WorldWideScience

Sample records for activates neuronal gene

  1. Neuronal expression and regulation of CGRP promoter activity following viral gene transfer into cultured trigeminal ganglia neurons

    Durham, Paul L; Dong, Penny X; Belasco, Kevin T;

    2004-01-01

    -expression with endogenous CGRP. In contrast, an adenoviral vector containing a CMV-lacZ reporter was predominantly expressed in non-neuronal cells, with only 29% co-expression with CGRP. We then asked whether the CGRP promoter in the viral vector could be regulated by serotonin receptor type 1 (5-HT(1)) agonists......We have examined the regulation of calcitonin gene-related peptide (CGRP) promoter activity in primary cultures of rat trigeminal ganglia neurons. A viral vector was used to circumvent the potential complication of examining only a small subpopulation of cells in the heterogeneous cultures....... Infection with high titers of recombinant adenovirus containing 1.25 kb of the rat CGRP promoter linked to the beta-galactosidase reporter gene (AdCGRP-lacZ) yielded expression in about 50% of the CGRP-expressing neurons. The CGRP-lacZ reporter gene was preferentially expressed in neurons, with 91% co...

  2. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  3. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons

    Guez-Barber, Danielle; Fanous, Sanya; Golden, Sam A.; Schrama, Regina; Koya, Eisuke; Stern, Anna L.; Bossert, Jennifer M; Harvey, Brandon K.; Picciotto, Marina R.; Hope, Bruce T.

    2011-01-01

    Numerous studies with the neural activity marker Fos indicate that cocaine activates only a small proportion of sparsely distributed striatal neurons. Until now, efficient methods were not available to assess neuroadaptations induced specifically within these activated neurons. We used fluorescence-activated cell sorting (FACS) to purify striatal neurons activated during cocaine-induced locomotion in naïve and cocaine-sensitized cfos-lacZ transgenic rats. Activated neurons were labeled with a...

  4. Serum Response Factor (SRF mediated gene activity in physiological and pathological processes of neuronal motility

    Bernd Knoll

    2011-12-01

    Full Text Available In recent years, the transcription factor SRF (serum response factor was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance and e.g. synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility and neurite branching. SRF teams up with MRTFs (myocardin related transcription factors and TCFs (ternary complex factors to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration.

  5. Visualization of odor-induced neuronal activity by immediate early gene expression

    Bepari Asim K

    2012-11-01

    Full Text Available Abstract Background Sensitive detection of sensory-evoked neuronal activation is a key to mechanistic understanding of brain functions. Since immediate early genes (IEGs are readily induced in the brain by environmental changes, tracing IEG expression provides a convenient tool to identify brain activity. In this study we used in situ hybridization to detect odor-evoked induction of ten IEGs in the mouse olfactory system. We then analyzed IEG induction in the cyclic nucleotide-gated channel subunit A2 (Cnga2-null mice to visualize residual neuronal activity following odorant exposure since CNGA2 is a key component of the olfactory signal transduction pathway in the main olfactory system. Results We observed rapid induction of as many as ten IEGs in the mouse olfactory bulb (OB after olfactory stimulation by a non-biological odorant amyl acetate. A robust increase in expression of several IEGs like c-fos and Egr1 was evident in the glomerular layer, the mitral/tufted cell layer and the granule cell layer. Additionally, the neuronal IEG Npas4 showed steep induction from a very low basal expression level predominantly in the granule cell layer. In Cnga2-null mice, which are usually anosmic and sexually unresponsive, glomerular activation was insignificant in response to either ambient odorants or female stimuli. However, a subtle induction of c-fos took place in the OB of a few Cnga2-mutants which exhibited sexual arousal. Interestingly, very strong glomerular activation was observed in the OB of Cnga2-null male mice after stimulation with either the neutral odor amyl acetate or the predator odor 2, 3, 5-trimethyl-3-thiazoline (TMT. Conclusions This study shows for the first time that in vivo olfactory stimulation can robustly induce the neuronal IEG Npas4 in the mouse OB and confirms the odor-evoked induction of a number of IEGs. As shown in previous studies, our results indicate that a CNGA2-independent signaling pathway(s may activate the

  6. Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain.

    Matsu-ura, Toru; Konishi, Yoshiyuki; Aoki, Tsutomu; Naranjo, Jose R; Mikoshiba, Katsuhiko; Tamura, Taka-aki

    2002-12-30

    Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in the mouse brain after pentylenetetrazol (PTZ)-induced seizures. Accumulation in the mouse hippocampus reached maximal level in the late phase (at 7-8 h) after PTZ injection. Kainic acid induced the same response. Interestingly, the late induction of DREAM expression required new protein synthesis and was blocked by MK801 suggesting that Ca(2+)-influx via NMDA receptors is necessary for the PTZ-mediated DREAM expression. In situ hybridization revealed that PTZ-induced DREAM mRNA accumulation was observed particularly in the dentate gyrus, cerebral cortex, and piriform cortex. The results of the present study demonstrate that DREAM is a neural activity-stimulated late gene and suggest its involvement in adaptation to long-lasting neuronal activity. PMID:12531529

  7. Microglial control of neuronal activity

    Catherine eBéchade

    2013-03-01

    Full Text Available Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.

  8. Npas4: Linking Neuronal Activity to Memory.

    Sun, Xiaochen; Lin, Yingxi

    2016-04-01

    Immediate-early genes (IEGs) are rapidly activated after sensory and behavioral experience and are believed to be crucial for converting experience into long-term memory. Neuronal PAS domain protein 4 (Npas4), a recently discovered IEG, has several characteristics that make it likely to be a particularly important molecular link between neuronal activity and memory: it is among the most rapidly induced IEGs, is expressed only in neurons, and is selectively induced by neuronal activity. By orchestrating distinct activity-dependent gene programs in different neuronal populations, Npas4 affects synaptic connections in excitatory and inhibitory neurons, neural circuit plasticity, and memory formation. It may also be involved in circuit homeostasis through negative feedback and psychiatric disorders. We summarize these findings and discuss their implications. PMID:26987258

  9. Changes in neuronal activity and gene expression in guinea-pig auditory brainstem after unilateral partial hearing loss.

    Dong, S; Mulders, W H A M; Rodger, J; Robertson, D

    2009-03-31

    Spontaneous neural hyperactivity in the central auditory pathway is often associated with deafness, the most common form of which is partial hearing loss. We quantified both peripheral hearing loss and spontaneous activity in single neurons of the contralateral inferior colliculus in a guinea-pig model 1 week after a unilateral partial deafness induced by cochlear mechanical lesion. We also measured mRNA levels of candidate genes in the same animals using quantitative real-time PCR. Spontaneous hyperactivity was most marked in the frequency region of the peripheral hearing loss. Expression of glutamate decarboxylase 1 (GAD1), GABA-A receptor subunit alpha-1 (GABRA1), and potassium channel subfamily K member 15 (KCNK15) was decreased ipsilaterally in the cochlear nucleus and bilaterally in the inferior colliculus. A member of RAB family of small GTPase (RAB3A) was decreased in both ipsilateral cochlear nucleus and contralateral inferior colliculus. RAB3 GTPase activating protein subunit 1 (RAB3GAP1) and glycine receptor subunit alpha-1 (GLRA1) were reduced ipsilaterally in the cochlear nucleus only. These results suggest that a decrease in inhibitory neurotransmission and an increase in membrane excitability may contribute to elevated neuronal spontaneous activity in the auditory brainstem following unilateral partial hearing loss. PMID:19356697

  10. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development.

    Lange, M; Norton, W; Coolen, M; Chaminade, M; Merker, S; Proft, F; Schmitt, A; Vernier, P; Lesch, K-P; Bally-Cuif, L

    2012-09-01

    Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, increased impulsivity and emotion dysregulation. Linkage analysis followed by fine-mapping identified variation in the gene coding for Latrophilin 3 (LPHN3), a putative adhesion-G protein-coupled receptor, as a risk factor for ADHD. In order to validate the link between LPHN3 and ADHD, and to understand the function of LPHN3 in the etiology of the disease, we examined its ortholog lphn3.1 during zebrafish development. Loss of lphn3.1 function causes a reduction and misplacement of dopamine-positive neurons in the ventral diencephalon and a hyperactive/impulsive motor phenotype. The behavioral phenotype can be rescued by the ADHD treatment drugs methylphenidate and atomoxetine. Together, our results implicate decreased Lphn3 activity in eliciting ADHD-like behavior, and demonstrate its correlated contribution to the development of the brain dopaminergic circuitry. PMID:22508465

  11. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders;

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...

  12. Tetracycline inducible gene manipulation in serotonergic neurons.

    Tillmann Weber

    Full Text Available The serotonergic (5-HT neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA mouse line (TPH2-tTA that allows temporal and spatial control of tetracycline (Ptet controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ. In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox. Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20 were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We

  13. Simultaneous and long-term measurement of gene expression and neuronal activity from a brain slice

    sprotocols

    2014-01-01

    Authors: Daisuke Ono, Ken-ichi Honma & Sato Honma ### Abstract Photonic bioimaging is a powerful tool for measurement of biological functions in living cells. It enables us to identify when, how, and where a phenomenon of interest takes place such as gene expression and interaction of molecules. To understand the sequential events happening in the brain, it is of special importance to assess more than one parameter simultaneously. In this protocol, we describe detailed methods of ...

  14. High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression

    Kuhlman, Sandra J.; Huang, Z. Josh

    2008-01-01

    We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs) that express GFP, dsRedExpress, or channelrhodopsin (ChR2) upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv) fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain. PMID:18414675

  15. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression.

    Sandra J Kuhlman

    Full Text Available We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs that express GFP, dsRedExpress, or channelrhodopsin (ChR2 upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain.

  16. Activity-dependent neuronal signalling and autism spectrum disorder

    Ebert, Daniel H.; Greenberg, Michael E.

    2013-01-01

    Neuronal activity induces the post-translational modification of synaptic molecules, promotes localized protein synthesis within dendrites and activates gene transcription, thereby regulating synaptic function and allowing neuronal circuits to respond dynamically to experience. Evidence indicates that many of the genes that are mutated in autism spectrum disorders are crucial components of the activity-dependent signalling networks that regulate synapse development and plasticity. Dysregulati...

  17. Calcium control of gene regulation in rat hippocampal neuronal cultures.

    Pinato, Giulietta; Pegoraro, Silvia; Iacono, Giovanni; Ruaro, Maria Elisabetta; Torre, Vincent

    2009-09-01

    Blockage of GABA-A receptors in hippocampal neuronal cultures triggers synchronous bursts of spikes initiating neuronal plasticity, partly mediated by changes of gene expression. By using specific pharmacological blockers, we have investigated which sources of Ca2+ entry primarily control changes of gene expression induced by 20 microM gabazine applied for 30 min (GabT). Intracellular Ca2+ transients were monitored with Ca2+ imaging while recording electrical activity with patch clamp microelectrodes. Concomitant transcription profiles were obtained using Affymetrix oligonucleotide microarrays and confirmed with quantitative RT-PCR. Blockage of NMDA receptors with 2-amino-5-phosphonovaleric acid (APV) did not reduce significantly somatic Ca2+ transients, which, on the contrary, were reduced by selective blockage of L, N, and P/Q types voltage gated calcium channels (VGCCs). Therefore, we investigated changes of gene expression in the presence of blockers of NMDA receptors and L, N, and P/Q VGCCs. Our results show that: (i) among genes upregulated by GabT, there are genes selectively dependent on NMDA activation, genes selectively dependent on L-type VGCCs and genes dependent on the activation of both channels; (ii) the majority of genes requires the concomitant activation of NMDA receptors and Ca2+ entry through VGCCs; (iii) blockage of N and P/Q VGCCs has an effect similar but not identical to blockage of L-type VGCCs. PMID:19441076

  18. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  19. The molecular and gene regulatory signature of a neuron

    Hobert, Oliver; Carrera, Inés; Stefanakis, Nikolaos

    2010-01-01

    Neuron-type specific gene batteries define the morphological and functional diversity of cell types in the nervous system. Here, we discuss the composition of neuron-type specific gene batteries and illustrate gene regulatory strategies employed by distinct organisms from C.elegans to higher vertebrates, which are instrumental in determining the unique gene expression profile and molecular composition of individual neuronal cell types. Based on principles learned from prokaryotic gene regulat...

  20. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus? [v1; ref status: indexed, http://f1000r.es/TYJStu

    Miriam Matamales

    2012-12-01

    Full Text Available Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  1. High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression

    Kuhlman, Sandra J.; Huang, Z. Josh

    2008-01-01

    We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs) that express GFP, dsRedExpress, or channelrhodopsin (ChR2) upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 e...

  2. Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse "shotgun" neuronal activity sampling.

    Mishchenko, Yuriy

    2016-10-01

    We investigate the properties of recently proposed "shotgun" sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks. PMID:27515518

  3. Shaping Neuronal Network Activity by Presynaptic Mechanisms.

    Ayal Lavi

    2015-09-01

    Full Text Available Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.

  4. Manipulating neural activity in physiologically classified neurons: triumphs and challenges.

    Gore, Felicity; Schwartz, Edmund C; Salzman, C Daniel

    2015-09-19

    Understanding brain function requires knowing both how neural activity encodes information and how this activity generates appropriate responses. Electrophysiological, imaging and immediate early gene immunostaining studies have been instrumental in identifying and characterizing neurons that respond to different sensory stimuli, events and motor actions. Here we highlight approaches that have manipulated the activity of physiologically classified neurons to determine their role in the generation of behavioural responses. Previous experiments have often exploited the functional architecture observed in many cortical areas, where clusters of neurons share response properties. However, many brain structures do not exhibit such functional architecture. Instead, neurons with different response properties are anatomically intermingled. Emerging genetic approaches have enabled the identification and manipulation of neurons that respond to specific stimuli despite the lack of discernable anatomical organization. These approaches have advanced understanding of the circuits mediating sensory perception, learning and memory, and the generation of behavioural responses by providing causal evidence linking neural response properties to appropriate behavioural output. However, significant challenges remain for understanding cognitive processes that are probably mediated by neurons with more complex physiological response properties. Currently available strategies may prove inadequate for determining how activity in these neurons is causally related to cognitive behaviour. PMID:26240431

  5. Locally active Hindmarsh-Rose neurons

    Arena, Paolo [Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania, viale A. Doria 6, 95100 Catania (Italy); Fortuna, Luigi [Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania, viale A. Doria 6, 95100 Catania (Italy)] e-mail: lfortuna@diees.unict.it; Frasca, Mattia [Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania, viale A. Doria 6, 95100 Catania (Italy)] e-mail: mfrasca@diees.unict.it; Rosa, Manuela La [SST Group, Corporate R and D, STMicroelectronics, Stradale Primosole 50, 95121 Catania (Italy)] e-mail: manuela.la-rosa@st.com

    2006-01-01

    In this paper the locally active and the edge of chaos regions of the Hindmarsh-Rose (HR) model for neuron dynamics are studied. From these regions parameters are chosen to set emergent phenomena both in 2D and 3D grids of HR neurons.

  6. Current status of gene therapy for motor neuron disease

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  7. y-Synuclein is an Adipocyte-Neuron Gene Coordinately-Expressed with Leptin & Increased in Obesity

    Objective: Recently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron peroxisome proliferator activated receptor-y (PPARy) target gene (1). Our objective herein was to identify additional candidate genes that play shared roles in neuron-fat physiology. Research Methods an...

  8. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  9. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington’s disease mice

    Highlights: ► Primary Huntington’s disease neurons are impaired in taking up glucose. ► Rab11 modulates glucose uptake in neurons. ► Increasing Rab11 activity attenuates the glucose uptake defect in disease neurons. ► We provide a novel mechanism for glucose hypometabolism in Huntington’s disease. -- Abstract: Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD140Q/140Q). Primary HD140Q/140Q cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD140Q/140Q neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD140Q/140Q neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.

  10. Loss of the trpc4 gene is associated with a reduction in cocaine self-administration and reduced spontaneous ventral tegmental area dopamine neuronal activity, without deficits in learning for natural rewards.

    Klipec, William D; Burrow, Kristin R; O'Neill, Casey; Cao, Jun-Li; Lawyer, Chloe R; Ostertag, Eric; Fowler, Melissa; Bachtell, Ryan K; Illig, Kurt R; Cooper, Donald C

    2016-06-01

    Among the canonical transient receptor potential (TRPC) channels, the TRPC4 non-selective cation channel is one of the most abundantly expressed subtypes within mammalian corticolimbic brain regions, but its functional and behavioral role is unknown. To identify a function for TRPC4 channels we compared the performance of rats with a genetic knockout of the trpc4 gene (trpc4 KO) to wild-type (WT) controls on the acquisition of simple and complex learning for natural rewards, and on cocaine self-administration (SA). Despite the abundant distribution of TRPC4 channels through the corticolimbic brain regions, we found trpc4 KO rats exhibited normal learning in Y-maze and complex reversal shift paradigms. However, a deficit was observed in cocaine SA in the trpc4 KO group, which infused significantly less cocaine than WT controls despite displaying normal sucrose SA. Given the important role of ventral tegmental area (VTA) dopamine neurons in cocaine SA, we hypothesized that TRPC4 channels may regulate basal dopamine neuron excitability. Double-immunolabeling showed a selective expression of TRPC4 channels in a subpopulation of putative dopamine neurons in the VTA. Ex vivo recordings of spontaneous VTA dopamine neuronal activity from acute brain slices revealed fewer cells with high-frequency firing rates in trpc4 KO rats compared to WT controls. Since deletion of the trpc4 gene does not impair learning involving natural rewards, but reduces cocaine SA, these data demonstrate a potentially novel role for TRPC4 channels in dopamine systems and may offer a new pharmacological target for more effective treatment of a variety of dopamine disorders. PMID:26988269

  11. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system

    Peixin Zhu

    2009-12-01

    Full Text Available The conditional expression of transgenes at high levels in sparse and specific populations of neurons is important for high-resolution optogenetic analyses of neuronal circuits. We explored two complementary methods, viral gene delivery and the iTet-Off system, to express transgenes in the brain of zebrafish. High-level gene expression in neurons was achieved by Sindbis and Rabies viruses. The Tet system produced strong and specific gene expression that could be modulated conveniently by doxycycline. Moreover, transgenic lines showed expression in distinct, sparse and stable populations of neurons that appeared to be subsets of the neurons targeted by the promoter driving the Tet activator. The Tet system therefore provides the opportunity to generate libraries of diverse expression patterns similar to gene trap approaches or the thy-1 promoter in mice, but with the additional possibility to pre-select cell types of interest. In transgenic lines expressing channelrhodopsin-2, action potential firing could be precisely controlled by two-photon stimulation at low laser power, presumably because the expression levels of the Tet-controlled genes were high even in adults. In channelrhodopsin-2-expressing larvae, optical stimulation with a single blue LED evoked distinct swimming behaviors including backward swimming. These approaches provide new opportunities for the optogenetic dissection of neuronal circuit structure and function.

  12. Genome-Wide Analysis of MEF2 Transcriptional Program Reveals Synaptic Target Genes and Neuronal Activity-Dependent Polyadenylation Site Selection

    Flavell, Steven W; Kim, Tae-Kyung; Gray, Jesse M.; Harmin, David A.; Hemberg, Martin; Hong, Elizabeth J.; Markenscoff-Papadimitriou, Eirene; Bear, Daniel M.; Greenberg, Michael E.

    2008-01-01

    Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for MEF2 in synapse development. Several of the MEF2 targets are mutated in human neurological disorder...

  13. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection

    Flavell, Steven W; Kim, Tae-Kyung; Gray, Jesse M.; Harmin, David A.; Hemberg, Martin; Hong, Elizabeth J.; Markenscoff-Papadimitriou, Eirene; Bear, Daniel M.; Greenberg, Michael E.

    2008-01-01

    Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for MEF2 in synapse development. Several of the MEF2 targets are mutated in human neurological disorder...

  14. Global Control of Motor Neuron Topography Mediated by the Repressive Actions of a Single Hox Gene

    Jung, Heekyung; Lacombe, Julie; Mazzoni, Esteban O.; Liem, Karel F., Jr.; Grinstein, Jonathan; Mahony, Shaun; Mukhopadhyay, Debnath; Gifford, David K; Young, Richard A.

    2010-01-01

    In the developing spinal cord, regional and combinatorial activities of Hox transcription factors are critical in controlling motor neuron fates along the rostrocaudal axis, exemplified by the precise pattern of limb innervation by more than fifty Hox-dependent motor pools. The mechanisms by which motor neuron diversity is constrained to limb levels are, however, not well understood. We show that a single Hox gene, Hoxc9, has an essential role in organizing the motor system through global rep...

  15. Global Control of Motor Neuron Topography Mediated by the Repressive Actions of a Single Hox Gene

    Jung, Heekyung; Lacombe, Julie; Mazzoni, Esteban O.; Liem, Karel F., Jr.; Grinstein, Jonathan; Mahony, Shaun; Mukhopadhyay, Debnath; Gifford, David K; Young, Richard A.; Anderson, Kathryn V.; Wichterle, Hynek; Dasen, Jeremy S.

    2010-01-01

    In the developing spinal cord, regional and combinatorial activities of Hox transcription factors are critical in controlling motor neuron fates along the rostrocaudal axis, exemplified by the precise pattern of limb innervation by more than fifty Hox-dependent motor pools. The mechanisms by which motor neuron diversity is constrained to limb-levels are however not well understood. We show that a single Hox gene, Hoxc9, has an essential role in organizing the motor system through global repre...

  16. Disruption of the CNTF gene results in motor neuron degeneration

    Masu, Yasuo; Wolf, Eckhard; Holtmann, Bettina; Sendtner, Michael; Brem, Gottfried; Thoenen, Hans

    2009-01-01

    CNTF is a cytosolic molecule expressed postnatally in myelinating Schwann cells and in a subpopulation of astrocytes. Although CNTF administration prevents lesion-mediated and genetically determined motor neuron degeneration, its physiological function remained elusive. Here it is reported that abolition of CNTF gene expression by homologous recombination results in a progressive atrophy and loss of motor neurons in adult mice, which is functionally reflected by a small but significant reduct...

  17. Neuronal Gene Expression Correlates of Parkinson's Disease with Dementia

    Stamper, Chelsea; Siegel, Andrew; Liang, Winnie S; Pearson, John V.; Stephan, Dietrich A.; Shill, Holly; Connor, Don; Caviness, John N.; Sabbagh, Marwan; Beach, Thomas G.; Adler, Charles H.; Dunckley, Travis

    2008-01-01

    Dementia is a common disabling complication in patients with Parkinson's disease (PD). The underlying molecular causes of Parkinson's disease with dementia (PDD) are poorly understood. To identify candidate genes and molecular pathways involved in PDD, we have performed whole genome expression profiling of susceptible cortical neuronal populations. Results show significant differences in expression of 162 genes (P < 0.01) between PD patients who are cognitively normal (PD-CogNL) and controls....

  18. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity

  19. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  20. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase

    Suh, Sang Won; Gum, Elizabeth T.; Hamby, Aaron M.; Chan, Pak H.; Swanson, Raymond A

    2007-01-01

    Hypoglycemic coma and brain injury are potential complications of insulin therapy. Certain neurons in the hippocampus and cerebral cortex are uniquely vulnerable to hypoglycemic cell death, and oxidative stress is a key event in this cell death process. Here we show that hypoglycemia-induced oxidative stress and neuronal death are attributable primarily to the activation of neuronal NADPH oxidase during glucose reperfusion. Superoxide production and neuronal death were blocked by the NADPH ox...

  1. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration.

    Anastasiadou, Sofia; Knöll, Bernd

    2016-05-01

    Fingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF. In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes. PMID:26980486

  2. Conservation of the function counts: homologous neurons express sequence-related neuropeptides that originate from different genes.

    Neupert, Susanne; Huetteroth, Wolf; Schachtner, Joachim; Predel, Reinhard

    2009-11-01

    By means of single-cell matrix assisted laser desorption/ionization time-of-flight mass spectrometry, we analysed neuropeptide expression in all FXPRLamide/pheromone biosynthesis activating neuropeptide synthesizing neurons of the adult tobacco hawk moth, Manduca sexta. Mass spectra clearly suggest a completely identical processing of the pheromone biosynthesis activating neuropeptide-precursor in the mandibular, maxillary and labial neuromeres of the subesophageal ganglion. Only in the pban-neurons of the labial neuromere, products of two neuropeptide genes, namely the pban-gene and the capa-gene, were detected. Both of these genes expressed, amongst others, sequence-related neuropeptides (extended WFGPRLamides). We speculate that the expression of the two neuropeptide genes is a plesiomorph character typical of moths. A detailed examination of the neuroanatomy and the peptidome of the (two) pban-neurons in the labial neuromere of moths with homologous neurons of different insects indicates a strong conservation of the function of this neuroendocrine system. In other insects, however, the labial neurons either express products of the fxprl-gene or products of the capa-gene. The processing of the respective genes is reduced to extended WFGPRLamides in each case and yields a unique peptidome in the labial cells. Thus, sequence-related messenger molecules are always produced in these cells and it seems that the respective neurons recruited different neuropeptide genes for this motif. PMID:19712058

  3. Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons.

    Marballi, K; Genabai, N K; Blednov, Y A; Harris, R A; Ponomarev, I

    2016-03-01

    Alcoholism is associated with dysregulation in the neural circuitry that mediates motivated and goal-directed behaviors. The dopaminergic (DA) connection between the ventral tegmental area (VTA) and the nucleus accumbens is viewed as a critical component of the neurocircuitry mediating alcohol's rewarding and behavioral effects. We sought to determine the effects of binge alcohol drinking on global gene expression in VTA DA neurons. Alcohol-preferring C57BL/6J × FVB/NJ F1 hybrid female mice were exposed to a modified drinking in the dark (DID) procedure for 3 weeks, while control animals had access to water only. Global gene expression of laser-captured tyrosine hydroxylase (TH)-positive VTA DA neurons was measured using microarrays. A total of 644 transcripts were differentially expressed between the drinking and nondrinking mice, and 930 transcripts correlated with alcohol intake during the last 2 days of drinking in the alcohol group. Bioinformatics analysis of alcohol-responsive genes identified molecular pathways and networks perturbed in DA neurons by alcohol consumption, which included neuroimmune and epigenetic functions, alcohol metabolism and brain disorders. The majority of genes with high and specific expression in DA neurons were downregulated by or negatively correlated with alcohol consumption, suggesting a decreased activity of DA neurons in high drinking animals. These changes in the DA transcriptome provide a foundation for alcohol-induced neuroadaptations that may play a crucial role in the transition to addiction. PMID:26482798

  4. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation. PMID:16341590

  5. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  6. Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning

    Kodama, Takashi; Guerrero, Shiloh; Shin, Minyoung; Moghadam, Seti; Faulstich, Michael; du Lac, Sascha

    2012-01-01

    Identification of marker genes expressed in specific cell types is essential for the genetic dissection of neural circuits. Here we report a new strategy for classifying heterogeneous populations of neurons into functionally distinct types and for identifying associated marker genes. Quantitative single-cell expression profiling of genes related to neurotransmitters and ion channels enables functional classification of neurons; transcript profiles for marker gene candidates identify molecular...

  7. Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep.

    Malkki, Hemi A I; Mertens, Paul E C; Lankelma, Jan V; Vinck, Martin; van Schalkwijk, Frank J; van Mourik-Donga, Laura B; Battaglia, Francesco P; Mahlke, Claudia; Kuhl, Dietmar; Pennartz, Cyriel M A

    2016-05-01

    The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1 single-unit and local field potential (LFP) activity in Arc/Arg3.1 knockout and wild-type mice during track running and flanking sleep periods. Locomotor activity, basic firing and spatial coding properties of CA1 cells in knockout mice were not different from wild-type mice. During active behavior, however, knockout animals showed a significantly shifted balance in LFP power, with a relative loss in high-frequency (beta-2 and gamma) bands compared to low-frequency bands. Moreover, during track-running, knockout mice showed a decrease in phase locking of spiking activity to LFP oscillations in theta, beta and gamma bands. Sleep architecture in knockout mice was not grossly abnormal. Sharp-wave ripples, which have been associated with memory consolidation and replay, showed only minor differences in dynamics and amplitude. Altogether, these findings suggest that Arc/Arg3.1 effects on memory formation are not only manifested at the level of molecular pathways regulating synaptic plasticity, but also at the systems level. The disrupted power balance in theta, beta and gamma rhythmicity and concomitant loss of spike-field phase locking may affect memory encoding during initial storage and memory consolidation stages. PMID:27038743

  8. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity.

    Wicher, Dieter; Derst, Christian; Gautier, Hélène; Lapied, Bruno; Heinemann, Stefan H; Agricola, Hans-Jürgen

    2007-01-01

    The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK) in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK) in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR), we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM) neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC(50)=11pM) due to reduction of a pacemaker Ca(2+) current through cAMP-inhibited pTRPgamma channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca(2+) concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH): PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPgamma channel that is activated by AKH under conditions of food shortage. PMID:18946521

  9. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  10. Models of the stochastic activity of neurones

    Holden, Arun Vivian

    1976-01-01

    These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the fin...

  11. Neurofibromatosis: The role of guanosine triphosphatase activating proteins in sensory neuron function

    Cynthia M. Hingtgen

    2008-01-01

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibromin, the protein product of the Nfl gene, is a gnanosine triphosphatase activating protein (GAP) for p21Ras (Ras). Loss of Nfl results in an increase in activity of the Ras transduction cascade. Because of the growing evidence suggesting involvement of downstream components of the Ras transduction cascade in the sensitization of nociceptive sensory neurons, we examined the stimulus-evoked release of the neuropeptides, substance P (SP) and calcitonin gene-related peptide (CGRP), from primary sensory neurons of mice with a mutation of the Nfl gene (NfI+1-). Measuring the levels of SP and CGRP by radioimmunoassay, we demonstrated that capsaicin-stimulated release of neuropep-tides is 3-5 folds higher in spinal cord slices from Nfl+1-mice than that from wildtype mouse tissue. In addition, the potassium- and capsaicin-stimulated release of CGRP from the culture of sensory neurons isolated from Nfl+1- mice was more than double that from the culture of wildtype neurons. Using patch-clamp electrophysiological techniques, we also examined the excitability of capsaicin-sensitive sensory neurons. It was found that the number of action potentials generated by the neurons from Nfl+1- mice, responsing to a ramp of depolarizing current, was more than three times of that generated by wildtype neurons. Consistent with that observation, neurons from Nfl+1- mice had lower firing thresholds, lower rheobase currents and shorter firing latencies compared with wildtype neurons. These data clearly demonstrate that GAPs, such as neurofihromin, can alter the excitability of nociceptive sensory neurons. The augmented response of sensory neurons with altered Ras signaling may explain the abnormal pain sensations experienced by people with NFI and suggests an important

  12. Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo

    Paquette, Alice J.; Perez, Sharon E.; Anderson, David J.

    2000-01-01

    The neuron-restrictive silencer factor (NRSF; also known as REST for repressor element-1 silencing transcription factor) is a transcriptional repressor of multiple neuronal genes, but little is known about its function in vivo. NRSF is normally down-regulated upon neuronal differentiation. Constitutive expression of NRSF in the developing spinal cord of chicken embryos caused repression of two endogenous target genes, N-tubulin and Ng-CAM, but did not prevent overt...

  13. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Wallach, Gilad; Lallouette, Jules; Herzog, Nitzan; De Pittà, Maurizio; Ben Jacob, Eshel; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocyt...

  14. Nuclear RNA-seq of single neurons reveals molecular signatures of activation

    Lacar, Benjamin; Linker, Sara B.; Jaeger, Baptiste N.; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y.; Husband, David; McConnell, Michael J.; Lasken, Roger; Gage, Fred H.

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  15. GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex

    Luisa De Vivo

    2010-01-01

    Full Text Available GLT-1 eGFP BAC reporter transgenic adult mice were used to detect GLT-1 gene expression in individual cells of CA1, CA3 and SI, and eGFP fluorescence was measured to analyze quantitatively GLT-1 promoter activity in different cells of neocortex and hippocampus. Virtually all GFAP+ astrocytes were eGFP+; we also found that about 80% of neurons in CA3 pyramidal layer, 10-70% of neurons in I-VI layers of SI and rare neurons in all strata of CA1 and in strata oriens and radiatum of CA3 were eGFP+. Analysis of eGFP intensity showed that astrocytes had a higher GLT-1 promoter activity in SI than in CA1 and CA3, and that neurons had the highest levels of GLT-1 promoter activity in CA3 stratum pyramidale and in layer VI of SI. Finally, we observed that the intensity of GLT-1 promoter activity in neurons is 1-20% of that measured in astrocytes. These results showed that in the hippocampus and neocortex GLT-1 promoter activity is observed in astrocytes and neurons, detailed the distribution of GLT-1 expressing neurons, and indicated that GLT-1 promoter activity in both astrocytes and neurons varies in different brain regions.

  16. Muscarinic Receptor Activation Elicits Sustained, Recurring Depolarizations in Reticulospinal Neurons

    Smetana, R. W.; Alford, S.; Dubuc, R.

    2007-01-01

    In lampreys, brain stem reticulospinal (RS) neurons constitute the main descending input to the spinal cord and activate the spinal locomotor central pattern generators. Cholinergic nicotinic inputs activate RS neurons, and consequently, induce locomotion. Cholinergic muscarinic agonists also induce locomotion when applied to the brain stem of birds. This study examined whether bath applications of muscarinic agonists could activate RS neurons and initiate motor output in lampreys. Bath appli...

  17. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons.

    Rocha, Emily M; Smith, Gaynor A; Park, Eric; Cao, Hongmei; Brown, Eilish; Hayes, Melissa A; Beagan, Jonathan; McLean, Jesse R; Izen, Sarah C; Perez-Torres, Eduardo; Hallett, Penelope J; Isacson, Ole

    2015-10-01

    Diminished lysosomal function can lead to abnormal cellular accumulation of specific proteins, including α-synuclein, contributing to disease pathogenesis of vulnerable neurons in Parkinson's disease (PD) and related α-synucleinopathies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase (GCase), and mutations in GBA1 are a prominent genetic risk factor for PD. Previous studies showed that in sporadic PD, and in normal aging, GCase brain activity is reduced and levels of corresponding glycolipid substrates are increased. The present study tested whether increasing GCase through AAV-GBA1 intra-cerebral gene delivery in two PD rodent models would reduce the accumulation of α-synuclein and protect midbrain dopamine neurons from α-synuclein-mediated neuronal damage. In the first model, transgenic mice overexpressing wildtype α-synuclein throughout the brain (ASO mice) were used, and in the second model, a rat model of selective dopamine neuron degeneration was induced by AAV-A53T mutant α-synuclein. In ASO mice, intra-cerebral AAV-GBA1 injections into several brain regions increased GCase activity and reduced the accumulation of α-synuclein in the substantia nigra and striatum. In rats, co-injection of AAV-GBA1 with AAV-A53T α-synuclein into the substantia nigra prevented α-synuclein-mediated degeneration of nigrostriatal dopamine neurons by 6 months. These neuroprotective effects were associated with altered protein expression of markers of autophagy. These experiments demonstrate, for the first time, the neuroprotective effects of increasing GCase against dopaminergic neuron degeneration, and support the development of therapeutics targeting GCase or other lysosomal genes to improve neuronal handling of α-synuclein. PMID:26392287

  18. Nicotinic activation of laterodorsal tegmental neurons

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA...... depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased......, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non...

  19. The emergence of spontaneous activity in neuronal cultures

    Orlandi, J. G.; Alvarez-Lacalle, E.; Teller, S.; Soriano, J.; Casademunt, J.

    2013-01-01

    In vitro neuronal networks of dissociated hippocampal or cortical tissues are one of the most attractive model systems for the physics and neuroscience communities. Cultured neurons grow and mature, develop axons and dendrites, and quickly connect to their neighbors to establish a spontaneously active network within a week. The resulting neuronal network is characterized by a combination of excitatory and inhibitory neurons coupled through synaptic connections that interact in a highly nonlinear manner. The nonlinear behavior emerges from the dynamics of both the neurons' spiking activity and synaptic transmission, together with biological noise. These ingredients give rise to a rich repertoire of phenomena that are still poorly understood, including the emergence and maintenance of periodic spontaneous activity, avalanches, propagation of fronts and synchronization. In this work we present an overview on the rich activity of cultured neuronal networks, and detail the minimal theoretical considerations needed to describe experimental observations.

  20. Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons

    Newell, Nicole R.; New, Felicia N.; Dalton, Justin E.; McIntyre, Lauren M.; Arbeitman, Michelle N.

    2016-01-01

    Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2–5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons. PMID:27247289

  1. Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons.

    Newell, Nicole R; New, Felicia N; Dalton, Justin E; McIntyre, Lauren M; Arbeitman, Michelle N

    2016-01-01

    Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2-5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons. PMID:27247289

  2. Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons

    Nicole R. Newell

    2016-08-01

    Full Text Available Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1 underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2–5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.

  3. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  4. Persistently Active, Pacemaker-Like Neurons in Neocortex

    Le Bon-Jego, Morgane; Yuste, Rafael

    2007-01-01

    The neocortex is spontaneously active, however, the origin of this self-generated, patterned activity remains unknown. To detect potential “pacemaker cells,” we use calcium imaging to directly identify neurons that discharge action potentials in the absence of synaptic transmissionin slices from juvenile mouse visual cortex. We characterize 60 of these neurons electrophysiologically and morphologically, finding that they belong to two classes of cells: one class composed of pyramidal neurons ...

  5. Persistently active, pacemaker-like neurons in neocortex

    Morgane Le Bon-Jego; Rafael Yuste

    2007-01-01

    The neocortex is spontaneously active, however, the origin of this self-generated, patterned activity remains unknown. To detect potential pacemaker cells, we use calcium imaging to directly identify neurons that discharge action potentials in the absence of synaptic transmissionin slices from juvenile mouse visual cortex. We characterize 60 of these neurons electrophysiologically and morphologically, finding that they belong to two classes of cells: one class composed of pyramidal neurons...

  6. Neuronal modulation of calcium channel activity in cultured rat astrocytes.

    Corvalan, V; Cole, R; de Vellis, J.; Hagiwara, S.

    1990-01-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca2+ and blocked by either Cd2+ or Co2+ that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron depend...

  7. Spinal cord injury and the neuron-intrinsic regeneration-associated gene program.

    Fagoe, Nitish D; van Heest, Jessica; Verhaagen, Joost

    2014-12-01

    Spinal cord injury (SCI) affects millions of people worldwide and causes a significant physical, emotional, social and economic burden. The main clinical hallmark of SCI is the permanent loss of motor, sensory and autonomic function below the level of injury. In general, neurons of the central nervous system (CNS) are incapable of regeneration, whereas injury to the peripheral nervous system is followed by axonal regeneration and usually results in some degree of functional recovery. The weak neuron-intrinsic regeneration-associated gene (RAG) response upon injury is an important reason for the failure of neurons in the CNS to regenerate an axon. This response consists of the expression of many RAGs, including regeneration-associated transcription factors (TFs). Regeneration-associated TFs are potential key regulators of the RAG program. The function of some regeneration-associated TFs has been studied in transgenic and knock-out mice and by adeno-associated viral vector-mediated overexpression in injured neurons. Here, we review these studies and propose that AAV-mediated gene delivery of combinations of regeneration-associated TFs is a potential strategy to activate the RAG program in injured CNS neurons and achieve long-distance axon regeneration. PMID:25269879

  8. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons

    Yang, Jiangyan

    2014-07-28

    L-lactate is a product of aerobic glycolysis that can be used by neurons as an energy substrate. Here we report that in neurons L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, c-Fos, and Zif268 through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2. L-lactate potentiates NMDA receptor-mediated currents and the ensuing increase in intracellular calcium. In parallel to this, L-lactate increases intracellular levels of NADH, thereby modulating the redox state of neurons. NADH mimics all of the effects of L-lactate on NMDA signaling, pointing to NADH increase as a primary mediator of L-lactate effects. The induction of plasticity genes is observed both in mouse primary neurons in culture and in vivo in the mouse sensory-motor cortex. These results provide insights for the understanding of the molecular mechanisms underlying the critical role of astrocyte-derived L-lactate in long-term memory and long-term potentiation in vivo. This set of data reveals a previously unidentified action of L-lactate as a signaling molecule for neuronal plasticity.

  9. The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegans

    Sarafi-Reinach, Trina R.; Sengupta, Piali

    2000-01-01

    Caenorhabditis elegans responds to its complex chemical environment using a small number of chemosensory neurons. Each of these neurons exhibits a unique sensory response repertoire. The developmental mechanisms that generate this diversity of function are largely unknown. Many C. elegans chemosensory neurons, including the AWA and ASG neurons, arise as lineal sisters of an asymmetric division. Here we describe the gene unc-130, which plays a role in the generation of the AWA and ASG neurons....

  10. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri; Hay-Schmidt, Anders; Jansen-Olesen, Inger; Gupta, Saurabh; Olesen, Jes

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene...

  11. Molecular profiling of activated neurons by phosphorylated ribosome capture.

    Knight, Zachary A; Tan, Keith; Birsoy, Kivanc; Schmidt, Sarah; Garrison, Jennifer L; Wysocki, Robert W; Emiliano, Ana; Ekstrand, Mats I; Friedman, Jeffrey M

    2012-11-21

    The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue. PMID:23178128

  12. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  13. Measure of synchrony in the activity of intrinsic cardiac neurons

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI > 0.1. The estimated bias due to artifacts was typically <1%. Strongly cardiovascular- and pulmonary-related neurons (SI > 0.5) were found. Results support the use of jitter-based SI in the context of intrinsic cardiac neurons. (paper)

  14. Reduced synaptic activity in neuronal networks derived from embryonic stem cells of murine Rett syndrome model

    Kaspar Emanuel Vogt

    2014-03-01

    Full Text Available Neurodevelopmental diseases such as the Rett syndrome have received renewed attention, since the mechanisms involved may underlie a broad range of neuropsychiatric disorders such as schizophrenia and autism. In vertebrates early stages in the functional development of neurons and neuronal networks are difficult to study. Embryonic stem cell-derived neurons provide an easily accessible tool to investigate neuronal differentiation and early network formation. We used in vitro cultures of neurons derived from murine embryonic stem cells missing the methyl-CpG-binding protein 2 (MECP2 gene (MeCP2-/y and from wild type cells of the corresponding background. Cultures were assessed using whole-cell patch-clamp electrophysiology and immunofluorescence. We studied the functional maturation of developing neurons and the activity of the synaptic connections they formed. Neurons exhibited minor differences in the developmental patterns for their intrinsic parameters, such as resting membrane potential and excitability; with the MeCP2-/y cells showing a slightly accelerated development, with shorter action potential half-widths at early stages. There was no difference in the early phase of synapse development, but as the cultures matured, significant deficits became apparent, particularly for inhibitory synaptic activity. MeCP2-/y embryonic stem cell-derived neuronal cultures show clear developmental deficits that match phenotypes observed in slice preparations and thus provide a compelling tool to further investigate the mechanisms behind Rett syndrome pathophysiology.

  15. Reduced synaptic activity in neuronal networks derived from embryonic stem cells of murine Rett syndrome model.

    Barth, Lydia; Sütterlin, Rosmarie; Nenniger, Markus; Vogt, Kaspar E

    2014-01-01

    Neurodevelopmental diseases such as the Rett syndrome (RTT) have received renewed attention, since the mechanisms involved may underlie a broad range of neuropsychiatric disorders such as schizophrenia and autism. In vertebrates early stages in the functional development of neurons and neuronal networks are difficult to study. Embryonic stem cell-derived neurons provide an easily accessible tool to investigate neuronal differentiation and early network formation. We used in vitro cultures of neurons derived from murine embryonic stem cells missing the methyl-CpG-binding protein 2 (MECP2) gene (MeCP2-/y) and from wild type cells of the corresponding background. Cultures were assessed using whole-cell patch-clamp electrophysiology and immunofluorescence. We studied the functional maturation of developing neurons and the activity of the synaptic connections they formed. Neurons exhibited minor differences in the developmental patterns for their intrinsic parameters, such as resting membrane potential and excitability; with the MeCP2-/y cells showing a slightly accelerated development, with shorter action potential half-widths at early stages. There was no difference in the early phase of synapse development, but as the cultures matured, significant deficits became apparent, particularly for inhibitory synaptic activity. MeCP2-/y embryonic stem cell-derived neuronal cultures show clear developmental deficits that match phenotypes observed in slice preparations and thus provide a compelling tool to further investigate the mechanisms behind RTT pathophysiology. PMID:24723848

  16. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons

    Mathilde Chivet

    2014-11-01

    Full Text Available Exosomes are nano-sized vesicles of endocytic origin released into the extracellular space upon fusion of multivesicular bodies with the plasma membrane. Exosomes represent a novel mechanism of cell–cell communication allowing direct transfer of proteins, lipids and RNAs. In the nervous system, both glial and neuronal cells secrete exosomes in a way regulated by glutamate. It has been hypothesized that exosomes can be used for interneuronal communication implying that neuronal exosomes should bind to other neurons with some kind of specificity. Here, dissociated hippocampal cells were used to compare the specificity of binding of exosomes secreted by neuroblastoma cells to that of exosomes secreted by cortical neurons. We found that exosomes from neuroblastoma cells bind indiscriminately to neurons and glial cells and could be endocytosed preferentially by glial cells. In contrast, exosomes secreted from stimulated cortical neurons bound to and were endocytosed only by neurons. Thus, our results demonstrate for the first time that exosomes released upon synaptic activation do not bind to glial cells but selectively to other neurons suggesting that they can underlie a novel aspect of interneuronal communication.

  17. Phase Resetting Light Pulses Induce Per1 and Persistent Spike Activity in a Subpopulation of Biological Clock Neurons

    Kuhlman, Sandra J.; Silver, Rae; Le Sauter, Joseph; Bult-Ito, Abel; McMahon, Douglas G.

    2012-01-01

    The endogenous circadian clock of the mammalian suprachiasmatic nucleus (SCN) can be reset by light to synchronize the biological clock of the brain with the external environment. This process involves induction of immediate-early genes such as the circadian clock gene Period1 (Per1) and results in a stable shift in the timing of behavioral and physiological rhythms on subsequent days. The mechanisms by which gene activation permanently alters the phase of clock neuron activity are unknown. To study the relationship between acute gene activation and persistent changes in the neurophysiology of SCN neurons, we recorded from SCN neurons marked with a dynamic green fluorescent protein (GFP) reporter of Per1 gene activity. Phase-resetting light pulses resulted in Per1 induction in a distinct subset of SCN neurons that also exhibited a persistent increase in action potential frequency 3–5 hr after a light pulse. By simultaneously quantifying Per1 gene activation and spike frequency in individual neurons, we found that the degree of Per1 induction was highly correlated with neuronal spike frequency on a cell-by-cell basis. Increased neuronal activity was mediated by membrane potential depolarization as a result of a reduction in outward potassium current. Double-label immunocytochemistry revealed that vasoactive intestinal peptide (VIP)-expressing cells, but not arginine vasopressin (AVP)-expressing cells, exhibited significant Per1 induction by light pulses. Rhythmic GFP expression occurred in both VIP and AVP neurons. Our results indicate that the steps that link acute molecular events to permanent changes in clock phase involve persistent suppression of potassium current, downstream of Per1 gene induction, in a specific subset of Per1-expressing neurons enriched for VIP. PMID:12598633

  18. Synthetic reverberating activity patterns embedded in networks of cortical neurons

    Vardi, R.; Wallach, A.; Kopelowitz, E.; Abeles, M.; Marom, S.; Kanter, I.

    2012-03-01

    Synthetic reverberating activity patterns are experimentally generated by stimulation of a subset of neurons embedded in a spontaneously active network of cortical cells in vitro. The neurons are artificially connected by means of a conditional stimulation matrix, forming a synthetic local circuit with a predefined programmable connectivity and time delays. Possible uses of this experimental design are demonstrated, analyzing the sensitivity of these deterministic activity patterns to transmission delays and to the nature of ongoing network dynamics.

  19. Lipid modulation of neuronal cholinergic activity

    Phospholipids are the major lipids in the plasma membrane, and it is now evident that the function of phospholipids exceeds that of the role of barrier between different aqueous compartments. Several lines of evidence suggest that a major plasma membrane lipids, phosphatidylcholine, may be a useful compound for modulating presynaptic cholinergic transmission. In order to investigate the effects of PC on cholinergic terminals, rat cortical synaptosomes were preloaded with [3H]-ACh and then treated with small unilamellar vesicles (SUV) composed of dipalmitoylphosphatidylcholine (DPPC) at concentrations (0.8-1.5 mg/ml) similar to those found circulating in plasma. The effects of DPPC on levels, hydrolysis, release, and synthesis of [3H]-ACh were then examined. Dipalmitoylphosphatidylcholine decreased the levels of [3H]-ACh. This decrease does not result from a dilution of the radioactive [3H]-choline by nonradioactive choline derived from PC. Specifically, it is the S3 (cytoplasmic) level of [3H]-ACh that is decreased by DPPC treatment. This decrease appears to be partially due to lipid activation of an intraterminal cholinesterase which results in hydrolysis of nonvesicular [3H]-ACh. The ability of the lipid to interfere with exocytosis may account for the blockade of the K+ induced [3H]-ACh release from the P3 (vesicular) fraction. The high affinity choline transporter was competitively inhibited by DPPC treatment when synaptosomes were treated with DPPC prior to [3H]-choline loading; the ubiquitous low affinity transport was not affected. These effects were specific for cholinergic neurons since the uptake and release of dopamine and norepinephrine from the substantia nigra and the cortex, respectively, were not affected

  20. Muscarinic receptor activation elicits sustained, recurring depolarizations in reticulospinal neurons.

    Smetana, R W; Alford, S; Dubuc, R

    2007-05-01

    In lampreys, brain stem reticulospinal (RS) neurons constitute the main descending input to the spinal cord and activate the spinal locomotor central pattern generators. Cholinergic nicotinic inputs activate RS neurons, and consequently, induce locomotion. Cholinergic muscarinic agonists also induce locomotion when applied to the brain stem of birds. This study examined whether bath applications of muscarinic agonists could activate RS neurons and initiate motor output in lampreys. Bath applications of 25 microM muscarine elicited sustained, recurring depolarizations (mean duration of 5.0 +/- 0.5 s recurring with a mean period of 55.5 +/- 10.3 s) in intracellularly recorded rhombencephalic RS neurons. Calcium imaging experiments revealed that muscarine induced oscillations in calcium levels that occurred synchronously within the RS neuron population. Bath application of TTX abolished the muscarine effect, suggesting the sustained depolarizations in RS neurons are driven by other neurons. A series of lesion experiments suggested the caudal half of the rhombencephalon was necessary. Microinjections of muscarine (75 microM) or the muscarinic receptor (mAchR) antagonist atropine (1 mM) lateral to the rostral pole of the posterior rhombencephalic reticular nucleus induced or prevented, respectively, the muscarinic RS neuron response. Cells immunoreactive for muscarinic receptors were found in this region and could mediate this response. Bath application of glutamatergic antagonists (6-cyano-7-nitroquinoxaline-2,3-dione/D-2-amino-5-phosphonovaleric acid) abolished the muscarine effect, suggesting that glutamatergic transmission is needed for the effect. Ventral root recordings showed spinal motor output coincides with RS neuron sustained depolarizations. We propose that unilateral mAchR activation on specific cells in the caudal rhombencephalon activates a circuit that generates synchronous sustained, recurring depolarizations in bilateral populations of RS neurons. PMID

  1. Generation of NSE-MerCreMer transgenic mice with tamoxifen inducible Cre activity in neurons.

    Mandy Ka Man Kam

    Full Text Available To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer, which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult.

