloknesis and chronic itch. PMID:26645545

  2. Cracking the Toll-like receptor code in fungal infections

    Cunha, Cristina; Romani, Luigina; Carvalho, Agostinho

    2010-01-01

    Innate control of fungal infection requires the specific recognition of invariant fungal molecular structures by a variety of innate immune receptors, including Toll-like receptors. In addition to the role in inducing protective immune responses, Toll-like receptor engagement may paradoxically favor fungal infections, by inducing inflammatory pathology and impairing antifungal immunity. Although the dissection of complex genetic traits modulating susceptibility to fungal infections is complex...

  3. The Expression of Toll-like Receptors in Dermatological Diseases and the Therapeutic Effect of Current and Newer Topical Toll-like Receptor Modulators

    Valins, Whitney; Amini, Sadegh; Berman, Brian

    2010-01-01

    Toll-like receptors are a group of glycoproteins located mostly in cellular membranes, capable of recognizing certain molecules in exogenous microorganisms and initiating immune responses against them through the activation of several intracellular signaling pathways. Toll-like receptors can be stimulated when an inflammatory reaction is needed for the treatment of conditions, such as viral infections or skin cancer, or can be inhibited when a reduction of inflammation is necessary for the tr...

  4. Curcumin attenuates renal ischemia reperfusion injury in mice by inhibiting the activation of toll-like receptor 4 signaling

    Di-ying WU

    2012-07-01

    -L 135.8±15.2, CM-H 125.6±14.6pg/ml; P < 0.05 or P < 0.01. Conclusion Curcumin can ameliorate renal IR injury in mice, which is attributable to inhibition of the activation of Toll-like receptor 4 signaling.

  5. Toll-like receptor 4 modulates skeletal muscle substrate metabolism

    Frisard, Madlyn I.; McMillan, Ryan P.; Marchand, Julie; Wahlberg, Kristin A.; Wu, Yaru; Voelker, Kevin A.; Heilbronn, Leonie; Haynie, Kimberly; Muoio, Brendan; Li, Liwu; Hulver, Matthew W.

    2010-01-01

    Toll-like receptor 4 (TLR4), a protein integral to innate immunity, is elevated in skeletal muscle of obese and type 2 diabetic humans and has been implicated in the development of lipid-induced insulin resistance. The purpose of this study was to examine the role of TLR4 as a modulator of basal (non-insulin-stimulated) substrate metabolism in skeletal muscle with the hypothesis that its activation would result in reduced fatty acid oxidation and increased partitioning of fatty acids toward n...

  6. Different activations of toll-like receptors and antimicrobial peptides in chronic rhinosinusitis with or without nasal polyposis.

    Hirschberg, Andor; Kiss, Maria; Kadocsa, Edit; Polyanka, Hilda; Szabo, Kornelia; Razga, Zsolt; Bella, Zsolt; Tiszlavicz, Laszlo; Kemeny, Lajos

    2016-07-01

    Both up- and down-regulation of the Toll-like receptors (TLRs) and antimicrobial peptides (AMPs) of the sinonasal mucosa have already been associated with the pathogenesis of chronic rhinosinusitis with (CRSwNP) or without (CRSsNP) nasal polyps. The objective of this study was to determine the expression of all known TLR and several AMP genes and some selected proteins in association with allergy, asthma and aspirin intolerance (ASA) in CRS subgroups. RT-PCR was applied to measure the mRNA expressions of 10 TLRs, four defensins, lysozyme, cathelicidin and lactoferrin (LTF) in sinonasal samples from patients with CRSsNP (n = 19), CRSwNP [ASA(-): 17; ASA(+): 7] and in control subjects (n = 12). Protein expressions were detected with immunohistochemistry (n = 10). Statistical analysis was done with the Kruskal-Wallis ANOVA, Mann-Whitney U, and Student t test. TLR2, TLR5, TLR6, TLR7, TLR8, TLR9, β-defensins 1 and 4, cathelicidin and LTF mRNA expressions were significantly (p < 0.05) increased in CRSwNP, whereas only TLR2 and LTF were up-regulated in CRSsNP compared to controls. There was no statistical difference in respect of allergy, aspirin intolerance and smoking between CRSsNP, ASA(-) and ASA(+) CRSwNP patients. TLR2, TLR3, TLR4, LTF, β defensin 2 and lysozyme protein expressions were found to be elevated in macrophages of CRSwNP samples (p < 0.05). Gene expression analysis showed markedly different expressions in CRSwNP (6 out of 10 TLR and 4 out of 7 AMP genes were up-regulated) compared to CRSsNP (1/10, 1/7). The distinct activation of the innate immunity may support the concept that CRSsNP and CRSwNP are different subtypes of CRS. These findings were found to be independent from allergy, asthma, smoking, aspirin intolerance and systemic steroid application. PMID:26518209

  7. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain.

    Lewis, Susannah S; Hutchinson, Mark R; Zhang, Yingning; Hund, Dana K; Maier, Steven F; Rice, Kenner C; Watkins, Linda R

    2013-05-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

  8. DMPD: Translational mini-review series on Toll-like receptors: networks regulated byToll-like receptors mediate innate and adaptive immunity. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17223959 Translational mini-review series on Toll-like receptors: networks regulate...ol. 2007 Feb;147(2):199-207. (.png) (.svg) (.html) (.csml) Show Translational mini-review series on Toll-like receptors: networks... immunity. PubmedID 17223959 Title Translational mini-review series on Toll-like receptors: networks regulat

  9. Toll-like receptors as therapeutic targets in cystic fibrosis.

    Greene, Catherine M

    2008-12-01

    Background: Toll-like receptors (TLRs) are pattern recognition receptors that act as a first-line of defence in the innate immune response by recognising and responding to conserved molecular patterns in microbial factors and endogenous danger signals. Cystic fibrosis (CF)-affected airways represent a milieu potentially rich in TLR agonists and the chronic inflammatory phenotype evident in CF airway epithelial cells is probably due in large part to activation of TLRs. Objective\\/methods: To examine the prospects of developing novel therapies for CF by targeting TLRs. We outline the expression and function of TLRs and explore the therapeutic potential of naturally-occurring and synthetic TLR inhibitors for CF. Results\\/conclusion: Modulation of TLRs has therapeutic potential for the inflammatory lung manifestations of CF.

  10. MAPPING OF TOLL LIKE RECEPTOR (TLR) GENES IN RAINBOW TROUT

    Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize conserved pathogen structures to induce innate immune effector molecules. In vertebrates, TLRs can distinguish among classes of pathogens and serve an important role in orchestrating the appropriate adaptive immune resp...

  11. Toll-like receptors in brain development and homeostasis

    Larsen, Peter H; Holm, Thomas Hellesøe; Owens, Trevor

    2007-01-01

    Toll-like receptors (TLRs) are best known as initiators of the innate immune response to pathogens. Recent reports now reveal intriguing roles for TLRs in the central nervous system (CNS). These include the regulation of neuroinflammation and of neurite outgrowth. The archetypal Toll protein in...

  12. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs...... of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT....

  13. Toll-like receptors as sensors of pathogens.

    Hallman, M; Rämet, M; Ezekowitz, R A

    2001-09-01

    Initial recognition of microbes, as they enter the body, is based on germ line-encoded pattern recognition receptors that selectively bind to essential components of pathogens. This allows the body to respond immediately to the microbial invasion before the development of active immunity. The signal-transducing receptors that trigger the acute inflammatory cascade have been elusive until very recently. On the basis of their genetic similarity to the Toll signaling pathway in Drosophila, mammalian Toll-like receptors (TLRs) have been identified. By now, nine transmembrane proteins in the TLR family have been described. Mammalian TLR4 is the signal-transducing receptor activated by the bacterial lipopolysaccharide. The activation of TLR4 leads to DNA binding of the transcription factor NF-kappaB, resulting in activation of the inflammatory cascade. Activation of other TLRs is likely to have similar consequences. TLR2 mediates the host response to Gram-positive bacteria and yeast. TLR1 and TLR6 may participate in the activation of macrophages by Gram-positive bacteria, whereas TLR9 appears to respond to a specific sequence of bacterial DNA. The TLRs that control the onset of an acute inflammatory response are critical antecedents for the development of adaptive acquired immunity. Genetic and developmental variation in the expression of microbial pattern recognition receptors may affect the individual's predisposition to infections in childhood and may contribute to susceptibility to severe neonatal inflammatory diseases, allergies, and autoimmune diseases. PMID:11518816

  14. THE IMPACT OF ANTIFUNGALS ON TOLL-LIKE RECEPTORS

    MirceaRaduMihu

    2014-03-01

    Full Text Available Fungi are increasingly recognized as major pathogens in immunocompromised individuals. The most common invasive fungal infections are caused by Candida spp., Aspergillus spp. and Cryptococcus spp. Amphotericin B has remained the cornerstone of therapy against many fulminant fungal infections but its use is limited by its multitude of side effects. Echinocandins are a newer class of antifungal drugs with activity against Candida spp. and Aspergillus spp. and constitutes an alternative to amphotericin B due to superior patient tolerability and fewer side effects. Due to their excellent bioavailability and oral availability, azoles continue to be heavily used for simple, such as fluconazole for candidal vaginitis, and complex diseases, such as voriconazole for aspergilloisis. The objective of this paper is to present current knowledge regarding the multiple interactions between the broad spectrum antifungals and the innate immune response, primarily focusing on the toll-like receptors.

  15. Toll-Like Receptors in Leishmania Infections: Guardians or Promoters?

    Marilia S. Faria

    2012-01-01

    Full Text Available Protozoa of the genus Leishmania cause a wide variety of pathologies ranging from self-healing skin lesions to visceral damage, depending on the parasite species. The outcome of infection depends on the quality of the adaptive immune response, which is determined by parasite factors and the host genetic background. Innate responses, resulting in the generation of mediators with anti-leishmanial activity, contribute to parasite control and help the development of efficient adaptive responses. Among those, the potential contribution of members of the Toll-like receptors (TLRs family in the control of Leishmania infections started to be investigated about a decade ago. Although most studies appoint a protective role for TLRs, there is growing evidence that in some cases, TLRs facilitate infection. This review highlights recent advances in TLR function during Leishmania infections and discusses their potential role in restraining parasite growth versus yielding disease.

  16. Reprint of: Microglial toll-like receptors and Alzheimer's disease.

    Su, Fan; Bai, Feng; Zhou, Hong; Zhang, Zhijun

    2016-07-01

    Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD. PMID:27255539

  17. Current Views of Toll-Like Receptor Signaling Pathways

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  18. Recruitment of Cbl-b to B cell antigen receptor couples antigen recognition to Toll-like receptor 9 activation in late endosomes.

    Margaret Veselits

    Full Text Available Casitas B-lineage lymphoma-b (Cbl-b is a ubiquitin ligase (E3 that modulates signaling by tagging molecules for degradation. It is a complex protein with multiple domains and binding partners that are not involved in ubiquitinating substrates. Herein, we demonstrate that Cbl-b, but not c-Cbl, is recruited to the clustered B cell antigen receptor (BCR and that Cbl-b is required for entry of endocytosed BCRs into late endosomes. The E3 activity of Cbl-b is not necessary for BCR endocytic trafficking. Rather, the ubiquitin associated (UBA domain is required. Furthermore, the Cbl-b UBA domain is sufficient to confer the receptor trafficking functions of Cbl-b on c-Cbl. Cbl-b is also required for entry of the Toll-like receptor 9 (TLR9 into late endosomes and for the in vitro activation of TLR9 by BCR-captured ligands. These data indicate that Cbl-b acts as a scaffolding molecule to coordinate the delivery of the BCR and TLR9 into subcellular compartments required for productively delivering BCR-captured ligands to TLR9.

  19. Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells.

    Jessica A Pane

    2014-03-01

    Full Text Available It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I

  20. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR2) is involved in vascular function

    Bucci, M; Vellecco, V; Harrington, L; Brancaleone, V; Roviezzo, F; Mattace Raso, G; Ianaro, A; Lungarella, G; De Palma, R; Meli, R; Cirino, G

    2013-01-01

    Background and Purpose Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR2 and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. Experimental Approach Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR2 activating peptide (AP) was used as a PAR2 agonist. Aortas harvested from TLR4–/– mice were also used to characterize the PAR2 response. Key Results PAR2, but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR2AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR2AP-induced vasorelaxation and PAR2AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4–/– mice, the expression of PAR2 was reduced and the PAR2AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. Conclusions and Implications Cross-talk between PAR2 and TLR4 contributes to vascular homeostasis. PMID:22957757

  1. Brain interleukin-1β and the intrinsic receptor antagonist control peripheral Toll-like receptor 3-mediated suppression of spontaneous activity in rats.

    Masanori Yamato

    Full Text Available During acute viral infections such as influenza, humans often experience not only transient fever, but also prolonged fatigue or depressive feelings with a decrease in social activity for days or weeks. These feelings are thought to be due to neuroinflammation in the brain. Recent studies have suggested that chronic neuroinflammation is a precipitating event of various neurological disorders, but the mechanism determining the duration of neuroinflammation has not been elucidated. In this study, neuroinflammation was induced by intraperitoneal injection of polyriboinosinic:polyribocytidylic acid (poly I:C, a Toll-like receptor-3 agonist that mimics viral infection in male Sprague-Dawley rats, and then investigated how the neuroinflammation shift from acute to the chronic state. The rats showed transient fever and prolonged suppression of spontaneous activity for several days following poly I:C injection. NS-398, a cyclooxygenase-2 inhibitor, completely prevented fever, but did not improve spontaneous activity, indicating that suppression of spontaneous activity was not induced by the arachidonate cascade that generated the fever. The animals overexpressed interleukin (IL-1β and IL-1 receptor antagonist (IL-1ra in the brain including the cerebral cortex. Blocking the IL-1 receptor in the brain by intracerebroventricular (i.c.v. infusion of recombinant IL-1ra completely blocked the poly I:C-induced suppression of spontaneous activity and attenuated amplification of brain interferon (IFN-α expression, which has been reported to produce fatigue-like behavior by suppressing the serotonergic system. Furthermore, i.c.v. infusion of neutralizing antibody for IL-1ra prolonged recovery from suppression of spontaneous activity. Our findings indicated that IL-1β is the key trigger of neuroinflammation and that IL-1ra prevents the neuroinflammation entering the chronic state.

  2. Direct and Indirect Role of Toll-Like Receptors in T Cell Mediated Immunity

    DamoXu; HaiyingLiu; MousaKomai-Koma

    2004-01-01

    Toll-like receptors (TLR) are pathogen-associated molecular patterns (PAMPs) recognition receptors that play an important role in protective immunity against infection and inflammation. They act as central integrators of a wide variety of signals, responding to diverse agonists of microbial products. Stimulation of Toll-like receptors by microbial products leads to signaling pathways that activate not only innate, but also adaptive immunity by APC dependent or independent mechanisms. Recent evidence revealed that TLR signals played a determining role in the skewing of naive T cells towards either Thl or Th2 responses. Activation of Toll-like receptors also directly or indirectly influences regulatory T cell functions. Therefore, TLRs are required in both immune activation and immune regulation. Study of TLRs has significantly enhanced our understanding of innate and adaptive immune responses and provides novel therapeutic approaches against infectious and inflammatory diseases. Cellular & Molecular Immunology.

  3. Direct and Indirect Role of Toll-Like Receptors in T Cell Mediated Immunity

    Damo Xu; Haiying Liu; Mousa Komai-Koma

    2004-01-01

    Toll-like receptors (TLR) are pathogen-associated molecular patterns (PAMPs) recognition receptors that play an important role in protective immunity against infection and inflammation. They act as central integrators of a wide variety of signals, responding to diverse agonists of microbial products. Stimulation of Toll-like receptors by microbial products leads to signaling pathways that activate not only innate, but also adaptive immunity by APC dependent or independent mechanisms. Recent evidence revealed that TLR signals played a determining role in the skewing of na(i)ve T cells towards either Th1 or Th2 responses. Activation of Toll-like receptors also directly or indirectly influences regulatory T cell functions. Therefore, TLRs are required in both immune activation and immune regulation. Study of TLRs has significantly enhanced our understanding of innate and adaptive immune responses and provides novel therapeutic approaches against infectious and inflammatory diseases.

  4. Intervention on toll-like receptors in pancreatic cancer

    Vaz, Juan; Andersson, Roland

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDA) is a devastating disease with pronounced morbidity and a high mortality rate. Currently available treatments lack convincing cost-efficiency determinations and are in most cases not associated with relevant success rate. Experimental stimulation of the immune system in murine PDA models has revealed some promising results. Toll-like receptors (TLRs) are pillars of the immune system that have been linked to several forms of malignancy, including lung, bre...

  5. Pan-Vertebrate Toll-Like Receptors During Evolution

    Oshiumi, Hiroyuki; Matsuo, Aya; Matsumoto, Misako; Seya, Tsukasa

    2008-01-01

    Human toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) to raise innate immune responses. The human TLR family was discovered because of its sequence similarity to fruit fly (Drosophila) Toll, which is involved in an anti-fungal response. In this review, we focus on the origin of the vertebrate TLR family highlighted through functional and phylogenetic analyses of TLRs in non-mammalian vertebrates. Recent extensive genome projects revealed that teleosts conta...

  6. Toll-like receptor sensing of human herpesvirus infection

    John A West; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell...

  7. Human herpesvirus 6 infection impairs Toll-like receptor signaling

    Ochi Toshiki; Suemori Koichiro; An Jun; Fujiwara Hiroshi; Tanimoto Kazushi; Murakami Yuichi; Hasegawa Hitoshi; Yasukawa Masaki

    2010-01-01

    Abstract Human herpesvirus 6 (HHV-6) has a tropism for immunocompetent cells, including T lymphocytes, monocytes/macrophages, and dendritic cells (DCs) suggesting that HHV-6 infection affects the immunosurveillance system. Toll-like receptor (TLR) system plays an important role in innate immunity against various pathogens. In the present study, we investigated the effect of HHV-6 infection on the expression and intracellular signaling of TLRs in DCs. Although expression levels of TLRs were no...

  8. The evolution of vertebrate Toll-like receptors

    Roach, Jared C.; Glusman, Gustavo; Rowen, Lee; Kaur, Amardeep; Purcell, Maureen K.; Smith, Kelly D.; Hood, Leroy E.; Aderem, Alan

    2005-01-01

    The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathog...

