WorldWideScience

Sample records for activates plant immunity

  1. The activation and suppression of plant innate immunity by parasitic nematodes.

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism. PMID:24906126

  2. The Activation and Suppression of Plant Innate Immunity by Parasitic Nematodes

    Goverse, A.; Smant, G.

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions r

  3. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores.

    Aznar, Aude; Chen, Nicolas W G; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-04-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H₂O₂ staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  4. Plant innate immunity multicomponent model

    Giuseppe eAndolfo

    2015-11-01

    Full Text Available Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defence mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defence response activation. To better describe the sophisticated defence system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behaviour of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defence against the different behaviours of pathogens with the intention to stimulate further interest in this research area.

  5. Hormonal crosstalk in plant immunity

    D. Van der Does

    2012-01-01

    The plant hormones salicylic acid (SA), also known as plant aspirin, and jasmonic acid (JA) play major roles in the regulation of the plant immune system. In general, SA is important for defense against pathogens with a biotrophic lifestyle, whereas JA is essential for defense against insect herbivores and pathogens with a necrotrophic lifestyle. Antagonistic and synergistic interactions between the SA- and JA-dependent signaling pathways allow the plant to fine-tune the activation of defense...

  6. Innate immune memory in plants.

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. PMID:27264335

  7. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus.

    Immanuel, G; Uma, R P; Iyapparaj, P; Citarasu, T; Peter, S M Punitha; Babu, M Michael; Palavesam, A

    2009-05-01

    The effects of supplementing diets with acetone extract (1% w/w) from four medicinal plants (Bermuda grass Cynodon dactylon, H(1), beal Aegle marmelos, H(2), winter cherry Withania somnifera, H(3) and ginger Zingiber officinale, H(4)) on growth, the non-specific immune response and ability to resist pathogen infection in tilapia Oreochromis mossambicus were assessed. In addition, the antimicrobial properties of the extract were assessed against Vibrio alginolyticus, Vibrioparahaemolyticus, Vibrio mimicus, Vibrio campbelli, Vibrio vulnificus, Vibrio harveyi and Photobacterium damselae. Oreochromis mossambicus were fed 5% of their body mass per day for 45 days, and those fed the experimental diets showed a greater increase in mass (111-139%) over the 45 days compared to those that received the control diet (98%). The specific growth rate of O. mossambicus fed the four diets was also significantly greater (1.66-1.93%) than control (1.52%) diet-fed fish. The blood plasma chemistry analysis revealed that protein, albumin, globulin, cholesterol, glucose and triglyceride levels of experimental fish were significantly higher than that of control fish. Packed cell volume of the blood samples of experimental diet-fed fish was also significantly higher (34.16-37.95%) than control fish (33.0%). Leucocrit value, phagocytic index and lysozyme activity were enhanced in fish fed the plant extract-supplemented diets. The acetone extract of the plants inhibited growth of Vibrio spp. and P. damselae with extracts from W. somnifera showing maximum growth inhibition. A challenge test with V. vulnificus showed 100% mortality in O. mossambicus fed the control diet by day 15, whereas the fish fed the experimental diets registered only 63-80% mortality at the end of challenge experiment (30 days). The cumulative mortality index for the control group was 12,000, which was equated to 1.0% mortality, and accordingly, the lowest mortality of 0.35% was registered in H(4)-diet-fed group. PMID

  8. Immunizations: Active vs. Passive

    ... in Action Medical Editor & Editorial Advisory Board Sponsors Sponsorship Opporunities Spread the Word Shop AAP ... Active vs. Passive Page Content Article Body Pediatricians can protect your child by administering not only active immunizations , but sometimes ...

  9. Diuretics prime plant immunity in Arabidopsis thaliana.

    Yoshiteru Noutoshi

    Full Text Available Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.

  10. Protein trafficking during plant innate immunity

    Wen-Ming Wang; Peng-Qiang Liu; Yong-Ju Xu; Shunyuan Xiao

    2016-01-01

    Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell’s protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major compo-nents of the trafficking machineries engaged.

  11. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.

    Choi, Hyong Woo; Manohar, Murli; Manosalva, Patricia; Tian, Miaoying; Moreau, Magali; Klessig, Daniel F

    2016-03-01

    Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor. PMID:27007252

  12. Immune stimulatory activity of BRP-4, an acidic polysaccharide from an edible plant, Basella rubra L.

    Hye-Jin Park

    2014-01-01

    Objective: To evaluated the immunomodulatory effect of BRP-4, an acidic polysaccharide from Basella rubra (B. rubra) L on the macrophage activity. Methods: Phagocytic activity was determined by the ingestion of Latex Beads-Rabbit IgG-FITC using the fluorescent microscopy and flow cytometry analysis and nitric oxide production was measured using Griess reaction assay. Results: An enhanced production of NO was observed at 10 and 100μg/mL of BRP-4. The phagocytic activity of macrophage was enhanced in BRP-4 treated RAW264.7 cells. BRP-4 combined with concanavalin A (Con A) provided obvious promotion and strengthening of the proliferation of the splenocytes. Conclusions: BRP-4, polysaccharide isolated from B. rubra, is suggested to activate macrophage function and stimulate splenocyte proliferation. The strong immunomodulatory activity of BRP-4 confirmed its good potential as an immunotherapeutic adjuvant.

  13. Networking by small-molecule hormones in plant immunity

    Pieterse, Corné M. J.; Leon-Reyes, Antonio; Van der Ent, Sjoerd; van Wees, Saskia C.M.

    2009-01-01

    Plants live in complex environments in which they intimately interact with a broad range of microbial pathogens with different lifestyles and infection strategies. The evolutionary arms race between plants and their attackers provided plants with a highly sophisticated defense system that, like the animal innate immune system, recognizes pathogen molecules and responds by activating specific defenses that are directed against the invader. Recent advances in plant immunity research have provid...

  14. Cis- and trans-zeatin differentially modulate plant immunity

    Großkinsky, Dominik; Edelsbrunner, Kerstin; Pfeifhofer, Hartwig; van der Graaff, Eric; Roitsch, Thomas

    2013-01-01

    Phytohormones are essential regulators of various processes in plant growth and development. Several phytohormones are also known to regulate plant responses to environmental stress and pathogens. Only recently, cytokinins have been demonstrated to play an important role in plant immunity. Increased levels of cytokinins such as trans-zeatin, which are considered highly active, induced resistance against mainly (hemi)biotrophic pathogens in different plant species. In contrast, cis-zeatin is c...

  15. Salmonella enterica induces and subverts the plant immune system

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  16. Nuclear Trafficking During Plant Innate Immunity

    Jun Liu; Gitta Coaker

    2008-01-01

    Land plants possess innate immune systems that can control resistance against pathogen infection. Conceptually, there are two branches of the plant innate immune system. One branch recognizes conserved features of microbial pathogens, while a second branch specifically detects the presence of pathogen effector proteins by plant resistance (R) genes. Innate immunity controlled by plant R genes is called effector-triggered immunity. Although R genes can recognize all classes of plant pathogens, the majority can be grouped into one large family, encoding proteins with a nucleotide binding site and C-terminal leucine rich repeat domains. Despite the importance and number of R genes present in plants, we are just beginning to decipher the signaling events required to initiate defense responses. Recent exciting discoveries have implicated dynamic nuclear trafficking of plant R proteins to achieve effector-triggered immunity. Furthermore, there are several additional lines of evidence implicating nucleo-cyctoplasmic trafficking in plant disease resistance, as mutations in nucleoporins and importins can compromise resistance signaling. Taken together, these data illustrate the importance of nuclear trafficking in the manifestation of disease resistance mediated by R genes.

  17. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  18. Bacterial lipopolysaccharides in plant and mammalian innate immunity.

    De Castro, Cristina; Holst, Otto; Lanzetta, Rosa; Parrilli, Michelangelo; Molinaro, Antonio

    2012-10-01

    This mini-review gives a structural view on the lipopolysaccharides (LPSs), the endotoxin from Gram negative bacteria, paying attention on the features that are relevant for their activity as elicitors of the innate immune system of humans, animals and plants. PMID:22533617

  19. Immunity to plant pathogens and iron homeostasis.

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. PMID:26475190

  20. Transcriptional Regulation of Pattern-Triggered Immunity in Plants.

    Li, Bo; Meng, Xiangzong; Shan, Libo; He, Ping

    2016-05-11

    Perception of microbe-associated molecular patterns (MAMPs) by cell-surface-resident pattern recognition receptors (PRRs) induces rapid, robust, and selective transcriptional reprogramming, which is central for launching effective pattern-triggered immunity (PTI) in plants. Signal relay from PRR complexes to the nuclear transcriptional machinery via intracellular kinase cascades rapidly activates primary immune response genes. The coordinated action of gene-specific transcription factors and the general transcriptional machinery contribute to the selectivity of immune gene activation. In addition, PRR complexes and signaling components are often transcriptionally upregulated upon MAMP perception to ensure the robustness and sustainability of PTI outputs. In this review, we discuss recent advances in deciphering the signaling pathways and regulatory mechanisms that coordinately lead to timely and accurate MAMP-induced gene expression in plants. PMID:27173932

  1. The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity

    Hann, D.R.; Dominguez-Ferreras, A.; Motyka, Václav; Dobrev, Petre; Schornack, S.; Jehle, A.; Felix, G.; Chinchilla, D.; Rathjen, J.P.; Boller, T.

    2014-01-01

    Roč. 201, č. 2 (2014), s. 585-598. ISSN 1469-8137 R&D Projects: GA ČR GA13-26798S Institutional support: RVO:61389030 Keywords : cytokinin * flagellin * FLS2 Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 6.373, year: 2013

  2. Pto kinase binds two domains of AvrPtoB and its proximity to the effector E3 ligase determines if it evades degradation and activates plant immunity.

    Johannes Mathieu

    2014-07-01

    Full Text Available The tomato--Pseudomonas syringae pv. tomato (Pst--pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI. AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450 in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.

  3. HIV-associated chronic immune activation

    Paiardini, Mirko; Müller-Trutwin, Michaela

    2013-01-01

    Systemic chronic immune activation is considered today as the driving force of CD4+ T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by antiretroviral therapy, with the extent of this residual immune activation being associated with CD4+ T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4+ T-cell loss has not been for...

  4. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    Lozano Torres, J.L.; Wilbers, R.H.P.; Warmerdam, S.; Finkers-Tomczak, A.M.; Diaz Granados Muñoz, A.; Schaik, van C.C.; Helder, J.; Bakker, J.; Goverse, A.; Schots, A.; Smant, G.

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of t

  5. Pathogenicity of and plant immunity to soft rot pectobacteria

    Pär Roland Davidsson

    2013-06-01

    Full Text Available Soft rot Pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens. In contrast to (hemibiotrophs such as Pseudomonas, type three secretion systems (T3SS and T3 effectors do not appear central to pathogenesis of Pectobacteria. Indeed, recent genomic analysis of several Pectobacterium species including the emerging pathogen Pectobacterium wasabiae has shown that many strains lack the entire T3SS as well as the T3 effectors. Instead, this analysis has indicated the presence of novel virulence determinants. Resistance to broad host range Pectobacteria is complex and does not appear to involve single resistance genes. Instead, activation of plant innate immunity systems including both SA and JA/ET mediated defenses appears to play a central role in attenuation of Pectobacterium virulence. These defenses are triggered by detection of pathogen-associated molecular patterns (PAMPs or recognition of modified-self such as damage-associated molecular patterns (DAMPs and result in enhancement of basal immunity (Pattern-triggered immunity, PTI. In particular plant cell-wall fragments released by the action of the degradative enzymes secreted by Pectobacteria are major players in enhanced immunity towards these pathogens. Most notably bacterial pectin degrading enzymes release oligogalacturonide (OG fragments recognized as DAMPs activating innate immune responses. Recent progress in understanding OG recognition and signaling allows novel genetic screens for OG-insensitive mutants and will provide new insights into plant defense strategies against necrotrophs such as

  6. Plant innate immunity: An updated insight into defense mechanism

    Mehanathan Muthamilarasan; Manoj Prasad

    2013-06-01

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.

  7. Innate immune activation in intestinal homeostasis.

    Harrison, Oliver J; Maloy, Kevin J

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host protection from infectious pathogens; yet precisely how pathogenic and commensal microbes are distinguished is not understood. Furthermore, aberrant innate immune activation may also drive intestinal pathology, as patients with IBD exhibit extensive infiltration of innate immune cells to the inflamed intestine, and polymorphisms in many innate immunity genes influence susceptibility to IBD. Thus, a balanced interaction between the microbiota and innate immune activation is required to maintain a healthy mutualistic relationship between the microbiota and the host, which when disturbed can result in intestinal inflammation. PMID:21912101

  8. Immune-system-dependent anti-tumor activity of a plant-derived polyphenol rich fraction in a melanoma mouse model.

    Gomez-Cadena, A; Urueña, C; Prieto, K; Martinez-Usatorre, A; Donda, A; Barreto, A; Romero, P; Fiorentino, S

    2016-01-01

    Recent findings suggest that part of the anti-tumor effects of several chemotherapeutic agents require an intact immune system. This is in part due to the induction of immunogenic cell death. We have identified a gallotannin-rich fraction, obtained from Caesalpinia spinosa (P2Et) as an anti-tumor agent in both breast carcinoma and melanoma. Here, we report that P2Et treatment results in activation of caspase 3 and 9, mobilization of cytochrome c and externalization of annexin V in tumor cells, thus suggesting the induction of apoptosis. This was preceded by the onset of autophagy and the expression of immunogenic cell death markers. We further demonstrate that P2Et-treated tumor cells are highly immunogenic in vaccinated mice and induce immune system activation, clearly shown by the generation of interferon gamma (IFN-γ) producing tyrosine-related protein 2 antigen-specific CD8+ T cells. Moreover, the tumor protective effects of P2Et treatment were abolished in immunodeficient mice, and partially lost after CD4 and CD8 depletion, indicating that P2Et's anti-tumor activity is highly dependent on immune system and at least in part of T cells. Altogether, these results support the hypothesis that the gallotannin-rich fraction P2Et's anti-tumor effects are mediated to a great extent by the endogenous immune response following to the exposure to immunogenic dying tumor cells. PMID:27253407

  9. Pseudomonas evades immune recognition of flagellin in both mammals and plants

    Bart W Bardoel; Sjoerd van der Ent; Pel, Michiel J. C.; Jan Tommassen; Pieterse, Corné M. J.; van Kessel, Kok P. M.; van Strijp, Jos A. G.

    2011-01-01

    The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteri...

  10. The role of the cell wall in plant immunity

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...... features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by...... numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle...

  11. Cis- and trans-zeatin differentially modulate plant immunity

    Grosskinsky, D. K.; Edelsbrunner, K.; Pfeifhofer, H.; van der Graaff, E.; Roitsch, Thomas

    2013-01-01

    Roč. 8, č. 7 (2013), "e24798.1"-"e24798.4". ISSN 1559-2324 Institutional support: RVO:67179843 Keywords : Pseudomonas syringae * cytokinin * phytohormone * plant defense * plant immunity * plant pathogen interaction * plant resistance * tobacco * zeatin Subject RIV: ED - Physiology

  12. Cardiac allograft immune activation: current perspectives

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  13. Cardiac allograft immune activation: current perspectives

    Chang D; Kobashigawa J

    2014-01-01

    David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibod...

  14. Hemipteran and dipteran pests:Effectors and plant host immune regulators

    Isgouhi Kaloshian; Linda L Walling

    2016-01-01

    Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant’s defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.

  15. Receptor-Like Kinases in Plant Innate Immunity

    Ying Wu; Jian-Min Zhou

    2013-01-01

    Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens.

  16. Phytochrome regulation of plant immunity in vegetation canopies.

    Moreno, Javier E; Ballaré, Carlos L

    2014-07-01

    Plant immunity against pathogens and herbivores is a central determinant of plant fitness in nature and crop yield in agroecosystems. Plant immune responses are orchestrated by two key hormones: jasmonic acid (JA) and salicylic acid (SA). Recent work has demonstrated that for plants of shade-intolerant species, which include the majority of those grown as grain crops, light is a major modulator of defense responses. Light signals that indicate proximity of competitors, such as a low red to far-red (R:FR) ratio, down-regulate the expression of JA- and SA-induced immune responses against pests and pathogens. This down-regulation of defense under low R:FR ratios, which is caused by the photoconversion of the photoreceptor phytochrome B (phyB) to an inactive state, is likely to help the plant to efficiently redirect resources to rapid growth when the competition threat posed by neighboring plants is high. This review is focused on the molecular mechanisms that link phyB with defense signaling. In particular, we discuss novel signaling players that are likely to play a role in the repression of defense responses under low R:FR ratios. A better understanding of the molecular connections between photoreceptors and the hormonal regulation of plant immunity will provide a functional framework to understand the mechanisms used by plants to deal with fundamental resource allocation trade-offs under dynamic conditions of biotic stress. PMID:25063023

  17. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  18. Pivoting the Plant Immune System from Dissection to Deployment

    Jeffery L Dangl; Horvath, Diana M.; Staskawicz, Brian J.

    2013-01-01

    Diverse and rapidly evolving pathogens cause plant diseases and epidemics that threaten crop yield and food security around the world. Research over the last 25 years has led to an increasingly clear conceptual understanding of the molecular components of the plant immune system. Combined with ever-cheaper DNA-sequencing technology and the rich diversity of germ plasm manipulated for over a century by plant breeders, we now have the means to begin development of durable (long-lasting) disease...

  19. ATG7 contributes to plant basal immunity towards fungal infection

    Heike D. Lenz; Vierstra, Richard D.; Nürnberger, Thorsten; Gust, Andrea A.

    2011-01-01

    Autophagy has an important function in cellular homeostasis. In recent years autophagy has been implicated in plant basal immunity and assigned negative (“anti-death”) and positive (“pro-death”) regulatory functions in controlling cell death programs that establish sufficient immunity to microbial infection. We recently showed that Arabidopsis mutants lacking the autophagy-associated (ATG) genes ATG5, ATG10 and ATG18a are compromised in their resistance towards infection with necrotrophic fun...

  20. Inducible cell death in plant immunity

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G;

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these...... pathways and their molecular components in plants are reviewed here....

  1. NIK1, a host factor specialized in antiviral defense or a novel general regulator of plant immunity?

    Machado, Joao P B; Brustolini, Otavio J B; Mendes, Giselle C; Santos, Anésia A; Fontes, Elizabeth P B

    2015-11-01

    NIK1 is a receptor-like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1-mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down-regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections. PMID:26335701

  2. Boosting plant immunity with CRISPR/Cas

    Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2015-01-01

    CRISPR/Cas has recently been transferred to plants to make them resistant to geminiviruses, a damaging family of DNA viruses. We discuss the potential and the limitations of this method. See related Research: http://www.genomebiology.com/2015/16/1/238

  3. Boosting plant immunity with CRISPR/Cas

    Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2015-01-01

    CRISPR/Cas has recently been transferred to plants to make them resistant to geminiviruses, a damaging family of DNA viruses. We discuss the potential and the limitations of this method.See related Research: http://www.genomebiology.com/2015/16/1/238.