  2. G9a inhibition promotes neuronal differentiation of human bone marrow mesenchymal stem cells through the transcriptional induction of RE-1 containing neuronal specific genes.

    Kim, Ho-Tae; Jeong, Sin-Gu; Cho, Goang-Won

    2016-06-01

    Recent studies have shown that epigenomic modifications are significantly associated with neuronal differentiation. Many neuronal specific genes contain the repressor element-1 (RE-1), which recruits epigenetic modulators, such as the histone methyltransferase G9a and interrupts the expression of neuronal genes in non-neuronal cells. This study investigated the functional role of G9a during neuronal differentiation of human bone marrow mesenchymal stem cells (BM-MSCs). Human BM-MSCs treated with the G9a inhibitor BIX01294 showed an increased expression of various neuronal-lineage genes. Using genomic sequence analysis, we identified RE-1 consensus sequences in the proximal region of several neuronal-specific genes. Chromatin immunoprecipitation (ChIP) assay results have showed that H3K9me2 (dimethylation of lysine 9 on histone 3) occupancy at RE-1-containing sequences from neuronal-specific genes was significantly decreased in BIX01294-MSCs. When BIX01294-MSCs were differentiated with neuronal induction medium, cells differentiated more effectively into neuron-like cells, complete with a cell body and dendrites. Expression of neuronal-specific genes containing the RE-1 sequences was significantly increased in differentiated BIX01294-MSCs, as confirmed by immunocytochemical staining and immunoblotting. Thus, this study shows that BIX01294 pretreated human BM-MSCs can be effectively differentiated into neuron-like cells by induced expression of neuronal-specific genes containing RE-1 sequences. PMID:26952575

  3. Targeted Disruption of the BDNF Gene Perturbs Brain and Sensory Neuron Development but Not Motor Neuron Development

    Jones, Kevin R; Fariñas, Isabel; Backus, Carey; Reichardt, Louis F.

    1994-01-01

    Brain-derived neurotrophic factor (BDNF), a neurotrophin, enhances the survival and differentiation of several classes of neurons in vitro. To determine its essential functions, we have mutated the BDNF gene. Most homoxygote mutants die within 2 days after birth, but a fraction live for 2–4 weeks. These develop symptoms of nervous system dysfunction, including ataxia. The BDNF mutant homoxygotes have substantlaliy reduced numbers of cranlal and spinal sensory neurons. Although their central n...

  4. GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells.

    Tsai, Yi-Tzang; Itokazu, Yutaka; Yu, Robert K

    2016-02-01

    Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells. PMID:26498762

  5. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model.

    Qi, Xin; Davis, Brandon; Chiang, Yung-Hsiao; Filichia, Emily; Barnett, Austin; Greig, Nigel H; Hoffer, Barry; Luo, Yu

    2016-09-01

    p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference

  6. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene

    Kratsios, Paschalis; Stolfi, Alberto; Levine, Michael; Hobert, Oliver

    2011-01-01

    Cholinergic motor neurons are defined by the co-expression of a battery of genes which encode proteins that act sequentially to synthesize, package and degrade acetylcholine and reuptake its breakdown product, choline. How expression of these critical motor neuron identity determinants is controlled and coordinated is not understood. We show here that in the nematode Caenorhabditis elegans all members of the cholinergic gene battery, as well as many other markers of terminal motor neuron fate...

  7. Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction.

    Zielinski, M R; Kim, Y; Karpova, S A; Winston, S; McCarley, R W; Strecker, R E; Gerashchenko, D

    2013-09-01

    Non-rapid eye movement (NREM) sleep electroencephalographic (EEG) delta power (~0.5-4 Hz), also known as slow wave activity (SWA), is typically enhanced after acute sleep deprivation (SD) but not after chronic sleep restriction (CSR). Recently, sleep-active cortical neurons expressing neuronal nitric oxide synthase (nNOS) were identified and associated with enhanced SWA after short acute bouts of SD (i.e., 6h). However, the relationship between cortical nNOS neuronal activity and SWA during CSR is unknown. We compared the activity of cortical neurons expressing nNOS (via c-Fos and nNOS immuno-reactivity, respectively) and sleep in rats in three conditions: (1) after 18-h of acute SD; (2) after five consecutive days of sleep restriction (SR) (18-h SD per day with 6h ad libitum sleep opportunity per day); (3) and time-of-day matched ad libitum sleep controls. Cortical nNOS neuronal activity was enhanced during sleep after both 18-h SD and 5 days of SR treatments compared to control treatments. SWA and NREM sleep delta energy (the product of NREM sleep duration and SWA) were positively correlated with enhanced cortical nNOS neuronal activity after 18-h SD but not 5days of SR. That neurons expressing nNOS were active after longer amounts of acute SD (18h vs. 6h reported in the literature) and were correlated with SWA further suggest that these cells might regulate SWA. However, since these neurons were active after CSR when SWA was not enhanced, these findings suggest that mechanisms downstream of their activation are altered during CSR. PMID:23685166

  8. Unbiased View of Synaptic and Neuronal Gene Complement in Ctenophores: Are There Pan-neuronal and Pan-synaptic Genes across Metazoa?

    Moroz, Leonid L; Kohn, Andrea B

    2015-12-01

    Hypotheses of origins and evolution of neurons and synapses are controversial, mostly due to limited comparative data. Here, we investigated the genome-wide distribution of the bilaterian "synaptic" and "neuronal" protein-coding genes in non-bilaterian basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). First, there are no recognized genes uniquely expressed in neurons across all metazoan lineages. None of the so-called pan-neuronal genes such as embryonic lethal abnormal vision (ELAV), Musashi, or Neuroglobin are expressed exclusively in neurons of the ctenophore Pleurobrachia. Second, our comparative analysis of about 200 genes encoding canonical presynaptic and postsynaptic proteins in bilaterians suggests that there are no true "pan-synaptic" genes or genes uniquely and specifically attributed to all classes of synapses. The majority of these genes encode receptive and secretory complexes in a broad spectrum of eukaryotes. Trichoplax (Placozoa) an organism without neurons and synapses has more orthologs of bilaterian synapse-related/neuron-related genes than do ctenophores-the group with well-developed neuronal and synaptic organization. Third, the majority of genes encoding ion channels and ionotropic receptors are broadly expressed in unicellular eukaryotes and non-neuronal tissues in metazoans. Therefore, they cannot be viewed as neuronal markers. Nevertheless, the co-expression of multiple types of ion channels and receptors does correlate with the presence of neural and synaptic organization. As an illustrative example, the ctenophore genomes encode a greater diversity of ion channels and ionotropic receptors compared with the genomes of the placozoan Trichoplax and the demosponge Amphimedon. Surprisingly, both placozoans and sponges have a similar number of orthologs of "synaptic" proteins as we identified in the genomes of two ctenophores. Ctenophores have a distinct synaptic organization compared with other animals. Our analysis of

  9. Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response

    Hofmann Sandra L

    2007-11-01

    Full Text Available Abstract Background The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1, and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7–9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. Results A total of 267 genes were significantly (approximately 2-fold up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1 were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF and a negative regulator of neuronal apoptosis (DAP kinase-1 were upregulated late in the course of the disease. Few genes were downregulated; these included the α2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor important in neuronal differentiation. Conclusion A molecular description of gene expression changes occurring in the brain throughout the course of neuronal ceroid lipofuscinosis suggests distinct phases of disease progression, provides clues to potential markers of disease activity, and points to new targets for therapy.

  10. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity.

    Julia P Brandt

    Full Text Available Many animals possess neurons specialized for the detection of carbon dioxide (CO(2, which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2. The ETS-5 transcription factor is necessary for the specification of CO(2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2-detection and transforms neurons into CO(2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2-sensing neurons in other phyla.

  11. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida;

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient......Many animals possess neurons specialized for the detection of carbon dioxide (CO(2)), which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2) is poorly understood...... to bypass a requirement for ets-5 in CO(2)-detection and transforms neurons into CO(2)-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2)-sensing neurons in other phyla....

  12. Mechanical stress activates neurites and somata of myenteric neurons

    Eva Maria Kugler

    2015-09-01

    Full Text Available The particular location of myenteric neurons, sandwiched between the 2 muscle layers of the gut, implies that their somata and neurites undergo mechanical stress during gastrointestinal motility. Existence of mechanosensitive enteric neurons (MEN is undoubted but many of their basic features remain to be studied. In this study, we used ultra-fast neuroimaging to record activity of primary cultured myenteric neurons of guinea pig and human intestine after von Frey hair evoked deformation of neurites and somata. Independent component analysis was applied to reconstruct neuronal morphology and follow neuronal signals. Of the cultured neurons 45% (114 out of 256, 30 guinea pigs responded to neurite probing with a burst spike frequency of 13.4 Hz. Action potentials generated at the stimulation site invaded the soma and other neurites. Mechanosensitive sites were expressed across large areas of neurites. Many mechanosensitive neurites appeared to have afferent and efferent functions as those that responded to deformation also conducted spikes coming from the soma. Mechanosensitive neurites were also activated by nicotine application. This supported the concept of multifunctional MEN. 14% of the neurons (13 out of 96, 18 guinea pigs responded to soma deformation with burst spike discharge of 17.9 Hz. Firing of MEN adapted rapidly (RAMEN, slowly (SAMEN or ultra-slowly (USAMEN. The majority of MEN showed SAMEN behavior although significantly more RAMEN occurred after neurite probing. Cultured myenteric neurons from human intestine had similar properties. Compared to MEN, dorsal root ganglion neurons were activated by neurite but not by soma deformation with slow adaptation of firing. We demonstrated that MEN exhibit specific features very likely reflecting adaptation to their specialized functions in the gut.

  13. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice.

    Fahad Haroon

    Full Text Available Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+ imaging studies revealed that tachyzoites actively manipulated Ca(2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host.

  14. Monitor and control of neuronal activities with femtosecond pulse laser

    ZHOU Wei; LIU XiuLi; L(U) XiaoHua; LI JiaSong; LUO QingMing; ZENG ShaoQun

    2008-01-01

    Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons in rat cortex slice were monitored by a custom-built two-photon microscopy, and the spontaneous calcium signals and the pharmacological responses as well as the responses to femtosecond pulse laser stimulation were recorded. The results showed that the amplitude of the cal-cium signals increased in direct proportion to the corresponding electrical activities. Glutamate induced a calcium transient, but continuous application resulted in smaller response. Simultaneous monitoring of neuronal populations distinguished the neurons of different microcircuits. The femtosecond pulse laser induced local or global calcium signals in the pyramidal neurons. The approach of interrogation and control of neural activities using femtosecond pulse laser is non-contact, nondestructive, repeatable, and without any additional substrates, which will contribute to the development of neuroscience.

  15. Oxytocin Neurones: Intrinsic Mechanisms Governing the Regularity of Spiking Activity.

    Maícas Royo, J; Brown, C H; Leng, G; MacGregor, D J

    2016-04-01

    Oxytocin neurones of the rat supraoptic nucleus are osmoresponsive and, with all other things being equal, they fire at a mean rate that is proportional to the plasma sodium concentration. However, individual spike times are governed by highly stochastic events, namely the random occurrences of excitatory synaptic inputs, the probability of which is increased by increasing extracellular osmotic pressure. Accordingly, interspike intervals (ISIs) are very irregular. In the present study, we show, by statistical analyses of firing patterns in oxytocin neurones, that the mean firing rate as measured in bins of a few seconds is more regular than expected from the variability of ISIs. This is consistent with an intrinsic activity-dependent negative-feedback mechanism. To test this, we compared observed neuronal firing patterns with firing patterns generated by a leaky integrate-and-fire model neurone, modified to exhibit activity-dependent mechanisms known to be present in oxytocin neurones. The presence of a prolonged afterhyperpolarisation (AHP) was critical for the ability to mimic the observed regularisation of mean firing rate, although we also had to add a depolarising afterpotential (DAP; sometimes called an afterdepolarisation) to the model to match the observed ISI distributions. We tested this model by comparing its behaviour with the behaviour of oxytocin neurones exposed to apamin, a blocker of the medium AHP. Good fits indicate that the medium AHP actively contributes to the firing patterns of oxytocin neurones during non-bursting activity, and that oxytocin neurones generally express a DAP, even though this is usually masked by superposition of a larger AHP. PMID:26715365

  16. Neuron network activity scales exponentially with synapse density

    Brewer, G. J.; Boehler, M D; Pearson, R. A.; DeMaris, A A; Ide, A. N.; Wheeler, B C

    2008-01-01

    Neuronal network output in the cortex as a function of synapse density during development has not been explicitly determined. Synaptic scaling in cortical brain networks seems to alter excitatory and inhibitory synaptic inputs to produce a representative rate of synaptic output. Here, we cultured rat hippocampal neurons over a three-week period to correlate synapse density with the increase in spontaneous spiking activity. We followed the network development as synapse formation and spike rat...

  17. Theta synchronizes the activity of medial prefrontal neurons during learning

    Paz, Rony; Bauer, Elizabeth P.; Paré, Denis

    2008-01-01

    Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony remain unclear. Because the hippocampus projects to the mPFC, we tested whether theta oscillations contribute to synchronize mPFC neurons during learni...

  18. Molecular Profiling of Activated Neurons by Phosphorylated Ribosome Capture

    Knight, Zachary A.; Tan, Keith; Birsoy, Kivanc; Schmidt, Sarah; Garrison, Jennifer L.; Wysocki, Robert W.; Emiliano, Ana; Ekstrand, Mats I.; Friedman, Jeffrey M.

    2012-01-01

    The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, there...

  19. Target cell-specific modulation of neuronal activity by astrocytes

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  20. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants.

    Kailiang Sun

    2012-02-01

    Full Text Available miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.

  1. Calcium-activated chloride current expression in axotomized sensory neurons: what for?

    Mathieu Boudes

    2012-03-01

    Full Text Available Calcium-activated chloride currents (CaCCs are activated by an increase in intracellular calcium concentration. Peripheral nerve injury induces the expression of CaCCs in a subset of adult sensory neurons in primary culture including mechano-and proprioceptors, though not nociceptors. Functional screenings of potential candidate genes established that Best1 is a molecular determinant for CaCC expression among axotomized sensory neurons, while Tmem16a accounts for inflammation-induced CaCC expression in nociceptors. In nociceptors, such CaCCs are preferentially activated under receptor-induced calcium mobilization contributing to cell excitability and pain. In axotomized mechano- and proprioceptors, CaCC activation does not promote electrical activity and prevents firing, a finding consistent with electrical silencing for growth competence of adult sensory neurons. In favor of a role in the process of neurite growth, CaCC expression is temporally correlated to neurons displaying a regenerative mode of growth. This perspective focuses on the molecular identity and role of CaCC in axotomized sensory neurons and the future directions to decipher the cellular mechanisms regulating CaCC during neurite (regrowth.

  2. Treadmill exercise prevents GABAergic neuronal loss with suppression of neuronal activation in the pilocarpine-induced epileptic rats

    Lim, Baek-Vin; Shin, Mal-Soon; Lee, Jae-Min; Seo, Jin-Hee

    2015-01-01

    Epilepsy is a common neurological disorder characterized by seizure and loss of neuronal cells by abnormal rhythmic firing of neurons in the brain. In the present study, we investigated the effect of treadmill exercise on gamma-aminobutyric acid (GABA)ergic neuronal loss in relation with neuronal activation using pilocarpine-induced epileptic rats. The rats were divided into four groups: control group, control and treadmill exercise group, pilocarpine-induced epilepsy group, and pilocarpine-i...

  3. Mechanisms for multiple activity modes of VTA dopamine neurons

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  4. Intracellular localization of the HCS2 gene products in identified snail neurons in vivo and in vitro.

    Ivanova, J L; Leonova, O G; Popenko, V I; Ierusalimsky, V N; Korshunova, T A; Boguslavsky, D V; Malyshev, A Y; Balaban, P M; Belyavsky, A V

    2006-03-01

    1. The HCS2 (Helix command specific 2) gene expressed in giant command neurons for withdrawal behavior of the terrestrial snail Helix lucorum encodes a unique hybrid precursor protein that contains a Ca-binding (EF-hand motif) protein and four small peptides (CNP1-CNP4) with similar Tyr-Pro-Arg-X aminoacid sequence at the C terminus. Previous studies suggest that under conditions of increased intracellular Ca(2+) concentration the HCS2 peptide precursor may be cleaved, and small physiologically active peptides transported to the release sites. In the present paper, intracellular localization of putative peptide products of the HCS2-encoded precursor was studied immunocytochemically by means of light and electron microscopy. 2. Polyclonal antibodies against the CNP3 neuropeptide and a Ca-binding domain of the precursor protein were used for gold labeling of ultrathin sections of identified isolated neurons maintained in culture for several days, and in same identified neurons freshly isolated from the central nervous system. 3. In freshly isolated neurons, the gold particles were mainly localized over the cytoplasmic secretory granules, with the density of labeling for the CNP3 neuropeptide being two-fold higher than for the calcium-binding domain. In cultured neurons, both antibodies mostly labeled clusters of secretory granules in growth cones and neurites of the neuron. The density of labeling for cultured neurons was the same for both antibodies, and was two-fold higher than for the freshly isolated from the central nervous system neurons. 4. The immunogold particles were practically absent in the bodies of cultured neurons. 5. The data obtained conform to the suggestion that the HCS2 gene products are transported from the cell body to the regions of growth or release sites. PMID:16763780

  5. Isolation of specific neurons from C. elegans larvae for gene expression profiling.

    W Clay Spencer

    Full Text Available The simple and well-described structure of the C. elegans nervous system offers an unprecedented opportunity to identify the genetic programs that define the connectivity and function of individual neurons and their circuits. A correspondingly precise gene expression map of C. elegans neurons would facilitate the application of genetic methods toward this goal. Here we describe a powerful new approach, SeqCeL (RNA-Seq of C. elegans cells for producing gene expression profiles of specific larval C. elegans neurons.We have exploited available GFP reporter lines for FACS isolation of specific larval C. elegans neurons for RNA-Seq analysis. Our analysis showed that diverse classes of neurons are accessible to this approach. To demonstrate the applicability of this strategy to rare neuron types, we generated RNA-Seq profiles of the NSM serotonergic neurons that occur as a single bilateral pair of cells in the C. elegans pharynx. These data detected >1,000 NSM enriched transcripts, including the majority of previously known NSM-expressed genes.This work offers a simple and robust protocol for expression profiling studies of post-embryonic C. elegans neurons and thus provides an important new method for identifying candidate genes for key roles in neuron-specific development and function.

  6. Cycloastragenol Is a Potent Telomerase Activator in Neuronal Cells: Implications for Depression Management

    Fanny C.F. Ip

    2014-07-01

    Full Text Available Cycloastragenol (CAG is an aglycone of astragaloside IV. It was first identified when screening Astragalus membranaceus extracts for active ingredients with antiaging properties. The present study demonstrates that CAG stimulates telomerase activity and cell proliferation in human neonatal keratinocytes. In particular, CAG promotes scratch wound closure of human neonatal keratinocyte monolayers in vitro. The distinct telomerase-activating property of CAG prompted evaluation of its potential application in the treatment of neurological disorders. Accordingly, CAG induced telomerase activity and cAMP response element binding (CREB activation in PC12 cells and primary neurons. Blockade of CREB expression in neuronal cells by RNA interference reduced basal telomerase activity, and CAG was no longer efficacious in increasing telomerase activity. CAG treatment not only induced the expression of bcl2, a CREB-regulated gene, but also the expression of telomerase reverse transcriptase in primary cortical neurons. Interestingly, oral administration of CAG for 7 days attenuated depression-like behavior in experimental mice. In conclusion, CAG stimulates telomerase activity in human neonatal keratinocytes and rat neuronal cells, and induces CREB activation followed by tert and bcl2 expression. Furthermore, CAG may have a novel therapeutic role in depression. © 2014 S. Karger AG, Basel

  7. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington's disease mice

    Li, Xueyi, E-mail: xli12@partners.org [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States); Valencia, Antonio; McClory, Hollis; Sapp, Ellen; Kegel, Kimberly B. [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States); DiFiglia, Marian, E-mail: difiglia@helix.mgh.harvard.edu [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Primary Huntington's disease neurons are impaired in taking up glucose. Black-Right-Pointing-Pointer Rab11 modulates glucose uptake in neurons. Black-Right-Pointing-Pointer Increasing Rab11 activity attenuates the glucose uptake defect in disease neurons. Black-Right-Pointing-Pointer We provide a novel mechanism for glucose hypometabolism in Huntington's disease. -- Abstract: Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD{sup 140Q/140Q}). Primary HD{sup 140Q/140Q} cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD{sup 140Q/140Q} neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD{sup 140Q/140Q} neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.

  8. Phase Resetting Light Pulses Induce Per1 and Persistent Spike Activity in a Subpopulation of Biological Clock Neurons

    Kuhlman, Sandra J.; Silver, Rae; Le Sauter, Joseph; Bult-Ito, Abel; McMahon, Douglas G.

    2003-01-01

    The endogenous circadian clock of the mammalian suprachiasmatic nucleus (SCN) can be reset by light to synchronize the biological clock of the brain with the external environment. This process involves induction of immediate-early genes such as the circadian clock gene Period1 (Per1) and results in a stable shift in the timing of behavioral and physiological rhythms on subsequent days. The mechanisms by which gene activation permanently alters the phase of clock neuron activity are unknown. T...

  9. NR4A Gene Expression Is Dynamically Regulated in the Ventral Tegmental Area Dopamine Neurons and Is Related to Expression of Dopamine Neurotransmission Genes

    Eells, Jeffrey B.; Wilcots, Josiah; Sisk, Scott; Guo-Ross, Shirley X.

    2011-01-01

    The NR4A transcription factors NR4A1, NR4A2, and NR4A3 (also known as Nur77, Nurr1, and Nor1, respectively) share similar DNA-binding properties and have been implicated in regulation of dopamine neurotransmission genes. Our current hypothesis is that NR4A gene expression is regulated by dopamine neuron activity and that induction of NR4A genes will increase expression of dopamine neurotransmission genes. Eticlopride and γ-butyrolactone (GBL) were used in wild-type (+/+) and Nurr1-null hetero...

  10. Transgenic approach to express the channelrhodopsin 2 gene in arginine vasopressin neurons of rats.

    Ishii, Masahiro; Hashimoto, Hirofumi; Ohkubo, Jun-Ichi; Ohbuchi, Toyoaki; Saito, Takeshi; Maruyama, Takashi; Yoshimura, Mitsuhiro; Yamamoto, Yukiyo; Kusuhara, Koichi; Ueta, Yoichi

    2016-09-01

    Optogenetics provides a powerful tool to regulate neuronal activity by light-sensitive ion channels such as channelrhodopsin 2 (ChR2). Arginine vasopressin (AVP; also known as the anti-diuretic hormone) is a multifunctional hormone which is synthesized in the magnocellular neurosecretory cells (MNCs) of the hypothalamus. Here, we have generated a transgenic rat that expresses an AVP-ChR2-enhanced green fluorescent protein (eGFP) fusion gene in the MNCs of the hypothalamus. The eGFP fluorescence that indicates the expression of ChR2-eGFP was observed in the supraoptic nucleus (SON) and in the magnocellular division of the paraventricular nucleus (PVN) that is known to contain AVP-secreting neurons. The eGFP fluorescence intensities in those nuclei and posterior pituitary were markedly increased after chronic salt loading (2% NaCl in drinking water for 5days). ChR2-eGFP was localized mainly in the membrane of AVP-positive MNCs. Whole-cell patch-clamp recordings were performed from single MNCs isolated from the SON of the transgenic rats, and blue light evoked repetitive action potentials. Our work provides for the first time an optogenetic approach to selectively activate AVP neurons in the rat. PMID:27493075

  11. Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

    Thundyil John

    2010-08-01

    Full Text Available Abstract Background- Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear. Methods- Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD, cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD, neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR, immunoblot and immunochemistry methods. Results- Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK and AMP-activated protein kinase (AMPK. Conclusions- This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that

  12. Tackling obstacles for gene therapy targeting neurons: disrupting perineural nets with hyaluronidase improves transduction.

    Klaus Wanisch; Stjepana Kovac; Stephanie Schorge

    2013-01-01

    Gene therapy has been proposed for many diseases in the nervous system. In most cases for successful treatment, therapeutic vectors must be able to transduce mature neurons. However, both in vivo, and in vitro, where preliminary characterisation of viral particles takes place, transduction of neurons is typically inefficient. One possible explanation is that the extracellular matrix (ECM), forming dense perineural nets (PNNs) around neurons, physically blocks access to the cell surface. We as...

  13. Comprehensive qPCR profiling of gene expression in single neuronal cells

    Citri, Ami; Pang, Zhiping P.; Sudhof, Thomas C.; Wernig, Marius; Malenka, Robert C.

    2011-01-01

    A major challenge in neuronal stem cell biology lies in characterization of lineage-specific reprogrammed human neuronal cells, a process that necessitates the use of an assay sensitive to the single-cell level. Single-cell gene profiling can provide definitive evidence regarding the conversion of one cell type into another at a high level of resolution. The protocol we describe employs Fluidigm Biomark dynamic arrays for high-throughput expression profiling from single neuronal cells, assayi...

  14. Vasoactive intestinal peptide and electrical activity influence neuronal survival

    Blockage of electrical activity in dissociated spinal cord cultures results in a significant loss of neurons during a critical period in development. Decreases in neuronal cell numbers and 125I-labeled tetanus toxin fixation produced by electrical blockage with tetrodotoxin (TTX) were prevented by addition of vasoactive intestinal peptide (VIP) to the nutrient medium. The most effective concentration of VIP was 0.1 nM. At higher concentrations, the survival-enhancing effect of VIP on TTX-treated cultures was attenuated. Addition of the peptide alone had no significant effect on neuronal cell counts or tetanus toxin fixation. With the same experimental conditions, two closely related peptides, PHI-27 (peptide, histidyl-isoleucine amide) and secretin, were found not to increase the number of neurons in TTX-treated cultures. Interference with VIP action by VIP antiserum resulted in neuronal losses that were not significantly different from those observed after TTX treatment. These data indicate that under conditions of electrical blockade a neurotrophic action of VIP on neuronal survival can be demonstrated

  15. Somatostatin and Somatostatin-Containing Neurons in Shaping Neuronal Activity and Plasticity

    Liguz-Lecznar, Monika; Urban-Ciecko, Joanna; Kossut, Malgorzata

    2016-01-01

    Since its discovery over four decades ago, somatostatin (SOM) receives growing scientific and clinical interest. Being localized in the nervous system in a subset of interneurons somatostatin acts as a neurotransmitter or neuromodulator and its role in the fine-tuning of neuronal activity and involvement in synaptic plasticity and memory formation are widely recognized in the recent literature. Combining transgenic animals with electrophysiological, anatomical and molecular methods allowed to characterize several subpopulations of somatostatin-containing interneurons possessing specific anatomical and physiological features engaged in controlling the output of cortical excitatory neurons. Special characteristic and connectivity of somatostatin-containing neurons set them up as significant players in shaping activity and plasticity of the nervous system. However, somatostatin is not just a marker of particular interneuronal subpopulation. Somatostatin itself acts pre- and postsynaptically, modulating excitability and neuronal responses. In the present review, we combine the knowledge regarding somatostatin and somatostatin-containing interneurons, trying to incorporate it into the current view concerning the role of the somatostatinergic system in cortical plasticity. PMID:27445703

  16. Global synchronization of two Ghostburster neurons via active control

    Sun Li [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Wang Jiang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)], E-mail: jiangwang@tju.edu.cn; Deng Bin [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2009-05-15

    In this paper, active control law is derived and applied to control and synchronize two unidirectional coupled Ghostburster neurons under external electrical stimulation. Firstly, the dynamical behavior of the nonlinear Ghostburster model responding to various external electrical stimulations is studied. Then, using the results of the analysis, the active control strategy is designed for global synchronization of the two unidirectional coupled neurons and stabilizing the chaotic bursting trajectory of the slave system to desired tonic firing of the master system. Numerical simulations demonstrate the validity and feasibility of the proposed method.

  17. The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons

    Huan Meng

    2014-12-01

    Full Text Available The variable patterns of DNA methylation in mammals have been linked to a number of physiological processes, including normal embryonic development and disease pathogenesis. Active removal of DNA methylation, which potentially regulates neuronal gene expression both globally and gene specifically, has been recently implicated in neuronal plasticity, learning and memory processes. Model pathways of active DNA demethylation involve ten-eleven translocation (TET methylcytosine dioxygenases that are dependent on oxidative metabolites. In addition, reactive oxygen species (ROS and oxidizing agents generate oxidative modifications of DNA bases that can be removed by base excision repair proteins. These potentially link the two processes of active DNA demethylation and mitochondrial oxidative metabolism in post-mitotic neurons. We review the current biochemical understanding of the DNA demethylation process and discuss its potential interaction with oxidative metabolism. We then summarise the emerging roles of both processes and their interaction in neural plasticity and memory formation and the pathophysiology of neurodegeneration. Finally, possible therapeutic approaches for neurodegenerative diseases are proposed, including reprogramming therapy by global DNA demethylation and mitohormesis therapy for locus-specific DNA demethylation in post-mitotic neurons.

  18. Neuronal activity enhances tau propagation and tau pathology in vivo.

    Wu, Jessica W; Hussaini, S Abid; Bastille, Isle M; Rodriguez, Gustavo A; Mrejeru, Ana; Rilett, Kelly; Sanders, David W; Cook, Casey; Fu, Hongjun; Boonen, Rick A C M; Herman, Mathieu; Nahmani, Eden; Emrani, Sheina; Figueroa, Y Helen; Diamond, Marc I; Clelland, Catherine L; Wray, Selina; Duff, Karen E

    2016-08-01

    Tau protein can transfer between neurons transneuronally and trans-synaptically, which is thought to explain the progressive spread of tauopathy observed in the brain of patients with Alzheimer's disease. Here we show that physiological tau released from donor cells can transfer to recipient cells via the medium, suggesting that at least one mechanism by which tau can transfer is via the extracellular space. Neuronal activity has been shown to regulate tau secretion, but its effect on tau pathology is unknown. Using optogenetic and chemogenetic approaches, we found that increased neuronal activity stimulates the release of tau in vitro and enhances tau pathology in vivo. These data have implications for disease pathogenesis and therapeutic strategies for Alzheimer's disease and other tauopathies. PMID:27322420

  19. Automated system for analyzing the activity of individual neurons

    Bankman, Isaac N.; Johnson, Kenneth O.; Menkes, Alex M.; Diamond, Steve D.; Oshaughnessy, David M.

    1993-01-01

    This paper presents a signal processing system that: (1) provides an efficient and reliable instrument for investigating the activity of neuronal assemblies in the brain; and (2) demonstrates the feasibility of generating the command signals of prostheses using the activity of relevant neurons in disabled subjects. The system operates online, in a fully automated manner and can recognize the transient waveforms of several neurons in extracellular neurophysiological recordings. Optimal algorithms for detection, classification, and resolution of overlapping waveforms are developed and evaluated. Full automation is made possible by an algorithm that can set appropriate decision thresholds and an algorithm that can generate templates on-line. The system is implemented with a fast IBM PC compatible processor board that allows on-line operation.

  20. Nitrergic ventro-medial medullary neurons activated during cholinergically induced active (REM) sleep in the cat

    Pose, Inés; Sampogna, Sharon; Chase, Michael H.; Morales, Francisco R.

    2010-01-01

    The rostral ventro-medial medullary reticular formation is a complex structure that is involved with a variety of motor functions. It contains glycinergic neurons that are activated during active (REM) sleep (AS); these neurons appear to be responsible for the postsynaptic inhibition of motoneurons that occurs during this state. We have reported that neurons in this same region contain nitric oxide (NO) synthase and that they innervate brainstem motor pools. In the present study we examined t...

  1. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld; Noraberg, Jens; Jensen, Niels A

    2014-01-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate...... data reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human...... hippocampus, where it is complementary to the expression pattern of the Zbtb20 target gene Tbr1. Therefore, the disclosed Zbtb20-mediated transcriptional repressor mechanism may be involved in development of the human archicortex....

  2. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors

    Anne Teissier

    2015-12-01

    Full Text Available Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.

  3. Isolation of Specific Neurons from C. elegans Larvae for Gene Expression Profiling

    W Clay Spencer; Rebecca McWhirter; Tyne Miller; Pnina Strasbourger; Owen Thompson; Hillier, LaDeana W.; Waterston, Robert H.; Miller, David M.

    2014-01-01

    Background The simple and well-described structure of the C. elegans nervous system offers an unprecedented opportunity to identify the genetic programs that define the connectivity and function of individual neurons and their circuits. A correspondingly precise gene expression map of C. elegans neurons would facilitate the application of genetic methods toward this goal. Here we describe a powerful new approach, SeqCeL (RNA-Seq of C. elegans cells) for producing gene expression profiles of s...

  4. Neuroglobin-overexpression Alters Hypoxic Response Gene Expression in Primary Neuron Culture Following Oxygen Glucose Deprivation

    Yu, Zhanyang; Liu, Jianxiang; Guo, Shuzhen; Xing, Changhong; Fan, Xiang; Ning, MingMing; Yuan, Juliet C.; Lo, Eng H.; Wang, Xiaoying

    2009-01-01

    Neuroglobin (Ngb) is a tissue globin specifically expressed in neurons. Our laboratory and others have shown that Ngb overexpression protects neurons against hypoxia/ischemia, but the underlying mechanisms remain poorly understood. Recent studies demonstrate that hypoxia/ischemia induces a multitude of spatially and temporally regulated responses in gene expression, and initial evidence suggested that Ngb might function in altering biological processes of gene expression. In this study, we as...

  5. Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.

    Chiocchetti, A G; Haslinger, D; Stein, J L; de la Torre-Ubieta, L; Cocchi, E; Rothämel, T; Lindlar, S; Waltes, R; Fulda, S; Geschwind, D H; Freitag, C M

    2016-01-01

    Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology

  6. Pseudorabies virus infection alters neuronal activity and connectivity in vitro.

    Kelly M McCarthy

    2009-10-01

    Full Text Available Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV, infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural

  7. Activating STAT3 Alpha for Promoting Healing of Neurons

    Conway, Greg

    2008-01-01

    A method of promoting healing of injured or diseased neurons involves pharmacological activation of the STAT3 alpha protein. Usually, injured or diseased neurons heal incompletely or not at all for two reasons: (1) they are susceptible to apoptosis (cell death); and (2) they fail to engage in axogenesis that is, they fail to re-extend their axons to their original targets (e.g., muscles or other neurons) because of insufficiency of compounds, denoted neurotrophic factors, needed to stimulate such extension. The present method (see figure) of treatment takes advantage of prior research findings to the effect that the STAT3 alpha protein has anti-apoptotic and pro-axogenic properties.

  8. Non-viral gene therapy that targets motor neurons in vivo

    Mary-Louise eRogers

    2014-10-01

    Full Text Available A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS. We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by ‘immunogene’ nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12 as DNA carrier was conjugated to an antibody (MLR2 to the neurotrophin receptor p75 (p75NTR. We used a plasmid (pVIVO2 designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP. MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0 % of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.

  9. Communities in Neuronal Complex Networks Revealed by Activation Patterns

    Costa, Luciano da Fontoura

    2008-01-01

    Recently, it has been shown that the communities in neuronal networks of the integrate-and-fire type can be identified by considering patterns containing the beginning times for each cell to receive the first non-zero activation. The received activity was integrated in order to facilitate the spiking of each neuron and to constrain the activation inside the communities, but no time decay of such activation was considered. The present article shows that, by taking into account exponential decays of the stored activation, it is possible to identify the communities also in terms of the patterns of activation along the initial steps of the transient dynamics. The potential of this method is illustrated with respect to complex neuronal networks involving four communities, each of a different type (Erd\\H{o}s-R\\'eny, Barab\\'asi-Albert, Watts-Strogatz as well as a simple geographical model). Though the consideration of activation decay has been found to enhance the communities separation, too intense decays tend to y...

  10. Transcriptional Elongation Factor Elongin A Regulates Retinoic Acid-Induced Gene Expression during Neuronal Differentiation

    Takashi Yasukawa

    2012-11-01

    Full Text Available Elongin A increases the rate of RNA polymerase II (pol II transcript elongation by suppressing transient pausing by the enzyme. Elongin A also acts as a component of a cullin-RING ligase that can target stalled pol II for ubiquitylation and proteasome-dependent degradation. It is not known whether these activities of Elongin A are functionally interdependent in vivo. Here, we demonstrate that Elongin A-deficient (Elongin A−/− embryos exhibit abnormalities in the formation of both cranial and spinal nerves and that Elongin A−/− embryonic stem cells (ESCs show a markedly decreased capacity to differentiate into neurons. Moreover, we identify Elongin A mutations that selectively inactivate one or the other of the aforementioned activities and show that mutants that retain the elongation stimulatory, but not pol II ubiquitylation, activity of Elongin A rescue neuronal differentiation and support retinoic acid-induced upregulation of a subset of neurogenesis-related genes in Elongin A−/− ESCs.

  11. Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.

    Sumbre, Germán; Poo, Mu-Ming

    2013-09-01

    To understand how visuomotor behaviors are controlled by the nervous system, it is necessary to monitor the activity of large populations of neurons with single-cell resolution over a large area of the brain in a relatively simple, behaving organism. The zebrafish larva, a small lower vertebrate with transparent skin, serves as an excellent model for this purpose. Immediately after the larva hatches, it needs to catch prey and avoid predators. This strong evolutionary pressure leads to the rapid development of functional sensory systems, particularly vision. By 5 d postfertilization (dpf), tectal cells show distinct visually evoked patterns of activation, and the larvae are able to perform a variety of visuomotor behaviors. During the early larval stage, zebrafish breathe mainly through the skin and can be restrained under the microscope using a drop of low-melting-point agarose, without the use of anesthetics. Moreover, the transparency of the skin, the small diameter of the neurons (4-5 µm), and the high-neuronal density enable the use of in vivo noninvasive imaging techniques to monitor neuronal activities of up to ∼500 cells within the central nervous system, still with single-cell resolution. This article describes a method for simultaneously monitoring spontaneous and visually evoked activities of large populations of neurons in the optic tectum of the zebrafish larva, using a synthetic calcium dye (Oregon Green BAPTA-1 AM) and a conventional confocal or two-photon scanning fluorescence microscope, together with a method for measuring the tail motor behavior of the head-immobilized zebrafish larva. PMID:24003199

  12. Neuron-like differentiation and selective ablation of undifferentiated embryonic stem cells containing suicide gene with Oct-4 promoter.

    Hara, Akira; Aoki, Hitomi; Taguchi, Ayako; Niwa, Masayuki; Yamada, Yasuhiro; Kunisada, Takahiro; Mori, Hideki

    2008-08-01

    In vivo transplantation of undifferentiated embryonic stem (ES) cells can produce teratomas with uncontrolled cell proliferation. Although ES cells may be attractive candidates for human cell-replacement therapy in the future, the major limitation of its application to the therapy is teratoma formation. In the present study, ES cells containing herpes simplex virus-thymidine kinase (HSV-tk) transgene for a suicide gene expression under the control of the Oct-4 promoter was used for ablation of undifferentiated ES cells, which may produce teratomas, using three-dimensional cell culture system allowing a multilayer cell construct. Selective ablation of undifferentiated ES cells expressing HSV-tk gene under the control of Oct-4 promoter was achieved by ganciclovir treatment. Surviving ES cells after ganciclovir treatment expressed several neuron-associated markers such as synaptophysin, beta-tubulin, vesicular glutamate transporter 1, syntaxin, protein kinase C and glial fibrillary acidic protein (GFAP) but not Oct-4. Coexpression of synaptophysin as a marker of neuronal synapse and GFAP as that of glial fibers in the surviving ES cells revealed finely structured neuronal network. Furthermore, decrease of Ki-67 proliferative index was detected in the surviving ES cells. In conclusion, selective ablation of undifferentiated ES cells by a suicide gene decreases proliferative activity and induces neuron-like differentiation in ES cells. PMID:18393636

  13. Phagocytic activity of neuronal progenitors regulates adult neurogenesis.

    Lu, Zhenjie; Elliott, Michael R; Chen, Yubo; Walsh, James T; Klibanov, Alexander L; Ravichandran, Kodi S; Kipnis, Jonathan

    2011-09-01

    Whereas thousands of new neurons are generated daily during adult life, only a fraction of them survive and become part of neural circuits; the rest die, and their corpses are presumably cleared by resident phagocytes. How the dying neurons are removed and how such clearance influences neurogenesis are not well understood. Here, we identify an unexpected phagocytic role for the doublecortin (DCX)-positive neuronal progenitor cells during adult neurogenesis. Our in vivo and ex vivo studies demonstrate that DCX(+) cells comprise a significant phagocytic population within the neurogenic zones. Intracellular engulfment protein ELMO1, which promotes Rac activation downstream of phagocytic receptors, was required for phagocytosis by DCX(+) cells. Disruption of engulfment in vivo genetically (in Elmo1-null mice) or pharmacologically (in wild-type mice) led to reduced uptake by DCX(+) cells, accumulation of apoptotic nuclei in the neurogenic niches and impaired neurogenesis. Collectively, these findings indicate a paradigm wherein DCX(+) neuronal precursors also serve as phagocytes, and that their phagocytic activity critically contributes to neurogenesis in the adult brain. PMID:21804544

  14. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons.

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-05-01

    Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons.The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation.Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation.Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG. PMID:27149473

  15. Cuneiform neurons activated during cholinergically induced active sleep in the cat.

    Pose, I; Sampogna, S; Chase, M H; Morales, F R

    2000-05-01

    In the present study, we report that the cuneiform (Cun) nucleus, a brainstem structure that before now has not been implicated in sleep processes, exhibits a large number of neurons that express c-fos during carbachol-induced active sleep (AS-carbachol). Compared with control (awake) cats, during AS-carbachol, there was a 671% increase in the number of neurons that expressed c-fos in this structure. Within the Cun nucleus, three immunocytochemically distinct populations of neurons were observed. One group consisted of GABAergic neurons, which predominantly did not express c-fos during AS-carbachol. Two other different populations expressed c-fos during this state. One of the Fos-positive (Fos(+)) populations consisted of a distinct group of nitric oxide synthase (NOS)-NADPH-diaphorase (NADPH-d)-containing neurons; the neurotransmitter of the other Fos(+) population remains unknown. The Cun nucleus did not contain cholinergic, catecholaminergic, serotonergic, or glycinergic neurons. On the basis of neuronal activation during AS-carbachol, as indicated by c-fos expression, we suggest that the Cun nucleus is involved, in an as yet unknown manner, in the physiological expression of active sleep. The finding of a population of NOS-NADPH-d containing neurons, which were activated during AS-carbachol, suggests that nitrergic modulation of their target cell groups is likely to play a role in active sleep-related physiological processes. PMID:10777795

  16. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  17. Induction of fibroblasts to neurons through adenoviral gene delivery

    Fengxi Meng; Siye Chen; Qinglong Miao; Kechun Zhou; Qicheng Lao; Xiaohui Zhang; Wenyi Guo; Jianwei Jiao

    2012-01-01

    Dear Editor,The direct conversion of mouse fibroblasts to neurons [1] was developed while many scientists were interested in neuronal differentiation using induced pluripotent stem cells (iPSCs) [2].This direct reprogramming skips a pluripotent state,making patient- and/or disease-specific cell therapy much faster and more feasible.Recent reports have indicated that mouse or human fibroblasts could be directly converted to a number of different cell types,such as cardiomyocytes,blood progenitor cells,hepatocyte-like cells,neural progenitors and specific dopaminergic neurons [3-9].However,all of the studies in this field have employed the retroviral or lentiviral vector delivery system.

  18. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration

    Simpson, Claire L.; Lemmens, Robin; Miskiewicz, Katarzyna; Broom, Wendy J.; Hansen, Valerie K.; van Vught, Paul W. J.; Landers, John E.; Sapp, Peter; Van Den Bosch, Ludo; Knight, Joanne; Neale, Benjamin M.; Turner, Martin R.; Veldink, Jan H.; Ophoff, Roel A.; Tripathi, Vineeta B.; Beleza, Ana; Shah, Meera N.; Proitsi, Petroula; Van Hoecke, Annelies; Carmeliet, Peter; Horvitz, H. Robert; Leigh, P. Nigel; Shaw, Christopher E.; van den Berg, Leonard H.; Sham, Pak C.; Powell, John F.; Verstreken, Patrik; Brown, Robert H.; Robberecht, Wim; Al-Chalabi, Ammar

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both can

  19. Immune clearance of attenuated rabies virus results in neuronal survival with altered gene expression.

    Emily A Gomme

    Full Text Available Rabies virus (RABV is a highly neurotropic pathogen that typically leads to mortality of infected animals and humans. The precise etiology of rabies neuropathogenesis is unknown, though it is hypothesized to be due either to neuronal death or dysfunction. Analysis of human brains post-mortem reveals surprisingly little tissue damage and neuropathology considering the dramatic clinical symptomology, supporting the neuronal dysfunction model. However, whether or not neurons survive infection and clearance and, provided they do, whether they are functionally restored to their pre-infection phenotype has not been determined in vivo for RABV, or any neurotropic virus. This is due, in part, to the absence of a permanent "mark" on once-infected cells that allow their identification long after viral clearance. Our approach to study the survival and integrity of RABV-infected neurons was to infect Cre reporter mice with recombinant RABV expressing Cre-recombinase (RABV-Cre to switch neurons constitutively expressing tdTomato (red to expression of a Cre-inducible EGFP (green, permanently marking neurons that had been infected in vivo. We used fluorescence microscopy and quantitative real-time PCR to measure the survival of neurons after viral clearance; we found that the vast majority of RABV-infected neurons survive both infection and immunological clearance. We were able to isolate these previously infected neurons by flow cytometry and assay their gene expression profiles compared to uninfected cells. We observed transcriptional changes in these "cured" neurons, predictive of decreased neurite growth and dysregulated microtubule dynamics. This suggests that viral clearance, though allowing for survival of neurons, may not restore them to their pre-infection functionality. Our data provide a proof-of-principle foundation to re-evaluate the etiology of human central nervous system diseases of unknown etiology: viruses may trigger permanent neuronal

  20. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    Ding, Shengyuan; Wei, Wei; Zhou, Fu-Ming

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA...

  1. Activity-dependent neuronal model on complex networks.

    de Arcangelis, Lucilla; Herrmann, Hans J

    2012-01-01

    Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behavior: these avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems. We present a recent model inspired in self-organized criticality, which consists of an electrical network with threshold firing, refractory period, and activity-dependent synaptic plasticity. The model reproduces the critical behavior of the distribution of avalanche sizes and durations measured experimentally. Moreover, the power spectra of the electrical signal reproduce very robustly the power law behavior found in human electroencephalogram (EEG) spectra. We implement this model on a variety of complex networks, i.e., regular, small-world, and scale-free and verify the robustness of the critical behavior. PMID:22470347

  2. Manipulating neuronal activity with low frequency transcranial ultrasound

    Moore, Michele Elizabeth

    Stimulation of the rodent cerebral cortex is used to investigate the underlying biological basis for the restorative effects of slow wave sleep. Neuronal activation by optogenetic and ultrasound stimulation elicits changes in action potentials across the cerebral cortex that are recorded as electroencephalograms. Optogenetic stimulation requires an invasive implantation procedure limiting its application in human studies. We sought to determine whether ultrasound stimulation could be as effective as optogenetic techniques currently used, in an effort to further understand the physiological and metabolic requirements of sleep. We successfully recorded electroencephalograms in response to transcranial ultrasound stimulation of the barrel cortex at 1 and 7 Hz frequencies, comparing them to those recorded in response to optogenetic stimuli applied at the same frequencies. Our results showed application of a 473 nm blue LED positioned 6 cm above the skull and ultrasound stimulation at an output voltage of 1000 mVpp produced electroencephalograms with physiological responses of similar amplitude. We concluded that there exists an intensity-proportionate response in the optogenetic stimulation, but not with ultrasound stimulation at the frequencies we surveyed. Activation of neuronal cells in response to optogenetic stimulation in a Thy1-ChR2 transgenic mouse line is specifically targeted to pyramidal cells in the cerebral cortex. ChR2 responses to optogenetic stimulation are mediated by a focal activation of neuronal ion channels. We measured electrophysiological responses to ultrasound stimulation, comparing them to those recorded from optogenetic stimuli. Our results show striking similarities between ultrasound-induced responses and optogenetically-induced responses, which may indicate that transcranial ultrasound stimulation is also mediated by ion channel dependent processes in cerebral cortical neurons. The biophysical substrates for electrical excitability of

  3. Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions.