  9. Neu1 desialylation of sialyl alpha-2,3-linked beta-galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling.

    Amith, Schammim Ray; Jayanth, Preethi; Franchuk, Susan; Finlay, Trisha; Seyrantepe, Volkan; Beyaert, Rudi; Pshezhetsky, Alexey V; Szewczuk, Myron R

    2010-02-01

    The ectodomain of TOLL-like receptors (TLR) is highly glycosylated with several N-linked gylcosylation sites located in the inner concave surface. The precise role of these sugar N-glycans in TLR receptor activation is unknown. Recently, we have shown that Neu1 sialidase and not Neu2, -3 and -4 forms a complex with TLR-2, -3 and -4 receptors on the cell-surface membrane of naïve and activated macrophage cells (Glycoconj J DOI 10.1007/s10719-009-9239-8). Activation of Neu1 is induced by TLR ligands binding to their respective receptors. Here, we show that endotoxin lipopolysaccharide (LPS)-induced MyD88/TLR4 complex formation and subsequent NFkappaB activation is dependent on the removal of alpha-2,3-sialyl residue linked to beta-galactoside of TLR4 by the Neu1 activity associated with LPS-stimulated live primary macrophage cells, macrophage and dendritic cell lines but not with primary Neu1-deficient macrophage cells. Exogenous alpha-2,3 sialyl specific neuraminidase (Streptoccocus pneumoniae) and wild-type T. cruzi trans-sialidase (TS) but not the catalytically inactive mutant TSAsp98-Glu mediate TLR4 dimerization to facilitate MyD88/TLR4 complex formation and NFkappaB activation similar to those responses seen with LPS. These same TLR ligand-induced NFkappaB responses are not observed in TLR deficient HEK293 cells, but are re-established in HEK293 cells stably transfected with TLR4/MD2, and are significantly inhibited by alpha-2,3-sialyl specific Maackia amurensis (MAL-2) lectin, alpha-2,3-sialyl specific galectin-1 and neuraminidase inhibitor Tamiflu but not by alpha-2,6-sialyl specific Sambucus nigra lectin (SNA). Taken together, the findings suggest that Neu1 desialylation of alpha-2,3-sialyl residues of TLR receptors enables in removing a steric hinderance to receptor association for TLR activation and cellular signaling. PMID:19796680

  10. Toll-Like Receptor 7-Targeted Therapy in Respiratory Disease.

    Lebold, Katie M; Jacoby, David B; Drake, Matthew G

    2016-03-01

    Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases. PMID:27226793

  11. DMPD: A Toll-like receptor in horseshoe crabs. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15199958 A Toll-like receptor in horseshoe crabs. Inamori K, Ariki S, Kawabata S. I...mmunol Rev. 2004 Apr;198:106-15. (.png) (.svg) (.html) (.csml) Show A Toll-like receptor in horseshoe crabs.... PubmedID 15199958 Title A Toll-like receptor in horseshoe crabs. Authors Inamori K, Ariki S, Kawabata S. Pu

  12. DMPD: Endogenous ligands of Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15178705 Endogenous ligands of Toll-like receptors. Tsan MF, Gao B. J Leukoc Biol. ...2004 Sep;76(3):514-9. Epub 2004 Jun 3. (.png) (.svg) (.html) (.csml) Show Endogenous ligands of Toll-like re...ceptors. PubmedID 15178705 Title Endogenous ligands of Toll-like receptors. Authors Tsan MF, Gao B. Publicat

  13. DMPD: Toll-like receptors and Type I interferons. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17395581 Toll-like receptors and Type I interferons. Uematsu S, Akira S. J Biol Che...m. 2007 May 25;282(21):15319-23. Epub 2007 Mar 29. (.png) (.svg) (.html) (.csml) Show Toll-like receptors and Type... I interferons. PubmedID 17395581 Title Toll-like receptors and Type I interferons. Authors Uematsu S,

  14. DMPD: Viral recognition by Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17336545 Viral recognition by Toll-like receptors. Barton GM. Semin Immunol. 2007 F...eb;19(1):33-40. Epub 2007 Mar 2. (.png) (.svg) (.html) (.csml) Show Viral recognition by Toll-like receptors.... PubmedID 17336545 Title Viral recognition by Toll-like receptors. Authors Barton GM. Publication Semin Imm

  15. DMPD: Toll-like receptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17934330 Toll-like receptor signal transduction. Krishnan J, Selvarajoo K, Tsuchiya... M, Lee G, Choi S. Exp Mol Med. 2007 Aug 31;39(4):421-38. (.png) (.svg) (.html) (.csml) Show Toll-like receptor signal tran...sduction. PubmedID 17934330 Title Toll-like receptor signal transduction. Authors Krishnan J,

  16. DMPD: Toll like receptors and autoimmunity: a critical appraisal. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17959357 Toll like receptors and autoimmunity: a critical appraisal. Papadimitraki ...ml) Show Toll like receptors and autoimmunity: a critical appraisal. PubmedID 17959357 Title Toll like recep...tors and autoimmunity: a critical appraisal. Authors Papadimitraki ED, Bertsias G

  17. DMPD: The Toll-like receptors: analysis by forward genetic methods. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 16001129 The Toll-like receptors: analysis by forward genetic methods. Beutler B. I...mmunogenetics. 2005 Jul;57(6):385-92. (.png) (.svg) (.html) (.csml) Show The Toll-like receptors: analysis by forward genetic methods.... PubmedID 16001129 Title The Toll-like receptors: analysis by forward genetic methods

  18. DMPD: Toll-like receptors regulation of viral infection and disease. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18280610 Toll-like receptors regulation of viral infection and disease. Thompson JM...how Toll-like receptors regulation of viral infection and disease. PubmedID 18280610 Title Toll-like recepto...rs regulation of viral infection and disease. Authors Thompson JM, Iwasaki A. Pub

  19. Toll-like receptors in invertebrate innate immunity

    L Zheng

    2005-08-01

    Full Text Available Among invertebrates, innate immunity is the only defense mechanism against harmful non-self agents.In response to recognition of microbial pattern molecules, Drosophila melanogaster activates either theToll or Imd pathway, leading to the translocation of NF-kB (or Rel transcription factors from the cytoplasmto the nucleus and the subsequent production of antimicrobial peptides, which provide systemic innateimmunity. Toll-like receptors (TLRs are characterized by an extracellular leucine rich repeat (LRRdomain and an intracellular Toll/interleukin-1 receptor (TIR domain. TLRs are found from cnidarians tomammals. Here we argue that TLR mediated innate immunity developed during an early stage ofevolution when organisms acquired a body cavity. This is supported by the distributions of TLR and Relgenes in the animal kingdom. Further, TLR mediated immunity appears to have developed independentlyin invertebrates and vertebrates. Recent studies have shown that microbial molecules, with the potentialto signal through TLR, can be beneficial to host survival. Studies on this signaling pathway could opendoors to a better understanding of the origins of innate immunity in invertebrates and potentialtransmission blocking strategies aimed at ameliorating vector-borne diseases.

  20. Toll-Like Receptor 9 in Breast Cancer

    Sandholm, Jouko; Selander, Katri S.

    2014-01-01

    Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system. DNA recognition via TLR9 results in an inflammatory reaction, which eventually also activates a Th1-biased adaptive immune attack. In addition to cells of the immune system, TLR9 mRNA and protein are also widely expressed in breast cancer cell lines and in clinical breast cancer specimens. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. In the studies conducted so far, tumor TLR9 expression has been shown to have prognostic significance only in patients that have triple-negative breast cancer (TNBC). Specifically, high tumor TLR9 expression predicts good prognosis among TNBC patients. Pre-clinical studies suggest that TLR9 expression may affect tumor immunophenotype and contribute to the immunogenic benefit of chemotherapy. In this review, we discuss the possible contribution of tumor TLR9 to the pathogenesis and treatment responses in breast cancer. PMID:25101078

  1. Toll-like receptor signaling in primary immune deficiencies.

    Maglione, Paul J; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-11-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  2. Involvement of Toll-like receptors in acute radiation syndrome and radiation therapy for cancer

    Toll-like receptors (TLR) are one of pattern recognition receptors that are indispensable for antibacterial and antiviral immunity. After TLRs sense pathogen-derived components, they activate intracellular signaling pathways, which results in the induction of proinflammatory cytokines. Although it is well known that radiation therapy is one of effective cancer therapies, radiation affects immune system. Recent evidences show the involvement of TLR in acute radiation syndrome and radiation therapy for cancer. I summarize to date knowledge on the involvement of Toll-like receptors in acute radiation syndromes and radiation therapy for cancer, and discuss the effects of ionizing radiation on TLR of innate immune cells. (author)

  3. Cathepsins are required for Toll-like receptor 9 responses

    Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9

  4. Toll-Like Receptor 9 Agonists for Cancer Therapy

    Davide Melisi

    2014-08-01

    Full Text Available The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required.

  5. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia.

    Di Lorenzo, Flaviana; Kubik, Łukasz; Oblak, Alja; Lorè, Nicola Ivan; Cigana, Cristina; Lanzetta, Rosa; Parrilli, Michelangelo; Hamad, Mohamad A; De Soyza, Anthony; Silipo, Alba; Jerala, Roman; Bragonzi, Alessandra; Valvano, Miguel A; Martín-Santamaría, Sonsoles; Molinaro, Antonio

    2015-08-28

    Lung infection by Burkholderia species, in particular Burkholderia cenocepacia, accelerates tissue damage and increases post-lung transplant mortality in cystic fibrosis patients. Host-microbe interplay largely depends on interactions between pathogen-specific molecules and innate immune receptors such as Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4·myeloid differentiation factor 2 (MD-2) LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4·MD-2 despite its lipid A having only five acyl chains. Furthermore, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling combined with mutagenesis of TLR4-MD-2 interactive surfaces suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4·MD-2 complex by penta-acylated lipid A explaining the ability of hypoacylated B. cenocepacia LPS to promote proinflammatory responses associated with the severe pathogenicity of this opportunistic bacterium. PMID:26160169

  6. The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway

    Emine Guven-Maiorov; Ozlem Keskin; Attila Gursoy; Carter VanWaes; Zhong Chen; Chung-Jung Tsai; Ruth Nussinov

    2015-01-01

    Scientific Reports | 5:13128 | DOI: 10.1038/srep13128 1 www.nature.com/scientificreports The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway Emine Guven-Maiorov1,2, Ozlem Keskin1,2, Attila Gursoy2,3, Carter VanWaes4, Zhong Chen4, Chung-Jung Tsai5 & Ruth Nussinov5,6 Activated Toll-like receptors (TLRs) cluster in lipid rafts and induce pro- and anti-tumor responses. The organization of the assembly is critical to the understandin...

  7. Toll-Like Receptor Initiated Host Defense against Toxoplasma gondii

    Eric Y. Denkers

    2010-01-01

    Full Text Available Toxoplasma gondii is an intracellular pathogen notable for its ability to establish a stable host-parasite relationship amongst a wide range of host species and in a large percentage of the human population. Toll-like receptor signaling through MyD88 is a critical pathway in initiating defense against this opportunistic protozoan and may also be a mediator of pathology during immune dysfunction. Other MyD88 independent signaling pathways are also involved in the host-parasite interaction. These responses can be triggered by the parasite itself, but interactions with the intestinal microbiota add additional complexity during enteric infection.

  8. Toll-Like Receptor 3 in Liver Diseases

    Shi Yin

    2010-01-01

    Full Text Available Toll-like receptor 3 (TLR3 is a member of the TLR family that can recognize double-stranded RNA (dsRNA, playing an important role in antiviral immunity. Recent studies have shown that TLR3 is also expressed on parenchymal and nonparenchymal cells in the liver as well as on several types of immune cells. In this review, we summarize the role of TLR3 in liver injury, inflammation, regeneration, and liver fibrosis, and discuss the implication of TLR3 in the pathogenesis of human liver diseases including viral hepatitis and autoimmune liver disease.

  9. BURN-INDUCED ALTERATIONS IN TOLL-LIKE RECEPTOR-MEDIATED RESPONSES BY BRONCHOALVEOLAR LAVAGE CELLS

    Richard F. Oppeltz; Rani, Meenakshi; Zhang, Qiong; Schwacha, Martin G.

    2011-01-01

    Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung.

  10. Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension

    Sollinger, D.; Eissler, R.; Lorenz, S.; Strand, S.; Chmielewski, S.; Aoqui, C.; Schmaderer, Ch.; Bluyssen, H.; Zicha, Josef; Witzke, O.; Scherer, E.; Lutz, J.; Heemann, U.; Baumann, M.

    2014-01-01

    Roč. 101, č. 3 (2014), s. 464-472. ISSN 0008-6363 R&D Projects: GA ČR(CZ) GA305/09/0336 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : innate immunity * Toll-like receptors * reactive oxygen species * vascular contractility Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.940, year: 2014

  11. Paliperidone Prevents Brain Toll-Like Receptor 4 Pathway Activation and Neuroinflammation in Rat Models of Acute and Chronic Restraint Stress

    MacDowell, KS; Caso, JR; Martín-Hernández, D; Madrigal, JL; Leza, JC.; B. García-Bueno

    2015-01-01

    Background: Alterations in the innate immune/inflammatory system have been proposed to underlie the pathophysiology of psychotic disease, but the mechanisms implicated remain elusive. The main agents of the innate immunity are the family of toll-like receptors (TLRs), which detect circulating pathogen-associated molecular patterns and endogenous damage-associated molecular patterns (DAMPS). Current antipsychotics are able to modulate pro- and anti-inflammatory pathways, but their actions on T...

  12. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  13. MyD88-dependent and independent pathways of Toll-Like Receptors are engaged in biological activity of Triptolide in ligand-stimulated macrophages

    Dorn Ruth

    2010-04-01

    Full Text Available Abstract Background Triptolide is a diterpene triepoxide from the Chinese medicinal plant Tripterygium wilfordii Hook F., with known anti-inflammatory, immunosuppressive and anti-cancer properties. Results Here we report the expression profile of immune signaling genes modulated by triptolide in LPS induced mouse macrophages. In an array study triptolide treatment modulated expression of 22.5% of one hundred and ninety five immune signaling genes that included Toll-like receptors (TLRs. TLRs elicit immune responses through their coupling with intracellular adaptor molecules, MyD88 and TRIF. Although it is known that triptolide inhibits NFκB activation and other signaling pathways downstream of TLRs, involvement of TLR cascade in triptolide activity was not reported. In this study, we show that triptolide suppresses expression of proinflammatory downstream effectors induced specifically by different TLR agonists. Also, the suppressive effect of triptolide on TLR-induced NFκB activation was observed when either MyD88 or TRIF was knocked out, confirming that both MyD88 and TRIF mediated NFκB activation may be inhibited by triptolide. Within the TLR cascade triptolide downregulates TLR4 and TRIF proteins. Conclusions This study reveals involvement of TLR signaling in triptolide activity and further increases understanding of how triptolide activity may downregulate NFκB activation during inflammatory conditions.

  14. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2

    Wang, Qun; McLoughlin, Rachel M.; Cobb, Brian A; Charrel-Dennis, Marie; Zaleski, Kathleen J.; Golenbock, Douglas; Tzianabos, Arthur O.; Kasper, Dennis L.

    2006-01-01

    Commensalism is critical to a healthy Th1/Th2 cell balance. Polysaccharide A (PSA), which is produced by the intestinal commensal Bacteroides fragilis, activates CD4+ T cells, resulting in a Th1 response correcting the Th2 cell skew of germ-free mice. We identify Toll-like receptors as crucial to the convergence of innate and adaptive responses stimulated by PSA. Optimization of the Th1 cytokine interferon-γ in PSA-stimulated dendritic cell–CD4+ T cell co-cultures depends on both Toll-like re...

  15. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

    Karen A O Martins

    Full Text Available Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs, NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.

  16. DMPD: Nuclear factor-kappaB: activation and regulation during toll-like receptorsignaling. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17349209 Nuclear factor-kappaB: activation and regulation during toll-like receptor...signaling. Carmody RJ, Chen YH. Cell Mol Immunol. 2007 Feb;4(1):31-41. (.png) (.svg) (.html) (.csml) Show Nuclear factor...-kappaB: activation and regulation during toll-like receptorsignaling. PubmedID 17349209 Title Nuclear factor

  17. Toll-like receptor gene polymorphisms are associated with allergic rhinitis: a case control study

    Nilsson Daniel; Andiappan Anand; Halldén Christer; Yun Wang; Säll Torbjörn; Tim Chew; Cardell Lars-Olaf

    2012-01-01

    Abstract Background The Toll-like receptor proteins are important in host defense and initiation of the innate and adaptive immune responses. A number of studies have identified associations between genetic variation in the Toll-like receptor genes and allergic disorders such as asthma and allergic rhinitis. The present study aim to search for genetic variation associated with allergic rhinitis in the Toll-like receptor genes. Methods A first association analysis genotyped 73 SNPs in 182 case...

  18. Activation of eosinophils via Toll-like receptor (TLR3, TLR7 and TLR9: link between viral infection and asthma?

    Anne Månsson

    2008-04-01

    Full Text Available Asthma is disease characterized by a massive accumulation of eosinophils that release an array of tissue-damaging mediators. Respiratory viral infections are thought to be a leading cause of exacerbations of asthma. One possible explanation might be a direct activation of viral components through Toll-like receptors (TLRs, a receptor family comprising 10 different pathogen-recognizing members (TLR1-TLR10. The virus-recognizing TLRs are TLR3, TLR7/8 and TLR9, which respond to viral dsRNA, ssRNA and CpG-DNA. The present study aimed to investigate the expression of these TLRs and their functions in human eosinophils. Eosinophils were isolated from peripheral blood using magnetic beads (purity >97%. Cells were incubated with or without poly(I:C, R-837 or CpG alone, the synthetic ligands of TLR3, TLR7 and TLR9, respectively, or combined with IL-4 or histamine. Flow cytometry, and ELISA were used to analyze expression of TLRs and various surface markers, viability and secretion of inflammatory mediators. Eosinophils expressed proteins for TLR3, TLR7 and TLR9. Poly(I:C, R-837 and CpG prolonged survival, up-regulated expression of the adhesion molecule CD11b and increased secretion of IL-8 compared to unstimulated controls. These effects were affected by the presence of IL-4 and histamine. This study shows that several viral products directly activate eosinophils through their TLRs. Since eosinophils are central in asthma, the TLR system may be an important mechanism of eosinophil activation linking viral infections with exacerbations. Consequently, this system represents a future clinical target for the resolution of asthmatic disease.