  4. MAMPs/PAMPs - elicitors of innate immunity in plants

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Plants perceive several general elicitors from both host and non-host pathogens. These elicitors are essential structures for pathogen survival and are for that reason conserved among pathogens. These conserved microbe-specific molecules, also referred to as Microbe or Pathogen Associated Molecular...... (SodM) are known to act as MAMPs and induce immune responses in plants or plant cells (Gómez-Gómez and Boller, 2000; Erbs and Newman, 2003; Felix and Boller, 2003; Kunze et al., 2004; Watt et al., 2006, Gust et al., 2007; Erbs et al., unpublished). The corresponding PRRs for some of these bacterial...... Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  5. Salicylic Acid and its Function in Plant Immunity

    Chuanfu An; Zhonglin Mou

    2011-01-01

    The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network.Characterization of a number of genes functioning in SA biosynthesis,conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid,cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.

  6. Does plant immunity have a central role in the legume rhizobium symbiosis?

    Katalin eToth

    2015-06-01

    Full Text Available Plants are exposed to many different microbes in their habitat. These microbes may be benign or pathogenic, but in some cases they are beneficial. The rhizosphere provides an especially rich palette for colonization by beneficial (associative and symbiotic microorganisms, which raises the question as to how roots can distinguish such ‘friends’ from possible ‘foes’ (i.e., pathogens. Plants possess an innate immunity system that can recognize pathogens, through an arsenal of protein receptors. These receptors include receptor-like kinases (RLK and receptor-like proteins (RLP located at the plasma membrane, as well as intracellular receptors (so called NBS-LRR proteins or R proteins that recognize molecules released by microbes into the plant cell. The key rhizobial, symbiotic signaling molecule (called Nod factor is perceived by the host legume plant using LysM-domain containing RLKs. Perception of the symbiotic Nod factor triggers signaling cascades leading to bacterial infection and accommodation of the symbiont in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule symbiosis (RNS. The net result of this symbiosis is the intracellular colonization of the plant with thousands of bacteria; a process that seems to occur in spite of the immune ability of plants to prevent pathogen infection. In this review, we discuss the potential of the invading rhizobial symbiont to actively avoid this innate immunity response, as well as specific examples of where the plant immune response may modulate rhizobial infection and host range.

  7. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity

    A.M. Abd-el-Haliem; J.H. Vossen; A. van Zeijl; S. Dezhsetan; C. Testerink; M.F. Seidl; M. Beck; J. Strutt; S. Robatzek; M.H.A.J. Joosten

    2016-01-01

    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs bel

  8. Pivoting the plant immune system from dissection to deployment.

    Dangl, Jeffery L; Horvath, Diana M; Staskawicz, Brian J

    2013-08-16

    Diverse and rapidly evolving pathogens cause plant diseases and epidemics that threaten crop yield and food security around the world. Research over the last 25 years has led to an increasingly clear conceptual understanding of the molecular components of the plant immune system. Combined with ever-cheaper DNA-sequencing technology and the rich diversity of germ plasm manipulated for over a century by plant breeders, we now have the means to begin development of durable (long-lasting) disease resistance beyond the limits imposed by conventional breeding and in a manner that will replace costly and unsustainable chemical controls. PMID:23950531

  9. Getting to PTI of bacterial RNAs: Triggering plant innate immunity by extracellular RNAs from bacteria.

    Park, Yong-Soon; Lee, Boyoung; Ryu, Choong-Min

    2016-07-01

    Defense against diverse biotic and abiotic stresses requires the plant to distinguish between self and non-self signaling molecules. Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are pivotal for triggering innate immunity in plants. Unlike in animals and humans, the precise roles of nucleic acids in plant innate immunity are unclear. We therefore investigated the effects of infiltration of total Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) RNAs into Arabidopsis plants. The pathogen population was 10-fold lower in bacterial RNAs pre-treated Arabidopsis plants than in the control. Bacterial RNAs purity was confirmed by physical (sonication) and chemical (RNase A and proteinase K digestion) methods. The perception of bacterial RNAs, especially rRNAs, positively regulated mitogen-activated protein kinase (MAPK) and induced a reactive oxygen species burst, callose deposition, salicylic acid (SA) and jasmonic acid (JA) signaling, and defense-related genes. Therefore, bacterial RNAs function as a new MAMP that activates plant innate immunity, providing a new paradigm for plant-microbe interactions. PMID:27301792

  10. Pseudomonas evades immune recognition of flagellin in both mammals and plants.

    Bart W Bardoel

    2011-08-01

    Full Text Available The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5 in mammals and flagellin-sensitive 2 (FLS2 in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR antagonists, we screened bacterial supernatants and identified alkaline protease (AprA of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.

  11. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants

    Porcel, Rosa; Zamarreño, Ángel M.; García-Mina, José M.; AROCA, RICARDO

    2014-01-01

    Abstract Background Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca ...

  12. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity

    Engelhardt, S.; Lee, J.; Gäbler, Y.; Kemmerling, B.; Haapalainen, M.L.; Li, C.M.; Wei, Z.; Keller, H.; Joosten, M.; Taira, S.; Nürnberger, T.

    2009-01-01

    The HrpZ1 gene product from phytopathogenic Pseudomonas syringae is secreted in a type-III secretion system-dependent manner during plant infection. The ability of HrpZ1 to form ion-conducting pores is proposed to contribute to bacterial effector delivery into host cells, or may facilitate the nutri

  13. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    Denancé, Nicolas; Sánchez-Vallet, Andrea; Goffner, Deborah; Molina, Antonio

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones inter...

  14. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    Nicolas eDenancé; Andrea eSánchez-Vallet; Deborah eGoffner; Antonio eMolina

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones interac...

  15. Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity.

    Thalineau, Elise; Truong, Hoai-Nam; Berger, Antoine; Fournier, Carine; Boscari, Alexandre; Wendehenne, David; Jeandroz, Sylvain

    2016-01-01

    Plants are sessile organisms that have evolved a complex immune system which helps them cope with pathogen attacks. However, the capacity of a plant to mobilize different defense responses is strongly affected by its physiological status. Nitrogen (N) is a major nutrient that can play an important role in plant immunity by increasing or decreasing plant resistance to pathogens. Although no general rule can be drawn about the effect of N availability and quality on the fate of plant/pathogen interactions, plants' capacity to acquire, assimilate, allocate N, and maintain amino acid homeostasis appears to partly mediate the effects of N on plant defense. Nitric oxide (NO), one of the products of N metabolism, plays an important role in plant immunity signaling. NO is generated in part through Nitrate Reductase (NR), a key enzyme involved in nitrate assimilation, and its production depends on levels of nitrate/nitrite, NR substrate/product, as well as on L-arginine and polyamine levels. Cross-regulation between NO signaling and N supply/metabolism has been evidenced. NO production can be affected by N supply, and conversely NO appears to regulate nitrate transport and assimilation. Based on this knowledge, we hypothesized that N availability partly controls plant resistance to pathogens by controlling NO homeostasis. Using the Medicago truncatula/Aphanomyces euteiches pathosystem, we showed that NO homeostasis is important for resistance to this oomycete and that N availability impacts NO homeostasis by affecting S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase activity in roots. These results could therefore explain the increased resistance we noted in N-deprived as compared to N-replete M. truncatula seedlings. They open onto new perspectives for the studies of N/plant defense interactions. PMID:27092169

  16. Glycoconjugates as elicitors or suppressors of plant innate immunity

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori;

    2010-01-01

    walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe...... review the current knowledge about the bacterial MAMPs LPS and PGN, the fungal MAMPs ß-glucan, chitin and chitosan oligosaccharides and the bacterial suppressors EPS and cyclic glucan, with particular reference to the chemical structures of these molecules, the PRRs involved in their recognition (where...

  17. Innate Immune Activation in Intestinal Homeostasis

    Harrison, Oliver J.; Maloy, Kevin J.

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host prot...

  18. Merchant Plant activity

    Hepple, R.T. [Calpine Corp., San Jose, CA (United States)

    1998-07-01

    The changes facing the electric power industry in the 1990s have created opportunities to build new power plants. These plants are called Merchant Plants because they will not benefit from long-term power purchase agreements as in the past. Currently in Canada and the United States, about 45 per cent of the generating capacity is provided by plants that are more than 25 years old. These plants have high heat rates (i.e. the cost of generating one kWh of electricity is high) and are a major source of pollution. Nuclear power, which held much promise 30 years ago, has been rejected on both sides of the border, and coal-fired power plants are facing their own set of challenges. Modern natural gas-fired combined-cycle power plants appear to be a feasible, less polluting way to generate electricity. The per kilowatt cost of building a modern combined-cycle power plant averages about $500/kw which is far below the cost of coal or nuclear plants. Costing and siting new merchant plants, configuring a plant in such a way as to achieve the lowest-cost power generation were some of the topics that were highlighted.

  19. Merchant Plant activity

    The changes facing the electric power industry in the 1990s have created opportunities to build new power plants. These plants are called Merchant Plants because they will not benefit from long-term power purchase agreements as in the past. Currently in Canada and the United States, about 45 per cent of the generating capacity is provided by plants that are more than 25 years old. These plants have high heat rates (i.e. the cost of generating one kWh of electricity is high) and are a major source of pollution. Nuclear power, which held much promise 30 years ago, has been rejected on both sides of the border, and coal-fired power plants are facing their own set of challenges. Modern natural gas-fired combined-cycle power plants appear to be a feasible, less polluting way to generate electricity. The per kilowatt cost of building a modern combined-cycle power plant averages about $500/kw which is far below the cost of coal or nuclear plants. Costing and siting new merchant plants, configuring a plant in such a way as to achieve the lowest-cost power generation were some of the topics that were highlighted

  20. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M; Cervone, Felice; De Lorenzo, Giulia

    2015-04-28

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense. PMID:25870275

  1. Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity.

    Yoshioka, Hirofumi; Mase, Keisuke; Yoshioka, Miki; Kobayashi, Michie; Asai, Shuta

    2011-08-01

    Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in diverse physiological processes, such as programmed cell death, development, cell elongation and hormonal signaling, in plants. Much attention has been paid to the regulation of plant innate immunity by these signal molecules. Recent studies provide evidence that an NADPH oxidase, respiratory burst oxidase homolog, is responsible for pathogen-responsive ROS burst. However, we still do not know about NO-producing enzymes, except for nitrate reductase, although many studies suggest the existence of NO synthase-like activity responsible for NO burst in plants. Here, we introduce regulatory mechanisms of NO and ROS bursts by mitogen-activated protein kinase cascades, calcium-dependent protein kinase or riboflavin and its derivatives, flavin mononucleotide and flavin adenine dinucleotide, and we discuss the roles of the bursts in defense responses against plant pathogens. PMID:21195205

  2. Dual Effect of the Cubic Ag3PO4 Crystal on Pseudomonas syringae Growth and Plant Immunity

    Kim, Mi Kyung; Yeo, Byul-Ee; Park, Heonyong; Huh, Young-Duk; Kwon, Chian; Yun, Hye Sup

    2016-01-01

    We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC) can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent. PMID:27147937

  3. The Immune System as a Regulator of Thyroid Hormone Activity

    Klein, John R.

    2006-01-01

    It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid stimulating hormone (TSH) can be produced by many types of extra-pituitary cell...

  4. Chitosan nanoparticles: A positive modulator of innate immune responses in plants

    Chandra, Swarnendu; Chakraborty, Nilanjan; Dasgupta, Adhiraj; Sarkar, Joy; Panda, Koustubh; Acharya, Krishnendu

    2015-10-01

    The immunomodulatory role of the natural biopolymer, chitosan, has already been demonstrated in plants, whilst its nanoparticles have only been examined for biomedical applications. In our present study, we have investigated the possible ability and mechanism of chitosan nanoparticles (CNP) to induce and augment immune responses in plants. CNP-treatment of leaves produced significant improvement in the plant’s innate immune response through induction of defense enzyme activity, upregulation of defense related genes including that of several antioxidant enzymes as well as elevation of the levels of total phenolics. It is also possible that the extracellular localization of CNP may also play a role in the observed upregulation of defense response in plants. Nitric oxide (NO), an important signaling molecule in plant defense, was also observed to increase following CNP treatment. However, such CNP-mediated immuno-stimulation was significantly mitigated when NO production was inhibited, indicating a possible role of NO in such immune induction. Taken together, our results suggest that CNP may be used as a more effective phytosanitary or disease control agent compared to natural chitosan for sustainable organic cultivation.

  5. Dual Effect of the Cubic Ag3PO4 Crystal on Pseudomonas syringae Growth and Plant Immunity

    Kim, Mi Kyung; Yeo, Byul-Ee; Park, Heonyong; Huh, Young-Duk; Kwon, Chian; Yun, Hye Sup

    2016-01-01

    We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC) can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating a...

  6. Plant Gall Activity.

    Kahn, Jacqueline Gage

    1997-01-01

    Describes a field trip to study, collect, and analyze galls in the field and classroom. Students hypothesize about factors that cause gall formation, develop a basic understanding of the complex and fragile interactions between plants and insects that result in the formation of plant galls, and determine the broader role of galls within the…

  7. Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity

    Thalineau, Elise; Truong, Hoai-Nam; Berger, Antoine; Fournier, Carine; Boscari, Alexandre; Wendehenne, David; Jeandroz, Sylvain

    2016-01-01

    Plants are sessile organisms that have evolved a complex immune system which helps them cope with pathogen attacks. However, the capacity of a plant to mobilize different defense responses is strongly affected by its physiological status. Nitrogen (N) is a major nutrient that can play an important role in plant immunity by increasing or decreasing plant resistance to pathogens. Although no general rule can be drawn about the effect of N availability and quality on the fate of plant/pathogen i...

  8. Cross-regulation between n metabolism and nitric oxide (no) signaling during plant immunity

    Thalineau, Elise; Truong , Hoai Nam; Berger, Antoine; Fournier, Carine; Boscari, Alexandre; Wendehenne, David

    2016-01-01

    Plants are sessile organisms that have evolved a complex immune system which helps them cope with pathogen attacks. However, the capacity of a plant to mobilize different defense responses is strongly affected by its physiological status. Nitrogen (N) is a major nutrient that can play an important role in plant immunity by increasing or decreasing plant resistance to pathogens. Although no general rule can be drawn about the effect of N availability and quality on the fate of plant/pathogen i...

  9. Cullin-RING Ubiquitin Ligases in Salicylic Acid-Mediated Plant Immune Signaling

    James J. Furniss

    2015-03-01

    Full Text Available Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA. SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e. the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs, which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing (NLR immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.

  10. Activation and Regulation of DNA-Driven Immune Responses

    Paludan, Søren R

    2015-01-01

    The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally,...

  11. Gastrointestinal inflammation and associated immune activation in schizophrenia

    Severance, Emily G.; Alaedini, Armin; Yang, Shuojia; Halling, Meredith; Gressitt, Kristin L.; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Leweke, F. Markus; Dickerson, Faith B.; Yolken, Robert H.

    2012-01-01

    Immune factors are implicated in normal brain development and in brain disorder pathogenesis. Pathogen infection and food antigen penetration across gastrointestinal barriers are means by which environmental factors might affect immune-related neurodevelopment. Here, we test if gastrointestinal inflammation is associated with schizophrenia and therefore, might contribute to bloodstream entry of potentially neurotropic milk and gluten exorphins and/or immune activation by food antigens. IgG an...

  12. Insights into Animal and Plant Lectins with Antimicrobial Activities

    Renata de Oliveira Dias; Leandro dos Santos Machado; Ludovico Migliolo; Octavio Luiz Franco

    2015-01-01

    Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing...

  13. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. PMID:24965864

  14. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants. PMID:15210989

  15. Immunity-based security architecture for active switch

    Jingsong, Pan

    2012-01-01

    This paper proposes one kind of active network security technique which combined artificial immune intrusion detection system (IDS) and firewall, it can omni-directional carry on protection to the computers and networks.

  16. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokini

  17. Receptor-like kinase complexes in plant innate immunity.

    Christiaan eGreeff

    2012-08-01

    Full Text Available Receptor-like kinases (RLKs are surface localized, transmembrane receptors comprising a large family of well-studied kinases. RLKs signal through their transmembrane and juxtamembrane domains with the aid of various interacting partners and downstream components. The N-terminal extracellular domain defines ligand specificity, and RLK families are sub-classed according to this domain. The most studied of these subfamilies include those with 1 leucine rich repeat (LRR domains, 2 LysM domains (LYM and 3 the Catharanthus roseus RLK1-like (CrRLK1L domain. These proteins recognize distinct ligands of microbial origin or ligands derived from intracellular protein/carbohydrate signals. For example, the pattern recognition receptor (PRR AtFLS2 recognizes flg22 from flagellin, and the PRR AtEFR recognizes elf18 from elongation factor (EF-Tu. Upon binding of their cognate ligands, the aforementioned RLKs activate generic immune responses termed pattern triggered immunity (PTI. RLKs can form complexes with other family members and engage a variety of intracellular signaling components and regulatory pathways upon stimulation. This review focuses on interesting new data about how these receptors form protein complexes to exert their function.

  18. The RNA silencing enzyme RNA polymerase v is required for plant immunity.

    Ana López

    2011-12-01

    Full Text Available RNA-directed DNA methylation (RdDM is an epigenetic control mechanism driven by small interfering RNAs (siRNAs that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1. NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V, which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA-mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA-mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA-related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence

  19. Antifertility activity of medicinal plants.

    Daniyal, Muhammad; Akram, Muhammad

    2015-07-01

    The aim of this review was to provide a comprehensive summary of medicinal plants used as antifertility agents in females throughout the world by various tribes and ethnic groups. We undertook an extensive bibliographic review by analyzing classical text books and peer reviewed papers, and further consulting well accepted worldwide scientific databases. We performed CENTRAL, Embase, and PubMed searches using terms such as "antifertility", "anti-implantation", "antiovulation", and "antispermatogenic" activity of plants. Plants, including their parts and extracts, that have traditionally been used to facilitate antifertility have been considered as antifertility agents. In this paper, various medicinal plants have been reviewed for thorough studies such as Polygonum hydropiper Linn, Citrus limonum, Piper nigrum Linn, Juniperis communis, Achyanthes aspera, Azadirachta indica, Tinospora cordifolia, and Barleria prionitis. Many of these medicinal plants appear to act through an antizygotic mechanism. This review clearly demonstrates that it is time to expand upon experimental studies to source new potential chemical constituents from medicinal plants; plant extracts and their active constituents should be further investigated for their mechanisms. This review creates a solid foundation upon which to further study the efficacy of plants that are both currently used by women as traditional antifertility medicines, but also could be efficacious as an antifertility agent with additional research and study. PMID:25921562

  20. [Bone marrow stromal damage mediated by immune response activity].