    Dreyer, Jean-Luc

    2011-02-01

    Lentiviral-mediated gene transfer in vivo or in cultured mammalian neurons can be used to address a wide variety of biological questions, to design animals models for specific neurodegenerative pathologies, or to test potential therapeutic approaches in a variety of brain disorders. Lentiviruses can infect non-dividing cells, thereby allowing stable gene transfer in post-mitotic cells such as mature neurons. An important contribution has been the use of inducible vectors: the same animal can thus be used repeatedly in the doxycycline-on or -off state, providing a powerful mean for assessing the function of a gene candidate in a disorder within a specific neuronal circuit. Furthermore, lentivirus vectors provide a unique tool to integrate siRNA expression constructs with the aim to locally knockdown expression of a specific gene, enabling to assess the function of a gene in a very specific neuronal pathway. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in the brain. Therefore, the use of lentiviruses for stable expression of siRNA in brain is a powerful aid to probe gene functions in vivo and for gene therapy of diseases of the central nervous system. In this chapter I review the applications of lentivirus-mediated gene transfer in the investigation of specific gene candidates involved in major brain disorders and neurodegenerative processes. Major applications have been in polyglutamine disorders, such as synucleinopathies and Parkinson's disease, or in investigating gene function in Huntington's disease, dystonia, or muscular dystrophy. Recently, lentivirus gene transfer has been an invaluable tool for evaluation of gene function in behavioral disorders such as drug addiction and attention-deficit hyperactivity disorder or in learning and cognition. PMID:20862616

  4. Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex.

    Qiao, Shuhong; Homayouni, Ramin

    2015-01-01

    Dab2IP (DOC-2/DAB2 interacting protein) is a GTPase-activating protein which is involved in various aspects of brain development in addition to its roles in tumor formation and apoptosis in other systems. In this study, we carefully examined the expression profile of Dab2IP and investigated its physiological role during brain development using a Dab2IP-knockdown (KD) mouse model created by retroviral insertion of a LacZ-encoding gene-trapping cassette. LacZ staining revealed that Dab2IP is expressed in the ventricular zone as well as the cortical plate and the intermediate zone. Immunohistochemical analysis showed that Dab2IP protein is localized in the leading process and proximal cytoplasmic regions of migrating neurons in the intermediate zone. Bromodeoxyuridine birth dating experiments in combination with immunohistochemical analysis using layer-specific markers showed that Dab2IP is important for proper positioning of a subset of layer II-IV neurons in the developing cortex. Notably, neuronal migration was not completely disrupted in the cerebral cortex of Dab2IP-KD mice and disruption of migration was not strictly layer specific. Previously, we found that Dab2IP regulates multipolar transition in cortical neurons. Others have shown that Rap1 regulates the transition from multipolar to bipolar morphology in migrating postmitotic neurons through N-cadherin signaling and somal translocation in the superficial layer of the cortical plate through integrin signaling. Therefore, we examined whether Rap1 and integrin signaling were affected in Dab2IP-KD brains. We found that Dab2IP-KD resulted in higher levels of activated Rap1 and integrin in the developing cortex. Taken together, our results suggest that Dab2IP plays an important role in the migration and positioning of a subpopulation of later-born (layers II-IV) neurons, likely through the regulation of Rap1 and integrin signaling. PMID:25721469

  5. Imaging electrical activity of neurons with metamaterial nanosensors

    Beletskiy, Roman V.

    2013-01-01

    A technology for recording electrical activity of large neuron populations at arbitrary depth in brain tissues with less than cell spatial and millisecond temporal resolutions was the most craving dream of neuroscientists and a long pursued goal of engineers for decades. Even though many imaging techniques have been devised up to date, none of them is capable to deliver either quantitatively valid data nor able to meet contradictory requirements posed for sensors to be safe, non-invasive and ...

  6. A novel, variable angle guide grid for neuronal activity studies

    Thomas Talbot; David Ide; Ning Liu; Janita Turchi

    2012-01-01

    Introduction: Surgically implanted chambers with removable grids are routinely used for studying patterns of neuronal activity in primate brains; however, accessing target tissues is significantly constrained by standard grid designs. Typically, grids are configured with a series of guide holes drilled vertically, parallel to the walls of the chamber, thus targeted sites are limited to those in line vertically with one of the guide holes. Methods: By using the three-dimensional modeling...

  7. Instrumental Neuron Activation Analysis for certification of stainless steel materials

    The use of Instrumental Neuron Activation Analysis (INAA) may contribute to improve the certification of the materials, especially in the case of minor and trace elements. In presented paper the INAA method of analysis of stainless steel materials has been elaborated. The obtained results were compared with those of common analytical techniques. The presented results show the usefulness of the INAA method for the certification of CRMs for the iron and steel industry

  8. Intrinsic optical signals of the nervous tissue during neuronal activation

    Konopková, Renata; Otáhal, Jakub

    Brno : Brno University of Technology, 2006 - (Burša, J.; Fuis, V.). s. 124-125 ISBN 80-214-3232-2. [Human Biomechanics 2006 : international conference /11./. 13.11.2006-16.11.2006, Hrotovice] R&D Projects: GA AV ČR(CZ) 1QS501210509 Institutional research plan: CEZ:AV0Z50110509 Keywords : intrinsic optical signals * neuronal activation * light transmission Subject RIV: ED - Physiology

  9. Asymmetric pallidal neuronal activity in patients with cervical dystonia

    Edgar Galindo-Leon; Andrew Sharott; Carsten Buhmann; Koeppen, Johannes A.; Tobias Bäumer

    2014-01-01

    The origin of asymmetric clinical manifestation of symptoms in patients suffering from cervical dystonia (CD) is hitherto poorly understood. Dysregulated neuronal activity in the basal ganglia has been suggested to have a role in the pathophysiology of CD. Here, we re-assessed the question to what extent relative changes occur in the direct versus indirect basal ganglia pathway in CD, whether these circuit changes are lateralized, and how these alterations relate to CD symptoms. To this end, ...

  10. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms

    Mabb, Angela M.; Simon, Jeremy M.; King, Ian F.; Lee, Hyeong-Min; An, Lin-Kun; Philpot, Benjamin D.; Zylka, Mark J.

    2016-01-01

    Topoisomerase 1 (TOP1) inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc’s) that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb) genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc’s, and a TOP1 mutation (T718A) that stabilizes TOP1cc’s. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression. PMID:27231886

  11. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms.

    Angela M Mabb

    Full Text Available Topoisomerase 1 (TOP1 inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.

  12. Spatial Regulation of Gene Expression in Neurons During Synapse Formation and Synaptic Plasticity

    Kim, Sangmok

    2013-01-01

    mRNA localization and regulated translation allow individual neurons to locally regulate the proteome of each of their many subcellular compartments. To investigate the spatial regulation of gene expression during synaptic plasticity, we used a translational reporter system to demonstrate synapse- and stimulus-specific translation during long-term facilitation of Aplysia sensory-motor synapse. These studies revealed a role for a retrograde signal from the postsynaptic motor neuron in regulati...

  13. Caenorhabditis elegans glia modulate neuronal activity and behavior

    Randy F Stout

    2014-03-01

    Full Text Available Glial cells of C. elegans can modulate neuronal activity and behavior, which is the focus of this review. Initially, we provide an overview of neuroglial evolution, making a comparison between C. elegans glia and their genealogical counterparts. What follows is a brief discussion on C. elegans glia characteristics in terms of their exact numbers, germ layers origin, their necessity for proper development of sensory organs, and lack of their need for neuronal survival. The more specific roles that various glial cells have on neuron-based activity/behavior are succinctly presented. The cephalic sheath glia are important for development, maintenance and activity of central synapses, whereas the amphid glia seem to set the tone of sensory synapses; these glial cell types are ectoderm-derived. Mesoderm-derived GLR glia appear to be a part of the circuit for production of motor movement of the worm anterior. Finally, we discuss tools and approaches utilized in studying C. elegans glia, which are an extension of those experimental assets available for this animal, making it an appealing model, not only in neurosciences, but in biology in general.

  14. Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli

    Kenichi eTokita

    2014-07-01

    Full Text Available The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN, a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH. We made injections of the retrograde tracer Fluorogold (FG into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral cannula with one of seven different taste stimuli, and PbN sections were processed for immunohistochemical detection of the immediate early gene c-Fos, which labels activated neurons. LH projection neurons were found in all PbN subnuclei, but in greater concentration in lateral subnuclei, including the dorsal lateral subnucleus (dl. Fos-like immunoreactivity (FLI was observed in the PbN in a stimulus-dependent pattern, with the greatest differentiation between intraoral stimulation with sweet (0.5 M sucrose and bitter (0.003 M quinine compounds. In particular, sweet and umami-tasting stimuli evoked robust FLI in cells in the dl, whereas quinine evoked almost no FLI in cells in this subnucleus. Double-labeled cells were also found in the greatest quantity in the dl. Overall, these results support the hypothesis that the dl contains direct a projection to the LH that is activated preferentially by appetitive compounds; this projection may be mediated by taste and/or postingestive mechanisms.

  15. Spectral representation: analyzing single-unit activity in extracellularly recorded neuronal data without spike sorting

    Luczak, Artur; Narayanan, Nandakumar S.

    2005-01-01

    One step in the conventional analysis of extracellularly recorded neuronal data is spike sorting, which separates electrical signal into action potentials from different neurons. Because spike sorting involves human judgment, it can be subjective and time intensive, particularly for large sets of neurons. Here we propose a simple, automated way to construct alternative representations of neuronal activity, called spectral representation (SR). In this approach, neuronal spikes are mapped to a ...

  16. Characterization of claustral neurons by comparative gene expression profiling and dye-injection analyses

    Akiya Watakabe

    2014-05-01

    Full Text Available The identity of the claustrum as a part of cerebral cortex, and in particular of the adjacent insular cortex, has been investigated by connectivity features and patterns of gene expression. In the present paper, we mapped the cortical and claustral expression of several cortical genes in rodent and macaque monkey brains (nurr1, latexin, cux2, and netrinG2 to further assess shared features between cortex and claustrum. In mice, these genes were densely expressed in the claustrum, but very sparsely in the cortex and not present in the striatum. To test whether the cortical vs. claustral cell types can be distinguished by co-expression of these genes, we performed a panel of double ISH in mouse and macaque brain. NetrinG2 and nurr1 genes were co-expressed across entire cortex and claustrum, but cux2 and nurr1 were co-expressed only in the insular cortex and claustrum. Latexin was expressed, in the macaque, only in the claustrum. The nurr1+ claustral neurons expressed VGluT1, a marker for cortical glutamatergic cells and send cortical projections. Taken together, our data suggest a partial commonality between claustral neurons and a subtype of cortical neurons in the monkey brain. Moreover, in the embryonic (E110 macaque brain, many nurr1+ neurons were scattered in the white matter between the claustrum and the insular cortex, possibly representing their migratory history. In a second set of experiments, we injected Lucifer Yellow intracellularly in mouse and rat slices to investigate whether dendrites of insular and claustral neurons can cross the border of the two brain regions. Dendrites of claustral neurons did not invade the overlying insular territory. In summary, gene expression profile of the claustrum is similar to that of the neocortex, in both rodent and macaque brains, but with modifications in density of expression and cellular co-localization of specific genes.

  17. Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: transgenic zebrafish enable visualization of sensitive neurons.

    Caitrín M Coffey

    Full Text Available BACKGROUND: Fetal Alcohol Spectrum Disorders (FASD are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported. PRINCIPAL FINDINGS: The effects of embryonic and larval ethanol exposure on brain development were visually monitored using transgenic zebrafish expressing cell-specific green fluorescent protein (GFP marker genes. Specific subsets of GFP-expressing neurons were highly sensitive to ethanol exposure, but only during defined developmental windows. In the med12 mutant, which affects the Mediator co-activator complex component Med12, exposure to lower concentrations of ethanol was sufficient to reduce GFP expression in transgenic embryos. In transgenic embryos and larva containing GFP driven by an oxytocin-like (oxtl promoter, ethanol exposure dramatically up-regulated GFP expression in a small group of hindbrain neurons, while having no effect on expression in the neuroendocrine preoptic area. CONCLUSIONS: Alcohol exposure during limited embryonic periods impedes the development of specific, identifiable groups of neurons, and the med12 mutation sensitizes these neurons to the deleterious effects of ethanol. In contrast, ethanol exposure induces oxtl expression in the hindbrain, a finding with profound implications for understanding alcoholism and other addictive disorders.

  18. Neuronal activity is not required for the initial formation and maturation of visual selectivity.

    Hagihara, Kenta M; Murakami, Tomonari; Yoshida, Takashi; Tagawa, Yoshiaki; Ohki, Kenichi

    2015-12-01

    Neuronal activity is important for the functional refinement of neuronal circuits in the early visual system. At the level of the cerebral cortex, however, it is still unknown whether the formation of fundamental functions such as orientation selectivity depends on neuronal activity, as it has been difficult to suppress activity throughout development. Using genetic silencing of cortical activity starting before the formation of orientation selectivity, we found that the orientation selectivity of neurons in the mouse visual cortex formed and matured normally despite a strong suppression of both spontaneous and visually evoked activity throughout development. After the orientation selectivity formed, the distribution of the preferred orientations of neurons was reorganized. We found that this process required spontaneous activity, but not visually evoked activity. Thus, the initial formation and maturation of orientation selectivity is largely independent of neuronal activity, and the initial selectivity is subsequently modified depending on neuronal activity. PMID:26523644

  19. Physical activity: genes & health

    2002-01-01

    Carl Johan SUNDBERG is an Associate Professor in Physiology and Licenced Physician. His research focus is Molecular mechanisms involved in the adaptation of human skeletal muscle to physical activity.

  20. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  1. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  2. Comparison of gene expression profile in embryonic mesencephalon and neuronal primary cultures.

    Dario Greco

    Full Text Available In the mammalian central nervous system (CNS an important contingent of dopaminergic neurons are localized in the substantia nigra and in the ventral tegmental area of the ventral midbrain. They constitute an anatomically and functionally heterogeneous group of cells involved in a variety of regulatory mechanisms, from locomotion to emotional/motivational behavior. Midbrain dopaminergic neuron (mDA primary cultures represent a useful tool to study molecular mechanisms involved in their development and maintenance. Considerable information has been gathered on the mDA neurons development and maturation in vivo, as well as on the molecular features of mDA primary cultures. Here we investigated in detail the gene expression differences between the tissue of origin and ventral midbrain primary cultures enriched in mDA neurons, using microarray technique. We integrated the results based on different re-annotations of the microarray probes. By using knowledge-based gene network techniques and promoter sequence analysis, we also uncovered mechanisms that might regulate the expression of CNS genes involved in the definition of the identity of specific cell types in the ventral midbrain. We integrate bioinformatics and functional genomics, together with developmental neurobiology. Moreover, we propose guidelines for the computational analysis of microarray gene expression data. Our findings help to clarify some molecular aspects of the development and differentiation of DA neurons within the midbrain.

  3. Three-Dimensional Distribution of Sensory Stimulation-Evoked Neuronal Activity of Spinal Dorsal Horn Neurons Analyzed by In Vivo Calcium Imaging

    NISHIDA, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established i...

  4. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. PMID:26598443

  5. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons

    Chwalla Barbara

    2008-07-01

    Full Text Available Abstract Background Developing neurons form dendritic trees with cell type-specific patterns of growth, branching and targeting. Dendrites of Drosophila peripheral sensory neurons have emerged as a premier genetic model, though the molecular mechanisms that underlie and regulate their morphogenesis remain incompletely understood. Still less is known about this process in central neurons and the extent to which central and peripheral dendrites share common organisational principles and molecular features. To address these issues, we have carried out two comparable gain-of-function screens for genes that influence dendrite morphologies in peripheral dendritic arborisation (da neurons and central RP2 motor neurons. Results We found 35 unique loci that influenced da neuron dendrites, including five previously shown as required for da dendrite patterning. Several phenotypes were class-specific and many resembled those of known mutants, suggesting that genes identified in this study may converge with and extend known molecular pathways for dendrite development in da neurons. The second screen used a novel technique for cell-autonomous gene misexpression in RP2 motor neurons. We found 51 unique loci affecting RP2 dendrite morphology, 84% expressed in the central nervous system. The phenotypic classes from both screens demonstrate that gene misexpression can affect specific aspects of dendritic development, such as growth, branching and targeting. We demonstrate that these processes are genetically separable. Targeting phenotypes were specific to the RP2 screen, and we propose that dendrites in the central nervous system are targeted to territories defined by Cartesian co-ordinates along the antero-posterior and the medio-lateral axes of the central neuropile. Comparisons between the screens suggest that the dendrites of peripheral da and central RP2 neurons are shaped by regulatory programs that only partially overlap. We focused on one common

  6. Gene Expression Profiling of Preplate Neurons Destined for the Subplate: Genes Involved in Transcription, Axon Extension, Neurotransmitter Regulation, Steroid Hormone Signaling, and Neuronal Survival

    Osheroff, Hilleary; Hatten, Mary E.

    2009-01-01

    During mammalian corticogenesis a series of transient cell layers establish laminar architectonics. The preplate, which forms from the earliest-generated neurons, separates into the marginal zone and subplate layer. To provide a systematic screen for genes involved in subplate development and function, we screened lines of transgenic mice, generated using bacterial artificial chromosome methodology (GENSAT Project), to identify transgenic lines of mice that express the enhanced green fluoresc...

  7. Apolipoprotein E isoform-dependent dendritic recovery of hippocampal neurons following activation of innate immunity

    Maezawa Izumi

    2006-08-01

    Full Text Available Abstract Background Innate immune activation, including a role for cluster of differentiation 14/toll-like receptor 4 co-receptors (CD14/TLR-4 co-receptors, has been implicated in paracrine damage to neurons in several neurodegenerative diseases that also display stratification of risk or clinical outcome with the common alleles of the apolipoprotein E gene (APOE: APOE2, APOE3, and APOE4. Previously, we have shown that specific stimulation of CD14/TLR-4 with lipopolysaccharide (LPS leads to greatest innate immune response by primary microglial cultures from targeted replacement (TR APOE4 mice and greatest p38MAPK-dependent paracrine damage to neurons in mixed primary cultures and hippocampal slice cultures derived from TR APOE4 mice. In contrast, TR APOE2 astrocytes had the highest NF-kappaB activity and no neurotoxicity. Here we tested the hypothesis that direct activation of CD14/TLR-4 in vivo would yield different amounts of paracrine damage to hippocampal sector CA1 pyramidal neurons in TR APOE mice. Methods We measured in vivo changes in dendrite length in hippocampal CA1 neurons using Golgi staining and determined hippocampal apoE levels by Western blot. Neurite outgrowth of cultured primary neurons in response to astrocyte conditioned medium was assessed by measuring neuron length and branch number. Results Our results showed that TR APOE4 mice had slightly but significantly shorter dendrites at 6 weeks of age. Following exposure to intracerebroventricular LPS, there was comparable loss of dendrite length at 24 hr among the three TR APOE mice. Recovery of dendrite length over the next 48 hr was greater in TR APOE2 than TR APOE3 mice, while TR APOE4 mice had failure of dendrite regeneration. Cell culture experiments indicated that the enhanced neurotrophic effect of TR APOE2 was LDL related protein-dependent. Conclusion The data indicate that the environment within TR APOE2 mouse hippocampus was most supportive of dendrite regeneration

  8. Familial Dysautonomia (FD Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Sharon Lefler

    Full Text Available A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD, affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS. Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  9. Gene expression in maturing neurons: regulatory mechanisms and related neurodevelopmental disorders.

    Ding, Baojin

    2015-04-25

    During the central nervous system (CNS) development, the interactions between intrinsic genes and extrinsic environment ensure that each neuronal developmental stage (eg. neuronal proliferation, differentiation, migration, axon extension, dendritogenesis and formation of functional synapses) occurs in the proper timing and sequence. The successful coordination requires that numerous groups of genes are exquisitely regulated in a spatiotemporal manner by various regulatory mechanisms, including sequence-specific DNA-binding proteins, histone modifications, DNA methylation, chromatin remodeling, and microRNAs (miRNAs). By targeting chromatin structure, transcription and translation processes, these mechanisms form a regulatory network to accomplish the fine regulation of gene expression in response to environmental stimuli at different developmental stages. Dysregulation of the gene expression during neuronal development has been shown to be implicated in a number of neurodevelopmental disorders, such as autism spectrum disorders (ASD), Rett syndrome (RTT), Fragile-X syndrome (FXS) and other genetic diseases. The further understanding of the regulation of gene expression during neuronal development may provide new approaches for the diagnosis and treatment of these disorders. PMID:25896042

  10. All-or-(N)One - an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci.

    Kutzner, Arne; Pramanik, Subrata; Kim, Pok-Son; Heese, Klaus

    2015-11-01

    FAM72 is a novel neuronal progenitor cell (NPC) self-renewal supporting protein expressed under physiological conditions at low levels in other tissues. Accumulating data indicate the potential pivotal tumourigenic effects of FAM72. Our in silico human genome-wide analysis (GWA) revealed that the FAM72 gene family consists of four human-specific paralogous members, all of which are located on chromosome (chr) 1. Unique asymmetric FAM72 segmental gene duplications are most likely to have occurred in conjunction with the paired genomic neighbour SRGAP2 (SLIT-ROBO Rho GTPase activating protein), as both genes have four paralogues in humans but only one vertebra-emerging orthologue in all other species. No species with two or three FAM72/SRGAP2 gene pairs could be identified, and the four exclusively human-defining ohnologues, with different mutation patterns in Homo neanderthalensis and Denisova hominin, may remain under epigenetic control through long non-coding (lnc) RNAs. PMID:26206078

  11. Quantitative phase imaging technologies to assess neuronal activity (Conference Presentation)

    Thouvenin, Olivier; Fink, Mathias; Boccara, Claude

    2016-03-01

    Active neurons tends to have a different dynamical behavior compared to resting ones. Non-exhaustively, vesicular transport towards the synapses is increased, since axonal growth becomes slower. Previous studies also reported small phase variations occurring simultaneously with the action potential. Such changes exhibit times scales ranging from milliseconds to several seconds on spatial scales smaller than the optical diffraction limit. Therefore, QPI systems are of particular interest to measure neuronal activity without labels. Here, we report the development of two new QPI systems that should enable the detection of such activity. Both systems can acquire full field phase images with a sub nanometer sensitivity at a few hundreds of frames per second. The first setup is a synchronous combination of Full Field Optical Coherence Tomography (FF-OCT) and Fluorescence wide field imaging. The latter modality enables the measurement of neurons electrical activity using calcium indicators. In cultures, FF-OCT exhibits similar features to Digital Holographic Microscopy (DHM), except from complex computational reconstruction. However, FF-OCT is of particular interest in order to measure phase variations in tissues. The second setup is based on a Quantitative Differential Interference Contrast setup mounted in an epi-illumination configuration with a spectrally incoherent illumination. Such a common path interferometer exhibits a very good mechanical stability, and thus enables the measurement of phase images during hours. Additionally, such setup can not only measure a height change, but also an optical index change for both polarization. Hence, one can measure simultaneously a phase change and a birefringence change.

  12. The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a

    Jing, Xiaotang; Wang, Ting; Huang, Shaohua; Glorioso, Joseph C.; Albers, Kathryn M.

    2011-01-01

    Factors that enhance the intrinsic growth potential of adult neurons are key players in the successful repair and regeneration of neurons following injury. Injury-induced activation of transcription factors has a central role in this process because they regulate expression of regeneration-associated genes. Sox11 is a developmentally expressed transcription factor that is significantly induced in adult neurons in response to injury. Its function in injured neurons is however undefined. Here, ...

  13. Double-Wavelet Neuron Based on Analytical Activation Functions

    Bodyanskiy, Yevgeniy; Lamonova, Nataliya; Vynokurova, Olena

    2007-01-01

    In this paper a new double-wavelet neuron architecture obtained by modification of standard wavelet neuron, and its learning algorithm are proposed. The offered architecture allows to improve the approximation properties of wavelet neuron. Double-wavelet neuron and its learning algorithm are examined for forecasting non-stationary chaotic time series.

  14. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  15. The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation.

    Tae Hyuk Kang

    Full Text Available The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT cause the severe neurodevelopmental Lesch Nyhan Disease (LND are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer's and Huntington's disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.

  16. Dietary grape seed polyphenols repress neuron and glia activation in trigeminal ganglion and trigeminal nucleus caudalis

    Durham Paul L

    2010-12-01

    Full Text Available Abstract Background Inflammation and pain associated with temporomandibular joint disorder, a chronic disease that affects 15% of the adult population, involves activation of trigeminal ganglion nerves and development of peripheral and central sensitization. Natural products represent an underutilized resource in the pursuit of safe and effective ways to treat chronic inflammatory diseases. The goal of this study was to investigate effects of grape seed extract on neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis in response to persistent temporomandibular joint inflammation. Sprague Dawley rats were pretreated with 200 mg/kg/d MegaNatural-BP grape seed extract for 14 days prior to bilateral injections of complete Freund's adjuvant into the temporomandibular joint capsule. Results In response to grape seed extract, basal expression of mitogen-activated protein kinase phosphatase 1 was elevated in neurons and glia in trigeminal ganglia and trigeminal nucleus caudalis, and expression of the glutamate aspartate transporter was increased in spinal glia. Rats on a normal diet injected with adjuvant exhibited greater basal levels of phosphorylated-p38 in trigeminal ganglia neurons and spinal neurons and microglia. Similarly, immunoreactive levels of OX-42 in microglia and glial fibrillary acidic protein in astrocytes were greatly increased in response to adjuvant. However, adjuvant-stimulated levels of phosphorylated-p38, OX-42, and glial fibrillary acidic protein were significantly repressed in extract treated animals. Furthermore, grape seed extract suppressed basal expression of the neuropeptide calcitonin gene-related peptide in spinal neurons. Conclusions Results from our study provide evidence that grape seed extract may be beneficial as a natural therapeutic option for temporomandibular joint disorders by suppressing development of peripheral and central sensitization.

  17. The Limited Utility of Multiunit Data in Differentiating Neuronal Population Activity.

    Corey J Keller

    Full Text Available To date, single neuron recordings remain the gold standard for monitoring the activity of neuronal populations. Since obtaining single neuron recordings is not always possible, high frequency or 'multiunit activity' (MUA is often used as a surrogate. Although MUA recordings allow one to monitor the activity of a large number of neurons, they do not allow identification of specific neuronal subtypes, the knowledge of which is often critical for understanding electrophysiological processes. Here, we explored whether prior knowledge of the single unit waveform of specific neuron types is sufficient to permit the use of MUA to monitor and distinguish differential activity of individual neuron types. We used an experimental and modeling approach to determine if components of the MUA can monitor medium spiny neurons (MSNs and fast-spiking interneurons (FSIs in the mouse dorsal striatum. We demonstrate that when well-isolated spikes are recorded, the MUA at frequencies greater than 100Hz is correlated with single unit spiking, highly dependent on the waveform of each neuron type, and accurately reflects the timing and spectral signature of each neuron. However, in the absence of well-isolated spikes (the norm in most MUA recordings, the MUA did not typically contain sufficient information to permit accurate prediction of the respective population activity of MSNs and FSIs. Thus, even under ideal conditions for the MUA to reliably predict the moment-to-moment activity of specific local neuronal ensembles, knowledge of the spike waveform of the underlying neuronal populations is necessary, but not sufficient.

  18. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation.

    Gee, J Michael; Gibbons, Meredith B; Taheri, Marsa; Palumbos, Sierra; Morris, S Craig; Smeal, Roy M; Flynn, Katherine F; Economo, Michael N; Cizek, Christian G; Capecchi, Mario R; Tvrdik, Petr; Wilcox, Karen S; White, John A

    2015-01-01

    Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators (GECIs), have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson's disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat (ITR)-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal activity in the rat brain. PMID:25926768

  19. Fast and direct detection of neuronal activation with diffusion MRI

    Over the last 30 years functional neuroimaging has emerged as a revolutionary path to study the brain and the mind. This has been possible because of significant advances mainly in two imaging modalities, namely Positron Emission Tomograph y (PET) and Magnetic Resonance Imaging (MRI). Amazingly, although those two modalities are based on radically different physical approaches (detection of 1 3 radioactivity for the first one and nuclear magnetization for the second), both allo w brain activation images to be obtained through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the same principle that neuronal activation and blood flow are coupled through metabolism: Blood flow increases locally in activated brain regions. In the case of PET one uses H2O radioactive water which is produced by using a cyclotron and injected to the subject vasculature. In activated brain regions the increase in blood flow leads to a local increase in the tissue radioactive water content detected and localized by the PE T camera. With MRI the hydrogen nuclei of brain endogenous water molecules are magnetized by a strong external magnetic field. In activated regions the increase in blood flow results in an increase of blood oxygenation which induces a slight perturbation of the magnetization relaxation properties of the water molecules around blood vessels detected by the MRI scanner (so called 'BOLD' effect). I n both approaches water is, thus, merely an indirect means to look at changes in cerebral blood flow which accompany brain activation, and although PET and BOLD f MRI have been extremely successful for the functional neuroimaging community, present well known limitations. While the coupling between neuronal activation, metabolism and blood flow has been verified in most instances including BOLD f MRI, the degree and the mechanism of coupling remains largely debated (Magistratt, Pellerin, Mangia) and may fail in some pathological

  20. The neuronal transporter gene SLC6A15 confers risk to major depression.

    Kohli, Martin A; Lucae, Susanne; Saemann, Philipp G; Schmidt, Mathias V; Demirkan, Ayse; Hek, Karin; Czamara, Darina; Alexander, Michael; Salyakina, Daria; Ripke, Stephan; Hoehn, David; Specht, Michael; Menke, Andreas; Hennings, Johannes; Heck, Angela; Wolf, Christiane; Ising, Marcus; Schreiber, Stefan; Czisch, Michael; Müller, Marianne B; Uhr, Manfred; Bettecken, Thomas; Becker, Albert; Schramm, Johannes; Rietschel, Marcella; Maier, Wolfgang; Bradley, Bekh; Ressler, Kerry J; Nöthen, Markus M; Cichon, Sven; Craig, Ian W; Breen, Gerome; Lewis, Cathryn M; Hofman, Albert; Tiemeier, Henning; van Duijn, Cornelia M; Holsboer, Florian; Müller-Myhsok, Bertram; Binder, Elisabeth B

    2011-04-28

    Major depression (MD) is one of the most prevalent psychiatric disorders and a leading cause of loss in work productivity. A combination of genetic and environmental risk factors probably contributes to MD. We present data from a genome-wide association study revealing a neuron-specific neutral amino acid transporter (SLC6A15) as a susceptibility gene for MD. Risk allele carrier status in humans and chronic stress in mice were associated with a downregulation of the expression of this gene in the hippocampus, a brain region implicated in the pathophysiology of MD. The same polymorphisms also showed associations with alterations in hippocampal volume and neuronal integrity. Thus, decreased SLC6A15 expression, due to genetic or environmental factors, might alter neuronal circuits related to the susceptibility for MD. Our convergent data from human genetics, expression studies, brain imaging, and animal models suggest a pathophysiological mechanism for MD that may be accessible to drug targeting. PMID:21521612

  1. Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish.

    Muto, Akira; Ohkura, Masamichi; Kotani, Tomoya; Higashijima, Shin-ichi; Nakai, Junichi; Kawakami, Koichi

    2011-03-29

    Animal behaviors are generated by well-coordinated activation of neural circuits. In zebrafish, embryos start to show spontaneous muscle contractions at 17 to 19 h postfertilization. To visualize how motor circuits in the spinal cord are activated during this behavior, we developed GCaMP-HS (GCaMP-hyper sensitive), an improved version of the genetically encoded calcium indicator GCaMP, and created transgenic zebrafish carrying the GCaMP-HS gene downstream of the Gal4-recognition sequence, UAS (upstream activation sequence). Then we performed a gene-trap screen and identified the SAIGFF213A transgenic fish that expressed Gal4FF, a modified version of Gal4, in a subset of spinal neurons including the caudal primary (CaP) motor neurons. We conducted calcium imaging using the SAIGFF213A; UAS:GCaMP-HS double transgenic embryos during the spontaneous contractions. We demonstrated periodic and synchronized activation of a set of ipsilateral motor neurons located on the right and left trunk in accordance with actual muscle movements. The synchronized activation of contralateral motor neurons occurred alternately with a regular interval. Furthermore, a detailed analysis revealed rostral-to-caudal propagation of activation of the ipsilateral motor neuron, which is similar to but much slower than the rostrocaudal delay observed during swimming in later stages. Our study thus demonstrated coordinated activities of the motor neurons during the first behavior in a vertebrate. We propose the GCaMP technology combined with the Gal4FF-UAS system is a powerful tool to study functional neural circuits in zebrafish. PMID:21383146

  2. Multiplicative and Additive Modulation of Neuronal Tuning with Population Activity Affects Encoded Information.

    Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén

    2016-03-16

    Numerous studies have shown that neuronal responses are modulated by stimulus properties and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation and vice versa. The information encoded by multiplicatively modulated neurons increased with greater population activity, while that of additively modulated neurons decreased. These effects offset each other so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a "traffic light" that determines which subset of neurons is most informative. PMID:26924437

  3. Arterial chemoreceptor activation reduces the activity of parapyramidal serotonergic neurons in rats.

    Takakura, A C; Moreira, T S

    2013-05-01

    The parapyramidal (ppy) region targets primarily the intermediolateral cell column and is probably involved in breathing and thermoregulation. In the present study, we tested whether ppy serotonergic neurons respond to activation of central and peripheral chemoreceptors. Bulbospinal ppy neurons (n=30) were recorded extracellularly along with the phrenic nerve activity in urethane/α-chloralose-anesthetized, paralyzed, intact (n=7) or carotid body denervated (n=6) male Wistar rats. In intact animals, most of the ppy neurons were inhibited by hypoxia (n=14 of 19) (8% O2, 30s) (1.5 ± 0.03 vs. control: 2.4 ± 0.2 Hz) or hypercapnia (n=15 of 19) (10% CO2) (1.7 ± 0.1 vs. control: 2.2 ± 0.2 Hz), although some neurons were insensitive to hypoxia (n=3 of 19) or hypercapnia (n=4 of 19). Very few neurons (n=2 of 19) were activated after hypoxia, but not after hypercapnia. In carotid body denervated rats, all the 5HT-ppy neurons (n=11) were insensitive to hypercapnia (2.1 ± 0.1 vs. control: 2.3 ± 0.09 Hz). Biotinamide-labeled cells that were recovered after histochemistry were located in the ppy region. Most labeled cells (90%) showed strong tryptophan hydroxylase immunocytochemical reactivity, indicating that they were serotonergic. The present data reveal that peripheral chemoreceptors reduce the activity of the serotonergic premotor neurons located in the ppy region. It is plausible that the serotonergic neurons of the ppy region could conceivably regulate breathing automaticity and be involved in autonomic regulation. PMID:23403178

  4. Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat.

    Xi, Ming Chu; Fung, Simon J; Yamuy, Jack; Morales, Francisco R; Chase, Michael H

    2003-06-27

    The present study was undertaken to explore the neuronal mechanisms of hypocretin actions on neurons in the nucleus pontis oralis (NPO), a nucleus which plays a key role in the generation of active (REM) sleep. Specifically, we sought to determine whether excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the laterodorsal tegmental nucleus (LDT) and spontaneous EPSPs in NPO neurons are modulated by hypocretin. Accordingly, recordings were obtained from NPO neurons in the cat in conjunction with the juxtacellular microinjection of hypocretin-1 onto intracellularly recorded cells. The application of hypocretin-1 significantly increased the mean amplitude of LDT-evoked EPSPs of NPO neurons. In addition, the frequency and the amplitude of spontaneous EPSPs in NPO neurons increased following hypocretin-1 administration. These data suggest that hypocretinergic processes in the NPO are capable of modulating the activity of NPO neurons that receive excitatory cholinergic inputs from neurons in the LDT. PMID:12763260

  5. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and

  6. In vitro neuronal network activity in NMDA receptor encephalitis

    Jantzen Sabine U

    2013-02-01

    Full Text Available Abstract Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF from an anti-N-methyl-D-aspartate receptor (NMDAR encephalitis patient on in vitro neuronal network activity (ivNNA. In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes.

  7. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.

    Bai, Ruiliang; Stewart, Craig V; Plenz, Dietmar; Basser, Peter J

    2016-03-22

    Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity. PMID:26941239

  8. The tumor suppressor p53 guides GluA1 homeostasis through Nedd4-2 during chronic elevation of neuronal activity.

    Jewett, Kathryn A; Zhu, Jiuhe; Tsai, Nien-Pei

    2015-10-01

    Chronic activity perturbation in neurons can trigger homeostatic mechanisms to restore the baseline function. Although the importance and dysregulation of neuronal activity homeostasis has been implicated in neurological disorders such as epilepsy, the complete signaling by which chronic changes in neuronal activity initiate the homeostatic mechanisms is unclear. We report here that the tumor suppressor p53 and its signaling are involved in neuronal activity homeostasis. Upon chronic elevation of neuronal activity in primary cortical neuron cultures, the ubiquitin E3 ligase, murine double minute- 2 (Mdm2), is phosphorylated by the kinase Akt. Phosphorylated Mdm2 triggers the degradation of p53 and subsequent induction of a p53 target gene, neural precursor cell expressed developmentally down-regulated gene 4-like (Nedd4-2). Nedd4-2 encodes another ubiquitin E3 ligase. We identified glutamate receptor subunit 1 (GluA1), subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as a novel substrate of Nedd4-2. The regulation of GluA1 level is known to be crucial for neuronal activity homeostasis. We confirmed that, by pharmacologically inhibiting Mdm2-mediated p53 degradation or genetically reducing Nedd4-2 in a mouse model, the GluA1 ubiquitination and down-regulation induced by chronically elevated neuronal activity are both attenuated. Our findings demonstrate the first direct function of p53 in neuronal homeostasis and elucidate a new mechanism by which cortical neurons respond to chronic activity perturbation. PMID:26250624

  9. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  10. Modulation of bulbospinal RVLM neurons by hypoxia/hypercapnia but not medullary respiratory activity

    Boychuk, Carie R.; Woerman, Amanda L.; Mendelowitz, David

    2012-01-01

    Although sympathetic vasomotor discharge has respiratory modulation, the site(s) responsible for this cardiorespiratory interaction are unknown. One likely source for this coupling is the RVLM where pre-sympathetic neurons originate in close apposition to respiratory neurons. The current study tested the hypothesis that RVLM bulbospinal neurons are modulated by medullary respiratory network activity using whole-cell patch-clamp electrophysiological recordings of RVLM neurons while simultaneou...

  11. Transcriptional activation of JC virus by human T-lymphotropic virus type I Tax protein in human neuronal cell lines.

    Okada, Y; Sawa, H; Tanaka, S; Takada, A; Suzuki, S; Hasegawa, H; Umemura, T; Fujisawa, J; Tanaka, Y; Hall, W W; Nagashima, K

    2000-06-01

    Polyomavirus JC (JCV) causes the human demyelinating disease, progressive multifocal leukoencephalopathy (PML). The recent demonstration of cases of PML in association with human T-lymphotropic virus type I (HTLV-I) infection prompted us to examine whether the HTLV-I-encoded regulatory protein Tax activates JCV transcription. By employing a dual luciferase assay, we initially found that the expression of Tax activated the transcriptional potential of both early and late promoters of JCV in human neuronal but not in non-neuronal cells. We subsequently analyzed the mechanism of Tax-induced activation of the JCV promoter in neuronal cells with the following results: 1) the JCV promoter that lacks the NF-kappaB-binding motif could not be activated by Tax; 2) the overexpression of IkappaBalpha abolished Tax-induced transcriptional activation of the JCV promoter; 3) a Tax mutant (M22) lacking the potential for activation via the NF-kappaB pathway did not activate the JCV promoter. Furthermore, Tax enhances the gene expression of JCV T antigen and VP1. We examined mechanisms of the cell-specific activation of the JCV promoter by Tax. Electrophoretic mobility shift assay demonstrated the presence of Tax-bound protein(s) that were specifically present in non-neuronal cells. This study is the first demonstration of the activation of JCV promoter by HTLV-I Tax in an NF-kappaB-dependent manner. PMID:10828075

  12. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation

    J. Michael eGee

    2015-04-01

    Full Text Available Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators, have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson’s disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (< 5 kb. In utero electroporation offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal

  13. Neuronal activity is required for the development of specific cortical interneuron subtypes.

    De Marco García, Natalia V; Karayannis, Theofanis; Fishell, Gord

    2011-04-21

    Electrical activity has been shown to regulate development in a variety of species and in various structures, including the retina, spinal cord and cortex. Within the mammalian cortex specifically, the development of dendrites and commissural axons in pyramidal cells is activity-dependent. However, little is known about the developmental role of activity in the other major cortical population of neurons, the GABA-producing interneurons. These neurons are morphologically and functionally heterogeneous and efforts over the past decade have focused on determining the mechanisms that contribute to this diversity. It was recently discovered that 30% of all cortical interneurons arise from a relatively novel source within the ventral telencephalon, the caudal ganglionic eminence (CGE). Owing to their late birth date, these interneurons populate the cortex only after the majority of other interneurons and pyramidal cells are already in place and have started to functionally integrate. Here we demonstrate in mice that for CGE-derived reelin (Re)-positive and calretinin (Cr)-positive (but not vasoactive intestinal peptide (VIP)-positive) interneurons, activity is essential before postnatal day 3 for correct migration, and that after postnatal day 3, glutamate-mediated activity controls the development of their axons and dendrites. Furthermore, we show that the engulfment and cell motility 1 gene (Elmo1), a target of the transcription factor distal-less homeobox 1 (Dlx1), is selectively expressed in Re(+) and Cr(+) interneurons and is both necessary and sufficient for activity-dependent interneuron migration. Our findings reveal a selective requirement for activity in shaping the cortical integration of specific neuronal subtypes. PMID:21460837

  14. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two......, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus...

  15. Knockout of REST/NRSF shows that the protein is a potent repressor of neuronally expressed genes in non-neural tissues.

    Jones, F S; Meech, R

    1999-05-01

    The protein repressor element 1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF) is a negative regulator of neuronal genes that contain a particular DNA sequence, the neuron restrictive silencer element (NRSE). REST is expressed ubiquitously in non-neural tissues but is down-regulated in neural precursors and turned off in postmitotic neurons, suggesting that it can act both to prevent extraneural expression of certain genes and to delay the differentiation of neuronal subtypes. In a recent paper, Chen et al.(1) describe the production of a null mutant for REST in mice and the mosaic inactivation of REST function in chicken embryos. Knockout of REST led to malformations in several non-neural tissues, as well as apoptosis and embryonic lethality in mice. In addition, the expression of several REST target genes was derepressed in non-neural tissues and in neural progenitors in both mouse and chicken embryos. These studies clearly demonstrate that active repression of tissue-specific genes is required for proper tissue differentiation during embryonic development. PMID:10376008

  16. Atomic basis for therapeutic activation of neuronal potassium channels

    Kim, Robin Y; Yau, Michael C; Galpin, Jason D;

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific...... fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally...... pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators....

  17. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Ryge, J.; Winther, Ole; Wienecke, J.;

    2010-01-01

    Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of...... modulatory inputs from the brain correlates with the development of spasticity. Results: Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a...... late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor...

  18. Imaging gene delivery in a mouse model of congenital neuronal ceroid lipofuscinosis

    Pike, Lisa S.; Tannous, Bakhos A; Deliolanis, Nikolaos C.; Hsich, Gary; Morse, Danielle; Tung, Ching-Hsuan; Sena-Esteves, Miguel; Breakefield, Xandra O.

    2011-01-01

    Adeno-associated virus (AAV) mediated gene replacement for lysosomal disorders have been spurred by the ability of some serotypes to efficiently transduce neurons in the brain and by the ability of lysosomal enzymes to cross-correct among cells. Here, we explored enzyme replacement therapy in a knock-out mouse model of congenital neuronal ceroid lipofuscinosis (NCL), the most severe of the NCLs in humans. The missing protease in this disorder, cathepsin D (CathD) has high levels in the centra...

  19. Metabolic correlates of pallidal neuronal activity in Parkinson's disease.

    Eidelberg, D; Moeller, J R; Kazumata, K; Antonini, A; Sterio, D; Dhawan, V; Spetsieris, P; Alterman, R; Kelly, P J; Dogali, M; Fazzini, E; Beric, A

    1997-08-01

    We have used [18F]fluorodeoxyglucose and PET to identify specific metabolic covariance patterns associated with Parkinson's disease and related disorders previously. Nonetheless, the physiological correlates of these abnormal patterns are unknown. In this study we used PET to measure resting state glucose metabolism in 42 awake unmedicated Parkinson's disease patients prior to unilateral stereotaxic pallidotomy for relief of symptoms. Spontaneous single unit activity of the internal segment of the globus pallidus (GPi) was recorded intraoperatively in the same patients under identical conditions. The first 24 patients (Group A) were scanned on an intermediate resolution tomograph (full width at half maximum, 8 mm); the subsequent 18 patients (Group B) were scanned on a higher resolution tomograph (full width half maximum, 4.2 mm). We found significant positive correlations between GPi firing rates and thalamic glucose metabolism in both patient groups (Group A: r = 0.41, P < 0.05; Group B: r = 0.69, P < 0.005). In Group B, pixel-based analysis disclosed a significant focus of physiological-metabolic correlation involving the ventral thalamus and the GPi (statistical parametric map: P < 0.05, corrected). Regional covariance analysis demonstrated that internal pallidal neuronal activity correlated significantly (r = 0.65, P < 0.005) with the expression of a unique network characterized by covarying pallidothalamic and brainstem metabolic activity. Our findings suggest that the variability in pallidal neuronal firing rates in Parkinson's disease patients is associated with individual differences in the metabolic activity of efferent projection systems. PMID:9278625

  20. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  1. NAA and NAAG variation in neuronal activation during visual stimulation

    Castellano, G.; Dias, C.S.B. [Grupo de Neurofísica, Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Foerster, B. [Philips Medical Systems, São Paulo, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Li, L.M. [Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Covolan, R.J.M. [Grupo de Neurofísica, Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil)

    2012-08-17

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  2. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.

    Morales, F R; Sampogna, S; Rampon, C; Luppi, P H; Chase, M H

    2006-09-29

    It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active

  3. Antiapoptotic effect both in vivo and in vitro of A20 gene when transfected into rat hippocampal neurons

    Hong-sheng MIAO; Lu-yang YU; Guo-zhen HUI; Li-he GUO

    2005-01-01

    Aim: To evaluate the antiapoptotic effect of the A20 gene in primary hippocampal neurons both in vivo and in vitro. Methods: Primary hippocampal neurons in embryonic day 18 (El 8) rats were transfected with the A20 gene by using the new Nucleofector electroporation transfection method. We then examined, whether A20 -neurons possessed anti-apoptotic abilities after TNF-α stimulation in vitro.A20-neurons and pcDNA3 -neurons were transplanted into the penumbra of the brains of rats that had been subjected to 90-min of ischemia induced by left middle cerebral artery occlusion (MCAO). Results: A20-neurons resisted TNF-α induced apoptosis in vitro. The apoptosis rate of neurons overexpressing A20(28.46%±3.87%) was lower than that in neurons transfected with pcDNA3(53.06%±5.36%). More A20-neurons survived in the penumbra both 3-d and 7-d after transplantation than did sham pcDNA3 neurons. Conclusion: The novel function of A20 may make it a potential targets for the gene therapy for neurological diseases.

  4. Human neuronal apoptosis secondary to traumatic brain injury and the regulative role of apoptosis-related genes

    杨树源; 雪亮

    2004-01-01

    Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes.Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed.Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare,but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed.Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day.Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.

  5. Sudden synchrony leaps accompanied by frequency multiplications in neuronal activity

    Ido Kanter

    2013-10-01

    Full Text Available A classical view of neural coding relies on temporal firing synchrony among functional groups of neurons; however the underlying mechanism remains an enigma. Here we experimentally demonstrate a mechanism where time-lags among neuronal spiking leap from several tens of milliseconds to nearly zero-lag synchrony. It also allows sudden leaps out of synchrony, hence forming short epochs of synchrony. Our results are based on an experimental procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in vitro and are corroborated by simulations of neuronal populations. The underlying biological mechanisms are the unavoidable increase of the neuronal response latency to ongoing stimulations and temporal or spatial summation required to generate evoked spikes. These sudden leaps in and out of synchrony may be accompanied by multiplications of the neuronal firing frequency, hence offering reliable information-bearing indicators which may bridge between the two principal neuronal coding paradigms.

  6. TUMOR NECROSIS FACTOR-α INCREASES BDNF EXPRESSION IN TRIGEMINAL GANGLION NEURONS IN AN ACTIVITY-DEPENDENT MANNER

    Bałkowiec-Iskra, Ewa; Vermehren-Schmaedick, Anke; Balkowiec, Agnieszka

    2011-01-01

    Many chronic trigeminal pain conditions, such as migraine or temporo-mandibular disorders, are associated with inflammation within peripheral endings of trigeminal ganglion (TG) sensory neurons. A critical role in mechanisms of neuroinflammation is attributed to proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α (TNFα) that also contribute to mechanisms of persistent neuropathic pain resulting from nerve injury. However, the mechanisms of cytokine-mediated synaptic plasticity and nociceptor sensitization are not completely understood. In the present study, we examined the effects of TNFα on neuronal expression of brain-derived neurotrophic factor (BDNF), whose role in synaptic plasticity and sensitization of nociceptive pathways is well documented. We show that 4- and 24-hr treatment with TNFα increases BDNF mRNA and protein, respectively, in neuron-enriched dissociated cultures of rat TG. TNFα increases the phosphorylated form of the cyclic adenosine monophosphate-responsive element binding protein (CREB), a transcription factor involved in regulation of BDNF expression in neurons, and activates transcription of BDNF exon IV (former exon III) and, to a lesser extent, exon VI (former exon IV), but not exon I. TNFα-mediated increase in BDNF expression was accompanied by increase in calcitonin gene-related peptide (CGRP), which is consistent with previously published studies, and indicates that both peptides are similarly regulated in TG neurons by inflammatory mediators. The effect of TNFα on BDNF expression is dependent on sodium influx through TTX-sensitive channels and on p38-mitogen-activated protein kinase. Moreover, electrical stimulation and forskolin, known to increase intracellular cAMP, potentiate the TNFα-mediated upregulation of BDNF expression. This study provides new evidence for a direct action of proinflammatory cytokines on TG primary sensory neurons, and reveals a mechanism through which TNFα stimulates de novo

  7. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein.