  19. The application of Toll like receptors for cancer therapy

    Eui Young So, Toru Ouchi

    2010-01-01

    Full Text Available Toll-like receptor (TLR proteins play key roles in immune responses against infection. Using TLR proteins, host can recognize the conserved molecular structures found in pathogens called pathogen-associated molecular patterns (PAMPs. At the same time, some TLRs are able to detect specific host molecules, such as high-mobility group box protein 1 (HMGB1 and heat shock proteins (hsp, and lead to inflammatory responses. Thus, it has been suggested that TLRs are involved in the development of many pathogenic conditions. Recent advances in TLR-related research not only provide us with scientific information, but also show the therapeutic potential against diseases, such as autoimmune disease and cancer. In this mini review, we demonstrate how TLRs pathways could be involved in cancer development and their therapeutic application, and discuss recent patentable subjects, in particular, that are targeting this unique pathway.

  20. Toll-like receptors as targets for immune disorders.

    Keogh, Brian

    2012-02-01

    Since the identification of the first Toll-like receptor (TLR) in humans in 1997, understanding of the molecular basis for innate immunity has increased significantly. The TLR family and downstream signalling pathways have been extensively characterised, There is now significant evidence suggesting a role for TLRs in human inflammatory and immune diseases such as rheumatoid arthritis, diabetes, allergy\\/asthma and atherosclerosis. Various approaches have been taken to identify novel therapeutic agents targeting TLRs including biologics, small molecules and nucleic acid-based drugs. Several are now being evaluated in the clinic and showing promise against various diseases. This review paper outlines the recent advances in the understanding of TLR biology and highlights novel TLR agonists and antagonists in development for the treatment of immune diseases.

  1. Micrococcus luteus Teichuronic Acids Activate Human and Murine Monocytic Cells in a CD14- and Toll-Like Receptor 4-Dependent Manner

    YANG, SHUHUA; Sugawara, Shunji; Monodane, Toshihiko; Nishijima, Masahiro; Adachi, Yoshiyuki; Akashi, Sachiko; Miyake, Kensuke; Hase, Sumihiro; Takada, Haruhiko

    2001-01-01

    Teichuronic acid (TUA), a component of the cell walls of the gram-positive organism Micrococcus luteus (formerly Micrococcus lysodeikticus), induced inflammatory cytokines in C3H/HeN mice but not in lipopolysaccharide (LPS)-resistant C3H/HeJ mice that have a defect in the Toll-like receptor 4 (TLR4) gene, both in vivo and in vitro, similarly to LPS (T. Monodane, Y. Kawabata, S. Yang, S. Hase, and H. Takada, J. Med. Microbiol. 50:4–12, 2001). In this study, we found that purified TUA (p-TUA) i...

  2. A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of Toll-like receptor activation in irritable bowel syndrome

    GerardClarke

    2012-05-01

    Full Text Available Irritable bowel syndrome (IBS, a disorder of the brain-gut axis, is characterised by the absence of reliable biological markers. Tryptophan is an essential amino acid that serves as a precursor to serotonin but which can alternatively be metabolised along the kynurenine pathway leading to the production of other neuroactive agents. We previously reported an increased degradation of tryptophan along this immunoresponsive pathway in IBS. Recently, altered cytokine production following activation of specific members of the toll-like receptor (TLR family (TLR1-9 has also been demonstrated in IBS. However, the relationship between TLR activation and kynurenine pathway activity in IBS is unknown. In this study, we investigated whether activation of specific TLRs elicits exaggerated kynurenine production in IBS patients compared to controls. Whole blood from IBS patients and healthy controls was cultured with a panel of nine different TLR agonists for 24 hours. Cell culture supernatants were then analysed for both tryptophan and kynurenine concentrations, as were plasma samples from both cohorts. IBS subjects had an elevated plasma kynurenine:tryptophan ratio compared to healthy controls. Furthermore, we demonstrated a differential downstream profile of kynurenine production subsequent to TLR activation in IBS patients compared to healthy controls. This profile included alterations at TLR1/2, TLR2, TLR3, TLR5, TLR7 and TLR8. Our data expands on our previous understanding of altered tryptophan metabolism in IBS and suggests that measurement of tryptophan metabolites downstream of TLR activation may ultimately find utility as components of a biomarker panel to aid gastroenterologists in the diagnosis of IBS. Furthermore, these studies implicate the modulation of TLRs as means through which aberrant tryptophan metabolism along the kynurenine pathway can be controlled, a novel potential therapeutic strategy in this and other disorders.

  3. Mycobacterium paratuberculosis CobT activates dendritic cells via engagement of Toll-like receptor 4 resulting in Th1 cell expansion.

    Byun, Eui-Hong; Kim, Woo Sik; Kim, Jong-Seok; Won, Choul-Jae; Choi, Han-Gyu; Kim, Hwa-Jung; Cho, Sang-Nae; Lee, Keehoon; Zhang, Tiejun; Hur, Gang Min; Shin, Sung Jae

    2012-11-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne disease in animals and MAP involvement in human Crohn disease has been recently emphasized. Evidence from M. tuberculosis studies suggests mycobacterial proteins activate dendritic cells (DCs) via Toll-like receptor (TLR) 4, eventually determining the fate of immune responses. Here, we investigated whether MAP CobT contributes to the development of T cell immunity through the activation of DCs. MAP CobT recognizes TLR4, and induces DC maturation and activation via the MyD88 and TRIF signaling cascades, which are followed by MAP kinases and NF-κB. We further found that MAP CobT-treated DCs activated naive T cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2, but not IL-4 and IL-10, and induced T cell proliferation. These data indicate that MAP CobT contributes to T helper (Th) 1 polarization of the immune response. MAP CobT-treated DCs specifically induced the expansion of CD4(+)/CD8(+)CD44(high)CD62L(low) memory T cells in the mesenteric lymph node of MAP-infected mice in a TLR4-dependent manner. Our results indicate that MAP CobT is a novel DC maturation-inducing antigen that drives Th1 polarized-naive/memory T cell expansion in a TLR4-dependent cascade, suggesting that MAP CobT potentially links innate and adaptive immunity against MAP. PMID:23019321

  4. Glucose activation of islets of Langerhans up-regulates Toll-like receptor 5: possible mechanism of protection

    Weile, Christian Roar Andersen; Josefsen, Knud Elnegaard; Buschard, Karsten Stig

    2011-01-01

    binding of flagellin from pathogenic bacteria such as Salmonella and Listeria species. We have found that the expression of TLR5 is up-regulated by glucose activation of isolated islets of Langerhans, in contrast to other investigated TLRs (TLR-2, -3, -4, -6 and -9. Stimulation of islets with 10 mm...... glucose increased the levels of TLR5 mRNA 10-fold (P=0·03) and the TLR-5 protein levels twofold (P=0·04). Furthermore, the protein level of downstream signalling molecule myeloid differentiation primary response gene 88 (MyD88) increased 1·6-fold (P=0·01). Activation of TLR-5 in islets lead to a marked...

  5. Maternal endotoxin-induced fetal growth restriction in rats: Fetal responses in toll-like receptor

    Banun Kusumawardani; Marsetyawan HNE Soesatyo; Djaswadi Dasuki; Widya Asmara

    2012-01-01

    Background: Porphyromonas gingivalis as a major etiology of periodontal disease can produce virulence factor, lipopolysaccharide/LPS, which is expected to play a role in the intrauterine fetal growth. Trophoblast at the maternal-fetal interface actively participates in response to infection through the expression of a family of natural immune receptors, toll-like receptor (TLR). Purpose: the aims of study were to identify endotoxin concentration in maternal blood serum of Porphyromonas gingiv...

  6. The Therapeutic Potential of Toll-like Receptor 7 Stimulation in Asthma

    Drake, Matthew G.; Kaufman, Elad H.; Fryer, Allison D.; Jacoby, David B.

    2012-01-01

    Asthma is an inflammatory disorder of the airways frequently characterized by an excessive Th2 adaptive immune response. Activation of Toll-like receptor (TLR)-7, a single-stranded viral RNA receptor that is highly expressed in the airways, triggers a rapid innate immune response and favors a subsequent Th1 response. Because of this role in pulmonary immunoregulation, TLR7 has gained considerable interest as a therapeutic target in asthma. Synthetic TLR7 ligands, including the imidazoquinolin...

  7. DAT isn’t all that: cocaine reward and reinforcement requires Toll Like Receptor 4 signaling

    Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; AMAT, J.; Larson, G.; Cooper, D. C.; Huang, Y.; O’Neill, C.E.

    2015-01-01

    The initial reinforcing properties of drugs of abuse, such as cocaine, are largely attributed to their ability to activate the mesolimbic dopamine system. Resulting increases in extracellular dopamine in the nucleus accumbens (NAc) are traditionally thought to result from cocaine’s ability to block dopamine transporters (DATs). Here we demonstrate that cocaine also interacts with the immunosurveillance receptor complex, Toll-Like Receptor 4 (TLR4), on microglial cells to initiate central inna...

  8. A comprehensive map of the toll-like receptor signaling network

    Oda, Kanae; Kitano, Hiroaki

    2006-01-01

    Recognition of pathogen-associated molecular signatures is critically important in proper activation of the immune system. The toll-like receptor (TLR) signaling network is responsible for innate immune response. In mammalians, there are 11 TLRs that recognize a variety of ligands from pathogens to trigger immunological responses. In this paper, we present a comprehensive map of TLRs and interleukin 1 receptor signaling networks based on papers published so far. The map illustrates the possib...

  9. A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species

    Vaure, Céline; Liu, Yuanqing

    2014-01-01

    Toll-like receptors (TLRs) belong to the pattern recognition receptor (PRR) family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide, along with several other components of ...

  10. Mechanisms Underlying the Anti-Inflammatory Effects of Clinacanthus nutans Lindau Extracts: Inhibition of Cytokine Production and Toll-Like Receptor-4 Activation.

    Mai, Chun W; Yap, Kok S I; Kho, Mee T; Ismail, Nor H; Yusoff, Khatijah; Shaari, Khozirah; Chin, Swee Y; Lim, Erin S H

    2016-01-01

    Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS) induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-Blue(TM)-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3) in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-Blue(TM)-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts. PMID:26869924

  11. Mechanisms underlying the anti-inflammatory effects of Clinacanthus nutans Lindau extracts: inhibition of cytokine production and Toll-like receptor-4 activation

    Chun Wai eMai

    2016-02-01

    Full Text Available Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP, non-polar leaf extract (LN, polar stem extract (SP and non-polar stem extracts (SN. The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4 activation in TLR-4 transfected human embryonic kidney cells (HEK-BlueTM-hTLR4 cells. The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40 and IL-17 in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3 in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-BlueTM-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts.

  12. Penicillin binding proteins as danger signals: meningococcal penicillin binding protein 2 activates dendritic cells through Toll-like receptor 4.

    Marcelo Hill

    Full Text Available Neisseria meningitidis is a human pathogen responsible for life-threatening inflammatory diseases. Meningococcal penicillin-binding proteins (PBPs and particularly PBP2 are involved in bacterial resistance to β-lactams. Here we describe a novel function for PBP2 that activates human and mouse dendritic cells (DC in a time and dose-dependent manner. PBP2 induces MHC II (LOGEC50 = 4.7 µg/ml ± 0.1, CD80 (LOGEC50 = 4.88 µg/ml ± 0.15 and CD86 (LOGEC50 = 5.36 µg/ml ± 0.1. This effect was abolished when DCs were co-treated with anti-PBP2 antibodies. PBP2-treated DCs displayed enhanced immunogenic properties in vitro and in vivo. Furthermore, proteins co-purified with PBP2 showed no effect on DC maturation. We show through different in vivo and in vitro approaches that this effect is not due to endotoxin contamination. At the mechanistic level, PBP2 induces nuclear localization of p65 NF-kB of 70.7 ± 5.1% cells versus 12 ± 2.6% in untreated DCs and needs TLR4 expression to mature DCs. Immunoprecipitation and blocking experiments showed thatPBP2 binds TLR4. In conclusion, we describe a novel function of meningococcal PBP2 as a pathogen associated molecular pattern (PAMP at the host-pathogen interface that could be recognized by the immune system as a danger signal, promoting the development of immune responses.

  13. The Role of Toll Like Receptors in Pregnancy

    Elham Amirchaghmaghi

    2013-09-01

    Full Text Available For many years, the innate immunity was of less interest than the adaptive immunity because it was perceived to have secondary importance in the functionality of the immune system. During the past decades, with the advancement of knowledge about innate immune system, interest in innate immunity has grown dramatically and thus its function has been extensively studied. Innate immunity plays fundamental roles in the initiation and induction of adaptive immune responses. It consists of several cells and receptors including natural killer (NK cells, macrophages (MQs, dendritic cells (DCs and pattern recognition receptors (PRRs. Two decades ago, Toll like receptors (TLRs family was known as one of the important PRRs with unique functions especially in protection against invading pathogens. Since the female reproductive tract has access to the outside environment and has a unique interaction with different pathogens whether invading microorganisms or normal flora, allogenic sperm and semi allogenic fetus, it has an essential need for effective immune responses. It has therefore been suggested that TLRs may play important roles in the immune regulation of the female reproductive tract. In addition, it has been demonstrated that immune disturbance may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE, recurrent spontaneous abortion (RSA and intrauterine growth restriction (IUGR. Our focus in this review is to show the importance of TLRs in pregnancy with emphasis on the expression of these receptors in different tissues related to pregnancy.

  14. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection.

    Cavalcante, Paola; Galbardi, Barbara; Franzi, Sara; Marcuzzo, Stefania; Barzago, Claudia; Bonanno, Silvia; Camera, Giorgia; Maggi, Lorenzo; Kapetis, Dimos; Andreetta, Francesca; Biasiucci, Amelia; Motta, Teresio; Giardina, Carmelo; Antozzi, Carlo; Baggi, Fulvio; Mantegazza, Renato; Bernasconi, Pia

    2016-04-01

    Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune

  15. Toll-Like Receptor Pathways in Autoimmune Diseases.

    Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit

    2016-02-01

    Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis. PMID:25687121

  16. Toll-like Receptors and Renal Bacterial Infections

    Alain Vandewalle

    2008-06-01

    Full Text Available Urinary tract infection and pyelonephritis are mainly dueto uropathogenic Escherichia coli (UPEC, and are commoninfectious diseases that constitute a significant cause of morbidity and mortality in humans. They are also the most frequent infectious complications in renal transplant patients, andcan impair long-term renal graft function and outcome. UPECmay invade the kidneys via the systemic circulation or by localretrograde infection. They induce the proinflammatory mediators, which are intended to defend the host and clear bacteriafrom the kidneys. The Toll-like receptors (TLRs play a keyrole in the recognition of bacterial components and in inducingthe inflammatory response that is mediated by various intracellular signaling pathways. To date, 13 TLRs have been identified in mammals. Recent studies have provided evidence suggesting that renal tubule epithelial cells express most of theTLRs initially identified in bone marrow-derived cells. Murine renal tubule cells expressTLR1, 2, 3, 4, 6, and 11. TLR4, which recognizes lipopolysaccharide (LPS, the main constituent of Gram-negative bacteria, plays a key role in inducing the inflammatory responseselicited by UPEC. This review will consider some aspects of TLR function in the kidney,particularly in the renal tubule epithelial cells, and the role of these receptors in enabling thebody to cope with urinary tract infections and pyelonephritis caused by UPECs.

  17. Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation

    Rüter Jens

    2009-11-01

    Full Text Available Abstract Background CD40 activation of antigen presenting cells (APC such as dendritic cells (DC and B cells plays an important role in immunological licensing of T cell immunity. Agonist CD40 antibodies have been previously shown in murine models to activate APC and enhance tumor immunity; in humans, CD40-activated DC and B cells induce tumor-specific T cells in vitro. Although clinical translation of these findings for patients with cancer has been previously limited due to the lack of a suitable and available drug, promising clinical results are now emerging from phase I studies of the agonist CD40 monoclonal antibody CP-870,893. The most prominent pharmacodynamic effect of CP-870,893 infusion is peripheral B cell modulation, but direct evidence of CP-870,893-mediated B cell activation and the potential impact on T cell reactivity has not been reported, despite increasing evidence that B cells, like DC, regulate cellular immunity. Methods Purified total CD19+ B cells, CD19+ CD27+ memory, or CD19+ CD27neg subsets from peripheral blood were stimulated in vitro with CP-870,893, in the presence or absence of the toll like receptor 9 (TLR9 ligand CpG oligodeoxynucleotide (ODN. B cell surface molecule expression and cytokine secretion were evaluated using flow cytometry. Activated B cells were used as stimulators in mixed lymphocyte reactions to evaluate their ability to induce allogeneic T cell responses. Results Incubation with CP-870,893 activated B cells, including both memory and naïve B cells, as demonstrated by upregulation of CD86, CD70, CD40, and MHC class I and II. CP-870,893-activated B cells induced T cell proliferation and T cell secretion of effector cytokines including IFN-gamma and IL-2. These effects were increased by TLR9 co-stimulation via a CpG ODN identical in sequence to a well-studied clinical grade reagent. Conclusion The CD40 mAb CP-870,893 activates both memory and naïve B cells and triggers their T cell stimulatory

  18. Gain-of-Function Mutations in the Toll-Like Receptor Pathway: TPL2-Mediated ERK1/ERK2 MAPK Activation, a Path to Tumorigenesis in Lymphoid Neoplasms?

    Rousseau, Simon; Martel, Guy

    2016-01-01

    Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells, and NK cells. The Toll-Like Receptor (TLR) signaling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signaling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFκB) and Mitogen Activated Protein Kinase (MAPK) pathways to regulate innate immune responses. Gain-of-function mutations such as MYD88[L265P] activate downstream signaling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK293 cells led to ERK1/2 MAPK phosphorylation in addition to NFκB activation. Moreover, this activation is dependent on the protein kinase Tumor Promoting Locus 2 (TPL2), activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNPA1, two proteins previously shown to contribute to tumor formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated ERK1/2 activation via TPL2 may be a novel path to tumorigenesis. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumor growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumor cells derived from hematologic malignancies such as Waldenstrom's Macroglobulinemia, where the majority of the cells carry the MYD88[L265P

  19. Gain-of-function mutations in the Toll-like Receptor pathway: TPL2-mediated ERK1/ERK2 MAPK activation, a path to tumorigenesis in lymphoid neoplasms?