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis. PMID:18173180

  1. Protein-Carbohydrate Interactions as Part of Plant Defense and Animal Immunity

    Kristof De Schutter

    2015-05-01

    Full Text Available The immune system consists of a complex network of cells and molecules that interact with each other to initiate the host defense system. Many of these interactions involve specific carbohydrate structures and proteins that specifically recognize and bind them, in particular lectins. It is well established that lectin-carbohydrate interactions play a major role in the immune system, in that they mediate and regulate several interactions that are part of the immune response. Despite obvious differences between the immune system in animals and plants, there are also striking similarities. In both cases, lectins can play a role as pattern recognition receptors, recognizing the pathogens and initiating the stress response. Although plants do not possess an adaptive immune system, they are able to imprint a stress memory, a mechanism in which lectins can be involved. This review will focus on the role of lectins in the immune system of animals and plants.

  2. MAP Kinase 4 Substrates and Plant Innate Immunity

    Rasmussen, Magnus Wohlfahrt

    . For example, Arabidopsis MPK4 regulates the expression of a subset of defense genes via at least one WRKY transcription factor. We report here that MPK4 is found in complexes in vivo with (i) PAT1, component of the mRNA decapping machinery, (ii) AOC3, a component in the biosynthesis pathway of JA and (iii) e......IF4E, a component in the translational initiation protein complex. For PAT1 and eIF4E we show that MPK4 phosphorylates specific Ser and Thr residues in vitro, and that MPK4 also phosphorylates AOC3 at an unmapped residue. Specific in vivo phosphorylation for PAT1 is shown in response to pathogen...... recognition, which also induce its localization to cytoplasmic processing bodies. All three proteins; PAT1, AOC3 and eIF4E also interacts with MPK4 in vivo although the functional outcome of these interactions are still elusive. The thesis comprise a general introduction to plant innate immunity followed...

  3. Activation of the reward system boosts innate and adaptive immunity.

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  4. Antiprotozoal activities of Colombian plants.

    Weniger, B; Robledo, S; Arango, G J; Deharo, E; Aragón, R; Muñoz, V; Callapa, J; Lobstein, A; Anton, R

    2001-12-01

    In our search for therapeutical alternatives for antiprotozoal chemotherapy, we collected a selection of 44 plants from western Colombia upon ethnopharmacological and chemotaxonomic considerations. Polar and apolar extracts of these species were examined for antimalarial activity using in vitro tests with two clones of Plasmodium falciparum. Leishmanicidal and trypanocidal activity were determined in vitro using promastigote and amastigote forms of several strains of Leishmania sp. and epimastigotes of Trypanosoma cruzi. Among the selected plants, the 15 following species showed good or very good antiprotozoal activity in vitro: Aspidosperma megalocarpon, Campnosperma panamense, Conobea scoparioides, Guarea polymera, Guarea guidonia, Guatteria amplifolia, Huberodendron patinoi, Hygrophila guianensis, Jacaranda caucana, Marila laxiflora, Otoba novogranatensis, Otoba parviflora, Protium amplium, Swinglea glutinosa and Tabernaemontana obliqua. Cytotoxicity was assessed in U-937 cells and the ratio of cytotoxicity to antiprotozoal activity was determined for the active extracts. Ten extracts from eight species showed selectivity indexes > or = 10. Among the extracts that showed leishmanicidal activity, the methylene chloride extract of leaves from C. scoparioides showed a selectivity index in the same range that the one of the Glucantime control. Several of the active leishmanicidal plants are traditionally used against leishmaniasis by the population of the concerned area. PMID:11694364

  5. On the modulation of innate immunity by plant-parasitic cyst nematodes

    Postma, W.J.

    2013-01-01

    Plant-parasitic cyst nematodes are major agricultural pests worldwide. These obligate endoparasites invade the roots of host plants where they transform cells near the vascular cylinder into a permanent feeding site. Plants possess a multilayered innate immune system consisting of different types of

  6. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity.

    Ramírez, Vicente; Gonzalez, Beatriz; López, Ana; Castelló, María José; Gil, María José; Etherington, Graham J; Zheng, Bo; Chen, Peng; Vera, Pablo

    2015-10-01

    tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. PMID:26492405

  7. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity.

    Vicente Ramírez

    2015-10-01

    Full Text Available tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9. Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response.

  8. Medicinal Plants with Antiplatelet Activity.

    El Haouari, Mohammed; Rosado, Juan A

    2016-07-01

    Blood platelets play an essential role in the hemostasis and wound-healing processes. However, platelet hyperactivity is associated to the development and the complications of several cardiovascular diseases. In this sense, the search for potent and safer antiplatelet agents is of great interest. This article provides an overview of experimental studies performed on medicinal plants with antiplatelet activity available through literature with particular emphasis on the bioactive constituents, the parts used, and the various platelet signaling pathways modulated by medicinal plants. From this review, it was suggested that medicinal plants with antiplatelet activity mainly belong to the family of Asteraceae, Rutaceae, Fabaceae, Lamiaceae, Zygophyllaceae, Rhamnaceae, Liliaceae, and Zingiberaceae. The antiplatelet effect is attributed to the presence of bioactive compounds such as polyphenols, flavonoids, coumarins, terpenoids, and other substances which correct platelet abnormalities by interfering with different platelet signalization pathways including inhibition of the ADP pathway, suppression of TXA2 formation, reduction of intracellular Ca(2+) mobilization, and phosphoinositide breakdown, among others. The identification and/or structure modification of the plant constituents and the understanding of their action mechanisms will be helpful in the development of new antiplatelet agents based on medicinal plants which could contribute to the prevention of thromboembolic-related disorders by inhibiting platelet aggregation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27062716

  9. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: innate immune responses in plants.

    Schulze-Lefert, P

    2010-04-01

    Plants rely exclusively upon mechanisms of innate immunity. Current concepts of the plant innate immune system are based largely on two forms of immunity that engage distinct classes of immune receptors. These receptors enable the recognition of non-self structures that are either conserved between members of a microbial class or specific to individual strains of a microbe. One type of receptor comprises membrane-resident pattern recognition receptors (PRRs) that detect widely conserved microbe-associated molecular patterns (MAMPs) on the cell surface. A second type of mainly intracellular immune sensors, designated resistance (R) proteins, recognizes either the structure or function of strain-specific pathogen effectors that are delivered inside host cells. Phytopathogenic microorganisms have evolved a repertoire of effectors, some of which are delivered into plant cells to sabotage MAMP-triggered immune responses. Plants appear to have also evolved receptors that sense cellular injury by the release and perception of endogenous damage-associated molecular patterns (DAMPs). It is possible that the integration of MAMP and DAMP responses is critical to mount robust MAMP-triggered immunity. This signal integration might help to explain why plants are colonized in nature by remarkably diverse and seemingly asymptomatic microbial communities. PMID:20415853

  10. Regulation of plant immunity through ubiquitin-mediated modulation of Ca(2+) -calmodulin-AtSR1/CAMTA3 signaling.

    Zhang, Lei; Du, Liqun; Shen, Chenjia; Yang, Yanjun; Poovaiah, B W

    2014-04-01

    Transient changes in intracellular Ca(2+) concentration are essential signals for activation of plant immunity. It has also been reported that Ca(2+) signals suppress salicylic acid-mediated plant defense through AtSR1/CAMTA3, a member of the Ca(2+) /calmodulin-regulated transcription factor family that is conserved in multicellular eukaryotes. How plants overcome this negative regulation to mount an effective defense response during a stage of intracellular Ca(2+) surge is unclear. Here we report the identification and functional characterization of an important component of ubiquitin ligase, and the associated AtSR1 turnover. The AtSR1 interaction protein 1 (SR1IP1) was identified by CytoTrap two-hybrid screening. The loss-of-function mutant of SR1IP1 is more susceptible to bacterial pathogens, and over-expression of SR1IP1 confers enhanced resistance, indicating that SR1IP1 acts as a positive regulator of plant defense. SR1IP1 and AtSR1 act in the same signaling pathway to regulate plant immunity. SR1IP1 contains the structural features of a substrate adaptor in cullin 3-based E3 ubiquitin ligase, and was shown to serve as a substrate adaptor that recruits AtSR1 for ubiquitination and degradation when plants are challenged with pathogens. Hence, SR1IP1 positively regulates plant immunity by removing the defense suppressor AtSR1. These findings provide a mechanistic insight into how Ca(2+) -mediated actions are coordinated to achieve effective plant immunity. PMID:24528504

  11. Epidemic spreading and immunization in node-activity networks

    Wu, Qingchu; Chen, Shufang

    2015-09-01

    In this paper, we study the epidemic spreading in node-activity networks, where an individual participates in social networks with a certain rate h. There are two cases for h: the state-independent case and the state-dependent case. We investigate the epidemic threshold as a function of h compared to the static network. Our results suggest the epidemic threshold cannot be exactly predicted by using the analysis approach in the static network. In addition, we further propose a local information-based immunization protocol on node-activity networks. Simulation analysis shows that the immunization can not only eliminate the infectious disease, but also change the epidemic threshold via increasing the immunization parameter.

  12. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR

    Li, Jing; Zhao-Hui, Chu; Batoux, Martine; Nekrasov, Vladimir; Roux, Milena; Chinchilla, Delphine; Zipfel, Cyril; Jones, Jonathan D G

    2009-01-01

    Plant innate immunity depends in part on recognition of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin, EF-Tu, and fungal chitin. Recognition is mediated by pattern-recognition receptors (PRRs) and results in PAMP-triggered immunity. EF-Tu and flagellin, and the derived....... ERD2B seems therefore to be a specific HDEL receptor for CRT3 that allows its retro-translocation from the Golgi to the ER. These data reveal a previously unsuspected role of a specific subset of ER-QC machinery components for PRR accumulation in plant innate immunity....

  13. Innate immune recognition and activation during HIV infection

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  14. Maternal Immune Activation Disrupts Dopamine System in the Offspring

    Luchicchi, Antonio; Lecca, Salvatore; Melis, Miriam; De Felice, Marta; Cadeddu, Francesca; Frau, Roberto; Muntoni, Anna Lisa; Fadda, Paola; Devoto, Paola

    2016-01-01

    Background: In utero exposure to maternal viral infections is associated with a higher incidence of psychiatric disorders with a supposed neurodevelopmental origin, including schizophrenia. Hence, immune response factors exert a negative impact on brain maturation that predisposes the offspring to the emergence of pathological phenotypes later in life. Although ventral tegmental area dopamine neurons and their target regions play essential roles in the pathophysiology of psychoses, it remains to be fully elucidated how dopamine activity and functionality are disrupted in maternal immune activation models of schizophrenia. Methods: Here, we used an immune-mediated neurodevelopmental disruption model based on prenatal administration of the polyriboinosinic-polyribocytidilic acid in rats, which mimics a viral infection and recapitulates behavioral abnormalities relevant to psychiatric disorders in the offspring. Extracellular dopamine levels were measured by brain microdialysis in both the nucleus accumbens shell and the medial prefrontal cortex, whereas dopamine neurons in ventral tegmental area were studied by in vivo electrophysiology. Results: Polyriboinosinic-polyribocytidilic acid-treated animals, at adulthood, displayed deficits in sensorimotor gating, memory, and social interaction and increased baseline extracellular dopamine levels in the nucleus accumbens, but not in the prefrontal cortex. In polyriboinosinic-polyribocytidilic acid rats, dopamine neurons showed reduced spontaneously firing rate and population activity. Conclusions: These results confirm that maternal immune activation severely impairs dopamine system and that the polyriboinosinic-polyribocytidilic acid model can be considered a proper animal model of a psychiatric condition that fulfills a multidimensional set of validity criteria predictive of a human pathology. PMID:26819283

  15. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  16. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas

  17. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Brian J. Ahn

    2013-11-01

    Full Text Available Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  18. Cellular immune activity biomarker neopterin is associated hyperlipidemia

    Chuang, Shu-Chun; Boeing, Heiner; Vollset, Stein Emil; Midttun, Øivind; Ueland, Per Magne; Bueno-de-Mesquita, Bas; Lajous, Martin; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Kaaks, Rudolf; Küehn, Tilman; Pischon, Tobias; Drogan, Dagmar; Tjønneland, Anne; Overvad, Kim; Quirós, J Ramón; Agudo, Antonio; Molina-Montes, Esther; Dorronsoro, Miren; Huerta, José María; Barricarte, Aurelio; Khaw, Kay-Tee; Wareham, Nicholas J; Travis, Ruth C; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Masala, Giovanna; Agnoli, Claudia; Tumino, Rosario; Mattiello, Amalia; Peeters, Petra H; Weiderpass, Elisabete; Palmqvist, Richard; Ljuslinder, Ingrid; Gunter, Marc; Lu, Yunxia; Cross, Amanda J; Riboli, Elio; Vineis, Paolo; Aleksandrova, Krasimira

    2016-01-01

    BACKGROUND: Increased serum neopterin had been described in older age two decades ago. Neopterin is a biomarker of systemic adaptive immune activation that could be potentially implicated in metabolic syndrome (MetS). Measurements of waist circumference, triglycerides, high-density lipoprotein...

  19. A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity

    Iago Lowe Hale

    2014-09-01

    Full Text Available Through active associations with a diverse community of largely non-pathogenic microbes, a plant may be thought of as possessing an extended genotype, an interactive cross-organismal genome with potential, exploitable implications for plant immunity. The successful enrichment of plant microbiomes with beneficial species has led to numerous commercial applications, and the hunt for new biocontrol organisms continues. Increasingly flexible and affordable sequencing technologies, supported by increasingly comprehensive taxonomic databases, make the characterization of non-model crop-associated microbiomes a widely accessible research method toward this end; and such studies are becoming more frequent. A summary of this emerging literature reveals, however, the need for a more systematic research lens in the face of what is already a metagenomics data deluge. Considering the processes and consequences of crop evolution and domestication, we assert that the judicious integration of in situ crop wild relatives into phytobiome research efforts presents a singularly powerful tool for separating signal from noise, thereby facilitating a more efficient means of identifying candidate plant-associated microbes with the potential for enhanci

  20. Photodynamic therapy for cancer and activation of immune response

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  1. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity.

    Abd-El-Haliem, Ahmed M; Vossen, Jack H; van Zeijl, Arjan; Dezhsetan, Sara; Testerink, Christa; Seidl, Michael F; Beck, Martina; Strutt, James; Robatzek, Silke; Joosten, Matthieu H A J

    2016-09-01

    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs belonging to one class, PLCζ. Here we determined whether all tomato homologs encode active enzymes and whether they can generate signals that are distinct from one another. We searched the recently completed tomato (Solanum lycopersicum) genome sequence and identified a total of seven PLCs. Recombinant proteins were produced for all tomato PLCs, except for SlPLC7. The purified proteins showed typical PLC activity, as different PLC substrates were hydrolysed to produce diacylglycerol. We studied SlPLC2, SlPLC4 and SlPLC5 enzymes in more detail and observed distinct requirements for Ca(2+) ions and pH, for both their optimum activity and substrate preference. This indicates that each enzyme could be differentially and specifically regulated in vivo, leading to the generation of PLC homolog-specific signals in response to different stimuli. PLC overexpression and specific inhibition of PLC activity revealed that PLC is required for both specific effector- and more general "pattern"-triggered immunity. For the latter, we found that both the flagellin-triggered response and the internalization of the corresponding receptor, Flagellin Sensing 2 (FLS2) of Arabidopsis thaliana, are suppressed by inhibition of PLC activity. Altogether, our data support an important role for PLC enzymes in plant defence signalling downstream of immune receptors. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26825689

  2. Tim-3: An activation marker and activation limiter of innate immune cells

    Gencheng eHan

    2013-12-01

    Full Text Available Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss 1 how Tim-3 is expressed and regulated on different innate immune cells; 2 how it affects the activity of different innate immune cells; and 3 how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  3. High physical activity in young children suggests positive effects by altering autoantigen-induced immune activity.

    Carlsson, E; Ludvigsson, J; Huus, K; Faresjö, M

    2016-04-01

    Physical activity in children is associated with several positive health outcomes such as decreased cardiovascular risk factors, improved lung function, enhanced motor skill development, healthier body composition, and also improved defense against inflammatory diseases. We examined how high physical activity vs a sedentary lifestyle in young children influences the immune response with focus on autoimmunity. Peripheral blood mononuclear cells, collected from 55 5-year-old children with either high physical activity (n = 14), average physical activity (n = 27), or low physical activity (n = 14), from the All Babies In Southeast Sweden (ABIS) cohort, were stimulated with antigens (tetanus toxoid and beta-lactoglobulin) and autoantigens (GAD65 , insulin, HSP60, and IA-2). Immune markers (cytokines and chemokines), C-peptide and proinsulin were analyzed. Children with high physical activity showed decreased immune activity toward the autoantigens GAD65 (IL-5, P < 0.05), HSP60 and IA-2 (IL-10, P < 0.05) and also low spontaneous pro-inflammatory immune activity (IL-6, IL-13, IFN-γ, TNF-α, and CCL2 (P < 0.05)) compared with children with an average or low physical activity. High physical activity in young children seems to have positive effects on the immune system by altering autoantigen-induced immune activity. PMID:25892449

  4. Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid.

    van Aubel, Géraldine; Cambier, Pierre; Dieu, Marc; Van Cutsem, Pierre

    2016-06-01

    Plant innate immunity offers considerable opportunities for plant protection but beside flagellin and chitin, not many molecules and their receptors have been extensively characterized and very few have successfully reached the field. COS-OGA, an elicitor that combines cationic chitosan oligomers (COS) with anionic pectin oligomers (OGA), efficiently protected tomato (Solanum lycopersicum) grown in greenhouse against powdery mildew (Leveillula taurica). Leaf proteomic analysis of plants sprayed with COS-OGA showed accumulation of Pathogenesis-Related proteins (PR), especially subtilisin-like proteases. qRT-PCR confirmed upregulation of PR-proteins and salicylic acid (SA)-related genes while expression of jasmonic acid/ethylene-associated genes was not modified. SA concentration and class III peroxidase activity were increased in leaves and appeared to be a cumulative process dependent on the number of sprayings with the elicitor. These results suggest a systemic acquired resistance (SAR) mechanism of action of the COS-OGA elicitor and highlight the importance of repeated applications to ensure efficient protection against disease. PMID:27095400

  5. Tight regulation of plant immune responses by combining promoter and suicide exon elements.

    Gonzalez, Tania L; Liang, Yan; Nguyen, Bao N; Staskawicz, Brian J; Loqué, Dominique; Hammond, Ming C

    2015-08-18

    Effector-triggered immunity (ETI) is activated when plant disease resistance (R) proteins recognize the presence of pathogen effector proteins delivered into host cells. The ETI response generally encompasses a defensive 'hypersensitive response' (HR) that involves programmed cell death at the site of pathogen recognition. While many R protein and effector protein pairs are known to trigger HR, other components of the ETI signaling pathway remain elusive. Effector genes regulated by inducible promoters cause background HR due to leaky protein expression, preventing the generation of relevant transgenic plant lines. By employing the HyP5SM suicide exon, we have developed a strategy to tightly regulate effector proteins such that HR is chemically inducible and non-leaky. This alternative splicing-based gene regulation system was shown to successfully control Bs2/AvrBs2-dependent and RPP1/ATR1Δ51-dependent HR in Nicotiana benthamiana and Nicotiana tabacum, respectively. It was also used to generate viable and healthy transgenic Arabidopsis thaliana plants that inducibly initiate HR. Beyond enabling studies on the ETI pathway, our regulatory strategy is generally applicable to reduce or eliminate undesired background expression of transgenes. PMID:26138488

  6. Jungle Honey Enhances Immune Function and Antitumor Activity

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  7. Oral immunization with hepatitis B surface antigen expressed in transgenic plants

    Kong, Qingxian; Richter, Liz; Yang, Yu Fang; Arntzen, Charles J.; Mason, Hugh S.; Thanavala, Yasmin

    2001-01-01

    Oral immunogenicity of recombinant hepatitis B surface antigen (HBsAg) derived from yeast (purified product) or in transgenic potatoes (uncooked unprocessed sample) was compared. An oral adjuvant, cholera toxin, was used to increase immune responses. Transgenic plant material containing HBsAg was the superior means of both inducing a primary immune response and priming the mice to respond to a subsequent parenteral injection of HBsAg. Electron microscopy of transgenic ...