    Laughlin, John D; Ha, Tal Soo; Jones, David N M; Smith, Dean P

    2008-06-27

    Detection of volatile odorants by olfactory neurons is thought to result from direct activation of seven-transmembrane odorant receptors by odor molecules. Here, we show that detection of the Drosophila pheromone, 11-cis vaccenyl acetate (cVA), is instead mediated by pheromone-induced conformational shifts in the extracellular pheromone-binding protein, LUSH. We show that LUSH undergoes a pheromone-specific conformational change that triggers the firing of pheromone-sensitive neurons. Amino acid substitutions in LUSH that are predicted to reduce or enhance the conformational shift alter sensitivity to cVA as predicted in vivo. One substitution, LUSH(D118A), produces a dominant-active LUSH protein that stimulates T1 neurons through the neuronal receptor components Or67d and SNMP in the complete absence of pheromone. Structural analysis of LUSH(D118A) reveals that it closely resembles cVA-bound LUSH. Therefore, the pheromone-binding protein is an inactive, extracellular ligand converted by pheromone molecules into an activator of pheromone-sensitive neurons and reveals a distinct paradigm for detection of odorants. PMID:18585358

  8. A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans

    Kimura, Yoshishige; Corcoran, Ethan E.; Eto, Koh; Gengyo-Ando, Keiko; Muramatsu, Masa-aki; Kobayashi, Ryoji; Freedman, Jonathan H.; Mitani, Shohei; Hagiwara, Masatoshi; Means, Anthony R.; Tokumitsu, Hiroshi

    2002-01-01

    Calcium (Ca2+) signals regulate a diverse set of cellular responses, from proliferation to muscular contraction and neuro-endocrine secretion. The ubiquitous Ca2+ sensor, calmodulin (CaM), translates changes in local intracellular Ca2+ concentrations into changes in enzyme activities. Among its targets, the Ca2+/CaM-dependent protein kinases I and IV (CaMKs) are capable of transducing intraneuronal signals, and these kinases are implicated in neuronal gene regulation that mediates synaptic plasticity in mammals. Recently, the cyclic AMP response element binding protein (CREB) has been proposed as a target for a CaMK cascade involving not only CaMKI or CaMKIV, but also an upstream kinase kinase that is also CaM regulated (CaMKK). Here, we report that all components of this pathway are coexpressed in head neurons of Caenorhabditis elegans. Utilizing a transgenic approach to visualize CREB-dependent transcription in vivo, we show that this CaMK cascade regulates CRE-mediated transcription in a subset of head neurons in living nematodes. PMID:12231504

  9. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Ainhoa eBilbao

    2014-06-01

    Full Text Available IIt is suggested that striatal cAMP responsive element binding protein (CREB regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. Drug-naïve mutants showed moderate alterations in gene expression, most prominently a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2, when compared to wild-type controls. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB.

  10. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    Akane, Hirotoshi [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Shiraki, Ayako [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Takeyoshi, Masahiro; Imatanaka, Nobuya [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Itahashi, Megu [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Murakami, Tomoaki [Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues

  11. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc+ neurons at 1000 ppm and Fos+ neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased

  12. Imaging electrical activity of neurons with metamaterial nanosensors

    Beletskiy, Roman V

    2013-01-01

    A technology for recording electrical activity of large neuron populations at arbitrary depth in brain tissues with less than cell spatial and millisecond temporal resolutions was the most craving dream of neuroscientists and a long pursued goal of engineers for decades. Even though many imaging techniques have been devised up to date, none of them is capable to deliver either quantitatively valid data nor able to meet contradictory requirements posed for sensors to be safe, non-invasive and reliably working either within cultured cell populations or during chronic implantations in vivo. In my research project, I design and justify a novel nanobiosensors, capable to detect and optically report the electric fields across cellular membrane and investigate properties of that specially engineered plasmonic nanoantennas. In the following literature survey, I observe the current state of electrophysiology methods and after recalling the basics of fluorescence, discuss benefits and drawbacks of today's voltage sensi...

  13. Asymmetric pallidal neuronal activity in patients with cervical dystonia

    Edgar Galindo-Leon

    2014-02-01

    Full Text Available The origin of asymmetric clinical manifestation of symptoms in patients suffering from cervical dystonia (CD is hitherto poorly understood. Dysregulated neuronal activity in the basal ganglia has been suggested to have a role in the pathophysiology of CD. Here, we re-assessed the question to what extent relative changes occur in the direct versus indirect basal ganglia pathway in CD, whether these circuit changes are lateralized, and how these alterations relate to CD symptoms. To this end, we recorded ongoing single cell and local field potential (LFP activity from the external (GPe and internal pallidal segment (GPi of thirteen CD patients undergoing microelectrode-guided stereotactic surgery for deep brain stimulation in the GPi. We compared pallidal recordings from CD patients operated under local anaesthesia (LA with those obtained in CD patients operated under general anaesthesia (GA. In awake patients, mean GPe discharge rate (52 Hz was lower than that of GPi (72 Hz. Mean GPi discharge ipsilateral to the side of head turning was higher than contralateral and correlated with torticollis symptom severity. Lateralized differences were absent at the level of the GPe and in recordings from patients operated under GA. Furthermore, in the GPi of CD patients there was a subpopulation of theta-oscillatory cells with unique bursting characteristics. Power and coherence of GPe- and GPi-LFPs were dominated by a theta peak and also exhibited band-specific interhemispheric differences. Strong cross-frequency coupling of low-gamma amplitude to theta phase was a feature of pallidal LFPs recorded under LA, but not GA. These results indicate that CD is associated with an asymmetric pallidal outflow. Based on the finding of symmetric neuronal discharges in the GPe, we propose that an imbalanced interhemispheric direct pathway gain may be involved in CD pathophysiology.

  14. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons

    Belrose Jillian C

    2012-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in neuronal oxidant defence. Depletion of cellular GSH is observed in neurodegenerative diseases and thereby contributes to the associated oxidative stress and Ca2+ dysregulation. Whether depletion of cellular GSH, associated with neuronal senescence, directly influences Ca2+ permeation pathways is not known. Transient receptor potential melastatin type 2 (TRPM2 is a Ca2+ permeable non-selective cation channel expressed in several cell types including hippocampal pyramidal neurons. Moreover, activation of TRPM2 during oxidative stress has been linked to cell death. Importantly, GSH has been reported to inhibit TRPM2 channels, suggesting they may directly contribute to Ca2+ dysregulation associated with neuronal senescence. Herein, we explore the relation between cellular GSH and TRPM2 channel activity in long-term cultures of hippocampal neurons. Results In whole-cell voltage-clamp recordings, we observe that TRPM2 current density increases in cultured pyramidal neurons over time in vitro. The observed increase in current density was prevented by treatment with NAC, a precursor to GSH synthesis. Conversely, treatment of cultures maintained for 2 weeks in vitro with L-BSO, which depletes GSH by inhibiting its synthesis, augments TRPM2 currents. Additionally, we demonstrate that GSH inhibits TRPM2 currents through a thiol-independent mechanism, and produces a 3.5-fold shift in the dose-response curve generated by ADPR, the intracellular agonist for TRPM2. Conclusion These results indicate that GSH plays a physiologically relevant role in the regulation of TRPM2 currents in hippocampal pyramidal neurons. This interaction may play an important role in aging and neurological diseases associated with depletion of GSH.

  15. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain

    Sprecher, Simon G.; Reichert, Heinrich; Hartenstein, Volker

    2014-01-01

    The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map (Urbach and Technau, 2003a). However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles (“primary axon bundles” or “PABs”) are now available (Younossi-Hartenstein et al., 2006). In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops. PMID:17300994

  16. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons

    Chivet, Mathilde,; Javalet, Charlotte; Laulagnier, Karine; Blot, Béatrice; Fiona J. Hemming; Sadoul, Rémy

    2014-01-01

    Exosomes are nano-sized vesicles of endocytic origin released into the extracellular space upon fusion of multivesicular bodies with the plasma membrane. Exosomes represent a novel mechanism of cell–cell communication allowing direct transfer of proteins, lipids and RNAs. In the nervous system, both glial and neuronal cells secrete exosomes in a way regulated by glutamate. It has been hypothesized that exosomes can be used for interneuronal communication implying that neuronal exosomes should...

  17. Retinoic Acid Induces Ubiquitination-Resistant RIP140/LSD1 Complex to Fine-Tune Pax6 Gene in Neuronal Differentiation.

    Wu, Cheng-Ying; Persaud, Shawna D; Wei, Li-Na

    2016-01-01

    Receptor-interacting protein 140 (RIP140) is a wide-spectrum coregulator for hormonal regulation of gene expression, but its activity in development/stem cell differentiation is unknown. Here, we identify RIP140 as an immediate retinoic acid (RA)-induced dual-function chaperone for LSD1 (lysine-specific demethylase 1). RIP140 protects LSD1's catalytic domain and antagonizes its Jade-2-mediated ubiquitination and degradation. In RA-induced neuronal differentiation, the increased RIP140/LSD1 complex is recruited by RA-elevated Pit-1 to specifically reduce H3K4me2 modification on the Pax6 promoter, thereby repressing RA-induction of Pax6. This study reveals a new RA-induced gene repressive mechanism that modulates the abundance, enzyme quality, and recruitment of histone modifier LSD1 to neuronal regulator Pax6, which provides a homeostatic control for RA induction of neuronal differentiation. PMID:26372689

  18. Brain-derived neurotrophic factor gene transfection promotes neuronal repair and neurite regeneration after diffuse axonal injury

    Yin Yu; Chao Du; Xingli Zhao; Jiajia Shao; Qiang Shen; Tao Jiang; Wei Wu; Dong Zhu; Yu Tian; Yongchuan Guo

    2011-01-01

    This study sought to assess the potential of brain-derived neurotrophic factor (BDNF) to promote neuronal repair and regeneration in rats with diffuse axonal injury, and to examine the accompanying neurobiological changes. BDNF gene transfection reduced the severity of the pathological changes associated with diffuse axonal injury in cortical neurons of the frontal lobe and increased neurofilament protein expression. These findings demonstrate that BDNF can effectively promote neuronal repair and neurite regeneration after diffuse axonal injury.

  19. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P stimulation (n = 5, P stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  20. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    HarishBabu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  1. A neuron model with trainable activation function (TAF) and its MFNN supervised learning

    吴佑寿; 赵明生

    2001-01-01

    This paper addresses a new kind of neuron model, which has trainable activation function (TAF) in addition to only trainable weights in the conventional M-P model. The final neuron activation function can be derived from a primitive neuron activation function by training. The BP like learning algorithm has been presented for MFNN constructed by neurons of TAF model. Several simulation examples are given to show the network capacity and performance advantages of the new MFNN in comparison with that of conventional sigmoid MFNN.

  2. Decision-Related Activity in Sensory Neurons May Depend on the Columnar Architecture of Cerebral Cortex

    Nienborg, H.; Cumming, B.G.

    2014-01-01

    Many studies have reported correlations between the activity of sensory neurons and animals' judgments in discrimination tasks. Here, we suggest that such neuron-behavior correlations may require a cortical map for the task relevant features. This would explain why studies using discrimination tasks based on disparity in area V1 have not found these correlations: V1 contains no map for disparity. This scheme predicts that activity of V1 neurons correlates with decisions in an orientation-disc...

  3. Enhanced activation of RVLM-projecting PVN neurons in rats with chronic heart failure

    Xu, Bo; Zheng, Hong; Patel, Kaushik P.

    2012-01-01

    Previous studies have indicated that there is increased activation of the paraventricular nucleus (PVN) in rats with chronic heart failure (CHF); however, it is not clear if the preautonomic neurons within the PVN are specifically overactive. Also, it is not known if these neurons have altered responses to baroreceptor or osmotic challenges. Experiments were conducted in rats with CHF (6–8 wk after coronary artery ligation). Spontaneously active neurons were recorded in the PVN, of which 36% ...

  4. Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons.

    Constantin, Stephanie; Wray, Susan

    2016-08-01

    GnRH neurons are regulated by hypothalamic kisspeptin neurons. Recently, galanin was identified in a subpopulation of kisspeptin neurons. Although the literature thoroughly describes kisspeptin activation of GnRH neurons, little is known about the effects of galanin on GnRH neurons. This study investigated whether galanin could alter kisspeptin signaling to GnRH neurons. GnRH cells maintained in explants, known to display spontaneous calcium oscillations, and a long-lasting calcium response to kisspeptin-10 (kp-10), were used. First, transcripts for galanin receptors (GalRs) were examined. Only GalR1 was found in GnRH neurons. A series of experiments was then performed to determine the action of galanin on kp-10 activated GnRH neurons. Applied after kp-10 activation, galanin 1-16 (Gal1-16) rapidly suppressed kp-10 activation. Applied with kp-10, Gal1-16 prevented kp-10 activation until its removal. To determine the mechanism by which galanin inhibited kp-10 activation of GnRH neurons, Gal1-16 and galanin were applied to spontaneously active GnRH neurons. Both inhibited GnRH neuronal activity, independent of GnRH neuronal inputs. This inhibition was mimicked by a GalR1 agonist but not by GalR2 or GalR2/3 agonists. Although Gal1-16 inhibition relied on Gi/o signaling, it was independent of cAMP levels but sensitive to blockers of G protein-coupled inwardly rectifying potassium channels. A newly developed bioassay for GnRH detection showed Gal1-16 decreased the kp-10-evoked GnRH secretion below detection threshold. Together, this study shows that galanin is a potent regulator of GnRH neurons, possibly acting as a physiological break to kisspeptin excitation. PMID:27359210

  5. Altered Gene Expression, Mitochondrial Damage and Oxidative Stress: Converging Routes in Motor Neuron Degeneration

    Luisa Rossi

    2012-01-01

    Full Text Available Motor neuron diseases (MNDs are a rather heterogeneous group of diseases, with either sporadic or genetic origin or both, all characterized by the progressive degeneration of motor neurons. At the cellular level, MNDs share features such as protein misfolding and aggregation, mitochondrial damage and energy deficit, and excitotoxicity and calcium mishandling. This is particularly well demonstrated in ALS, where both sporadic and familial forms share the same symptoms and pathological phenotype, with a prominent role for mitochondrial damage and resulting oxidative stress. Based on recent data, however, altered control of gene expression seems to be a most relevant, and previously overlooked, player in MNDs. Here we discuss which may be the links that make pathways apparently as different as altered gene expression, mitochondrial damage, and oxidative stress converge to generate a similar motoneuron-toxic phenotype.

  6. Comparative functional genomics revealed conservation and diversification of three enhancers of the isl1 gene for motor and sensory neuron-specific expression.

    Uemura, Osamu; Okada, Yohei; Ando, Hideki; Guedj, Mickael; Higashijima, Shin-Ichi; Shimazaki, Takuya; Chino, Naoichi; Okano, Hideyuki; Okamoto, Hitoshi

    2005-02-15

    Islet-1 (Isl1) is a member of the Isl1 family of LIM-homeodomain transcription factors (LIM-HD) that is expressed in a defined subset of motor and sensory neurons during vertebrate embryogenesis. To investigate how this specific expression of isl1 is regulated, we searched for enhancers of the isl1 gene that are conserved in vertebrate evolution. Initially, two enhancer elements, CREST1 and CREST2, were identified downstream of the isl1 locus in the genomes of fugu, chick, mouse, and human by BLAST searching for highly similar elements to those originally identified as motor and sensory neuron-specific enhancers in the zebrafish genome. The combined action of these elements is sufficient for completely recapitulating the subtype-specific expression of the isl1 gene in motor neurons of the mouse spinal cord. Furthermore, by direct comparison of the upstream flanking regions of the zebrafish and human isl1 genes, we identified another highly conserved noncoding element, CREST3, and subsequently C3R, a similar element to CREST3 with two CDP CR1 recognition motifs, in the upstream regions of all other isl1 family members. In mouse and human, CRESTs are located as far as more than 300 kb away from the isl1 locus, while they are much closer to the isl1 locus in zebrafish. Although all of zebrafish CREST2, CREST3, and C3R activate gene expression in the sensory neurons of zebrafish, CREST2 of mouse and human does not have the sequence necessary for sensory neuron-specific expression. Our results revealed both a remarkable conservation of the regulatory elements regulating subtype-specific gene expression in motor and sensory neurons and the dynamic process of reorganization of these elements whereby each element increases the level of cell-type specificity by losing redundant functions with the other elements during vertebrate evolution. PMID:15680372

  7. Serotonergic neurons in the caudal raphe nuclei discharge in association with activity of masticatory muscles

    L.E. Ribeiro-do-Valle

    1997-01-01

    Full Text Available There is a dense serotonergic projection from nucleus raphe pallidus and nucleus raphe obscurus to the trigeminal motor nucleus and serotonin exerts a strong facilitatory action on the trigeminal motoneurons. Some serotonergic neurons in these caudal raphe nuclei increase their discharge during feeding. The objective of the present study was to investigate the possibility that the activity of these serotonergic neurons is related to activity of masticatory muscles. Cats were implanted with microelectrodes and gross electrodes. Caudal raphe single neuron activity, electrocorticographic activity, and splenius, digastric and masseter electromyographic activities were recorded during active behaviors (feeding and grooming, during quiet waking and during sleep. Seven presumed serotonergic neurons were identified. These neurons showed a long duration action potential (>2.0 ms, and discharged slowly (2-7 Hz and very regularly (interspike interval coefficient of variation <0.3 during quiet waking. The activity of these neurons decreased remarkably during fast wave sleep (78-100%. Six of these neurons showed tonic changes in their activity positively related to digastric and/or masseter muscle activity but not to splenius muscle activity during waking. These data are consistent with the hypothesis that serotonergic neurons in the caudal raphe nuclei play an important role in the control of jaw movements

  8. Phagocytic activity of neuronal progenitors regulates adult neurogenesis

    Lu, Zhenjie; Elliott, Michael R.; Chen, Yubo; Walsh, James T.; Klibanov, Alexander L.; Ravichandran, Kodi S.; Kipnis, Jonathan

    2011-01-01

    Whereas thousands of new neurons are generated daily during adult life, only a fraction of them survive and become part of neural circuits; the rest die, and their corpses are presumably cleared by resident phagocytes. How the dying neurons are removed and how such clearance influences neurogenesis are not well understood. Here, we identify an unexpected phagocytic role for the doublecortin (DCX)-positive neuronal progenitor cells during adult neurogenesis. Our in vivo and ex vivo studies dem...

  9. Slug, mammalian homologue gene of Drosophila escargot, promotes neuronal-differentiation through suppression of HEB/daughterless.

    Yang, Dong-Jin; Chung, Ji-Yun; Lee, Su-Jin; Park, So-Young; Pyo, Jung-Hoon; Ha, Nam-Chul; Yoo, Mi-Ae; Park, Bum-Joon

    2010-07-15

    At the neuron developmental stage, neuron-precursor cells can be differentiated into neuron or glia cells. However, precise molecular mechanism to determine the cell fate has not been clearly demonstrated. In this study, we reveal that Drosophila esgarcot and its mammalian homologue genes, Snail and Slug, play a key role in neuronal differentiation. In Drosophila model system, overexpression of Esg, like as Wingless, suppresses the bristle formation. In contrast, elimination of Esg though RNAi promotes double bristle phenotype. We can also observe the similar phenotype in Snail-overexpression system. In mammalian system, overexpression of Slug or Snail can induce neuronal differentiation. Esg and its mammalian homologue gene Slug directly interact with Daughtherless and its mammalian homologue HEB and eliminate them through siah-1 mediated protein degradation. Thus, overexpression of siah-1 can promote neuron cell differentiation, whereas si-siah-1 blocks the Slug-induced HEB suppression. In fact, Drosophila SINA, Siah-1 homologue, has been also known to be involved in bristle formation and Neuronal differentiation. In addition, it has been revealed that CK1 is involved in Esg or Snail stability and Neuronal differentiation. However, Snail is regulated only by CK1 but not by Siah. Considering the fact that Slug mutations have been found in human genetic disease, waardenberg syndrome, major symptoms of which is loss of hearing neuron and odd eye, our result implies that slug/Snail system is required for proper neuronal differentiation, like as Esg in Drosophila. PMID:20647756

  10. Gene Expression in Accumbens GABA Neurons from Inbred Rats with Different Drug-Taking Behavior

    Sharp, B M; H Chen; S. Gong; Wu, X; Liu, Z.; Hiler, K.; Taylor, W.L.; Matta, S.G.

    2011-01-01

    Inbred Lewis and Fisher 344 rat strains differ greatly in drug self-administration; Lewis rats operantly self-administer drugs of abuse including nicotine, whereas Fisher self-administer poorly. As shown herein, operant food self-administration is similar. Based on their pivotal role in drug reward, we hypothesized that differences in basal gene expression in GABAergic neurons projecting from nucleus accumbens (NAcc) to ventral pallidum (VP) play a role in vulnerability to drug taking behavio...

  11. Dopamine receptor-mediated regulation of neuronal “clock” gene expression

    Imbesi, Marta; Yildiz, Sevim; Arslan, Ahmet Dirim; Sharma, Rajiv; Manev, Hari; Uz, Tolga

    2008-01-01

    Using transgenic mice model (i.e., “clock” knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulate the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in...

  12. Differential regulation of Aβ42-induced neuronal C1q synthesis and microglial activation

    Tenner Andrea J

    2005-01-01

    Full Text Available Abstract Expression of C1q, an early component of the classical complement pathway, has been shown to be induced in neurons in hippocampal slices, following accumulation of exogenous Aβ42. Microglial activation was also detected by surface marker expression and cytokine production. To determine whether C1q induction was correlated with intraneuronal Aβ and/or microglial activation, D-(--2-amino-5-phosphonovaleric acid (APV, an NMDA receptor antagonist and glycine-arginine-glycine-aspartic acid-serine-proline peptide (RGD, an integrin receptor antagonist, which blocks and enhances Aβ42 uptake, respectively, were assessed for their effect on neuronal C1q synthesis and microglial activation. APV inhibited, and RGD enhanced, microglial activation and neuronal C1q expression. However, addition of Aβ10–20 to slice cultures significantly reduced Aβ42 uptake and microglial activation, but did not alter the Aβ42-induced neuronal C1q expression. Furthermore, Aβ10–20 alone triggered C1q production in neurons, demonstrating that neither neuronal Aβ42 accumulation, nor microglial activation is required for neuronal C1q upregulation. These data are compatible with the hypothesis that multiple receptors are involved in Aβ injury and signaling in neurons. Some lead to neuronal C1q induction, whereas other(s lead to intraneuronal accumulation of Aβ and/or stimulation of microglia.

  13. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin

    Benvenisti-Zarom Luna

    2004-09-01

    Full Text Available Abstract Background Hemin, the oxidized form of heme, accumulates in intracranial hematomas and is a potent oxidant. Growing evidence suggests that it contributes to delayed injury to surrounding tissue, and that this process is affected by the heme oxygenase enzymes. In a prior study, heme oxygenase-2 gene deletion increased the vulnerability of cultured cortical astrocytes to hemin. The present study tested the effect of HO-2 gene deletion on protein oxidation, reactive oxygen species formation, and cell viability after mixed cortical neuron/astrocyte cultures were incubated with neurotoxic concentrations of hemin. Results Continuous exposure of wild-type cultures to 1–10 μM hemin for 14 h produced concentration-dependent neuronal death, as detected by both LDH release and fluorescence intensity after propidium iodide staining, with an EC50 of 1–2 μM; astrocytes were not injured by these low hemin concentrations. Cell death was consistently reduced by at least 60% in knockout cultures. Exposure to hemin for 4 hours, a time point that preceded cell lysis, increased protein oxidation in wild-type cultures, as detected by staining of immunoblots for protein carbonyl groups. At 10 μM hemin, carbonylation was increased 2.3-fold compared with control sister cultures subjected to medium exchanges only; this effect was reduced by about two-thirds in knockout cultures. Cellular reactive oxygen species, detected by fluorescence intensity after dihydrorhodamine 123 (DHR staining, was markedly increased by hemin in wild-type cultures and was localized to neuronal cell bodies and processes. In contrast, DHR fluorescence intensity in knockout cultures did not differ from that of sham-washed controls. Neuronal death in wild-type cultures was almost completely prevented by the lipid-soluble iron chelator phenanthroline; deferoxamine had a weaker but significant effect. Conclusions These results suggest that HO-2 gene deletion protects neurons in mixed

  14. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    Gu, Da-min [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Lu, Pei-Hua, E-mail: lphty1_1@163.com [Department of Medical Oncology, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Zhang, Ke; Wang, Xiang [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Sun, Min [Department of General Surgery, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Chen, Guo-Qian [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Wang, Qiong, E-mail: WangQiongprof1@126.com [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China)

    2015-02-13

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.

  15. Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons.

    Heman-Ackah, Sabrina Mahalia; Bassett, Andrew Roger; Wood, Matthew John Andrew

    2016-01-01

    The ability to reprogram adult somatic cells into induced pluripotent stem cells (iPSCs) and the subsequent development of protocols for their differentiation into disease-relevant cell types have enabled in-depth molecular analyses of multiple disease states as hitherto impossible. Neurons differentiated from patient-specific iPSCs provide a means to recapitulate molecular phenotypes of neurodegenerative diseases in vitro. However, it remains challenging to conduct precise manipulations of gene expression in iPSC-derived neurons towards modeling complex human neurological diseases. The application of CRISPR/Cas9 to mammalian systems is revolutionizing the utilization of genome editing technologies in the study of molecular contributors to the pathogenesis of numerous diseases. Here, we demonstrate that CRISPRa and CRISPRi can be used to exert precise modulations of endogenous gene expression in fate-committed iPSC-derived neurons. This highlights CRISPRa/i as a major technical advancement in accessible tools for evaluating the specific contributions of critical neurodegenerative disease-related genes to neuropathogenesis. PMID:27341390

  16. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons.

    Christoph Straub

    Full Text Available The prokaryotic adaptive immune system CRISPR/Cas9 has recently been adapted for genome editing in eukaryotic cells. This technique allows for sequence-specific induction of double-strand breaks in genomic DNA of individual cells, effectively resulting in knock-out of targeted genes. It thus promises to be an ideal candidate for application in neuroscience where constitutive genetic modifications are frequently either lethal or ineffective due to adaptive changes of the brain. Here we use CRISPR/Cas9 to knock-out Grin1, the gene encoding the obligatory NMDA receptor subunit protein GluN1, in a sparse population of mouse pyramidal neurons. Within this genetically mosaic tissue, manipulated cells lack synaptic current mediated by NMDA-type glutamate receptors consistent with complete knock-out of the targeted gene. Our results show the first proof-of-principle demonstration of CRISPR/Cas9-mediated knock-down in neurons in vivo, where it can be a useful tool to study the function of specific proteins in neuronal circuits.

  17. Highly efficient method for gene delivery in mouse dorsal root ganglia neurons

    Valérie Castellani

    2015-02-01

    Full Text Available The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5 to 16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60 – 80% and low toxicity (> 60% survival were achieved with robust differentiation in response to Nerve growth factor (NGF. Moreover, 3-50 times fewer cells are needed (6x104 compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures.

  18. Gene expression for peptides in neurons of the petrosal and nodose ganglia in rat.

    Czyzyk-Krzeska, M F; Bayliss, D A; Seroogy, K B; Millhorn, D E

    1991-01-01

    In situ hybridization was used to determine whether genes for neuropeptides [substance P/neurokinin A (SP/NKA), calcitonin gene-related peptide (CGRP), somatostatin (SOM), neuropeptide tyrosine (NPY) and cholecystokinin (CCK)] are expressed in inferior ganglia of the vagus (nodose) and glossopharyngeal (petrosal) nerves. Synthetic oligodeoxyribonucleotides, complementary to the cognate, mRNAs were labeled with [32P] or [35S], and hybridized to 10 microns thick sections of unperfused tissue which were then processed for film and emulsion autoradiography. We found numerous, clustered neuronal perikarya throughout the nodose and petrosal ganglia that expressed preprotachykinin A (SP/NKA) and CGRP mRNAs to varying degrees. Neurons expressing preproSOM mRNA were less abundant and more scattered throughout both ganglia. Notably, we found mRNA for NPY in cells (usually 5-10 per section) in both ganglia. To our knowledge, this is first evidence for NPY in these sensory ganglia. In contrast to previous immunohistochemical findings, we found no evidence for expression of preproCCK in either the nodose or petrosal ganglia. The present findings demonstrate that cells of the nodose and petrosal ganglia express the genes for a number of neuropeptides that are presumably involved with transmission of visceral sensory afferent information to higher order neurons of the central nervous system. PMID:1708726

  19. WNT3 Inhibits Cerebellar Granule Neuron Progenitor Proliferation and Medulloblastoma Formation via MAPK Activation

    Ayrault, Olivier; Kim, Jee Hae; Zhu, Xiaodong; Murphy, David A.; Van Aelst, Linda; Roussel, Martine F.; Hatten, Mary E.

    2013-01-01

    During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors. PMID:24303070

  20. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium.

    Shaohua Zhao

    Full Text Available Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN stably expresses a single odorant receptor (OR type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived side was significantly lower (for four ORs, similar (for three ORs, or significantly higher (for eight ORs as compared to that in the open (over-stimulated side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.

  1. Construction of neuron specific vector of human antisense noggin gene expression

    Shengnian Zhou; Chengshan Li; Xiansen Wei; Liqing Liu; Zhengda Zhang

    2010-01-01

    The noggin gene is present in the central nervous system in embryonic and postnatal mammals,and plays an important role in maintaining nervous system development and physiological function.A 0.76-kb sequence of human noggin gene was cloned by polymerase chain reaction with the digestion site of Hind Ⅲ and Xba l on the 5' end.The cloned fragment was reversely inserted into pCS2+[Tα1]-GFP plasmid,an neural cell-specific antisense eukaryotic expression vector.The plasmid expresses antisense for human noggin specifically in neurons,which may facilitate understanding of the physiological function of noggin.

  2. Activation of CNTF/CNTFRα signaling pathway by hRheb(S16H transduction of dopaminergic neurons in vivo.

    Kyoung Hoon Jeong

    Full Text Available Ciliary neurotrophic factor (CNTF is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα. It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson's disease (PD patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc, suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb, with an S16H mutation [hRheb(S16H], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H may have therapeutic potential in the treatment of PD.

  3. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Viergever, M.A.; Pijl, H.; Grond, J. van der

    2007-01-01

    We previously showed that hypothalamic neuronal activity, as measured by the blood oxygen level-dependent (BOLD) functional MRI signal, declines in response to oral glucose intake. To further explore the mechanism driving changes in hypothalamic neuronal activity in response to an oral glucose load,

  4. Atomic basis for therapeutic activation of neuronal potassium channels

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-09-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.

  5. Splitting Hares and Tortoises: A Classification of Neuronal Immediate Early Gene Transcription Based on Poised RNA Polymerase II

    Saha, Ramendra N; Dudek, Serena M.

    2013-01-01

    Immediate early transcription is an integral part of the neuronal response to environmental stimulation and serves many brain processes including development, learning, triggers of programmed cell death, and reaction to injury and drugs. Following a stimulus, neurons express a select few genes within a short period of time without undergoing de novo protein translation. Referred to as the ‘gateway to genetic response’, these immediate early genes (IEGs) are either expressed within a few minut...

  6. Adenovirus-mediated gene delivery to hypothalamic magnocellular neurons in mice

    Vasquez, E. C.; Beltz, T. G.; Meyrelles, S. S.; Johnson, A. K.

    1999-01-01

    Vasopressin is synthesized by magnocellular neurons in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei and released by their axon terminals in the neurohypophysis (NH). With its actions as an antidiuretic hormone and vasoactive agent, vasopressin plays a pivotal role in the control of body fluids and cardiovascular homeostasis. Because of its well-defined neurobiology and functional importance, the SON/PVN-NH system is ideal to establish methods for gene transfer of genetic material into specific pathways in the mouse central nervous system. In these studies, we compared the efficiency of transferring the gene lacZ, encoding for beta-galactosidase (beta-gal), versus a gene encoding for green fluorescent protein by using replication-deficient adenovirus (Ad) vectors in adult mice. Transfection with viral concentrations up to 2 x 10(7) plaque-forming units per coverslip of NH, PVN, and SON in dissociated, cultured cells caused efficient transfection without cytotoxicity. However, over an extended period of time, higher levels (50% to 75% of the cells) of beta-gal expression were detected in comparison with green fluorescent protein (5% to 50% of the cells). With the use of a stereotaxic approach, the pituitary glands of mice were injected with Ad (4 x 10(6) plaque-forming units). In material from these animals, we were able to visualize the expression of the beta-gal gene in the NH and in magnocellular neurons of both the PVN and SON. The results of these experiments indicate that Ad-Rous sarcoma virus promoter-beta-gal is taken up by nerve terminals at the injection site (NH) and retrogradely transported to the soma of the neurons projecting to the NH. We conclude that the application of these experimental approaches will provide powerful tools for physiological studies and potential approaches to deliver therapeutic genes to treat diseases.

  7. Coe genes are expressed in differentiating neurons in the central nervous system of protostomes.

    Adrien Demilly

    Full Text Available Genes of the coe (collier/olfactory/early B-cell factor family encode Helix-Loop-Helix transcription factors that are widely conserved in metazoans and involved in many developmental processes, neurogenesis in particular. Whereas their functions during vertebrate neural tube formation have been well documented, very little is known about their expression and role during central nervous system (CNS development in protostomes. Here we characterized the CNS expression of coe genes in the insect Drosophila melanogaster and the polychaete annelid Platynereis dumerilii, which belong to different subgroups of protostomes and show strikingly different modes of development. In the Drosophila ventral nerve cord, we found that the Collier-expressing cells form a subpopulation of interneurons with diverse molecular identities and neurotransmitter phenotypes. We also demonstrate that collier is required for the proper differentiation of some interneurons belonging to the Eve-Lateral cluster. In Platynereis dumerilii, we cloned a single coe gene, Pdu-coe, and found that it is exclusively expressed in post mitotic neural cells. Using an original technique of in silico 3D registration, we show that Pdu-coe is co-expressed with many different neuronal markers and therefore that, like in Drosophila, its expression defines a heterogeneous population of neurons with diverse molecular identities. Our detailed characterization and comparison of coe gene expression in the CNS of two distantly-related protostomes suggest conserved roles of coe genes in neuronal differentiation in this clade. As similar roles have also been observed in vertebrates, this function was probably already established in the last common ancestor of all bilaterians.

  8. Monitoring the excitability of neocortical efferent neurons to direct activation by extracellular current pulses.

    Swadlow, H A

    1992-08-01

    1. Extracellular action potentials were recorded from antidromically activated efferent neurons in visual, somatosensory, and motor cortex of the awake rabbit using low-impedance metal microelectrodes. Efferent neurons were also activated by current pulses delivered near the soma [juxtasomal current pulses (JSCPs)] through the recording microelectrode. Action potentials generated by JSCPs were not directly observed (because of the stimulus artifact), but were inferred with the use of a collision paradigm. Efferent populations studied include callosal neurons [CC (n = 80)], ipsilateral corticocortical neurons [C-IC (n = 21)], corticothalamic neurons of layer 6 [CF-6 (n = 57)], and descending corticofugal neurons of layer 5 [CF-5, corticotectal neurons of the visual cortex (n = 48)]. 2. Most CC neurons (45/46) and all C-IC (8/8) and CF-6 neurons (39/39) were directly activated by JSCPs at near-threshold intensities. Some CF-5 neurons (9/38), however, showed evidence of indirect activation. All efferent classes had similar current thresholds (means 1.85-2.10 microA) to direct activation by JSCPs, and thresholds were inversely related to extracellular spike amplitude. For each neuron, the range of JSCP intensities that generated response probabilities of between 0.2 and 0.8 was measured, and this "range of uncertainty" was significantly greater in CF-5 neurons (mean 32.7% of threshold) than in CC (mean 19.0%) or CF-6 (mean 20.4%) neurons. 3. Several factors indicate that the threshold of efferent neurons to JSCPs is very sensitive to excitatory and inhibitory synaptic inputs. Iontophoretic applications of gamma-aminobutyric acid (GABA) increased the threshold to JSCPs, and glutamate reduced the threshold. Electrical stimulation of afferent pathways at intensities just below threshold for eliciting action potentials resulted in a dramatic decrease in JSCP threshold. This initial short-latency threshold decrease was specific to stimulation of particular afferent pathways

  9. Oxytocin activation of neurons in ventral tegmental area and interfascicular nucleus of mouse midbrain.

    Tang, Yamei; Chen, Zhiheng; Tao, Huai; Li, Cunyan; Zhang, Xianghui; Tang, Aiguo; Liu, Yong

    2014-02-01

    Oxytocin (OT) was reported to affect cognitive and emotional behavior by action in ventral tegmental area (VTA) and other brain areas. However, it is still unclear how OT activates VTA and related midline nucleus. Here, using patch-clamp recording, we studied the effects of OT on neuron activity in VTA and interfascicular nucleus (IF). OT dose-dependently and selectively excited small neurons located in medial VTA and the majority of IF neurons but not large neurons in lateral VTA. We found the hyperpolarization-activated current (I(h)) and the membrane capacitance of OT-sensitive neuron were significantly smaller than those of OT-insensitive neurons. The action potential width of OT-sensitive neurons was about half that of OT-insensitive neurons. The OT effect was blocked by the OT receptor antagonist atosiban and WAY-267464 but not by tetrodotoxin, suggesting a direct postsynaptic activation of OT receptors. In addition, the phospholipase C (PLC) inhibitor U73122 antagonized the depolarization by OT. Both the nonselective cation channel (NSCC) antagonist SKF96365 and the Na(+)-Ca(2+) exchanger (NCX) blocker SN-6 attenuated OT effects. These results suggested that the PLC signaling pathway coupling to NSCC and NCX contributes to the OT-mediated activation of neurons in medial VTA and IF. Taken together, our results indicate OT directly acted on medial VTA and especially IF neurons to activate NSCC and NCX via PLC. The direct activation by OT of midbrain neurons may be one mechanism underlying OT effects on social behavior. PMID:24148809

  10. A SAGE-based screen for genes expressed in sub-populations of neurons in the mouse dorsal root ganglion

    Garces Alain

    2007-11-01

    Full Text Available Abstract Background The different sensory modalities temperature, pain, touch and muscle proprioception are carried by somatosensory neurons of the dorsal root ganglia. Study of this system is hampered by the lack of molecular markers for many of these neuronal sub-types. In order to detect genes expressed in sub-populations of somatosensory neurons, gene profiling was carried out on wild-type and TrkA mutant neonatal dorsal root ganglia (DRG using SAGE (serial analysis of gene expression methodology. Thermo-nociceptors constitute up to 80 % of the neurons in the DRG. In TrkA mutant DRGs, the nociceptor sub-class of sensory neurons is lost due to absence of nerve growth factor survival signaling through its receptor TrkA. Thus, comparison of wild-type and TrkA mutants allows the identification of transcripts preferentially expressed in the nociceptor or mechano-proprioceptor subclasses, respectively. Results Our comparison revealed 240 genes differentially expressed between the two tissues (P Conclusion We have identified and characterized the detailed expression patterns of three genes in the developing DRG, placing them in the context of the known major neuronal sub-types defined by molecular markers. Further analysis of differentially expressed genes in this tissue promises to extend our knowledge of the molecular diversity of different cell types and forms the basis for understanding their particular functional specificities.

  11. Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons.

    Cembrowski, Mark S; Bachman, Julia L; Wang, Lihua; Sugino, Ken; Shields, Brenda C; Spruston, Nelson

    2016-01-20

    Tissue and organ function has been conventionally understood in terms of the interactions among discrete and homogeneous cell types. This approach has proven difficult in neuroscience due to the marked diversity across different neuron classes, but it may be further hampered by prominent within-class variability. Here, we considered a well-defined canonical neuronal population—hippocampal CA1 pyramidal cells (CA1 PCs)—and systematically examined the extent and spatial rules of transcriptional heterogeneity. Using next-generation RNA sequencing, we identified striking variability in CA1 PCs, such that the differences within CA1 along the dorsal-ventral axis rivaled differences across distinct pyramidal neuron classes. This variability emerged from a spectrum of continuous gene-expression gradients, producing a transcriptional profile consistent with a multifarious continuum of cells. This work reveals an unexpected amount of variability within a canonical and narrowly defined neuronal population and suggests that continuous, within-class heterogeneity may be an important feature of neural circuits. PMID:26777276

  12. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model.

    Lin, Chung-Yin; Hsieh, Han-Yi; Chen, Chiung-Mei; Wu, Shang-Rung; Tsai, Chih-Hung; Huang, Chiung-Yin; Hua, Mu-Yi; Wei, Kuo-Chen; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-08-10

    Focused ultrasound (FUS)-induced with microbubbles (MBs) is a promising technique for noninvasive opening of the blood-brain barrier (BBB) to allow targeted delivery of therapeutic substances into the brain and thus the noninvasive delivery of gene vectors for CNS treatment. We have previously demonstrated that a separated gene-carrying liposome and MBs administration plus FUS exposure can deliver genes into the brain, with the successful expression of the reporter gene and glial cell line-derived neurotrophic factor (GDNF) gene. In this study, we further modify the delivery system by conjugating gene-carrying liposomes with MBs to improve the GDNF gene-delivery efficiency, and to verify the possibility of using this system to perform treatment in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal disease model. FUS-BBB opening was verified by contrast-enhanced MRI, and GFP gene expression was verified via in vivo imaging system (IVIS). Western blots as well as enzyme-linked immunosorbent assay (ELISA) were conducted to measure protein expression, and immunohistochemistry (IHC) was conducted to test the Tyrosine hydroxylase (TH)-neuron distribution. Dopamine (DA) and its metabolites as well as dopamine active transporter (DAT) were quantitatively analyzed to show dopaminergic neuronal dopamine secretion/activity/metabolism. Motor performance was evaluated by rotarod test weekly. Results demonstrated that the LpDNA-MBs (gene-liposome-MBs) complexes successfully serve as gene carrier and BBB-opening catalyst, and outperformed the separated LpDNA/MBs administration both in terms of gene delivery and expression. TH-positive IHC and measurement of DA and its metabolites DOPAC and HVA confirmed improved neuronal function, and the proposed system also provided the best neuroprotective effect to retard the progression of motor-related behavioral abnormalities. Immunoblotting and histological staining further confirmed the expression of reporter genes in

  13. The Ins and Outs of miRNA-Mediated Gene Silencing during Neuronal Synaptic Plasticity

    Dipen Rajgor

    2016-01-01

    Full Text Available Neuronal connections through specialized junctions, known as synapses, create circuits that underlie brain function. Synaptic plasticity, i.e., structural and functional changes to synapses, occurs in response to neuronal activity and is a critical regulator of various nervous system functions, including long-term memory formation. The discovery of mRNAs, miRNAs, ncRNAs, ribosomes, translational repressors, and other RNA binding proteins in dendritic spines allows individual synapses to alter their synaptic strength rapidly through regulation of local protein synthesis in response to different physiological stimuli. In this review, we discuss our understanding of a number of miRNAs, ncRNAs, and RNA binding proteins that are emerging as important regulators of synaptic plasticity, which play a critical role in memory, learning, and diseases that arise when neuronal circuits are impaired.

  14. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep

    Van Dort, Christa J.; Zachs, Daniel P.; Kenny, Jonathan D.; Zheng, Shu; Goldblum, Rebecca R.; Gelwan, Noah A.; Ramos, Daniel M; Nolan, Michael A.; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A.; Emery N Brown

    2014-01-01

    Rapid eye movement (REM) sleep is a critical component of restful sleep, yet the mechanisms that control REM sleep are incompletely understood. Brainstem cholinergic neurons have been implicated in REM sleep regulation, but heterogeneous cell types in the area have made it difficult to determine the specific role of each population, leading to a debate about the importance of cholinergic neurons. Therefore, we selectively activated brainstem cholinergic neurons to determine their role in REM ...

  15. Phase Locking Phenomena and Electroencephalogram-Like Activities in Dynamic Neuronal Systems

    XU Xin-Jian; WANG Sheng-Jun; TANG Wei; WANG Ying-Hai

    2005-01-01

    @@ We study signal detection and transduction of dynamic neuronal systems under the influence of external noise,white and coloured. Based on simulations, we show explicitly phase locking phenomena between the output and the input of a single neuron and Electroencephalogram-like activities on neural networks with small-world connectivity. The numerical results prove that the dynamic neuronal system can be adjusted to an optimal sensitive state for signal processing in the presence of additive noise.

  16. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R.; Pistis, Marco

    2008-01-01

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological ...

  17. ATP released by injured neurons activates Schwann cells

    Samuele eNegro

    2016-05-01

    Full Text Available Injured nerve terminals of neuromuscular junctions (NMJs can regenerate. This remarkable and complex response is governed by molecular signals that are exchanged among the cellular components of this synapse: motor axon nerve terminal (MAT, perisynaptic Schwann cells (PSCs, and muscle fibre. The nature of signals that govern MAT regeneration is ill-known. In the present study the spider toxin α-Latrotoxin has been used as tool to investigate the mechanisms underlying peripheral neuroregeneration. Indeed this neurotoxin induces an acute, specific, localized and fully reversible damage of the presynaptic nerve terminal, and its action mimics the cascade of events that leads to nerve terminal degeneration in injured patients and in many neurodegenerative conditions. Here we provide evidence of an early release by degenerating neurons of ATP as alarm messenger, that contributes to the activation of a series of intracellular pathways within SCs that are crucial for nerve regeneration: Ca2+, cAMP, ERK1/2, and CREB. These results contribute to define the cross-talk taking place among degenerating nerve terminals and PSCs, involved in the functional recovery of the NMJ.

  18. Intrastriatal Gene Transfer of Vascular Endothelial Growth Factor Rescues Dopaminergic Neurons in a Rat Parkinson's Disease Model

    2006-01-01

    To examine the ability of intrastriatal gene transfer of vascular endothelial growth factor 165 mediated by adenoviral vector to rescue dopaminergic neurons in a rat model of Parkinson's disease (PD), we constructed recombinant replication-deficent adenoviral vectors carrying the gene of VEGF165 (Ad-VEGF), and injected Ad-VEGF (or Ad-LacZ and PBS as controls) into the striatum of rats 7 days after the lesion by 6-hydroxydopamine. The rat rotational behavior analysis and tyrosine hydroxylase (TH) immunohistochemistry were performed to assess the change of dopaminergic neurons. Our results showed that the rats receiving Ad-VEGF injection displayed a significant improvement in apomorphine-induced rotational behavior and a significant preservation of TH-positive neurons and fibers compared with control animals. It is concluded that intrastriatal gene transfer by Ad-VEGF may rescue the dopaminergic neurons from degeneration in a rat model of PD.

  19. An inhibitor of neuronal exocytosis (DD04107) displays long-lasting in vivo activity against chronic inflammatory and neuropathic pain.

    Ponsati, Berta; Carreño, Cristina; Curto-Reyes, Verdad; Valenzuela, Belen; Duart, María José; Van den Nest, Wim; Cauli, Omar; Beltran, Beatriz; Fernandez, Jimena; Borsini, Franco; Caprioli, Antonio; Di Serio, Stefano; Veretchy, Mario; Baamonde, Ana; Menendez, Luis; Barros, Francisco; de la Pena, Pilar; Borges, Ricardo; Felipo, Vicente; Planells-Cases, Rosa; Ferrer-Montiel, Antonio

    2012-06-01

    Small peptides patterned after the N terminus of the synaptosomal protein of 25 kDa, a member of the protein complex implicated in Ca(2+)-dependent neuronal exocytosis, inhibit in vitro the release of neuromodulators involved in pain signaling, suggesting an in vivo analgesic activity. Here, we report that compound DD04107 (palmitoyl-EEMQRR-NH(2)), a 6-mer palmitoylated peptide that blocks the inflammatory recruitment of ion channels to the plasma membrane of nociceptors and the release of calcitonin gene-related peptide from primary sensory neurons, displays potent and long-lasting in vivo antihyperalgesia and antiallodynia in chronic models of inflammatory and neuropathic pain, such as the complete Freund's adjuvant, osteosarcoma, chemotherapy, and diabetic neuropathic models. Subcutaneous administration of the peptide produced a dose-dependent antihyperalgesic and antiallodynic activity that lasted ≥24 h. The compound showed a systemic distribution, characterized by a bicompartmental pharmacokinetic profile. Safety pharmacology studies indicated that the peptide is largely devoid of side effects and substantiated that the in vivo activity is not caused by locomotor impairment. Therefore, DD04107 is a potent and long-lasting antinociceptive compound that displays a safe pharmacological profile. These findings support the notion that neuronal exocytosis of receptors and neuronal algogens pivotally contribute to chronic inflammatory and neuropathic pain and imply a central role of peptidergic nociceptor sensitization to the pathogenesis of pain. PMID:22393248

  20. scratch, a pan-neural gene encoding a zinc finger protein related to snail, promotes neuronal development.