    Simon eRousseau

    2016-05-01

    Full Text Available Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells and NK cells. The Toll-Like Receptor (TLR signalling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signalling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFB and Mitogen Activated Protein Kinase (MAPK pathways to regulate innate immune responses (Kawai and Akira, 2010. Gain-of-function mutations such as MYD88[L265P] activate downstream signalling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK 293 cells led to ERK1/2 MAPK phosphorylation in addition to NFB activation. Moreover, this activation is dependent on the protein kinase Tumour Promoting Locus-2 (TPL-2, activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNP A1, two proteins previously shown to contribute to tumour formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated tumorigenesis occurs via the TPL2-mediated ERK1/2 activation. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumour growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumour cells derived from hematologic malignancies such as Waldenstrom’s Macroglobulinemia, where the

  20. Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword?

    Killeen, S D

    2012-02-03

    The toll-like receptor (TLR) system constitutes a pylogenetically ancient, evolutionary conserved, archetypal pattern recognition system, which underpins pathogen recognition by and activation of the immune system. Toll-like receptor agonists have long been used as immunoadjuvants in anti cancer immunotherapy. However, TLRs are increasingly implicated in human disease pathogenesis and an expanding body of both clinical and experimental evidence suggests that the neoplastic process may subvert TLR signalling pathways to advance cancer progression. Recent discoveries in the TLR system open a multitude of potential therapeutic avenues. Extrapolation of such TLR system manipulations to a clinical oncological setting demands care to prevent potentially deleterious activation of TLR-mediated survival pathways. Thus, the TLR system is a double-edge sword, which needs to be carefully wielded in the setting of neoplastic disease.

  1. Role of toll-like receptor 2 and toll-like receptor 4 in post-ischemic coronary endothelial dysfunction in mice

    J.FAVRE; P.MUSETTE; JPHENRY; C.THUILLEZ; V.RICHARD

    2004-01-01

    AIM: A growing body of evidence suggests a role of the toll-like receptors (TLR) in inflammatory processes. In addition to LPS,TLR are activated by many endogenous ligands such as heat shock proteins and oxygeil-derived free radicals which are both produced during cardiac ischemia-reperfusion (I/R). Among TLR,TLR-2 and TLR-4 are expressed in endothelial and myocardial cells and appear to regulate neutrophil-endothelial interactions.Since neutrophil adhesion is a critical event in endothelial injury

  2. Substance P primes lipoteichoic acid- and Pam3CysSerLys4-mediated activation of human mast cells by up-regulating Toll-like receptor 2.

    Tancowny, Brian P; Karpov, Victor; Schleimer, Robert P; Kulka, Marianna

    2010-10-01

    Substance P (SP) is a neuropeptide with neuroimmunoregulatory activity that may play a role in susceptibility to infection. Human mast cells, which are important in innate immune responses, were analysed for their responses to pathogen-associated molecules via Toll-like receptors (TLRs) in the presence of SP. Human cultured mast cells (LAD2) were activated by SP and TLR ligands including lipopolysaccharide (LPS), Pam3CysSerLys4 (Pam3CSK4) and lipoteichoic acid (LTA), and mast cell leukotriene and chemokine production was assessed by enzyme-linked immunosorbent assay (ELISA) and gene expression by quantitative PCR (qPCR). Mast cell degranulation was determined using a β-hexosaminidase (β-hex) assay. SP treatment of LAD2 up-regulated mRNA for TLR2, TLR4, TLR8 and TLR9 while anti-immunoglobulin E (IgE) stimulation up-regulated expression of TLR4 only. Flow cytometry and western blot confirmed up-regulation of TLR2 and TLR8. Pretreatment of LAD2 with SP followed by stimulation with Pam3CSK4 or LTA increased production of leukotriene C4 (LTC(4) ) and interleukin (IL)-8 compared with treatment with Pam3CSK4 or LTA alone (>2-fold; P<0·01). SP alone activated 5-lipoxygenase (5-LO) nuclear translocation but also augmented Pam3CSK4 and LTA-mediated 5-LO translocation. Pam3CSK4, LPS and LTA did not induce LAD2 degranulation. SP primed LTA and Pam3CSK4-mediated activation of JNK, p38 and extracellular-signal-regulated kinase (ERK) and activated the nuclear translocation of c-Jun, nuclear factor (NF)-κB, activating transcription factor 2 (ATF-2) and cyclic-AMP-responsive element binding protein (CREB) transcription factors. Pretreatment with SP followed by LTA stimulation synergistically induced production of chemokine (C-X-C motif) ligand 8 (CXCL8)/IL-8, chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein 1 (MCP-1), tumour necrosis factor (TNF) and IL-6 protein. SP primes TLR2-mediated activation of human mast cells by up-regulating TLR expression and

  3. Therapeutic Targeting of Toll-Like Receptors for Infectious and Inflammatory Diseases and Cancer

    O'Neill, Luke A. J.; Bryant, Clare E.; Doyle, Sarah L

    2009-01-01

    Since first being described in the fruit fly Drosophila melanogaster, Toll-like receptors (TLRs) have proven to be of great interest to immunologists and investigators interested in the molecular basis to inflammation. They recognize pathogen-derived factors and also products of inflamed tissue, and trigger signaling pathways that lead to activation of transcription factors such as nuclear factor-κB and the interferon regulatory...

  4. Bupleurum Polysaccharides Attenuates Lipopolysaccharide-Induced Inflammation via Modulating Toll-Like Receptor 4 Signaling

    Wu, Jian; Zhang, Yun-Yi; Guo, Li; LI Hong; Chen, Dao-Feng

    2013-01-01

    Background Bupleurum polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor 4 (TLR4) on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS’s pathogenecity could be associated with the modulating of TLR4 signaling pathway. Methodolog...

  5. Alcohol,nutrition and liver cancer:Role of Toll-like receptor signaling

    Samuel; W; French; Joan; Oliva; Barbara; A; French; Fawzia; Bardag-Gorce

    2010-01-01

    This article reviews the evidence that ties the development of hepatocellular carcinoma (HCC) to the natural immune pro-inflammatory response to chronic liver disease, with a focus on the role of Toll-like receptor (TLR) signaling as the mechanism of liver stem cell/progenitor transformation to HCC. Two exemplary models of this phenomenon are reviewed in detail. One model applies chronic ethanol/lipopolysaccharide feeding to the activated TLR4 signaling pathway. The other applies chronic feeding of a carcin...

  6. Human herpesvirus 6 infection impairs Toll-like receptor signaling

    Ochi Toshiki

    2010-05-01

    Full Text Available Abstract Human herpesvirus 6 (HHV-6 has a tropism for immunocompetent cells, including T lymphocytes, monocytes/macrophages, and dendritic cells (DCs suggesting that HHV-6 infection affects the immunosurveillance system. Toll-like receptor (TLR system plays an important role in innate immunity against various pathogens. In the present study, we investigated the effect of HHV-6 infection on the expression and intracellular signaling of TLRs in DCs. Although expression levels of TLRs were not decreased or slightly elevated following HHV-6 infection, the amounts of cytokines produced following stimulation with ligands for TLRs appeared to be dramatically decreased in HHV-6-infected DCs as compared to mock-infected DCs. Similarly, phosphorylation levels of TAK-1, IκB kinase, and IκB-α following stimulation of HHV-6-infected DCs with lipopolysaccharide, which is the ligand for TLR4, appeared to be decreased. These data show that HHV-6 impairs intracellular signaling through TLRs indicating the novel mechanism of HHV-6-mediated immunomodulation.

  7. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Yao Linli

    2013-02-01

    Full Text Available Abstract Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4 has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β and inducible nitric oxide synthase (iNOS was assessed. Reactive oxygen species (ROS, nitric oxide (NO and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and

  8. Calpain Activity and Toll-Like Receptor 4 Expression in Platelet Regulate Haemostatic Situation in Patients Undergoing Cardiac Surgery and Coagulation in Mice

    Jui-Chi Tsai

    2014-01-01

    Full Text Available Human platelets express Toll-like receptors (TLR 4. However, the mechanism by which TLR4 directly affects platelet aggregation and blood coagulation remains to be explored. Therefore, in this study, we evaluated the platelet TLR4 expression in patients who underwent CABG surgery; we explored the correlation between platelet TLR4 expression and the early outcomes in hospital of patients. Additionally, C57BL/6 and C57BL/6-TlrLPS−/− mice were used to explore the roles of platelet TLR4 in coagulation by platelet aggregometry and rotation thromboelastometry. In conclusion, our results highlight the important roles of TLR4 in blood coagulation and platelet function. Of clinical relevance, we also explored novel roles for platelet TLR4 that are associated with early outcomes in cardiac surgery.

  9. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections.

    Ma, Yan; Han, Fei; Liang, Jinping; Yang, Jiali; Shi, Juan; Xue, Jing; Yang, Li; Li, Yong; Luo, Meihui; Wang, Yujiong; Wei, Jun; Liu, Xiaoming

    2016-03-01

    Pulmonary tuberculosis caused by a Mycobacterium infection remains a major public health problem in most part of the world, in part owing to the transmission of its pathogens between hosts including human, domestic and wild animals. To date, molecular mechanisms of the pathogenesis of TB are still incompletely understood. In addition to alveolar macrophages, airway epithelial cells have also been recently recognized as main targets for Mycobacteria infections. In an effort to understand the pathogen-host interaction between Mycobacteria and airway epithelial cells in domestic animals, in present study, we investigated the Toll-like receptor (TLR) signaling in bovine and sheep airway epithelial cells in response to an infection of Mycobacterium tuberculosis avirulent H37Ra stain or Mycobacterium bovis BCG vaccine strain, using primary air-liquid interface (ALI) bronchial epithelial culture models. Our results revealed a host and pathogen species-specific TLR-mediated recognition of pathogen-associated molecular patterns (PAMPs), induction and activation of TLR signaling pathways, and substantial induction of inflammatory response in bronchial epithelial cells in response to Mycobacteria infections between these two species. Interestingly, the activation TLR signaling in bovine bronchial epithelial cells induced by Mycobacteria infection was mainly through a myeloid differentiation factor 88 (MyD88)-independent TLR signaling pathway, while both MyD88-dependent and independent TLR signaling cascades could be induced in sheep epithelial cells. Equally noteworthy, a BCG infection was able to induce both MyD88-dependent and independent signaling in sheep and bovine airway epithelial cells, but more robust inflammatory responses were induced in sheep epithelial cells relative to the bovines; whereas an H37Ra infection displayed an ability to mainly trigger a MyD88-independent TLR signaling cascade in these two host species, and induce a more extent expression of

  10. Anti-inflammatory activity of Odina wodier Roxb, an Indian folk remedy, through inhibition of toll-like receptor 4 signaling pathway.

    Durbadal Ojha

    Full Text Available Inflammation is part of self-limiting non-specific immune response, which occurs during bodily injury. In some disorders the inflammatory process becomes continuous, leading to the development of chronic inflammatory diseases including cardiovascular diseases, diabetes, cancer etc. Several Indian tribes used the bark of Odina wodier (OWB for treating inflammatory disorders. Thus, we have evaluated the immunotherapeutic potential of OWB methanol extract and its major constituent chlorogenic acid (CA, using three popular in vivo antiinflammatory models: Carrageenan- and Dextran-induced paw edema, Cotton pellet granuloma, and Acetic acid-induced vascular permeability. To elucidate the possible anti-inflammatory mechanism of action we determine the level of major inflammatory mediators (NO, iNOS, COX-2-dependent prostaglandin E2 or PGE2, and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12. Further, we determine the toll-like receptor 4 (TLR4, Myeloid differentiation primary response gene 88 (MyD88, c-Jun N-terminal kinases (JNK, nuclear factor kappa-B cells (NF-κB, and NF-kB inhibitor alpha (IK-Bα by protein and mRNA expression, and Western blot analysis in drug treated LPS-induced murine macrophage model. Moreover, we determined the acute and sub-acute toxicity of OWB extract in BALB/c mice. Our study demonstrated a significant anti-inflammatory activity of OWB extract and CA along with the inhibition of TNF-α, IL-1β, IL-6 and IL-12 expressions. Further, the expression of TLR4, NF-κBp65, MyD88, iNOS and COX-2 molecules were reduced in drug-treated groups, but not in the LPS-stimulated untreated or control groups, Thus, our results collectively indicated that the OWB extract and CA can efficiently inhibit inflammation through the down regulation of TLR4/MyD88/NF-kB signaling pathway.

  11. Penehyclidine ameliorates acute lung injury by inhibiting Toll-like receptor 2/4 expression and nuclear factor-κB activation

    WANG, NA; SU, YUE; CHE, XIANG-MING; ZHENG, HUI; SHI, ZHI-GUO

    2016-01-01

    The aim of the present study was to investigate the effect of penehyclidine (PHC) on endotoxin-induced acute lung injury (ALI), as well as to examine the mechanism underlying this effect. A total of 60 rats were randomly divided into five groups, including the control (saline), LPS and three LPS + PHC groups. ALI was induced in the rats by injection of 8 mg lipopolysaccharide (LPS)/kg body weight. The rats were then treated with or without PHC at 0.3, 1 or 3 mg/kg body weight 1 min following LPS injection. After 6 h, serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were determined by ELISA. In addition, the mRNA expression levels of toll-like receptor (TLR)2 and TLR4 were examined by reverse transcription-quantitative polymerase chain reaction in the lung tissue samples, and nuclear factor (NF)-κB p65 protein expression levels were examined by western blot analysis. The results demonstrated that lung injury was ameliorated by treatment with PHC (1 and 3 mg/kg body weight) as compared with treatment with LPS alone. Injection of LPS significantly increased the mRNA expression levels of TLR2 and TLR4, as well as the protein expression levels of NF-κB p65 in the lung tissue samples. Serum levels of TNF-α and IL-6 were also upregulated by LPS injection. Treatment of the rats with PHC following LPS injection suppressed the LPS-induced increase in TLR2/4 mRNA and NF-κB p65 protein expression levels. PHC also inhibited the increase in TNF-α and IL-6 serum levels. In addition, PHC reduced LPS-induced ALI and decreased the serum levels of TNF-α and IL-6, possibly by downregulating TLR2/4 mRNA expression and inhibiting NF-κB activity, and consequently alleviating the inflammatory response. PMID:27168812

  12. DMPD: Translational mini-review series on Toll-like receptors: recent advances inunderstanding the role of Toll-like receptors in anti-viral immunity. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17223961 Translational mini-review series on Toll-like receptors: recent advances i...147(2):217-26. (.png) (.svg) (.html) (.csml) Show Translational mini-review series on Toll-like receptors: recent advances...nity. PubmedID 17223961 Title Translational mini-review series on Toll-like receptors: recent advances inund

  13. Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis

    Uddman Rolf

    2005-09-01

    Full Text Available Abstract Background Toll-like receptors enable the host to recognize a large number of pathogen-associated molecular patterns such as bacterial lipopolysaccharide, viral RNA, CpG-containing DNA and flagellin. Toll-like receptors have also been shown to play a pivotal role in both innate and adaptive immune responses. The role of Toll-like receptors as a primary part of our microbe defense system has been shown in several studies, but their possible function as mediators in allergy and asthma remains to be established. The present study was designed to examine the expression of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with intermittent allergic rhinitis, focusing on changes induced by exposure to pollen. Methods 27 healthy controls and 42 patients with seasonal allergic rhinitis volunteered for the study. Nasal biopsies were obtained before and during pollen season as well as before and after allergen challenge. The seasonal material was used for mRNA quantification of Toll-like receptors 2, 3 and 4 with real-time polymerase chain reaction, whereas specimens achieved in conjunction with allergen challenge were used for immunohistochemical localization and quantification of corresponding proteins. Results mRNA and protein representing Toll-like receptors 2, 3 and 4 could be demonstrated in all specimens. An increase in protein expression for all three receptors could be seen following allergen challenge, whereas a significant increase of mRNA only could be obtained for Toll-like receptor 3 during pollen season. Conclusion The up-regulation of Toll-like receptors 2, 3 and 4 in the nasal mucosa of patients with symptomatic allergic rhinitis supports the idea of a role for Toll-like receptors in allergic airway inflammation.

  14. Toll-like receptor polymorphisms in malaria-endemic populations

    Zimmerman Peter A

    2009-03-01

    Full Text Available Abstract Background Toll-like receptors (TLR and related downstream signaling pathways of innate immunity have been implicated in the pathogenesis of Plasmodium falciparum malaria. Because of their potential role in malaria pathogenesis, polymorphisms in these genes may be under selective pressure in populations where this infectious disease is endemic. Methods A post-PCR Ligation Detection Reaction-Fluorescent Microsphere Assay (LDR-FMA was developed to determine the frequencies of TLR2, TLR4, TLR9, MyD88-Adaptor Like Protein (MAL single nucleotide polymorphisms (SNPs, and TLR2 length polymorphisms in 170 residents of two regions of Kenya where malaria transmission is stable and high (holoendemic or episodic and low, 346 residents of a malaria holoendemic region of Papua New Guinea, and 261 residents of North America of self-identified ethnicity. Results The difference in historical malaria exposure between the two Kenyan sites has significantly increased the frequency of malaria protective alleles glucose-6-phoshpate dehydrogenase (G6PD and Hemoglobin S (HbS in the holoendemic site compared to the episodic transmission site. However, this study detected no such difference in the TLR2, TLR4, TLR9, and MAL allele frequencies between the two study sites. All polymorphisms were in Hardy Weinberg Equilibrium in the Kenyan and Papua New Guinean populations. TLR9 SNPs and length polymorphisms within the TLR2 5' untranslated region were the only mutant alleles present at a frequency greater than 10% in all populations. Conclusion Similar frequencies of TLR2, TLR4, TLR9, and MAL genetic polymorphisms in populations with different histories of malaria exposure suggest that these innate immune pathways have not been under strong selective pressure by malaria. Genotype frequencies are consistent with Hardy-Weinberg Equilibrium and the Neutral Theory, suggesting that genetic drift has influenced allele frequencies to a greater extent than selective

  15. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation

    Maharjan Anu S

    2010-11-01

    Full Text Available Abstract Background In healing wounds, some monocytes enter the wound and differentiate into fibroblast-like cells called fibrocytes. Since Toll-like receptors (TLRs are present on monocytes, and pathogens that can infect a wound have and/or release TLR agonists, we examined whether TLR agonists affect fibrocyte differentiation. Results When human peripheral blood mononuclear cells (PBMCs were cultured with TLR3, TLR4, TLR5, TLR7, TLR8 or TLR9 agonists, there was no significant effect on fibrocyte differentiation, even though enhanced extracellular tumor necrosis factor (TNF-α accumulation and/or increased cell surface CD86 or major histocompatibility complex (MHC class II levels were observed. However, all TLR2 agonists tested inhibited fibrocyte differentiation without any significant effect on cell survival. Adding TLR2 agonists to purified monocytes had no effect on fibrocyte differentiation. However, some TLR2 agonists caused PBMCs to secrete a factor that inhibits the differentiation of purified monocytes into fibrocytes. This factor is not interferon (IFN-α, IFN-γ, interleukin (IL-12, aggregated immunoglobulin G (IgG or serum amyloid P (SAP, factors known to inhibit fibrocyte differentiation. TLR2 agonist-treated PBMCs secrete low levels of IL-6, TNF-α, IFN-γ, granulocyte colony-stimulating factor and tumor growth factor β1, but combinations of these factors had no effect on fibrocyte differentiation from purified monocytes. Conclusions Our results indicate that TLR2 agonists indirectly inhibit fibrocyte differentiation and that, for some TLR2 agonists, this inhibition involves other cell types in the PBMC population secreting an unknown factor that inhibits fibrocyte differentiation. Together, these data suggest that the presence of some bacterial signals can inhibit fibrocyte differentiation and may thus slow wound closure.