  8. Structure-Dependent Immune Modulatory Activity of Protegrin-1 Analogs

    Susu M. Zughaier

    2014-11-01

    Full Text Available Protegrins are porcine antimicrobial peptides (AMPs that belong to the cathelicidin family of host defense peptides. Protegrin-1 (PG-1, the most investigated member of the protegrin family, is an arginine-rich peptide consisting of 18 amino acid residues, its main chain adopting a β-hairpin structure that is linked by two disulfide bridges. We report on the immune modulatory activity of PG-1 and its analogs in neutralizing bacterial endotoxin and capsular polysaccharides, consequently inhibiting inflammatory mediators’ release from macrophages. We demonstrate that the β-hairpin structure motif stabilized with at least one disulfide bridge is a prerequisite for the immune modulatory activity of this type of AMP.

  9. Transportin-SR is required for proper splicing of resistance genes and plant immunity.

    Shaohua Xu

    2011-06-01

    Full Text Available Transportin-SR (TRN-SR is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14, a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R protein snc1 (suppressor of npr1-1, constitutive 1. MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity.

  10. Role of Leptin in the Activation of Immune Cells

    Patricia Fernández-Riejos

    2010-01-01

    Full Text Available Adipose tissue is an active endocrine organ that secretes various humoral factors (adipokines, and its shift to production of proinflammatory cytokines in obesity likely contributes to the low-level systemic inflammation that may be present in metabolic syndrome-associated chronic pathologies such as atherosclerosis. Leptin is one of the most important hormones secreted by adipocytes, with a variety of physiological roles related to the control of metabolism and energy homeostasis. One of these functions is the connection between nutritional status and immune competence. The adipocyte-derived hormone leptin has been shown to regulate the immune response, innate and adaptive response, both in normal and pathological conditions. The role of leptin in regulating immune response has been assessed in vitro as well as in clinical studies. It has been shown that conditions of reduced leptin production are associated with increased infection susceptibility. Conversely, immune-mediated disorders such as autoimmune diseases are associated with increased secretion of leptin and production of proinflammatory pathogenic cytokines. Thus, leptin is a mediator of the inflammatory response.

  11. Incompatibility between plant-derived defensive chemistry and immune response of two sphingid herbivores.

    Lampert, Evan C; Bowers, M Deane

    2015-01-01

    Herbivorous insects use several different defenses against predators and parasites, and tradeoffs among defensive traits may occur if these traits are energetically demanding. Chemical defense and immune response potentially can interact, and both can be influenced by host plant chemistry. Two closely related caterpillars in the lepidopteran family Sphingidae are both attacked by the same specialist endoparasitoid species but have mostly non-overlapping host plant ranges that differ in secondary chemistry. Ceratomia catalpae is a specialist on Catalpa and also will feed on Chilopsis, which both produce iridoid glycosides. Ceratomia undulosa consumes members of the Oleaceae, which produce seco-iridoid glycosides. Immune response of the two species on a typical host plant species (Catalpa bignonioides for C. catalpa; Fraxinus americana for C. undulosa) was compared using a melanization assay, and did not differ. In a second experiment, the iridoid glycoside catalpol was added to the diets of both insects, and growth rate, mass, chemical defense, and immune response were evaluated. Increased dietary catalpol weakened the immune response of C. undulosa and altered the development rate of C. catalpae by prolonging the third instar and accelerating the fourth instar. Catalpol sequestration was negatively correlated with immune response of C. catalpae, while C. undulosa was unable to sequester catalpol. These results show that immune response can be negatively influenced by increasing concentrations of sequestered defensive compounds. PMID:25516226

  12. HIV-induced immune activation - pathogenesis and clinical relevance

    Stellbrink HJ

    2010-01-01

    Full Text Available Abstract This manuscript is communicated by the German AIDS Society (DAIG http://www.daignet.de. It summarizes a series of presentations and discussions during a workshop on immune activation due to HIV infection. The workshop was held on November 22nd 2008 in Hamburg, Germany. It was organized by the ICH Hamburg under the auspices of the German AIDS Society (DAIG e.V..

  13. Cell wall integrity signaling and innate immunity in plants

    Nühse, Thomas S.

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host’s cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments ar...

  14. Pathogenicity of and plant immunity to soft rot pectobacteria

    Davidsson, Pär R.; Kariola, Tarja; Niemi, Outi; Palva, E. T.

    2013-01-01

    Soft rot pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall-degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens. In contrast to (hemi)biotrophs s...

  15. Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana

    Yoshiteru eNoutoshi

    2012-10-01

    Full Text Available Plant activators are agrochemicals that protect crops from diseases by activating the plant immune system. To isolate lead compounds for use as practical plant activators, we screened 2 different chemical libraries composed of various bioactive substances by using an established screening procedure that can selectively identify immune-priming compounds. We identified and characterized a group of sulfonamide compounds—sulfameter, sulfamethoxypyridazine, sulfabenzamide, and sulfachloropyridazine—among the various isolated candidate molecules. These sulfonamide compounds enhanced the avirulent Pseudomonas-induced cell death of Arabidopsis suspension cell cultures and increased disease resistance in Arabidopsis plants against both avirulent and virulent strains of the bacterium. These compounds did not prevent the growth of pathogenic bacteria in minimal liquid media at 200 µM. They also did not induce the expression of defense-related genes in Arabidopsis seedlings, at least not at 24 and 48 h after treatment, suggesting that they do not act as salicylic acid analogs. In addition, although sulfonamides are known to be folate biosynthesis inhibitors, the application of folate did not restore the potentiation effects of the sulfonamides on pathogen-induced cell death. Our data suggest that sulfonamides potentiate Arabidopsis disease resistance by their novel chemical properties.

  16. A murine model for study of anticryptococcal activity mediated by cytotoxic immune cells: Role in immunization and human vaccine strategies

    Arsić-Arsenijević Valentina

    2011-01-01

    Full Text Available NK and T cells play a pivotal role in host defense to Cryptococcus neoformans (C. neoformans fungus which affects especially hosts with impaired cell mediated immunity. The vaccine against cryptococcosus is not developed yet, thus we established an animal BALB/c mice model to analyze anticryprococcal activity of immune cells. We detected that non-stimulated spleen mononuclear cells (MNC from non-immunized mice have the capacity to exhibit anticriptococcal activity on the incapsulated C. neoformans strain (ATCC 34873 and this activity can be enhanced by non-adherent cells (NAC. In order to obtained antigen-specific anticryprococcal activity, MNC and NAC were stimulated in vitro with corpuscular (Ag1 or soluble (Ag2 C. neoformans antigen prepared from the acapsular strain Cap67 (ATCC 52817. In vitro stimulation of immune cells with both C. neoformans antigens enhanced the anticryptococcal activity of MNC and NAC. NAC fraction expressed the highest anticryptococcal activity, also in the presence and in the absence of accessory cells (AC. The highest anticryptococcal activity of effector cells was detected after immunization of mice with the same C. neoformans antigens and after additional stimulation of immune cells in vitro with the some antigens. These data demonstrated that growth inhibition of C. neoformans mediated by mice effector cells can be enhanced with corpuscular, as well as soluble antigens. Thus designin an animal model which is simple and reproducible and can be used for further studies and development of immunization strategies against human cryptococcosis.

  17. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. PMID:26520214

  18. Inflammation, immune activation, and cardiovascular disease in HIV.

    Nou, Eric; Lo, Janet; Grinspoon, Steven K

    2016-06-19

    Cardiovascular disease is one of the leading causes of morbidity and mortality in people living with HIV. Several epidemiological studies have shown an increased risk of myocardial infarction and stroke compared to uninfected controls. Although traditional risk factors contribute to this increased risk of cardiovascular disease, HIV-specific mechanisms likely also play a role. Systemic inflammation has been linked to cardiovascular disease in several populations suffering from chronic inflammation, including people living with HIV. Although antiretroviral therapy reduces immune activation, levels of inflammatory markers remain elevated compared to uninfected controls. The causes of this sustained immune response are likely multifactorial and incompletely understood. In this review, we summarize the evidence describing the relationship between inflammation and cardiovascular disease and discuss potential anti-inflammatory treatment options for cardiometabolic disease in people living with HIV. PMID:27058351

  19. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. PMID:26706477

  20. Trapping the intruder - immune receptor domain fusions provide new molecular leads for improving disease resistance in plants.

    Krattinger, Simon G; Keller, Beat

    2016-01-01

    A new study uses genomics to show that fusions of plant immune receptors and other protein domains occur in significant numbers. This finding will generate many new research hypotheses and provide new opportunities for breeding resistant plant varieties. PMID:26891689

  1. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs.

    Denancé, Nicolas; Sánchez-Vallet, Andrea; Goffner, Deborah; Molina, Antonio

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones interact in complex networks to balance the response to developmental and environmental cues and thus limiting defense-associated fitness costs. The molecular mechanisms that govern these hormonal networks are largely unknown. Moreover, hormone signaling pathways are targeted by pathogens to disturb and evade plant defense responses. In this review, we address novel insights on the regulatory roles of the ABA, SA, and auxin in plant resistance to pathogens and we describe the complex interactions among their signal transduction pathways. The strategies developed by pathogens to evade hormone-mediated defensive responses are also described. Based on these data we discuss how hormone signaling could be manipulated to improve the resistance of crops to pathogens. PMID:23745126

  2. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity.

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin; Henriques-Normark, Birgitta; Olliver, Marie

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  3. Coincident helminth infection modulates systemic inflammation and immune activation in active pulmonary tuberculosis.

    Parakkal Jovvian George

    Full Text Available Helminth infections are known to modulate innate and adaptive immune responses in active and latent tuberculosis (TB. However, the role of helminth infections in modulating responses associated with inflammation and immune activation (reflecting disease activity and/or severity in TB is not known.We measured markers of inflammation and immune activation in active pulmonary TB individuals (ATB with co-incidental Strongyloides stercoralis (Ss infection. These included systemic levels of acute phase proteins, matrix metalloproteinases and their endogenous inhibitors and immune activation markers. As a control, we measured the systemic levels of the same molecules in TB-uninfected individuals (NTB with or without Ss infection.Our data confirm that ATB is associated with elevated levels of the various measured molecules when compared to those seen in NTB. Our data also reveal that co-incident Ss infection in ATB individuals is associated with significantly decreased circulating levels of acute phase proteins, matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases as well as the systemic immune activation markers, sCD14 and sCD163. These changes are specific to ATB since they are absent in NTB individuals with Ss infection.Our data therefore reveal a profound effect of Ss infection on the markers associated with TB disease activity and severity and indicate that co-incidental helminth infections might dampen the severity of TB disease.

  4. Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity

    Nekrasov, Vladimir; Li, Jing; Batoux, Martine; Roux, Milena; Chu, Zhao-Hui; Lacombe, Severine; Rougon, Alejandra; Bittel, Pascal; Kiss-Papp, Marta; Chinchilla, Delphine; van Esse, H Peter; Jorda, Lucia; Schwessinger, Benjamin; Nicaise, Valerie; Thomma, Bart P H J; Molina, Antonio; Jones, Jonathan D G; Zipfel, Cyril

    2009-01-01

    In plant innate immunity, the surface-exposed leucine-rich repeat receptor kinases EFR and FLS2 mediate recognition of the bacterial pathogen-associated molecular patterns EF-Tu and flagellin, respectively. We identified the Arabidopsis stromal-derived factor-2 (SDF2) as being required for EFR...

  5. Pseudomonas evades immune recognition of flagellin in both mammals and plants

    Bardoel, B.W.; Ent, S. van der; Pel, M.J.C.; Tommassen, J.; Pieterse, C.M.J.; Kessel, K.P.M. van; Strijp, J.A.G. van

    2011-01-01

    The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants

  6. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses.

    Adrian A Moreno

    Full Text Available Endoplasmic reticulum (ER-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR, is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA. However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR, whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent

  7. Insights into Animal and Plant Lectins with Antimicrobial Activities

    Renata de Oliveira Dias

    2015-01-01

    Full Text Available Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.

  8. TCP three-way handshake: linking developmental processes with plant immunity.

    Lopez, Jessica A; Sun, Yali; Blair, Peter B; Mukhtar, M Shahid

    2015-04-01

    The TCP gene family encodes plant-specific transcription factors involved in growth and development. Equally important are the interactions between TCP factors and other pathways extending far beyond development, as they have been found to regulate a variety of hormonal pathways and signaling cascades. Recent advances reveal that TCP factors are targets of pathogenic effectors and are likely to play a vital role in plant immunity. Our focus is on reviewing the involvement of TCP in known pathways and shedding light on other linkages in the nexus of plant immunity centered around TCP factors with an emphasis on the convergence of effectors, interconnected hormonal networks, utility of the circadian clock, and the potential mechanisms by which pathogen defense may occur. PMID:25655280

  9. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity

    Lu, Dongping; Lin, Wenwei; Gao, Xiquan; Wu, Shujing; Cheng, Cheng; Avila, Julian; Heese, Antje; Devarenne, Timothy P.; He, Ping; Shan, Libo

    2011-01-01

    Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLS2 senses bacterial flagellin and initiates immune signaling by association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases PUB12 and PUB13 to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12/13 and is required for FLS2-PUB12/13 association. PUB12/13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling. PMID:21680842

  10. Active immunization therapies for Parkinson's disease and multiple system atrophy.

    Schneeberger, Achim; Tierney, Lanay; Mandler, Markus

    2016-02-01

    Vaccination is increasingly being investigated as a potential treatment for synucleinopathies, a group of neurodegenerative diseases including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies associated with α-synuclein pathology. All lack a causal therapy. Development of novel, disease-altering treatment strategies is urgently needed. Vaccination has positioned itself as a prime strategy for addressing these diseases because it is broadly applicable, requires infrequent administration, and maintains low production costs for treating a large population or as a preventive measure. Current evidence points to a causal role of misfolded α-synuclein in the development and progression of synucleinopathies. In the past decade, significant progress in active immunization against α-synuclein has been shown both in preclinical animal models and in early clinical development. In this review, we describe the state-of-the-art in active immunization approaches to synucleinopathies, with a focus on advances in Parkinson's disease (PD) and multiple-system atrophy (MSA). We first review preclinical animal models, highlighting their progress in translation to the clinical setting. We then discuss current clinical applications, stressing different approaches taken to address α-synuclein pathology. Finally, we address challenges, trends, and future perspectives of current vaccination programs. © 2015 International Parkinson and Movement Disorder Society. PMID:26260853

  11. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana.

    Akinori Kiba

    Full Text Available We previously identified a gene related to the SEC14-gene phospholipid transfer protein superfamily that is induced in Nicotiana benthamiana (NbSEC14 in response to infection with Ralstonia solanacearum. We here report that NbSEC14 plays a role in plant immune responses via phospholipid-turnover. NbSEC14-silencing compromised expression of defense-related PR-4 and accumulation of jasmonic acid (JA and its derivative JA-Ile. Transient expression of NbSEC14 induced PR-4 gene expression. Activities of diacylglycerol kinase, phospholipase C and D, and the synthesis of diacylglycerol and phosphatidic acid elicited by avirulent R. solanacearum were reduced in NbSEC14-silenced plants. Accumulation of signaling lipids and activation of diacylglycerol kinase and phospholipases were enhanced by transient expression of NbSEC14. These results suggest that the NbSEC14 protein plays a role at the interface between lipid signaling-metabolism and plant innate immune responses.

  12. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour. PMID:26202381

  13. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  14. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.;

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone or...... of CVPs to generate antibody at distant mucosal sites. IgG2a and TgG2b were the dominant IgG subclasses in sera to both CPMV and FnBP, demonstrating a bias in the response toward the T helper 1 type. The sera completely inhibited the binding of human fibronectin to the S. aureus FnBP. Oral...

  15. Autophagy and Retromer Components in Plant Innate Immunity

    Munch, David

    -hormone salicylic acid. Here, I present data that make it clear that NPR1 does not directly regulate autophagy, but instead control stress responses that indirectly activate autophagy. The observations presented will also clarify why autophagy has been described as being both a pro-death and pro-life pathway under...

  16. In vitro antioxidant activities of Asteraceae Plants

    Vijaylakshmi, S.; Nanjan, M.J.; Suresh, B.

    2009-01-01

    Anaphalis neelgerriana DC and Cnicus wallichi DC belonging to the family Asteraceae (Compositae) are important medicinal plants indigenous to Nilgiris. Since the related species Anaphalis morrisonicola and Cnicus benedictus were reported for its anti cancer activities, the above mentioned plants were screened for Invitro antioxidant activity. In vitro antioxidant studies were carried out by DPPH, Nitric oxide and Hydrogen peroxide methods for the aerial part extracts of the plants. Different ...