    Roark, M; Sturtevant, M A; Emery, J; Vaessin, H; Grell, E; Bier, E

    1995-10-01

    The Drosophila scratch (scrt) gene is expressed in most or all neuronal precursor cells and encodes a predicted zinc finger transcription factor closely related to the product of the mesoderm determination gene snail (sna). Adult flies homozygous for scrt null alleles have a reduced number of photoreceptors in the eye, and embryos lacking the function of both scrt and the pan-neural gene deadpan (dpn), which encodes a basic helix-loop-helix (bHLH) protein, exhibit a significant loss of neurons. Conversely, ectopic expression of a scrt transgene during embryonic and adult development leads to the production of supernumerary neurons. Consistent with scrt functioning as a transcription factor, various genes are more broadly expressed than normal in scrt null mutants. Reciprocally, these same genes are expressed at reduced levels in response to ectopic scrt expression. We propose that scrt promotes neuronal cell fates by suppressing expression of genes promoting non-neuronal cell fates. We discuss the similarities between the roles of the ancestrally related scrt, sna, and escargot (esc) genes in regulating cell fate choices. PMID:7557390

  1. Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene.

    Andrea M Santangelo

    2007-10-01

    Full Text Available The proopiomelanocortin gene (POMC is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5' distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORE-SINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution.

  2. Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of alpha-2 and beta receptor activation.

    Buffalari, Deanne M; Grace, Anthony A

    2007-11-01

    Substantial data exists demonstrating the importance of the amygdala and the locus ceruleus (LC) in responding to stress, aversive memory formation, and the development of stress-related disorders; however, little is known about the effects of norepinephrine (NE) on amygdala neuronal activity in vivo. The basolateral nucleus of the amygdala (BLA) receives dense NE projections from the LC, NE increases in the BLA in response to stress, and the BLA can also modulate the LC via reciprocal projections. These experiments examined the effects of noradrenergic agents on spontaneous and evoked responses of BLA neurons. NE iontophoresis inhibited spontaneous firing and decreased the responsiveness of BLA neurons to electrical stimulation of entorhinal cortex and sensory association cortex (Te3). Confirmed BLA projection neurons exhibited exclusively inhibitory responses to NE. Systemic administration of propranolol, a beta-receptor antagonist, decreased the spontaneous firing rate and potentiated the NE-evoked inhibition of BLA neurons. In addition, iontophoresis of the alpha-2 agonist clonidine, footshock administration, and LC stimulation mimicked the effects of NE iontophoresis on spontaneous activity. Furthermore, the effects of LC stimulation were partially blocked by systemic administration of alpha 2 and beta receptor antagonists. This is the first study to demonstrate the actions of directly applied and stimulus-evoked NE in the BLA in vivo, and provides a mechanism by which beta receptors can mediate the important behavioral consequences of NE within the BLA. The interaction between these two structures is particularly relevant with regard to their known involvement in stress responses and stress-related disorders. PMID:17989300

  3. Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus)

    Schubert, Michael; Holland, Nicholas D; Escriva, Hector; Holland, Linda Z; Laudet, Vincent

    2004-01-01

    In developing chordates, retinoic acid (RA) signaling patterns the rostrocaudal body axis globally and affects gene expression locally in some differentiating cell populations. Here we focus on development of epidermal sensory neurons in an invertebrate chordate (amphioxus) to determine how RA signaling influences their rostrocaudal distribution and gene expression (for AmphiCoe, a neural precursor gene; for amphioxus islet and AmphiERR, two neural differentiation genes; and for AmphiHox1, -3...

  4. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo

    Nudelman, Aaron Samuel; DiRocco, Derek P; Lambert, Talley J;

    2010-01-01

    expression in mouse brain was monitored by quantitative RT-PCR (RT-qPCR). Pilocarpine-induced seizures led to a robust, rapid, and transient increase in the primary transcript of miR-132 (pri-miR-132) followed by a subsequent rise in mature microRNA (miR-132). Activation of neurons in the hippocampus......, olfactory bulb, and striatum by contextual fear conditioning, odor-exposure, and cocaine-injection, respectively, also increased pri-miR-132. Induction kinetics of pri-miR-132 were monitored and found to parallel those of immediate early genes, peaking at 45 min and returning to basal levels within 2 h of...

  5. Glutamatergic system controls synchronization of spontaneous neuronal activity in the murine neonatal entorhinal cortex.

    Unichenko, Petr; Yang, Jeng-Wei; Luhmann, Heiko J; Kirischuk, Sergei

    2015-07-01

    Synchronized spontaneous neuronal activity is a characteristic feature of the developing brain. Rhythmic network discharges in the neonatal medial entorhinal cortex (mEC) in vitro depend on activation of ionotropic glutamate receptors, but spontaneously active neurons are required for their initiation. Field potential recordings revealed synchronized neuronal activity in the mEC in vivo developmentally earlier than in vitro. We suggested that not only ionotropic receptors, but also other components of the glutamatergic system modulate neuronal activity in the mEC. Ca(2+) imaging was used to record neuronal activity in neonatal murine brain slices. Two types of spontaneous events were distinguished: global synchronous discharges (synchronous activity) and asynchronously (not synchronized with global discharges) active cells (asynchronous activity). AMPA receptor blockade strongly reduced the frequency of synchronous discharges, while NMDA receptor inhibition was less effective. AMPA and NMDA receptor blockade or activation of group 2/3 metabotropic glutamate receptors (mGluR2/3) completely suppressed synchronous discharges and increased the number of active cells. Blockade of glutamate transporters with DL-TBOA led to NMDA receptor-mediated hyper-synchronization of neuronal activity. Inhibition of NMDA receptors in the presence of DL-TBOA failed to restore synchronous discharges. The latter were partially reestablished only after blockade of mGluR2/3. We conclude that the glutamatergic system can influence neuronal activity via different receptors/mechanisms. As both NMDA and mGluR2/3 receptors have a high affinity for glutamate, changes in extracellular glutamate levels resulting for instance from glutamate transporter malfunction can balance neuronal activity in the mEC, affecting in turn synapse and network formation. PMID:25163767

  6. Biological effects of pramipexole on dopaminergic neuron-associated genes: relevance to neuroprotection.

    Pan, Tianhong; Xie, Wenjie; Jankovic, Joseph; Le, Weidong

    2005-03-29

    Pramipexole (PRX) is a non-ergot dopamine (DA) D2/D3 receptor agonist. Experimental studies have provided evidence that PRX may exert neuroprotective effects on the nigro-striatal system. Recent studies have demonstrated a slower decline of DAT density in Parkinson's disease patients treated with PRX as measured by SPECT. The aim of this study is to determine whether PRX has direct biological effects on DAergic neuron-associated genes expression, including DAT, VMAT2, and Nurr1. The human neuroblastoma SH-SY5Y cells were treated with PRX for various time periods and harvested to measure the mRNA and protein products of these genes. Treatment with PRX at 10 microM significantly increased DAT mRNA levels by 54-130% in 4-8 h, VMAT2 mRNA levels by 34% in 4 h, and Nurr1 mRNA levels by 31-39% in 2-4 h, which was the earliest induction among these three genes. The protein levels of DAT, VMAT2, and Nurr1 were markedly increased after PRX treatment, among which the increase of Nurr1 protein level was the highest at first 2 h treatment of PRX. Nafadotride, a D3 DA receptor antagonist, blocked the increase of Nurr1 gene expression induced by PRX, while eticlopride, a D2 DA receptor antagonist, didn't show this effect. Our findings that PRX has biological regulatory effects on DAergic neuron-associated genes may explain both the slower decline of imaged DAT and the neuroprotective effect of PRX. Furthermore, our results suggest that the induction of Nurr1 gene expression by PRX may be mediated by D3 DA receptor. PMID:15740846

  7. Nitrergic ventro-medial medullary neurons activated during cholinergically induced active (rapid eye movement) sleep in the cat.

    Pose, I; Sampogna, S; Chase, M H; Morales, F R

    2011-01-13

    The rostral ventro-medial medullary reticular formation is a complex structure that is involved with a variety of motor functions. It contains glycinergic neurons that are activated during active (rapid eye movement (REM)) sleep (AS); these neurons appear to be responsible for the postsynaptic inhibition of motoneurons that occurs during this state. We have reported that neurons in this same region contain nitric oxide (NO) synthase and that they innervate brainstem motor pools. In the present study we examined the c-fos expression of these neurons after carbachol-induced active sleep (C-AS). Three control and four experimental cats were employed to identify c-fos expressing nitrergic neurons using immunocytochemical techniques to detect the Fos protein together with neuronal nitric oxide synthase (nNOS) or nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity. The classical neurotransmitter content of the nitrergic cells in this region was examined through the combination of immunocytochemical techniques for the detection of glutamate, glycine, choline acetyltransferase (ChAT), tyrosine hydroxilase (TH) or GABA together with nNOS. During C-AS, there was a 1074% increase in the number of nitrergic neurons that expressed c-fos. These neurons did not contain glycine, ChAT, TH or GABA, but a subpopulation (15%) of them displayed glutamate-like immunoreactivity. Therefore, some of these neurons contain both an excitatory neurotransmitter (glutamate) and an excitatory neuromodulator (NO); the neurotransmitter content of the rest of them remains to be determined. Because some of the nitrergic neurons innervate brainstem motoneurons it is possible that they participate in the generation of tonic and excitatory phasic motor events that occur during AS. We also suggest that these nitrergic neurons may be involved in autonomic regulation during this state. In addition, because NO has trophic effects on target neurons, the present findings represent the

  8. Roles of Fukutin, the Gene Responsible for Fukuyama-Type Congenital Muscular Dystrophy, in Neurons: Possible Involvement in Synaptic Function and Neuronal Migration

    Fukutin is a gene responsible for Fukuyama-type congenital muscular dystrophy (FCMD), accompanying ocular and brain malformations represented by cobblestone lissencephaly. Fukutin is related to basement membrane formation via the glycosylation of α-dystoglycan (α-DG), and astrocytes play a crucial role in the pathogenesis of the brain lesion. On the other hand, its precise function in neurons is unknown. In this experiment, the roles of fukutin in mature and immature neurons were examined using brains from control subjects and FCMD patients and cultured neuronal cell lines. In quantitative PCR, the expression level of fukutin looked different depending on the region of the brain examined. A similar tendency in DG expression appears to indicate a relation between fukutin and α-DG in mature neurons. An increase of DG mRNA and core α-DG in the FCMD cerebrum also supports the relation. In immunohistochemistry, dot-like positive reactions for VIA4-1, one of the antibodies detecting the glycosylated α-DG, in Purkinje cells suggest that fukutin is related to at least a post-synaptic function via the glycosylation of α-DG. As for immature neurons, VIA4-1 was predominantly positive in cells before and during migration with expression of fukutin, which suggest a participation of fukutin in neuronal migration via the glycosylation of α-DG. Moreover, fukutin may prevent neuronal differentiation, because its expression was significantly lower in the adult cerebrum and in differentiated cultured cells. A knockdown of fukutin was considered to induce differentiation in cultured cells. Fukutin seems to be necessary to keep migrating neurons immature during migration, and also to support migration via α-DG

  9. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  10. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.

    Sun, Qinwei; Yang, Yang; Li, Xi; He, Bin; Jia, Yimin; Zhang, Nana; Zhao, Ruqian

    2016-08-01

    Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (PChIP assay showed that FD promoted (Pnetwork in response to folate deficiency. PMID:27133904

  11. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex.

    Crandall, James E; McCarthy, Deirdre M; Araki, Kiyomi Y; Sims, John R; Ren, Jia-Qian; Bhide, Pradeep G

    2007-04-01

    GABA neurons of the cerebral cortex and other telencephalic structures are produced in the basal forebrain and migrate to their final destinations during the embryonic period. The embryonic basal forebrain is enriched in dopamine and its receptors, creating a favorable environment for dopamine to influence GABA neuron migration. However, whether dopamine receptor activation can influence GABA neuron migration is not known. We show that dopamine D1 receptor activation promotes and D2 receptor activation decreases GABA neuron migration from the medial and caudal ganglionic eminences to the cerebral cortex in slice preparations of embryonic mouse forebrain. Slice preparations from D1 or D2 receptor knock-out mouse embryos confirm the findings. In addition, D1 receptor electroporation into cells of the basal forebrain and pharmacological activation of the receptor promote migration of the electroporated cells to the cerebral cortex. Analysis of GABA neuron numbers in the cerebral wall of the dopamine receptor knock-out mouse embryos further confirmed the effects of dopamine receptor activation on GABA neuron migration. Finally, dopamine receptor activation mobilizes striatal neuronal cytoskeleton in a manner consistent with the effects on neuronal migration. These data show that impairing the physiological balance between D1 and D2 receptors can alter GABA neuron migration from the basal forebrain to the cerebral cortex. The intimate relationship between dopamine and GABA neuron development revealed here may offer novel insights into developmental disorders such as schizophrenia, attention deficit or autism, and fetal cocaine exposure, all of which are associated with dopamine and GABA imbalance. PMID:17409246

  12. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity.

    Hull, Michael J; Soffe, Stephen R; Willshaw, David J; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  13. Hypoxanthine deregulates genes involved in early neuronal development. Implications in Lesch-Nyhan disease pathogenesis.

    Torres, R J; Puig, J G

    2015-11-01

    Neurological manifestations in Lesch-Nyhan disease (LND) are attributed to the effect of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency on the nervous system development. HPRT deficiency causes the excretion of increased amounts of hypoxanthine into the extracellular medium and we hypothesized that HPRT deficiency related to hypoxanthine excess may then lead, directly or indirectly, to transcriptional aberrations in a variety of genes essential for the function and development of striatal progenitor cells. We have examined the effect of hypoxanthine excess on the differentiation of neurons in the well-established human NTERA-2 cl.D1 (NT2/D1) embryonic carcinoma neurogenesis model. NT2/D1 cells differentiate along neuroectodermal lineages after exposure to retinoic acid (RA). Hypoxanthine effects on RA-differentiation were examined by the changes on the expression of various transcription factor genes essential to neuronal differentiation and by the changes in tyrosine hydroxylase (TH), dopamine, adenosine and serotonin receptors (DRD, ADORA, HTR). We report that hypoxanthine excess deregulate WNT4, from Wnt/β-catenin pathway, and engrailed homeobox 1 gene and increased TH and dopamine DRD1, adenosine ADORA2A and serotonin HTR7 receptors, whose over expression characterize early neuro-developmental processes. PMID:25940910

  14. Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture

    Kitto Kelley F

    2010-05-01

    Full Text Available Abstract Background Neuronal transduction by adeno-associated viral (AAV vectors has been demonstrated in cortex, brainstem, cerebellum, and sensory ganglia. Intrathecal delivery of AAV serotypes that transduce neurons in dorsal root ganglia (DRG and spinal cord offers substantial opportunities to 1 further study mechanisms underlying chronic pain, and 2 develop novel gene-based therapies for the treatment and management of chronic pain using a non-invasive delivery route with established safety margins. In this study we have compared expression patterns of AAV serotype 5 (AAV5- and AAV serotype 8 (AAV8-mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. Results Intravenous mannitol pre-treatment significantly enhanced transduction of primary sensory neurons after direct lumbar puncture injection of AAV5 (rAAV5-GFP or AAV8 (rAAV8-GFP carrying the green fluorescent protein (GFP gene. The presence of GFP in DRG neurons was consistent with the following evidence for primary afferent origin of the majority of GFP-positive fibers in spinal cord: 1 GFP-positive axons were evident in both dorsal roots and dorsal columns; and 2 dorsal rhizotomy, which severs the primary afferent input to spinal cord, abolished the majority of GFP labeling in dorsal horn. We found that both rAAV5-GFP and rAAV8-GFP appear to preferentially target large-diameter DRG neurons, while excluding the isolectin-B4 (IB4 -binding population of small diameter neurons. In addition, a larger proportion of CGRP-positive cells was transduced by rAAV5-GFP, compared to rAAV8-GFP. Conclusions The present study demonstrates the feasibility of minimally invasive gene transfer to sensory neurons using direct lumbar puncture and provides evidence for differential targeting of subtypes of DRG neurons by AAV vectors.

  15. EphA4 expression promotes network activity and spine maturation in cortical neuronal cultures

    Clifford Meredith A

    2011-05-01

    Full Text Available Abstract Background Neurons form specific connections with targets via synapses and patterns of synaptic connectivity dictate neural function. During development, intrinsic neuronal specification and environmental factors guide both initial formation of synapses and strength of resulting connections. Once synapses form, non-evoked, spontaneous activity serves to modulate connections, strengthening some and eliminating others. Molecules that mediate intercellular communication are particularly important in synaptic refinement. Here, we characterize the influences of EphA4, a transmembrane signaling molecule, on neural connectivity. Results Using multi-electrode array analysis on in vitro cultures, we confirmed that cortical neurons mature and generate spontaneous circuit activity as cells differentiate, with activity growing both stronger and more patterned over time. When EphA4 was over-expressed in a subset of neurons in these cultures, network activity was enhanced: bursts were longer and were composed of more spikes than in control-transfected cultures. To characterize the cellular basis of this effect, dendritic spines, the major excitatory input site on neurons, were examined on transfected neurons in vitro. Strikingly, while spine number and density were similar between conditions, cortical neurons with elevated levels of EphA4 had significantly more mature spines, fewer immature spines, and elevated colocalization with a mature synaptic marker. Conclusions These results demonstrate that experimental elevation of EphA4 promotes network activity in vitro, supporting spine maturation, producing more functional synaptic pairings, and promoting more active circuitry.

  16. Calcitonin gene-related peptide immunoreactive sensory neurons in the vagal and glossopharyngeal ganglia innervating the larynx of the rat.

    Hayakawa, Tetsu; Kuwahara-Otani, Sachi; Maeda, Seishi; Tanaka, Koichi; Seki, Makoto

    2014-01-01

    We have examined whether calcitonin gene-related peptide-immunoreactive (CGRP-ir) neurons in the vagal and glossopharyngeal ganglia innervate the larynx. Many CGRP-ir neurons were located mostly in the superior glossopharyngeal-jugular ganglion complex that was fused the superior glossopharyngeal ganglion and the jugular ganglion in the cranial cavity. When Fluorogold was applied to the cut end of the superior laryngeal nerve (SLN) or the recurrent laryngeal nerve (RLN), many Fluorogold-labeled neurons were found in the superior glossopharyngeal-jugular ganglion complex and the nodose ganglion. Double-labeling for CGRP and Fluorogold showed that about 80% of Fluorogold-labeled neurons in the superior glossopharyngeal-jugular ganglion complex expressed CGRP-like immunoreactivity in the case of application to the SLN, and about 50% of Fluorogold-labeled neurons expressed CGRP-like immunoreactivity in the case of the RLN. Only a few double-labeled neurons were found in the nodose ganglion. The number of the Fluorogold-labeled neurons and double-labeled neurons in the superior glossopharyngeal-jugular ganglion complex in the case of the SLN was larger than that in the case of the RLN. These results indicate that sensory information from the larynx might be conveyed by many CGRP-ir neurons located in the superior glossopharyngeal-jugular ganglion complex by way of the SLN and the RLN. PMID:24269509

  17. Sex differences in feeding behavior in rats: the relationship with neuronal activation in the hypothalamus

    Atsushi eFukushima

    2015-03-01

    Full Text Available There is general agreement that the central nervous system in rodents differs between sexes due to the presence of gonadal steroid hormone during differentiation. Sex differences in feeding seem to occur among species, and responses to fasting (i.e., starvation, gonadal steroids (i.e., testosterone and estradiol, and diet (i.e., western-style diet vary significantly between sexes. The hypothalamus is the center for controlling feeding behavior. We examined the activation of feeding-related peptides in neurons in the hypothalamus. Phosphorylation of cyclic AMP response element-binding protein (CREB is a good marker for neural activation, as is the Fos antigen. Therefore, we predicted that sex differences in the activity of melanin-concentrating hormone (MCH neurons would be associated with feeding behavior. We determined the response of MCH neurons to glucose in the lateral hypothalamic area (LHA and our results suggested MCH neurons play an important role in sex differences in feeding behavior. In addition, fasting increased the number of orexin neurons harboring phosphorylated CREB in female rats (regardless of the estrous day, but not male rats. Glucose injection decreased the number of these neurons with phosphorylated CREB in fasted female rats. Finally, under normal spontaneous food intake, MCH neurons, but not orexin neurons, expressed phosphorylated CREB. These sex differences in response to fasting and glucose, as well as under normal conditions, suggest a vulnerability to metabolic challenges in females.

  18. The neuronal transporter gene SLC6A15 confers risk to major depression

    Kohli, Martin A.; Lucae, Susanne; Saemann, Philipp G.; Schmidt, Mathias V.; Demirkan, Ayse; Hek, Karin; Czamara, Darina; Alexander, Michael; Salyakina, Daria; Ripke, Stephan; Hoehn, David; Specht, Michael; Menke, Andreas; Hennings, Johannes; Heck, Angela

    2011-01-01

    Major depression (MD) is one of the most prevalent psychiatric disorders and a leading cause of loss in work productivity. A combination of genetic and environmental risk factors likely contributes to MD. We present data from a genome-wide association study revealing a neuron-specific neutral amino acid transporter (SLC6A15) as a novel susceptibility gene for MD. Risk allele carrier status in humans and chronic stress in mice were associated with a downregulation of the expression of this gen...

  19. Association analysis of schizophrenia on 18 genes involved in neuronal migration

    Kähler, Anna K; Djurovic, Srdjan; Kulle, Bettina;

    2008-01-01

    , attained nominal significant P-values (P <0.05) in either a genotypic or allelic association test. All of these genes, except transcription factor DLX1, are involved in the adhesion between neurons and radial glial cells. Eight markers obtained nominal significance in both tests, and were located in...... intronic or 3'UTR regions of adhesion molecule MDGA1 and previously reported SZ candidate RELN. The most significant result was attained for MDGA1 SNP rs9462341 (unadjusted association results: genotypic P = 0.00095; allelic P = 0.010). Several haplotypes within MDGA1, RELN, ITGA3, and ENAH were nominally...

  20. Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons

    Tarallo Raffaella

    2006-10-01

    Full Text Available Abstract Background The homeodomain transcription factor Orthopedia (Otp is essential in restricting the fate of multiple classes of secreting neurons in the neuroendocrine hypothalamus of vertebrates. However, there is little information on the intercellular factors that regulate Otp expression during development. Results Here, we identified two otp orthologues in zebrafish (otp1 and otp2 and explored otp1 in the context of the morphogenetic pathways that specify neuroectodermal regions. During forebrain development, otp1 is expressed in anterior groups of diencephalic cells, positioned in the preoptic area (PO (anterior alar plate and the posterior tuberculum (PT (posterior basal plate. The latter structure is characterized by Tyrosine Hydroxylase (TH-positive cells, suggesting a role for otp1 in the lineage restriction of catecholaminergic (CA neurons. Disruptions of Hedgehog (HH and Fibroblast Growth Factor (FGF pathways point to the ability of SHH protein to trigger otp1 expression in PO presumptive neuroblasts, with the attenuating effect of Dzip1 and FGF8. In addition, our data disclose otp1 as a determinant of CA neurons in the PT, where otp1 activity is strictly dependent on Nodal signaling and it is not responsive to SHH and FGF. Conclusion In this study, we pinpoint the evolutionary importance of otp1 transcription factor in cell states of the diencephalon anlage and early neuronal progenitors. Furthermore, our data indicate that morphogenetic mechanisms differentially regulate otp1 expression in alar and basal plates.

  1. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice.

    Shankar Sadasivan

    Full Text Available BACKGROUND: Methylphenidate (MPH is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT and the norepinephrine transporter (NET, resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a "cognitive enhancer" and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. METHODOLOGY/PRINCIPAL FINDINGS: Through the use of stereological counting methods, we observed a significant reduction (∼20% in dopamine neuron numbers in the substantia nigra pars compacta (SNpc following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Unbiased gene screening employing Affymetrix GeneChip® HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigra (SN were observed with both acute and chronic dosing of 10 mg/kg MPH. We also found an increase in mRNA levels of the pro-inflammatory genes il-6 and tnf-α in the striatum, although these were seen only at an acute dose of 10 mg/kg and not following chronic dosing. CONCLUSION: Collectively, our results suggest that chronic MPH usage in mice at doses spanning the therapeutic range in humans, especially at

  2. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  3. Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus

    Ken-Ichi Okada

    2013-05-01

    Full Text Available The neuromodulators serotonin, acetylcholine, and dopamine have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the roles of the other neuromodulators remain elusive. Reportedly, neurons in the dorsal raphe nucleus, one major source of serotonin, continually track the state of expectation of future rewards by showing a correlated response to the start of a behavioral task, reward cue presentation, and reward delivery. Here, we show that neurons in the pedunculopontine tegmental nucleus (PPTN, one major source of acetylcholine, showed similar encoding of the expectation of future rewards by a systematic increase or decrease in tonic activity. We recorded and analyzed PPTN neuronal activity in monkeys during a reward conditioned visually guided saccade task. The firing patterns of many PPTN neurons were tonically increased or decreased throughout the task period. The tonic activity pattern of neurons was correlated with their encoding of the predicted reward value; neurons exhibiting an increase or decrease in tonic activity showed higher or lower activity in the large reward-predicted trials, respectively. Tonic activity and reward-related modulation ended around the time of reward delivery. Additionally, some tonic changes in activity started prior to the appearance of the initial stimulus, and were related to the anticipatory fixational behavior. A partially overlapping population of neurons showed both the initial anticipatory response and subsequent predicted reward value-dependent activity modulation by their systematic increase or decrease of tonic activity. These bi-directional reward- and anticipatory behavior-related modulation patterns are suitable for the presumed role of the PPTN in reward processing and

  4. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation

    Jackson, Marisa Z.; Gruner, Katherine A.; Qin, Charles; Tourtellotte, Warren G.

    2014-01-01

    Familial dysautonomia (FD) is characterized by severe and progressive sympathetic and sensory neuron loss caused by a highly conserved germline point mutation of the human ELP1/IKBKAP gene. Elp1 is a subunit of the hetero-hexameric transcriptional elongator complex, but how it functions in disease-vulnerable neurons is unknown. Conditional knockout mice were generated to characterize the role of Elp1 in migration, differentiation and survival of migratory neural crest (NC) progenitors that gi...

  5. Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Prevedel, R; Hoffmann, M; Pak, N; Wetzstein, G; Kato, S; Schrödel, T; Raskar, R; Zimmer, M; Boyden, E S; Vaziri, A

    2014-01-01

    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.

  6. Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus.

    Yan Jin

    Full Text Available Sodium salicylate (NaSal, a tinnitus inducing agent, can activate serotonergic (5-HTergic neurons in the dorsal raphe nucleus (DRN and can increase serotonin (5-HT level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain.

  7. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons.

    Cembrowski, Mark S; Wang, Lihua; Sugino, Ken; Shields, Brenda C; Spruston, Nelson

    2016-01-01

    Clarifying gene expression in narrowly defined neuronal populations can provide insight into cellular identity, computation, and functionality. Here, we used next-generation RNA sequencing (RNA-seq) to produce a quantitative, whole genome characterization of gene expression for the major excitatory neuronal classes of the hippocampus; namely, granule cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1. Moreover, for the canonical cell classes of the trisynaptic loop, we profiled transcriptomes at both dorsal and ventral poles, producing a cell-class- and region-specific transcriptional description for these populations. This dataset clarifies the transcriptional properties and identities of lesser-known cell classes, and moreover reveals unexpected variation in the trisynaptic loop across the dorsal-ventral axis. We have created a public resource, Hipposeq (http://hipposeq.janelia.org), which provides analysis and visualization of these data and will act as a roadmap relating molecules to cells, circuits, and computation in the hippocampus. PMID:27113915

  8. The mast cell degranulator compound 48/80 directly activates neurons.

    Michael Schemann

    Full Text Available BACKGROUND: Compound 48/80 is widely used in animal and tissue models as a "selective" mast cell activator. With this study we demonstrate that compound 48/80 also directly activates enteric neurons and visceral afferents. METHODOLOGY/PRINCIPAL FINDINGS: We used in vivo recordings from extrinsic intestinal afferents together with Ca(++ imaging from primary cultures of DRG and nodose neurons. Enteric neuronal activation was examined by Ca(++ and voltage sensitive dye imaging in isolated gut preparations and primary cultures of enteric neurons. Intraluminal application of compound 48/80 evoked marked afferent firing which desensitized on subsequent administration. In egg albumen-sensitized animals, intraluminal antigen evoked a similar pattern of afferent activation which also desensitized on subsequent exposure to antigen. In cross-desensitization experiments prior administration of compound 48/80 failed to influence the mast cell mediated response. Application of 1 and 10 µg/ml compound 48/80 evoked spike discharge and Ca(++ transients in enteric neurons. The same nerve activating effect was observed in primary cultures of DRG and nodose ganglion cells. Enteric neuron cultures were devoid of mast cells confirmed by negative staining for c-kit or toluidine blue. In addition, in cultured enteric neurons the excitatory action of compound 48/80 was preserved in the presence of histamine H(1 and H(2 antagonists. The mast cell stabilizer cromolyn attenuated compound 48/80 and nicotine evoked Ca(++ transients in mast cell-free enteric neuron cultures. CONCLUSIONS/SIGNIFICANCE: The results showed direct excitatory action of compound 48/80 on enteric neurons and visceral afferents. Therefore, functional changes measured in tissue or animal models may involve a mast cell independent effect of compound 48/80 and cromolyn.

  9. Genetic control of neuronal activity in mice conditionally expressing TRPV1

    Arenkiel, Benjamin R.; Klein, Marguerita E; Davison, Ian G.; Katz, Lawrence C.; Ehlers, Michael D.

    2008-01-01

    Here we describe a knock-in mouse model for Cre-loxP–based conditional expression of TRPV1 in central nervous system neurons. Expression of Cre recombinase using biolistics, lentivirus or genetic intercrosses triggered heterologous expression of TRPV1 in a cell-specific manner. Application of the TRPV1 ligand capsaicin induced strong inward currents, triggered action potentials and activated stereotyped behaviors, allowing cell type–specific chemical genetic control of neuronal activity in vi...

  10. Modulation of Neuronal Voltage-Activated Calcium and Sodium Channels by Polyamines and pH

    Chen, Wenyan; Harnett, Mark T.; Smith, Stephen M.

    2007-01-01

    The endogenous polyamines spermine, spermidine and putrescine are present at high concentrations inside neurons and can be released into the extracellular space where they have been shown to modulate ion channels. Here, we have examined polyamine modulation of voltage-activated Ca2+ channels (VACCs) and voltage-activated Na+ channels (VANCs) in rat superior cervical ganglion neurons using whole-cell voltage-clamp at physiological divalent concentrations. Polyamines inhibited VACCs in a concen...

  11. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helpl...

  12. Contributions of Diverse Excitatory and Inhibitory Neurons to Recurrent Network Activity in Cerebral Cortex

    Neske, Garrett T.; Patrick, Saundra L.; Connors, Barry W.

    2015-01-01

    The recurrent synaptic architecture of neocortex allows for self-generated network activity. One form of such activity is the Up state, in which neurons transiently receive barrages of excitatory and inhibitory synaptic inputs that depolarize many neurons to spike threshold before returning to a relatively quiescent Down state. The extent to which different cell types participate in Up states is still unclear. Inhibitory interneurons have particularly diverse intrinsic properties and synaptic...

  13. Endogenous neurotransmitter activates N-methyl-D-aspartate receptors on differentiating neurons in embryonic cortex.

    Blanton, M G; Lo Turco, J J; Kriegstein, A R

    1990-01-01

    Before synapses form in embryonic turtle cerebral cortex, an endogenous neurotransmitter activates N-methyl-D-aspartate (NMDA) channels on neurons in the cortical plate. Throughout cortical development, these channels exhibit voltage-dependent Mg2+ blockade and are antagonized by D-2-amino-5-phosphonovaleric acid, a selective NMDA receptor antagonist. The activation in situ of these nonsynaptic NMDA channels demonstrates a potential physiological substrate for control of early neuronal differ...

  14. Close temporal coupling of neuronal activity and tissue oxygen responses in rodent whisker barrel cortex

    Li, Jennifer; Bravo, Diego S.; Upton, A. Louise; Gilmour, Gary; Tricklebank, Mark; Fillenz, Marianne; Martin, Chris; Lowry, John P.; Bannerman, David M.; McHugh, Stephen B.

    2011-01-01

    Neuronal activity elicits metabolic and vascular responses, during which oxygen is first consumed and then supplied to the tissue via an increase in cerebral blood flow. Understanding the spatial and temporal dynamics of blood and tissue oxygen (To2 ) responses following neuronal activity is crucial for understanding the physiological basis of functional neuroimaging signals. However, our knowledge is limited because previous To2 measurements have been made at low temporal resolution...

  15. 50 Hz-Sinusoidal magnetic field induced effects on the bioelectric activity of single unit neurone cells

    Neurones recruiting and synchronized bioelectric activity recorded from Helix aspersa brain ganglia, under exposure to 50 Hz sinusoidal magnetic fields of 1-15 mT intensity, is reported. We show recruiting responses from single neurones and the synchronization of pairs of neurones activity. Experimental evidence and model theoretical explanation for the spreading of synchronization are presented

  16. Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones

    Magherini Pier C

    2010-09-01

    Full Text Available Abstract Protease-activated receptors (PAR1-4 are activated by proteases released by cell damage or blood clotting, and are known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of the PAR1, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a specific PAR1 or PAR4 activating peptide (PAR1/4-AP caused functional effects characteristic of activation of the PLCβ/PKC pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCε to the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to thrombin or PAR1-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which expressed markers for myelinated fibres. Sequential application of PAR1-AP and PAR4-AP showed that PAR4 is expressed in a subset of the PAR1-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a distinct population of small IB4+ nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1-AP. Culture with nerve growth factor (NGF increased the proportion of thrombin-responsive neurons in the IB4- population, while glial-derived neurotropic factor (GDNF and neurturin upregulated the proportion of thrombin-responsive neurons in the IB4+ population. We conclude that PAR1 and PAR4 are functionally expressed in large myelinated fibre neurons, and are also expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.

  17. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  18. Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons.

    Buldyrev, Ilya; Tanner, Nathan M; Hsieh, Hui-ya; Dodd, Emily G; Nguyen, Loi T; Balkowiec, Agnieszka

    2006-12-01

    Activity-dependent plasticity in nociceptive pathways has been implicated in pathomechanisms of chronic pain syndromes. Calcitonin gene-related peptide (CGRP), which is expressed by trigeminal nociceptors, has recently been identified as a key player in the mechanism of migraine headaches. Here we show that CGRP is coexpressed with brain-derived neurotrophic factor (BDNF) in a large subset of adult rat trigeminal ganglion neurons in vivo. Using ELISA in situ, we show that CGRP (1-1000 nM) potently enhances BDNF release from cultured trigeminal neurons. The effect of CGRP is dose-dependent and abolished by pretreatment with CGRP receptor antagonist, CGRP(8-37). Intriguingly, CGRP-mediated BDNF release, unlike BDNF release evoked by physiological patterns of electrical stimulation, is independent of extracellular calcium. Depletion of intracellular calcium stores with thapsigargin blocks the CGRP-mediated BDNF release. Using transmission electron microscopy, our study also shows that BDNF-immunoreactivity is present in dense core vesicles of unmyelinated axons and axon terminals in the subnucleus caudalis of the spinal trigeminal nucleus, the primary central target of trigeminal nociceptors. Together, these results reveal a previously unknown role for CGRP in regulating BDNF availability, and point to BDNF as a candidate mediator of trigeminal nociceptive plasticity. PMID:17064360

  19. Gain-of-function mutations in the ALS8 causative gene VAPB have detrimental effects on neurons and muscles

    Mario Sanhueza

    2013-12-01

    Amyotrophic Lateral Sclerosis (ALS is a motor neuron degenerative disease characterized by a progressive, and ultimately fatal, muscle paralysis. The human VAMP-Associated Protein B (hVAPB is the causative gene of ALS type 8. Previous studies have shown that a loss-of-function mechanism is responsible for VAPB-induced ALS. Recently, a novel mutation in hVAPB (V234I has been identified but its pathogenic potential has not been assessed. We found that neuronal expression of the V234I mutant allele in Drosophila (DVAP-V260I induces defects in synaptic structure and microtubule architecture that are opposite to those associated with DVAP mutants and transgenic expression of other ALS-linked alleles. Expression of DVAP-V260I also induces aggregate formation, reduced viability, wing postural defects, abnormal locomotion behavior, nuclear abnormalities, neurodegeneration and upregulation of the heat-shock-mediated stress response. Similar, albeit milder, phenotypes are associated with the overexpression of the wild-type protein. These data show that overexpressing the wild-type DVAP is sufficient to induce the disease and that DVAP-V260I is a pathogenic allele with increased wild-type activity. We propose that a combination of gain- and loss-of-function mechanisms is responsible for VAPB-induced ALS.

  20. CAMKII activation is not required for maintenance of learning-induced enhancement of neuronal excitability.

    Ori Liraz

    Full Text Available Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sI(AHP. We have previously shown that learning-induced AHP reduction is maintained by persistent protein kinase C (PKC and extracellular regulated kinase (ERK activation. However, the molecular machinery underlying this long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the CaMKII, which is known to be crucial in learning, memory and synaptic plasticity processes, is instrumental for the maintenance of learning-induced AHP reduction. KN93, that selectively blocks CaMKII autophosphorylation at Thr286, reduced the AHP in neurons from trained and control rat to the same extent. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls remained. Accordingly, the level of activated CaMKII was similar in pirifrom cortex samples taken form trained and control rats. Our data show that although CaMKII modulates the amplitude of AHP of pyramidal neurons in the piriform cortex, its activation is not required for maintaining learning-induced enhancement of neuronal excitability.

  1. [Effects of corticosterone on the activity of the neurons in the rostral ventrolateral medulla of rats].

    Wang, W Z; Rong, W F; Wang, C M; Wang, J W; Wang, J J; Yuan, W J

    2001-08-01

    Spontaneous discharges of the rostral ventrolateral medulla (RVLM) neurons were extracellularly recorded by multi-barrelled microelectrodes in urethane-anesthetized rats. A total of 145 neurons were recorded: 33 were cardiovascular, 31 were nociceptive modulating, and 81 were unknown functional. The cardiovascular neurons were electrophysiologically identified through activating baroreceptor reflex by electrical stimulation of the aortic nerve and by intravenous injection of phenylephrine. Of the 33 cardiovascular neurons, 25 (76%) increased in firing rate after iontophoretical application of corticosterone sulfate (CORT), and 8 (24%) failed to respond. Of the 31 nociceptive modulating neurons excited by noxious stimulation, the firing rate decreased in 19 (64%), increased in 2 (6%), and did not respond in 10 (30%) after iontophoresis of CORT. Of the remaining 81 unknown functional neurons, 32 (40%) were excited, 5 (6%) inhibited, and 44 (54%) were not affected by CORT. These results demonstrate that CORT may modulate the activities of the neurons in RVLM through fast non-genomical effect, suggesting that the mechanism of the fast actions of CORT may play an important role in integration of the cardiovascular, nociceptive modulating activity under some conditions such as stress. PMID:11930204

  2. Size-dependent regulation of synchronized activity in living neuronal networks

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (˜20 cells), medium (˜100 cells), and large (˜400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  3. Comparative pharmacology of cholecystokinin induced activation of cultured vagal afferent neurons from rats and mice.

    Dallas C Kinch

    Full Text Available Cholecystokinin (CCK facilitates the process of satiation via activation of vagal afferent neurons innervating the upper gastrointestinal tract. Recent findings indicate CCK acts on these neurons via a ruthenium red (RuR sensitive pathway that involves members of the vanilloid (V subfamily of transient receptor potential (TRP channels. To further test this mechanism, the mouse provides an ideal model in which genetic tools could be applied. However, whether CCK acts by similar mechanism(s in mice has not been determined. In the present study we explored the actions of CCK on nodose neurons isolated from Sprague Dawley (SD rat and two strains of mice; C57BL/6 and BalbC using fluorescence-based calcium imaging. With minor exceptions nodose neurons isolated from all species/strains behaved similarly. They all respond to brief depolarization with a large calcium transient. A significant subset of neurons responded to capsaicin (CAP, a TRPV1 agonist, although neurons from C57BL/6 were 10-fold more sensitive to CAP than SD rats or BalbC mice, and a significantly smaller fraction of neurons from BalbC mice responded to CAP. CCK-8 dose-dependently activated a subpopulation of neurons with similar dose dependency, percent responders, and overlap between CCK and CAP responsiveness. In all species/strains CCK-8 induced activation was significantly attenuated (but not completely blocked by pretreatment with the TRPV channel blocker RuR. Surprisingly, the CCK analogue JMV-180, which is reported to have pure antagonistic properties in rat but mixed agonist/antagonist properties in mice, behaved as a pure antagonist to CCK in both rat and mouse neurons. The pure antagonistic action of JMV-180 in this in vitro preparation suggests that prior reported differential effects of JMV-180 on satiation in rats versus mouse must be mediated by a site other than vagal afferent activation.

  4. Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons.

    Ashhad, Sufyan; Narayanan, Rishikesh

    2016-06-01

    An important consequence of gliotransmission, a signaling mechanism that involves glial release of active transmitter molecules, is its manifestation as N-methyl-d-aspartate receptor (NMDAR)-dependent slow inward currents in neurons. However, the intraneuronal spatial dynamics of these events or the role of active dendrites in regulating their amplitude and spatial spread have remained unexplored. Here, we used somatic and/or dendritic recordings from rat hippocampal pyramidal neurons and demonstrate that a majority of NMDAR-dependent spontaneous slow excitatory potentials (SEP) originate at dendritic locations and are significantly attenuated through their propagation across the neuronal arbor. We substantiated the astrocytic origin of SEPs through paired neuron-astrocyte recordings, where we found that specific infusion of inositol trisphosphate (InsP3) into either distal or proximal astrocytes enhanced the amplitude and frequency of neuronal SEPs. Importantly, SEPs recorded after InsP3 infusion into distal astrocytes exhibited significantly slower kinetics compared with those recorded after proximal infusion. Furthermore, using neuron-specific infusion of pharmacological agents and morphologically realistic conductance-based computational models, we demonstrate that dendritically expressed hyperpolarization-activated cyclic-nucleotide-gated (HCN) and transient potassium channels play critical roles in regulating the strength, kinetics, and compartmentalization of neuronal SEPs. Finally, through the application of subtype-specific receptor blockers during paired neuron-astrocyte recordings, we provide evidence that GluN2B- and GluN2D-containing NMDARs predominantly mediate perisomatic and dendritic SEPs, respectively. Our results unveil an important role for active dendrites in regulating the impact of gliotransmission on neurons and suggest astrocytes as a source of dendritic plateau potentials that have been implicated in localized plasticity and place cell

  5. Enhanced activation of RVLM-projecting PVN neurons in rats with chronic heart failure.

    Xu, Bo; Zheng, Hong; Patel, Kaushik P

    2012-04-15

    Previous studies have indicated that there is increased activation of the paraventricular nucleus (PVN) in rats with chronic heart failure (CHF); however, it is not clear if the preautonomic neurons within the PVN are specifically overactive. Also, it is not known if these neurons have altered responses to baroreceptor or osmotic challenges. Experiments were conducted in rats with CHF (6-8 wk after coronary artery ligation). Spontaneously active neurons were recorded in the PVN, of which 36% were antidromically activated from the rostral ventrolateral medulla (RVLM). The baseline discharge rate in RVLM-projecting PVN (PVN-RVLM) neurons from CHF rats was significantly greater than in sham-operated (sham) rats (6.0 ± 0.6 vs. 2.6 ± 0.3 spikes/s, P phosphonovaleric acid significantly decreased the basal discharge of PVN-RVLM neurons by 80% in CHF rats compared with 37% in sham rats. Fifty-two percent of spontaneously active PVN-RVLM neurons responded to changes in the mean arterial pressure (MAP). The changes in discharge rate in PVN-RVLM neurons after a reduction in MAP (+52 ± 7% vs. +184 ± 61%) or an increase in MAP (-42 ± 8% vs. -71 ± 6%) were significantly attenuated in rats with CHF compared with sham rats. Most PVN-RVLM neurons (63%), including all barosensitive PVN-RVLM neurons, were excited by an internal carotid artery injection of hypertonic NaCl (2.1 osmol/l), whereas a smaller number (7%) were inhibited. The increase in discharge rate in PVN-RVLM neurons to hypertonic stimulation was significantly enhanced in rats with CHF compared with sham rats (134 ± 15% vs. 92 ± 13%). Taken together, these data suggest that PVN-RVLM neurons are more active under basal conditions and this overactivation is mediated by an enhanced glutamatergic tone in rats with CHF. Furthermore, this enhanced activation of PVN-RVLM neurons may contribute to the altered responses to baroreceptor and osmotic challenges observed during CHF. PMID:22307669

  6. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  7. Cerebral cortical neurons with activity linked to central neurogenic spontaneous and evoked elevations in cerebral blood flow

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    We recorded neurons in rat cerebral cortex with activity relating to the neurogenic elevations in regional cerebral blood flow (rCBF) coupled to stereotyped bursts of EEG activity, burst-cerebrovascular wave complexes, appearing spontaneously or evoked by electrical stimulation of rostral ventrolateral medulla (RVL) or fastigial nucleus (FN). Of 333 spontaneously active neurons only 15 (5%), in layers 5-6, consistently (P neurons in deep cortical laminae whose activity correlates with neurogenic elevations of rCBF. These neurons may function to transduce afferent neuronal signals into vasodilation.

  8. Cis- and Trans-Regulatory Mechanisms of Gene Expression in the ASJ Sensory Neuron of Caenorhabditis elegans

    González-Barrios, María; Fierro-González, Juan Carlos; Krpelanova, Eva; Mora-Lorca, José Antonio; Pedrajas, José Rafael; Peñate, Xenia; Chavez, Sebastián; Swoboda, Peter; Jansen, Gert; Miranda-Vizuete, Antonio

    2015-01-01

    The identity of a given cell type is determined by the expression of a set of genes sharing common cis-regulatory motifs and being regulated by shared transcription factors. Here, we identify cis and trans regulatory elements that drive gene expression in the bilateral sensory neuron ASJ, located in the head of the nematode Caenorhabditis elegans. For this purpose, we have dissected the promoters of the only two genes so far reported to be exclusively expressed in ASJ, trx-1 and ssu-1. We hereby identify the ASJ motif, a functional cis-regulatory bipartite promoter region composed of two individual 6 bp elements separated by a 3 bp linker. The first element is a 6 bp CG-rich sequence that presumably binds the Sp family member zinc-finger transcription factor SPTF-1. Interestingly, within the C. elegans nervous system SPTF-1 is also found to be expressed only in ASJ neurons where it regulates expression of other genes in these neurons and ASJ cell fate. The second element of the bipartite motif is a 6 bp AT-rich sequence that is predicted to potentially bind a transcription factor of the homeobox family. Together, our findings identify a specific promoter signature and SPTF-1 as a transcription factor that functions as a terminal selector gene to regulate gene expression in C. elegans ASJ sensory neurons. PMID:25769980

  9. A theoretical study of the role of astrocyte activity in neuronal hyperexcitability using a new neuro-glial mass model

    Garnier, Aurélie; Vidal, Alexandre; Benali, Habib

    2015-01-01

    The investigation of the neuronal environment allows us to better understand the activity of a cerebral region as a whole. The recent experimental evidences of the presence of transporters for glutamate and GABA in both neuronal and astrocyte compartments raise the question of the functional importance of the astrocytes in the regulation of the neuronal activity. We propose a new computational model at the mesoscopic scale embedding the recent knowledge on the physiology of neuron and astrocy...

  10. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p  0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons. PMID:27097551

  11. A novel mutation in the MFSD8 gene in late infantile neuronal ceroid lipofuscinosis.

    Stogmann, E; El Tawil, S; Wagenstaller, J; Gaber, A; Edris, S; Abdelhady, A; Assem-Hilger, E; Leutmezer, F; Bonelli, S; Baumgartner, C; Zimprich, F; Strom, T M; Zimprich, A

    2009-02-01

    Neuronal ceroid lipofuscinoses (NCL) are lysosomal storage disorders and constitute the most common group of progressive neurodegenerative diseases in childhood. Most NCLs are inherited in a recessive manner and are clinically characterised by a variable age at onset, epileptic seizures, psychomotor decline, visual impairment and premature death. To date, eight causative genes have been identified to underlie various clinical forms of NCL. We performed a genome-wide linkage analysis followed by sequencing the recently described NCL gene MFSD8 in three affected and three unaffected members of a consanguineous Egyptian family with an autosomal recessively inherited progressive neurodegenerative disorder. The clinical picture of the patients was compatible with a late infantile NCL (LINCL); however, impairment of the visual system was not a cardinal symptom in the respective family. By linkage analysis, we identified two putative loci on chromosome 1p36.11-p35.1 and 4q28.1-q28.2. The latter locus (4q28.1-q28.2) contained the MFSD8 gene, comprising a novel homozygous missense mutation in exon 5 (c.362a>g /p.Tyr121Cys), which segregated with the disease in the three affected sibs. We describe a novel mutation in the previously identified MFSD8 gene in a family with a common phenotype of LINCL, but no clinical report of vision loss. Our results enlarge the mutational and perhaps the nosological spectrum of one of the recently identified subtypes of NCL, called CLN7. PMID:18850119

  12. Oscillatory phase modulates the timing of neuronal activations and resulting behavior.

    Coon, W G; Gunduz, A; Brunner, P; Ritaccio, A L; Pesaran, B; Schalk, G

    2016-06-01

    Human behavioral response timing is highly variable from trial to trial. While it is generally understood that behavioral variability must be due to trial-by-trial variations in brain function, it is still largely unknown which physiological mechanisms govern the timing of neural activity as it travels through networks of neuronal populations, and how variations in the timing of neural activity relate to variations in the timing of behavior. In our study, we submitted recordings from the cortical surface to novel analytic techniques to chart the trajectory of neuronal population activity across the human cortex in single trials, and found joint modulation of the timing of this activity and of consequent behavior by neuronal oscillations in the alpha band (8-12Hz). Specifically, we established that the onset of population activity tends to occur during the trough of oscillatory activity, and that deviations from this preferred relationship are related to changes in the timing of population activity and the speed of the resulting behavioral response. These results indicate that neuronal activity incurs variable delays as it propagates across neuronal populations, and that the duration of each delay is a function of the instantaneous phase of oscillatory activity. We conclude that the results presented in this paper are supportive of a general model for variability in the effective speed of information transmission in the human brain and for variability in the timing of human behavior. PMID:26975551

  13. TRACING ONE NEURON ACTIVITY FROM THE INSIDE OF ITS STRUCTURE

    Luciana Morogan

    2012-01-01

    Full Text Available As new areas of neural computing are trying to make at least one step beyond the definition of digital computing, the neural networks field, was developed around the idea of creating models of real neural systems. The key point is based on learning rather than programming. We designed the model we present in this paper, based on the the needs introduced by new trends in neural computing. We created a model for information processing inside neurons. It is constructed, from a neural inside point of view, as a feedback system that controls the flow of information passing through the neuron. Processes of internal neural learning take place. We translated them as processes of learning at ”molecular” level. Our work is disseminated into the construction of an algorithm of learning, that we introduce in the end of this paper.