  16. DMPD: Toll-like receptors: paving the path to T cell-driven autoimmunity? [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17888644 Toll-like receptors: paving the path to T cell-driven autoimmunity? Marsla... Toll-like receptors: paving the path to T cell-driven autoimmunity? PubmedID 17888644 Title Toll-like recep...tors: paving the path to T cell-driven autoimmunity? Authors Marsland BJ, Kopf M.

  17. DMPD: Toll-like receptors are key participants in innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18064347 Toll-like receptors are key participants in innate immune responses. Aranc...Epub 2007 Nov 21. (.png) (.svg) (.html) (.csml) Show Toll-like receptors are key participants in innate immune response...s. PubmedID 18064347 Title Toll-like receptors are key participants in innate immune response

  18. DMPD: Toll-like receptors: novel pharmacological targets for the treatment ofneurological diseases. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17974478 Toll-like receptors: novel pharmacological targets for the treatment ofneu...png) (.svg) (.html) (.csml) Show Toll-like receptors: novel pharmacological targets for the treatment ofneur...ological diseases. PubmedID 17974478 Title Toll-like receptors: novel pharmacological targets for the trea...tment ofneurological diseases. Authors Marsh BJ, Stenzel-Poore MP. Publication Curr

  19. DMPD: Innate immunity and toll-like receptors: clinical implications of basic scienceresearch. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15069387 Innate immunity and toll-like receptors: clinical implications of basic sc...te immunity and toll-like receptors: clinical implications of basic scienceresearch. PubmedID 15069387 Title... Innate immunity and toll-like receptors: clinical implications of basic sciencer

  20. Toll-like receptors are potential therapeutic targets in rheumatoid arthritis

    Siamak; Sandoghchian; Shotorbani

    2011-01-01

    Toll-like receptors (TLRs) are found on the membranes of pattern recognition receptors and not only play important roles in activating immune responses but are also involved in the pathogenesis of inflammatory disease, injury and cancer. Furthermore, TLRs are also able to recognize endogenous alarmins released by damaged tissue and necrosis and/or apoptotic cells and are present in numerous autoimmune diseases. Therefore, the release of endogenous TLR ligands plays an important role in initiating and driving inflammatory diseases. Increasing data suggest a role for TLR signaling in rheumatoid arthritis, which is an autoimmune disease. Although their involvement is not comprehensively understood, the TLRs signaling transducers may provide potential therapeutic targets.

  1. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways

    Choi YH

    2014-10-01

    Full Text Available Yung Hyun Choi,1,2 Gi-Young Kim,3 Hye Hyeon Lee4 1Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 2Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan, 3Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 4Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea Abstract: Cordycepin is the main functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. This compound possesses many pharmacological properties, such as an ability to enhance immune function, as well as antioxidant, antiaging, and anticancer effects. In the present study, we investigated the anti-inflammatory effects of cordycepin using a murine macrophage RAW 264.7 cell model. Our data demonstrated that cordycepin suppressed production of proinflammatory mediators such as nitric oxide (NO and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 gene expression. Cordycepin also inhibited the release of proinflammatory cytokines, including tumor necrosis factor-alpha and interleukin-1-beta, through downregulation of respective mRNA expression. In addition, pretreatment with cordycepin significantly inhibited lipopolysaccharide (LPS-induced phosphorylation of mitogen-activating protein kinases and attenuated nuclear translocation of NF-κB by LPS, which was associated with abrogation of inhibitor kappa B-alpha degradation. Furthermore, cordycepin potently inhibited the binding of LPS to macrophages and LPS-induced Toll-like receptor 4 and myeloid differentiation factor 88 expression. Taken together, the results suggest that the inhibitory effects of cordycepin on LPS-stimulated inflammatory responses in RAW 264.7 macrophages are associated with suppression of mitogen-activating protein kinases and activation of NF-κB by inhibition of the Toll-like receptor 4 signaling pathway. Keywords

  2. Ligands, cell-based models, and readouts required for Toll-like receptor action.

    Dellacasagrande, Jerome

    2012-02-01

    This chapter details the tools that are available to study Toll-like receptor (TLR) biology in vitro. This includes ligands, host cells, and readouts. The use of modified TLRs to circumvent some technical problems is also discussed.

  3. Toll-like Receptor 1 Polymorphisms Affect Innate Immune Responses and Outcomes in Sepsis

    Wurfel, Mark M.; Gordon, Anthony C.; Holden, Tarah D.; Radella, Frank; Strout, Jeanna; Kajikawa, Osamu; Ruzinski, John T.; Rona, Gail; Black, R. Anthony; Stratton, Seth; Jarvik, Gail P.; Hajjar, Adeline M.; Nickerson, Deborah A.; Rieder, Mark; Sevransky, Jonathan

    2008-01-01

    Rationale: Polymorphisms affecting Toll-like receptor (TLR)–mediated responses could predispose to excessive inflammation during an infection and contribute to an increased risk for poor outcomes in patients with sepsis.

  4. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor...-4. Palsson-McDermott EM, O'Neill LA. Immunology. 2004 Oct;113(2):153-62. (.png) (.svg) (.html) (.csml) Show Signal... transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signal

  5. Toll-Like Receptor 2- and 6-Mediated Stimulation by Macrophage-Activating Lipopeptide 2 Induces Lipopolysaccharide (LPS) Cross Tolerance in Mice, Which Results in Protection from Tumor Necrosis Factor Alpha but in Only Partial Protection from Lethal LPS Doses

    Deiters, Ursula; Gumenscheimer, Marina; Galanos, Chris; Mühlradt, Peter F.

    2003-01-01

    Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-α) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cyt...

  6. Anti-Inflammatory Activity of Fruit Fractions in Vitro, Mediated through Toll-Like Receptor 4 and 2 in the Context of Inflammatory Bowel Disease

    Noha Ahmed Nasef

    2014-11-01

    Full Text Available Pattern recognition receptors such as Toll-Like Receptor 2 (TLR2 and 4 (TLR4 are important in detecting and responding to stress and bacterial stimuli. Defect or damage in the TLR2 and TLR4 pathways can lead to sustained inflammation, characteristic of inflammatory bowel disease (IBD. The goal of this study was to identify fruit fractions that can be tested further to develop them as complementary therapies for IBD. In order to do this, we identified fruit fractions that mediate their anti-inflammatory response through the TLR4 and TLR2 pathway. Human Embryonic Kidney (HEK-hTLR4 and hTLR2 cells were stimulated with their respective ligands to induce inflammation. These cells were treated with one of the 12 fractionated fruits and the inflammatory effect measured. 10 of the fruits came up as anti-inflammatory in the hTLR4 assay and nine in the hTLR2 assays. Many of the fruit fractions mediated their anti-inflammatory actions either mainly in their hydrophobic fractions (such as elderberry or hydrophilic fractions (such as red raspberry, or both. The strongest anti-inflammatory effects were seen for feijoa and blackberry. This study shows that fruits can have multiple fractions eliciting anti-inflammatory effects in a pathway specific manner. This suggests that the compounds found in fruits can act together to produce health benefits by way of reducing inflammation. Exploiting this property of fruits can help develop complimentary therapies for inflammatory diseases.

  7. Toll-like receptors and cancer: MYD88 mutation and inflammation

    James Q Wang

    2014-07-01

    Full Text Available Pattern recognition receptors (PRRs expressed on immune cells are crucial for the early detection of invading pathogens, in initiating early innate immune response and in orchestrating the adaptive immune response. PRRs are activated by specific pathogen-associated molecular patterns (PAMPs that are present in pathogenic microbes or nucleic acids of viruses or bacteria. However, inappropriate activation of these PRRs, such as the Toll-like receptors (TLRs, due to genetic lesions or chronic inflammation has been demonstrated to be a major cause of many haematological malignancies. Gain-of-function mutations in the TLR adaptor protein MYD88 found in 39% of the activated B cell type of diffuse large B cell lymphomas (ABC-DLBCL and almost 100% of Waldenström’s macroglobulinemia (WM further highlight the involvement of TLRs in these malignancies. MYD88 mutations result in the chronic activation of TLR signalling pathways, thus the constitutive activation of the transcription factor NFκB to promote cell survival and proliferation. These recent insights into TLR pathway driven malignancies warrant the need for a better understanding of TLRs in cancers and the development of novel anti-cancer therapies targeting TLRs. This review focuses on Toll-like receptors function and signalling in normal or inflammatory conditions, and how mutations can also hijack the TLR signalling pathways to give rise to cancer. Lastly, we discuss how potential therapeutic agents could be used to restore normal responses to TLRs and have long lasting anti-tumour effects.

  8. Important role for Toll-like receptor 9 in host defense against meningococcal sepsis

    Sjölinder, Hong; Mogensen, Trine; Kilian, Mogens;

    2008-01-01

    Neisseria meningitidis is a leading cause of meningitis and sepsis. The pathogenesis of meningococcal disease is determined by both bacterial virulence factors and the host inflammatory response. Toll-like receptors (TLRs) are prominent activators of the inflammatory response, and TLR2, -4, and -9...... have been reported to be involved in the host response to N. meningitidis. While TLR4 has been suggested to play an important role in early containment of infection, the roles of TLR2 and TLR9 in meningococcal disease are not well described. Using a model for meningococcal sepsis, we report that TLR9...

  9. P2X4 receptor in the dorsal horn partially contributes to brain-derived neurotrophic factor oversecretion and toll-like receptor-4 receptor activation associated with bone cancer pain.

    Jin, Xiao-Hong; Wang, Li-Na; Zuo, Jian-Ling; Yang, Jian-Ping; Liu, Si-Lan

    2014-12-01

    Previous studies have suggested that the microglial P2X7 purinoceptor is involved in the release of tumor necrosis factor-α (TNFα) following activation of toll-like receptor-4 (TLR4), which is associated with nociceptive behavior. In addition, this progress is evoked by the activation of the P2X4 purinoceptor (P2X4R). Although P2X4R is also localized within spinal microglia in the dorsal horn, little is known about its role in cancer-induced bone pain (CIBP), which is in some ways unique. With the present rat model of CIBP, we demonstrate a critical role of the microglial P2X4R in the enhanced nociceptive transmission, which is associated with TLR4 activation and secretion of brain-derived neurotrophic factor (BDNF) and TNFα in the dorsal horn. We assessed mechanical threshold and spontaneous pain of CIBP rats. Moreover, P2X4R small interfering RNA (siRNA) was administered intrathecally, and real-time PCR, Western blots, immunofluorescence histochemistry, and ELISA were used to detect the expression of P2X4R, TLR4, OX-42, phosphorylated-p38 MAPK (p-p38), BDNF, and TNFα. Compared with controls, intrathecal injection of P2X4R siRNA could prevent nociceptive behavior induced by ATP plus lipopolysaccharide and CIBP and reduce the expression of P2X4R, TLR4, p-p38, BDNF, and TNFα. In addition, the increase of BDNF protein in rat microglial cells depended on P2X4 receptor signaling, which is partially associated with TLR4 activation. The ability of microglial P2X4R to activate TLR4 in spinal cord leading to behavioral hypersensitivity and oversecretion of BDNF could provide an opportunity for the prevention and treatment of CIBP. PMID:24984884

  10. The role of Toll-like receptors in the pathogenesis of allergic diseases – where is the truth?

    Anna Dębińska; Andrzej Boznański

    2014-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors crucial for the innate and adaptive immune response to pathogen-associated molecular patterns (PAMPs). TLR stimulation via microbial products activates antigen-presenting cells, influences the function of T regulatory cells (Treg), determines the Th1/Th2 balance and Th17 cell differentiation, and controls cytokine production in mast cells and activation of eosinophils. The role of TLR receptors in pathogenesis of allergic diseases r...

  11. [Significance of Toll-like receptors in the pathophysiology of surgical sepsis].

    Romics, Laszlo Jr

    2012-02-03

    The discovery of Toll-like receptors has substantially changed our knowledge of pathogen recognition. 11 Toll-like receptors have so far been described in humans. These recognize distinct pathogen associated molecular patterns, as well as endogenous ligands and small molecular synthetic compounds. TLRs have a multifunctional role in pathogen-triggered immune responses and represent an important connection between the "innate" and "adaptive" immunity. The role of the TLRs in the recognition of pathogens renders them a key figure in the activation of the immune response during surgical sepsis. However, emerging evidence points to a fundamental role in tumorigenesis, transplantation, wound healing, atherogenesis and inflammatory bowel disease. The aim hence was to review experimental data pertaining to the activation of TLR signalling pathways in conditions associated with surgical sepsis. A systematic review of the literature was undertaken by searching the MEDLINE database for the period 1966-2004 without language restriction. The paper also analyses the possible therapeutic utilization of the TLR signalling pathways in surgical sepsis.

  12. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4)

    Hutchinson, Mark R; Zhang, Yingning; Brown, Kimberley; Coats, Benjamen D.; Shridhar, Mitesh; Sholar, Paige W.; Patel, Sonica J.; Crysdale, Nicole Y.; Harrison, Jacqueline A.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2008-01-01

    Although activated spinal cord glia contribute importantly to neuropathic pain, how nerve injury activates glia remains controversial. It has recently been proposed, on the basis of genetic approaches, that toll-like receptor 4 (TLR4) may be a key receptor for initiating microglial activation following L5 spinal nerve injury. The present studies extend this idea pharmacologically by showing that TLR4 is key for maintaining neuropathic pain following sciatic nerve chronic constriction injury (...

  13. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.

    Millien, Valentine Ongeri; Lu, Wen; Shaw, Joanne; Yuan, Xiaoyi; Mak, Garbo; Roberts, Luz; Song, Li-Zhen; Knight, J Morgan; Creighton, Chad J; Luong, Amber; Kheradmand, Farrah; Corry, David B

    2013-08-16

    Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies. PMID:23950537

  14. DMPD: Signaling to NF-kappaB by Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18029230 Signaling to NF-kappaB by Toll-like receptors. Kawai T, Akira S. Trends Mo...l Med. 2007 Nov;13(11):460-9. Epub 2007 Oct 29. (.png) (.svg) (.html) (.csml) Show Signaling to NF-kappaB by... Toll-like receptors. PubmedID 18029230 Title Signaling to NF-kappaB by Toll-like receptors. Authors Kawai T

  15. Structure–activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding

    Structural data for the S74D variant of the pentameric B subunit of type II heat-labile enterotoxin of Escherichia coli reveal a smaller pore opening that may explain its reduced Toll-like receptor binding affinity compared to that of the wild type enterotoxin. The explanation for the enhanced Toll-like receptor binding affinity of the S74A variant is more complex than simply being attributed to the pore opening. The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B5) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B5, but not the LT-IIb-B5 Ser74Asp variant [LT-IIb-B5(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B5(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B5 and the LT-IIb-B5 Thr13Ile [LT-IIb-B5(T13I)] and LT-IIb-B5 Ser74Ala [LT-IIb-B5(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B5 have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B5(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B5(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B5(T13I) variant show that four of the five variant side chains point to the outside surface of the pentamer and one residue points inside. These data are consistent with

  16. Toll-Like Receptor 2 as a Regulator of Oral Tolerance in the Gastrointestinal Tract

    Matthew C. Tunis

    2014-01-01

    Full Text Available Food allergy, other adverse immune responses to foods, inflammatory bowel disease, and eosinophilic esophagitis have become increasingly common in the last 30 years. It has been proposed in the “hygiene hypothesis” that dysregulated immune responses to environmental microbial stimuli may modify the balance between tolerance and sensitization in some patients. Of the pattern recognition receptors that respond to microbial signals, toll-like receptors (TLRs represent the most investigated group. The relationship between allergy and TLR activation is currently at the frontier of immunology research. Although TLR2 is abundant in the mucosal environment, little is known about the complex relationship between bystander TLR2 activation by the commensal microflora and the processing of oral antigens. This review focuses on recent advances in our understanding of the relationship between TLR2 and oral tolerance, with an emphasis on regulatory T cells, eosinophils, B cells, IgA, intestinal regulation, and commensal microbes.

  17. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages

    Underhill, David M; Ozinsky, Adrian; Smith, Kelly D.; Aderem, Alan

    1999-01-01

    The recognition of mycobacterial cell wall components causes macrophages to secrete tumor necrosis factor α (TNF-α) and other cytokines that are essential for the development of a protective inflammatory response. We show that toll-like receptors are required for the induction of TNF-α in macrophages by Mycobacterium tuberculosis. Expression of a dominant negative form of MyD88 (a signaling component required for toll-like receptor signaling) in a mouse macrophage cell line blocks TNF-α produ...

  18. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway.