  17. Regulation of Plant Immunity through Modulation of Phytoalexin Synthesis

    Olga V. Zernova

    2014-06-01

    Full Text Available Soybean hairy roots transformed with the resveratrol synthase and resveratrol oxymethyl transferase genes driven by constitutive Arabidopsis actin and CsVMV promoters were characterized. Transformed hairy roots accumulated glycoside conjugates of the stilbenic compound resveratrol and the related compound pterostilbene, which are normally not synthesized by soybean plants. Expression of the non-native stilbenic phytoalexin synthesis in soybean hairy roots increased their resistance to the soybean pathogen Rhizoctonia solani. The expression of the AhRS3 gene resulted in 20% to 50% decreased root necrosis compared to that of untransformed hairy roots. The expression of two genes, the AhRS3 and ROMT, required for pterostilbene synthesis in soybean, resulted in significantly lower root necrosis (ranging from 0% to 7% in transgenic roots than in untransformed hairy roots that had about 84% necrosis. Overexpression of the soybean prenyltransferase (dimethylallyltransferase G4DT gene in soybean hairy roots increased accumulation of the native phytoalexin glyceollin resulting in decreased root necrosis.

  18. Antimicrobial activity of Ethiopian medicinal plants

    Bernášková, Eva

    2013-01-01

    In vitro antimicrobial activity of eighteen Ethiopian medicinal plant species that were selected based on ethnobotanical information on their traditional use to treat infectious diseases was determined by the broth microdilution method. The antimicrobial activity of ethanol extracts of selected plants against potentially pathogenic microorganism such as Bacillus cereus, Bacteroides fragilis, Candida albicans, Clostridium perfringens, Enterococcus faecalis, Escherichia coli, Listeria monocytog...

  19. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-01-01

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the ΔCEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effect...

  20. Silencing and Innate Immunity in Plant Defense Against Viral and Non-Viral Pathogens

    Anna S. Zvereva

    2012-10-01

    Full Text Available The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs, leading to pattern-triggered immunity (PTI. To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI, an amplified version of PTI, often associated with hypersensitive response (HR and programmed cell death (PCD. In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (sRNAs, miRNAs and short interfering (siRNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses

  1. GITR Activation Positively Regulates Immune Responses against Toxoplasma gondii

    Costa, Frederico R. C.; Mota, Caroline M.; Santiago, Fernanda M.; Silva, Murilo V.; Ferreira, Marcela D.; Fonseca, Denise M.; Silva, João S.; Mineo, José R.; Mineo, Tiago W. P.

    2016-01-01

    Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection. PMID:27027302

  2. Immunity

    2008-01-01

    2008254 Prokaryotic expression and immunogenicity of Fba,a novel fibronectin-binding protein of group A streptococcus.MA Cuiqing(马翠柳),et al.Dept Immunol,Basic Med Coll,Hebei Med Univ,Shijiazhuang 050017.Chin J Infect Dis 2008;26(3):146-150.Objective To express the novel fibronectin-binding protein Fba ofgroupAstreptococcus(GAS)and analyze its immunogenicity,so to evaluate the immune responses to GAS infection.Methods fbagene was amplified by

  3. Modelling activity transport behavior in PWR plant

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  4. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  5. INVOLVEMENT OF PEPTIDOGLYCAN RECOGNITION PROTEIN L6 IN ACTIVATION OF IMMUNE DEFICIENCY PATHWAY IN THE IMMUNE RESPONSIVE SILKWORM CELLS.

    Tanaka, Hiromitsu; Sagisaka, Aki

    2016-06-01

    The immune deficiency (Imd) signaling pathway is activated by Gram-negative bacteria for producing antimicrobial peptides (AMPs). In Drosophila melanogaster, the activation of this pathway is initiated by the recognition of Gram-negative bacteria by peptidoglycan (PGN) recognition proteins (PGRPs), PGRP-LC and PGRP-LE. In this study, we found that the Imd pathway is involved in enhancing the promoter activity of AMP gene in response to Gram-negative bacteria or diaminopimelic (DAP) type PGNs derived from Gram-negative bacteria in an immune responsive silkworm cell line, Bm-NIAS-aff3. Using gene knockdown experiments, we further demonstrated that silkworm PGRP L6 (BmPGRP-L6) is involved in the activation of E. coli or E. coli-PGN mediated AMP promoter activation. Domain analysis revealed that BmPGRP-L6 contained a conserved PGRP domain, transmembrane domain, and RIP homotypic interaction motif like motif but lacked signal peptide sequences. BmPGRP-L6 overexpression enhances AMP promoter activity through the Imd pathway. BmPGRP-L6 binds to DAP-type PGNs, although it also binds to lysine-type PGNs that activate another immune signal pathway, the Toll pathway in Drosophila. These results indicate that BmPGRP-L6 is a key PGRP for activating the Imd pathway in immune responsive silkworm cells. PMID:26991439

  6. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.; Jones, T.D.; Kamstrup, Søren; Dalsgaard, Kristian; Flock, J.I.; Hamilton, W.D.O.

    1999-01-01

    of CVPs to generate antibody at distant mucosal sites. IgG2a and TgG2b were the dominant IgG subclasses in sera to both CPMV and FnBP, demonstrating a bias in the response toward the T helper 1 type. The sera completely inhibited the binding of human fibronectin to the S. aureus FnBP. Oral......The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone or....... These studies demonstrate for the first time that recombinant plant viruses have potential as mucosal vaccines without the requirement for adjuvant and that the nasal route is most effective for the delivery of these nonreplicating particles....

  7. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  8. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  9. Evaluation of the Immunity Activity of Glycyrrhizin in AR Mice

    Ai-Guo Zhou

    2012-01-01

    Full Text Available In this study, we evaluated effect of glycyrrhizin on immunity function in allergic rhinitis (AR mice. The AR mice model were induced by dripping ovalbumin in physiological saline (2 mg mL−1, 10 μL into the bilateral nasal cavities using a micropipette. After the AR model was induced, mice were randomly divided into six groups: the normal control, model, lycopene 20 mg kg−1 (as positive control drug group, and glycyrrhizin 10, 20, 30 mg kg−1 groups. After the sensitization day 14, lycopene (20 mg/kg BW and glycyrrhizin (10, 20 and 30 mg/kg BW were given orally for 20 days once a day. Mice in the normal control and model groups were given saline orally once a day for 20 days. Results showed that glycyrrhizin treatment could dose-dependently significantly reduce blood immunoglobulin E (IgE, interleukin-4 (IL-4, interleukin-5 (IL-5, interleukin-6 (IL-6, nitrous oxide (NO, tumor necrosis factor-alpha (TNF-α levels and nitrous oxide synthase (NOS activity and enhance blood immunoglobulin A (IgA, immunoglobulin G (IgG, immunoglobulin M (IgM, interleukin-2 (IL-2 and interleukin-12 (IL-12 levels in AR mice. Furthermore, glycyrrhizin treatment could dose-dependently significantly enhance acetylcholinesterase (AchE activity and reduce substance P (SP level in peripheral blood and nasal mucosa of AR mice. We conclude that glycyrrhizin can improve immunity function in AR mice, suggesting a potential drug for the prevention and therapy of AR.

  10. A Compositional Look at the Human Gastrointestinal Microbiome and Immune Activation Parameters in HIV Infected Subjects

    Mutlu, Ece A.; Keshavarzian, Ali; Losurdo, John; Swanson, Garth; Siewe, Basile; Forsyth, Christopher; French, Audrey; DeMarais, Patricia; Sun, Yan; Koenig, Lars; Cox, Stephen; Engen, Phillip; Chakradeo, Prachi; Abbasi, Rawan; Gorenz, Annika

    2014-01-01

    Author Summary Human immunodeficiency virus (HIV) infection related illness progresses despite the control of the virus itself by medications that stop the replication of the virus. This happens because the immune system gets activated. While the causes for such activation of the immune system are not exactly known, immune activation in HIV infection may be occurring as a result of bacteria or their products in the digestive tract. This study looks at the types of bacteria that reside in the ...

  11. Interaction between viral RNA silencing suppressors and host factors in plant immunity.

    Nakahara, Kenji S; Masuta, Chikara

    2014-08-01

    To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against viruses, RNA silencing suppressors (RSSs) as effectors to overcome host RNA silencing and resistance gene (R-gene)-mediated defense as effector-triggered immunity (ETI) recognizing RSSs as avirulence proteins. However, because the standard zigzag model does not fully apply to some unique aspects in the interactions between a plant host and virus, we here defined a model especially designed for viruses. Although we simplified the phenomena involved in the virus-host interactions in the model, certain specific interactive steps can be explained by integrating additional host factors into the model. These host factors are thought to play an important role in maintaining the efficacy of the various steps in the main pathway of defense against viruses in this model for virus-plant interactions. For example, we propose candidates that may interact with viral RSSs to induce the resistance response. PMID:24875766

  12. Antimicrobial activity of some Iranian medicinal plants

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  13. Active condensation of water by plants

    Prokhorov Alexey Anatolievich

    2013-01-01

    This paper is devoted to some peculiarities of water condensation on the surface of plants . Arguments in support of the hypothesis that in decreasing temperature of leaves and shoots below the dew point, the plant can actively condense moisture from the air, increasing the duration of dewfall are presented. Evening dewfall on plant surfaces begins before starting the formation of fog. Morning condensation continues for some time after the air temperature exceeds the dew point . The phenomen...

  14. Lymphatic System: An Active Pathway for Immune Protection

    Liao, Shan; von der Weid, Pierre-Yves

    2014-01-01

    Lymphatic vessels are well known to participate in the immune response by providing the structural and functional support for the delivery of antigens and antigen presenting cells to draining lymph nodes. Recent advances have improved our understanding of how the lymphatic system works and how it participates to the development of immune responses. New findings suggest that the lymphatic system may control the ultimate immune response through a number of ways which include guiding antigen/den...

  15. SCREENING OF PLANTS FOR ANTI DERMATOPHYTE ACTIVITY

    V.S. Chauhan, A. Suthar, V. Naik and K. Salkar*

    2012-05-01

    Full Text Available Mycotic infections of skin are caused by dermatophytes. Screening of plants for anti dermatophyte activity was carried out based on the literature search done. Native plants of Maharashtra (India were screened for anti dermatophyte activity. Various plant parts from different regions were collected and then extracted with three different solvents viz. alcohol, hydro-alcohol and aqueous. The obtained extracts were subjected for anti dermatophyte activity using agar-well diffusion technique. Three different concentrations of extract were checked for activity. Two species of dermatophytes, viz. - Trichophyton and Microsporum were used in the screening assay. Out of the twenty-eight plants screened by agar diffusion method, seven were found to be active with different activity profile. Methanol extract was the most active extract. Pterospermum suberifolium, Trachyspermum ammi, Peltaphorum pterocarpum, Ixora coccinia, Persicaria glabra, Terminallia elliptica and Cicca acida showed activity at different concentrations against the two species of dermatophytes. The data obtained can be used for further studying the anti dermatophyte potential of active plants.

  16. Uncaria tomentosa increases growth and immune activity in Oreochromis niloticus challenged with Streptococcus agalactiae.

    Yunis-Aguinaga, Jefferson; Claudiano, Gustavo S; Marcusso, Paulo F; Manrique, Wilson Gómez; de Moraes, Julieta R Engrácia; de Moraes, Flávio R; Fernandes, João B K

    2015-11-01

    Cat's claw (Uncaria tomentosa) is an Amazon herb using in native cultures in Peru. In mammals, it has been described several effects of this herb. However, this is the first report of its use on the diet of fish. The aim of this study was to determinate the effect of this plant on the growth and immune activity in Oreochromis niloticus. Nile tilapia (81.3 ± 4.5 g) were distributed into 5 groups and supplemented with 0 (non-supplement fish), 75, 150, 300, and 450 mg of U. tomentosa.kg(-1) of diet for a period of 28 days. Fish were inoculated in the swim bladder with inactivated Streptococcus agalactiae and samples were taken at 6, 24, and 48 h post inoculation (HPI). Dose dependent increases were noted in some of the evaluated times of thrombocytes and white blood cells counts (WBC) in blood and exudate, burst respiratory activity, lysozyme activity, melanomacrophage centers count (MMCs), villi length, IgM by immunohistochemistry in splenic tissue, and unexpectedly on growth parameters. However, dietary supplementation of this herb did not affect red blood cells count (RBC), hemoglobin, and there were no observed histological lesions in gills, intestine, spleen, and liver. The current results demonstrate for the first time that U. tomentosa can stimulate fish immunity and improve growth performance in Nile tilapia. PMID:26434713

  17. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  18. Antibacterial activity of selected Myanmar medicinal plants

    Thirteen plants which are traditionally used for the treatment of dysentery and diarrhoea in Myanmar were selected and tested for antibacterial activity by using agar disc diffusion technique. Polar and nonpolar solvents were employed for extraction of plants. The minimum inhibitory concentration (MIC) of the extracts with the most significant predominant activity were evaluated by plate dilution method. The plants Eugenia jambolana, Quisqualis indica, Leucaena glauca and Euphorbia splendens var. 1 were found to show significant antibacterial activity. It was also observed that extracts using nonpolar solvents did not show any antibacterial activity and extracts using polar solvents showed antibacterial activity on tested bacteria, indicating that the active chemical compound responsible for the antibacterial action must be a polar soluble compound. (author)

  19. Antimicrobial activity of some Iranian medicinal plants

    Ghasemi Pirbalouti Abdollah; Jahanbazi Parvin; Enteshari Shekoofeh; Malekpoor Fatemeh; Hamedi Behzad

    2010-01-01

    The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albi...

  20. Antimicrobial activity of amazonian medicinal plants

    Oliveira, Amanda A; Segovia, Jorge FO; Sousa, Vespasiano YK; Mata, Elida CG; Gonçalves, Magda CA; Bezerra, Roberto M; Junior, Paulo OM; Kanzaki, Luís IB

    2013-01-01

    Objectives The aqueous extracts of currently utilized Amazonian medicinal plants were assayed in vitro searching for antimicrobial activity against human and animal pathogenic microorganisms. Methods Medium resuspended lyophilized aqueous extracts of different organs of Amazonian medicinal plants were assayed by in vitro screening for antimicrobial activity. ATCC and standardized microorganisms obtained from Oswaldo Cruz Foundation/Brazil were individually and homogeneously grown in agar plat...

  1. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  2. Neuropathogenesis of Chikungunya infection: astrogliosis and innate immune activation.

    Inglis, Fiona M; Lee, Kim M; Chiu, Kevin B; Purcell, Olivia M; Didier, Peter J; Russell-Lodrigue, Kasi; Weaver, Scott C; Roy, Chad J; MacLean, Andrew G

    2016-04-01

    Chikungunya, "that which bends up" in the Makonde dialect, is an emerging global health threat, with increasing incidence of neurological complications. Until 2013, Chikungunya infection had been largely restricted to East Africa and the Indian Ocean, with cases within the USA reported to be from foreign travel. However, in 2014, over 1 million suspected cases were reported in the Americas, and a recently infected human could serve as an unwitting reservoir for the virus resulting in an epidemic in the continental USA. Chikungunya infection is increasingly being associated with neurological sequelae. In this study, we sought to understand the role of astrocytes in the neuropathogenesis of Chikungunya infection. Even after virus has been cleared form the circulation, astrocytes were activated with regard to TLR2 expression. In addition, white matter astrocytes were hypertrophic, with increased arbor volume in gray matter astrocytes. Combined, these would alter the number and distribution of synapses that each astrocyte would be capable of forming. These results provide the first evidence that Chikungunya infection induces morphometric and innate immune activation of astrocytes in vivo. Perturbed glia-neuron signaling could be a major driving factor in the development of Chikungunya-associated neuropathology. PMID:26419894

  3. Evaluating Medicinal Plants for Anticancer Activity

    Elisha Solowey

    2014-01-01

    Full Text Available Plants have been used for medical purposes since the beginning of human history and are the basis of modern medicine. Most chemotherapeutic drugs for cancer treatment are molecules identified and isolated from plants or their synthetic derivatives. Our hypothesis was that whole plant extracts selected according to ethnobotanical sources of historical use might contain multiple molecules with antitumor activities that could be very effective in killing human cancer cells. This study examined the effects of three whole plant extracts (ethanol extraction on human tumor cells. The extracts were from Urtica membranacea (Urticaceae, Artemesia monosperma (Asteraceae, and Origanum dayi post (Labiatae. All three plant extracts exhibited dose- and time-dependent killing capabilities in various human derived tumor cell lines and primary cultures established from patients’ biopsies. The killing activity was specific toward tumor cells, as the plant extracts had no effect on primary cultures of healthy human cells. Cell death caused by the whole plant extracts is via apoptosis. Plant extract 5 (Urtica membranacea showed particularly strong anticancer capabilities since it inhibited actual tumor progression in a breast adenocarcinoma mouse model. Our results suggest that whole plant extracts are promising anticancer reagents.

  4. Monitoring Biological Activity at Geothermal Power Plants

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  5. Screening antifungal activities of selected medicinal plants.

    Quiroga, E N; Sampietro, A R; Vattuone, M A

    2001-01-01

    Plants synthesise a vast array of secondary metabolites that are gaining importance for their biotechnological applications. The antifungal activity of the ethanolic extracts of ten Argentinean plants used in native medicine is reported. Antifungal assays included radial growth inhibition, disk and well diffusion assays and growth inhibition by broth dilution tests. The chosen test fungi were yeasts, microfungi and wood-rot causing Basidiomycetes. Extracts of Larrea divaricata, Zuccagnia punctata and Larrea cuneifolia displayed remarkable activity in the assays against the majority of the test fungi. In addition to the former plants, Prosopanche americana also inhibited yeast growth. PMID:11137353

  6. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant. PMID:25824390

  7. Immune adjuvant activity of the olive, soybean and corn oils

    Ana Claudia Marinho da Silva

    2016-08-01

    Full Text Available In the last half of the century, a large amount of substances has been used as immune adjuvant. The immune adjuvant effect of olive, soybean and corn oils in Swiss mice immunized with ovalbumin (OVA plus aluminum hydroxide or emulsified in Marcol, soybean, olive or corn oils was evaluated through the OVA-specific antibodies determined by ELISA and Passive Cutaneous Anaphylaxis. In this work the comparison of the intensity of the immune response was established by the Bayesian analysis. The adjuvant effect of the vegetable oils was shown to be more effective than aluminium hydroxide. Regarding to OVA-specific IgE synthesis, olive oil had the slowest adjuvant effect of the three vegetable oils. Accordingly, olive oil was the most convenient among the vegetable oils to be used as immune adjuvant, since it stimulated a higher production of OVA-specific Ig and lower levels of anti-OVA IgE.

  8. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. PMID:25203448

  9. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  10. Molluscicidal activity of some Moroccan medicinal plants.