  14. Neuronal activities of forebrain structures with respect to bladder contraction in cats.

    Yamamoto, Tatsuya; Sakakibara, Ryuji; Nakazawa, Ken; Uchiyama, Tomoyuki; Shimizu, Eiji; Hattori, Takamichi; Kuwabara, Satoshi

    2010-03-31

    The forebrain is one of the important suprapontine micturition centres. Previous studies have shown that electrical stimulation of the frontal lobe and the anterior cingulate gyrus elicited either inhibition or facilitation of bladder contraction. Patients with frontal lobe tumours and aneurysms showed micturition disorders. Functional brain imaging studies showed that several parts of the forebrain are activated during bladder filling. We aimed to examine neuronal activities of forebrain structures with respect to bladder contraction in cats. In 14 adult male cats under ketamine anaesthesia in which a spontaneous isovolumetric bladder-contraction/relaxation cycle had been generated, we carried out extracellular single-unit recording in forebrain with respect to the contraction/relaxation cycles in the bladder. We recorded 112 neurons that were related to the bladder-contraction/relaxation cycles. Ninety-four neurons were found to be tonically activated during the bladder-relaxation phase, whereas the remaining 18 neurons were tonically activated during the bladder-contraction phase. Both types of neuron were widely distributed around the cruciate sulcus. Most were located medially (medial and superior frontal gyrus) and the rest were located laterally (middle and inferior frontal gyrus). Neurons recorded in forebrain structures were activated with respect to the contraction/relaxation cycles in the bladder. Forebrain structures may have a significant role in regulating bladder contraction in cats. PMID:20153810

  15. Cellular mechanisms of activity-dependent BDNF expression in primary sensory neurons.

    Vermehren-Schmaedick, A; Khanjian, R A; Balkowiec, A

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is abundantly expressed by both developing and adult rat visceral sensory neurons from the nodose ganglion (NG) in vivo and in vitro. We have previously shown that BDNF is released from neonatal NG neurons by activity and regulates dendritic development in their postsynaptic targets in the brainstem. The current study was carried out to examine the cellular and molecular mechanisms of activity-dependent BDNF expression in neonatal rat NG neurons, using our established in vitro model of neuronal activation by electrical field stimulation with patterns that mimic neuronal activity in vivo. We show that BDNF mRNA (transcript 4) increases over threefold in response to a 4-h tonic or bursting pattern delivered at the frequency of 6 Hz, which corresponds to the normal heart rate of a newborn rat. No significant increase in BDNF expression was observed following stimulation at 1 Hz. The latter effect suggests a frequency-dependent mechanism of regulated BDNF expression. In addition to BDNF transcript 4, which is known to be regulated by activity, transcript 1 also showed significant upregulation. The increases in BDNF mRNA were followed by BDNF protein upregulation of a similar magnitude after 24h of stimulation at 6 Hz. Electrical stimulation-evoked BDNF expression was inhibited by pretreating neurons with the blocker of voltage-gated sodium channels tetrodotoxin and by removing extracellular calcium. Moreover, our data show that repetitive stimulation-evoked BDNF expression requires calcium influx through N-, but not L-type, channels. Together, our study reveals novel mechanisms through which electrical activity stimulates de novo synthesis of BDNF in sensory neurons, and points to the role of N-type calcium channels in regulating BDNF expression in sensory neurons in response to repetitive stimulation. PMID:26459016

  16. Cocaine facilitates glutamatergic transmission and activates lateral habenular neurons

    Zuo, Wanhong; Chen, Lixin; WANG, Liwei; Ye, Jiang-Hong

    2013-01-01

    Cocaine administration can be both rewarding and aversive. While much effort has gone to investigating the rewarding effect, the mechanisms underlying cocaine-induced aversion remain murky. There is increasing evidence that the lateral habenula (LHb), a small epithalamic structure, plays a critical role in the aversive responses of many addictive drugs including cocaine. However, the effects of cocaine on LHb neurons are not well explored. Here we show that, in acute brain slices from rats, c...

  17. Analysis of the effects of depression associated polymorphisms on the activity of the BICC1 promoter in amygdala neurones.

    Davidson, S; Shanley, L; Cowie, P; Lear, M; McGuffin, P; Quinn, J P; Barrett, P; MacKenzie, A

    2016-08-01

    The Bicaudal C Homolog 1 (BICC1) gene, which encodes an RNA binding protein, has been identified by genome wide association studies (GWAS) as a candidate gene associated with major depressive disorder (MDD). We explored the hypothesis that MDD associated single-nucleotide polymorphisms (SNPs) affected the ability of cis-regulatory elements within intron 3 of the BICC1 gene to modulate the activity of the BICC1 promoter region. We initially established that the BICC1 promoter drove BICC1 mRNA expression in amygdala, hippocampus and hypothalamus. Intriguingly, we provide evidence that MDD associated polymorphisms alter the ability of the BICC1 promoter to respond to PKA signalling within amygdala neurones. Considering the known role of amygdala PKA pathways in fear learning and mood these observations suggest a possible mechanism through which allelic changes in the regulation of the BICC1 gene in amygdala neurones may contribute to mood disorders. Our findings also suggest a novel direction for the identification of novel drug targets and the design of future personalised therapeutics.The Pharmacogenomics Journal advance online publication, 6 October 2015; doi:10.1038/tpj.2015.62. PMID:26440730

  18. Activity of Somatosensory-Responsive Neurons in High Subdivisions of SI Cortex during Locomotion

    Favorov, Oleg V.; Nilaweera, Wijitha U.; Miasnikov, Alexandre A.

    2015-01-01

    Responses of neurons in the primary somatosensory cortex during movements are poorly understood, even during such simple tasks as walking on a flat surface. In this study, we analyzed spike discharges of neurons in the rostral bank of the ansate sulcus (areas 1–2) in 2 cats while the cats walked on a flat surface or on a horizontal ladder, a complex task requiring accurate stepping. All neurons (n = 82) that had receptive fields (RFs) on the contralateral forelimb exhibited frequency modulation of their activity that was phase locked to the stride cycle during simple locomotion. Neurons with proximal RFs (upper arm/shoulder) and pyramidal tract-projecting neurons (PTNs) with fast-conducting axons tended to fire at peak rates in the middle of the swing phase, whereas neurons with RFs on the distal limb (wrist/paw) and slow-conducting PTNs typically showed peak firing at the transition between swing and stance phases. Eleven of 12 neurons with tactile RFs on the volar forepaw began firing toward the end of swing, with peak activity occurring at the moment of foot contact with floor, thereby preceding the evoked sensory volley from touch receptors. Requirement to step accurately on the ladder affected 91% of the neurons, suggesting their involvement in control of accuracy of stepping. During both tasks, neurons exhibited a wide variety of spike distributions within the stride cycle, suggesting that, during either simple or ladder locomotion, they represent the cycling somatosensory events in their activity both predictively before and reflectively after these events take place. PMID:25995465

  19. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  20. Retina-derived POU domain factor 1 coordinates expression of genes relevant to renal and neuronal development.

    Fiorino, Antonio; Manenti, Giacomo; Gamba, Beatrice; Bucci, Gabriele; De Cecco, Loris; Sardella, Michele; Buscemi, Giacomo; Ciceri, Sara; Radice, Maria T; Radice, Paolo; Perotti, Daniela

    2016-09-01

    Retina-derived POU domain Factor 1 (RPF-1), a member of POU transcription factor family, is encoded by POU6F2 gene, addressed by interstitial deletions at chromosome 7p14 in Wilms tumor (WT). Its expression has been detected in developing kidney and nervous system, suggesting an early role for this gene in regulating development of these organs. To investigate into its functions and determine its role in transcriptional regulation, we generated an inducible stable transfectant from HEK293 cells. RPF-1 showed nuclear localization, elevated stability, and transactivation of promoters featuring POU consensus sites, and led to reduced cell proliferation and in vivo tumor growth. By addressing the whole transcriptome regulated by its induction, we could detect a gross alteration of gene expression that is consistent with promoter occupancy predicted by genome-wide Chip-chip analysis. Comparison of bound regulatory regions with differentially expressed genes allowed identification of 217 candidate targets. Enrichment of divergent octamers in predicted regulatory regions revealed promiscuous binding to bipartite POUS and POUH consensus half-sites with intervening spacers. Gel-shift competition assay confirmed the specificity of RPF-1 binding to consensus motifs, and demonstrated that the Ser-rich region upstream of the POU domain is indispensable to achieve DNA-binding. Promoter-reporter activity addressing a few target genes indicated a dependence by RPF-1 on transcriptional response. In agreement with its expression in developing kidney and nervous system, the induced transcriptome appears to indicate a function for this protein in early renal differentiation and neuronal cell fate, providing a resource for understanding its role in the processes thereby regulated. PMID:27425396

  1. Optical imaging of neuronal activity in tissue labeled by retrograde transport of Calcium Green Dextran.

    McPherson, D R; McClellan, A D; O'Donovan, M J

    1997-05-01

    In many neurophysiological studies it is desirable to simultaneously record the activity of a large number of neurons. This is particularly true in the study of vertebrate motor systems that generate rhythmic behaviors, such as the pattern generator for locomotion in vertebrate spinal cord. Optical imaging of neurons labeled with appropriate fluorescent dyes, in which fluorescence is activity-dependent, provides a means to record the activity of many neurons at the same time, while also providing fine spatial resolution of the position and morphology of active neurons. Voltage-sensitive dyes have been explored for this purpose and have the advantage of rapid response to transmembrane voltage changes. However, voltage-sensitive dyes bleach readily, which results in phototoxic damage and limits the time that labeled neurons can be imaged. In addition, the signal-to-noise ratio is typically small, so that averaging of responses is usually required. As an alternative to voltage-sensitive dyes, calcium-sensitive dyes can exhibit large changes in fluorescence. Most neurons contain voltage-sensitive Ca2+ channels, and numerous reports indicate that neuronal activity is accompanied by increased intracellular Ca2+ concentration. In this protocol we describe a method to use retrograde transport of the dextran conjugate of a calcium-sensitive dye (Calcium Green Dextran) to label selectively populations of brain and spinal interneurons in a primitive vertebrate (lamprey), for subsequent video-rate imaging of changes in intracellular fluorescence during neuronal activity. Although described with specific reference to lampreys, the technique has also been applied to embryonic chick spinal cord and larval zebrafish preparations and should be easily adaptable to other systems. The most significant novel feature of the protocol is the use of retrograde axonal transport to selectively fill neurons that have known axonal trajectories. Using lampreys, we have obtained activity

  2. Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani

    Feldhoff Pamela W

    2006-03-01

    Full Text Available Abstract Background The mental gland pheromone of male Plethodon salamanders contains two main protein components: a 22 kDa protein named Plethodon Receptivity Factor (PRF and a 7 kDa protein named Plethodon Modulating Factor (PMF, respectively. Each protein component individually has opposing effects on female courtship behavior, with PRF shortening and PMF lengthening courtship. In this study, we test the hypothesis that PRF or PMF individually activate vomeronasal neurons. The agmatine-uptake technique was used to visualize chemosensory neurons that were activated by each protein component individually. Results Vomeronasal neurons exposed to agmatine in saline did not demonstrate significant labeling. However, a population of vomeronasal neurons was labeled following exposure to either PRF or PMF. When expressed as a percent of control level labeled cells, PRF labeled more neurons than did PMF. These percentages for PRF and PMF, added together, parallel the percentage of labeled vomeronasal neurons when females are exposed to the whole pheromone. Conclusion This study suggests that two specific populations of female vomeronasal neurons are responsible for responding to each of the two components of the male pheromone mixture. These two neural populations, therefore, could express different receptors which, in turn, transmit different information to the brain, thus accounting for the different female behavior elicited by each pheromone component.

  3. Activity of neuromodulatory neurones during stepping of a single insect leg.

    Mentel, Tim; Weiler, Violetta; Büschges, Ansgar; Pflüger, Hans-Joachim

    2008-01-01

    Octopamine plays a major role in insect motor control and is released from dorsal unpaired median (DUM) neurones, a group of cells located on the dorsal midline of each ganglion. We were interested whether and how these neurones are activated during walking and chose the semi-intact walking preparation of stick insects that offers to investigate single leg-stepping movements. DUM neurones were characterized in the thoracic nerve cord by backfilling lateral nerves. These backfills revealed a population of 6-8 efferent DUM cells per thoracic segment. Mesothoracic DUM cells were subsequently recorded during middle leg stepping and characterized by intracellular staining. Seven out of eight identified individual different types of DUM neurones were efferent. Seven types except the DUMna nl2 were tonically depolarized during middle leg stepping and additional phasic depolarizations in membrane potential linked to the stance phase of the middle leg were observed. These DUM neurones were all multimodal and received depolarizing synaptic drive when the abdomen, antennae or different parts of the leg were mechanically stimulated. We never observed hyperpolarising synaptic inputs to DUM neurones. Only one type of DUM neurone, DUMna, exhibited spontaneous rhythmic activity and was unaffected by different stimuli or walking movements. PMID:17931650

  4. Hypocretinergic neurons are activated in conjunction with goal-oriented survival-related motor behaviors.

    Torterolo, Pablo; Ramos, Oscar V; Sampogna, Sharon; Chase, Michael H

    2011-10-24

    Hypocretinergic neurons are located in the area of the lateral hypothalamus which is responsible for mediating goal-directed, survival-related behaviors. Consequently, we hypothesize that the hypocretinergic system functions to promote these behaviors including those patterns of somatomotor activation upon which they are based. Further, we hypothesize that the hypocretinergic system is not involved with repetitive motor activities unless they occur in conjunction with the goal-oriented behaviors that are governed by the lateral hypothalamus. In order to determine the veracity of these hypotheses, we examined Fos immunoreactivity (as a marker of neuronal activity) in hypocretinergic neurons in the cat during: a) Exploratory Motor Activity; b) Locomotion without Reward; c) Locomotion with Reward; and d) Wakefulness without Motor Activity. Significantly greater numbers of hypocretinergic neurons expressed c-fos when the animals were exploring an unknown environment during Exploratory Motor Activity compared with all other paradigms. In addition, a larger number of Hcrt+Fos+neurons were activated during Locomotion with Reward than during Wakefulness without Motor Activity. Finally, very few hypocretinergic neurons were activated during Locomotion without Reward and Wakefulness without Motor Activity, wherein there was an absence of goal-directed activities. We conclude that the hypocretinergic system does not promote wakefulness per se or motor activity per se but is responsible for mediating specific goal-oriented behaviors that take place during wakefulness. Accordingly, we suggest that the hypocretinergic system is responsible for controlling the somatomotor system and coordinating its activity with other systems in order to produce successful goal-oriented survival-related behaviors that are controlled by the lateral hypothalamus. PMID:21839102

  5. Amyloid-β alters ongoing neuronal activity and excitability in the frontal cortex.

    Kellner, Vered; Menkes-Caspi, Noa; Beker, Shlomit; Stern, Edward A

    2014-09-01

    The effects of amyloid-β on the activity and excitability of individual neurons in the early and advanced stages of the pathological progression of Alzheimer's disease remain unknown. We used in vivo intracellular recordings to measure the ongoing and evoked activity of pyramidal neurons in the frontal cortex of APPswe/PS1dE9 transgenic mice and age-matched nontransgenic littermate controls. Evoked excitability was altered in both transgenic groups: neurons in young transgenic mice displayed hypoexcitability, whereas those in older transgenic mice displayed hyperexcitability, suggesting changes in intrinsic electrical properties of the neurons. However, the ongoing activity of neurons in both young and old transgenic groups showed signs of hyperexcitability in the depolarized state of the membrane potential. The membrane potential of neurons in old transgenic mice had an increased tendency to fail to transition to the depolarized state, and the depolarized states had shorter durations on average than did controls. This suggests a combination of both intrinsic electrical and synaptic dysfunctions as mechanisms for activity changes at later stages of the neuropathological progression. PMID:24792906

  6. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically. PMID:26875561

  7. A Radio-Telemetry System for Navigation and Recording Neuronal Activity in Free-Roaming Rats

    Dian Zhang; Yanling Dong; Megan Li; Houjun Wang

    2012-01-01

    A radio-telemetry recording system is presented which is applied to stimulate specific brain areas and record neuronal activity in a free-roaming rat.The system consists of two major parts:stationary section and mobile section.The stationary section contains a laptop,a Micro Control Unit (MCU),an FM transmitter and a receiver.The mobile section is composed of the headstage and the backpack (which includes the mainboard,FM transmitter,and receiver),which can generate biphasic microcurrent pulses and simultaneously acquire neuronal activity.Prior to performing experiments,electrodes are implanted in the Ventral Posterolateral (VPL) thalamic nucleus,primary motor area (M 1) and Medial Forebrain Bundle (MFB) of the rat.The stationary section modulates commands from the laptop for stimulation and demodulates signals for neuronal activity recording.The backpack is strapped on the back of the rat and executes commands from the stationary section,acquires neuronal activity,and transmits the neuronal activity singles of the waking rat to the stationary section.All components in the proposed system are commercially available and are fabricated from Surface Mount Devices (SMD) in order to reduce the size (25 mm × 15 mm × 2 mm) and weight (10 g with battery).During actual experiments,the backpack,which is powered by a rechargeable Lithium battery (4 g),can generate biphasic microcurrent pulse stimuli and can also record neuronal activity via the FM link with a maximum transmission rate of 1 kbps for more than one hour within a 200 m range in an open field or in a neighboring chamber.The test results show that the system is able to remotely navigate and control the rat without any prior training,and acquire neuronal activity with desirable features such as small size,low power consumption and high precision when compared with a commercial 4-channel bio-signal acquisition and processing system.

  8. IMPROVING PSYCHOMOTRICITY COMPONENTS IN PRESCHOOL CHILDREN USING TEACHING METHODOLOGIES BASED ON MIRROR NEURONS ACTIVATION

    Gáll Zs. Sz.; Balint L.

    2015-01-01

    The scientific substrate of the study relies upon the concept of mirror neurons. Unlike other neurons, these are characterized by an imitation feature. They play an important role in learning processes – especially during childhood, enabling the imitation of motions and determining the primary acquirement thereof. Using this as a starting point, the study aims to work out and apply a methodology in keeping with the content of the psychomotor expression activities curriculum for preschool educ...

  9. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish

    Chen, Shijia; Chiu, Cindy N.; McArthur, Kimberly L.; Fetcho, Joseph R.; Prober, David A.

    2015-01-01

    The zebrafish (Danio rerio) is a useful vertebrate model system in which to study neural circuits and behavior, but tools to modulate neurons in freely behaving animals are limited. As poikilotherms that live in water, zebrafish are amenable to thermal and pharmacological perturbations. We exploit these properties by using transient receptor potential (TRP) channels to activate or ablate specific neuronal populations using the chemical and thermal agonists of heterologously expressed TRPV1, T...

  10. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish.

    Chen, Shijia; Chiu, Cindy N; McArthur, Kimberly L; Fetcho, Joseph R; Prober, David A

    2016-02-01

    The zebrafish (Danio rerio) is a useful vertebrate model system in which to study neural circuits and behavior, but tools to modulate neurons in freely behaving animals are limited. As poikilotherms that live in water, zebrafish are amenable to thermal and pharmacological perturbations. We exploit these properties by using transient receptor potential (TRP) channels to activate or ablate specific neuronal populations using the chemical and thermal agonists of heterologously expressed TRPV1, TRPM8 and TRPA1. PMID:26657556

  11. ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3

    Subramaniam, Srinivasa; Zirrgiebel, Ute; von Bohlen und Halbach, Oliver; Strelau, Jens; Laliberté, Christine; Kaplan, David R.; Unsicker, Klaus

    2004-01-01

    Our recent studies have shown that extracellular-regulated protein kinase (ERK) promotes cell death in cerebellar granule neurons (CGN) cultured in low potassium. Here we report that the “death” phenotypes of CGN after potassium withdrawal are heterogeneous, allowing the distinction between plasma membrane (PM)–, DNA-, and PM/DNA-damaged populations. These damaged neurons display nuclear condensation that precedes PM or DNA damage. Inhibition of ERK activation either by U0126 or by dominant-n...

  12. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca2+]i Imaging

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca2+]i ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca2+]i in D1R-expressing neurons (10.6 ± 3.2%) in striatum within 8.3 ± 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca2+]i increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca2+]i in D2R-expressing neurons (10.4 ± 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca2+]i decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  13. Gene Silencing of Human Neuronal Cells for Drug Addiction Therapy using Anisotropic Nanocrystals

    Law, Wing-Cheung; Mahajan, Supriya D.; Kopwitthaya, Atcha; Reynolds, Jessica L.; Liu, Maixian; Liu, Xin; Chen, Guanying; Erogbogbo, Folarin; Vathy, Lisa; Aalinkeel, Ravikumar; Schwartz, Stanley A.; Yong, Ken-Tye; Prasad, Paras N.

    2012-01-01

    Theranostic platform integrating diagnostic imaging and therapeutic function into a single system has become a new direction of nanoparticle research. In the process of treatment, therapeutic efficacy is monitored. The use of theranostic nanoparticle can add an additional "layer" to keep track on the therapeutic agent such as the pharmacokinetics and biodistribution. In this report, we have developed quantum rod (QR) based formulations for the delivery of small interfering RNAs (siRNAs) to human neuronal cells. PEGlyated QRs with different surface functional groups (amine and maleimide) were designed for selectively down-regulating the dopaminergic signaling pathway which is associated with the drug abuse behavior. We have demonstrated that the DARPP-32 siRNAs were successfully delivered to dopaminergic neuronal (DAN) cells which led to drastic knockdown of specific gene expression by both the electrostatic and covalent bond conjugation regimes. The PEGlyated surface offered high biocompatibilities and negligible cytotoxicities to the QR formulations that may facilitate the in vivo applications of these nanoparticles. PMID:22896771

  14. Activation of Six1 Expression in Vertebrate Sensory Neurons.

    Shigeru Sato

    Full Text Available SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG. The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8 conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development.

  15. Activation of Six1 Expression in Vertebrate Sensory Neurons.

    Sato, Shigeru; Yajima, Hiroshi; Furuta, Yasuhide; Ikeda, Keiko; Kawakami, Kiyoshi

    2015-01-01

    SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development. PMID:26313368

  16. Importance of being Nernst: Synaptic activity andfunctional relevance in stem cell-derived neurons

    2015-01-01

    Functional synaptogenesis and network emergence aresignature endpoints of neurogenesis. These behaviorsprovide higher-order confirmation that biochemicaland cellular processes necessary for neurotransmitterrelease, post-synaptic detection and network propagation of neuronal activity have been properly expressed andcoordinated among cells. The development of synapticneurotransmission can therefore be considered a definingproperty of neurons. Although dissociated primaryneuron cultures readily form functioning synapsesand network behaviors in vitro , continuously culturedneurogenic cell lines have historically failed to meet thesecriteria. Therefore, in vitro -derived neuron models thatdevelop synaptic transmission are critically needed for awide array of studies, including molecular neuroscience,developmental neurogenesis, disease research andneurotoxicology. Over the last decade, neurons derivedfrom various stem cell lines have shown varying ability todevelop into functionally mature neurons. In this review,we will discuss the neurogenic potential of various stemcells populations, addressing strengths and weaknessesof each, with particular attention to the emergenceof functional behaviors. We will propose methods tofunctionally characterize new stem cell-derived neuron(SCN) platforms to improve their reliability as physiologicalrelevant models. Finally, we will review howsynaptically active SCNs can be applied to accelerateresearch in a variety of areas. Ultimately, emphasizingthe critical importance of synaptic activity and networkresponses as a marker of neuronal maturation is anticipatedto result in in vitro findings that better translateto efficacious clinical treatments.

  17. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis

    Qishao Lu; Huaguang Gu; Zhuoqin Yang; Xia Shi; Lixia Duan; Yanhong Zheng

    2008-01-01

    Recent advances in the experimental and theore-tical study of dynamics of neuronal electrical firing activi-ties are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and sto-chastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deter-ministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neu-ron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electri-cal and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological func-tions of nervous systems.

  18. Regulation of gene expression in neuronal tissue by RNA interference and editing

    Venø, Morten Trillingsgaard

    No tissue in the mammalian organism is more complex than the brain. This complexity is in part the result of precise timing and interplay of a large number mechanisms modulating gene expression post-transcriptionally. Fine-tuning mechanisms such as A-to-I editing of RNA transcripts and regulation...... mediated by microRNAs are crucial for the correct function of the mammalian brain. We are addressing A-to-I editing and regulation by microRNAs with spatio-temporal resolution in the embryonic porcine brain by Solexa sequencing of microRNAs and 454 sequencing of edited neuronal messenger RNAs, resulting in......RNAs, causing these transgenic mice to be less prone to cocaine addictive behavior. Another study demonstrated that abolishing the expression of histone methylases, GLP and G9a, increases the expression level of a large number of miRNAs. A possible feed-back mechanism is suggested, since a subset of these mi...

  19. The sensitivity of neurons with non-periodic activity to sympathetic stimulation in rat injured dorsal root ganglion

    Hong-Jun YANG; San-Jue HU; Pu-Lin GONG; Jian-Hong DUAN

    2006-01-01

    Objective The relationship between firing pattern and sensitivity of neurons was studied in chronically compressed dorsal root ganglion (DRG) neurons and the Hindmarsh-Rose (HR) neuronal model. Methods Spontaneous activities from single fibers of chronically compressed DRG neurons in rats were recorded, and divided into periodic and non-periodic firing patterns. The sensitivity of the two kinds of firing pattern neuron to sympathetic stimulation (SS)was compared. Result It was found that 27.3% of periodic firing neurons and 93.2% of non-periodic firing neurons responded to SS respectively ( periodic vs non-periodic, P < 0.01 ). The responses to SS with different stimulation time were greater non-periodic firing neurons than periodic firing neurons (P < 0.01 ). The non-periodic firing neurons obviously responded to SS. After the firing pattern of these neurons transformed to periodic firing pattern, their responses to SS disappeared or decreased obviously. The HR neuronal model exhibited a significantly greater response to perturbation in non-periodic (chaotic) firing pattern than in periodic firing pattern. Conclusion The non-periodic firing neurons with deterministic chaos are more sensitive to external stimuli than the periodic firing neurons.

  20. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  1. Ovarian steroids regulate gene expression related to DNA repair and neurodegenerative diseases in serotonin neurons of macaques.

    Bethea, C L; Reddy, A P

    2015-12-01

    Depression often accompanies the perimenopausal transition and it often precedes overt symptomology in common neurodegenerative diseases (NDDs, such as Alzheimer's, Parkinson's, Huntington, amyotrophic lateral sclerosis). Serotonin dysfunction is frequently found in the different etiologies of depression. We have shown that ovariectomized (Ovx) monkeys treated with estradiol (E) for 28 days supplemented with placebo or progesterone (P) on days 14-28 had reduced DNA fragmentation in serotonin neurons of the dorsal raphe nucleus, and long-term Ovx monkeys had fewer serotonin neurons than intact controls. We questioned the effect of E alone or E+P (estradiol supplemented with progesterone) on gene expression related to DNA repair, protein folding (chaperones), the ubiquitin-proteosome, axon transport and NDD-specific genes in serotonin neurons. Ovx macaques were treated with placebo, E or E+P (n=3 per group) for 1 month. Serotonin neurons were laser captured and subjected to microarray analysis and quantitative real-time PCR (qRT-PCR). Increases were confirmed with qRT-PCR in five genes that code for proteins involved in repair of strand breaks and nucleotide excision. NBN1, PCNA (proliferating nuclear antigen), GADD45A (DNA damage-inducible), RAD23A (DNA damage recognition) and GTF2H5 (gene transcription factor 2H5) significantly increased with E or E+P treatment (all analysis of variance (ANOVA), PPSEN1 (presenilin1) decreased (ANOVA, P<0.02) with treatment. APP decreased 10-fold with E or E+P administration. Newman-Keuls post hoc comparisons indicated variation in the response to E alone versus E+P across the different genes. In summary, E or E+P increased gene expression for DNA repair mechanisms in serotonin neurons, thereby rendering them less vulnerable to stress-induced DNA fragmentation. In addition, E or E+P regulated four genes encoding proteins that are often misfolded or malfunctioning in neuronal populations subserving overt NDD symptomology. The

  2. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity

    Ajith Sahasranamam; Ioannis Vlachos; Ad Aertsen; Arvind Kumar

    2016-01-01

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is ...

  3. Singing-Related Neural Activity Distinguishes Four Classes of Putative Striatal Neurons in the Songbird Basal Ganglia

    Goldberg, Jesse H.; Fee, Michale S

    2010-01-01

    The striatum—the primary input nucleus of the basal ganglia—plays a major role in motor control and learning. Four main classes of striatal neuron are thought to be essential for normal striatal function: medium spiny neurons, fast-spiking interneurons, cholinergic tonically active neurons, and low-threshold spiking interneurons. However, the nature of the interaction of these neurons during behavior is poorly understood. The songbird area X is a specialized striato-pallidal basal ganglia nuc...

  4. Gene expression changes during caste-specific neuronal development in the damp-wood termite Hodotermopsis sjostedti

    Miyakawa Hitoshi

    2010-05-01

    Full Text Available Abstract Background One of the key characters of social insects is the division of labor, in which different tasks are allocated to various castes. In termites, one of the representative groups of social insects, morphological differences as well as behavioral differences can be recognized among castes. However, very little is known about the neuronal and molecular bases of caste differentiation and caste-specific behavior. In almost all termite species, soldiers play defensive roles in their colonies, and their morphology and behavior are largely different from workers (or pseudergates. Therefore, we predicted that some genes linked to defensive behavior and/or those required for neuronal changes are differentially expressed between workers and soldiers, or during the soldier differentiation, respectively. Results Using the brain and suboesophageal ganglion (SOG of the damp-wood termite Hodotermopsis sjostedti, we first screened genes specifically expressed in soldiers or during soldier differentiation by the differential display method, followed by quantitative real-time polymerase chain reaction. No distinctive differences in expression patterns were detected between pseudergates and soldiers. In the course of soldier differentiation, however, five genes were found to be up-regulated in brain and/or SOG: 14-3-3epsilon, fibrillin2, beta-tubulin, ciboulot, and a hypothetical protein containing a SAP motif. Some of these genes are thought to be associated with cytoskeletal structure or motor-associated proteins in neuronal tissues. Conclusion The identified five genes could be involved in soldier-specific neuronal modifications, resulting in defensive behaviors in termite soldiers. The temporal expression patterns of these genes were consistent with the neuronal changes during soldier differentiation, suggesting that molecular machineries, in which the identified factors would participate, play important roles in behavioral differentiation of

  5. Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits

    Cao, Haiyan; Zhang, Guo-rong; Geller, Alfred I.

    2011-01-01

    Because of the numerous types of neurons in the brain, and particularly the forebrain, neuron type-specific expression will benefit many potential applications of direct gene transfer. The two most promising approaches for achieving neuron type-specific expression are targeted gene transfer to a specific type of neuron and using a neuron type-specific promoter. We previously developed antibody-mediated targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors by modifying glycoprotein ...

  6. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas; Kim, Jongpil; Vanti, William B.; Newman, Amy H.; Cha, Joo H.; Gether, Ulrik; Wang, Honggang; Abeliovich, Asa

    2006-01-01

    Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson’s disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson’s disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development ...

  7. Estimation of the neuronal activation using fMRI data: An observer-based approach

    Laleg-Kirati, Taous-Meriem

    2013-06-01

    This paper deals with the estimation of the neuronal activation and some unmeasured physiological information using the Blood Oxygenation Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). We propose to use an observer-based approach applied to the balloon hemodynamic model. The latter describes the relation between the neural activity and the BOLD signal. The balloon model can be expressed in a nonlinear state-space representation where the states, the parameters and the input (neuronal activation), are unknown. This study focuses only on the estimation of the hidden states and the neuronal activation. The model is first linearized around the equilibrium and an observer is applied to this linearized version. Numerical results performed on synthetic data are presented.

  8. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275–364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ∼80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  9. Influence of spaceflight on succinate dehydrogenase activity and soma size of rat ventral horn neurons

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1996-01-01

    Succinate dehydrogenase (SDH) activities and soma cross-sectional areas (CSA) of neurons in the dorsolateral region of the ventral horn at the L5 segmental level of the spinal cord in the rat were determined after 14 days of spaceflight and after 9 days of recovery on earth. The results were compared to those in age-matched ground-based control rats. Spinal cords were quick-frozen, and the SDH activity and CSA of a sample of neurons with a visible nucleus were determined using a digitizer and a computer-assisted image analysis system. An inverse relationship between CSA and SDH activity of neurons was observed in all groups of rats. No change in mean CSA or mean SDH activity or in the size distribution of neurons was observed following spaceflight or recovery. However, there was a selective decrease in the SDH activity of neurons with soma CSA between 500 and 800 microns2 in the flight rats, and this effect persisted for at least 9 days following return to 1 g. It remains to be determined whether the selected population of motoneurons or the specific motor pools affected by spaceflight may be restricted to specific muscles.

  10. Noradrenalin enhances the activity of cochlear nucleus neurons in the rat.

    Ebert, U

    1996-06-01

    The cochlear nucleus of rats is heavily innervated by noradrenergic fibres from the locus coeruleus. The physiological meaning of this innervation is poorly understood. Therefore, iontophoretically applied noradrenalin was tested on single neurons of the cochlear nucleus in urethane-anaesthetized rats. Iontophoresis of noradrenalin had a dual effect. During application noradrenalin led to moderate inhibition of tone-evoked activity in 37% of the tested neurons. In contrast, approximately 20-30 s after the onset of iontophoresis a long-lasting increase in discharge activity was found in most neurons. Data from iontophoresis of the alpha1-receptor agonist phenylephrine and the alpha2-receptor agonist clonidine suggest that the fast moderate inhibition is mediated by alpha2-receptors while the pronounced long-lasting elevated neuronal firing is mediated by alpha1-receptors. However, these data do not exclude the possibility that part of the response to noradrenalin is also mediated by beta-receptors. Electrical stimulation of the locus coeruleus resulted in an increase in discharge activity comparable with iontophoresis of noradrenalin or phenylephrine. Thus, activation of the locus coeruleus predominantly increases spontaneous and tone-evoked neuronal firing in the cochlear nucleus of the rat. This alpha-receptor-mediated enhanced discharge activity may serve to increase the sensitivity of acoustic processing mechanisms or to lower the threshold for short-latency acoustic reflexes. PMID:8752601

  11. GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1.

    Klodjan Stafa

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene are the most common cause of autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1. LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD-associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is

  12. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions

    Fedirchuk, Brent; Stecina, Katinka; Kristensen, Kasper Kyhl; Zhang, Mengliang; Meehan, Claire F; Bennett, David J; Hultborn, Hans

    2013-01-01

    activity of hindlimb afferents during locomotion, but lack input from the spinal central pattern generator. The ventral spinocerebellar tract (VSCT) neurons, on the other hand, were found to be active during actual locomotion (on a treadmill) even after deafferentation, as well as during fictive locomotion...... (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb...

  13. Visual input controls the functional activity of goldfish Mauthner neuron through the reciprocal synaptic mechanism.

    Moshkov, Dmitry A; Shtanchaev, Rashid S; Mikheeva, Irina B; Bezgina, Elena N; Kokanova, Nadezhda A; Mikhailova, Gulnara Z; Tiras, Nadezhda R; Pavlik, Lyubov' L

    2013-03-01

    Goldfish are known to exhibit motor asymmetry due to functional asymmetry of their Mauthner neurons that induce the turns to the right or left during free swimming. It has been previously found that if the less active neuron is subjected to prolonged aimed visual stimulation via its ventral dendrite, the motor asymmetry of goldfish is inverted, testifying that this neuron becomes functionally dominant, while the size of the ventral dendrite under these conditions is reduced 2-3 times compared to its counterpart in mirror neuron. Earlier it has been also revealed that training optokinetic stimulation induces adaptation, a substantial resistance of both fish motor asymmetry and morphofunctional state of Mauthner neurons against prolonged optokinetic stimulation. The aim of this work was to study the cellular mechanisms of the effect of an unusual visual afferent input on goldfish motor asymmetry and Mauthner neuron function in norm and under adaptation. It was shown that serotonin applied onto Mauthner neurons greatly reduces their activity whereas its antagonist ondansetron increases it. Against the background of visual stimulation, serotonin strengthens functional asymmetry between neurons whereas ondansetron smoothes it. Taken together these data suggest the involvement of serotonergic excitatory synaptic transmission in the regulation of Mauthner neurons by vision. Ultrastructural study of the ventral dendrites after prolonged optokinetic stimulation has revealed depletions of numeral axo-axonal synapses with specific morphology, identified by means of immunogold label as serotonergic ones. These latter in turn are situated mainly on shaft boutons, which according to specific ultrastructural features are assigned to axo-dendritic inhibitory synapses. Thus, the excitatory serotonergic synapses seem to affect Mauthner neuron indirectly through inhibitory synapses. Further, it was morphometrically established that adaptation is accompanied by the significant

  14. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-01-01

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. PMID:27503800

  15. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-01-01

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. PMID:27503800

  16. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  17. Downstream Effect of Ramping Neuronal Activity through Synapses with Short-Term Plasticity.

    Wei, Wei; Wang, Xiao-Jing

    2016-04-01

    Ramping neuronal activity refers to spiking activity with a rate that increases quasi-linearly over time. It has been observed in multiple cortical areas and is correlated with evidence accumulation processes or timing. In this work, we investigated the downstream effect of ramping neuronal activity through synapses that display short-term facilitation (STF) or depression (STD). We obtained an analytical result for a synapse driven by deterministic linear ramping input that exhibits pure STF or STD and numerically investigated the general case when a synapse displays both STF and STD. We show that the analytical deterministic solution gives an accurate description of the averaging synaptic activation of many inputs converging onto a postsynaptic neuron, even when fluctuations in the ramping input are strong. Activation of a synapse with STF shows an initial cubical increase with time, followed by a linear ramping similar to a synapse without STF. Activation of a synapse with STD grows in time to a maximum before falling and reaching a plateau, and this steady state is independent of the slope of the ramping input. For a synapse displaying both STF and STD, an increase in the depression time constant from a value much smaller than the facilitation time constant [Formula: see text] to a value much larger than [Formula: see text] leads to a transition from facilitation dominance to depression dominance. Therefore, our work provides insights into the impact of ramping neuronal activity on downstream neurons through synapses that display short-term plasticity. In a perceptual decision-making process, ramping activity has been observed in the parietal and prefrontal cortices, with a slope that decreases with task difficulty. Our work predicts that neurons downstream from such a decision circuit could instead display a firing plateau independent of the task difficulty, provided that the synaptic connection is endowed with short-term depression. PMID:26890350

  18. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity. PMID:26851652

  19. NFκB-inducing kinase inhibits NFκB activity specifically in neurons of the CNS.

    Mao, Xianrong; Phanavanh, Bounleut; Hamdan, Hamdan; Moerman-Herzog, Andréa M; Barger, Steven W

    2016-04-01

    The control of NFκB in CNS neurons appears to differ from that in other cell types. Studies have reported induction of NFκB in neuronal cultures and immunostaining in vivo, but others have consistently detected little or no transcriptional activation by NFκB in brain neurons. To test if neurons lack some component of the signal transduction system for NFκB activation, we transfected cortical neurons with several members of this signaling system along with a luciferase-based NFκB-reporter plasmid; RelA was cotransfected in some conditions. No component of the NFκB pathway was permissive for endogenous NFκB activity, and none stimulated the activity of exogenous RelA. Surprisingly, however, the latter was inhibited by cotransfection of NFκB-inducing kinase (NIK). Fluorescence imaging of RelA indicated that co-expression of NIK sequestered RelA in the cytoplasm, similar to the effect of IκBα. NIK-knockout mice showed elevated expression of an NFκB-reporter construct in neurons in vivo. Cortical neurons cultured from NIK-knockout mice showed elevated expression of an NFκB-reporter transgene. Consistent with data from other cell types, a C-terminal fragment of NIK suppressed RelA activity in astrocytes as well as neurons. Therefore, the inhibitory ability of the NIK C-terminus was unbiased with regard to cell type. However, inhibition of NFκB by full-length NIK is a novel outcome that appears to be specific to CNS neurons. This has implications for unique aspects of transcription in the CNS, perhaps relevant to aspects of development, neuroplasticity, and neuroinflammation. Full-length NIK was found to inhibit (down arrow) transcriptional activation of NFκB in neurons, while it elevated (up arrow) activity in astrocytes. Deletion constructs corresponding to the N-terminus or C-terminus also inhibited NFκB in neurons, while only the C-terminus did so in astrocytes. One possible explanation is that the inhibition in neurons occurs via two different

  20. Control of abdominal and expiratory intercostal muscle activity during vomiting - Role of ventral respiratory group expiratory neurons

    Miller, Alan D.; Tan, L. K.; Suzuki, Ichiro

    1987-01-01

    The role of ventral respiratory group (VRG) expiratory (E) neurons in the control of abdominal and internal intercostal muscle activity during vomiting was investigated in cats. Two series of experiments were performed: in one, the activity of VRG E neurons was recorded during fictive vomiting in cats that were decerebrated, paralyzed, and artificially ventilated; in the second, the abdominal muscle activity during vomiting was compared before and after sectioning the axons of descending VRG E neurons in decerebrate spontaneously breathing cats. The results show that about two-thirds of VRG E neurons that project at least as far caudally as the lower thoracic cord contribute to internal intercostal muscle activity during vomiting. The remaining VRG E neurons contribute to abdominal muscle activation. As shown by severing the axons of the VRG E neurons, other, as yet unidenified, inputs (either descending from the brain stem or arising from spinal reflexes) can also produce abdominal muscle activation.

  1. Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells

    Lim Qing-En

    2010-01-01

    Full Text Available Abstract Background Gene regulation at transcript level can provide a good indication of the complex signaling mechanisms underlying physiological and pathological processes. Transcriptomic methods such as microarray and quantitative real-time PCR require stable reference genes for accurate normalization of gene expression. Some but not all studies have shown that housekeeping genes (HGKs, β-actin (ACTB and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, which are routinely used for normalization, may vary significantly depending on the cell/tissue type and experimental conditions. It is currently unclear if these genes are stably expressed in cells undergoing drastic morphological changes during neuronal differentiation. Recent meta-analysis of microarray datasets showed that some but not all of the ribosomal protein genes are stably expressed. To test the hypothesis that some ribosomal protein genes can serve as reference genes for neuronal differentiation, a genome-wide analysis was performed and putative reference genes were identified based on stability of expressions. The stabilities of these potential reference genes were then analyzed by reverse transcription quantitative real-time PCR in six differentiation conditions. Results Twenty stably expressed genes, including thirteen ribosomal protein genes, were selected from microarray analysis of the gene expression profiles of GDNF and NGF induced differentiation of PC12 cells. The expression levels of these candidate genes as well as ACTB and GAPDH were further analyzed by reverse transcription quantitative real-time PCR in PC12 cells differentiated with a variety of stimuli including NGF, GDNF, Forskolin, KCl and ROCK inhibitor, Y27632. The performances of these candidate genes as stable reference genes were evaluated with two independent statistical approaches, geNorm and NormFinder. Conclusions The ribosomal protein genes, RPL19 and RPL29, were identified as suitable reference genes

  2. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation.

    Chung, Young C; Bok, Eugene; Huh, Sue H; Park, Ju-Young; Yoon, Sung-Hwa; Kim, Sang R; Kim, Yoon-Seong; Maeng, Sungho; Park, Sung Hyun; Jin, Byung K

    2011-12-15

    This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons. Conversely, treatment with nonselective cannabinoid receptor agonists (WIN55,212-2 and HU210) led to increased survival of DA neurons in the SN, their fibers and dopamine levels in the striatum, and improved motor function. This neuroprotection by cannabinoids was accompanied by suppression of NADPH oxidase reactive oxygen species production and reduced expression of proinflammatory cytokines from activated microglia. Interestingly, cannabinoids protected DA neurons against 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia, but not in neuron-enriched mesencephalic cultures devoid of microglia. The observed neuroprotection and inhibition of microglial activation were reversed upon treatment with CB(1) receptor selective antagonists AM251 and/or SR14,716A, confirming the involvement of the CB(1) receptor. The present in vivo and in vitro findings clearly indicate that the CB(1) receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress. Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson's disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage

  3. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube

    Hanotel, Julie; Bessodes, Nathalie; Thélie, Aurore; Hedderich, Marie; Parain, Karine; Driessche, Benoit Van; Brandão, Karina De Oliveira; Kricha, Sadia; Jorgensen, Mette C; Grapin-Botton, Anne; Serup, Palle; Lint, Carine Van; Perron, Muriel; Pieler, Tomas; Henningfeld, Kristine A; Bellefroid, Eric J

    2014-01-01

    The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing gene...

  4. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    Jambaldorj, Jamiyansuren [Department of Pharmacology, Institute of Health Biosciences, Graduate School, The University of Tokushima, Tokushima 770-8503 (Japan); Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar (Mongolia); Makino, Satoshi, E-mail: smakino@genetix-h.com [Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192 (Japan); Munkhbat, Batmunkh [Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar (Mongolia); Tamiya, Gen [Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.

  5. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    Highlights: ► We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). ► Taf1 mRNA was expressed in most tissues and cell lines. ► N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. ► Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II–mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.

  6. Heterochromatin-Mediated Gene Silencing Facilitates the Diversification of Olfactory Neurons

    David B. Lyons

    2014-11-01

    Full Text Available An astounding property of the nervous system is its cellular diversity. This diversity, which was initially realized by morphological and electrophysiological differences, is ultimately produced by variations in gene-expression programs. In most cases, these variations are determined by external cues. However, a growing number of neuronal types have been identified in which inductive signals cannot explain the few but decisive transcriptional differences that cause cell diversification. Here, we show that heterochromatic silencing, which we find is governed by histone methyltransferases G9a (KMT1C and GLP (KMT1D, is essential for stochastic and singular olfactory receptor (OR expression. Deletion of G9a and GLP dramatically reduces the complexity of the OR transcriptome, resulting in transcriptional domination by a few ORs and loss of singularity in OR expression. Thus, our data suggest that, in addition to its previously known functions, heterochromatin creates an epigenetic platform that affords stochastic, mutually exclusive gene choices and promotes cellular diversity.

  7. Activity-dependent structural plasticity after aversive experiences in amygdala and auditory cortex pyramidal neurons.

    Gruene, Tina; Flick, Katelyn; Rendall, Sam; Cho, Jin Hyung; Gray, Jesse; Shansky, Rebecca

    2016-07-22

    The brain is highly plastic and undergoes changes in response to many experiences. Learning especially can induce structural remodeling of dendritic spines, which is thought to relate to memory formation. Classical Pavlovian fear conditioning (FC) traditionally pairs an auditory cue with an aversive footshock, and has been widely used to study neural processes underlying associative learning and memory. Past research has found dendritic spine changes after FC in several structures. But, due to heterogeneity of cells within brain structures and limitations of traditional neuroanatomical techniques, it is unclear if all cells included in analyses were actually active during learning processes, even if known circuits are isolated. In this study, we employed a novel approach to analyze structural plasticity explicitly in neurons activated by exposure to either cued or uncued footshocks. We used male and female Arc-dVenus transgenic mice, which express the Venus fluorophore driven by the activity-related Arc promoter, to identify neurons that were active during either scenario. We then targeted fluorescent microinjections to Arc+ and neighboring Arc- neurons in the basolateral area of the amygdala (BLA) and auditory association cortex (TeA). In both BLA and TeA, Arc+ neurons had reduced thin and mushroom spine densities compared to Arc- neurons. This effect was present in males and females alike and also in both cued and uncued shock groups. Overall, this study adds to our understanding of how neuronal activity affects structural plasticity, and represents a methodological advance in the ways we can directly relate structural changes to experience-related neural activity. PMID:27155146

  8. Tumor necrosis factor-α increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner.

    Bałkowiec-Iskra, E; Vermehren-Schmaedick, A; Balkowiec, A

    2011-04-28

    Many chronic trigeminal pain conditions, such as migraine or temporo-mandibular disorders, are associated with inflammation within peripheral endings of trigeminal ganglion (TG) sensory neurons. A critical role in mechanisms of neuroinflammation is attributed to proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α (TNFα) that also contribute to mechanisms of persistent neuropathic pain resulting from nerve injury. However, the mechanisms of cytokine-mediated synaptic plasticity and nociceptor sensitization are not completely understood. In the present study, we examined the effects of TNFα on neuronal expression of brain-derived neurotrophic factor (BDNF), whose role in synaptic plasticity and sensitization of nociceptive pathways is well documented. We show that 4- and 24-h treatment with TNFα increases BDNF mRNA and protein, respectively, in neuron-enriched dissociated cultures of rat TG. TNFα increases the phosphorylated form of the cyclic AMP-responsive element binding protein (CREB), a transcription factor involved in regulation of BDNF expression in neurons, and activates transcription of BDNF exon IV (former exon III) and, to a lesser extent, exon VI (former exon IV), but not exon I. TNFα-mediated increase in BDNF expression is accompanied by increase in calcitonin gene-related peptide (CGRP), which is consistent with previously published studies, and indicates that both peptides are similarly regulated in TG neurons by inflammatory mediators. The effect of TNFα on BDNF expression is dependent on sodium influx through TTX-sensitive channels and on p38-mitogen-activated protein kinase. Moreover, electrical stimulation and forskolin, known to increase intracellular cAMP, potentiate the TNFα-mediated upregulation of BDNF expression. This study provides new evidence for a direct action of proinflammatory cytokines on TG primary sensory neurons, and reveals a mechanism through which TNFα stimulates de novo synthesis of BDNF in

  9. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea.