    Mahe, Yann F; Perez, Marie-Jesus; Tacheau, Charlotte; Fanchon, Chantal; Martin, Richard; Rousset, Françoise; Seite, Sophie

    2013-01-01

    Vitreoscilla filiformis (VF) biomass (VFB) has been widely used in cosmetic preparations and shown to modulate the major inducible free-radical scavenger mitochondrial superoxide dismutase in skin cells. By adding La Roche-Posay (LRP) thermal spring water to the VF culture medium, we obtained a biomass (LRP-VFB) with a similar mitochondrial superoxide dismutase activation capacity to VF. Also, the new biomass more powerfully stimulated mRNA expression and antimicrobial peptides in reconstructed epidermis. Interestingly, a predictive computer model that analyzed transducing events within skin epidermal cells suggested that this protective activity may involve the Toll-like receptor 2/protein kinase C, zeta transduction pathway. Protein kinase C, zeta inhibition was effectively shown to abolish VFB-induced gene stimulation and confirmed this hypothesis. This thus opens new avenues for investigation into the improvement of skin homeostatic defense in relation to the control of its physiological microbiota and innate immunity. PMID:24039440

  19. Dynamic evolution of toll-like receptor multigene families in echinoderms

    Katherine M Buckley

    2012-06-01

    Full Text Available The genome of the purple sea urchin, Strongylocentrotus purpuratus, was the first to be sequenced from a long-lived large invertebrate. Analysis of this genome uncovered a surprisingly complex immune system in which the moderately sized sets of pattern recognition receptors that form the core of vertebrate innate immunity are encoded in large multigene families. The sea urchin genome contains 253 Toll-like receptor (TLR genes, more than 200 Nod-like receptors and 1095 scavenger receptor cysteine-rich domains, a ten-fold expansion relative to vertebrates. Given their stereotypic structure and simple intron-exon architecture, the TLRs are the most tractable of these families for more detailed analysis. An immune defense role for these receptors is suggested by their sequence diversity and expression in immunologically active tissues, including phagocytes. This complexity of the sea urchin TLR multigene families largely derives from expansions that are independent of those in vertebrates and protostomes, although a small family of TLRs with structure similar to that of Drosophila Toll likely originated in an ancient eumetazoan ancestor. Several other invertebrate deuterostome genomes have been sequenced, including the cephalochordate, Branchiostoma floridae and the sea urchin Lytechinus variegatus, as well as partial sequences from two other sea urchin species. Here, we present an analysis of the invertebrate deuterostome TLRs with emphasis on the echinoderms. Representatives of most of the S. purpuratus TLR subfamilies and homologs of the protostome-like sequences are found in L. variegatus. The phylogeny of these genes within sea urchins highlights lineage-specific expansions at higher resolution than is evident at the phylum level. These analyses identify quickly evolving TLR subfamilies that are likely to have novel functions and other, more stable, subfamilies that may function similarly to those of vertebrates.

  20. Toll-like receptor 2 activation by β2→1-fructans protects barrier function of t84 human intestinal epithelial cells in a chain length-dependent manner

    Vogt, L.M.; Meyer, D.; Pullens, G.; Faas, M.M.; Venema, K.; Ramasamy, U.; Schols, H.A.; Vos, P. de

    2014-01-01

    Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear.We hypothesized that β2→1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2 (TLR2),

  1. The Role of Fatty Acids on Toll-like Receptor 4 Regulation of Substrate Metabolism with Obesity

    McMillan, Ryan P

    2009-01-01

    Growing evidence suggests that obesity and associated metabolic dysregulation occurs in concert with chronic low-grade inflammation. Toll-like receptors (TLR) are transmembrane receptors that play an important role in innate immunity and the induction of inflammatory responses. Our laboratory has observed that TLR4 expression is elevated in the skeletal muscle of obese humans and is associated with reduced fatty acid (FA) oxidation and increased lipid synthesis. Additionally, activation of th...

  2. DMPD: Toll-like receptors, Notch ligands, and cytokines drive the chronicity of lunginflammation. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18073395 Toll-like receptors, Notch ligands, and cytokines drive the chronicity of lung...ors, Notch ligands, and cytokines drive the chronicity of lunginflammation. Authors Raymond T, Schaller M, H...2007 Dec;4(8):635-41. (.png) (.svg) (.html) (.csml) Show Toll-like receptors, Notch ligands, and cytokines d...rive the chronicity of lunginflammation. PubmedID 18073395 Title Toll-like recept

  3. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.

    García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C

    2016-05-01

    The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. PMID:26905767

  4. Toll-like receptors and NOD-like receptors in rheumatic diseases.

    McCormack, William J

    2012-02-01

    The past 10 years have seen the description of families of receptors that drive proinflammatory cytokine production in infection and tissue injury. Two major classes have been examined in the context of inflammatory joint disease--the Toll-like receptors (TLRs) and NOD-like receptors (NLRs). TLRs such as TLR2 and TLR4 are being implicated in the pathology of rheumatoid arthritis, ankylosing spondylitis, lyme arthritis and osteoarthritis. Nalp3 has been identified as a key NLR for IL-1beta production and has been shown to have a particular role in gout. These findings present new therapeutic opportunities, possibly allowing for the replacement of biologics with small molecule inhibitors.

  5. DMPD: Toll-like receptors and RNA helicases: two parallel ways to trigger antiviralresponses. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 16762830 Toll-like receptors and RNA helicases: two parallel ways to trigger antiviralresponse...-like receptors and RNA helicases: two parallel ways to trigger antiviralresponses. PubmedID 16762830 Title ...Toll-like receptors and RNA helicases: two parallel ways to trigger antiviralresponse

  6. Toll-like receptor cascade and gene polymorphism in host–pathogen interaction in Lyme disease

    Rahman S

    2016-05-01

    Full Text Available Shusmita Rahman,1 Maria Shering,2 Nicholas H Ogden,3 Robbin Lindsay,4 Alaa Badawi1 1National Microbiology Laboratory, Public Health Agency of Canada, Toronto, 2Faculty of Arts and Science, University of Toronto, Toronto, ON, 3National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, 4National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada Abstract: Lyme disease (LD risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs. A number of Borrelia outer-surface proteins (eg, OspA and OspB are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages. Keywords: Lyme disease, Toll-like receptors, Borrelia lipoproteins, genetic polymorphisms, host–pathogen interaction 

  7. Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses.

    Kirschning, C J; Bauer, S

    2001-09-01

    Innate immunity initiates protection of the host organism against invasion and subsequent multiplication of microbes by specific recognition. Germ line-encoded receptors have been identified for microbial products such as mannan, lipopeptide, peptidoglycan (PGN), lipoteichoic acid (LTA), lipopolysaccharide (LPS), and CpG-DNA. The Drosophila Toll protein has been shown to be involved in innate immune response of the adult fruitfly. Members of the family of Toll-like receptors (TLRs) in vertebrates have been implicated as pattern recognition receptors (PRRs). Ten TLRs are known and six of these have been demonstrated to mediate cellular activation by distinct microbial products. TLR4 has been implicated as activator of adaptive immunity, and analysis of systemic LPS responses in mice led to the identification of LPS-resistant strains instrumental in its identification as a transmembrane LPS signal transducer. Structural similarities between TLRs and receptor molecules involved in immune responses such as CD14 and the IL-1 receptors (IL-1Rs), as well as functional analysis qualified TLR2 as candidate receptor for LPS and other microbial products. Targeted disruption of the TLR9 gene in mice led to identification of TLR9 as CpG-DNA signal transducer. Involvement of TLR5 in cell activation by bacterial flagellin has been demonstrated. Further understanding of recognition and cellular signaling activated through the ancient host defense system represented by Toll will eventually lead to means for its therapeutic modulation. PMID:11680785

  8. Laquinimod prevents cuprizone-induced demyelination independent of Toll-like receptor signaling

    Menken, Lena; Hayardeny, Liat; Hanisch, Uwe-Karsten; Brück, Wolfgang

    2016-01-01

    Objective: To test whether Toll-like receptor (TLR) signaling plays a key role for reduced nuclear factor B (NF-κB) activation after laquinimod treatment in the model of cuprizone-induced demyelination, oligodendrocyte apoptosis, inflammation, and axonal damage. Methods: Ten-week-old C57BL/6J, TLR4−/−, and MyD88−/− mice received 0.25% cuprizone for 6 weeks and were treated daily with 25 mg/kg laquinimod or vehicle. After 6 weeks of demyelination, extent of demyelination, oligodendrocyte density, microglia infiltration, and axonal damage were analyzed in the corpus callosum. Additionally, we analyzed primary mouse astrocytes from C57BL/6J, TLR4−/−, MyD88−/−, and TRIF−/− mice for alteration in NF-κB signaling. Results: Vehicle-treated controls from C57BL/6J, TLR4−/−, and MyD88−/− mice displayed extensive callosal demyelination as well as microglial activation. In contrast, mice treated with 25 mg/kg laquinimod showed mainly intact callosal myelin. The demyelination score was significantly higher in all untreated mice compared to mice treated with laquinimod. There were significantly fewer APP-positive axonal spheroids, Mac3-positive macrophages/microglia, and less oligodendrocyte apoptosis in the corpus callosum of laquinimod-treated mice in comparison to untreated controls. Stimulated primary mouse astrocytes from laquinimod-treated groups show reduced NF-κB activation compared to vehicle-treated controls. Conclusions: Our results confirm that laquinimod prevents demyelination in the cuprizone mouse model for multiple sclerosis via downregulation of NF-κB activation. This laquinimod effect, however, does not involve upstream Toll-like receptor signaling. PMID:27231712

  9. Differences in evolution of Toll-like receptors 4 and 7 genes in wild rodents (Murinae)

    Fornůsková, Alena; Vinkler, Michal; Galan, M.; Morand, S.; Charbonnel, N.; Bryja, Josef; Cosson, J.-F.

    Vantaa: Finnish Forest Research Institute, 2012 - (Henttonen, H.; Huitu, O.). s. 77 ISBN 978-951-40-2374-3. [Rodens et Spatium /13./. 16.07.2012-20.07.2012, Rovaniemi] Institutional support: RVO:68081766 Keywords : Toll-like receptors Subject RIV: EG - Zoology

  10. Evolution of toll-like receptors 4 and 7 genes in wild rodents (Murinae)

    Fornůsková, Alena; Galan, M.; Cerqueira, F.; Bryja, Josef; Charbonnel, N.; Cosson, J.-F.

    Paris: Université P. et M. Curie, 2011. s. 12 [European Congress of Mammalogy /7./. 19.07.2011-23.07.2011, Paris] Institutional research plan: CEZ:AV0Z60930519 Keywords : rodents * toll-like receptors Subject RIV: EG - Zoology http://www.alphavisa.com/ecm2011/pdf/ECM2011-Abstract_Book.pdf

  11. Intra-uterine Growth Restriction Downregulates the Hepatic Toll Like Receptor-4 Expression and Function

    Ozlem Equils; Sapna Singh; Semra Karaburun; Daning Lu; Manikkavasagar Thamotharan; Devaskar, Sherin U.

    2005-01-01

    Maternal starvation is a significant cause of intrauterine growth restriction (IUGR) in the world and increases the risk of infection in the neonate. We examined the effect of maternal starvation on Toll like receptor (TLR)4 expression in hepatic, splenic and intestinal tissues obtained from the adult IUGR offspring of prenatal calorie restricted rats. The hepatic TLR4 protein concentration was undetectable in the...

  12. Relationship between Toll-Like Receptor 8 Gene Polymorphisms and Pediatric Pulmonary Tuberculosis

    Nazan Dalgic

    2011-01-01

    Full Text Available Objectives: Genetic variants in Toll-like receptors (TLRs are considered a potential indicator for host susceptibility to and outcome of several infectious diseases including tuberculosis. The aim of this study was to determine whether −129 C/G and Met1Val polymorphisms of TLR8 were associated with pediatric pulmonary tuberculosis in Turkish population.

  13. First evidence of independent pseudogenization of Toll-like receptor 5 in passerine birds

    Bainová, H.; Králová, Tereza; Bryjová, Anna; Albrecht, Tomáš; Bryja, Josef; Vinkler, M.

    2014-01-01

    Roč. 45, č. 1 (2014), s. 151-155. ISSN 0145-305X R&D Projects: GA ČR GAP505/10/1871 Institutional support: RVO:68081766 Keywords : Birds * Expression * Innate immunity * Toll-like receptor 5 * Pseudogene * Flagellin Subject RIV: EG - Zoology Impact factor: 2.815, year: 2014

  14. Inter- and intraspecific polymorphism in passerine Toll-like receptor 4

    Bainová, H.; Bryjová, Anna; Promerová, Marta; Bryja, Josef; Johnsen, A.; Lifjeld, J. T.; Albrecht, Tomáš; Vinkler, Michal

    Tübingen: Eberhard Karls Universität Tübingen, 2011. s. 492. [Congress of the European Society for Evolution ary Biology ESEB /13./. 20.08.2011-25.08.2011, Tübingen] Institutional research plan: CEZ:AV0Z60930519 Keywords : passerine * Toll-like receptor Subject RIV: EG - Zoology

  15. Toll-like Receptors Involved in the Pathogenesis of Experimental Candida albicans Keratitis

    Yuan, Xiaoyong; Wilhelmus, Kirk R.

    2010-01-01

    Toll-like receptors mediate innate immune responses at the onset of infection, including keratomycosis. Based on corneal gene expression studies and the use of TLR-deficient mice, TLR2 appears partly responsible for the release of proinflammatory cytokines and chemokines that recruit leukocytes to restrain fungal growth during Candida albicans keratitis.

  16. MECHANISMS OF ANTIINFECTIOUS FUNCTIONS OF INNATE IMMUNITY: ROLE OF TOLL-LIKE RECEPTORS

    S. I. Suskov

    2012-05-01

    Full Text Available This review describes the main role of toll-like receptors of innate immunity for pathogen recognition; signaling; production of inflammatory response. Also Interrelation of innate and adaptive Immunity in conditions of pathology and organ transplantation were considered. 

  17. Structure and variability of Toll-like receptor genes in Grey Partridge (Perdix perdix)

    Tomášek, Oldřich; Vinkler, Michal; Bainová, H.; Opatová, Pavlína; Bryjová, Anna; Bryja, Josef; Albrecht, Tomáš

    Tübingen : Eberhard Karls Universität Tübingen, 2011. s. 1030. [ Congress of the European Society for Evolutionary Biology ESEB /13./. 20.08.2011-25.08.2011, Tübingen] Institutional research plan: CEZ:AV0Z60930519 Keywords : Grey Partridge * Toll-like receptor Subject RIV: EG - Zoology

  18. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function.

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P

    2013-04-26

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy. PMID:23504312

  19. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy.

    Murad, Yanal M; Clay, Timothy M; Lyerly, H Kim; Morse, Michael A

    2007-08-01

    Stimulation of toll-like receptor (TLR)9 activates human plasmacytoid dendritic cells and B cells, and induces potent innate immune responses in preclinical tumor models and in patients. CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that show promising results as vaccine adjuvants and in the treatment of cancers, infections, asthma and allergy. PF-3512676 (ProMune) was developed as a TLR9 agonist for the treatment of cancer as monotherapy and as an adjuvant in combination with chemo- and immunotherapy. Phase I and II trials have tested this drug in several hematopoietic and solid tumors. Pfizer has initiated Phase III trials to test PF-3512676 in combination with standard chemotherapy for non-small-cell lung cancer. PMID:17696823

  20. Regulation of Toll-like receptors-dependent inflammatory response 

    Ewa Kowalczyk

    2013-03-01

    Full Text Available Toll-like receptors (TLRs are a pivotal part of our innate immune response. They recognize a wide variety of pathogens and instigate an immune response, thus facilitating the removal of the disease-causing agent. Due to the intense nature of this response its strict control is of keyimportance, as a prolonged inflammatory signal leads to carcinogenesis and autoimmune disorders. The signaling cascade initiated by the activated TLR is complex and consists of multiple stages. It involves a variety of adaptor proteins, protein kinases and effector transcription factors. The number of stages in this process enables many possible checkpoints and ways of regulation. Signal modulation involves differentiated expression of TLRs, splicing variants of their adaptorproteins, enzymes modifying proteins engaged in the cascade and many more. This review focuses on endogenous factors responsible for controlling the TLR-dependent inflammatory response as well as on pharmacological therapies designed for regulating the innate immune response.  

  1. Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil.

    Patchett, Amanda L; Latham, Roger; Brettingham-Moore, Kate H; Tovar, Cesar; Lyons, A Bruce; Woods, Gregory M

    2015-11-01

    Devil facial tumour disease (DFTD) is a fatally transmissible cancer that threatens the Tasmanian devil population. As Tasmanian devils do not produce an immune response against DFTD cells, an effective vaccine will require a strong adjuvant. Activation of innate immune system cells through toll-like receptors (TLRs) could provide this stimulation. It is unknown whether marsupials, including Tasmanian devils, express functional TLRs. We isolated RNA from peripheral blood mononuclear cells and, with PCR, detected transcripts for TLRs 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13. Stimulation of the mononuclear cells with agonists to these TLRs increased the expression of downstream TLR signaling products (IL1α, IL6, IL12A and IFNβ). Our data provide the first evidence that TLR signaling is functional in the mononuclear cells of the Tasmanian devil. Future DFTD vaccination trials will incorporate TLR agonists to enhance the immune response against DFTD. PMID:26182986

  2. Toll-like receptors, a double-edged sword in immunity to malaria

    Chen Jide; He Ying; Xu Wenyue; Huang Fusheng

    2009-01-01

    Toll-like receptors (TLRs) are a central component of innate immune system and play a major role as the initiator of the innate immune responses to defend against bacteria, viruses, parasite and other pathogens. During malaria infection, TLRs signaling pathways are initialed with the recognition of Plasmodium glycosylphosphatidylinositols (GPI) and hemozoin as pathogen-associated molecular patterns (PAMPs). And then, activation of TLRs signaling induces specific biological responses against malaria parasites invasion. However, TLRs are also involved in malaria pathogenesis and enhancement of immune tolerance and evasion for malaria infection. Moreover, malaria parasites regulate selectively TLRs expression on immune cells.Thus, these evidences indicated that TLRs have contrary roles on malaria infection. Understanding the complicated roles of TLRs on malaria infection will contribute us to design more effective anti-malaria drugs or vaccines.

  3. Expression of Toll-like receptors 2 and 4 in gingivitis and chronic periodontitis.

    Sarah S

    2006-01-01

    Full Text Available Periodontal disease is the major cause of adult tooth loss and is commonly characterized by a chronic inflammation caused by infection by oral bacteria. Members of Toll-like receptor (TLR family recognize conserved microbial structures, such as bacterial lipopolysaccharides, and activate signaling pathways that result in immune responses against microbial infections. The aim of the present study was to assess the mRNA expression of TLR-2 and TLR-4 in gingivitis and chronic periodontitis. Gingival tissue samples were collected from patients with chronic periodontitis, gingivitis, and healthy controls. Total RNA was extracted and RT-PCR was done for TLR-2 and TLR-4. The results showed that TLR-2 was significantly increased in gingivitis compared to TLR-4 expression and decreased in chronic periodontitis.

  4. Role of Toll-like receptors in lung innate defense against invasive aspergillosis. Distinct impact in immunocompetent and immunocompromized hosts.

    Chignard, Michel; Balloy, Viviane; Sallenave, Jean-Michel; Si-Tahar, Mustapha

    2007-09-01

    Toll-like receptors are key to pathogen recognition by a host and to the subsequent triggering of an innate immune response. Experimental and clinical evidence shows that defects in Toll-like receptors or in signaling pathways downstream from these receptors render hosts susceptible to various types of infection, including aspergillosis. Patients receiving an immunosuppressive regimen, including corticosteroid therapy or cytotoxic chemotherapy, are also susceptible to infections. Aspergillus fumigatus is an opportunistic pathogen that infects the lungs of immunosuppressed hosts. Here, we review the evidence that experimental inactivation of various Toll-like receptors and of their signaling pathways may worsen cases of invasive pulmonary aspergillosis. Moreover, the literature clearly indicates that the type of immunosuppression is very important, as it influences whether or not Toll-like receptors contribute to infection. The involvement of Toll-like receptors, based on the immunological status of the patient, should be considered if an immunosuppressive treatment must be administered. PMID:17604224

  5. DMPD: The negative regulation of Toll-like receptor and associated pathways. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17621314 The negative regulation of Toll-like receptor and associated pathways. Lan...g T, Mansell A. Immunol Cell Biol. 2007 Aug-Sep;85(6):425-34. Epub 2007 Jul 10. (.png) (.svg) (.html) (.csml) Show The... negative regulation of Toll-like receptor and associated pathways. PubmedID 17621314 Title The ne

  6. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition

    Voogdt, Carlos G.P.; Bouwman, Lieneke I.; Kik, Marja J. L.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein arc...

  7. Soluble toll like receptor 2 (TLR-2) is increased in saliva of children with dental caries

    Zhao, Alyssa; Blackburn, Corinne; Chin, Judith; Srinivasan, Mythily

    2014-01-01

    Background Dental caries is the most common microbial disease affecting mankind. Caries risk assessment methods, identification of biomarkers and vaccine development strategies are being emphasized to control the incidence of the largely preventable disease. Pattern recognition receptors such as the toll like receptors (TLR) have been implicated as modulators of host-microbial interactions. Soluble TLR-2 and its co-receptor, CD14 identified in saliva can bind the cell wall components of cario...

  8. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses. PMID:23827939

  9. Escherichia coli Strain Nissle 1917 Ameliorates Experimental Colitis via Toll-Like Receptor 2- and Toll-Like Receptor 4-Dependent Pathways

    Grabig, A.; Paclik, D.; Guzy, C.; Dankof, A.; Baumgart, D.C.; Erckenbrecht, J.; Raupach, B; Sonnenborn, U.; Eckert, J.; Schumann, R. R.; Wiedenmann, B; Dignass, A U; Sturm, A

    2006-01-01

    Toll-like receptors (TLRs) are key components of the innate immune system that trigger antimicrobial host defense responses. The aim of the present study was to analyze the effects of probiotic Escherichia coli Nissle strain 1917 in experimental colitis induced in TLR-2 and TLR-4 knockout mice. Colitis was induced in wild-type (wt), TLR-2 knockout, and TLR-4 knockout mice via administration of 5% dextran sodium sulfate (DSS). Mice were treated with either 0.9% NaCl or 107 E. coli Nissle 1917 ...

  10. Pleiotropic effects of Blastocystis spp. Subtypes 4 and 7 on ligand-specific toll-like receptor signaling and NF-κB activation in a human monocyte cell line.

    Joshua D W Teo

    Full Text Available Blastocystis spp. is a common enteric stramenopile parasite that colonizes the colon of hosts of a diverse array of species, including humans. It has been shown to compromise intestinal epithelial cell barrier integrity and mediate the production of pro-inflammatory cytokines and chemokines. Mucosal epithelial surfaces, including the intestinal epithelium, are increasingly recognized to perform a vital surveillance role in the context of innate immunity, through the expression of pathogen recognition receptors, such as Toll-like receptors (TLRs. In this study, we use the human TLR reporter monocytic cell line, THP1-Blue, which expresses all human TLRs, to investigate effects of Blastocystis on TLR activation, more specifically the activation of TLR-2, -4 and -5. We have observed that live Blastocystis spp. parasites and whole cell lysate (WCL alone do not activate TLRs in THP1-Blue. Live ST4-WR1 parasites inhibited LPS-mediated NF-κB activation in THP1-Blue. In contrast, ST7-B WCL and ST4-WR1 WCL induced pleiotropic modulation of ligand-specific TLR-2 and TLR-4 activation, with no significant effects on flagellin-mediated TLR-5 activation. Real time-qPCR analysis on SEAP reporter gene confirmed the augmenting effect of ST7-B on LPS-mediated NF-κB activation in THP1-Blue. Taken together, this is the first study to characterize interactions between Blastocystis spp. and host TLR activation using an in vitro reporter model.

  11. Decreased Toll-like receptor 8 expression and lower TNF-alpha synthesis in infants with acute RSV infection

    Gagro Alenka; Cepin-Bogovic Jasna; Aberle Neda; Vojvoda Valerija; Bendelja Kreso; Mlinaric-Galinovic Gordana; Rabatic Sabina

    2010-01-01

    Abstract Background Toll-like receptors (TLRs) are part of the innate immune system, able to recognize pathogen-associated molecular patterns and activate immune system upon pathogen challenge. Respiratory syncytial virus (RSV) is a RNA virus particularly detrimental in infancy. It could cause severe lower respiratory tract disease and recurrent infections related to inadequate development of anti-viral immunity. The reason could be inadequate multiple TLRs engagement, including TLR8 in recog...

  12. The Role of Toll Like Receptors in Pregnancy

    Reza Aflatoonian

    2013-01-01

    Full Text Available For many years, the innate immunity was of less interest than the adaptive immunitybecause it was perceived to have secondary importance in the functionality of theimmune system. During the past decades, with the advancement of knowledge aboutinnate immune system, interest in innate immunity has grown dramatically and thusits function has been extensively studied. Innate immunity plays fundamental rolesin the initiation and induction of adaptive immune responses. It consists of severalcells and receptors including natural killer (NK cells, macrophages (MQs, dendriticcells (DCs and pattern recognition receptors (PRRs. Two decades ago, Tolllike receptors (TLRs family was known as one of the important PRRs with uniquefunctions especially in protection against invading pathogens. Since the female reproductivetract has access to the outside environment and has a unique interactionwith different pathogens whether invading microorganisms or normal flora, allogenicsperm and semi allogenic fetus, it has an essential need for effective immuneresponses. It has therefore been suggested that TLRs may play important roles inthe immune regulation of the female reproductive tract. In addition, it has beendemonstrated that immune disturbance may be responsible for some adverse pregnancyoutcomes such as preeclampsia (PE, recurrent spontaneous abortion (RSAand intrauterine growth restriction (IUGR. Our focus in this review is to show theimportance of TLRs in pregnancy with emphasis on the expression of these receptorsin different tissues related to pregnancy.

  13. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    Keehoon Jung

    Full Text Available Lipopolysaccharide (LPS, the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2 and Toll-like receptor 4 (TLR4. To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY using 'the Hybrid leucine-rich repeats (LRR technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR, and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM, resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  14. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation.

    McCoy, Kathleen L

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  15. CD14+ cells are required for IL-12 response in bovine blood mononuclear cells activated with Toll-like receptor (TLR) 7 and TLR8 ligands.

    Buza, Joram; Benjamin, Ponn; Zhu, Jianzhung; Wilson, Heather L; Lipford, Grayson; Krieg, Arthur M; Babiuk, Lorne A; Mutwiri, George K

    2008-12-15

    Single-stranded viral RNA (ssRNA) was recently identified as the natural ligand for TLR7 and TLR8. ssRNA sequences from viruses, as well as their synthetic analogues stimulate innate immune responses in immune cells from humans and mice, but their immunostimulatory activity has not been investigated in ruminants. In the present investigations, we tested whether synthetic RNA oligoribonucleotides (ORN) can activate immune cells from cattle. In vitro incubation of bovine peripheral blood mononuclear cells (PBMCs) with ORN-induced production of IL-12, IFN-gamma and TNF-alpha. No significant induction of IFN-alpha was observed. Depletion of CD14+ cells from PBMC abrogated the IL-12 response and consequently the IFN-gamma response, suggesting that CD14+ cells are required for PBMC immune activation with ORN. Consistent with these findings, the putative receptors for ORN (TLR7 and TLR8) were expressed at higher levels in the CD14+ fraction than the CD14- PBMC fraction. Pre-treatment of PBMC with bafilomycin (an inhibitor of phagosomal acidification) prior to stimulation with ORN abolished the cytokine responses, confirming that the receptor(s) which mediate the ORN-induced responses are intracellular. These results demonstrate for the first time that the TLR7/8 agonist ORN's have strong immune stimulatory effects in cattle, and suggest that further investigation on the potential of TLR7/8 ligands to activate innate and adaptive immune responses in domestic animals are warranted. PMID:18789542

  16. Differential expression of toll-like receptors in patients with irritable bowel syndrome.

    Brint, Elizabeth K

    2011-02-01

    The pathogenesis of irritable bowel syndrome (IBS) is poorly understood. One contributory factor may be low-grade mucosal inflammation, perhaps initiated by the microbiota. Toll-like receptors (TLRs) are a family of pathogen-recognition receptors of the innate immune system. The aim of this study was to evaluate the potential involvement of TLRs in IBS to further understand the involvement of the innate immune system in this complex disorder.

  17. Dynamic Evolution of Toll-Like Receptor Multigene Families in Echinoderms

    Buckley, Katherine M; Rast, Jonathan P.

    2012-01-01

    The genome sequence of the purple sea urchin, Strongylocentrotus purpuratus, a large and long-lived invertebrate, provides a new perspective on animal immunity. Analysis of this genome uncovered a highly complex immune system in which the gene families that encode homologs of the pattern recognition receptors that form the core of vertebrate innate immunity are encoded in large multigene families. The sea urchin genome contains 253 Toll-like receptor (TLR) sequences, more than 200 Nod-like re...

  18. Toll-like receptor 4 gene polymorphism is associated with chronic periodontitis

    Ding, Yuan-Sheng; Zhao, Yue; Xiao,Yuan-Yuan; Zhao, Gang

    2015-01-01

    Toll-like receptors (TLRs) contribute to the immune response by recognizing patterns presented by bacteria and other pathogens. These receptors have been implicated in the inflammatory response that contributes to gingivitis and periodontitis. Conflicting reports have suggested that variations in the genes encoding TLRs, particularly TLR2 and TLR4, may influence susceptibility to periodontitis. In this study, the contribution of variations in the genes encoding TLR2 and TLR4 in the context of...

  19. Toll-like receptor 4 and interleukin 6 gene polymorphisms in Helicobacter pylori related diseases

    Pohjanen, V.-M. (Vesa-Matti)

    2016-01-01

    Abstract Helicobacter pylori is a Gram-negative bacterium, which infects the stomach of more than 50% of the population worldwide. In addition to being the most important risk factor for gastric cancer and peptic ulcers, H. pylori infection is a risk factor for several extra-digestive diseases including dyslipidemia. The consequences of having an H. pylori infection are significantly influenced by the inflammatory response of the host. The pattern recognition receptor Toll-like receptor 4...

  20. Trypanosoma cruzi and its components as exogenous mediators of inflammation recognized through Toll-like receptors.

    Gazzinelli, Ricardo T.; Campos, Marco A

    2004-01-01

    TRYPANOSOMA cruzi is the etiologic agent of Chagas' disease, a parasitic disease of enormous importance in Latin America. Herein we review the studies that revealed the receptors from innate immunity that are involved in the recognition of this protozoan parasite. We showed that the recognition of T. cruzi and its components occurs through Toll-like receptors (TLR) 2/CD14. Further, we showed in vivo the importance of the myeloid differentiation factor (MyD88), an adapter protein essential for...

  1. Toll-Like Receptor-4 Dependent Small Intestinal Immune Responses Following Murine Arcobacter Butzleri Infection

    Heimesaat, Markus M.; Karadas, Gül; Fischer, André; Göbel, Ulf B.; Alter, Thomas; Bereswill, Stefan; Gölz, Greta

    2015-01-01

    Sporadic cases of gastroenteritis have been attributed to Arcobacter butzleri infection, but information about the underlying immunopathological mechanisms is scarce. We have recently shown that experimental A. butzleri infection induces intestinal, extraintestinal and systemic immune responses in gnotobiotic IL-10–/– mice. The aim of the present study was to investigate the immunopathological role of Toll-like Receptor-4, the receptor for lipopolysaccharide and lipooligosaccharide of Gram-ne...

  2. The 2′-O-methylation status of a single guanosine controls transfer RNA–mediated Toll-like receptor 7 activation or inhibition

    Jöckel, Stefanie; Nees, Gernot; Sommer, Romy; Zhao, Yang; Cherkasov, Dmitry; Hori, Hiroyuki; Ehm, Gundi; Schnare, Markus; Nain, Marianne; Kaufmann, Andreas; Bauer, Stefan

    2012-01-01

    Foreign RNA serves as pathogen-associated molecular pattern (PAMP) and is a potent immune stimulator for innate immune receptors. However, the role of single bacterial RNA species in immune activation has not been characterized in detail. We analyzed the immunostimulatory potential of transfer RNA (tRNA) from different bacteria. Interestingly, bacterial tRNA induced type I interferon (IFN) and inflammatory cytokines in mouse dendritic cells (DCs) and human peripheral blood mononuclear cells (...

  3. Toll-like receptors; their physiological role and signal transduction system.

    Takeuchi, O; Akira, S

    2001-04-01

    Drosophila Toll protein is a transmembrane receptor whose function is to recognize the invasion of microorganisms as well as to establish dorso-ventral polarity. Recently, mammalian homologues of Toll, designated as Toll-like receptors (TLRs) have been discovered. So far, six members (TLR1-6) have been reported and two of these, TLR2 and TLR4, have been shown to be essential for the recognition of distinct bacterial cell wall components. TLR2 discriminates peptidoglycan (PGN), lipoprotein, lipoarabinomannan (LAM) and zymosan, whereas TLR4 recognizes lipopolysaccharide (LPS), lipoteichoic acid (LTA) and Taxol. Bacterial components elicit the activation of an intracellular signaling cascade via TLR in a similar way to that occurs upon ligand binding to IL-1 receptor (IL-1R). This signaling pathway leads to the activation of a transcription factor NF-kappaB and c-Jun N-terminal kinase (JNK), which initiate the transcription of proinflammatory cytokine genes. Particularly, analysis of knockout mice revealed a pivotal role for MyD88 in the signaling of the TLR/IL-1R family. Taken together, TLRs and the downstream signaling pathway play a key role in innate immune recognition and in subsequent activation of adaptive immunity. PMID:11357875

  4. Prenatal activation of Toll-like receptors-3 by administration of the viral mimetic poly(I:C changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring

    Forrest Caroline M

    2012-06-01

    Full Text Available Abstract Background There is mounting evidence for a neurodevelopmental basis for disorders such as autism and schizophrenia, in which prenatal or early postnatal events may influence brain development and predispose the young to develop these and related disorders. We have now investigated the effect of a prenatal immune challenge on brain development in the offspring. Pregnant rats were treated with the double-stranded RNA polyinosinic:polycytidylic acid (poly(I:C; 10 mg/kg which mimics immune activation occurring after activation of Toll-like receptors-3 (TLR3 by viral infection. Injections were made in late gestation (embryonic days E14, E16 and E18, after which parturition proceeded naturally and the young were allowed to develop up to the time of weaning at postnatal day 21 (P21. The brains of these animals were then removed to assess the expression of 13 different neurodevelopmental molecules by immunoblotting. Results Measurement of cytokine levels in the maternal blood 5 hours after an injection of poly(I:C showed significantly increased levels of monocyte chemoattractant protein-1 (MCP-1, confirming immune activation. In the P21 offspring, significant changes were detected in the expression of GluN1 subunits of NMDA receptors, with no difference in GluN2A or GluN2B subunits or the postsynaptic density protein PSD-95 and no change in the levels of the related small GTPases RhoA or RhoB, or the NMDA receptor modulator EphA4. Among presynaptic molecules, a significant increase in Vesicle Associated Membrane Protein-1 (VAMP-1; synaptobrevin was seen, with no change in synaptophysin or synaptotagmin. Proliferating Cell Nuclear Antigen (PCNA, as well as the neurogenesis marker doublecortin were unchanged, although Sox-2 levels were increased, suggesting possible changes in the rate of new cell differentiation. Conclusions The results reveal the induction by prenatal poly(I:C of selective molecular changes in the brains of P21 offspring

  5. Identification of Toll-like receptor genes in Grey Partridge (Perdix perdix)

    Tomášek, Oldřich; Vinkler, Michal; Bainová, H.; Opatová, Pavlína; Bryjová, Anna; Svobodová, J.; Albrecht, Tomáš

    Brno: Ústav biologie obratlovců AVČR, 2011 - (Bryja, J.; Řehák, Z.; Zukal, J.). s. 231-232 ISBN 978-80-87189-09-2. [Zoologické dny. 17.02.2011-18.02.2011, Brno] Institutional research plan: CEZ:AV0Z60930519 Keywords : Grey Partridge * Toll-like receptor Subject RIV: EG - Zoology http://zoo.ivb.cz/doc/sborniky/sbornik_2011.pdf

  6. The role of toll-like receptor variants in acute anterior uveitis

    Pratap, Divya S.; Lyndell L Lim; Wang, Jie Jin; Mackey, David A.; Kearns, Lisa S.; Stawell, Richard J.; ,; Kathryn P Burdon; Mitchell, Paul; Craig, Jamie E; Hall, Anthony J.; Hewitt, Alex W

    2011-01-01

    Purpose Acute anterior uveitis (AAU) is the most common form of uveitis; however, while it is presumed to have an immunological basis, the precise underlying etiology remains elusive. Toll-like receptors (TLRs) have a key role in linking innate and adaptive immunity, thereby forming a molecular bridge between microbial triggers and the development of AAU. The purpose of this study was to investigate the role of TLR2 and TLR4 gene polymorphisms in the pathogenesis of AAU. Methods The study com...

  7. Expression of Toll-like receptors 7-10 in human fallopian tubes

    Nasrin Ghasemi; Fatemehsadat Amjadi; Ensieh Salehi; Mojgan Shakeri; Abbas Aflatoonian; Reza Aflatoonian

    2014-01-01

    Background: The human female reproductive tract (FRT) is constantly deal with the invading pathogens. Recognition of these pathogens is attributed to the family of Toll like receptors (TLR) as a major part of the innate immune system. We and others have previously revealed that TLRs1-6 express in the female reproductive tract. However, more studies should be done to detect TLRs 7-10 in the female reproductive tract, especially in the fallopian tubes. Objective: To examine the expression of TL...

  8. Effects of human Toll-like receptor 1 polymorphisms on ageing

    Uciechowski Peter; Oellig Eva Maria; Mariani Erminia; Malavolta Marco; Mocchegiani Eugenio; Rink Lothar

    2013-01-01

    Abstract Background Advanced age results in crucial alterations of the innate and adaptive immune system leading to functional defects resulting in infection and chronic diseases. Toll-like receptors (TLR) recognize pathogenic structures and are important in the immune response to infections and vaccination. However, the role of TLR single nucleotide polymorphisms (SNP) is poorly understood in the setting of human ageing. This study investigated the impact of the TLR1 SNPs A743G and T1805G on...

  9. Inter- and intraspecific polymorphism in passerine Toll-like receptor 4

    Bainová, H.; Bryjová, Anna; Promerová, Marta; Bryja, Josef; Lifjeld, J. T.; Johnsen, A.; Albrecht, Tomáš; Vinkler, Michal

    Brno : Ústav biologie obratlovců AVČR, 2011 - (Bryja, J.; Řehák, Z.; Zukal, J.). s. 25-26 ISBN 978-80-87189-09-2. [Zoologické dny. 17.02.2011-18.02.2011, Brno] Institutional research plan: CEZ:AV0Z60930519 Keywords : toll-like receptors * passerines Subject RIV: EG - Zoology http://zoo.ivb.cz/doc/sborniky/sbornik_2011.pdf

  10. Chapter 1. Overview of Toll-like receptors (TLRs) in the CNS

    Kielian, Tammy

    2009-01-01

    Mammalian Toll-like receptors (TLRs) were first identified in 1997 based on their homology with Drosophila Toll, which mediates innate immunity in the fly. Over the past 8 years, the number of manuscripts describing TLR expression and function in the central nervous system (CNS) has been increasing steadily and expanding beyond their traditional roles in infectious diseases to neurodegenerative disorders and injury. Interest in the field serves as the impetus for this volume in the Current To...

  11. Toll-like receptors as developmental tools that regulate neurogenesis during development: an update

    Barak, Boaz; Feldman, Noa; Okun, Eitan

    2014-01-01

    Neurogenesis, the process of generating new neurons in the brain, fascinates researchers for its promise to affect multiple cognitive and functional processes in both health and disease. Many cellular pathways are involved in the regulation of neurogenesis, a complexity exemplified by the extensive regulation of this process during brain development. Toll-like receptors (TLRs), hallmarks of innate immunity, are increasingly implemented in various central nervous system plasticity-related proc...

  12. Toll-like receptors as developmental tools that regulate neurogenesis during development: an update

    EitanOkun; BoazBarak

    2014-01-01

    Neurogenesis, the process of generating new neurons in the brain, fascinates researchers for its promise to affect multiple cognitive and functional processes in both health and disease. Many cellular pathways are involved in the regulation of neurogenesis, a complexity exemplified by the extensive regulation of this process during brain development. Toll-like receptors (TLRs), hallmarks of innate immunity are increasingly implemented in various central nervous system plasticity-related proce...

  13. Toll-like receptors as transducer of inflammatory signals in glia: the astrocyte-microglia connection

    Marinelli, Carla

    2015-01-01

    In physiological conditions glia in the central nervous system (CNS) can produce and release protective factors such as anti-oxidant molecules and neurotrophic factors (Sofroniew et al., 2010). Events that impinge on CNS homeostatic balance can induce local inflammatory responses (Carson et al., 2006). Reactive glia can participate producing pro-inflammatory mediators such as chemokines, cytokines, purines and free radicals. Toll-like receptors (TLRs) are involved in injury responses of n...

  14. Dependence of Bacterial Protein Adhesins on Toll-Like Receptors for Proinflammatory Cytokine Induction

    Hajishengallis, George; Martin, Michael; Sojar, Hakimuddin T.; Sharma, Ashu; Schifferle, Robert E.; DeNardin, Ernesto; Russell, Michael W.; Genco, Robert J.

    2002-01-01

    Toll-like receptors (TLRs) are important signal transducers that mediate inflammatory reactions induced by microbes through pattern recognition of virulence molecules such as lipopolysaccharide (LPS) and lipoproteins. We investigated whether proinflammatory cytokine responses induced by certain bacterial protein adhesins may also depend on TLRs. In differentiated THP-1 mononuclear cells stimulated by LPS-free recombinant fimbrillin (rFimA) from Porphyromonas gingivalis, cytokine release was a...

  15. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice

    Yousif Nasser; Al-amran Fadhil G

    2011-01-01

    Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin) induced cardiac toxicity. Toll-like receptors (TLRs) are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p.)...

  16. A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin

    Andersen-Nissen, Erica; Smith, Kelly D.; Bonneau, Richard; Strong, Roland K.; Aderem, Alan

    2007-01-01

    The molecular basis for Toll-like receptor (TLR) recognition of microbial ligands is unknown. We demonstrate that mouse and human TLR5 discriminate between different flagellins, and we use this difference to map the flagellin recognition site on TLR5 to 228 amino acids of the extracellular domain. Through molecular modeling of the TLR5 ectodomain, we identify two conserved surface-exposed regions. Mutagenesis studies demonstrate that naturally occurring amino acid variation in TLR5 residue 26...

  17. Everolimus-Eluting Stents Reduce Monocyte Expression of Toll-Like Receptor 4

    Mehriar Shokri; Bahador Bagheri; Alireza Garjani; Bahram Sohrabi; Afshin Habibzadeh; Babak Kazemi; Ali Akbar Movassaghpour

    2015-01-01

    Purpose: Toll-like receptors (TLR) are well known components of the innate immune system. Among them, TLR4 is related to the inflammatory processes involved in atherosclerotic plaque formation. Our purpose was to compare the monocytic expression of TLR4 following implantation of drug-eluting (DES) and bare stents (BMS). Methods: In this study, patients with chronic stable angina undergoing elective percutaneous coronary intervention (PCI) in ShahidMadani Heart Hospital, T...

  18. Molecular and cellular dynamics of the Toll-like receptor 4 pathway.

    Nick eGay

    2014-10-01

    Full Text Available As well as being the primary signaling receptor for bacterial endotoxin or lipopolysaccharide Toll-like receptor 4 function is modulated by numerous factors not only in the context of microbial pathogenesis but also autoimmune and allergic diseases. TLR4 is subject to multiple levels of endogenous control and regulation from biosynthesis and trafficking to signal transduction and degradation. On the other hand regulation of TLR4 activity breaks down during Gram –ve sepsis leading to systemic damage, multi organ failure and death. In this article we review how TLR4 traffics from the early secretory pathway, the cis/trans Golgi to the cell surface and endolysosomal compartments. We will present evidence about how these processes influence signaling and can potentially lead to ligand independent constitutive activation that may contribute to pathogenesis in sepsis. We will also discuss how sustained signaling may be coupled to endocytosis and consider the potential molecular mechanisms of immuno-modulators that modify TLR4 signalling function including the cat allergen FelD1 and endogenous protein ligands such as the extracellular matrix protein tenascin C and calprotectin (MRP8/14.

  19. Discovery of toll-like receptor 13 exists in the teleost fish: Miiuy croaker (Perciformes, Sciaenidae).

    Wang, Yanjin; Bi, Xueyi; Chu, Qing; Xu, Tianjun

    2016-08-01

    Toll-like receptors (TLRs) play an indispensable role in the immune response for pathogen recognition and triggering not only innate immunity but also adaptive immunity. Here we report the TLR13 homologue, one member of TLRs, in Perciformes (especially Sciaenidae). And we used the miiuy croaker as represented species for further functional experiments. Former study reported the TLR13 only expressed in murine, and we are the first to report the teleost TLR13 (mmiTLR13). MmiTLR13 expressed highly in immune defense related tissues, such as the liver, spleen, and kidney, and Vibrio anguillarum or poly(I:C) infection showed the immune response of mmiTLR13. Further luciferase reporter assays showed the ability for activation of ISRE luciferase reporter, but it failed to active NF-κB. And further gene silence by short hairpin RNA (shRNA) confirmed the results. Immunofluorescence of mmiTLR13 presents the cytoplasmic distribution in Hela cell. In addition, the Toll/interleukin 1 receptor (TIR) domain of mammal TLR5 exhibits high identity with TLR13, which indicated the high homology between TLR5 and TLR13. These findings will lay the fundamental cornerstone for further research of teleost TLR13 and expand the horizon for better understand the teleost TLRs system. PMID:26952767

  20. Toll-like receptor cascade and gene polymorphism in host–pathogen interaction in Lyme disease

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages. PMID:27330321

  1. DMPD: Inhibition of toll-like receptor and cytokine signaling--a unifying theme inischemic tolerance. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15545925 Inhibition of toll-like receptor and cytokine signaling--a unifying theme ...png) (.svg) (.html) (.csml) Show Inhibition of toll-like receptor and cytokine signaling--a unifying theme i...nischemic tolerance. PubmedID 15545925 Title Inhibition of toll-like receptor and

  2. DMPD: TICAM-1 and TICAM-2: toll-like receptor adapters that participate in inductionof type 1 interferons. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15618008 TICAM-1 and TICAM-2: toll-like receptor adapters that participate in induc... Mar;37(3):524-9. (.png) (.svg) (.html) (.csml) Show TICAM-1 and TICAM-2: toll-like receptor adapters that part... TICAM-2: toll-like receptor adapters that participate in inductionof type 1 interferons. Authors Seya T, Os

  3. DMPD: Toll-like receptors: from the discovery of NFkappaB to new insights intotranscriptional regulations in innate immunity. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 16930560 Toll-like receptors: from the discovery of NFkappaB to new insights intotr...2-13. Epub 2006 Aug 22. (.png) (.svg) (.html) (.csml) Show Toll-like receptors: from the discovery of NFkappaB to new...6930560 Title Toll-like receptors: from the discovery of NFkappaB to new insights intotranscriptional regula

  4. RNA Interference of Interferon Regulatory Factor-1 Gene Expression in THP-1 Cell Line Leads to Toll-Like Receptor-4 Overexpression/Activation As Well As Up-modulation of Annexin-II

    Christos I. Maratheftis

    2007-12-01

    Full Text Available Interferon regulatory factor-1 (IRF-1 is a candidate transcription factor for the regulation of the Toll-like receptor-4 (TLR-4 gene. Using a small interfering RNAbased (siRNA process to silence IRF-1 gene expression in the leukemic monocytic cell line THP-1, we investigated whether such a modulation would alter TLR-4 expression and activation status in these cells. The siIRF-1 cells expressed elevated levels of TLR-4 mRNA and protein compared to controls by 90% and 77%, respectively. ICAM.1 protein expression and apoptosis levels were increased by 8.35- and 4.25-fold, respectively. The siIRF-1 cells overexpressed Bax mRNA compared to controls. Proteomic analysis revealed upmodulation of the Annexin-II protein in siIRF-1 THP-1 cells. Myelodysplastic syndrome (MDS patients with an absence of full-length IRF-1 mRNA also overexpressed Annexin-II. It is plausible that this overexpression may lead to the activation of TLR-4 contributing to the increased apoptosis characterizing MDS.

  5. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway

    Mahe YF

    2013-08-01

    Full Text Available Yann F Mahe,1 Marie-Jesus Perez,1 Charlotte Tacheau,1 Chantal Fanchon,2 Richard Martin,3 Françoise Rousset,1 Sophie Seite4 1L’Oreal Research and Innovation, Clichy, 2L’Oréal Research and Innovation, Chevilly Larue, 3L’Oréal Research and Innovation Tours, 4La Roche-Posay Pharmaceutical Laboratories, Asnières, France Abstract: Vitreoscilla filiformis (VF biomass (VFB has been widely used in cosmetic preparations and shown to modulate the major inducible free-radical scavenger mitochondrial superoxide dismutase in skin cells. By adding La Roche-Posay (LRP thermal spring water to the VF culture medium, we obtained a biomass (LRP-VFB with a similar mitochondrial superoxide dismutase activation capacity to VF. Also, the new biomass more powerfully stimulated mRNA expression and antimicrobial peptides in reconstructed epidermis. Interestingly, a predictive computer model that analyzed transducing events within skin epidermal cells suggested that this protective activity may involve the Toll-like receptor 2/protein kinase C, zeta transduction pathway. Protein kinase C, zeta inhibition was effectively shown to abolish VFB-induced gene stimulation and confirmed this hypothesis. This thus opens new avenues for investigation into the improvement of skin homeostatic defense in relation to the control of its physiological microbiota and innate immunity. Keywords: innate skin defenses, TLR2, PKCz, La Roche-Posay, mitochondrial superoxide dismutase, SOD2

  6. Role of Toll-like receptors in lung innate defense against invasive aspergillosis. Distinct impact in immunocompetent and immunocompromized hosts.

    Chignard, Michel; Balloy, Viviane; Sallenave, Jean-Michel; Si-Tahar, Mustapha

    2007-01-01

    Toll-like receptors are key to pathogen recognition by a host and to the subsequent triggering of an innate immune response. Experimental and clinical evidence shows that defects in Toll-like receptors or in signaling pathways downstream from these receptors render hosts susceptible to various types of infection, including aspergillosis. Patients receiving an immunosuppressive regimen, including corticosteroid therapy or cytotoxic chemotherapy, are also susceptible to infections. Aspergillus ...

  7. Role of Toll-like receptors in health and diseases of gastrointestinal tract

    Greg Harris; Rhonda KuoLee; Wangxue Chen

    2006-01-01

    The human gastrointestinal (GI) tract is colonized by non-pathogenic commensal microflora and frequently exposed to many pathogenic organisms.For the maintenance of GI homeostasis, the host must discriminate between pathogenic and non-pathogenic organisms and initiate effective and appropriate immune and inflammatory responses. Mammalian toll-like receptors (TLRs) are members of the pattern-recognition receptor (PRR) family that plays a central role in the initiation of innate cellular immune responses and the subsequent adaptive immune responses to microbial pathogens. Recent studies have shown that gastrointestinal epithelial cells express almost all TLR subtypes characterized to date and that the expression and activation of TLRs in the GI tract are tightly and coordinately regulated. This review summarizes the current understanding of the crucial dual roles of TLRs in the development of host innate and adaptive immune responses to GI infections and the maintenance of the immune tolerance to commensal bacteria through down-regulation of surface expression of TLRs in intestinal epithelial cells.

  8. Emerging role of Toll-like receptors in the control of pain and itch

    Tong Liu; Yong-Jing Gao; Ru-Rong Ji

    2012-01-01

    Toll-like receptors (TLRs) are germline-encoded pattern-recognition receptors that initiate innate immune responses by recognizing molecular structures shared by a wide range of pathogens,known as pathogen-associated molecular patterns (PAMPs).After tissue injury or cellular stress,TLRs also detect endogenous ligands known as danger-associated molecular patterns (DAMPs).TLRs are expressed in both non-neuronal and neuronal cell types in the central nervous system (CNS) and contribute to both infectious and non-infectious disorders in the CNS.Following tissue insult and nerve injury,TLRs (such as TLR2,TLR3,and TLR4) induce the activation of microglia and astrocytes and the production of the proinflammatory cytokines in the spinal cord,leading to the development and maintenance of inflammatory pain and neuropathic pain.In particular,primary sensory neurons,such as nociceptors,express TLRs (e.g.,TLR4 and TLR7) to sense exogenous PAMPs and endogenous DAMPs released after tissue injury and cellular stress.These neuronal TLRs are new players in the processing of pain and itch by increasing the excitability of primary sensory neurons.Given the prevalence of chronic pain and itch and the suffering of affected people,insights into TLR signaling in the nervous system will open a new avenue for the management of clinical pain and itch.

  9. Role of Toll-like receptors in Helicobacter pylori infection and immunity.

    Smith, Sinéad M

    2014-08-15

    The gram-negative bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately half of the world's population. Although infection induces an immune response that contributes to chronic gastric inflammation, the response is not sufficient to eliminate the bacterium. H. pylori infection causes peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Disease outcome is linked to the severity of the host inflammatory response. Gastric epithelial cells represent the first line of innate immune defence against H. pylori, and respond to infection by initiating numerous cell signalling cascades, resulting in cytokine induction and the subsequent recruitment of inflammatory cells to the gastric mucosa. Pathogen recognition receptors of the Toll-like receptor (TLR) family mediate many of these cell signalling events. This review discusses recent findings on the role of various TLRs in the recognition of H. pylori in distinct cell types, describes the TLRs responsible for the recognition of individual H. pylori components and outlines the influence of innate immune activation on the subsequent development of the adaptive immune response. The mechanistic identification of host mediators of H. pylori-induced pathogenesis has the potential to reveal drug targets and opportunities for therapeutic intervention or prevention of H. pylori-associated disease by means of vaccines or immunomodulatory therapy. PMID:25133016

  10. Maternal endotoxin-induced fetal growth restriction in rats: Fetal responses in toll-like receptor

    Banun Kusumawardani

    2012-09-01

    Full Text Available Background: Porphyromonas gingivalis as a major etiology of periodontal disease can produce virulence factor, lipopolysaccharide/LPS, which is expected to play a role in the intrauterine fetal growth. Trophoblast at the maternal-fetal interface actively participates in response to infection through the expression of a family of natural immune receptors, toll-like receptor (TLR. Purpose: the aims of study were to identify endotoxin concentration in maternal blood serum of Porphyromonas gingivalis-infected pregnant rats, to characterize the TLR-4 expression in trophoblast cells, and to determine its effect on fetal growth. Methods: Female rats were infected with live-Porphyromonas gingivalis at concentration of 2 x 109 cells/ml into subgingival sulcus area of the maxillary first molar before and/or during pregnancy. They were sacrified on 14th and 20th gestational day. Fetuses were evaluated for weight and length. Endotoxin was detected by limulus amebocyte lysate assay in the maternal blood serum. The TLR-4 expression in trophoblast cells was detected by immunohistochemistry.