    Hmamouchi, M; Lahlou, M; Agoumi, A

    2000-06-01

    Among 14 plants of Moroccan folk medicine tested for molluscicidal activity, ethyl acetate extract from Origanum compactum and hexane extracts from both Chenopodium ambrosioides and Ruta chalepensis were the most active (LC(90)=2.00, 2.23 and 2.23 mg l(-1), respectively) against the schistosomiasis-transmitting snail Bulinus truncatus. PMID:10844169

  11. Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast.

    Batista, S; Medina, A; Pires, M A; Moriñigo, M A; Sansuwan, K; Fernandes, J M O; Valente, L M P; Ozório, R O A

    2016-08-01

    The effects of using plant ingredients in Senegalese sole (Solea senegalensis) diet on immune competence and intestine morphology and microbial ecology are still controversial. Probiotics or immunostimulants can potentially alter the intestinal microbiota in a way that protects fish against pathogens. The current study aimed to examine the intestine histology and microbiota and humoral innate immune response in juvenile sole fed diets with low (35 %) or high (72 %) content of plant protein (PP) ingredients supplemented with a multispecies probiotic bacteria or autolysed yeast. Fish fed the probiotic diet had lower growth performance. Lysozyme and complement activities were significantly higher in fish fed PP72 diets than in their counterparts fed PP35 diets after 17 and 38 days of feeding. At 2 days of feeding, fish fed unsupplemented PP72 showed larger intestine section area and longer villus than fish fed unsupplemented PP35. At 17 days of feeding, fish fed unsupplemented PP72 showed more goblet cells than the other dietary groups, except the group fed yeast supplemented PP35 diet. High dietary PP level, acutely stimulate fish innate immune defence of the fish after 2 and 17 days of feeding. However, this effect does not occur after 73 days of feeding, suggesting a habituation to dietary treatments and/or immunosuppression, with a reduction in the number of the goblet cells. Fish fed for 38 days with diets supplemented with autolysed yeast showed longer intestinal villus. The predominant bacteria found in sole intestine were Vibrio sp. and dietary probiotic supplementation caused a reduction in Vibrio content, regardless of the PP level. PMID:27183997

  12. Molecular characteristics of Illicium verum extractives to activate acquired immune response.

    Peng, Wanxi; Lin, Zhi; Wang, Lansheng; Chang, Junbo; Gu, Fangliang; Zhu, Xiangwei

    2016-05-01

    Illicium verum, whose extractives can activate the demic acquired immune response, is an expensive medicinal plant. However, the rich extractives in I. verum biomass were seriously wasted for the inefficient extraction and separation processes. In order to further utilize the biomedical resources for the good acquired immune response, the four extractives were obtained by SJYB extraction, and then the immunology moleculars of SJYB extractives were identified and analyzed by GC-MS. The result showed that the first-stage extractives contained 108 components including anethole (40.27%), 4-methoxy-benzaldehyde (4.25%), etc.; the second-stage extractives had 5 components including anethole (84.82%), 2-hydroxy-2-(4-methoxy-phenyl)-n-methyl-acetamide (7.11%), etc.; the third-stage extractives contained one component namely anethole (100%); and the fourth-stage extractives contained 5 components including cyclohexyl-benzene (64.64%), 1-(1-methylethenyl)-3-(1-methylethyl)-benzene (17.17%), etc. The SJYB extractives of I. verum biomass had a main retention time between 10 and 20 min what's more, the SJYB extractives contained many biomedical moleculars, such as anethole, eucalyptol, [1S-(1α,4aα,10aβ)]-1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-1-phenanthrenecarboxylic acid, stigmast-4-en-3-one, γ-sitosterol, and so on. So the functional analytical results suggested that the SJYB extractives of I. verum had a function in activating the acquired immune response and a huge potential in biomedicine. PMID:27081359

  13. From filaments to function:The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity

    Katie Porter; Brad Day

    2016-01-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, develop-ment and movement, gene expression and signal transduc-tion, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activa-tion of specific signaling responses following pathogen perception. B4ased on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens.

  14. Immune activation by casein dietary antigens in bipolar disorder

    Severance, E.G.; Dupont, D.; Dickerson, F.B.; Stallings, C.R.; Origoni, A.E.; Krivogorsky, B.; Yang, S.; Haasnoot, W.; Yolken, R.H.

    2010-01-01

    Objectives: Inflammation and other immune processes are increasingly linked to psychiatric diseases. Antigenic triggers specific to bipolar disorder are not yet defined. We tested whether antibodies to bovine milk caseins were associated with bipolar disorder, and whether patients recognized differe

  15. Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plants Workers

    Gyuleva, Ilona; Panova, Delyana; Djounova, Jana; Rupova, Ivanka; Penkova, Kalina

    2015-01-01

    The purpose of this article is to analyze the results of a 10-year survey of the radiation effects of some immune parameters of occupationally exposed personnel from the Nuclear Power Plant “Kozloduy”, Bulgaria. 438 persons working in NPP with cumulative doses between 0.06 mSv and 766.36mSv and a control group with 65 persons were studied. Flow cytometry measurements of T, B, natural killer (NK) and natural killer T (NKT) cell lymphocyte populations were performed. Data were interpreted with ...

  16. The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response

    Le Roux, Clémentine; Del Prete, Stefania; Boutet-Mercey, Stephanie; Perreau, Francois; Balague, Claudine; Roby, Dominique; Fagard, Mathilde; Gaudin, Valerie

    2014-01-01

    Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthe...

  17. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity.

    Meenu S Padmanabhan

    2013-03-01

    Full Text Available Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.

  18. Cytotoxic Activity of Selected Nigerian Plants

    Sowemimo, A; M. Venter; Baatjies, L; Koekemoer, T

    2009-01-01

    Cancer is one of the most prominent human diseases which has stimulated scientific and commercial interest in the discovery of new anticancer agents from natural sources. The current study investigates the cytotoxic activity of ethanolic extracts of sixteen Nigerian plants used locally for the treatment of cancer using the MTT assay on the HeLa cell line. Sapium ellipticum leaves showed activity comparable to the reference compound Cisplatin and greater cytotoxic activity than Combretum panic...

  19. Photosystem II Repair and Plant Immunity: Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3.

    Järvi, Sari; Isojärvi, Janne; Kangasjärvi, Saijaliisa; Salojärvi, Jarkko; Mamedov, Fikret; Suorsa, Marjaana; Aro, Eva-Mari

    2016-01-01

    Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light. PMID:27064270

  20. Big Roles of Small Kinases:The Complex Functions of Receptor-Like Cytoplasmic Kinases in Plant Immunity and Development

    Wenwei Lin; Xiyu Ma; Libo Shan; Ping He

    2013-01-01

    Plants have evolved a large number of receptor-like cytoplasmic kinases (RLCKs) that often functionally and physically associate with receptor-like kinases (RLKs) to modulate plant growth, development and immune responses. Without any apparent extracellular domain, RLCKs relay intracellular signaling often via RLK complex-mediated transphosphorylation events. Recent advances have suggested essential roles of diverse RLCKs in concert with RLKs in regulating various cellular and physiological responses. We summarize here the complex roles of RLCKs in mediating plant immune responses and growth regulation, and discuss specific and overlapping functions of RLCKs in transducing diverse signaling pathways.

  1. Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells

    Qi Cao; Dangsheng Li; Ningli Li; Li Wang; Fang Du; Huiming Sheng; Yan Zhang; Juanjuan Wu; Baihua Shen; Tianwei Shen; Jingwu Zhang

    2007-01-01

    Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Thl immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level of anti-CD25 antibody (about 30 ng/ml,/K0.01 vs controls). Consistent with a role of anti-CD25 response in the down-regulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.

  2. Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plants Workers

    Panova, Delyana; Djounova, Jana; Rupova, Ivanka; Penkova, Kalina

    2015-01-01

    The purpose of this article is to analyze the results of a 10-year survey of the radiation effects of some immune parameters of occupationally exposed personnel from the Nuclear Power Plant “Kozloduy”, Bulgaria. 438 persons working in NPP with cumulative doses between 0.06 mSv and 766.36mSv and a control group with 65 persons were studied. Flow cytometry measurements of T, B, natural killer (NK) and natural killer T (NKT) cell lymphocyte populations were performed. Data were interpreted with regard to cumulative doses, length of service and age. The average values of the studied parameters of cellular immunity were in the reference range relative to age and for most of the workers were not significantly different from the control values. Low doses of ionizing radiation showed some trends of change in the number of CD3+CD4+ helper-inducer lymphocytes, CD3+ CD8+ and NKT cell counts. The observed changes in some of the studied parameters could be interpreted in terms of adaptation processes at low doses. At doses above 100–200 mSv, compensatory mechanisms might be involved to balance deviations in lymphocyte subsets. The observed variations in some cases could not be attributed only to the radiation exposure because of the impact of a number of other exogenous and endogenous factors on the immune system. PMID:26675014

  3. Immune-enhancing activity of extracellular polysaccharides isolated from Rhizopus nigricans.

    Yu, Zhidan; Kong, Mengli; Zhang, Pengying; Sun, Qingjie; Chen, Kaoshan

    2016-09-01

    Extracellular polysaccharides (EPS1-1) was extracted from fermentation liquor of Rhizopus nigricans and evaluated its immune-enhancing activities in vitro and in vivo. Results suggested that the proliferation of lymphocyte was stimulated after treated with EPS1-1. Moreover, the activities of macrophages were enhanced by increasing the activities of phagocytosis and acid phosphatase, the production of NO and the mRNA levels of IL-2, TNF-α and iNOS. Furthermore, EPS1-1 could significantly boost the immunity of normal and immunosuppressed mice, which included the increase of loaded swimming time, footpad swelling, organ index and the secretion of IL-2 and TNF-α in serum, thus suggesting that EPS1-1 could improve the body immunity through cellular immunity and humoral immunity. These findings provided further insights into the potential use of EPS1-1 as immunopotentiator or new function food. PMID:27185145

  4. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    Takashi Ohta; Atsushi Ido; Kie Kusano; Chiemi Miura; Takeshi Miura

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named "dipterose", with a molecular weight of 1.01 × 10(6) and comprising nine monosaccharides. Dipterose w...

  5. Synthesis of TP3 Fragment via One Pot Strategy and Its Immune Regulatory Activity

    WANG Li-feng; CHEN Jie; SHAN Hui-jie; LI Wei

    2005-01-01

    We have modified the previously described one-pot peptide synthesis method. The modified method has been successfully applied to the synthesis of TP3. Furthermore, the immune regulatory activity of TP3 has been characterized. The results show that the modified one-pot method can be used to synthesize the biological active peptide with the advantages of low cost and high productivity. Moreover, TP3 has a higher immune regulatory activity than TP5.

  6. Antibacterial activity of Brazilian Amazon plant extracts

    Ivana Barbosa Suffredini

    2006-12-01

    Full Text Available Infections caused by multiresistant bacteria are a widespread problem, especially in intensive care units. New antibiotics are necessary, and we need to search for alternatives, including natural products. Brazil is one of the hottest spots in the world in terms of biodiversity, but little is known about the chemical and pharmacological properties of most of the plants found in the Amazon rain forest and the Atlantic Forest. We screened 1,220 organic and aqueous extracts, obtained from Amazon and Atlantic rain forest plants, against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and E. coli. Seventeen organic and aqueous extracts obtained from 16 plants showed activity against both Gram-positive bacteria. None of the extracts showed relevant activity against the Gram-negative E. coli and Pseudomonas aeruginosa.

  7. Immune challenge affects basal metabolic activity in wintering great tits.

    Ots, I.; Kerimov, A. B.; Ivankina, E. V.; Ilyina, T. A.; Hõrak, P.

    2001-01-01

    The costs of exploiting an organism's immune function are expected to form the basis of many life-history trade-offs. However, there has been debate about whether such costs can be paid in energetic and nutritional terms. We addressed this question in a study of wintering, free-living, male great tits by injecting them with a novel, non-pathogenic antigen (sheep red blood cells) and measuring the changes in their basal metabolic rates and various condition indices subsequent to immune challen...

  8. Gender differences in the immune system activities of sea urchin Paracentrotus lividus.

    Arizza, Vincenzo; Vazzana, Mirella; Schillaci, Domenico; Russo, Debora; Giaramita, Francesca Tiziana; Parrinello, Nicolò

    2013-03-01

    In the immune system of vertebrates, gender-specific differences in individual immune competence are well known. In general, females possess more powerful immune response than males. In invertebrates, the situation is much less clear. For this purpose we have chosen to study the immune response of the two sexes of the echinoderm Paracentrotus lividus in pre- and post-spawning phases. The coelomic fluid from the echinoderms contains several coelomocyte types and molecules involved in innate immune defenses. In this article we report that the degree of immune responses in the P. lividus differs according to sex in both pre- and post-spawning phases. We found in all tests that females were more active than males. The results indicate that females possess a significant higher number of immunocytes consisting of phagocytes and uncolored spherulocytes. Since the immunological activity is mainly based on immunocytes, it was not surprising that females possessed the highest values of cytotoxicity and hemolysis activity and showed a greater ability to uptake neutral red and phagocyte yeasts cells, while the average number of ingested particles per active phagocyte was not significantly different. Furthermore, agglutinating activity was more evident in the coelomocyte lysate and coelomic fluid of females than in those of males. Finally we found that the acidic extract of female gonads possessed greater antimicrobial activity than that of male gonads. These results make it very likely that gender differences in the immune response are not restricted to vertebrates; rather, they are a general evolutionary phenomenon. PMID:23220062

  9. ANTIMICROBIAL ACTIVITY OF FEW SELECTED MEDICINAL PLANTS

    Dash G. K

    2011-01-01

    Full Text Available The petroleum ether, chloroform, methanol and aqueous extracts of leaves of Ageratum conyzoides Linn (Fam: Asteraceae, Argemone mexicana Linn. (Fam: Papaveraceae, Heliotropium indicum Linn (Fam: Boraginaceae and stem barks of Alstonia scholaris (L. R. Brown (Fam: Apocynaceae were screened for their antimicrobial activity against Bacillus subtilis, Stapphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger respectively. The results indicated that the chloroform, methanol and aqueous extracts of all tested plant materials are active against both Gram-positive and Gram-negative bacteria at the tested concentration. The spectrum of activity observed in the present study may be an indicative of the presence of broad spectrum antimicroial compounds in the extracts. Among the tested extracts, methanol extracts of all selected plant materials were found to be more effective than the other extracts under study. Preliminary phytochmical screening of the methanol extracts of selected plant materials primarily revealed presence of alkaloids, tannins and flavonoids. The present work justifies the use of these plant materials for antimicrobial activity as claimed in the folklore remedies.

  10. Active or passive immunization in unexplained recurrent miscarriage

    Christiansen, Ole B; Nielsen, Henriette Svarre; Pedersen, Bjorn

    2004-01-01

    carried out as Cochrane reviews have concluded than none of the different forms of immunotherapy has proved effective in the total RM population. However, the included trials have generally been small and very heterogenous with respect to the clinical histories of patients and the immunization protocols...

  11. Interferon Type I Driven Immune Activation in Generalized Autoimmune Diseases

    Z. Brkić (Zana)

    2013-01-01

    textabstractThis thesis describes research performed on several generalized autoimmune diseases with the main focus on primary Sjögren’s syndrome. Interferon type I has been implicated in the pathogenesis of these diseases and will be introduced in this chapter together with other important immune f

  12. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  13. ANTI-ULCER ACTIVITY OF LEGUMINOSAE PLANTS

    Noemi D. PAGUIGAN

    2014-03-01

    Full Text Available Context Ulcer is the most common gastrointestinal disturbance resulting from an inadequate gastric mucosal defense. Several drugs are available in the market to address the disease; however, these drugs are associated with unnecessary side effects. Objectives Previous research have confirmed the efficacy of plant extracts for possible treatment of the disease. This research aims to evaluate the anti-ulcer properties of medicinal plants. Methods Methanol extracts from the leaves of Intsia bijuga, Cynometra ramiflora, Tamarindus indica, Cassia javanica, Cassia fistula, Bauhini purpurea, Senna spectabilis, Senna siamea and Saraca thaipingensis were evaluated for their anti-ulcer activity using HCl-ethanol as ulcerogen. Results All extracts showed inhibitory activity with I. bijuga, T. indica, S. spectabilis and S. thaipingensis exhibiting more than 50% inhibition. S. thaipingensis showed the highest activity at 80%. S. spectabilis and S. thaipingensis were partitioned further into hexane, ethyl acetate and aqueous fractions. The aqueous and ethyl acetate fractions of S. spectabilis showed significant increased in its activity while the hexane and ethyl acetate fractions of S. thaipingensis gave higher activity than its aqueous portions. Conclusions We conclude that plant extracts are potential sources of new anti-ulcer agents.

  14. ANTIEMETIC ACTIVITY OF SOME AROMATIC PLANTS

    Hasan MuhammadMohtasheemul

    2012-02-01

    Full Text Available Current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., Carissa carandus L. (fruits, Chichorium intybus L (flowers, Cinnamum tamala L (leaves, Curcuma caesia Roxb (rhizomes, Lallemantia royleana Benth (leaves, Matricaria chamomila L (flowers, Piper longum L (fruits, Piper methysticum G. Forst (fruits, Piper nigrum Linn. (fruits and Syzygium aromaticum (Linn. Merr. & Perry (flowering buds was studied using chick emetic model. The ethanol extracts of these plants were administered at 150 mg/kg body weight orally. Domperidone was given at 100 mg/kg as a reference drug. All the extracts decrease in retches induced by copper sulphate pentahydrate given orally at 50 mg/kg body weight and showed comparable antiemetic activity with domperidone. Compound targeted antiemetic activity is further suggested.

  15. Antifungal activity of 10 Guadeloupean plants.

    Biabiany, Murielle; Roumy, Vincent; Hennebelle, Thierry; François, Nadine; Sendid, Boualem; Pottier, Muriel; Aliouat, El Moukhtar; Rouaud, Isabelle; Lohézic-Le Dévéhat, Françoise; Joseph, Henry; Bourgeois, Paul; Sahpaz, Sevser; Bailleul, François

    2013-11-01

    Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations. PMID:23280633

  16. Neutron activation analysis of medicinal plant extracts

    Instrumental neutron activation analysis was applied to the determination of the elements Br, Ca, Cl, Cs, Fe, K, La, Mg, Mn, Na, Rb and Zn in medicinal extracts obtained from Centella asiatica, Citrus aurantium L., Achyrolcline satureoides DC, Casearia sylvestris, Solano lycocarpum, Zingiber officinale Roscoe, Solidago microglossa and Stryphnondedron barbatiman plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyldithiocarbamate solution. Precision and accuracy of the results were evaluated by analyzing biological reference materials. The therapeutic action of some elements found in plant extracts analyzed is briefly discussed. (author). 15 refs., 5 tabs

  17. Immune response to bacteria induces dissemination of Ras-activated Drosophila hindgut cells

    Bangi, Erdem; Pitsouli, Chrysoula; Rahme, Laurence G.; Cagan, Ross; Apidianakis, Yiorgos

    2012-01-01

    Drosophila hindgut cells exposed to bacterial infection activate the innate immune response. Concomitant expression of the Ras1V12 oncogene leads to extracellular matrix degradation, basal cell invasion and dissemination in the body cavity.

  18. Medicinal plants with anti-inflammatory activities.

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  19. Lipopolysaccharide Increases Immune Activation and Alters T Cell Homeostasis in SHIVB’WHU Chronically Infected Chinese Rhesus Macaque

    Zhang, Gao-Hong; Wu, Run-Dong; Zheng, Hong-Yi; Zhang, Xiao-Liang; Zhang, Ming-Xu; Tian, Ren-Rong; Liu, Guang-Ming; Pang, Wei; Zheng, Yong-Tang

    2015-01-01

    Immune activation plays a significant role in the disease progression of HIV. Microbial products, especially bacterial lipopolysaccharide (LPS), contribute to immune activation. Increasing evidence indicates that T lymphocyte homeostasis disruptions are associated with immune activation. However, the mechanism by which LPS affects disruption of immune response is still not fully understood. Chronically SHIVB'WHU-infected Chinese rhesus macaques received 50 μg/kg body weight LPS in this study....

  20. Lipopolysaccharide Increases Immune Activation and Alters T Cell Homeostasis in SHIVB'WHU Chronically Infected Chinese Rhesus Macaque

    Gao-Hong Zhang; Run-Dong Wu; Hong-Yi Zheng; Xiao-Liang Zhang; Ming-Xu Zhang; Ren-Rong Tian; Guang-Ming Liu; Wei Pang; Yong-Tang Zheng

    2015-01-01

    Immune activation plays a significant role in the disease progression of HIV. Microbial products, especially bacterial lipopolysaccharide (LPS), contribute to immune activation. Increasing evidence indicates that T lymphocyte homeostasis disruptions are associated with immune activation. However, the mechanism by which LPS affects disruption of immune response is still not fully understood. Chronically SHIVB’WHU-infected Chinese rhesus macaques received 50 μg/kg body weight LPS in this study....

  1. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ Receptors

    O’Gorman, William E.; Huang, Huang; Wei, Yu-Ling; Davis, Kara L.; Leipold, Michael D.; Bendall, Sean C.; Kidd, Brian A.; Dekker, Cornelia L.; Maecker, Holden T.; Chien, Yueh-hsiu; Davis, Mark M.

    2014-01-01

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or “split” viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors—specifically Toll-like receptors...

  2. Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging

    Giovanoli, Sandra; Notter, Tina; Richetto, Juliet; Labouesse, Marie A.; Vuillermot, Stéphanie; Riva, Marco A; Meyer, Urs

    2015-01-01

    Background Prenatal exposure to infection and/or inflammation is increasingly recognized to play an important role in neurodevelopmental brain disorders. It has recently been postulated that prenatal immune activation, especially when occurring during late gestational stages, may also induce pathological brain aging via sustained effects on systemic and central inflammation. Here, we tested this hypothesis using an established mouse model of exposure to viral-like immune activation in late pr...

  3. Activation of the Maternal Immune System During Pregnancy Alters Behavioral Development of Rhesus Monkey Offspring

    Bauman, Melissa D.; Iosif, Ana-Maria; Smith, Stephen E. P.; Bregere, Catherine; Amaral, David G.; Patterson, Paul H.

    2014-01-01

    Background: Maternal infection during pregnancy is associated with an increased risk of schizophrenia and autism in the offspring. Supporting this correlation, experimentally activating the maternal immune system during pregnancy in rodents produces offspring with abnormal brain and behavioral development. We have developed a nonhuman primate model to bridge the gap between clinical populations and rodent models of maternal immune activation (MIA). Methods: A modified form of the ...

  4. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    Steven Biesmans; Meert, Theo F.; Jan A. Bouwknecht; Acton, Paul D.; Nima Davoodi; Patrick De Haes; Jacobine Kuijlaars; Xavier Langlois; Liam J. R. Matthews; Luc Ver Donck; Niels Hellings; Rony Nuydens

    2013-01-01

    Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS) is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice an...

  5. Role of IL-7 in immune activation during HIV-1 infection

    Sammicheli, Stefano

    2011-01-01

    Viral replication, lymphopenia and microbial translocation at the mucosal surfaces lead to a chronic state of immune activation during HIV-1 infection. Chronic immune activation is believed to impact on the functionality of cell types that are not the main target for virus replication, including CD8+T cells, B cells and NK cells. In this thesis two main aspects of the pathogenesis of HIV-1 infection were studied: 1) how viral replication and disease progression affect the homeo...

  6. Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression

    Fairfax, B. P.; Humburg, P.; Makino, S.; Naranbhai, V; Wong, D.; Lau, E; Jostins, L; Plant, K.; Andrews, R; McGee, C.; Knight, J.C.

    2014-01-01

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTL...

  7. Danger signals activating the immune response after trauma

    Stefanie Hirsiger; Hans-Peter Simmen; Werner, Clément M. L.; Wanner, Guido A; Daniel Rittirsch

    2012-01-01

    Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins) as well as exogenous pathogen-associated molecular patterns (PAMPs) play a crucial role in the initiation of the immun...

  8. Maternal immune activation increases seizure susceptibility in juvenile rat offspring.

    Yin, Ping; Zhang, Xin-Ting; Li, Jun; Yu, Lin; Wang, Ji-Wen; Lei, Ge-Fei; Sun, Ruo-Peng; Li, Bao-Min

    2015-06-01

    Epidemiological data suggest a relationship between maternal infection and a high incidence of childhood epilepsy in offspring. However, there is little experimental evidence that links maternal infection with later seizure susceptibility in juvenile offspring. Here, we asked whether maternal immune challenge during pregnancy can alter seizure susceptibility and seizure-associated brain damage in adolescence. Pregnant Sprague-Dawley rats were treated with lipopolysaccharide (LPS) or normal saline (NS) on gestational days 15 and 16. At postnatal day 21, seizure susceptibility to kainic acid (KA) was evaluated in male offspring. Four groups were studied, including normal control (NS-NS), prenatal infection (LPS-NS), juvenile seizure (NS-KA), and "two-hit" (LPS-KA) groups. Our results demonstrated that maternal LPS exposure caused long-term reactive astrogliosis and increased seizure susceptibility in juvenile rat offspring. Compared to the juvenile seizure group, animals in the "two-hit" group showed exaggerated astrogliosis, followed by worsened spatial learning ability in adulthood. In addition, prenatal immune challenge alone led to spatial learning impairment in offspring but had no effect on anxiety. These data suggest that prenatal immune challenge causes a long-term increase in juvenile seizure susceptibility and exacerbates seizure-induced brain injury, possibly by priming astroglia. PMID:25982885

  9. Immune and hormonal activity in adults suffering from depression

    S.O.V. Nunes

    2002-05-01

    Full Text Available An association between depression and altered immune and hormonal systems has been suggested by the results of many studies. In the present study we carried out immune and hormonal measurements in 40 non-medicated, ambulatory adult patients with depression determined by CID-10 criteria and compared with 34 healthy nondepressed subjects. The severity of the condition was determined with the Hamilton Depression Rating Scale. Of 40 depressed patients, 31 had very severe and 9 severe or moderate depression, 29 (72.5% were females and 11 (27.5% were males (2.6:1 ratio. The results revealed a significant reduction of albumin and elevation of alpha-1, alpha-2 and ß-globulins, and soluble IL-2 receptor in patients with depression compared to the values obtained for nondepressed subjects (P<0.05. The decrease lymphocyte proliferation in response to a mitogen was significantly lower in severely or moderately depressed patients when compared to control (P<0.05. These data confirm the immunological disturbance of acute phase proteins and cellular immune response in patients with depression. Other results may be explained by a variety of interacting factors such as number of patients, age, sex, and the nature, severity and/or duration of depression. Thus, the data obtained should be interpreted with caution and the precise clinical relevance of these findings requires further investigation.

  10. Immune status of the nuclear plant workers in the long-term period after occupational exposure

    Long-term clinical and epidemiological studies carried out in Russia have revealed a reliable linkage of onco-pathology with radiation exposure to the personnel of 'Mayak' Production Association (PA). At present most of the 'Mayak' veterans exposed to radiation during the first years of professional activity and accidents have reached the age of manifestation deleterious effects f chronic radiation exposure, including malignant neoplasms. According to the data published in a number of papers, immune and natural leukocyte resistance abnormalities have been observing for a long time after occupational exposure in doses significantly exceeding the limiting dose (dose limit DL). Long term studies were performed using large experimental material, we demonstrated stable immune abnormalities in animals of different species in the late period after exposure to high doses of chronic radiation. Incomplete recovery was revealed predominantly in T-system and also in the compartment of poly-potent and committed lymphatic precursors. The observed abnormalities, caused by residual radiation damage of blood-forming and immune systems, can be realized both directly and indirectly via formation of deterministic and/or somato-stochastic radiation effects. In this connection, studying of dependence of the frequency and character of immune abnormalities on the exposure level will enable to provide prediction of long-term consequences of chronic radiation, develop a survey program to form groups of risk of immunological deficiency, and design a scheme of timely prophylaxis and treatment techniques. The aim of present study was assessment of the immune status in the nuclear enterprise workers in the long-term period after occupational exposure and determination of dependence of the frequency of immune abnormalities on the accumulated radiation dose. The sample groups studied were form mainly of currently retired 'Mayak' workers, whose occupational activity had begun 45-50 years ago

  11. Lactic acid bacteria activating innate immunity improve survival in bacterial infection model of silkworm.

    Nishida, Satoshi; Ono, Yasuo; Sekimizu, Kazuhisa

    2016-01-01

    Lactic acid bacteria (LAB) have been thought to be helpful for human heath in the gut as probiotics. It recently was noted that activity of LAB stimulating immune systems is important. Innate immune systems are conserved in mammals and insects. Silkworm has innate immunity in response to microbes. Microbe-associated molecular pattern (ex. peptidoglycan and β-glucan) induces a muscle contraction of silkworm larva. In this study, we established an efficient method to isolate lactic acid bacteria derived from natural products. We selected a highly active LAB to activate the innate immunity in silkworm by using the silkworm muscle contraction assay, as well. The assay revealed that Lactococcus lactis 11/19-B1 was highly active on the stimulation of the innate immunity in silkworm. L. lactis 11/19-B1 solely fermented milk with casamino acid and glucose. This strain would be a starter strain to make yogurt. Compared to commercially available yogurt LAB, L. lactis 11/19-B1 has higher activity on silkworm contraction. Silkworm normally ingested an artificial diet mixed with L. lactis 11/19-B1 or a yogurt fermented with L. lactis 11/19-B1. Interestingly, silkworms that ingested the LAB showed tolerance against the pathogenicity of Pseudomonas aeruginosa. These data suggest that Lactococcus lactis 11/19-B1 would be expected to be useful for making yogurt and probiotics to activate innate immunity. PMID:26971556

  12. Latent and Active Tuberculosis Infection Increase Immune Activation in Individuals Co-Infected with HIV

    Zuri A. Sullivan

    2015-04-01

    Significance: Latent tuberculosis, which affects an estimated 1/3 of the world's population, has long been thought to be a relatively benign, quiescent state of M. tuberculosis infection. While HIV co-infection is known to exacerbate M. tuberculosis infection and increase the risk of developing active TB, little is known about the potential effect of latent TB infection on HIV disease. This study shows that HIV-infected individuals with both active and latent TB have elevated levels of inflammation and immune activation, biomarkers of HIV disease progression and elevated risk of mortality. These results suggest that, in the context of HIV, latent TB infection may be associated with increased risk of progression to AIDS and mortality.

  13. Effect of a plant preparation Citrosept on selected immunity indices in blood of slaughter turkey hens

    Elzbieta Rusinek-Prystupa

    2014-09-01

    Full Text Available [b]Introduction and objective[/b]. The objective of this study was to determine the effect of per os administration of 3 various dosages of a Citrosept preparation (a grapefruit extractto growing turkey hens on changes in their selected haematological and immunological blood indices. An attempt was also undertaken to select the most efficient dose of the preparation with respect to the mentioned indices in turkey hens. [b]Materials and methods[/b]. The experiment was conducted on 180 turkey hens allocated at random to 4 groups, 45 birds in each group. Samples of their full blood were analyzed for haematological indices, such as red blood cell count (RBS, haemoglobin content (Hb, haematocrit value (Ht, and white blood cell count (WBC. Samples of blood plasma were assayed to determine the activity of lysozyme (chamber-diffusive method and heterophils capability to reduce nitro blue tetrazolium (stimulated and spontaneous NBT test. Phagocytic activity of leucocytes against Staphylococcus aureus 209P strain was assessed and expressed as the percentage of phagocytic cells (% PC and phagocytic index (PI. [b]Results[/b]. The administration of the grapefruit extract to turkey hens with drinking water caused a significant increase in haemoglobin content in blood, as well as an increase in non-specific humoral immunity marker (activity of lysozyme and non-specific cellular immunity marker (percentage of phagocytic cells; P ≤ 0.05. [b]Conclusions[/b]. The results obtained enabled the positive evaluation of the advisability of applying the Citrosept preparation in the feeding of turkey hens at the age of 6–9 weeks. Among the doses examined, the most efficient with respect to the stimulation of the non-specific humoral and cellular immunity was the dose of 0.021 ml/kg of body weight.

  14. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.

    Elizabeth Henry

    2015-04-01

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64 and endosomal trafficking inhibitors (BFA, Wortmannin demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments.

  15. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.

    Henry, Elizabeth; Fung, Nicholas; Liu, Jun; Drakakaki, Georgia; Coaker, Gitta

    2015-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines) exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64) and endosomal trafficking inhibitors (BFA, Wortmannin) demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments. PMID:25918875

  16. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus

    Ghiasi, Seyed Mojtaba; Salmanian, A H; Chinikar, S;

    2011-01-01

    glycoprotein when expressed in the root and leaf of transgenic plants via hairy roots and stable transformation of tobacco plants, respectively. After confirmatory analyses of transgenic plant lines and quantification of the expressed glycoprotein, mice were either fed with the transgenic leaves or roots, fed......A antibodies in their serum and feces, respectively. The mice in the fed/boosted group showed a significant rise in specific IgG antibodies after a single boost. Our results imply that oral immunization of animals with edible materials from transgenic plants is feasible, and further assessments are under way...

  17. Antioxidant activities of five Lamiaceae plants

    Olívia R. Pereira; Perez, Maria J.; Macias, Rócio I.R.; Marín, Jose J. G.; Cardoso, Susana M.

    2013-01-01

    In the last decades, oxidative stress has been recognized as a key process in the physiopathology of several diseases. Consequently, the search for new antioxidant compounds, as well as new antioxidant sources, has increased exponentially. The Lamiaceae family encloses many plant species which are potential sources of antioxidant compounds. The present study evaluates the antioxidant activity of phenolic enriched extracts of Lamium album, Leonurus cardiaca, Lavandula dentata, Mentha aquatica ...

  18. ANTIEMETIC ACTIVITY OF SOME AROMATIC PLANTS

    Hasan MuhammadMohtasheemul; Ahmed Salman; Ahmed Ziauddin; Azhar Iqbal

    2012-01-01

    Current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., Carissa carandus L. (fruits), Chichorium intybus L (flowers), Cinnamum tamala L (leaves), Curcuma caesia Roxb (rhizomes), Lallemantia royleana Benth (leaves), Matricaria chamomila L (flowers), Piper longum L (fruits), Piper methysticum G. Forst (fruits), Piper nigrum Linn. (fruits) and Syzygium aromaticum (Linn.) Merr. & Perry (flowering buds) was studied using chick emetic model. The ethan...

  19. A mathematical model of immune activation with a unified self-nonself concept

    Sahamoddin eKhailaie

    2013-12-01

    Full Text Available The adaptive immune system reacts against pathogenic nonself, whereas it normally remains tolerant to self. The initiation of an immune response requires a critical antigen(Ag-stimulation and a critical number of Ag-specific T cells. Autoreactive T cells are not completely deleted by thymic selection and partially present in the periphery of healthy individuals that respond in certain physiological conditions. A number of experimental and theoretical models are based on the concept that structural differences discriminate self from nonself. In this article, we establish a mathematical model for immune activation in which self and nonself are not distinguished. The model considers the dynamic interplay of conventional T cells, regulatory T cells (Tregs and IL-2 molecules and shows that the renewal rate ratio of resting Tregs to naive T cells as well as the proliferation rate of activated T cells determine the probability of immune stimulation. The actual initiation of an immune response, however, relies on the absolute renewal rate of naive T cells. This result suggests that thymic selection reduces the probability of autoimmunity by increasing the Ag-stimulation threshold of self reaction which is established by selection of a low number of low-avidity autoreactive T cells balanced with a proper number of Tregs. The stability analysis of the ordinary differential equation model reveals three different possible immune reactions depending on critical levels of Ag-stimulation: A subcritical stimulation, a threshold stimulation inducing a proper immune response, and an overcritical stimulation leading to chronic co-existence of Ag and immune activity. The model exhibits oscillatory solutions in the case of persistent but moderate Ag-stimulation, while the system returns to the homeostatic state upon Ag clearance. In this unifying concept, self and nonself appear as a result of shifted Ag-stimulation thresholds which delineate these three regimes of

  20. Enzyme inhibitory activity of selected Philippine plants

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  1. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  2. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.)

  3. 5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

    Thomas Stübig; Anita Badbaran; Tim Luetkens; York Hildebrandt; Djordje Atanackovic; Binder, Thomas M. C.; Boris Fehse; Nicolaus Kröger

    2014-01-01

    Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and...

  4. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.

    Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R

    2016-09-01

    There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy. PMID:27485078

  5. Controlling measles using supplemental immunization activities: A mathematical model to inform optimal policy

    Verguet, Stéphane; Johri, Mira; Morris, Shaun K.; Gauvreau, Cindy L.; Jha, Prabhat; Jit, Mark

    2015-01-01

    Background The Measles & Rubella Initiative, a broad consortium of global health agencies, has provided support to measles-burdened countries, focusing on sustaining high coverage of routine immunization of children and supplementing it with a second dose opportunity for measles vaccine through supplemental immunization activities (SIAs). We estimate optimal scheduling of SIAs in countries with the highest measles burden. Methods We develop an age-stratified dynamic compartmental model of mea...

  6. Active Immunization in the United States: Developments over the Past Decade

    Dennehy, Penelope H.

    2001-01-01

    The Centers for Disease Control and Prevention has identified immunization as the most important public health advance of the 20th century. The purpose of this article is to review the changes that have taken place in active immunization in the United States over the past decade. Since 1990, new vaccines have become available to prevent five infectious diseases: varicella, rotavirus, hepatitis A, Lyme disease, and Japanese encephalitis virus infection. Improved vaccines have been developed to...

  7. Gender-Dependent Effects of Maternal Immune Activation on the Behavior of Mouse Offspring

    Xuan, Ingrid C. Y.; Hampson, David R.

    2014-01-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the "maternal immune activation" model, whereby the offspring from female rodents who we...

  8. Aberrant neural synchrony in the maternal immune activation model: Using translatable measures to explore targeted interventions

    Desiree Dickerson; David Bilkey

    2013-01-01

    Maternal exposure to infection occurring mid-gestation produces a three-fold increase in the risk of schizophrenia in the offspring. The critical initiating factor appears to be the maternal immune activation (MIA) that follows infection. This process can be induced in rodents by exposure of pregnant dams to the viral mimic Poly I:C, which triggers an immune response that results in structural, functional, behavioral, and electrophysiological phenotypes in the adult offspring that model thos...

  9. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity

    Takayuki Uematsu; Ei’ichi Iizasa; Noritada Kobayashi; Hiroki Yoshida; Hiromitsu Hara

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune acti...

  10. Danger Signals Activating the Immune Response after Trauma

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  11. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants.

    Daoudi, Abdeljlil; Aarab, Lotfi; Abdel-Sattar, Essam

    2013-04-01

    Herbal and traditional medicines are being widely used in practice in many countries for their benefits of treating different ailments. A large number of plants in Morocco were used in folk medicine to treat immune-related disorders. The objective of this study is to evaluate the immunomodulatory activity of protein extracts (PEs) of 14 Moroccan medicinal plants. This activity was tested on the proliferation of immune cells. The prepared total and PEs of the plant samples were tested using MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay on the splenocytes with or without stimulation by concanavalin-A (Con-A), a mitogenic agent used as positive control. The results of this study indicated different activity spectra. Three groups of activities were observed. The first group represented by Citrullus colocynthis, Urtica dioica, Elettaria cardamomum, Capparis spinosa and Piper cubeba showed a significant immunosuppressive activity. The second group that showed a significant immunostimulatory activity was represented by Aristolochia longa, Datura stramonium, Marrubium vulgare, Sinapis nigra, Delphynium staphysagria, Lepidium sativum, Ammi visnaga and Tetraclinis articulata. The rest of the plant extracts did not alter the proliferation induced by Con-A. This result was more important for the PE than for the total extract. In conclusion, this study revealed an interesting immunomodulating action of certain PEs, which could explain their traditional use. The results of this study may also have implications in therapeutic treatment of infections, such as prophylactic and adjuvant with cancer chemotherapy. PMID:22301818

  12. Antioxidant activity of some Turkish medicinal plants.

    Karadeniz, A; Çinbilgel, I; Gün, S Ş; Çetin, A

    2015-01-01

    DPPH, superoxide and nitric oxide radical scavenging activities and total phenolic content (TPC) of some less known plants, distributed in Burdur-Antalya provinces and consumed both as food and for the medicine, Asplenium ceterach L. (golden herb), Valeriana dioscoridis Sm. (valerian), Doronicum orientale Hoffm. (tiger herb), Cota pestalozzae (Boiss.) Boiss. (camomile), Eremurus spectabilis M. Bieb. (foxtail lily), Asphodeline lutea (L.) Rchb. (asphodel) and Smyrnium connatum Boiss. and Kotschy (hemlock) were investigated. As a result, the highest 2,2-diphenyl-1-picril hydrazyl (DPPH) radical scavenging activity was determined in C. pestalozzae extract (IC50 = 18.66 μg mL(-1)), the highest superoxide and nitric oxide radical scavenging activity was determined in A. ceterach extract (IC50 = 145.17 and 372.03 μg mL(-1)). The highest TPC was determined in A. ceterach extract (59,26 μg mL(-1)) as gallic acid equivalent. Further bioactivity and phytochemistry studies on these plants may enlighten new drug discovery researches. PMID:25649168

  13. The hnRNP-Q protein LIF2 participates in the plant immune response.

    Le Roux, Clémentine; Del Prete, Stefania; Boutet-Mercey, Stéphanie; Perreau, François; Balagué, Claudine; Roby, Dominique; Fagard, Mathilde; Gaudin, Valérie

    2014-01-01

    Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes. PMID:24914891

  14. Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887

    J.D. Biller-Takahashi

    2013-12-01

    Full Text Available The immune system of teleost fish has mechanisms responsible for the defense against bacteria through protective proteins in several tissues. The protein action can be evaluated by serum bactericidal activity and this is an important tool to analyze the immune system. Pacu, Piaractus mesopotamicus, is one of the most important fish in national aquaculture. However there is a lack of studies on its immune responses. In order to standardize and assess the accuracy of the serum bactericidal activity assay, fish were briefly challenged with Aeromonas hydrophila and sampled one week after the challenge. The bacterial infection increased the concentration of protective proteins, resulting in a decrease of colony-forming unit values expressed as well as an enhanced serum bactericidal activity. The protocol showed a reliable assay, appropriate to determine the serum bactericidal activity of pacu in the present experimental conditions.

  15. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread.

    Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit

    2016-04-01

    Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. PMID:26848538

  16. CD8+ T cell activation predominate early immune responses to hypercholesterolemia in Apoe-/- mice

    Björkbacka Harry

    2010-12-01

    Full Text Available Abstract Background It is well established that adaptive immune responses induced by hypercholesterolemia play an important role in the development of atherosclerosis, but the pathways involved remain to be fully characterized. In the present study we assessed immune responses to hypercholesterolemia induced by feeding Apoe-/- mice a high-fat diet for 4 or 8 weeks. Results The primary immune response in lymph nodes draining the aortic root was an increased expression of interferon (IFN-γ in CD8+CD28+ T cells, while an activation of IFN-γ expression in CD4+ T cells was observed only after 8 weeks of high-fat diet. Contrarily, spleen CD4+ T cells responded with a higher expression of IL-10. Spleen CD8+ T cells expressed both IFN-γ and IL-10 and showed enhanced proliferation when exposed to Concanavalin A. Plasma levels of IgG and IgM against oxidized LDL did not change, but the level of apolipoprotein B/IgM immune complexes was increased. Conclusion Hypercholesterolemia leads to unopposed activation of Th1 immune responses in lymph nodes draining atherosclerotic lesions, whereas Th1 activation in the spleen is balanced by a concomitant activation of Th2 cells. The activation of CD8+ T cells implies that hypercholesterolemia is associated with formation of cell autoantigens.

  17. Evaluation of National Immunization Day (NID Activities Under Intensified Pulse Polio Immunization Program (IPPI Feb 2012 in Central Gujarat, India

    Manish Rana, Sanju Gajjar, Rashmi Sharma, Anish Sinha, Brinda Chudasama, Pradeep Kumar

    2012-01-01

    Full Text Available Background: It has been more than 1 year since the last case of wild polio virus occurred in the country and we are at the final phase of polio eradication. It needs to enhance/ sustain all activities of polio eradication. This study was carried out to critically evaluate the various activities undertaken and make the suggestions for improvement during the National Immunization Day (NID of February 2012 under Intensified Pulse Polio Immunization Program (IPPI in urban/ rural areas of Ahmedabad, Kheda and Gandhinagar districts of Central Gujarat. Methodology: External evaluators after a training cum orientation program undertook the evaluation of NID (Feb 2012 in 3 districts of Central Gujarat in identified 20 booths through assessing booth based vaccination and undertaking surveys of house to house activities and at migratory/ transit/ street sites. Results: (a Booth based activities: Most booths were accessible and had supply of logistics (IEC materials, stationeries, vaccines, cold chain equipments, marker pens. Understaffing and last minute replacement with untrained staff and non participation of community or nongovernmental organizations (NGOs were some of the issues. (b House to house visits: External monitors could detect 7 missed sites with 63 unvaccinated children while the in house health supervisors could not detect any site. False P detection rates were also high for external monitors (5.3% than in house supervisors (1.3%. (c Migratory sites: Visit to 118 migratory sites yielded even more children as not vaccinated (16.8%. 21 transit sites showed the inadequacies of program where almost one third of children could not be checked for the vaccination. (d Street surveys: Street surveys done after completion of NID (Based on finger markings alone found 12.7% children as not vaccinated. Conclusions: Present communication aims to explore the problematic issues in achieving vaccination coverage, capacity building of team members and

  18. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

    Rongman Cai

    2011-08-01

    Full Text Available Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.

  19. Increased activity correlates with reduced ability to mount immune defenses to endotoxin in zebra finches.

    Lopes, Patricia C; Springthorpe, Dwight; Bentley, George E

    2014-10-01

    When suffering from infection, animals experience behavioral and physiological alterations that potentiate the immune system's ability to fight pathogens. The behavioral component of this response, termed "sickness behavior," is characterized by an overall reduction in physical activity. A growing number of reports demonstrate substantial flexibility in these sickness behaviors, which can be partially overcome in response to mates, intruders and parental duties. Since it is hypothesized that adopting sickness behaviors frees energetic resources for mounting an immune response, we tested whether diminished immune responses coincided with reduced sickness behaviors by housing male zebra finches (Taeniopygia guttata) in social conditions that alter their behavioral response to an endotoxin. To facilitate our data collection, we developed and built a miniaturized sensor capable of detecting changes in dorsoventral acceleration and categorizing them as different behaviors when attached to the finches. We found that the immune defenses (quantified as haptoglobin-like activity, ability to change body temperature and bacterial killing capacity) increased as a function of increased time spent resting. The findings indicate that when animals are sick attenuation of sickness behaviors may exact costs, such as reduced immune function. The extent of these costs depends on how relevant the affected components of immunity are for fighting a specific infection. PMID:24888267

  20. Immunization with Dendritic Cells Pulsed ex vivo with Recombinant Chlamydial Protease-Like Activity Factor Induces Protective Immunity Against Genital Chlamydia muridarum Challenge

    Bernard eArulanandam

    2011-12-01

    Full Text Available We have shown that immunization with soluble recombinant (r chlamydial protease-like activity factor (rCPAF and a T helper (Th 1 type adjuvant can induce significantly enhanced bacterial clearance and protection against Chlamydia–induced pathological sequelae in the genital tract. In this study, we investigated the use of bone marrow derived dendritic cells (BMDCs pulsed ex vivo with rCPAF+CpG in an adoptive subcutaneous immunization for the ability to induce protective immunity against genital chlamydial infection. We found that BMDCs pulsed with rCPAF+CpG efficiently up-regulated the expression of activation markers CD86, CD80, CD40 and major histocompatibility complex class II (MHC II, and secreted interleukin-12, but not IL-10 and IL-4. Mice adoptively immunized with rCPAF+CpG-pulsed BMDCs or UV-EB+CpG-pulsed BMDCs produced elevated levels of antigen-specific IFN- and enhanced IgG1 and IgG2a antibodies. Moreover, mice immunized with rCPAF+CpG-pulsed BMDCs or UV-EB+CpG-pulsed BMDCs exhibited significantly reduced genital Chlamydia shedding, accelerated resolution of infection, and reduced oviduct pathology when compared to infected mock-immunized animals. These results suggest that adoptive subcutaneous immunization with ex vivo rCPAF-pulsed BMDCs is an effective approach, comparable to that induced by UV-EB-BMDCs, for inducing robust anti-Chlamydia immunity.

  1. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response

    Oskvig, Devon B.; Elkahloun, Abdel G.; Johnson, Kory R.; Phillips, Terry M.; Herkenham, Miles

    2012-01-01

    Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother’s immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the of...

  2. Biological Activities of Plant Pigments Betalains.

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2016-04-25

    Betalains are a family of natural pigments present in most plants of the order Caryophyllales. They provide colors ranging from yellow to violet to structures that in other plants are colored by anthocyanins. These include not only edible fruits and roots but also flowers, stems, and bracts. The recent characterization of different bioactivities in experiments with betalain containing extracts and purified pigments has renewed the interest of the research community in these molecules used by the food industry as natural colorants. Studies with multiple cancer cell lines have demonstrated a high chemopreventive potential that finds in vitro support in a strong antiradical and antioxidant activity. Experiments in vivo with model animals and bioavailability studies reinforce the possible role played by betalains in the diet. This work provides a critical review of all the claimed biological activities of betalains, showing that the bioactivities described might be supported by the high antiradical capacity of their structural unit, betalamic acid. Although more investigations with purified compounds are needed, the current evidences suggest a strong health-promoting potential. PMID:25118005

  3. Reviewing surveillance activities in nuclear power plants

    This document provides guidance to Operational Safety Review Teams (OSARTs) for reviewing surveillance activities at a nuclear power plant. In addition, the document contains reference material to support the review of surveillance activities, to assist within the Technical Support area and to ensure consistency between individual reviews. Drafts of the document have already been used on several OSART missions and found to be useful. The document first considers the objectives of an excellent surveillance programme. Investigations to determine the quality of the surveillance programme are then discussed. The attributes of an excellent surveillance programme are listed. Advice follows on how to phrase questions so as to obtain an informative response on surveillance features. Finally, specific equipment is mentioned that should be considered when reviewing functional tests. Four annexes provide examples drawn from operating nuclear power plants. They were selected to supplement the main text of the document with the best international practices as found in OSART reviews. They should in no way limit the acceptance and development of alternative approaches that lead to equivalent or better results. Refs, figs and tabs

  4. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  5. Nerve growth factor: a neurotrophin with activity on cells of the immune system.

    Aloe, L; Simone, M D; Properzi, F

    Numerous studies published in the last two decades provide evidence that nerve growth factor (NGF), a polypeptide originally discovered because of its neurotrophic activity, acts on a variety of cells of the immune system, including mast cells, eosinophils, and B and T lymphocytes. NGF has been shown to increase during inflammatory responses, autoimmune disorders, parasitic infections, and allergic diseases. Moreover, stress, which is characterized also by activation of a variety of immune cells, causes a significant increase in basal plasma NGF levels. Recently published studies reveal that hematopoietic progenitor cells seem to be able to produce and/or respond to NGF. We report these data and discuss the hypothesis of the possible implication of NGF on the functional activities of immune cells. PMID:10383121

  6. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer* #

    Que, Ri-sheng; Lin, Cheng; Ding, Guo-ping; WU, ZHENG-RONG; Cao, Li-ping

    2016-01-01

    Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced killer cells (DC/CIKs) against pancreatic ca...

  7. Managing Siting Activities for Nuclear Power Plants

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world''. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The introduction of nuclear power brings new challenges to States - one of them being the selection of appropriates sites. It is a project that needs to begin early, be well managed, and deploy good communications with all stakeholders; including regulators. This is important, not just for those States introducing nuclear power for the first time, but for any State looking to build a new nuclear power plant. The purpose of the siting activities goes beyond choosing a suitable site and acquiring a licence. A large part of the project is about producing and maintaining a validated

  8. Induction of immune tolerance to FIX by intramuscular AAV gene transfer is independent of the activation status of dendritic cells

    Bharadwaj, Arpita S; Kelly, Meagan; Kim, Dongsoo; Chao, Hengjun

    2010-01-01

    The nature of viral vectors is suggested to be a significant contributor to undesirable immune responses subsequent to gene transfer. Such viral vectors, recognized as danger signals by the host immune system, activate dendritic cells (DCs), causing unwanted antivector and/or transgene product immunity. We recently reported efficient induction of immune tolerance to coagulation factor IX (FIX) by direct intramuscular injection of adeno-associated virus (AAV)–FIX. AAV vectors are nonpathogenic...

  9. Phenoloxidase activity in the infraorder Isoptera: unraveling life-history correlates of immune investment

    Rosengaus, Rebeca B.; Reichheld, Jennifer L.

    2016-02-01

    Within the area of ecological immunology, the quantification of phenoloxidase (PO) activity has been used as a proxy for estimating immune investment. Because termites have unique life-history traits and significant inter-specific differences exist regarding their nesting and foraging habits, comparative studies on PO activity can shed light on the general principles influencing immune investment against the backdrop of sociality, reproductive potential, and gender. We quantified PO activity across four termite species ranging from the phylogenetically basal to the most derived, each with their particular nesting/foraging strategies. Our data indicate that PO activity varies across species, with soil-dwelling termites exhibiting significantly higher PO levels than the above-ground wood nester species which in turn have higher PO levels than arboreal species. Moreover, our comparative approach suggests that pathogenic risks can override reproductive potential as a more important driver of immune investment. No gender-based differences in PO activities were recorded. Although termite PO activity levels vary in accordance with a priori predictions made from life-history theory, our data indicate that nesting and foraging strategies (and their resulting pathogenic pressures) can supersede reproductive potential and other life-history traits in influencing investment in PO. Termites, within the eusocial insects, provide a unique perspective for inferring how different ecological pressures may have influenced immune function in general and their levels of PO activity, in particular.

  10. IgE epitope proximity determines immune complex shape and effector cell activation capacity

    Gieras, Anna; Linhart, Birgit; Roux, Kenneth H.; Dutta, Moumita; Khodoun, Marat; Zafred, Domen; Cabauatan, Clarissa R.; Lupinek, Christian; Weber, Milena; Focke-Tejkl, Margarete; Keller, Walter; Finkelman, Fred D.; Valenta, Rudolf

    2016-01-01

    Background IgE-allergen complexes induce mast cell and basophil activation and thus immediate allergic inflammation. They are also important for IgE-facilitated allergen presentation to T cells by antigen-presenting cells. Objective To investigate whether the proximity of IgE binding sites on an allergen affects immune complex shape and subsequent effector cell activation in vitro and in vivo. Methods We constructed artificial allergens by grafting IgE epitopes in different numbers and proximity onto a scaffold protein. The shape of immune complexes formed between artificial allergens and the corresponding IgE was studied by negative-stain electron microscopy. Allergenic activity was determined using basophil activation assays. Mice were primed with IgE, followed by injection of artificial allergens to evaluate their in vivo allergenic activity. Severity of systemic anaphylaxis was measured by changes in body temperature. Results We could demonstrate simultaneous binding of 4 IgE antibodies in close vicinity to each other. The proximity of IgE binding sites on allergens influenced the shape of the resulting immune complexes and the magnitude of effector cell activation and in vivo inflammation. Conclusions Our results demonstrate that the proximity of IgE epitopes on an allergen affects its allergenic activity. We thus identified a novel mechanism by which IgE-allergen complexes regulate allergic inflammation. This mechanism should be important for allergy and other immune complex–mediated diseases. PMID:26684291