    Cerritelli, Serena; Hirschberg, Stefan; Hill, Rob; Balthasar, Nina; Pickering, Anthony E

    2016-01-01

    Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control. PMID:27077912

  10. KATP channels modulate intrinsic firing activity of immature entorhinal cortex layer III neurons

    Maria S. Lemak

    2014-08-01

    Full Text Available Medial temporal lobe structures are essential for memory formation which is associated with coherent network oscillations. During ontogenesis, these highly organized patterns develop from distinct, less synchronized forms of network activity. This maturation process goes along with marked changes in intrinsic firing patterns of individual neurons. One critical factor determining neuronal excitability is activity of ATP-sensitive K+ channels (KATP channels which coupled electrical activity to metabolic state. Here, we examined the role of KATP channels for intrinsic firing patterns and emerging network activity in the immature medial entorhinal cortex (mEC of rats. Western blot analysis of Kir6.2 (a subunit of the KATP channel confirmed expression of this protein in the immature entorhinal cortex. Neuronal activity was monitored by field potential (fp and whole-cell recordings from layer III of the mEC in horizontal brain slices obtained at postnatal day (P 6-13. Spontaneous fp-bursts were suppressed by the KATP channel opener diazoxide and prolonged after blockade of KATP channels by glibenclamide. Immature mEC LIII principal neurons displayed two dominant intrinsic firing patterns, prolonged bursts or regular firing activity, respectively. Burst discharges were suppressed by the KATP channel openers diazoxide and NN414, and enhanced by the KATP channel blockers tolbutamide and glibenclamide. Activity of regularly firing neurons was modulated in a frequency-dependent manner: the diazoxide-mediated reduction of firing correlated negatively with basal frequency, while the tolbutamide-mediated increase of firing showed a positive correlation. These data are in line with an activity-dependent regulation of KATP channel activity. Together, KATP channels exert powerful modulation of intrinsic firing patterns and network activity in the immature mEC.

  11. A computational paradigm for dynamic logic-gates in neuronal activity

    Amir eGoldental

    2014-04-01

    Full Text Available In 1943 McCulloch and Pitts suggested that the brain is composed of reliable logic-gates similar to the logic at the core of today's computers. This framework had a limited impact on neuroscience, since neurons exhibit far richer dynamics. Here we propose a new experimentally corroborated paradigm in which the truth tables of the brain's logic-gates are time dependent, i.e. dynamic logic-gates (DLGs. The truth tables of the DLGs depend on the history of their activity and the stimulation frequencies of their input neurons. Our experimental results are based on a procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in-vitro. We demonstrate that the underlying biological mechanism is the unavoidable increase of neuronal response latencies to ongoing stimulations, which imposes a non-uniform gradual stretching of network delays. The limited experimental results are confirmed and extended by simulations and theoretical arguments based on identical neurons with a fixed increase of the neuronal response latency per evoked spike. We anticipate our results to lead to better understanding of the suitability of this computational paradigm to account for the brain's functionalities and will require the development of new systematic mathematical methods beyond the methods developed for traditional Boolean algebra.

  12. Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex

    Heiko J Luhmann

    2009-10-01

    Full Text Available Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabotropic receptors, i.e. muscarinic receptors, elicits in subplate neurons oscillatory burst discharges which are transmitted via electrical and chemical synapses to neighbouring subplate cells and to immature neurons in the cortical plate. The tonic nonsynaptic release of GABA from GABAergic subplate cells facilitates the generation of burst discharges. These cellular bursts are amplified by prominent gap junction coupling in the subplate and cortical plate, thereby eliciting 10 to 20 Hz oscillations in a local columnar network. Thus, we propose that neuronal networks are organized at earliest stages in a gap junction coupled columnar syncytium. We postulate that the subplate does not only serve as a transient relay station for afferent inputs, but rather as an active element amplifying the afferent and intracortical activity.

  13. Subplate Cells: Amplifiers of Neuronal Activity in the Developing Cerebral Cortex

    Luhmann, Heiko J.; Kilb, Werner; Hanganu-Opatz, Ileana L.

    2009-01-01

    Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabotropic receptors, i.e. muscarinic receptors, elicits in subplate neurons oscillatory burst discharges which are transmitted via electrical and chemical synapses to neighbouring subplate cells and to immature neurons in the cortical plate. The tonic non-synaptic release of GABA from GABAergic subplate cells facilitates the generation of burst discharges. These cellular bursts are amplified by prominent gap junction coupling in the subplate and cortical plate, thereby eliciting 10–20 Hz oscillations in a local columnar network. Thus, we propose that neuronal networks are organized at earliest stages in a gap junction coupled columnar syncytium. We postulate that the subplate does not only serve as a transient relay station for afferent inputs, but rather as an active element amplifying the afferent and intracortical activity. PMID:19862346

  14. Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons

    Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula;

    2006-01-01

    Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was...... was unaffected by the choice of substrate. In conclusion, the present study shows that glucose is a necessary substrate to maintain neurotransmitter homeostasis during synaptic activity and that synaptic activity does not induce an upregulation of lactate metabolism in glutamatergic neurons....

  15. Association of Polymorphism of Neuronal Nitric Oxide Synthase Gene with Risk to Parkinson's Disease.

    Gupta, Satya Prakash; Kamal, Ritul; Mishra, Sarad Kumar; Singh, Maneesh Kumar; Shukla, Rakesh; Singh, Mahendra Pratap

    2016-07-01

    Environmental factors are implicated in aging as well as genetic predisposition-induced Parkinson's disease (PD) pathogenesis. Wrongdoers increase oxidative stress and nitrosative burden, which eventually degenerate the nigrostriatal dopaminergic neurons. Inhibition of the expression of nitric oxide synthase (NOS), an enzyme responsible for nitric oxide (NO) biosynthesis, prevents the demise of the nigrostriatal dopaminergic neurons. Polymorphism of NOS is thus expected to alter PD susceptibility. The study therefore aimed to examine an association of neuronal NOS (nNOS) gene polymorphism with nitrite, an indicator of nitrosative load; lipid peroxidation, an index of oxidative stress and PD susceptibility. An age-matched case-control study was performed in the north Indian residents enrolled at the Neurology Department of the King George's Medical University, Lucknow, India. While nNOS exon 29 TT variant genotype [odds ratio (OR) = 2.20, 95 % CI = 1.08-5.34, P = 0.040], combined TT and CT variants [OR = 1.68, 95 % CI = 1.05-2.69, P = 0.031] and T allele [OR = 1.58, 95 % CI = 1.10-2.28, P = 0.014] were found to be significantly associated with PD susceptibility, no association between nNOS exon 18 [OR for TT carriers = 1.97, 95 % CI = 0.89-4.20, P = 0.09 and OR for T allele = 1.35, 95 % CI = 0.94-1.93, P = 0.098] and PD risk was observed. Lipid peroxidation was augmented in all patients irrespective of their genotype. While genotype independent increase in nitrite content was observed in PD patients of exon 29 polymorphic groups, only heterozygous variant genotype of exon 18 was associated with augmentation in nitrite level as compared with respective control. The results obtained thus demonstrate that selected nNOS polymorphisms do not significantly contribute to PD risk in north Indian population. PMID:26081147

  16. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifcally regulated in cortical astrocytes following sleep deprivation in mice

    Petit, Jean Marie

    2013-10-01

    Study Objectives: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifcally in astrocytes following sleep deprivation. Astrocytes were purifed by fuorescence-activated cell sorting from transgenic mice expressing the green fuorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. Design: 6-hour instrumental sleep deprivation (TSD). Setting: Animal sleep research laboratory. Participants: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Interventions: Basal sleep recordings and sleep deprivation achieved using a modifed cage where animals were gently forced to move. Measurements and Results: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, a-2-Na/K pump, Glt1, and Ldha mRNAs were signifcantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not signifcant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. Conclusions: This study shows that TSD induces the expression of genes associated with ANLS specifcally in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  17. Ubiquitous L1 Mosaicism in Hippocampal Neurons

    Upton, Kyle R.; Gerhardt, Daniel J.; Jesuadian, J. Samuel; Richardson, Sandra R.; Sánchez-Luque, Francisco J.; Bodea, Gabriela O.; Ewing, Adam D.; Salvador-Palomeque, Carmen; van der Knaap, Marjo S.; Brennan, Paul M.; Vanderver, Adeline; Faulkner, Geoffrey J.

    2015-01-01

    Summary Somatic LINE-1 (L1) retrotransposition during neurogenesis is a potential source of genotypic variation among neurons. As a neurogenic niche, the hippocampus supports pronounced L1 activity. However, the basal parameters and biological impact of L1-driven mosaicism remain unclear. Here, we performed single-cell retrotransposon capture sequencing (RC-seq) on individual human hippocampal neurons and glia, as well as cortical neurons. An estimated 13.7 somatic L1 insertions occurred per hippocampal neuron and carried the sequence hallmarks of target-primed reverse transcription. Notably, hippocampal neuron L1 insertions were specifically enriched in transcribed neuronal stem cell enhancers and hippocampus genes, increasing their probability of functional relevance. In addition, bias against intronic L1 insertions sense oriented relative to their host gene was observed, perhaps indicating moderate selection against this configuration in vivo. These experiments demonstrate pervasive L1 mosaicism at genomic loci expressed in hippocampal neurons. PMID:25860606

  18. Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans.

    Rahimi, Mehran; Vinciguerra, Manlio; Daghighi, Mojtaba; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Sheedfar, Fareeba; Amini, Marzyeh; Mazza, Tommaso; Pazienza, Valerio; Motazacker, Mahdi M; Mahmoudi, Morteza; De Rooij, Felix W M; Sijbrands, Eric; Peppelenbosch, Maikel P; Rezaee, Farhad

    2015-10-01

    Despite numerous developed drugs based on glucose metabolism interventions for treatment of age-related diseases such as diabetes neuropathies (DNs), DNs are still increasing in patients with type 1 or type 2 diabetes (T1D, T2D). We aimed to identify novel candidates in adipose tissue (AT) and pancreas with T2D for targeting to develop new drugs for DNs therapy. AT-T2D displayed 15 (e.g. SYT4 up-regulated and VGF down-regulated) and pancreas-T2D showed 10 (e.g. BAG3 up-regulated, VAV3 and APOA1 down-regulated) highly differentially expressed genes with neuronal functions as compared to control tissues. ELISA was blindly performed to measure proteins of 5 most differentially expressed genes in 41 human subjects. SYT4 protein was upregulated, VAV3 and APOA1 were down-regulated, and BAG3 remained unchanged in 1- Obese and 2- Obese-T2D without insulin, VGF protein was higher in these two groups as well as in group 3- Obese-T2D receiving insulin than 4-lean subjects. Interaction networks analysis of these 5 genes showed several metabolic pathways (e.g. lipid metabolism and insulin signaling). Pancreas is a novel site for APOA1 synthesis. VGF is synthesized in AT and could be considered as good diagnostic, and even prognostic, marker for age-induced diseases obesity and T2D. This study provides new targets for rational drugs development for the therapy of age-related DNs. PMID:26337083

  19. Egalitarian reward contingency in competitive games and primate prefrontal neuronal activity.

    Hosokawa, Takayuki; Watanabe, Masataka

    2015-01-01

    How people work to obtain a reward depends on the context of the reward delivery, such as the presence/absence of competition and the contingency of reward delivery. Since resources are limited, winning a competition is critically important for organisms' obtaining a reward. People usually expect ordinary performance-reward contingency, with better performers obtaining better rewards. Unordinary reward contingency, such as egalitarianism (equal rewards/no-rewards to both good and poor performers), dampens people's motivation. We previously reported that monkeys were more motivated, and neurons in the lateral prefrontal cortex (LPFC) showed higher outcome-related activity in a competitive than in a noncompetitive game (Hosokawa and Watanabe, 2012). However, monkey's behavior and LPFC neuronal activity have not been examined in a competitive situation with an unordinary performance-reward contingency. Also, the fixed performance-reward contingency in the previous study did not allow us to examine effects of win/loss separately from those of reward/no-reward on prefrontal neuronal activity. Here, we employed the egalitarian competitive situation in which both the winner and loser, or neither of them, got a reward as well as the normal competitive situation in which only the winner got a reward. Monkey's behavioral performance greatly deteriorated in trials with the egalitarian outcome conditions. LPFC neurons showed activities that reflected the normal or egalitarian outcome condition while very few neurons coded win/loss independent of reward/no-reward. Importantly, we found neurons that showed reward-related activity in the normal, but not in the egalitarian outcome conditions, even though the same reward was given to the animal. These results indicate that LPFC may play an important role in monitoring the current reward contingency and integrating it with the performance outcome (win-loss) for better performing the competitive game, and thus for better survival

  20. Intrastriatal GDNF gene transfer by inducible lentivirus vectors protects dopaminergic neurons in a rat model of parkinsonism.

    Chen, Sha-Sha; Yang, Chun; Hao, Fei; Li, Chen; Lu, Tao; Zhao, Li-Ru; Duan, Wei-Ming

    2014-11-01

    Glial cell line-derived neurotrophic factor (GDNF) has neuroprotective effects on dopaminergic (DA) neurons both in vivo and in vitro. However, substantial evidence has shown that a long-term overexpression of GDNF gene is often associated with side effects. We previously improved tetracycline (Tet)-On lentivirus system carrying human GDNF (hGDNF) gene, and demonstrated that hGDNF gene expression was tightly regulated and functional in vitro. Here we further examined the efficiency and neuroprotection of Tet-On lentivirus-mediated hGDNF gene regulation in neural progenitor cells (NPCs) and a rat model of parkinsonism. The results showed that hGDNF gene expression was tightly regulated in transduced NPCs. Doxycycline (Dox)-induced hGDNF protected DA neurons from 6-hydroxydopamine (6-OHDA)-induced toxicity in vitro. Intrastriatal injections of Tet-On lentivirus vectors resulted in dramatically increased levels of hGDNF protein in the striatum of rats with Dox-drinking water, when compared to lentivirus-injected and saline-injected rats with normal drinking water, respectively. In addition, hGDNF protected nigral DA neurons and striatal DA fibers, and attenuated d-amphetamine-induced rotational asymmetry in the 6-OHDA lesioned rats. To the best of our knowledge, this is the first report that hGDNF gene transfer by Tet-On lentivirus vectors is tightly regulated in rat brain, and Dox-induced hGDNF is functional in neuroprotection of nigral DA neurons in a rat model of parkinsonism. PMID:24997241

  1. Cis- and Trans-Regulatory Mechanisms of Gene Expression in the ASJ Sensory Neuron of Caenorhabditis elegans

    González-Barrios, María; Fierro-González, Juan Carlos; Krpelanova, Eva; Mora-Lorca, José Antonio; Pedrajas, José Rafael; Peñate, Xenia; Chavez, Sebastián; Swoboda, Peter; Jansen, Gert; Miranda-Vizuete, Antonio

    2015-01-01

    The identity of a given cell type is determined by the expression of a set of genes sharing common cis-regulatory motifs and being regulated by shared transcription factors. Here, we identify cis and trans regulatory elements that drive gene expression in the bilateral sensory neuron ASJ, located in the head of the nematode Caenorhabditis elegans. For this purpose, we have dissected the promoters of the only two genes so far reported to be exclusively expressed in ASJ, trx-1 and ssu-1. We her...

  2. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    accumulated research. In contrast, the experience base is limited for materials used in microfludics chip fabrication. Methods: The effect of different materials (PS, PMMA and perforated PMMA with a piece of PDMS underneath) on the growth and differentiation of PC12 (adrenal phaeochromocytoma) cells into...... contrast, 41 genes showed different expression for PC12 cells differentiating on PMMA as compared to on PS. In contrast, 677 genes showed different expression on PMMA with PDMS underneath as compared with PC12 cells on PS. The differentially expressed genes are involved in neuronal cell development and...

  3. Position of neocortical neurons transfected at different gestational ages with shRNA targeted against candidate dyslexia susceptibility genes.

    William T Adler

    Full Text Available Developmental dyslexia is a language learning disorder that affects approximately 4-10% of the population. A number of candidate dyslexia susceptibility genes have been identified, including DCDC2 and KIAA0319 on Chromosome (Chr 6p22.2 and DYX1C1 on Chr 15q21. Embryonic knockdown of the function of homologs of these genes in rat neocortical projection cell progenitors by in utero electroporation of plasmids encoding small hairpin RNA (shRNA revealed that all three genes disrupted neuronal migration to the neocortex. Specifically, this disruption would result in heterotopia formation (Dyx1c1 and Kiaa0319 and/or overmigration past their expected laminar location (Dyx1c1 and Dcdc2. In these experiments, neurons normally destined for the upper neocortical laminæ were transfected on embryonic day (E 15.5, and we designed experiments to test whether these migration phenotypes were the result of targeting a specific type of projection neuron. We transfected litters with Dcdc2 shRNA, Dyx1c1 shRNA, Kiaa0319 shRNA, or fluorescent protein (as a control at each of three gestational ages (E14.5, E15.5, or E16.5. Pups were allowed to come to term, and their brains were examined at 3 weeks of age for the position of transfected cells. We found that age of transfection did not affect the percentage of unmigrated neurons--transfection with Kiaa0319 shRNA resulted in heterotopia formation at all three ages. Overmigration of neurons transfected with Dcdc2 shRNA, while present following transfections at the later ages, did not occur following E14.5 transfections. These results are considered in light of the known functions of each of these candidate dyslexia susceptibility genes.

  4. Feedback from each retinal neuron population drives expression of subsequent fate determinant genes without influencing the cell cycle exit timing.

    Kei, Jeremy Ng Chi; Dudczig, Stefanie; Currie, Peter D; Jusuf, Patricia R

    2016-09-01

    During neurogenesis, progenitors balance proliferation and cell cycle exit together with expression of fate determinant genes to ensure that the correct number of each of these neuron types is generated. Although intrinsic gene expression acting cell autonomously within each progenitor drives these processes, the final number of neurons generated is also influenced by extrinsic cues, representing a potential avenue to direct neurogenesis in developmental disorders or regenerative settings without the requirement to change intrinsic gene expression. Thus, it is important to understand which of these stages of neurogenesis are amenable to such extrinsic influences. Additionally, all types of neurons are specified in a highly conserved histogenic order, although its significance is unknown. This study makes use of conserved patterns of neurogenesis in the relatively simple yet highly organized zebrafish retina model, in which such histogenic birth order is well characterized. We directly visualize and quantify birth dates and cell fate determinant expression in WT vs. environments lacking different neuronal populations. This study shows that extrinsic feedback from developing retinal neurons is important for the temporal expression of intrinsic fate determinants but not for the timing of birth dates. We found no changes in cell cycle exit timing but did find a significant delay in the expression of genes driving the generation only of later- but not earlier-born cells, suggesting that the robustness of this process depends on continuous feedback from earlier-formed cell types. Thus, extrinsic cues selectively influence cell fate determinant progression, which may explain the function of the retinal histogenic order observed. J. Comp. Neurol. 524:2553-2566, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850379

  5. Specific regulation of NRG1 isoform expression by neuronal activity

    Liu, Xihui; Bates, Ryan; Wang, Fay; Su, Nan; Kirov, Sergei A.; Luo, Yuling; Wang, Jian-Zhi; Xiong, Wen-Cheng; Mei, Lin

    2011-01-01

    Neuregulin 1 (NRG1) is a trophic factor that has been implicated in neural development, neurotransmission and synaptic plasticity. NRG1 has multiple isoforms that are generated by usage of different promoters and alternative splicing of a single gene. However, little is known about NRG1 isoform composition profile, whether it changes during development or the underlying mechanisms. We found that each of the six types of NRG1 has a distinct expression pattern in the brain at different ages, re...

  6. Noise focusing and the emergence of coherent activity in neuronal cultures

    Orlandi, Javier G.; Soriano, Jordi; Alvarez-Lacalle, Enrique; Teller, Sara; Casademunt, Jaume

    2013-09-01

    At early stages of development, neuronal cultures in vitro spontaneously reach a coherent state of collective firing in a pattern of nearly periodic global bursts. Although understanding the spontaneous activity of neuronal networks is of chief importance in neuroscience, the origin and nature of that pulsation has remained elusive. By combining high-resolution calcium imaging with modelling in silico, we show that this behaviour is controlled by the propagation of waves that nucleate randomly in a set of points that is specific to each culture and is selected by a non-trivial interplay between dynamics and topology. The phenomenon is explained by the noise focusing effect--a strong spatio-temporal localization of the noise dynamics that originates in the complex structure of avalanches of spontaneous activity. Results are relevant to neuronal tissues and to complex networks with integrate-and-fire dynamics and metric correlations, for instance, in rumour spreading on social networks.

  7. The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity

    Jason eJerome

    2011-12-01

    Full Text Available Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging and 2-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.

  8. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea

    Hirschberg, Stefan; Hill, Rob; Balthasar, Nina; Pickering, Anthony E.

    2016-01-01

    Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, pmelanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control. PMID:27077912

  9. Characterisation of multiple regulatory domains spanning the major transcriptional start site of the FUS gene, a candidate gene for motor neurone disease.

    Khursheed, Kejhal; Wilm, Thomas P; Cashman, Christine; Quinn, John P; Bubb, Vivien J; Moss, Diana J

    2015-01-21

    Fused-In-Sarcoma (FUS) is a candidate gene for neurological disorders including motor neurone disease and Parkinson׳s disease in addition to various types of cancer. Recently it has been reported that over expression of FUS causes motor neurone disease in mouse models hence mutations leading to changes in gene expression may contribute to the development of neurodegenerative disease. Genome evolutionary conservation was used to predict important cis-acting DNA regulators of the FUS gene promoter that direct transcription. The putative regulators identified were analysed in reporter gene assays in cells and in chick embryos. Our analysis indicated in addition to regulatory domains 5' of the transcriptional start site an important regulatory domain resides in intron 1 of the gene itself. This intronic domain functioned both in cell lines and in vivo in the neural tube of the chick embryo including developing motor neurones. Our data suggest the interaction of multiple domains including intronic domains are involved in expression of FUS. A better understanding of the regulation of expression of FUS may give insight into how its stimulus inducible expression may be associated with neurological disorders. PMID:25451114

  10. Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death

    Chakrabarti Lisa

    2009-07-01

    Full Text Available Abstract Purkinje cells are a class of specialized neurons in the cerebellum, and are among the most metabolically active of all neurons, as they receive immense synaptic stimulation, and provide the only efferent output from the cerebellum. Degeneration of Purkinje cells is a common feature of inherited ataxias in humans and mice. To understand Purkinje neuron degeneration, investigators have turned to naturally occurring Purkinje cell degeneration phenotypes in mice to identify key regulatory proteins and cellular pathways. The Purkinje cell degeneration (pcd mouse is a recessive mutant characterized by complete and dramatic post-natal, cell autonomous Purkinje neuron degeneration and death. As the basis of Purkinje cell death in pcd is unresolved, and contradictory data has emerged for the role of autophagy in Purkinje cell degeneration, we studied the mechanism of Purkinje cell death in pcd mice. BAX null status did not suppress Purkinje neuron death in pcd mice, indicating that classic apoptosis is not responsible for Purkinje cell loss. Interestingly, LC3 Western blot analysis and GFP-LC3 immunostaining of degenerating pcd cerebellum revealed activation of the autophagy pathway. Ultrastructural studies confirmed increased autophagy pathway activity in Purkinje cells, and yielded evidence for mitophagy, in agreement with LC3 immunoblotting of cerebellar fractions. As p62 levels were decreased in pcd cerebellum, our findings suggest that pcd Purkinje cell neurons can execute effective autophagy. However, our results support a role for dysregulated autophagy activation in pcd, and suggest that increased or aberrant mitophagy contributes to the Purkinje cell degeneration in pcd mice.

  11. Parallel optical control of spatiotemporal neuronal spike activity using high-frequency digital light processingtechnology

    Jason eJerome

    2011-08-01

    Full Text Available Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses Digital-Light-Processing (DLP technology to generate 2-dimensional (2D stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 µm and temporal (>13kHz resolution. Light is projected through the quartz-glass bottom of the perfusion chamber providing access to a large area (2.76 x 2.07 mm2 of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales.

  12. Active immunization against vasoactive intestinal polypeptide decreases neuronal recruitment and inhibits reproduction in zebra finches.

    Vistoropsky, Yulia; Heiblum, Rachel; Smorodinsky, Nechama-Ina; Barnea, Anat

    2016-08-15

    Neurogenesis and neuronal recruitment occur in adult brains of many vertebrates, and the hypothesis is that these phenomena contribute to the brain plasticity that enables organisms to adjust to environmental changes. In mammals, vasoactive intestinal polypeptide (VIP) is known to have many neuroprotective properties, but in the avian brain, although widely distributed, its role in neuronal recruitment is not yet understood. In the present study we actively immunized adult zebra finches against VIP conjugated to KLH and compared neuronal recruitment in their brains, with brains of control birds, which were immunized against KLH. We looked at two forebrain regions: the nidopallium caudale (NC), which plays a role in vocal communication, and the hippocampus (HC), which is involved in the processing of spatial information. Our data demonstrate that active immunization against VIP reduces neuronal recruitment, inhibits reproduction, and induces molting, with no change in plasma prolactin levels. Thus, our observations suggest that VIP has a direct positive role in neuronal recruitment and reproduction in birds. J. Comp. Neurol. 524:2516-2528, 2016. © 2016 Wiley Periodicals, Inc. PMID:26801210

  13. Effect of channel block on the collective spiking activity of coupled stochastic Hodgkin-Huxley neurons

    2008-01-01

    Toxins, such as tetraethylammonium (TEA) and tetrodotoxin (TTX), can make potassium or sodium ion channels poisoned, respectively, and hence reduce the number of working ion channels and lead to the diminishment of conductance. In this paper, we have studied by numerical simulations the effects of sodium and potassium ion channel poisoning on the collective spiking activity of an array of coupled stochastic Hodgkin-Huxley (HH) neurons. It is found for a given number of neurons sodium or potas- sium ion channel block can either enhance or reduce the collective spiking regularity, depending on the membrane patch size. For a given smaller or larger patch size, potassium and sodium ion channel block can reduce or enhance the collective spiking regularity, but they have different patch size ranges for the transformation. This result shows that sodium or potassium ion channel block might have dif- ferent effects on the collective spiking activity in coupled HH neurons from the effects for a single neuron, which represents the interplay among the diminishment of maximal conductance and the in- crease of channel noise strength due to the channel blocks, as well as the bi-directional coupling be- tween the neurons.

  14. Cannabidiol Exposure During Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins.

    Schönhofen, Patrícia; de Medeiros, Liana M; Bristot, Ivi Juliana; Lopes, Fernanda M; De Bastiani, Marco A; Kapczinski, Flávio; Crippa, José Alexandre S; Castro, Mauro Antônio A; Parsons, Richard B; Klamt, Fábio

    2015-08-01

    Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD's neuroprotective effect in terminal differentiation (mature) and during neuronal differentiation (neuronal developmental toxicity model) of the human neuroblastoma SH-SY5Y cell line. A dose-response curve was performed to establish a sublethal dose of CBD with antioxidant activity (2.5 μM). In terminally differentiated SH-SY5Y cells, incubation with 2.5 μM CBD was unable to protect cells against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide (H2O2). Moreover, no difference in antioxidant potential and neurite density was observed. When SH-SY5Y cells undergoing neuronal differentiation were exposed to CBD, no differences in antioxidant potential and neurite density were observed. However, CBD potentiated the neurotoxicity induced by all redox-active drugs tested. Our data indicate that 2.5 μM of CBD, the higher dose tolerated by differentiated SH-SY5Y neuronal cells, does not provide neuroprotection for terminally differentiated cells and shows, for the first time, that exposure of CBD during neuronal differentiation could sensitize immature cells to future challenges with neurotoxins. PMID:25108670

  15. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex.

    Aksenov, Daniil P; Li, Limin; Miller, Michael J; Iordanescu, Gheorghe; Wyrwicz, Alice M

    2015-11-01

    Most functional magnetic resonance imaging (fMRI) animal studies rely on anesthesia, which can induce a variety of drug-dependent physiological changes, including depression of neuronal activity and cerebral metabolism as well as direct effects on the vasculature. The goal of this study was to characterize the effects of anesthesia on the BOLD signal and neuronal activity. Simultaneous fMRI and electrophysiology were used to measure changes in single units (SU), multi-unit activity (MUA), local field potentials (LFP), and the blood oxygenation level-dependent (BOLD) response in the somatosensory cortex during whisker stimulation of rabbits before, during and after anesthesia with fentanyl or isoflurane. Our results indicate that anesthesia modulates the BOLD signal as well as both baseline and stimulus-evoked neuronal activity, and, most significantly, that the relationship between the BOLD and electrophysiological signals depends on the type of anesthetic. Specifically, the behavior of LFP observed under isoflurane did not parallel the behavior of BOLD, SU, or MUA. These findings suggest that the relationship between these signals may not be straightforward. BOLD may scale more closely with the best measure of the excitatory subcomponents of the underlying neuronal activity, which may vary according to experimental conditions that alter the excitatory/inhibitory balance in the cortex. PMID:26104288

  16. Bi-directional astrocytic regulation of neuronal activity within a network

    Alexey V Semyanov

    2012-11-01

    Full Text Available The concept of a tripartite synapse holds that astrocytes can affect both the pre- and postsynaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin-Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the postsynaptic currents. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them.

  17. Coordinated activity of ventral tegmental neurons adapts to appetitive and aversive learning.

    Kim, Yunbok; Wood, Jesse; Moghaddam, Bita

    2012-01-01

    Our understanding of how value-related information is encoded in the ventral tegmental area (VTA) is based mainly on the responses of individual putative dopamine neurons. In contrast to cortical areas, the nature of coordinated interactions between groups of VTA neurons during motivated behavior is largely unknown. These interactions can strongly affect information processing, highlighting the importance of investigating network level activity. We recorded the activity of multiple single units and local field potentials (LFP) in the VTA during a task in which rats learned to associate novel stimuli with different outcomes. We found that coordinated activity of VTA units with either putative dopamine or GABA waveforms was influenced differently by rewarding versus aversive outcomes. Specifically, after learning, stimuli paired with a rewarding outcome increased the correlation in activity levels between unit pairs whereas stimuli paired with an aversive outcome decreased the correlation. Paired single unit responses also became more redundant after learning. These response patterns flexibly tracked the reversal of contingencies, suggesting that learning is associated with changing correlations and enhanced functional connectivity between VTA neurons. Analysis of LFP recorded simultaneously with unit activity showed an increase in the power of theta oscillations when stimuli predicted reward but not an aversive outcome. With learning, a higher proportion of putative GABA units were phase locked to the theta oscillations than putative dopamine units. These patterns also adapted when task contingencies were changed. Taken together, these data demonstrate that VTA neurons organize flexibly as functional networks to support appetitive and aversive learning. PMID:22238652

  18. Activity of rubrospinal neurons during locomotion and scratching in the cat.

    Arshavsky, Y I; Orlovsky, G N; Perret, C

    1988-01-01

    It is now well established that locomotion and scratching in vertebrates can result from the activation of a spinal central generator. The possibility of control of these rhythmic motor activities by the red nucleus has been analyzed in the thalamic cat, in which efferent nerve discharges representing fictive locomotion or fictive scratching can still be recorded following paralysis by curarization. It was found that the discharge of lumbar-projecting rubrospinal neurons is modulated in relation to the intensity and frequency of the rhythmic efferent activity in the contralateral hindlimb. The average firing frequency was minimal at the transition between the extensor and flexor efferent bursts and increased progressively to reach a maximum in the second part of the flexor burst. Comparison of the rubrospinal activities during real and fictive rhythmic motor activities revealed only minor influences of phasic afferent inputs. Analysis of the relations between the rhythmic discharges found in rubrospinal neurons, cerebellar neurons (interpositus nucleus and paravermal Purkinje cells of the cerebellar anterior lobe) and neurons of an ascending pathway (ventral spinocerebellar tract) leads to the conclusion that the rubrospinal tract belongs to an internal loop between spinal and supraspinal centres. However, until now, the results do not allow the evaluation of its contribution to the motor performance, even in situations which, like those studied here, do not involve the complex motor control present in the intact cat. PMID:3382511

  19. Evaluation of animal models of obsessive-compulsive disorder: correlation with phasic dopamine neuron activity.

    Sesia, Thibaut; Bizup, Brandon; Grace, Anthony A

    2013-07-01

    Obsessive compulsive disorder (OCD) is a psychiatric condition defined by intrusive thoughts (obsessions) associated with compensatory and repetitive behaviour (compulsions). However, advancement in our understanding of this disorder has been hampered by the absence of effective animal models and correspondingly analysis of the physiological changes that may be present in these models. To address this, we have evaluated two current rodent models of OCD; repeated injection of dopamine D2 agonist quinpirole and repeated adolescent injection of the tricyclic agent clomipramine in combination with a behavioural paradigm designed to produce compulsive lever pressing. These results were then compared with their relative impact on the state of activity of the mesolimbic dopaminergic system using extracellular recoding of spontaneously active dopamine neurons in the ventral tegmental area (VTA). The clomipramine model failed to exacerbate compulsive lever pressing and VTA dopamine neurons in clomipramine-treated rats had mildly diminished bursting activity. In contrast, quinpirole-treated animals showed significant increases in compulsive lever pressing, which was concurrent with a substantial diminution of bursting activity of VTA dopamine neurons. Therefore, VTA dopamine activity correlated with the behavioural response in these models. Taken together, these data support the view that compulsive behaviours likely reflect, at least in part, a disruption of the dopaminergic system, more specifically by a decrease in baseline phasic dopamine signalling mediated by burst firing of dopamine neurons. PMID:23360787

  20. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons.

    Gilly, W F; Gillette, R; McFarlane, M

    1997-05-01

    Whole cell patch-clamp recordings of Na current (I(Na)) were made under identical experimental conditions from isolated neurons from cephalopod (Loligo, Octopus) and gastropod (Aplysia, Pleurobranchaea, Doriopsilla) species to compare properties of activation gating. Voltage dependence of peak Na conductance (gNa) is very similar in all cases, but activation kinetics in the gastropod neurons studied are markedly slower. Kinetic differences are very pronounced only over the voltage range spanned by the gNa-voltage relation. At positive and negative extremes of voltage, activation and deactivation kinetics of I(Na) are practically indistinguishable in all species studied. Voltage-dependent rate constants underlying activation of the slow type of Na channel found in gastropods thus appear to be much more voltage dependent than are the equivalent rates in the universally fast type of channel that predominates in cephalopods. Voltage dependence of inactivation kinetics shows a similar pattern and is representative of activation kinetics for the two types of Na channels. Neurons with fast Na channels can thus make much more rapid adjustments in the number of open Na channels at physiologically relevant voltages than would be possible with only slow Na channels. This capability appears to be an adaptation that is highly evolved in cephalopods, which are well known for their high-speed swimming behaviors. Similarities in slow and fast Na channel subtypes in molluscan and mammalian neurons are discussed. PMID:9163364

  1. Coordinated activity of ventral tegmental neurons adapts to appetitive and aversive learning.

    Yunbok Kim

    Full Text Available Our understanding of how value-related information is encoded in the ventral tegmental area (VTA is based mainly on the responses of individual putative dopamine neurons. In contrast to cortical areas, the nature of coordinated interactions between groups of VTA neurons during motivated behavior is largely unknown. These interactions can strongly affect information processing, highlighting the importance of investigating network level activity. We recorded the activity of multiple single units and local field potentials (LFP in the VTA during a task in which rats learned to associate novel stimuli with different outcomes. We found that coordinated activity of VTA units with either putative dopamine or GABA waveforms was influenced differently by rewarding versus aversive outcomes. Specifically, after learning, stimuli paired with a rewarding outcome increased the correlation in activity levels between unit pairs whereas stimuli paired with an aversive outcome decreased the correlation. Paired single unit responses also became more redundant after learning. These response patterns flexibly tracked the reversal of contingencies, suggesting that learning is associated with changing correlations and enhanced functional connectivity between VTA neurons. Analysis of LFP recorded simultaneously with unit activity showed an increase in the power of theta oscillations when stimuli predicted reward but not an aversive outcome. With learning, a higher proportion of putative GABA units were phase locked to the theta oscillations than putative dopamine units. These patterns also adapted when task contingencies were changed. Taken together, these data demonstrate that VTA neurons organize flexibly as functional networks to support appetitive and aversive learning.

  2. Sleep-active neuronal nitric oxide synthase-positive cells of the cerebral cortex: a local regulator of sleep?

    Wisor, Jonathan P.; Gerashchenko, Dmitry; Kilduff, Thomas S.

    2011-01-01

    Our recent report demonstrated that a small subset of GABAergic interneurons in the cerebral cortex of rodents expresses Fos protein, a marker for neuronal activity, during slow wave sleep (Gerashchenko et al., 2008). The population of sleep-active neurons consists of strongly immunohistochemically-stained cells for the enzyme neuronal nitric oxide synthase. By virtue of their widespread localization within the cerebral cortex and their widespread projections to other cortical cell types, cor...

  3. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway.

    Lin-Holderer, Jiemeng; Li, Lexiao; Gruneberg, Daniel; Marti, Hugo H; Kunze, Reiner

    2016-06-01

    Oxidative stress is a hallmark of ischemic stroke pathogenesis causing neuronal malfunction and cell death. Up-regulation of anti-oxidative genes through activation of the NF-E2-related transcription factor 2 (Nrf2) is one of the key mechanisms in cellular defense against oxidative stress. Fumaric acid esters (FAEs) represent a class of anti-oxidative and anti-inflammatory molecules that are already in clinical use for multiple sclerosis therapy. Purpose of this study was to investigate whether FAEs promote neuronal survival upon ischemia, and analyze putative underlying molecular mechanisms in neurons. Murine organotypic hippocampal slice cultures, and two neuronal cell lines were treated with dimethyl fumarate (DMF) and monomethyl fumarate (MMF). Ischemic conditions were generated by exposing cells and slice cultures to oxygen-glucose deprivation (OGD), and cell death was determined through propidium iodide staining. Treatment with both DMF and MMF immediately after OGD during reoxygenation strongly reduced cell death in hippocampal cultures ex vivo. Both DMF and MMF promoted neuronal survival in HT-22 and SH-SY5Y cell lines exposed to ischemic stress. DMF but not MMF activated the anti-oxidative Nrf2 pathway in neurons. Accordingly, Nrf2 knockdown in murine neurons abrogated the protective effect of DMF but not MMF. Moreover, FAEs did not activate the hypoxia-inducible factor (HIF) pathway suggesting that this pathway may not significantly contribute to FAE mediated neuroprotection. Our results may provide the basis for a new therapeutic approach to treat ischemic pathologies such as stroke with a drug that already has a broad safety record in humans. PMID:26801077

  4. SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells

    Khan, Reas S.; Fonseca-Kelly, Zoe; Callinan, Catherine; Zuo, Ling; Sachdeva, Mira M.; Shindler, Kenneth S

    2012-01-01

    Activation of SIRT1, an NAD+-dependent deacetylase, prevents retinal ganglion cell (RGC) loss in optic neuritis, an inflammatory demyelinating optic nerve disease. While SIRT1 deacetylates numerous protein targets, downstream mechanisms of SIRT1 activation mediating this neuroprotective effect are unknown. SIRT1 increases mitochondrial function and reduces oxidative stress in muscle and other cells, and oxidative stress occurs in neuronal degeneration. We examined whether SIRT1 activators red...

  5. Neuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus

    Coiret, Guyllaume; Ster, Jeanne; Grewe, Benjamin; Wendling, Fabrice; Helmchen, Fritjof; Gerber, Urs; Benquet, Pascal

    2012-01-01

    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a posi...

  6. "Caged calcium" in Aplysia pacemaker neurons. Characterization of calcium-activated potassium and nonspecific cation currents

    1989-01-01

    We have studied calcium-activated potassium current, IK(Ca), and calcium-activated nonspecific cation current, INS(Ca), in Aplysia bursting pacemaker neurons, using photolysis of a calcium chelator (nitr-5 or nitr-7) to release "caged calcium" intracellularly. A computer model of nitr photolysis, multiple buffer equilibration, and active calcium extrusion was developed to predict volume-average and front-surface calcium concentration transients. Changes in arsenazo III absorbance were used to...

  7. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability.

    Hsu, Wei-Chun J; Scala, Federico; Nenov, Miroslav N; Wildburger, Norelle C; Elferink, Hannah; Singh, Aditya K; Chesson, Charles B; Buzhdygan, Tetyana; Sohail, Maveen; Shavkunov, Alexander S; Panova, Neli I; Nilsson, Carol L; Rudra, Jai S; Lichti, Cheryl F; Laezza, Fernanda

    2016-06-01

    Recent data shows that fibroblast growth factor 14 (FGF14) binds to and controls the function of the voltage-gated sodium (Nav) channel with phenotypic outcomes on neuronal excitability. Mutations in the FGF14 gene in humans have been associated with brain disorders that are partially recapitulated in Fgf14(-/-) mice. Thus, signaling pathways that modulate the FGF14:Nav channel interaction may be important therapeutic targets. Bioluminescence-based screening of small molecule modulators of the FGF14:Nav1.6 complex identified 4,5,6,7 -: tetrabromobenzotriazole (TBB), a potent casein kinase 2 (CK2) inhibitor, as a strong suppressor of FGF14:Nav1.6 interaction. Inhibition of CK2 through TBB reduces the interaction of FGF14 with Nav1.6 and Nav1.2 channels. Mass spectrometry confirmed direct phosphorylation of FGF14 by CK2 at S228 and S230, and mutation to alanine at these sites modified FGF14 modulation of Nav1.6-mediated currents. In 1 d in vitro hippocampal neurons, TBB induced a reduction in FGF14 expression, a decrease in transient Na(+) current amplitude, and a hyperpolarizing shift in the voltage dependence of Nav channel steady-state inactivation. In mature neurons, TBB reduces the axodendritic polarity of FGF14. In cornu ammonis area 1 hippocampal slices from wild-type mice, TBB impairs neuronal excitability by increasing action potential threshold and lowering firing frequency. Importantly, these changes in excitability are recapitulated in Fgf14(-/-) mice, and deletion of Fgf14 occludes TBB-dependent phenotypes observed in wild-type mice. These results suggest that a CK2-FGF14 axis may regulate Nav channels and neuronal excitability.-Hsu, W.-C. J., Scala, F., Nenov, M. N., Wildburger, N. C., Elferink, H., Singh, A. K., Chesson, C. B., Buzhdygan, T., Sohail, M., Shavkunov, A. S., Panova, N. I., Nilsson, C. L., Rudra, J. S., Lichti, C. F., Laezza, F. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal

  8. Bypassing hazard of housekeeping genes: Their evaluation in rat granule neurons treated with cerebrospinal fluid of Multiple Sclerosis subjects

    Deepali eMathur

    2015-09-01

    Full Text Available Gene expression studies employing real-time PCR has become an intrinsic part of biomedical research. Appropriate normalization of target gene transcript(s based on stably expressed housekeeping genes is crucial in individual experimental conditions to obtain accurate results. In multiple sclerosis (MS, several gene expression studies have been undertaken, however, the suitability of housekeeping genes to express stably in this disease is not yet explored. Recent research suggests that their expression level may vary under different experimental conditions. Hence it is indispensible to evaluate their expression stability to accurately normalize target gene transcripts. The present study aims to evaluate the expression stability of seven housekeeping genes in rat granule neurons treated with cerebrospinal fluid of MS patients. The selected reference genes were quantified by real time PCR and their expression stability was assessed using GeNorm and NormFinder algorithms. Both methods reported transferrin receptor (Tfrc and microglobulin beta-2 (B2m the most stable genes whereas beta-actin (ActB and glyceraldehyde-3-phosphate-dehydrogenase (Gapdh the most fluctuated ones. Altogether our data demonstrate the significance of pre-validation of housekeeping genes for accurate normalization and indicates Tfrc and B2m as best endogenous controls in MS. ActB and Gapdh are not recommended in gene expression studies related to the current one.

  9. Neurophysiological assessment of sympathetic cardiovascular activity after loss of postganglionic neurons in the anesthetized rat.

    Zahner, Matthew R; Liu, Chang-Ning; Okerberg, Carlin V; Opsahl, Alan C; Bobrowski, Walter F; Somps, Chris J

    2016-01-01

    The goal of this study was to determine the degree of sympathetic postganglionic neuronal loss required to impair cardiovascular-related sympathetic activity. To produce neuronal loss separate groups of rats were treated daily with guanethidine for either 5days or 11days, followed by a recovery period. Sympathetic activity was measured by renal sympathetic nerve activity (RSNA). Stereology of thoracic (T13) ganglia was performed to determine neuronal loss. Despite loss of more than two thirds of neurons in T13 ganglia in both treated groups no effect on resting blood pressure (BP) or heart rate (HR) was detected. Basal RSNA in rats treated for 5days (0.61±0.10μV∗s) and 11days (0.37±0.08μV∗s) was significantly less than vehicle-treated rats (0.99±0.13μV∗s, preflex sympathetic responsiveness rather than basal activity alone must be assessed for complete detection of neurophysiological cardiovascular impairment. PMID:27085835

  10. Role of neuronal Ras activity in adult hippocampal neurogenesis and cognition

    Martina eManns

    2011-02-01

    Full Text Available Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do converge on the activation of the G protein p21Ras. We used a transgenic mouse model (synRas mice expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  11. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A

    Botulinum neurotoxins (BoNT) have the unique capacity to cross epithelial barriers, target neuromuscular junctions, and translocate active metalloprotease component to the cytosol of motor neurons. We have taken advantage of the molecular carriers responsible for this trafficking to create a family ...

  12. Effects of Organophosphorus Flame Retardants on Spontaneous Activity in Neuronal Networks Grown on Microelectrode Arrays

    EFFECTS OF ORGANOPHOSPHORUS FLAME RETARDANTS ON SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS GROWN ON MICROELECTRODE ARRAYS TJ Shafer1, K Wallace1, WR Mundy1, M Behl2,. 1Integrated Systems Toxicology Division, NHEERL, USEPA, RTP, NC, USA, 2National Toxicology Program, NIEHS, RTP, NC...

  13. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons

    Huitron-Resendiz, Salvador; Kristensen, Morten Pilgaard; Sánchez-Alavez, Manuel;

    2005-01-01

    dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by acetylcholine, such as the sleep-wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters rapid eye movement (REM) sleep patterns in rats. Local...

  14. Involvement of opioid receptors in the CGRP8-37-induced inhibition of the activity of wide-dynamic-range neurons in the spinal dorsal horn of rats.

    Yan, Yi; Yu, Long-Chuan

    2004-07-01

    The present study was performed to explore the involvement of opioid receptors in the calcitonin gene-related peptide 8-37 (CGRP8-37, an antagonist of CGRP receptor)-induced inhibition of the activity of wide-dynamic-range (WDR) neurons in the spinal dorsal horn of rats. Extracellular recording was performed with a multibarrelled glass micropipette, and the chemicals were delivered by micro-iontophoresis. The discharge frequency of WDR neurons was evoked by subcutaneous electrical stimulation applied to the ipsilateral hindpaw. Iontophoretic application of CGRP8-37 by an ejection current of 160 nA induced significant inhibition of the discharge frequency of WDR neurons. The inhibitory effect of CGRP8-37 on the activity of WDR neurons was attenuated by later iontophoretic application of the opioid antagonist naloxone. Furthermore, the effect of CGRP8-37 was attenuated by either iontophoretic application of the kappa-receptor antagonist nor-binaltorphimine (nor-BNI) or the mu-receptor antagonist beta-funaltrexamine (beta-FNA) but not by the delta-receptor antagonist naltrindole. The results indicate that kappa- and mu-opioid receptors on the membrane of WDR neurons are involved in the modulation of CGRP8-37-induced antinociception in dorsal horn of the spinal cord in rats. PMID:15197748

  15. Analyzing gene expression from whole tissue vs. different cell types reveals the central role of neurons in predicting severity of Alzheimer's disease.

    Shiri Stempler

    Full Text Available Alterations in gene expression resulting from Alzheimer's disease have received considerable attention in recent years. Although expression has been investigated separately in whole brain tissue, in astrocytes and in neurons, a rigorous comparative study quantifying the relative utility of these sources in predicting the progression of Alzheimer's disease has been lacking. Here we analyze gene expression from neurons, astrocytes and whole tissues across different brain regions, and compare their ability to predict Alzheimer's disease progression by building pertaining classification models based on gene expression sets annotated to different biological processes. Remarkably, we find that predictions based on neuronal gene expression are significantly more accurate than those based on astrocyte or whole tissue expression. The findings explicate the central role of neurons, particularly as compared to glial cells, in the pathogenesis of Alzheimer's disease, and emphasize the importance of measuring gene expression in the most relevant (pathogenically 'proximal' single cell types.

  16. FIRING PROPERTY OF INFERIOR COLLICULUS NEURONS AFFECTED BY FMR1 GENE MUTATION

    Brittany Mott; SUN Wei

    2014-01-01

    Fragile X syndrome is the most common form of inherited mental retardation affecting up to 1 in 4000 individuals. The syn-drome is induced by a mutation in the FMR1 gene, causing a deficiency in its gene by-product FMRP. Impairment in the nor-mal functioning of FMRP leads to learning and memory deficits and heightened sensitivity to sensory stimuli, including sound (hyperacusis). The molecular basis of fragile X syndrome is thoroughly understood;however, the neural mechanisms underly-ing hyperacusis have not yet been determined. As the inferior colliculus (IC) is the principal midbrain nucleus of the auditory pathway, the current study addresses the questions underlying the neural mechanism of hyperacusis within the IC of fragile X mice. Acute experiments were performed in which electrophysiological recordings of the IC in FMR1-KO and WT mice were measured. Results showed that Q-values for WT were significantly larger than that of FMR-1 KO mice, indicating that WT mice exhibit sharper tuning curves than FMR1-KO mice. We also found the ratio of the monotonic neurons in the KO mice was much higher than the WT mice. These results suggest that lack of FMRP in the auditory system affects the developmental maturation and function of structures within the auditory pathway, and in this case specifically the IC. The dysfunction ob-served within the auditory neural pathway and in particular the IC may be related to the increased susceptibility to sound as seen in individuals with fragile X syndrome. Our study may help on understanding the mechanisms of the fragile X syndrome and hyperacusis.

  17. Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation.

    Lyons, G E; Micales, B K; Schwarz, J; Martin, J F; Olson, E N

    1995-08-01

    Members of the myocyte enhancer factor 2 (MEF2) gene family are expressed in a dynamic pattern during development of the CNS of pre- and postnatal mice. The four MEF2 genes, Mef2A, -B, -C, -D, encode transcription factors belonging to the MADS (MCM1-agamous-deficiens-serum response factor) superfamily of DNA binding proteins. MEF2 factors have previously been shown to be positive regulators of gene expression in terminally differentiated muscle cells. To begin to determine the role of MEF2 factors in CNS development, we used in situ hybridization with gene-specific cRNA probes to define the expression patterns of each of the four Mef2 mRNAs in the developing and mature mouse CNS. Mef2C mRNA was first detected in a ventral portion of the telencephalon at 11.5 d postcoitum (p.c.). By 13.5 d p.c., each of the four Mef2 genes were expressed in overlapping yet distinct patterns in regions of the frontal cortex, midbrain, thalamus, hippocampus, and hindbrain. Temporal and spatial patterns of embryonic Mef2 gene expression appeared to follow gradients of neuron maturation and suggested that the onset of Mef2 gene expression coincides with withdrawal from the cell cycle and initiation of neuronal differentiation. This correlation is particularly striking for Purkinje cells in the cerebellum. Since the molecular mechanisms that regulate neuron differentiation are unknown, we propose that the MEF2 factors are likely to play an important role in this process. PMID:7643214

  18. An experimental evidence-based computational paradigm for new logic-gates in neuronal activity

    Vardi, R.; Guberman, S.; Goldental, A.; Kanter, I.

    2013-09-01

    We propose a new experimentally corroborated paradigm in which the functionality of the brain's logic-gates depends on the history of their activity, e.g. an OR-gate that turns into a XOR-gate over time. Our results are based on an experimental procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in vitro. The underlying biological mechanism is the unavoidable increase of neuronal response latency to ongoing stimulations, which imposes a non-uniform gradual stretching of network delays.

  19. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  20. Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease.

    Tiernan, Chelsea T; Ginsberg, Stephen D; Guillozet-Bongaarts, Angela L; Ward, Sarah M; He, Bin; Kanaan, Nicholas M; Mufson, Elliott J; Binder, Lester I; Counts, Scott E

    2016-06-01

    Conformational phosphorylation and cleavage events drive the tau protein from a soluble, monomeric state to a relatively insoluble, polymeric state that precipitates the formation of neurofibrillary tangles (NFTs) in projection neurons in Alzheimer's disease (AD), including the magnocellular perikarya located in the nucleus basalis of Meynert (NBM) complex of the basal forebrain. Whether these structural changes in the tau protein are associated with pathogenic changes at the molecular and cellular level remains undetermined during the onset of AD. Here, we examined alterations in gene expression within individual NBM neurons immunostained for pS422, an early tau phosphorylation event, or dual labeled for pS422 and TauC3, a later stage tau neoepitope, from tissue obtained postmortem from subjects who died with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment, or mild/moderate AD. Specifically, pS422-positive pretangles displayed an upregulation of select gene transcripts subserving protein quality control. On the other hand, late-stage TauC3-positive NFTs exhibited upregulation of messenger RNAs involved in protein degradation but also cell survival. Taken together, these results suggest that molecular pathways regulating protein homeostasis are altered during the evolution of NFT pathology in the NBM. These changes likely contribute to the disruption of protein turnover and neuronal survival of these vulnerable NBM neurons during the progression of AD. PMID:27143424

  1. Fusion protein Isl1–Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs

    Lee, Seunghee; Cuvillier, James M.; Lee, Bora; Shen, Rongkun; Lee, Jae W.; Lee, Soo-Kyung

    2012-01-01

    Combinatorial transcription codes generate the myriad of cell types during development and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1–Lhx3, a LIM-complex mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM domain of Lhx3 are crucial for generating MNs without up-regulating interneuron genes. These led us to design Isl1–Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM domain of Lhx3. Isl1–Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog (Shh). RNA-seq analysis revealed that Isl1–Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of using embryonic transcription complexes for producing specific cell types from stem cells. PMID:22343290

  2. Fusion protein Isl1-Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs.

    Lee, Seunghee; Cuvillier, James M; Lee, Bora; Shen, Rongkun; Lee, Jae W; Lee, Soo-Kyung

    2012-02-28

    Combinatorial transcription codes generate the myriad of cell types during development and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1-Lhx3, a LIM-complex mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM domain of Lhx3 are crucial for generating MNs without up-regulating interneuron genes. These led us to design Isl1-Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM domain of Lhx3. Isl1-Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog (Shh). RNA-seq analysis revealed that Isl1-Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of using embryonic transcription complexes for producing specific cell types from stem cells. PMID:22343290

  3. Lymphocytes with cytotoxic activity induce rapid microtubule axonal destabilization independently and before signs of neuronal death

    Arundhati Jana

    2013-02-01

    Full Text Available MS (multiple sclerosis is the most prevalent autoimmune disease of the CNS (central nervous system historically characterized as an inflammatory and demyelinating disease. More recently, extensive neuronal pathology has lead to its classification as a neurodegenerative disease as well. While the immune system initiates the autoimmune response it remains unclear how it orchestrates neuronal damage. In our previous studies, using in vitro cultured embryonic neurons, we demonstrated that MBP (myelin basic protein-specific encephalitogenic CD4 T-cells induce early neuronal damage. In an extension of those studies, here we show that polarized CD4 Th1 and Th17 cells as wells as CD8 T-cells and NK (natural killer cells induce microtubule destabilization within neurites in a contact-independent manner. Owing to the cytotoxic potential of these immune cells, we isolated the luminal components of lytic granules and determined that they were sufficient to drive microtubule destabilization. Since lytic granules contain cytolytic proteins, we determined that the induction of microtubule destabilization occurred prior to signs of apoptosis. Furthermore, we determined that microtubule destabilization was largely restricted to axons, sparing dendrites. This study demonstrated that lymphocytes with cytolytic activity have the capacity to directly drive MAD (microtubule axonal destabilization in a bystander manner that is independent of neuronal death.

  4. A 3’UTR Pumilio binding element directs translational activation in olfactory sensory neurons

    Kaye, Julia A.; Rose, Natalie C.; Goldsworthy, Brett; Goga, Andrei; L'Etoile, Noelle D.

    2014-01-01

    Summary Prolonged stimulation leads to specific and stable changes in an animal’s behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known. Adaptation of the AWC olfactory sensory neurons of C. elegans requires the cGMP-dependent protein kinase EGL-4. Here we show that the PUF FBF-1 is required in the adult AWC for adaptation and in the odor-adapted animal, increases translation from the egl-4 3’ UTR. Further, the PUF protein may localize translation near the sensory cilia and cell body. Although the RNA-binding PUF proteins have been shown to promote plasticity in development by temporally and spatially repressing translation; this work reveals that in the adult nervous system, they can work in a different way to promote experience-dependent plasticity by activating translation in response to environmental stimulation. PMID:19146813

  5. A 3'UTR pumilio-binding element directs translational activation in olfactory sensory neurons.

    Kaye, Julia A; Rose, Natalie C; Goldsworthy, Brett; Goga, Andrei; L'Etoile, Noelle D

    2009-01-15

    Prolonged stimulation leads to specific and stable changes in an animal's behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known. Adaptation of the AWC olfactory sensory neurons of C. elegans requires the cGMP-dependent protein kinase EGL-4. Here, we show that the RNA-binding PUF protein FBF-1 is required in the adult AWC for adaptation. In the odor-adapted animal, it increases translation via binding to the egl-4 3' UTR. Further, the PUF protein may localize translation near the sensory cilia and cell body. Although the RNA-binding PUF proteins have been shown to promote plasticity in development by temporally and spatially repressing translation, this work reveals that in the adult nervous system, they can work in a different way to promote experience-dependent plasticity by activating translation in response to environmental stimulation. PMID:19146813

  6. Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity

    Nathan Fitzsimmons

    2009-03-01

    Full Text Available The ability to walk may be critically impacted as the result of neurological injury or disease. While recent advances in brain-machine interfaces (BMIs have demonstrated the feasibility of upper-limb neuroprostheses, BMIs have not been evaluated as a means to restore walking. Here, we demonstrate that chronic recordings from ensembles of cortical neurons can be used to predict the kinematics of bipedal walking in rhesus macaques – both offline and in real-time. Linear decoders extracted 3D coordinates of leg joints and leg muscle EMGs from the activity of hundreds of cortical neurons. As more complex patterns of walking were produced by varying the gait speed and direction, larger neuronal populations were needed to accurately extract walking patterns. Extraction was further improved using a switching decoder which designated a submodel for each walking paradigm. We propose that BMIs may one day allow severely paralyzed patients to walk again.

  7. Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons.

    Louessard, Morgane; Lacroix, Alexandre; Martineau, Magalie; Mondielli, Gregoire; Montagne, Axel; Lesept, Flavie; Lambolez, Bertrand; Cauli, Bruno; Mothet, Jean-Pierre; Vivien, Denis; Maubert, Eric

    2016-09-01

    Although the extracellular serine protease tissue plasminogen activator (tPA) is involved in pathophysiological processes such as learning and memory, anxiety, epilepsy, stroke, and Alzheimer's disease, information about its regional, cellular, and subcellular distribution in vivo is lacking. In the present study, we observed, in healthy mice and rats, the presence of tPA in endothelial cells, oligodendrocytes, mastocytes, and ependymocytes, but not in pericytes, microglial cells, and astrocytes. Moreover, blockage of the axo-dendritic transport unmasked tPA expression in neurons of cortical and hippocampal areas. Interestingly, combined electrophysiological recordings, single-cell reverse transcription polymerase chain reaction (RT-PCR), and immunohistological analyses revealed that the presence of tPA is restricted to subsets of excitatory pyramidal glutamatergic neurons. We further evidenced that tPA is stored in synaptobrevin-2-positive glutamatergic synaptic vesicles. Based on all these data, we propose the existence of tPA-ergic neurons in the mature brain. PMID:26377106

  8. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory

    Tadi, Monika

    2015-10-29

    We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte)-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA) paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4), alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  9. Learning-Induced Gene Expression in the Hippocampus Reveals a Role of Neuron -Astrocyte Metabolic Coupling in Long Term Memory.

    Monika Tadi

    Full Text Available We examined the expression of genes related to brain energy metabolism and particularly those encoding glia (astrocyte-specific functions in the dorsal hippocampus subsequent to learning. Context-dependent avoidance behavior was tested in mice using the step-through Inhibitory Avoidance (IA paradigm. Animals were sacrificed 3, 9, 24, or 72 hours after training or 3 hours after retention testing. The quantitative determination of mRNA levels revealed learning-induced changes in the expression of genes thought to be involved in astrocyte-neuron metabolic coupling in a time dependent manner. Twenty four hours following IA training, an enhanced gene expression was seen, particularly for genes encoding monocarboxylate transporters 1 and 4 (MCT1, MCT4, alpha2 subunit of the Na/K-ATPase and glucose transporter type 1. To assess the functional role for one of these genes in learning, we studied MCT1 deficient mice and found that they exhibit impaired memory in the inhibitory avoidance task. Together, these observations indicate that neuron-glia metabolic coupling undergoes metabolic adaptations following learning as indicated by the change in expression of key metabolic genes.

  10. Exclusion of the neuronal nitric oxide synthase gene and the human achaete-scute homologue 1 gene as candidate loci for spinal cerebellar ataxia 2 (SCA2)

    Twells, R.; Xu, W. [Imperial College, London (United Kingdom)]|[Institute of Animal Physiology and Genetics Research, Babraham, Cambridge (United Kingdom); Ball, D. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1994-09-01

    The autosomal dominant ataxias are a heterogeneous group of disorders, characterized by progressive degeneration of the cerebellum, pons and inferior olives, as well as the spinal cord. We previously mapped the spinal cerebellar ataxia 2 locus (SCA2) to chromosome 12q23-24.1 in a large Cuban founder population, flanked by the markers D12S58 and PLA2. Anticipation is a common feature of this disorder and therefore we have examined genes in this region which contain trinucleotide repeat motifs as candidate loci for SCA2. The neuronal nitric oxide synthase gene (NOS) has recently been assigned to chromosome 12q24.2-24.3 by fluorescent in situ hybridization. Neuronal NOS is responsible for the production of nitric oxide, a neurotransmitter expressed in high levels in the cerebellum as well as other regions of the nervous system. We report here the identification and analysis of an (AAT){sub n} repeat motif in an intronic region of the neuronal NOS gene, genetic mapping data and its exclusion from being involved in SCA2. We also report the exclusion of the human achaete-scute homologue 1 gene (HASH1), instrumental in neurosensory development in mouse, from being involved in SCA2 by the analysis of a proximal (CAG){sub n} repeat motif in the Cuban pedigrees, and its genetic location on chromosome 12q.

  11. Interleukin 6 modulates acetylcholinesterase activity of brain neurons

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author)

  12. Genes activated by low dose radiation

    Gene expression profiles were examined in the mouse kidney and testis in order to investigate the molecular mechanisms of the life span-shortening effect of low dose-rate radiation. C57BL/6J male mice (7-8 wks old) were irradiated by cesium-137 gamma-rays for 485 days at rates of 0, 32, 650 and 13,000 nGy/min and organs were excised out. Gene expression was analyzed with cDNA microarray Illumina Sentrix Mouse-6. In the kidney, 4 genes concerning mitochondrial respiration (oxidative phosphorylation) were found to be up-regulated at the middle and high dose rates (expression level changed in >1.6 folds by irradiation). Significantly modulated genes were in 16 clusters, which exerted elevated expression level dose rate-dependently and found to be categorized in cytoplasm/mitochondria/energy pathways by the database ''Gene Ontology''. In the testis, gene expression pattern was different from that in kidney. Clustering analysis and database revealed that up-regulated genes belonged to ''DNA repair'', ''response to DNA damage'', DNA replication'' and ''Mitotic cell cycles''. Thus low dose radiation can cause the cellular oxidative stress by elevated respiratory activity in the kidney, and a type of emergent biological response in the testis. (R.T.)

  13. Phospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons.

    Liu, Tao; Fujita, Tsugumi; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2008-03-01

    Phospholipase A(2) (PLA(2)) activation enhances glutamatergic excitatory synaptic transmission in substantia gelatinosa (SG) neurons, which play a pivotal role in regulating nociceptive transmission in the spinal cord. By using melittin as a tool to activate PLA(2), we examined the effect of PLA(2) activation on spontaneous inhibitory postsynaptic currents (sIPSCs) recorded at 0 mV in SG neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique. Melittin enhanced the frequency and amplitude of GABAergic and glycinergic sIPSCs. The enhancement of GABAergic but not glycinergic transmission was largely depressed by Na(+) channel blocker tetrodotoxin or glutamate-receptor antagonists (6-cyano-7-nitroquinoxaline-2,3-dione and/or dl-2-amino-5-phosphonovaleric acid) and also in a Ca(2+)-free Krebs solution. The effects of melittin on glycinergic sIPSC frequency and amplitude were dose-dependent with an effective concentration of approximately 0.7 microM for half-maximal effect and were depressed by PLA(2) inhibitor 4-bromophenacyl bromide or aristolochic acid. The melittin-induced enhancement of glycinergic transmission was depressed by lipoxygenase inhibitor nordihydroguaiaretic acid but not cyclooxygenase inhibitor indomethacin. These results indicate that the activation of PLA(2) in the SG enhances GABAergic and glycinergic inhibitory transmission in SG neurons. The former action is mediated by glutamate-receptor activation and neuronal activity increase, possibly the facilitatory effect of PLA(2) activation on excitatory transmission, whereas the latter action is due to PLA(2) and subsequent lipoxygenase activation and is independent of extracellular Ca(2+). It is suggested that PLA(2) activation in the SG could enhance not only excitatory but also inhibitory transmission, resulting in the modulation of nociception. PMID:18216222

  14. Duration differences of corticostriatal responses in striatal projection neurons depend on calcium activated potassium currents

    Mario Alberto Arias-García

    2013-10-01

    Full Text Available The firing of striatal projection neurons (SPNs exhibits afterhyperpolarizing potentials (AHPs that determine discharge frequency. They are in part generated by Ca2+-activated K+-currents involving BK and SK components. It has previously been shown that suprathreshold corticostriatal responses are more prolonged and evoke more action potentials in direct pathway SPNs (dSPNs than in indirect pathway SPNs (iSPNs. In contrast, iSPNs generate dendritic autoregenerative responses. Using whole cell recordings in brain slices, we asked whether the participation of Ca2+-activated K+-currents plays a role in these responses. Secondly, we asked if these currents may explain some differences in synaptic integration between dSPNs and iSPNs. Neurons obtained from BAC D1 and D2 GFP mice were recorded. We used charybdotoxin and apamin to block BK and SK channels, respectively. Both antagonists increased the depolarization and delayed the repolarization of suprathreshold corticostriatal responses in both neuron classes. We also used NS 1619 and NS 309 (CyPPA, to enhance BK and SK channels, respectively. Current enhancers hyperpolarized and accelerated the repolarization of corticostriatal responses in both neuron classes. These drugs made evident that the contribution of Ca2+-activated K+-currents was different in dSPNs as compared to iSPNs: in dSPNs their activation was slower as though calcium took a diffusion delay to activate them. In contrast, their activation was fast and then sustained in iSPNs as though calcium flux activates them at the moment of entry. The blockade of Ca2+-activated K+-currents made iSPNs to look as dSPNs. Conversely, their enhancement made dSPNs to look as iSPNs. It is concluded that Ca2+-activated K+-currents are a main intrinsic determinant causing the differences in synaptic integration between corticostriatal polysynaptic responses between dSPNs and iSPNs.

  15. Neuronal Activity in the Subthalamic Cerebrovasodilator Area under Partial-Gravity Conditions in Rats

    Zeredo L Zeredo

    2014-03-01

    Full Text Available The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA, a key area that controls cerebral blood flow (CBF, in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth and 0 g (complete weightlessness in space. Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter.

  16. Alterations in Neuronal Activity in Basal Ganglia-Thalamocortical Circuits in the Parkinsonian State

    Adriana Galvan

    2015-02-01

    Full Text Available In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials, electroencephalograms or electrocorticograms. Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation therapy.

  17. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism.

    Sotero, Roberto C; Trujillo-Barreto, Nelson J

    2008-01-01

    Our goal is to model the coupling between neuronal activity, cerebral metabolic rates of glucose and oxygen consumption, cerebral blood flow (CBF), electroencephalography (EEG) and blood oxygenation level-dependent (BOLD) responses. In order to accomplish this, two previous models are coupled: a metabolic/hemodynamic model (MHM) for a voxel, linking BOLD signals and neuronal activity, and a neural mass model describing the neuronal dynamics within a voxel and its interactions with voxels of the same area (short-range interactions) and other areas (long-range interactions). For coupling both models, we take as the input to the BOLD model, the number of active synapses within the voxel, that is, the average number of synapses that will receive an action potential within the time unit. This is obtained by considering the action potentials transmitted between neuronal populations within the voxel, as well as those arriving from other voxels. Simulations are carried out for testing the integrated model. Results show that realistic evoked potentials (EP) at electrodes on the scalp surface and the corresponding BOLD signals for each voxel are produced by the model. In another simulation, the alpha rhythm was reproduced and reasonable similarities with experimental data were obtained when calculating correlations between BOLD signals and the alpha power curve. The origin of negative BOLD responses and the characteristics of EEG, PET and BOLD signals in Alzheimer's disease were also studied. PMID:17919931

  18. Motor neuron activation in peripheral nerves using infrared neural stimulation

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  19. Motoneuron and sensory neuron plasticity to varying neuromuscular activity levels

    Ishihara, Akihiko; Roy, Roland R.; Ohira, Yoshinobu; Edgerton, V. Reggie

    2002-01-01

    The size and phenotypic properties of the neural and muscular elements of the neuromuscular unit are matched under normal conditions. When subjected to chronic decreases or increases in neuromuscular activity, however, the adaptations in these properties are much more limited in the neural compared with the muscular elements.

  20. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  1. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J.

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control.

  2. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    Xianglong eZhu

    2016-04-01

    Full Text Available While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The NAc is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs D2 neurons was done in both low expenditure and high expenditure (wheel running conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a DREADD (Designer Receptors Exclusively Activated by Designer Drugs strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from D1 NAc neuronal manipulations depend upon the activity state of the animals (wheel running vs non-running. The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control.

  3. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake.

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  4. Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis

    Roberts, Marie S.; Macauley, Shannon L.; Wong, Andrew M.; Yilmas, Denis; Hohm, Sarah; Cooper, Jonathan D.; Sands, Mark S.

    2012-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is a profoundly neurodegenerative disease of children caused by a deficiency in the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). There is currently no effective therapy for this invariably fatal disease. To date, preclinical experiments using single treatments have resulted in incremental clinical improvements. Therefore, we determined the efficacy of CNS-directed AAV2/5-mediated gene therapy alone and in combination with the system...

  5. [Influence of GABA agonist phenibut on the neuronal activity and interaction in hippocampus and neocortex in emotionally negative situations].

    Ziablintseva, E A; Pavlova, I V

    2009-09-01

    The activity of individual neurons and interaction of neighboring cells in hippocampus (CA1 area) and neocortical parieto-temporal area were compared in negative emotional situations in normal and in decreased anxiety produced by systemic injection of GABA agonist: phenibut. Analysis of the autocorrelation histogram shapes showed that in both structures phenibut increased bursts of neuronal discharges, decreased the interspike intervals within the burst, increased the number of neurons with delta-frequency oscillation and decreased the number of neurons with theta-1 oscillation. In hippocampus, in addition the intensity of theta-2 frequencies increased. During phenibut action, the irritating agents evoked lesser changes in neuronal activity as compared to the norm. Analysis of the crosscorrelation histogram shapes showed that, under exposure to phenibut in both structures, there were an increase in the number of common inputs to recorded neurons and a decrease in the number of excitatory connections. In hippocampus, there was still an increase in the number of inhibitory connections. The revealed changes in neuronal activity produced by phenibut indicated a decrease in the activation level of hippocampus and neocortex, an increase of neuronal synchronization and a decrease in excitation spread among neurons, that correlated with a reduction of behavioral reactivity and anxiety of animals. PMID:19899708

  6. Chromatin structure near transcriptionally active genes

    Hypersensitive domains are the most prominent features of transcriptionally active chromatin. In the case of the β/sup A/-globin gene, it seems likely that two or more protein factors are capable of binding to the DNA so tightly that the nucleosome is prevented from binding. We have shown that nucleosomes, once bound in the assembly process in vitro, cannot be displaced. The interaction of the 5S gene transcription factor TFIIIA with its target DNA also is blocked by histones, and it has been suggested that the activation of the gene must occur during replication, before histones are reassembled on the DNA. We suppose that a similar mechanism may govern the binding of the hypersensitivity factors. It should be noted that nucleosomes are excluded not only from the sites to which the factors bind, but also from the regions between the two domains and at either side. 12 refs., 6 figs

  7. The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study.

    Emilia Biffi

    Full Text Available It is known that cell density influences the maturation process of in vitro neuronal networks. Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity. Although many authors provided detailed information about the effects of cell density on neuronal culture activity, a dedicated report of density and age influence on neuronal hippocampal culture activity has not yet been reported. Therefore, this work aims at providing reference data to researchers that set up an experimental study on hippocampal neuronal cultures, helping in planning and decoding the experiments. In this work, we analysed the effects of both neuronal density and culture age on functional attributes of maturing hippocampal cultures. We characterized the electrophysiological activity of neuronal cultures seeded at three different cell densities, recording their spontaneous electrical activity over maturation by means of MicroElectrode Arrays (MEAs. We had gather data from 86 independent hippocampal cultures to achieve solid statistic results, considering the high culture-to-culture variability. Network activity was evaluated in terms of simple spiking, burst and network burst features. We observed that electrical descriptors were characterized by a functional peak during maturation, followed by a stable phase (for sparse and medium density cultures or by a decrease phase (for high dense neuronal cultures. Moreover, 900 cells/mm(2 cultures showed characteristics suitable for long lasting experiments (e.g. chronic effect of drug treatments while 1800 cells/mm(2 cultures should be preferred for experiments that require intense electrical activity (e.g. to evaluate the effect of inhibitory molecules. Finally, cell cultures at 3600 cells/mm(2 are more appropriate for experiments in which time saving is relevant (e.g. drug screenings

  8. Hypoxia activates nucleus tractus solitarii neurons projecting to the paraventricular nucleus of the hypothalamus

    King, T. Luise; Heesch, Cheryl M.; Clark, Catharine G.; Kline, David D.; Hasser, Eileen M.

    2012-01-01

    Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular para...

  9. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid

    Findlay, John A.; Hamilton, David L.; Ashford, Michael L J

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity...

  10. Differential regulation of Aβ42-induced neuronal C1q synthesis and microglial activation

    Tenner Andrea J; Fan Rong

    2005-01-01

    Abstract Expression of C1q, an early component of the classical complement pathway, has been shown to be induced in neurons in hippocampal slices, following accumulation of exogenous Aβ42. Microglial activation was also detected by surface marker expression and cytokine production. To determine whether C1q induction was correlated with intraneuronal Aβ and/or microglial activation, D-(-)-2-amino-5-phosphonovaleric acid (APV, an NMDA receptor antagonist) and glycine-arginine-glycine-aspartic a...

  11. The effects of neuroleptic and tricyclic compounds on BKCa channel activity in rat isolated cortical neurones

    Lee, K.; McKenna, F; Rowe, I C M; Ashford, M.L.J.

    1997-01-01

    The actions of several neuroleptic and tricyclic compounds were examined on the large conductance Ca2+-activated K+ (BKCa) channel present in neurones isolated from the rat motor cortex.Classical neuroleptic compounds including chlorpromazine and haloperidol applied to the intracellular surface of inside-out patches produced a concentration-dependent reduction in BKCa channel activity. Similar effects were observed when these compounds were applied to the extracellular surface of outside-out ...

  12. Na(+) -Activated K(+) Channels in Rat Supraoptic Neurones.

    Bansal, V; Fisher, T E

    2016-06-01

    The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour. PMID:27091544

  13. Neurone bioelectric activity under magnetic fields of variable frequency in the range of 0.1-80 Hz

    Intracellular recordings from single unit molluscan neurones under exposure to ELF-MF (1 mT, 0.1-80 Hz), show that neurone frequency activity, f, decreases with the applied magnetic field frequency, fM, a phenomenon which indicates a frequency-window effect for the neurone membrane response. The HMHW of the window amounts between 2-10 Hz. An explanation of this phenomenon is proposed

  14. Tumor necrosis factor alpha stimulates NMDA receptor activity in mouse cortical neurons resulting in ERK-dependent death

    Jara, Javier H.; Singh, Brij B.; Floden, Angela M.; Combs, Colin K.

    2007-01-01

    Multiple cytokines are secreted in the brain during pro-inflammatory conditions and likely affect neuron survival. Previously, we demonstrated that glutamate and tumor necrosis factor alpha (TNFα) kill neurons via activation of the N-methyl-d-aspartate (NMDA) and TNFα receptors, respectively. This report continues characterizing the signaling cross-talk pathway initiated during this inflammation-related mechanism of death. Stimulation of mouse cortical neuron cultures with TNFα results in a t...

  15. Association analysis of schizophrenia on 18 genes involved in neuronal migration

    Kähler, Anna K; Djurovic, Srdjan; Kulle, Bettina;

    2008-01-01

    Several lines of evidence support the theory of schizophrenia (SZ) being a neurodevelopmental disorder. The structural, cytoarchitectural and functional brain abnormalities reported in patients with SZ, might be due to aberrant neuronal migration, since the final position of neurons affects neuro...

  16. Voltage-clamp frequency domain analysis of NMDA-activated neurons.

    Moore, L E; Hill, R H; Grillner, S

    1993-02-01

    1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal

  17. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  18. Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons.

    Hyeon Seo

    Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.

  19. Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons

    Zhengyu Cao

    2015-02-01

    Full Text Available The frequent occurrence of Moorea producens (formerly Lyngbya majuscula blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile. We examined the influence of hoiamide A on neurite outgrowth in neocortical neurons and found that it suppressed neurite outgrowth with an IC50 value of 4.89 nM. Further study demonstrated that hoiamide A stimulated lactic acid dehydrogenase (LDH efflux, nuclear condensation and caspase-3 activity with EC50 values of 3.66, 2.55 and 4.33 nM, respectively. These data indicated that hoiamide A triggered a unique neuronal death profile that involves both necrotic and apoptotic mechanisms. The similar potencies and similar time-response relationships between LDH efflux and caspase-3 activation/nuclear condensation suggested that both necrosis and apoptosis may derive from interaction with a common molecular target. The broad-spectrum caspase inhibitor, Z-VAD-FMK completely inhibited hoiamide A-induced neurotoxicity. Additionally, hoiamide A stimulated JNK phosphorylation, and a JNK inhibitor attenuated hoiamide A-induced neurotoxicity. Collectively, these data demonstrate that hoiamide A-induced neuronal death requires both JNK and caspase signaling pathways. The potent neurotoxicity and unique neuronal cell death profile of hoiamide A represents a novel neurotoxic chemotype from marine cyanobacteria.

  20. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements.

    Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Gagnon, Louis; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A; Nizar, Krystal; Yaseen, Mohammad A; Hagler, Donald J; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A; Silva, Gabriel A; Masliah, Eliezer; Kleinfeld, David; Vinogradov, Sergei; Buxton, Richard B; Einevoll, Gaute T; Boas, David A; Dale, Anders M; Devor, Anna

    2016-10-01

    The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574309

  1. Electroencephalogram evidence for mirror neuron activity during the observation of drawn hand motion

    Huaping Zhu; Yaoru Sun; Wenya Duan

    2011-01-01

    The present study used electroencephalography to examine mu rhythm suppression (a putative index of human mirror neuron system activation) at frontal sites (F3, Fz and F4), central sites (C3, Cz and C4), parietal sites (P3, Pz and P4) and occipital sites (O1 and O2), while subjects observed real hand motion (real hand motion condition) and illustrative depictions of hand motion (drawn hand motion condition). Experimental data revealed that mu rhythm suppression was exhibited in the mirror neuron system when subjects observed both real and drawn hand motion. Moreover, the mu rhythm recorded at the F3, Fz, F4, and Pz poles was significantly suppressed while observing both stimulus types, but no obvious mu suppression occurred at the O1, O2 and O3 poles. These results suggest that the observation of drawings of human hand actions can activate the human mirror neuron system. This evidence supports the hypothesis that the mirror neuron system may be involved in intransitively abstract action understanding.

  2. Decision-related activity in sensory neurons may depend on the columnar architecture of cerebral cortex.

    Nienborg, Hendrikje; Cumming, Bruce G

    2014-03-01

    Many studies have reported correlations between the activity of sensory neurons and animals' judgments in discrimination tasks. Here, we suggest that such neuron-behavior correlations may require a cortical map for the task relevant features. This would explain why studies using discrimination tasks based on disparity in area V1 have not found these correlations: V1 contains no map for disparity. This scheme predicts that activity of V1 neurons correlates with decisions in an orientation-discrimination task. To test this prediction, we trained two macaque monkeys in a coarse orientation discrimination task using band-pass-filtered dynamic noise. The two orientations were always 90° apart and task difficulty was controlled by varying the orientation bandwidth of the filter. While the trained animals performed this task, we recorded from orientation-selective V1 neurons (n = 82, n = 31 for Monkey 1, n = 51 for Monkey 2). For both monkeys, we observed significant correlation (quantified as "choice probabilities") of the V1 activity with the monkeys' perceptual judgments (mean choice probability 0.54, p = 10(-5)). In one of these animals, we had previously measured choice probabilities in a disparity discrimination task in V1, which had been at chance (0.49, not significantly different from 0.5). The choice probabilities in this monkey for the orientation discrimination task were significantly larger than those for the disparity discrimination task (p = 0.032). These results are predicted by our suggestion that choice probabilities are only observed for cortical sensory neurons that are organized in maps for the task-relevant feature. PMID:24599457

  3. Multiparametric characterisation of neuronal network activity for in vitro agrochemical neurotoxicity assessment.

    Alloisio, Susanna; Nobile, Mario; Novellino, Antonio

    2015-05-01

    The last few decades have seen the marketing of hundreds of new pesticide products with a forecasted expansion of the global agrochemical industry. As several pesticides directly target nervous tissue as their mechanism of toxicity, alternative methods to routine in vivo animal testing, such as the Multi Electrode Array (MEAs)-based approach, have been proposed as an in vitro tool to perform sensitive, quick and low cost neuro-toxicological screening. Here, we examined the effects of a training set of eleven active substances known to have neuronal or non-neuronal targets, contained in the most commonly used agrochemicals, on the spontaneous electrical activity of cortical neuronal networks grown on MEAs. A multiparametric characterisation of neuronal network firing and bursting was performed with the aim of investigating how this can contribute to the efficient evaluation of in vitro chemical-induced neurotoxicity. The analysis of MFR, MBR, MBD, MISI_B and % Spikes_B parameters identified four different groups of chemicals: one wherein only inhibition is observed (chlorpyrifos, deltamethrin, orysastrobin, dimoxystrobin); a second one in which all parameters, except the MISI_B, are inhibited (carbaryl, quinmerac); a third in which increases at low chemical concentration are followed by decreases at high concentration, with exception of MISI_B that only decreased (fipronil); a fourth in which no effects are observed (paraquat, glyphosate, imidacloprid, mepiquat). The overall results demonstrated that the multiparametric description of the neuronal networks activity makes MEA-based screening platform an accurate and consistent tool for the evaluation of the toxic potential of chemicals. In particular, among the bursting parameters the MISI_B was the best that correlates with potency and may help to better define chemical toxicity when MFR is affected only at relatively high concentration. PMID:25845298

  4. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  5. Effect of spontaneous activity on stimulus detection in a simple neuronal model.

    Levakova, Marie

    2016-06-01

    It is studied what level of a continuous-valued signal is optimally estimable on the basis of first-spike latency neuronal data. When a spontaneous neuronal activity is present, the first spike after the stimulus onset may be caused either by the stimulus itself, or it may be a result of the prevailing spontaneous activity. Under certain regularity conditions, Fisher information is the inverse of the variance of the best estimator. It can be considered as a function of the signal intensity and then indicates accuracy of the estimation for each signal level. The Fisher information is normalized with respect to the time needed to obtain an observation. The accuracy of signal level estimation is investigated in basic discharge patterns modelled by a Poisson and a renewal process and the impact of the complex interaction between spontaneous activity and a delay of the response is shown. PMID:27106186

  6. Fibrillar amyloid-β-activated human astroglia kill primary human neurons via neutral sphingomyelinase: Implications for Alzheimer’s disease

    Jana, Arundhati; Pahan, Kalipada

    2010-01-01

    Glial activation plays an important role in the pathogenesis of various neurodegenerative disorders including Alzheimer’s disease (AD). However, molecular mechanisms by which activated glia could kill neurons are poorly understood. The present study underlines the importance of neutral sphingomyelinase (N-SMase) in mediating the damaging effect of fibrillar amyloid-β 1-42 (Aβ1-42) peptide-activated astroglia on neurons. In trans-well experiments, soluble products released from activated prima...

  7. Analyzing Gene Expression from Whole Tissue vs. Different Cell Types Reveals the Central Role of Neurons in Predicting Severity of Alzheimer’s Disease

    Shiri Stempler; Eytan Ruppin

    2012-01-01

    Alterations in gene expression resulting from Alzheimer's disease have received considerable attention in recent years. Although expression has been investigated separately in whole brain tissue, in astrocytes and in neurons, a rigorous comparative study quantifying the relative utility of these sources in predicting the progression of Alzheimer's disease has been lacking. Here we analyze gene expression from neurons, astrocytes and whole tissues across different brain regions, and compare th...

  8. Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons

    Westlund Karin N

    2009-06-01

    Full Text Available Abstract Background Transient receptor potential vanilloid subtype 1 (TRPV1 is activated by low pH/protons and is well known to be involved in hyperalgesia during inflammation. Tumor necrosis factor α (TNF-α, a proinflammatory cytokine, is involved in nociceptive responses causing hyperalgesia through TNF receptor type 1 (TNFR1 activation. Reactive oxygen species (ROS production is also prominently increased in inflamed tissue. The present study investigated TNFR1 receptors in primary cultured mouse dorsal root ganglion (DRG neurons after TRPV1 activation and the involvement of ROS. C57BL/6 mice, both TRPV1 knockout and wild type, were used for immunofluorescent and live cell imaging. The L4 and L5 DRGs were dissected bilaterally and cultured overnight. TRPV1 was stimulated with capsaicin or its potent analog, resiniferatoxin. ROS production was measured with live cell imaging and TNFR1 was detected with immunofluorescence in DRG primary cultures. The TRPV1 knockout mice, TRPV1 antagonist, capsazepine, and ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN, were employed to explore the functional relationship among TRPV1, ROS and TNFR1 in these studies. Results The results demonstrate that TRPV1 activation increases TNFR1 receptors and ROS generation in primary cultures of mouse DRG neurons. Activated increases in TNFR1 receptors and ROS production are absent in TRPV1 deficient mice. The PBN blocks increases in TNFR1 and ROS production induced by capsaicin/resiniferatoxin. Conclusion TRPV1 activation increases TNFR1 in cultured mouse DRG neurons through a ROS signaling pathway, a novel sensitization mechanism in DRG neurons.

  9. Classification of Neuronal Subtypes in the Striatum and the Effect of Neuronal Heterogeneity on the Activity Dynamics

    Bekkouche, Bo

    2016-01-01

    Clustering of single-cell RNA sequencing data is often used to show what states and subtypes cells have. Using this technique, striatal cells were clustered into subtypes using different clustering algorithms. Previously known subtypes were confirmed and new subtypes were found. One of them is a third medium spiny neuron subtype. Using the observed heterogeneity, as a second task, this project questions whether or not differences in individual neurons have an impact on the network dynamics. B...

  10. Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation.

    Holsheimer, Jan

    2002-01-01

    The purpose of this paper is to discuss which nerve fibers in the various quadrants of the spinal cord are immediately activated under normal conditions of spinal cord stimulation, ie, at voltages within the therapeutic range. The conclusions are based on both empirical and computer modeling data. The recruitment of dorsal column (DC) fibers is most likely restricted to Aβ fibers with a diameter ≥ 10.7 μm in a 0.20-0.25 mm layer under the pia mater and fibers of 9.4-10.7 μm in an even smaller outer layer when a conventional SCS lead is used. In a 0.25-mm outer layer of the T11 segment the number of Aβ fibers ≥ 10.7 μm, as estimated in a recent morphometric study, is about 56 in each DC. Because a DC at T11 innervates 12 dermatomes, a maximum of 4-5 fibers (≥ 10.7 μm) may be recruited in each dermatome near the discomfort threshold. The dermatome activated just below the discomfort threshold is likely to be stimulated by just a single fiber, suggesting that paresthesia and pain relief may be effected in a dermatome by the stimulation of a single large Aβ fiber. The depth of stimulation in the DCs, and thereby the number of recruited Aβ fibers, may be increased 2-3 fold when stimulation is applied by an optimized electrode configuration (a narrow bi/tripole or a transverse tripole). Assuming that the largest Aβ fibers in a dorsal root have a diameter of 15 μm, the smallest ones recruited at discomfort threshold would be 12 μm. The latter are presumably of proprioceptive origin and responsible for segmental reflexes and uncomfortable sensations. Furthermore, it is shown to be unlikely that, apart from dorsal roots and a thin outer layer of the DCs, any other spinal structures are recruited when stimulation is applied in the dorsal epidural space. Finally, anodal excitation and anodal propagation block are unlikely to occur with SCS. PMID:22151778

  11. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    Mei-Hong Qiu; Chen, Michael C.; Zhi-Li Huang

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave EEG but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG...

  12. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    Qiu, Mei-Hong; Chen, Michael C.; Huang, Zhi-Li; Lu, Jun

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression i...

  13. Connectivity, excitability and activity patterns in neuronal networks

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFPi,j) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFPi,j with the autocorrelation of i (i.e. CFPi,i), to obtain the single pulse response (SPRi,j)—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression. (papers)

  14. Modeling the Activity of Single Genes

    Mjolsness, Eric; Gibson, Michael

    1999-01-01

    the key questions in gene regulation are: What genes are expressed in a certain cell at a certain time? How does gene expression differ from cell to cell in a multicellular organism? Which proteins act as transcription factors, i.e., are important in regulating gene expression? From questions like these, we hope to understand which genes are important for various macroscopic processes. Nearly all of the cells of a multicellular organism contain the same DNA. Yet this same genetic information yields a large number of different cell types. The fundamental difference between a neuron and a liver cell, for example, is which genes are expressed. Thus understanding gene regulation is an important step in understanding development. Furthermore, understanding the usual genes that are expressed in cells may give important clues about various diseases. Some diseases, such as sickle cell anemia and cystic fibrosis, are caused by defects in single, non-regulatory genes; others, such as certain cancers, are caused when the cellular control circuitry malfunctions - an understanding of these diseases will involve pathways of multiple interacting gene products. There are numerous challenges in the area of understanding and modeling gene regulation. First and foremost, biologists would like to develop a deeper understanding of the processes involved, including which genes and families of genes are important, how they interact, etc. From a computation point of view, there has been embarrassingly little work done. In this chapter there are many areas in which we can phrase meaningful, non-trivial computational questions, but questions that have not been addressed. Some of these are purely computational (what is a good algorithm for dealing with a model of type X) and others are more mathematical (given a system with certain characteristics, what sort of model can one use? How does one find biochemical parameters from system-level behavior using as few experiments as possible?). In

  15. Inhibiting spinal neuron-astrocytic activation correlates with synergistic analgesia of dexmedetomidine and ropivacaine.

    Huang-Hui Wu

    Full Text Available BACKGROUND: This study aims to identify that intrathecal (i.t. injection of dexmedetomidine (Dex and ropivacaine (Ropi induces synergistic analgesia on chronic inflammatory pain and is accompanied with corresponding "neuron-astrocytic" alterations. METHODS: Male, adult Sprague-Dawley rats were randomly divided into sham, control and i.t. medication groups. The analgesia profiles of i.t. Dex, Ropi, and their combination detected by Hargreaves heat test were investigated on the subcutaneous (s.c. injection of complete Freund adjuvant (CFA induced chronic pain in rat and their synergistic analgesia was confirmed by using isobolographic analysis. During consecutive daily administration, pain behavior was daily recorded, and immunohistochemical staining was applied to investigate the number of Fos-immunoreactive (Fos-ir neurons on hour 2 and day 1, 3 and 7, and the expression of glial fibrillary acidic protein (GFAP within the spinal dorsal horn (SDH on day 1, 3, 5 and 7 after s.c. injection of CFA, respectively, and then Western blot to examine spinal GFAP and β-actin levels on day 3 and 7. RESULTS: i.t. Dex or Ropi displayed a short-term analgesia in a dose-dependent manner, and consecutive daily administrations of their combination showed synergistic analgesia and remarkably down-regulated neuronal and astrocytic activations indicated by decreases in the number of Fos-ir neurons and the GFAP expression within the SDH, respectively. CONCLUSION: i.t. co-delivery of Dex and Ropi shows synergistic analgesia on the chronic inflammatory pain, in which spinal "neuron-astrocytic activation" mechanism may play an important role.

  16. Echovirus 30 induced neuronal cell death through TRIO-RhoA signaling activation.

    June-Woo Lee

    Full Text Available BACKGROUND: Echovirus 30 (Echo30 is one of the most frequently identified human enteroviruses (EVs causing aseptic meningitis and encephalitis. However the mechanism underlying the pathogenesis of Echo30 infection with significant clinical outcomes is not completely understood. The aim of this investigation is to illustrate molecular pathologic alteration in neuronal cells induced by Echo30 infection using clinical isolate from young patient with neurologic involvement. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the neuronal cellular response to Echo30 infection, we performed a proteomic analysis based on two-dimensional gel electrophoresis (2-DE and MALDI-TOF/TOF Mass Spectrophotometric (MS analysis. We identified significant alteration of several protein expression levels in Echo30-infected SK-N-SH cells. Among these proteins, we focused on an outstanding up-regulation of Triple functional domain (TRIO in Echo30-infected SK-N-SH cells. Generally, TRIO acts as a key component in the regulation of axon guidance and cell migration. In this study, we determined that TRIO plays a role in the novel pathways in Echo30 induced neuronal cell death. CONCLUSIONS/SIGNIFICANCE: Our finding shows that TRIO plays a critical role in neuronal cell death by Echo30 infection. Echo30 infection activates TRIO-guanine nucleotide exchange factor (GEF domains (GEFD2 and RhoA signaling in turn. These results suggest that Echo30 infection induced neuronal cell death by activation of the TRIO-RhoA signaling. We expect the regulation of TRIO-RhoA signaling may represent a new therapeutic approach in treating aseptic meningitis and encephalitis induced by Echo30.

  17. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo

    Ward, Patricia J.; Jones, Laura N.; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C.; English, Arthur W.

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  18. Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks

    Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž

    2016-02-01

    We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.

  19. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  20. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  1. Neuronal activity (c-Fos delineating interactions of the cerebral cortex and basal ganglia

    Mei-Hong Qiu

    2014-03-01

    Full Text Available The cerebral cortex and basal ganglia (BG form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave EEG but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine (NMDA receptor antagonist and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist. Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN input to internal globus pallidus (GPi and substantia nigra pars reticulata (SNr, while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe, and STN but increased activity of the GPi, SNr and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders.

  2. Fractal analysis reveals subclasses of neurons and suggests an explanation of their spontaneous activity.

    Favela, Luis H; Coey, Charles A; Griff, Edwin R; Richardson, Michael J

    2016-07-28

    The present work used fractal time series analysis (detrended fluctuation analysis; DFA) to examine the spontaneous activity of single neurons in an anesthetized animal model, specifically, the mitral cells in the rat main olfactory bulb. DFA bolstered previous research in suggesting two subclasses of mitral cells. Although there was no difference in the fractal scaling of the interspike interval series at the shorter timescales, there was a significant difference at longer timescales. Neurons in Group B exhibited fractal, power-law scaled interspike intervals, whereas neurons in Group A exhibited random variation. These results raise questions about the role of these different cells within the olfactory bulb and potential explanations of their dynamics. Specifically, self-organized criticality has been proposed as an explanation of fractal scaling in many natural systems, including neural systems. However, this theory is based on certain assumptions that do not clearly hold in the case of spontaneous neural activity, which likely reflects intrinsic cell dynamics rather than activity driven by external stimulation. Moreover, it is unclear how self-organized criticality might account for the random dynamics observed in Group A, and how these random dynamics might serve some functional role when embedded in the typical activity of the olfactory bulb. These theoretical considerations provide direction for additional experimental work. PMID:27189719

  3. Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A.

    Chung-Wei Yang

    Full Text Available Bisphenol A (BPA is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA.A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM.Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2 and paired box 6 (Pax6, had preferentially down-regulated expression (Bonferroni correction p-value <10(-4 and log2-transformed fold change ≤-1.2 in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh, vascular endothelial growth factor A (VEGFA and Notch signaling.These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development.

  4. Morphine regulates Argonaute 2 and TH expression and activity but not miR-133b in midbrain dopaminergic neurons.

    García-Pérez, Daniel; López-Bellido, Roger; Hidalgo, Juana M; Rodríguez, Raquel E; Laorden, Maria Luisa; Núñez, Cristina; Milanés, Maria Victoria

    2015-01-01

    Epigenetic changes such as microRNAs (miRs)/Ago2-induced gene silencing represent complex molecular signature that regulate cellular plasticity. Recent studies showed involvement of miRs and Ago2 in drug addiction. In this study, we show that changes in gene expression induced by morphine and morphine withdrawal occur with concomitant epigenetic modifications in the mesolimbic dopaminergic (DA) pathway [ventral tegmental area (VTA)/nucleus accumbens (NAc) shell], which is critically involved in drug-induced dependence. We found that acute or chronic morphine administration as well as morphine withdrawal did not modify miR-133b messenger RNA (mRNA) expression in the VTA, whereas Ago2 protein levels were decreased and increased in morphine-dependent rats and after morphine withdrawal, respectively. These changes were paralleled with enhanced and decreased NAc tyrosine hydroxylase (TH) protein (an early DA marker) in morphine-dependent rats and after withdrawal, respectively. We also observed changes in TH mRNA expression in the VTA that could be related to Ago2-induced translational repression of TH mRNA during morphine withdrawal. However, the VTA number of TH-positive neurons suffered no alterations after the different treatment. Acute morphine administration produced a marked increase in TH activity and DA turnover in the NAc (shell). In contrast, precipitated morphine withdrawal decreased TH activation and did not change DA turnover. These findings provide new information into the possible correlation between Ago2/miRs complex regulation and DA neurons plasticity during opiate addiction. PMID:23927484

  5. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks<