WorldWideScience

Sample records for activates dna polymerase

  1. Characterization of a stable, major DNA polymerase alpha species devoid of DNA primase activity.

    Kaiserman, H B; Benbow, R. M.

    1987-01-01

    We have purified from Xenopus laevis ovaries a major DNA polymerase alpha species that lacked DNA primase activity. This primase-devoid DNA polymerase alpha species exhibited the same sensitivity as the DNA polymerase DNA primase alpha to BuAdATP and BuPdGTP, nucleotide analogs capable of distinguishing between DNA polymerase delta and DNA polymerase DNA primase alpha. The primase-devoid DNA polymerase alpha species also lacked significant nuclease activity indicative of the alpha-like (rathe...

  2. RNA aptamers selected against DNA polymerase β inhibit the polymerase activities of DNA polymerases β and κ

    Gening, Leonid V.; Klincheva, Svetlana A.; Reshetnjak, Anastasia; Grollman, Arthur P; Miller, Holly

    2006-01-01

    DNA polymerase β (polβ), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polβ from a variable pool of 8 × 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened for the ability to inhibit polβ activity. All of the inhibitory aptamers analyzed have a predicted tri-lobed structure. Gel mobility shift a...

  3. Effect of gamma-irradiated DNA on DNA polymerase activity: a possible mechanism for cell killing

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. The mechanism for DNA polymerase inhibition was investigated. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme. The inhibition of DNA polymerase occurs prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation. As in vitro assay for DNA polymerase α and β in irradiated HeLa cells was developed. The activities of both polymerases decreased as the dose received by the cells increased. Both DNA polymerases were found to recover by 2 hr postirradiation. Since DNA repair capability is intimately connected with cell survival, the observed diminution in DNA polymerase activity, following low doses of radiation, could be highly significant

  4. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.

    Ong, Jennifer L; Loakes, David; Jaroslawski, Szymon; Too, Kathleen; Holliger, Philipp

    2006-08-18

    DNA polymerases enable key technologies in modern biology but for many applications, native polymerases are limited by their stringent substrate recognition. Here we describe short-patch compartmentalized self-replication (spCSR), a novel strategy to expand the substrate spectrum of polymerases in a targeted way. spCSR is based on the previously described CSR, but unlike CSR only a short region (a "patch") of the gene under investigation is diversified and replicated. This allows the selection of polymerases under conditions where catalytic activity and processivity are compromised to the extent that full self-replication is inefficient. We targeted two specific motifs involved in substrate recognition in the active site of DNA polymerase I from Thermus aquaticus (Taq) and selected for incorporation of both ribonucleotide- (NTP) and deoxyribonucleotide-triphosphates (dNTPs) using spCSR. This allowed the isolation of multiple variants of Taq with apparent dual substrate specificity. They were able to synthesize RNA, while still retaining essentially wild-type (wt) DNA polymerase activity as judged by PCR. One such mutant (AA40: E602V, A608V, I614M, E615G) was able to incorporate both NTPs and dNTPs with the same catalytic efficiency as the wt enzyme incorporates dNTPs. AA40 allowed the generation of mixed RNA-DNA amplification products in PCR demonstrating DNA polymerase, RNA polymerase as well as reverse transcriptase activity within the same polypeptide. Furthermore, AA40 displayed an expanded substrate spectrum towards other 2'-substituted nucleotides and was able to synthesize nucleic acid polymers in which each base bore a different 2'-substituent. Our results suggest that spCSR will be a powerful strategy for the generation of polymerases with altered substrate specificity for applications in nano- and biotechnology and in the enzymatic synthesis of antisense and RNAi probes. PMID:16859707

  5. φ29 DNA polymerase

    Blanco, Luis; Bernad, Antonio; Salas, Margarita

    1996-01-01

    An improved method for determining the nucleotide base sequence of a DNA molecule employs a φ-29 type DNA polymerase modified to have reduced or no exonuclease activity. The method includes annealing the DNA molecule with a primer molecule able to hybridize to the DNA molecule; incubating the annealed mixture in a vessel containing four different deoxynucleoside triphosphates, a DNA polymerase, and one or more DNA synthesis terminating agents which terminate DNA synthesis at a specific nucleo...

  6. Differential effects of dimethylsulfoxide on the activities of human DNA polymerases alpha and delta.

    Lee, M Y; Toomey, N L

    1986-01-01

    The effects of dimethylsulfoxide on the activities of purified human placental DNA polymerase alpha and DNA polymerase delta were examined. DNA polymerase alpha was inhibited by dimethylsulfoxide, whereas DNA polymerase delta was significantly activated, by as much as 6-fold. Kinetic data show that the effect of dimethylsulfoxide on DNA polymerase delta activity was due to a reduction in the apparent Km for its substrate, dTTP. This novel finding of the differential effects of dimethylsulfoxi...

  7. Effect of γ-irradiated DNA on the activity of DNA polymerase

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. Irradiated poly(dA-dT) was more effective in reducing polymerase activity than calf thymus DNA. Thus the polymerase-inhibition site(s) appears to be associated with base damage, specifically adenine or thymine. Using a free-radical scavenger, OH radicals were found to be involved in producing the damage sites. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme and not for other proteins present in the assay. The inhibition of DNA polymerase occurred prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation

  8. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  9. DNA polymerase activity and radiation-induced unscheduled synthesis of DNA at the nuclear matrix

    It is shown that both DNA polymerase α and β are involved in DNA synthesis at the nuclear matrix. DNA polymerase β is more firmly attached to the nuclear matrix of normal than of regenerating liver cells. In the nuclear matrix of UV- and gamma-irradiated cells of Zajdela hepatoma a higher level of hydroxyurea-resistant DNA synthesis has been observed in the initial 1.5-5 min of postradiation incubation if compared to that of total nuclear DNA. However 1-β-D-arabinofuranosylcytosine-resistant radiation-induced synthesis of DNA is similar in both the nuclear matrix and the whole nuclei of these cells. Poly(ADP-ribose)synthetase activity is shown to be associated with the nuclear matrix. Inhibition of this activity results in increase of the hydroxyurea-resistant synthesis of DNA at nuclear matrix. (author)

  10. Human placental DNA polymerase δ: identification of a 170-kilodalton polypeptide by activity staining and immunoblotting

    DNA polymerase δ was isolated from human placenta and identified as such on the basis of its association with a 3'- to 5'-exonuclease activity. The association of the polymerase and exonuclease activities was maintained throughout purification and attempted separations by physical or electrophoretic methods. Moreover, ratios of the two activities remained constant during the purification steps, and both activities were inhibited by aphidicolin, oxidized glutathione, and n-ethylmaleimide. The purified enzyme had an estimated molecular weight of 172,000, on the basis of a Stokes radius of 53.6 A and a sedimentation coefficient of 7.8 S. On sodium dodecyl sulfate (SDS) gel electrophoresis, polymerase δ preparations contained a band of ca. 170 kilodaltons (kDa) as well as several smaller polypeptides. The 170-kDa polypeptide was identified as the largest polypeptides component in the preparation possessing DNA polymerase activity by an activity staining procedure following gel electrophoresis in the presence of SDS. Western blotting of DNA polymerase δ with polyclonal antisera also revealed a single 170-kDa immunoreactive polypeptide. Monoclonal antibodies to KB cell polymerase α inhibited placental polymerase α but did not inhibit DNA polymerase δ, while the murine polyclonal antisera to polymerase δ inhibited δ but not α. These findings establish the existence of DNA polymerase δ in a human tissue and support the view that both its polymerase and its exonuclease activities may be associated with a single protein

  11. Sulfolobus Replication Factor C stimulates the activity of DNA Polymerase B1

    Xing, Xuanxuan; Zhang, Likui; Guo, Li;

    2014-01-01

    Replication factor C (RFC) is known to function in loading proliferating cell nuclear antigen (PCNA) onto primed DNA, allowing PCNA to tether DNA polymerase for highly processive DNA synthesis in eukaryotic and archaeal replication. In this report, we show that an RFC complex from the...... with the ability of RFC to facilitate DNA binding by PolB1 through protein-protein interaction. These results suggest that Sulfolobus RFC may play a role in recruiting DNA polymerase for efficient primer extension, in addition to clamp loading, during DNA replication....... hyperthermophilic archaea of the genus Sulfolobus physically interacts with DNA polymerase B1 (PolB1) and enhances both the polymerase and 3'-5' exonuclease activities of PolB1 in an ATP-independent manner. Stimulation of the PolB1 activity by RFC is independent of the ability of RFC to bind DNA but is consistent...

  12. Analysis of DNA polymerase activity in Petunia protoplasts treated with clastogenic agents

    Clastogenic agents, i.e. agents that can induce chromosome or DNA breakage, have been shown to enhance the role of direct gene transfer to protoplasts. The effect was analysed at the enzymatic level using protoplast homogenates as well as intact protoplasts. For that purpose existing procedures were modified to enable measurement of DNA polymerase in vivo. In the system used, external DNA was able to enter the cells without the addition of membrane-permeabilizing compounds. When comparing total DNA polymerase activity of protoplasts irradiated with X-rays or UV-light with that of untreated cells we did not observe significant differences. Incubation of protoplasts with high doses of bleomycin affected total DNA polymerase activity negatively. but dideoxythymidine triphosphate-sensitive activity was not influenced. We conclude that the DNA strand-breaks induced by low doses of X-rays. UV-light or bleomycin do not increase the total or the repair-DNA polymerase activity and. therefore. that the increase in the transformation rates after DNA strand-breaking is not preceded by enhanced DNA polymerase activity. (author)

  13. Meiosis in Coprinus: characterization and activities of two forms of DNA polymerase during meiotic stages.

    K. Sakaguchi; Lu, B C

    1982-01-01

    Two forms of DNA polymerase have been studied in the basidiomycete Coprinus. DNA polymerase from basidiocarp tissues at zygotene-pachytene stage has been purified 3,500-fold and defined as DNA polymerase b by virtue of its insensitivity to N-ethylmaleimide and by its low molecular weight (76,000). This enzyme has optimal activity at pH 7.0 to 7.5, at 200 mM KCl, and at 25 degrees C incubation temperature. It can use polycytidylic acid-oligo(dG)12-18 as template primer in addition to homodeoxy...

  14. Pseudomonas aeruginosa phage PaP1 DNA polymerase is an A-family DNA polymerase demonstrating ssDNA and dsDNA 3'-5' exonuclease activity.

    Liu, Binyan; Gu, Shiling; Liang, Nengsong; Xiong, Mei; Xue, Qizhen; Lu, Shuguang; Hu, Fuquan; Zhang, Huidong

    2016-08-01

    Most phages contain DNA polymerases, which are essential for DNA replication and propagation in infected host bacteria. However, our knowledge on phage-encoded DNA polymerases remains limited. This study investigated the function of a novel DNA polymerase of PaP1, which is the lytic phage of Pseudomonas aeruginosa. PaP1 encodes its sole DNA polymerase called Gp90 that was predicted as an A-family DNA polymerase with polymerase and 3'-5' exonuclease activities. The sequence of Gp90 is homologous but not identical to that of other A-family DNA polymerases, such as T7 DNA polymerases (Pol) and DNA Pol I. The purified Gp90 demonstrated a polymerase activity. The processivity of Gp90 in DNA replication and its efficiency in single-dNTP incorporation are similar to those of T7 Pol with processive thioredoxin (T7 Pol/trx). Gp90 can degrade ssDNA and dsDNA in 3'-5' direction at a similar rate, which is considerably lower than that of T7 Pol/trx. The optimized conditions for polymerization were a temperature of 37 °C and a buffer consisting of 40 mM Tris-HCl (pH 8.0), 30 mM MgCl2, and 200 mM NaCl. These studies on DNA polymerase encoded by PaP1 help advance our knowledge on phage-encoded DNA polymerases and elucidate PaP1 propagation in infected P. aeruginosa. PMID:27052734

  15. DNA polymerase beta reveals enhanced activity and processivity in reverse micelles.

    Anarbaev, Rashid O; Rogozina, Anastasia L; Lavrik, Olga I

    2009-04-01

    Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase beta in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity. PMID:19138815

  16. Physical mapping of drug resistance mutations defines an active center of the herpes simplex virus DNA polymerase enzyme.

    Knopf, K W; Kaufman, E R; Crumpacker, C

    1981-01-01

    The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purifie...

  17. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research. PMID:26894757

  18. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  19. Study of the activity of DNA polymerases β and λ using 5-formyluridine containing DNA substrates

    Lavrik O. I.

    2012-06-01

    Full Text Available Aim. To investigate the TLS-activity of human DNA polymerases β and λ (pols β and λ using 5-formyluridine (5-foU containing DNA duplexes which are imitating the intermediates during replication of the leading DNA strand, and to study the influence of replication factors hRPA and hPCNA on this activity. Methods. The EMSA and the methods of enzyme’s kinetics were used. Results. The capability of pols β and λ to catalyze DNA synthesis across 5-foU was investigated and the kinetic characteristics of this process in the presence and in the absence of protein factors hRPA and hPCNA were evaluated. Conclusions. It was shown that: (i both proteins are able to catalyze TLS on used DNA substrates regardless of the reaction conditions, however, pol λ was more accurate enzyme; (ii hRPA can stimulate the efficacy of the nonmutagenic TLS catalyzed by pol at the nucleotide incorporation directly opposite of 5-foU, at the same time it doesn’t influence the incorporation efficacy if the damage displaced into the duplex; (iii hPCNA doesn’t influence the efficacy of TLS catalyzed by both enzymes.

  20. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase {beta} in long patch base excision repair

    Sukhanova, Maria; Khodyreva, Svetlana [Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk (Russian Federation); Lavrik, Olga, E-mail: lavrik@niboch.nsc.ru [Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk (Russian Federation)

    2010-03-01

    Poly(ADP-ribose)polymerase 1 (PARP1), functioning as DNA nick-sensor, interacts with base excision repair (BER) DNA intermediates containing single-strand breaks. When bound to DNA breaks, PARP1 catalyzes synthesis of poly(ADP-ribose) covalently attached to itself and some nuclear proteins. Autopoly(ADP-ribosyl)ation of PARP1 facilitates its dissociation from DNA breaks and is considered as a factor regulating DNA repair. In the study, using system reconstituted from purified BER proteins, bovine testis nuclear extract and model BER DNA intermediates, we examined the influence of PARP1 and its autopoly(ADP-ribosyl)ation on DNA polymerase {beta} (Pol {beta})-mediated long patch (LP) BER DNA synthesis that is accomplished through a cooperation between Pol {beta} and apurinic/apyrimidinic endonuclease1 (APE1) or flap endonuclease 1 (FEN1) and gap-filling activity of Pol {beta}. PARP1 upon interaction with nicked LP BER DNA intermediated, formed after gap-filling, was shown to suppress the subsequent steps in LP pathway. PARP1 interferes with APE1-dependent stimulation of DNA synthesis by Pol {beta} via strand-displacement mechanism. PARP1 also represses Pol {beta}/FEN1-mediated LP BER DNA synthesis via a 'gap translation' mechanism inhibiting FEN1 activity on the nicked DNA intermediate. Poly(ADP-ribosyl)ation of PARP1 abolishes its inhibitory influence on LP BER DNA synthesis catalyzed by Pol {beta} both via APE1-mediated strand-displacement and FEN1-mediated 'gap translation' mechanism. Thus PARP1 may act as a negative regulator of Pol {beta} activity in LP BER pathway and poly(ADP-ribosyl)ation of PARP1 seems to play a critical role in enablement of Pol {beta}-mediated DNA synthesis in this process. In contrast, interaction of PARP1 with one nucleotide gapped DNA mimicking the intermediate of short patch (SP) BER slightly inhibits the gap-filling activity of Pol {beta} and the overall efficiency of SP BER is practically unaffected by PARP1. Thus

  1. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase β in long patch base excision repair

    Poly(ADP-ribose)polymerase 1 (PARP1), functioning as DNA nick-sensor, interacts with base excision repair (BER) DNA intermediates containing single-strand breaks. When bound to DNA breaks, PARP1 catalyzes synthesis of poly(ADP-ribose) covalently attached to itself and some nuclear proteins. Autopoly(ADP-ribosyl)ation of PARP1 facilitates its dissociation from DNA breaks and is considered as a factor regulating DNA repair. In the study, using system reconstituted from purified BER proteins, bovine testis nuclear extract and model BER DNA intermediates, we examined the influence of PARP1 and its autopoly(ADP-ribosyl)ation on DNA polymerase β (Pol β)-mediated long patch (LP) BER DNA synthesis that is accomplished through a cooperation between Pol β and apurinic/apyrimidinic endonuclease1 (APE1) or flap endonuclease 1 (FEN1) and gap-filling activity of Pol β. PARP1 upon interaction with nicked LP BER DNA intermediated, formed after gap-filling, was shown to suppress the subsequent steps in LP pathway. PARP1 interferes with APE1-dependent stimulation of DNA synthesis by Pol β via strand-displacement mechanism. PARP1 also represses Pol β/FEN1-mediated LP BER DNA synthesis via a 'gap translation' mechanism inhibiting FEN1 activity on the nicked DNA intermediate. Poly(ADP-ribosyl)ation of PARP1 abolishes its inhibitory influence on LP BER DNA synthesis catalyzed by Pol β both via APE1-mediated strand-displacement and FEN1-mediated 'gap translation' mechanism. Thus PARP1 may act as a negative regulator of Pol β activity in LP BER pathway and poly(ADP-ribosyl)ation of PARP1 seems to play a critical role in enablement of Pol β-mediated DNA synthesis in this process. In contrast, interaction of PARP1 with one nucleotide gapped DNA mimicking the intermediate of short patch (SP) BER slightly inhibits the gap-filling activity of Pol β and the overall efficiency of SP BER is practically unaffected by PARP1. Thus, PARP1 differentially influences DNA synthesis in SP- and

  2. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  3. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments.

    Jorritsma, J B; Burgman, P; Kampinga, H H; Konings, A W

    1986-03-01

    Possible relations between hyperthermic inactivation of alpha and beta DNA polymerase activity and hyperthermic cell killing or hyperthermic radiosensitization were investigated. Ehrlich Ascites Tumor (EAT) cells and HeLa S3 cells were treated with fractionated doses of hyperthermia. The heating schedules were chosen such that the initial heat treatment resulted in either thermotolerance or thermosensitization (step-down heating) for the second heat treatment. The results show that for DNA polymerase activity and heat radiosensitization (cell survival) no thermotolerance or thermosensitization is observed. Thus hyperthermic cell killing and DNA polymerase activity are not correlated. The correlation of hyperthermic radiosensitization and DNA polymerase activity was substantially less than observed in previous experiments with normotolerant and thermotolerant HeLa S3 cells. We conclude that alpha and beta DNA polymerase inactivation is not always the critical cellular process responsible for hyperthermic cell killing or hyperthermic radiosensitization. Other possible cellular systems that might determine these processes are discussed. PMID:3754338

  4. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments

    Jorritsma, J.B.; Burgman, P.; Kampinga, H.H.; Konings, A.W.

    1986-03-01

    Possible relations between hyperthermic inactivation of alpha and beta DNA polymerase activity and hyperthermic cell killing or hyperthermic radiosensitization were investigated. Ehrlich Ascites Tumor (EAT) cells and HeLa S3 cells were treated with fractionated doses of hyperthermia. The heating schedules were chosen such that the initial heat treatment resulted in either thermotolerance or thermosensitization (step-down heating) for the second heat treatment. The results show that for DNA polymerase activity and heat radiosensitization (cell survival) no thermotolerance or thermosensitization is observed. Thus hyperthermic cell killing and DNA polymerase activity are not correlated. The correlation of hyperthermic radiosensitization and DNA polymerase activity was substantially less than observed in previous experiments with normotolerant and thermotolerant HeLa S3 cells. We conclude that alpha and beta DNA polymerase inactivation is not always the critical cellular process responsible for hyperthermic cell killing or hyperthermic radiosensitization. Other possible cellular systems that might determine these processes are discussed.

  5. DNA-dependent DNA polymerase from yeast mitochondria. Dependence of enzyme activity on conditions of cell growth, and properties of the highly purified polymerase.

    Wintersberger, U; Blutsch, H

    1976-09-01

    The activity of DNA polymerase was determined in gradient-purified mitochondria from yeast cells grown under a variety of conditions. The specific enzyme activity was found to be dependent on the degree of aeration of the cells, and on the carbon source used for the medium. It was sensitive to glucose repression, and was enhanced about two-fold by the growth of yeast cells in the presence of ethidium bromide. Mitochondria DNA polymerase was highly purified and several properties were determined. Sucrose density gradient centrifugation, and dodecylsulfate-polyacylamide gel electrophoresis revealed the following structure: a monomer of molecular weight around 60 000 aggregated under relatively high salt concentration (0.2 M phosphate buffer) to a dimer of about 120 000 which under low salt concentration (0.2 M Tris-HCl buffer) formed higher aggregates. For optimal activity an Mg2+ ion concentration of 50 mM was found necessary, Mn ions did not promote activity at any concentration tested (0.5--50 mM). Indeed, if added to Mg2+-containing assays, Mn2+ strongly inhibited enzyme activity at low concentrations. This might be an explanation for the inducation of mitochondrial mutants in yeast cells grown in the presence of Mn2+ ions. Mitochondrial DNA polymerase activity was strongly inhibited by low concentrations of the -SH reagent p-chloromercuribenzoate, the nucleotide analogue cytosine arabinoside triphosphate also exerted an inhibitory effect. An about 50% decrease of activity was observed in the presence of 1 mM o-phenanthroline in assay mixture containing DNA at about the Km concentration. The enzyme preferred a gapped template primer, poly(dA) - (dT)10, over nicked DNA and was unable to use a polyribonucleotide template, poly(rA) - (dT)10. In the purest preparations no exonuclease activity could be detected. PMID:786635

  6. Design and characterization of N2-arylaminopurines which selectively inhibit replicative DNA synthesis and replication-specific DNA polymerases: guanine derivatives active on mammalian DNA polymerase alpha and bacterial DNA polymerase III.

    Wright, G E; Baril, E F; Brown, V M; Brown, N C

    1982-01-01

    The 2-amino substituted derivatives of guanine, N2-(p-n-butylphenyl)guanine (BuPG) and N2-(3',4'-trimethylenephenyl) guanine (TMPG), were synthesized and found to selectively inhibit, respectively, HeLa cell DNA polymerase alpha (po1 alpha) and B. subtilis DNA polymerase III (po1 III). Both purines, like their corresponding uracil analogs, BuAu and TMAU (2,9), were specifically competitive with dGTP in their inhibitory action on their target polymerases. BuPG, the pol alpha-specific purine, w...

  7. Computational investigation of locked nucleic acid (LNA) nucleotides in the active sites of DNA polymerases by molecular docking simulations.

    Poongavanam, Vasanthanathan; Madala, Praveen K; Højland, Torben; Veedu, Rakesh N

    2014-01-01

    Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5'-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3'-endo conformation which in fact helps better orienting within the active site. PMID:25036012

  8. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time

    Robinson, Andrew; McDonald, John P.; Caldas, Victor E. A.; Patel, Meghna; Wood, Elizabeth A.; Punter, Christiaan M.; Ghodke, Harshad; Cox, Michael M.; Woodgate, Roger; Goodman, Myron F.; van Oijen, Antoine M.

    2015-01-01

    Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD′2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD′. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD′2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template. PMID:26317348

  9. Regulation of Mutagenic DNA Polymerase V Activation in Space and Time.

    Andrew Robinson

    2015-08-01

    Full Text Available Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A] or constitutively stimulate [recA(E38K] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1 transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2 spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3 the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.

  10. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis.

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J; Xing, Chao; Wang, Richard C; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R; Burstein, Ezra

    2016-05-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  11. Replacing 32 Proline Residues by a Noncanonical Amino Acid Results in a Highly Active DNA Polymerase

    Holzberger, Bastian; Marx, Andreas

    2010-01-01

    Protein engineering may be achieved by rational design, directed evolution-based methods, or computational protein design. Mostly these methods make recourse to the restricted pool of the 20 natural amino acids. With the ability to introduce different new kinds of functionalities into proteins, the use of noncanonical amino acids became a promising new method in protein engineering. Here, we report on the generation of a multifluorinated DNA polymerase. DNA polymerases are highly dynamic enzy...

  12. Engineered DNA Polymerases in Biotechnology

    Kranaster, Ramon; Marx, Andreas

    2010-01-01

    DNA polymerases are the enzymes that catalyse all DNA synthesis in Nature often with astounding speed and accuracy. Consequently, their features as molecular machines are exploited in a wide range of biotechnological applications. Some features are highlighted in the following. For example, DNA polymerases are useful enzymes to detect genomic alterations that can lead to the development of certain diseases such as cancer or to promote toxic side effects of drugs. Methods for the detection of ...

  13. Fidelity of DNA polymerases in DNA amplification.

    Keohavong, P; Thilly, W G

    1989-01-01

    Denaturing gradient gel electrophoresis (DGGE) was used to separate and isolate the products of DNA amplification by polymerase chain reaction (PCR). The strategy permitted direct enumeration and identification of point mutations created by T4, modified T7, Klenow fragment of polymerase I, and Thermus aquaticus (Taq) DNA polymerases. Incorrectly synthesized sequences were separated from the wild type by DGGE as mutant/wild-type heteroduplexes and the heteroduplex fraction was used to calculat...

  14. DNA polymerase δ and DNA repair: DNA repair synthesis in human fibroblasts requires DNA polymerase δ

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernate of similarly treated HeLa cells. Monoclonal antibody to KB cell DNA polymerase α, while binding to HeLa DNA polymerase α, did not bind to the HeLa DNA polymerase δ. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGT) and 2(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase α, but did not inhibit the DNA polymerase δ. Neither purified DNA polymerase α nor β could promote repair DNA synthesis in the permeabilized cells. Furthermore, if monoclonal antibodies to DNA polymerase α BuPdGTP, or BuAdATP was added to the reconstituted system, there was no significant inhibition

  15. Accuracy of replication in the polymerase chain reaction. Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase

    Diaz, R S; Sabino, E. C.

    1998-01-01

    For certain applications of the polymerase chain reaction (PCR), it may be necessary to consider the accuracy of replication. The breakthrough that made PCR user friendly was the commercialization of Thermus aquaticus (Taq) DNA polymerase, an enzyme that would survive the high temperatures needed for DNA denaturation. The development of enzymes with an inherent 3' to 5' exonuclease proofreading activity, lacking in Taq polymerase, would be an improvement when higher fidelity is needed. We use...

  16. Binding of captan to DNA polymerase I from Escherichia coli and the concomitant effect on 5' → 3' exonuclease activity

    Captan (N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide) was shown to bind to DNA polymerase I from Escherichia coli. The ratio of [14C]captan bound to DNA pol I was 1:1 as measured by filter binding studies and sucrose gradient analysis. Preincubation of enzyme with polynucleotide prevented the binding of captan, but preincubation of enzyme with dGTP did not. Conversely, when the enzyme was preincubated with captan, neither polynucleotide nor dGTP binding was blocked. The modification of the enzyme by captan was described by an irreversible second-order rate process. The interaction of captan with DNA pol I altered each of the three catalytic functions. The 3' → 5' exonuclease and polymerase activities were inhibited, and the 5' → 3' exonuclease activity was enhanced. In order to study the 5' → 3' exonuclease activity more closely, [3H]hpBR322 (DNA-[3H]RNA hybrid) was prepared from pBR322 plasmid DNA and used as a specific substrate for 5' → 3' exonuclease activity. Collectively, the data support the hypothesis that captan acts on DNA pol I by irreversibly binding in the template-primer binding site associated with polymerase and 3' → 5' exonuclease activities. It is also shown that the chemical reaction between DNA pol I and a single captan molecule proceeds through a Michaelis complex. The final, irreversible step results in inhibited polymerase and 3' → 5' exonuclease activities as well as enhanced 5' → 3' exonuclease activity

  17. Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations

    Pavlov Youri I

    2004-05-01

    Full Text Available Abstract Background DNA polymerase ε (Pol ε is essential for S-phase replication, DNA damage repair and checkpoint control in yeast. A pol2-Y831A mutation leading to a tyrosine to alanine change in the Pol ε active site does not cause growth defects and confers a mutator phenotype that is normally subtle but strong in a mismatch repair-deficient strain. Here we investigate the mechanism responsible for the mutator effect. Results Purified four-subunit Y831A Pol ε turns over more deoxynucleoside triphosphates to deoxynucleoside monophosphates than does wild-type Pol ε, suggesting altered coordination between the polymerase and exonuclease active sites. The pol2-Y831A mutation suppresses the mutator effect of the pol2-4 mutation in the exonuclease active site that abolishes proofreading by Pol ε, as measured in haploid strain with the pol2-Y831A,4 double mutation. Analysis of mutation rates in diploid strains reveals that the pol2-Y831A allele is recessive to pol2-4. In addition, the mutation rates of strains with the pol2-4 mutation in combination with active site mutator mutations in Pol δ and Pol α suggest that Pol ε may proofread certain errors made by Pol α and Pol δ during replication in vivo. Conclusions Our data suggest that Y831A replacement in Pol ε reduces replication fidelity and its participation in chromosomal replication, but without eliminating an additional function that is essential for viability. This suggests that other polymerases can substitute for certain functions of polymerase ε.

  18. A uv-sensitive Chinese hamster lung fibroblast cell line (V79/UC) with a possible defect in DNA polymerase activity is deficient in DNA repair

    Studies of repair enzyme activities in a uv-sensitive cell line (V79/UC) derived from Chinese hamster V79 cells have revealed levels of total DNA polymerase that are about 50% of the levels in the parental cell line. There are a number of DNA polymerase inhibitors available which allow us to distinguish between the major forms of DNA polymerase (alpha, beta, gamma, and delta) identified in mammalian cells. Enzyme assays with these inhibitors indicate that the aphidicolin-sensitive DNA polymerase is defective in the V79/UC cell line. This could be either polymerase alpha or delta, or both. The V79/UC cells do not express resistance to aphidicolin in standard toxicity studies. However, when aphidicolin is added postirradiation in survival assays designed to measure the extent of inhibitable repair, V79/UC cells do not respond with the further decrease in survival seen in the parental line. Further evidence of a polymerase-dependent repair defect is evident from alkaline elution data. In this case the V79/UC cells show the appearance of single-strand breaks following uv irradiation in the absence of any added inhibitor. Cells of the V79/M12G parental line, on the other hand, show the appearance of single-strand breaks only when aphidicolin is present

  19. DNA Polymerase-Catalyzed DNA Network Growth

    Keller, Sascha; Wang, Jie; Chandra, Madhaviah; Berger, Rüdiger; Marx, Andreas

    2008-01-01

    The distinct base pairing property of DNA is an advantageous phenomenon that has been exploited in the usage of DNA as scaffold for directed self-organization to form nanometer-sized objects in a desirable fashion. Herein we report the construction of three-dimensional DNA-based networks that can be generated and amplified by the DNA polymerase chain reaction (PCR). The approach is flexible allowing tuning of the meshes of the network by variation of the size of the template. Additionally, fu...

  20. Guanine-rich sequences inhibit proofreading DNA polymerases

    Zhu, Xiao-Jing; Sun, Shuhui; Xie, Binghua; Hu, Xuemei; Zhang, Zunyi; Qiu, Mengsheng; Dai, Zhong-Min

    2016-01-01

    DNA polymerases with proofreading activity are important for accurate amplification of target DNA. Despite numerous efforts have been made to improve the proofreading DNA polymerases, they are more susceptible to be failed in PCR than non-proofreading DNA polymerases. Here we showed that proofreading DNA polymerases can be inhibited by certain primers. Further analysis showed that G-rich sequences such as GGGGG and GGGGHGG can cause PCR failure using proofreading DNA polymerases but not Taq DNA polymerase. The inhibitory effect of these G-rich sequences is caused by G-quadruplex and is dose dependent. G-rich inhibitory sequence-containing primers can be used in PCR at a lower concentration to amplify its target DNA fragment. PMID:27349576

  1. DNA polymerase beta can substitute for DNA polymerase I in the initiation of plasmid DNA replication.

    Sweasy, J B; Chen, M.; Loeb, L A

    1995-01-01

    We previously demonstrated that mammalian DNA polymerase beta can substitute for DNA polymerase I of Escherichia coli in DNA replication and in base excision repair. We have now obtained genetic evidence suggesting that DNA polymerase beta can substitute for E. coli DNA polymerase I in the initiation of replication of a plasmid containing a pMB1 origin of DNA replication. Specifically, we demonstrate that a plasmid with a pMB1 origin of replication can be maintained in an E. coli polA mutant ...

  2. Accuracy of replication in the polymerase chain reaction. Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase

    R.S. Diaz

    1998-10-01

    Full Text Available For certain applications of the polymerase chain reaction (PCR, it may be necessary to consider the accuracy of replication. The breakthrough that made PCR user friendly was the commercialization of Thermus aquaticus (Taq DNA polymerase, an enzyme that would survive the high temperatures needed for DNA denaturation. The development of enzymes with an inherent 3' to 5' exonuclease proofreading activity, lacking in Taq polymerase, would be an improvement when higher fidelity is needed. We used the forward mutation assay to compare the fidelity of Taq polymerase and Thermotoga maritima (ULTMA™ DNA polymerase, an enzyme that does have proofreading activity. We did not find significant differences in the fidelity of either enzyme, even when using optimal buffer conditions, thermal cycling parameters, and number of cycles (0.2% and 0.13% error rates for ULTMA™ and Taq, respectively, after reading about 3,000 bases each. We conclude that for sequencing purposes there is no difference in using a DNA polymerase that contains an inherent 3' to 5' exonuclease activity for DNA amplification. Perhaps the specificity and fidelity of PCR are complex issues influenced by the nature of the target sequence, as well as by each PCR component.

  3. The primary structure of Plasmodium falciparum DNA polymerase delta is similar to drug sensitive delta-like viral DNA polymerases.

    Fox, B A; Bzik, D J

    1991-12-01

    We report the isolation and sequencing of genomic DNA clones that encode the 1094-amino acid catalytic subunit of DNA polymerase delta from the human malaria parasite Plasmodium falciparum. Protein sequence comparison to other DNA polymerases revealed the presence of six highly conserved regions found in alpha-like DNA polymerases from different prokaryotic, viral, and eukaryotic sources. Five additional regions of amino acid sequence similarity that are only conserved in delta and delta-like DNA polymerases, so far, were present in P. falciparum DNA polymerase delta. P. falciparum DNA polymerase delta was highly similar to both Saccharomyces cerevisiae DNA polymerase delta (DNA polymerase III; CDC2) and Epstein-Barr virus DNA polymerase at the amino acid sequence, and the predicted protein secondary structure levels. The gene that encodes DNA polymerase delta resides as a single copy on chromosome 10, and is expressed as a 4.5-kb mRNA during the trophozoite and schizont stages when parasite chromosomal DNA synthesis is active. PMID:1775172

  4. The influence of nucleotide sequence and temperature on the activity of thermostable DNA polymerases.

    Montgomery, Jesse L; Rejali, Nick; Wittwer, Carl T

    2014-05-01

    Extension rates of a thermostable, deletion-mutant polymerase were measured from 50°C to 90°C using a fluorescence activity assay adapted for real-time PCR instruments. Substrates with a common hairpin (6-base loop and a 14-bp stem) were synthesized with different 10-base homopolymer tails. Rates for A, C, G, T, and 7-deaza-G incorporation at 75°C were 81, 150, 214, 46, and 120 seconds(-1). Rates for U were half as fast as T and did not increase with increasing concentration. Hairpin substrates with 25-base tails from 0% to 100% GC content had maximal extension rates near 60% GC and were predicted from the template sequence and mononucleotide incorporation rates to within 30% for most sequences. Addition of dimethyl sulfoxide at 7.5% increased rates to within 1% to 17% of prediction for templates with 40% to 90% GC. When secondary structure was designed into the template region, extension rates decreased. Oligonucleotide probes reduced extension rates by 65% (5'-3' exo-) and 70% (5'-3' exo+). When using a separate primer and a linear template to form a polymerase substrate, rates were dependent on both the primer melting temperature (Tm) and the annealing/extension temperature. Maximum rates were observed from Tm to Tm - 5°C with little extension by Tm + 5°C. Defining the influence of sequence and temperature on polymerase extension will enable more rapid and efficient PCR. PMID:24607271

  5. Effects of Intermediates between Vitamins K2 and K3 on Mammalian DNA Polymerase Inhibition and Anti-Inflammatory Activity

    Takeshi Azuma; Hiromi Yoshida; Masaru Yoshida; Isoko Kuriyama; Kazunori Tsubaki; Yasuyuki Kondo; Kazuyuki Nishio; Kouji Kuramochi; Shin Nishiumi; Masayuki Nishida; Yasuhiro Irino; Yoshiyuki Mizushina; Jun Maeda

    2011-01-01

    Previously, we reported that vitamin K3 (VK3), but not VK1 or VK2 (=MK-4), inhibits the activity of human DNA polymerase γ (pol γ). In this study, we chemically synthesized three intermediate compounds between VK2 and VK3, namely MK-3, MK-2 and MK-1, and investigated the inhibitory effects of all five compounds on the activity of mammalian pols. Among these compounds, MK-2 was the strongest inhibitor of mammalian pols α, κ and λ, which belong to the B, Y and X families of pols, respectively; ...

  6. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase.

    McInerney, Peter; Adams, Paul; Hadi, Masood Z

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. PMID:25197572

  7. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    Peter McInerney

    2014-01-01

    Full Text Available As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.

  8. Immunochemical detection of a primase activity related subunit of DNA polymerase. cap alpha. from human and mouse cells using the monoclonal antibody

    Yagura, T.; Kozu, T.; Seno, T.; Tanaka, S.

    1987-12-01

    A hybrid cell line (HDR-854-Er) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase ..cap alpha.. was established by immunizing mice with DNA replicase complex (DNA polymerase ..cap alpha..-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralized the primase activity as assessed either by the direct primase assay (incorporation of (..cap alpha..-/sup 32/P)AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase ..cap alpha.. activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase ..cap alpha... The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDA) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3 S DNA polymerase ..cap alpha.. which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase ..cap alpha... Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDA polypeptide is associated with DNA polymerase ..cap alpha.., and not with the primase. These results indicate that the 77-kDa polypeptide detected with the E4 antibody is not the primase but is a subunit firmly bound to DNA polymerase ..cap alpha.. catalytic polypeptide and yet influences the activity of the associated DNA primase.

  9. Reconsidering DNA Polymerases at the Replication Fork in Eukaryotes

    Stillman, Bruce

    2015-01-01

    The distribution of DNA polymerase activities at the eukaryotic DNA replication fork was “established,” but recent genetic studies in this issue of Molecular Cell raise questions about which polymerases are copying the leading and lagging strand templates (Johnson et al, 2015).

  10. Effects of Intermediates between Vitamins K2 and K3 on Mammalian DNA Polymerase Inhibition and Anti-Inflammatory Activity

    Takeshi Azuma

    2011-02-01

    Full Text Available Previously, we reported that vitamin K3 (VK3, but not VK1 or VK2 (=MK-4, inhibits the activity of human DNA polymerase γ (pol γ. In this study, we chemically synthesized three intermediate compounds between VK2 and VK3, namely MK-3, MK-2 and MK-1, and investigated the inhibitory effects of all five compounds on the activity of mammalian pols. Among these compounds, MK-2 was the strongest inhibitor of mammalian pols α, κ and λ, which belong to the B, Y and X families of pols, respectively; whereas VK3 was the strongest inhibitor of human pol γ, an A-family pol. MK-2 potently inhibited the activity of all animal species of pol tested, and its inhibitory effect on pol λ activity was the strongest with an IC50 value of 24.6 μM. However, MK-2 did not affect the activity of plant or prokaryotic pols, or that of other DNA metabolic enzymes such as primase of pol α, RNA polymerase, polynucleotide kinase or deoxyribonuclease I. Because we previously found a positive relationship between pol λ inhibition and anti-inflammatory action, we examined whether these compounds could inhibit inflammatory responses. Among the five compounds tested, MK-2 caused the greatest reduction in 12-O-tetradecanoylphorbol-13-acetate (TPA-induced acute inflammation in mouse ear. In addition, in a cell culture system using mouse macrophages, MK-2 displayed the strongest suppression of the production of tumor necrosis factor (TNF-α induced by lipopolysaccharide (LPS. Moreover, MK-2 was found to inhibit the action of nuclear factor (NF-κB. In an in vivo mouse model of LPS-evoked acute inflammation, intraperitoneal injection of MK-2 in mice led to suppression of TNF-α production in serum. In conclusion, this study has identified VK2 and VK3 intermediates, such as MK-2, that are promising anti-inflammatory candidates.

  11. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    Peter McInerney; Paul Adams; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differe...

  12. Evidence implying DNA polymerase beta function in excision repair.

    Siedlecki, J A; Szyszko, J.; Pietrzykowska, I; Zmudzka, B

    1980-01-01

    Comparison was made of the ability of calf thymus DNA polymerases alpha and beta to replicate the following templates: native E. coli CR-34 DNA (T-DNA), calf thymus DNA activated by DNase I (act.DNA), BU-DNA (from E. coli CR-34 cells cultured on BUdR-containing medium) with damages resulting from incomplete excision repair, as well as thermally denatured act.DNA and BU-DNA (s.s.act.DNA and s.s.BU-DNA). 3H-TTP incorporation during extensive replication of act.DNA was similar for both enzymes, ...

  13. DNA replication: polymerase epsilon as a non-catalytic converter of the helicase.

    Zegerman, Philip

    2013-04-01

    In eukaryotes DNA polymerase epsilon (ε) synthesises the leading DNA strand during replication. A new study provides insight into how this polymerase also functions independently of its enzyme activity to assemble and activate the replicative helicase. PMID:23578873

  14. DNA polymerase III requirement for repair of DNA damage caused by methyl methanesulfonate and hydrogen peroxide

    The pcbA1 mutation allows DNA replication dependent on DNA polymerase I at the restrictive temperature in polC(Ts) strains. Cells which carry pcbA1, a functional DNA polymerase I, and a temperature-sensitive DNA polymerase III gene were used to study the role of DNA polymerase III in DNA repair. At the restrictive temperature for DNA polymerase III, these strains were more sensitive to the alkylating agent methyl methanesulfonate (MMS) and hydrogen peroxide than normal cells. The same strains showed no increase in sensitivity to bleomycin, UV light, or psoralen at the restrictive temperature. The sensitivity of these strains to MMS and hydrogen peroxide was not due to the pcbAl allele, and normal sensitivity was restored by the introduction of a chromosomal or cloned DNA polymerase III gene, verifying that the sensitivity was due to loss of DNA polymerase III alpha-subunit activity. A functional DNA polymerase III is required for the reformation of high-molecular-weight DNA after treatment of cells with MMS or hydrogen peroxide, as demonstrated by alkaline sucrose sedimentation results. Thus, it appears that a functional DNA polymerase III is required for the optimal repair of DNA damage by MMS or hydrogen peroxide

  15. Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex

    Mayanagi, Kouta; Kiyonari, Shinichi; Nishida, Hirokazu; Saito, Mihoko; Kohda, Daisuke; Ishino, Yoshizumi; Shirai, Tsuyoshi; Morikawa, Kosuke

    2011-01-01

    DNA replication in archaea and eukaryotes is executed by family B DNA polymerases, which exhibit full activity when complexed with the DNA clamp, proliferating cell nuclear antigen (PCNA). This replication enzyme consists of the polymerase and exonuclease moieties responsible for DNA synthesis and editing (proofreading), respectively. Because of the editing activity, this enzyme ensures the high fidelity of DNA replication. However, it remains unclear how the PCNA-complexed enzyme temporally ...

  16. Structure and function of DNA polymerase μ

    DNA polymerases are enzymes playing the central role in DNA metabolism, including DNA replication, DNA repair and recombination. DNA polymerase μ (pol μ DNA polymerase λ (pol λ) and terminal deoxynucleotidyltransferase (TdT) in X family DNA polymerases function in non-homologous end-joining (NHEJ), which is the predonmiant repair pathway for DNA double-strand breaks (DSBs). NHEJ involves enzymes that capture both ends of the broken DNA strand, bring them together in a synaptic DNA-protein complex, and repair the DSB. Pol μ and pol λ fill in the gaps at the junction to maintain the genomic integrity. TdT synthesizes N region at the junction during V(D)J recombination and promotes diversity of immunoglobulin or T-cell receptor gene. Among these three polymerases, the regulatory mechanisms of pol μ remain rather unclear. We have approached the mechanism of pol μ from both sides of structure and cellular dynamics. Here, we propose some new insights into pol μ and the probable NHEJ model including our findings. (author)

  17. Measurement of microbial DNA polymerase activity enables detection and growth monitoring of microbes from clinical blood cultures.

    Daniel R Zweitzig

    Full Text Available Surveillance of bloodstream infections (BSI is a high priority within the hospital setting. Broth-based blood cultures are the current gold standard for detecting BSI, however they can require lengthy incubation periods prior to detection of positive samples. We set out to demonstrate the feasibility of using enzymatic template generation and amplification (ETGA-mediated measurement of DNA polymerase activity to detect microbes from clinical blood cultures. In addition to routine-collected hospital blood cultures, one parallel aerobic blood culture was collected and immediately refrigerated until being transported for ETGA analysis. After refrigeration holding and transport, parallel-collected cultures were placed into a BACTEC incubator and ETGA time-course analysis was performed. Of the 308 clinical blood cultures received, 22 were BACTEC positive, and thus were initially selected for ETGA time course analysis. The ETGA assay detected microbial growth in all 22 parallel-positive blood cultures in less time than a BACTEC incubator and also yielded genomic DNA for qPCR-based organism identification. In summary, feasibility of detecting microbes from clinical blood culture samples using the ETGA blood culture assay was demonstrated. Additional studies are being considered towards development of clinically beneficial versions of this methodology.

  18. Effect of captan on the exonuclease activities of DNA polymerase I from E. coli and reverse transcriptase from avian myeloblastosis virus

    The DNA pol I polymerase activity is known to be inhibited by captan. When captan was tested for its ability to alter the exonuclease activity of DNA pol I, degradation was enhanced at high substrate concentrations. At low concentrations of DNA, captan was inhibitory. By assaying the two exonuclease activities separately it was shown that the differential effect by captan was the result of a combined inhibition of the 3' → 5' exonuclease and enhancement of the 5' → 3' exonuclease. Studies employing [14C] captan showed that the alterations in DNA pol I activities were a result of the irreversible binding of captan to the enzyme in a ratio of 1:1. The effect of captan on AMV reverse transcriptase RNase H activity was also studied. RNase H activity appeared to be more sensitive to captan than was the polymerase activity. Inhibition of the polymerase activity could be prevented by deoxynucleotide triphosphate and was increased by templateprimer. RNase H activity, which showed a sigmoidal relationship between activity and substrate concentration, decreased in V/sub max/ with no change in the Hill coefficient in the presence of captan

  19. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading

    Gaspard, Pierre

    2016-04-01

    Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  20. Phosphorylation of a high molecular weight DNA polymerase α

    Anti-human DNA polymerase α murine IgG SJK-287-38 neutralized DNA polymerase α activity from rat embryonic fibroblasts infected with a temperature-sensitive transformation mutant of Rous sarcoma virus (tsLA24). After centrifugation of a crude cytosol fraction from log-phase cells in a 5-20% linear sucrose gradient, polypeptides of M/sub r/ ∼ 185,000 and 220,000 were immunoprecipitated only from gradient fractions containing DNA polymerase α activity. When similar cultures were incubated in medium containing [32P]orthophosphate, it was found that the M/sub r/ 220,000 protein was phosphorylated but that the other peptides specific for polymerase α activity did not contain detectable amounts of phosphate. Phospho amino acid analysis of the high molecular weight immunoprecipitable proteins indicated that the labeled amino acid was phosphoserine. Incubation of 2.5 units of crude DNA polymerase α with 4 units of agarose-immobilized alkaline phosphatase resulted in a nearly complete inhibition of DNA polymerase α activity. Subsequent incubation of this preparation with 5 or 50 μM ATP, but not the nonhydrolyzable analog adenosine 5'-[γ-thio]triphosphate, restored the in vitro DNA polymerizing activity. These results demonstrate that a high molecular weight DNA polymerase α is phosphorylated in cultured cells and that this protein is a substrate for a serine kinase rather than the tyrosine-specific protein kinase of Rous sarcoma virus. The results suggest that phosphorylation/dephosphorylation reactions modulate the activity of this polymerase

  1. Functional roles of DNA polymerases β and γ

    The physiological functions of DNA polymerases (deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, EC2.7.7.7)β and γ were investigated by using neuronal nuclei and synaptosomes isolated from rat brain. uv irradiation of neuronal nuclei from 60-day-old rats resulted in a 7- to 10-fold stimulation of DNA repair synthesis attributable to DNA polymerase β which, at this developmental stage, is virtually the only DNA polymerase present in the nuclei. No repair synthesis could be elicited by treating the nuclei with N-methyl-N-nitrosourea, but this was probably due to the inability of brain tissue to excise alkylated bases from DNA. The role of DNA polymerase γ was studied in synaptosomes by using a system mimicking in vivo mitochondrial DNA synthesis. By showing that under these conditions, DNA replication occurs in miatochondria, and exploiting the fact that DNA polymerase γ is the only DNA polymerase present in mitochondria, evidence was obtained for a role of DNA polymerase γ in mitochondrial DNA replication. Based on these results and on the wealth of literature on DNA polymerase α, we conclude that DNA polymerase α is mainly responsible for DNA replication in nuclei, DNA polymerase β is involved in nuclear DNA repair, and DNA polymerase γ is the mitochondrial replicating enzyme. However, minor roles for DNA polymerase α in DNA repair or for DNA polymerase β in DNA replication cannot be excluded

  2. Detection of DNA polymerase λ activity during seed germination and enhancement after salinity stress and dehydration in the plumules of indica rice (Oryza sativa L.

    Sihi, Sayantani; Bakshi, Sankar; Sengupta, Dibyendu Narayan

    2015-02-01

    DNA polymerase λ (DNA pol λ) is the only reported X-family DNA polymerases in plants and has been shown to play a significant role in dry quiescent seeds, growth, development and nuclear DNA repair. cDNA for DNA pol λ has been reported in Arabidopsis and japonica rice cultivar and has been characterized from E. coli expressed protein, but very little is known about its activity at protein level in plants. The enzymatic activity of DNA pol λ was studied in dry, imbibed and during different germination stages of indica rice IR-8 (salt sensitive) by in-gel activity assay to determine its physiological role in important stages of growth and development. The upstream sequence was also analyzed using plantCARE database and was found to contain several cis-acting elements, including light responsive elements, dehydration responsive elements, Myb binding sites, etc. Hence, 4-day-old germinating seedlings of IR29, a salt-sensitive, but high yielding indica rice cultivar and Nonabokra, a salt-tolerant, but low yielding cultivar were treated with water (control) or 250 mM NaCl or 20% polyethyleneglycol-6000 for 4 and 8 h. The protein was analyzed by in vitro DNA pol λ activity assay, in-gel activity assay and Western blot analysis. DNA pol λ was not detected in dry seeds, but enhanced after imbibition and detectable from low level to high level during subsequent germination steps. Both salinity and dehydration stress led to the enhancement of the activity and protein level of DNA pol λ, as compared to control tissues. This is the first evidence of the salinity or dehydration stress induced enhancement of DNA pol λ activity in the plumules of rice (Oryza sativa L.) cultivars. PMID:26040115

  3. Effects of Twelve Germline Missense Variations on DNA Lesion and G-Quadruplex Bypass Activities of Human DNA Polymerase REV1.

    Yeom, Mina; Kim, In-Hyeok; Kim, Jae-Kwon; Kang, KyeongJin; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun

    2016-03-21

    The Y-family DNA polymerase REV1 is involved in replicative bypass of damaged DNA and G-quadruplex (G4) DNA. In addition to a scaffolding role in the replicative bypass, REV1 acts in a catalytic role as a deoxycytidyl transferase opposite some replication stall sites, e.g., apurinic/apyrimidinic (AP) sites, N(2)-guanyl lesions, and G4 sites. We characterized the biochemical properties of 12 reported germline missense variants of human REV1, including the N373S variant associated with high risk of cervical cancer, using the recombinant REV1 (residues 330-833) proteins and DNA templates containing a G, AP site, N(2)-CH2(2-naphthyl)G (N(2)-NaphG), or G4. In steady-state kinetic analyses, the F427L, R434Q, M656V, D700N, R704Q, and P831L variants displayed 2- to 8-fold decreases in kcat/Km for dCTP insertion opposite all four templates, compared to that of wild-type, while the N373S, M407L, and N497S showed 2- to 3-fold increases with all four and the former three or two templates, respectively. The F427L, R434Q, M656V, and R704Q variants also had 2- to 3-fold lower binding affinities to DNA substrates containing G, an AP site, and/or N(2)-NaphG than wild-type. Distinctively, the N373S variant had a 3-fold higher binding affinity to G4 DNA than the wild-type, as well as a 2-fold higher catalytic activity opposite the first tetrad G, suggesting a facilitating effect of this variation on replication of G4 DNA sequences in certain human papillomavirus genomes. Our results suggest that the catalytic function of REV1 is moderately or slightly altered by at least nine genetic variations, and the G4 DNA processing function of REV1 is slightly enhanced by the N373S variation, which might provide the possibility that certain germline missense REV1 variations affect the individual susceptibility to carcinogenesis by modifying the capability of REV1 for replicative bypass past DNA lesions and G4 motifs derived from chemical and viral carcinogens. PMID:26914252

  4. Measurement of kinetic parameters of human platelet DNA polymerase gamma.

    Taanman, Jan-Willem; Heiske, Margit; Letellier, Thierry

    2010-08-01

    Synthesis of mitochondrial DNA is performed by DNA polymerase gamma. Mutations in POLG, the gene encoding the catalytic subunit of DNA polymerase gamma, are a major cause of neurological disease. A large proportion of patients carry rare nucleotide substitutions leading to single amino acid changes. Confirming that these replacements are pathogenic can be problematic without biochemical evidence. Here, we provide a hands-on protocol for an in vitro kinetic assay of DNA polymerase gamma which allows assessment of the K(m) and V(max) for the incoming nucleotide of the polymerization reaction. To avoid measurement of contaminating nuclear DNA polymerases, platelet extracts are used since platelets do not contain a nucleus. Moreover, platelets have the advantage of being obtainable relatively non-invasively. Polymerization activity is determined by measurement of the incorporation of radioactive thymidine 5'-triphosphate (dTTP) on the homopolymeric RNA substrate poly(rA).oligo(dT)(12-18). To further minimize nuclear DNA polymerase activity, aphidicolin, an inhibitor of most nuclear DNA polymerases, is included in the reaction. In addition, reactions are carried out in the absence and presence of the competitive inhibitor of DNA polymerase gamma, 2',3'-dideoxythymidine 5'-triphosphate (ddTTP), to allow calculation of the ddTTP-sensitive incorporation. With this method, platelets from healthy control subjects extracted with 3% Triton X-100 showed a K(m) for dTTP of 1.42 microM and a V(max) of 0.83 pmol min(-1)mg(-1). PMID:20227504

  5. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase

    Davidson, John F.; Fox, Richard; Harris, Dawn D.; Lyons-Abbott, Sally; Loeb, Lawrence A.

    2003-01-01

    Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq...

  6. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Tom eKillelea; Celine eRalec; Audrey eBosse; Ghislaine eHenneke

    2014-01-01

    International audience DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased perfor...

  7. Resolution of DNA polymerase-α and primase activities from embryonic chicken brain and stimulation of chain initiation by a protein factor

    Reconstitution of an in vitro system capable of DNA chain initiation in an eukaryotic system has been attempted in several laboratories. They have previously reported the isolation of three distinct forms of DNA polymerase-α from IMR-32 cells and 9-day-old embryonic chicken brains (9ECB). DNA primase activity is eluted from a DE-23 column with one of these Pol-α's when a linear gradient is used. Irrespective of embryonic age, primase and a pol-α activity coelutes at 250 mM K-PO4 buffer. The complex containing Pol-α/primase activities has been analyzed further on a continuous velocity gradient of either sucrose or glycerol. A polymerase-α-free primase activity sediments at 4.5S whereas the other 50% is recovered with the pol-α activity which sediments at 11S. Compared to polydC and poly(dC dT), of the 9ECB primase catalyzed 3H-dXMP incorporation into polydT and M13 is very low. The template poly(dC, dT) is active only in the presence of ATP. They have purified a protein factor (NPF-1) from rat liver which stimulates primase-associated pol-α activities from IMR-32 cells. The NPF-1 also stimulates (2 to 3-fold) primase-associated pol-α activity (11S) from 9ECB

  8. Engineered DNA Polymerase Improves PCR Results for Plastid DNA

    Melanie Schori

    2013-02-01

    Full Text Available Premise of the study: Secondary metabolites often inhibit PCR and sequencing reactions in extractions from plant material, especially from silica-dried and herbarium material. A DNA polymerase that is tolerant to inhibitors improves PCR results. Methods and Results: A novel DNA amplification system, including a DNA polymerase engineered via directed evolution for improved tolerance to common plant-derived PCR inhibitors, was evaluated and PCR parameters optimized for three species. An additional 31 species were then tested with the engineered enzyme and optimized protocol, as well as with regular Taq polymerase. Conclusions: PCR products and high-quality sequence data were obtained for 96% of samples for rbcL and 79% for matK, compared to 29% and 21% with regular Taq polymerase.

  9. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site.

    Agata Jacewicz

    Full Text Available Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A, that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the Pol(D714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced k pol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.

  10. Radioimmunological comparison of the DNA polymerases of avian retroviruses.

    Bauer, G.; Temin, H M

    1980-01-01

    125I-labeled DNA polymerases of avian myeloblastosis virus and spleen necrosis virus were used in a radioimmunological characterization of avian retrovirus DNA polymerases. It was shown that avian leukosis virus and reticuloendotheliosis virus DNA polymerases do not cross-react in radioimmunoassays. Within the avian leukosis virus species, species-specific and type-specific antigenic determinants of the DNA polymerase were defined. The previous finding of genus-specific antigenic determinants...

  11. Polymerase synthesis of new photocaged DNA

    Vaníková, Zuzana; Hocek, Michal

    Praha : Institute of Organic Chemistry and Biochemistry AS CR, v. v. i, 2014 - (Hocek, M.), s. 392-393 ISBN 978-80-86241-50-0. - (Collection Symposium Series. 14). [Symposium on Chemistry of Nucleic Acid Components /16./. Český Krumlov (CZ), 08.06.2014-13.06.2014] R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:61388963 Keywords : DNA * polymerase synthesis Subject RIV: CC - Organic Chemistry

  12. EBV DNA polymerase inhibition of tannins from Eugenia uniflora.

    Lee, M H; Chiou, J F; Yen, K Y; Yang, L L

    2000-06-30

    Nasopharyngeal carcinoma (NPC) is one of the high population malignant tumors among Chinese in southern China and southeast Asia. Epstein-Barr virus (EBV) is a human B lymphotropic herpes virus which is known to be closely associated with NPC. EBV DNA polymerase is a key enzyme during EBV replication and is measured by its radioactivity. The addition of phorbol 12-myristate 13-acetate to Raji cell cultures led to a large increase in EBV DNA polymerase, which was purified by sequential DEAE-cellulose, phosphocellulose and DNA-cellulose column chromatography. Four tannins were isolated from the active fractions of Eugenia uniflora L., which were tested for the inhibition of EBV DNA polymerase. The results showed the 50% inhibitory concentration (IC(50)) values of gallocatechin, oenothein B, eugeniflorins D(1) and D(2) were 26.5 62.3, 3.0 and 3.5 microM, respectively. Furthermore, when compared with the positive control (phosphonoacetic acid), an inhibitor of EBV replication, the IC(50) value was 16.4 microM. In view of the results, eugeniflorins D(1) and D(2) are the potency principles in the inhibition of EBV DNA polymerase from E. uniflora. PMID:10806300

  13. An autoradiographic demonstration of nuclear DNA replication by DNA polymerase alpha and of mitochondrial DNA synthesis by DNA polymerase gamma.

    Geuskens, M.; Hardt, N; Pedrali-Noy, G; Spadari, S

    1981-01-01

    The incorporation of thymidine into the DNA of eukaryotic cells is markedly depressed, but not completely inhibited, by aphidicolin, a highly specific inhibitor of DNA polymerase alpha. An electron microscope autoradiographic analysis of the synthesis of nuclear and mitochondrial DNA in vivo in Concanavalin A stimulated rabbit spleen lymphocytes and in Hamster cell cultures, in the absence and in the presence of aphidicolin, revealed that aphidicolin inhibits the nuclear but not the mitochond...

  14. The human apurinic/apyrimidinic endonuclease-1 suppresses activation of poly(adp-ribose) polymerase-1 induced by DNA single strand breaks

    DNA single-strand breaks (SSB) activate poly (ADP-ribose) polymerase 1 (PARP1), which then polymerizes ADP-ribosyl groups on various nuclear proteins, consuming cellular energy. Although PARP1 has a role in repairing SSB, activation of PARP1 also causes necrosis and inflammation due to depletion of cellular energy. Here we show that the major mammalian apurinic/apyrimidinic (AP) endonuclease-1 (APE1), an essential DNA repair protein, binds to SSB and suppresses the activation of PARP1. APE1's high affinity for SSB requires Arg177, which is unique in mammalian APEs. PARP1's binding to the cleaved DNA was inhibited, and PARP1 activation was suppressed by the wild-type APE1, but not by the R177A mutant APE1 protein. Cells transiently transfected with the wild-type APE1 decreased the PARP1 activation after H2O2 treatment, while such suppression did not occur with the expression of the R177A APE1 mutant. These results suggest that APE1 suppresses the activation of PARP1 during the repair process of the DNA damage generated by oxidative stress, which may have an important implication for cells to avoid necrosis due to energy depletion

  15. Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus.

    Watson, C J; Hay, R T

    1990-01-01

    Sequences encoding adenovirus type 2 DNA polymerase were placed under control of the polyhedrin promoter and inserted into the baculovirus Autographa californica nuclear polyhedrosis virus by homologous recombination. Insect cells infected with the recombinant virus produced substantial amounts of the adenovirus type 2 DNA polymerase protein which was functional in both DNA polymerase and replication initiation reactions. Thus, the baculovirus expression system can provide active adenovirus t...

  16. Inhibition of DNA replication, DNA repair synthesis, and DNA polymerases α and δ by butylphenyl deoxyguanosine triphosphate

    Semiconservative DNA replication in growing mammalian cells and ultraviolet (UV)-induced DNA repair synthesis in nongrowing mammalian cells are mediated by one or both of the aphidicolin-sensitive DNA polymerases, α and/or δ. They have studied the inhibition of replication and repair synthesis in permeable human cells by N2 (p-n-butylphenyl)-2'-deoxyguanosine-5'-triphosphate (BuPh dGTP), an agent which inhibits polymerase α strongly and polymerase δ weakly. Both processes are inhibited by BuPh-dGTP in competition with dGTP. The K/sub i/'s are, for replication, 2-3 μM and, for repair synthesis, 3-4 μM, consistent with the involvement of the same DNA polymerase in both processes. Inhibition of isolated human polymerase α by BuPh-dGTP is also competitive with dGTP, but the K/sub i/ is approximately 10 nM, several hundred-fold lower than the K/sub i/'s of replication and repair synthesis. Isolated polymerase δ is inhibited by BuPh-dGTP at doses similar to those which inhibit replication and repair synthesis, however, attempts to determine the K/sub i/ of polymerase δ were hampered by the finding that the dependence of δ activity on deoxyribunucleotide concentration is parabolic at low doses. This behavior differs from the behavior of polymerase α and of cellular DNA replication and repair synthesis, all of which show a simple, hyperbolic relationship between activity and deoxyribonucleotide concentration. Thus, inhibition of DNA replication and UV induced DNA repair synthesis by BuPh dGTP is quantitatively similar to DNA polymerase δ, but some other characteristics of the cellular processes are more similar to those of polymerase α

  17. DNA synthesis on discontinuous templates by human DNA polymerases: implications for non-homologous DNA recombination.

    Islas, L; Fairley, C F; Morgan, W. F.

    1998-01-01

    DNA polymerases catalyze the synthesis of DNA using a continuous uninterrupted template strand. However, it has been shown that a 3'-->5' exonuclease-deficient form of the Klenow fragment of Escherichia coli DNA polymerase I as well as DNA polymerase of Thermus aquaticus can synthesize DNA across two unlinked DNA templates. In this study, we used an oligonucleotide-based assay to show that discontinuous DNA synthesis was present in HeLa cell extracts. DNA synthesis inhibitor studies as well a...

  18. Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O6-methylguanine-DNA methyltransferase activity

    Horton, Terzah M.; Jenkins, Gaye; Pati, Debananda; Zhang, Linna; Dolan, M. Eileen; Ribes-Zamora, Albert; Bertuch, Alison A.; Blaney, Susan M.; Delaney, Shannon L.; Hegde, Madhuri; Berg, Stacey L.

    2009-01-01

    The poly(ADP-ribose) polymerase (PARP) inhibitor ABT-888 potentiates the antitumor activity of temozolomide (TMZ). TMZ resistance results from increased O6-methylguanine-DNA methyltransferase (MGMT) activity and from mismatch repair (MMR) system mutations. We evaluated the relative importance of MGMT activity, MMR deficiency, nonhomologous end joining (NHEJ), and PARP activity in ABT-888 potentiation of TMZ. MMR-proficient and MMR-deficient leukemia cells with varying MGMT activity, as well a...

  19. Human DNA polymerase α in binary complex with a DNA:DNA template-primer

    Javier Coloma; Johnson, Robert E.; Louise Prakash; Satya Prakash; Aggarwal, Aneel K.

    2016-01-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually e...

  20. Structural Determinant for Switching between the Polymerase and Exonuclease Modes in the PCNA-Replicative DNA Polymerase Complex

    Nishida, Hirokazu; Mayanagi, Kouta; Ishino, Yoshizumi; Morikawa, Kosuke

    Proliferating cell nuclear antigen (PCNA) is responsible for the processivity of DNA polymerase. We determined the crystal structure of Pyrococcus furiosus DNA polymerase (PfuPol) complexed with a cognate monomeric PCNA, which allowed us to construct a convincing model of the polymerase-PCNA ring interaction. Electron microscopy analyses confirmed that this complex structure exists among the multiple functional configurations in solution. Together with data from mutational analyses, this structural study indicated that the novel interaction between a stretched loop of PCNA and the PfuPol Thumb domain is quite important, in addition to the authentic PCNA-polymerase recognition site (PIP box). A comparison of the present structures with the previously reported structures of polymerases complexed with DNA suggested that the second interaction site plays a crucial role in switching between the polymerase and exonuclease modes, by stabilizing only the polymerase mode. This proposed mechanism of fidelity control of replicative DNA polymerases was supported by experiments, in which a mutation within the second interaction site caused an enhancement in the exonuclease activity in the presence of PCNA.

  1. Taq DNA Polymerase Mutants and 2'-Modified Sugar Recognition.

    Schultz, Hayley J; Gochi, Andrea M; Chia, Hannah E; Ogonowsky, Alexie L; Chiang, Sharon; Filipovic, Nedim; Weiden, Aurora G; Hadley, Emma E; Gabriel, Sara E; Leconte, Aaron M

    2015-09-29

    Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution. PMID:26334839

  2. UvrD facilitates DNA repair by pulling RNA polymerase backwards

    Epshtein, Vitaly; Kamarthapu, Venu; McGary, Katelyn; Svetlov, Vladimir; Ueberheide, Beatrix; Proshkin, Sergey; Mironov, Alexander; Nudler, Evgeny

    2014-01-01

    UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD a...

  3. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  4. Structure and mechanism of human DNA polymerase [eta

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji; Ramón-Maiques, Santiago; Gregory, Mark; Lee, Jae Young; Masutani, Chikahide; Lehmann, Alan R.; Hanaoka, Fumio; Yang, Wei (Sussex); (NIH); (Gakushuin); (Osaka)

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.

  5. DNA polymerase X from Deinococcus radiodurans implicated in bacterial tolerance to DNA damage is characterized as a short patch base excision repair polymerase.

    Khairnar, Nivedita P; Misra, Hari S

    2009-09-01

    The Deinococcus radiodurans R1 genome encodes an X-family DNA repair polymerase homologous to eukaryotic DNA polymerase beta. The recombinant deinococcal polymerase X (PolX) purified from transgenic Escherichia coli showed deoxynucleotidyltransferase activity. Unlike the Klenow fragment of E. coli, this enzyme showed short patch DNA synthesis activity on heteropolymeric DNA substrate. The recombinant enzyme showed 5'-deoxyribose phosphate (5'-dRP) lyase activity and base excision repair function in vitro, with the help of externally supplied glycosylase and AP endonuclease functions. A polX disruption mutant of D. radiodurans expressing 5'-dRP lyase and a truncated polymerase domain was comparatively less sensitive to gamma-radiation than a polX deletion mutant. Both mutants showed higher sensitivity to hydrogen peroxide. Excision repair mutants of E. coli expressing this polymerase showed functional complementation of UV sensitivity. These results suggest the involvement of deinococcal polymerase X in DNA-damage tolerance of D. radiodurans, possibly by contributing to DNA double-strand break repair and base excision repair. PMID:19542005

  6. Engineering processive DNA polymerases with maximum benefit and minimum cost

    LindaJ.Reha-Krantz

    2014-08-01

    Full Text Available DNA polymerases need to be engineered to achieve optimal performance for biotechnological applications, which often require high fidelity replication when using modified nucleotides and when replicating difficult DNA sequences. These tasks are achieved for the bacteriophage T4 DNA polymerase by replacing leucine with methionine in the highly conserved Motif A sequence (L412M. The costs are minimal. Although base substitution errors increase moderately, accuracy is maintained for templates with mono- and dinucleotide repeats and replication efficiency is enhanced . The L412M substitution increases intrinsic processivity and the additions of phage T4 clamp and single-stranded DNA binding proteins further strengthen the ability of the phage T4 L412M-DNA polymerase to replicate all types of difficult DNA sequences. Increased pyrophosphorolysis is a drawback of increased processivity, but pyrophosphorolysis is curbed by adding an inorganic pyrophosphatase or divalent metal cations, Mn2+ or Ca2+. In the absence of pyrophosphorolysis inhibitors, the T4 L412M-DNA polymerase catalyzed sequence-dependent pyrophosphorolysis under DNA sequencing conditions. These pyrophosphorolysis-sensitive DNA sequences provide insights into how the T4 DNA polymerase switches between nucleotide incorporation, pyrophosphorolysis and proofreading pathways. The L-to-M substitution was also tested in the yeast DNA polymerases delta and alpha. Because the mutant DNA polymerases displayed similar characteristics, we propose that amino acid substitutions in Motif A have the potential to increase processivity and to enhance performance in biotechnological applications. An underlying theme in this chapter is the use of genetic methods to identify mutant DNA polymerases with potential for use in current and future biotechnological applications.

  7. Comparative Analysis of Eubacterial DNA Polymerase Ⅲ Alpha Subunits

    Xiao-Qian Zhao; Jian-Fei Hu; Jun Yu

    2006-01-01

    DNA polymerase Ⅲ is one of the five eubacterial DNA polymerases that is responsible for the replication of DNA duplex. Among the ten subunits of the DNA polymerase Ⅲ core enzyme, the alpha subunit catalyzes the reaction for polymerizing both DNA strands. In this study, we extracted genomic sequences of the alpha subunit from 159 sequenced eubacterial genomes, and carried out sequencebased phylogenetic and structural analyses. We found that all eubacterial genomes have one or more alpha subunits, which form either homodimers or heterodimers.Phylogenetic and domain structural analyses as well as copy number variations of the alpha subunit in each bacterium indicate the classification of alpha subunit into four basic groups: polC, dnaE1, dnaE2, and dnaE3. This classification is of essence in genome composition analysis. We also consolidated the naming convention to avoid further confusion in gene annotations.

  8. Identification of a New Motif in Family B DNA Polymerases by Mutational Analyses of the Bacteriophage T4 DNA Polymerase

    Li, Vincent; Hogg, Matthew; Reha-Krantz, Linda J.

    2010-01-01

    Structure-based protein sequence alignments of family B DNA polymerases revealed a conserved motif that is formed from interacting residues between loops from the N-terminal and palm domains and between the N-terminal loop and a conserved proline residue. The importance of the motif for function of the bacteriophage T4 DNA polymerase was revealed by suppressor analysis. T4 DNA polymerases that form weak replicating complexes cannot replicate DNA when the dGTP pool is reduced. The conditional ...

  9. Taking Fingerprints of DNA Polymerases : Multiplex Enzyme Profiling on DNA Arrays

    Kranaster, Ramon; Marx, Andreas

    2009-01-01

    DNA polymerases are used in a plethora of biotechnical applications, especially in the polymerase chain reaction (PCR), genetic cloning procedures, genome sequencing, and diagnostic methods.[1] Highly processive and accurate DNA polymerases are desired for cloning procedures in order to give shorter extension times as well as more robust and highyield amplification. A higher DNA polymerase fidelity may increase the reliability of genome sequencing and diagnostic systems.[2] Amplification of a...

  10. Roles of DNA polymerase epsilon and TopBP1 in DNA replication and damage response

    Hillukkala, T.

    2006-01-01

    Abstract During DNA replication cells accurately copy their DNA to transfer the genetic information to daughter cells. DNA polymerases synthesise the new DNA strand using the old strand as a template. Other functions of DNA polymerases are recombination linked and DNA iamage repair linked DNA synthesis, regulation of replication complex formation and regulation of transcription – a process in which the genetic information is transformed into an RNA sequence needed to guide protein synthesi...

  11. Determining the Diagnostic Value of Mycobacterium Tuberculosis DNA in the Differentiation of Blood Samples of Patients with Active Pulmonary Tuberculosis and Healthy Controls Using Polymerase Chain Reaction

    Abasali Niazi; Nezarali Muolai; Mosayeb Shahriar; Reza Karimian; Farzaneh Peykfalak

    2013-01-01

    Background: Tuberculosis (TB) is now a major cause of mortality and morbidity in the world. Nowadays, different methods are used to diagnose tuberculosis. Although classical microbiological methods (such as sputum smear) are specific, they have little sensitivity and the culture is also time-consuming. Using Polymerase Chain Reaction (PCR) in blood samples in terms of Mycobacterium tuberculosis DNA, this study examines diagnostic power of this test in the diagnosis of pulmonary tuberculosis c...

  12. Expression of human DNA polymerase β in Escherichia coli and characterization of the recombinant enzyme

    The coding region of a human β-polymerase cDNA, predicting a 335 amino acid protein, was subcloned in the Escherichia coli expression plasmid pRC23. After induction of transformed cells, the crude soluble extract was found to contain a new protein immunoreactive with β-polymerase antibody and corresponding in size to the protein deduced from the cDNA. This protein was purified in a yield of 1-2 mg/50 g of cells. The recombinant protein had about the same DNA polymerase specific activity as β-polymerase purified from mammalian tissues, and template-primer specificity and immunological properties of the recombinant polymerase were similar to those of natural β-polymerases. The purified enzyme was free of nuclease activity. The authors studied detailed catalytic properties of the recombinant β-polymerase using defined template-primer systems. The results indicate that this β-polymerase is essentially identical with natural β-polymerases. The recombinant enzyme is distributive in mode of synthesis and is capable of detecting changes in the integrity of the single-stranded template, such as methylated bases and a double-stranded region. The enzyme recognizes a template region four to seven bases downstream of the primer 3' end and utilizes alternative primers if this downstream template region is double stranded. The enzyme is unable to synthesize past methylated bases N3-methyl-dT or O6-methyl-dG

  13. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases

    Gaspard, Pierre

    2016-04-01

    A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  14. Overproduction of DnaE protein (alpha subunit of DNA polymerase III) restores viability in a conditionally inviable Escherichia coli strain deficient in DNA polymerase I.

    Witkin, E M; Roegner-Maniscalco, V

    1992-01-01

    A polA12 recA718 double mutant of Escherichia coli, in which DNA polymerase I is temperature sensitive, was unable to maintain normal DNA synthesis or to form colonies on rich media at 42 degrees C. Overproduction of DnaE protein, the polymerizing alpha subunit of DNA polymerase III, restored bacterial DNA replication and cell viability, as well as the PolI-dependent replication of the plasmid carrying dnaE.

  15. Preparation of Phi29 DNA polymerase free of amplifiable DNA using ethidium monoazide, an ultraviolet-free light-emitting diode lamp and trehalose.

    Hirokazu Takahashi

    Full Text Available We previously reported that multiply-primed rolling circle amplification (MRPCA using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3'-5' exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents.

  16. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  17. RNA polymerase II transcription inhibits DNA repair by photolyase in the transcribed strand of active yeast genes.

    Livingstone-Zatchej, M; Meier, A; Suter, B.; Thoma, F

    1997-01-01

    Yeast uses nucleotide excision repair (NER) and photolyase (photoreactivation) to repair cyclobutane pyrimidine dimers (CPDs) generated by ultraviolet light. In active genes, NER preferentially repairs the transcribed strand (TS). In contrast, we recently showed that photolyase preferentially repairs the non-transcribed strands (NTS) of the URA3 and HIS3 genes in minichromosomes. To test whether photoreactivation depends on transcription, repair of CPDs was investigated in the transcriptional...

  18. Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence.

    Montgomery, Jesse L; Rejali, Nick; Wittwer, Carl T

    2013-10-15

    DNA polymerase activity was measured by a stopped-flow assay that monitors polymerase extension using an intercalating dye. Double-stranded DNA formation during extension of a hairpin substrate was monitored at 75°C for 2 min. Rates were determined in nucleotides per second per molecule of polymerase (nt/s) and were linear with time and polymerase concentration from 1 to 50 nM. The concentrations of 15 available polymerases were quantified and their extension rates determined in 50 mM Tris, pH 8.3, 0.5 mg/ml BSA, 2 mM MgCl₂, and 200 μM each dNTP as well as their commercially recommended buffers. Native Taq polymerases had similar extension rates of 10-45 nt/s. Three alternative polymerases showed faster speeds, including KOD (76 nt/s), Klentaq I (101 nt/s), and KAPA2G (155 nt/s). Fusion polymerases including Herculase II and Phusion were relatively slow (3-13 nt/s). The pH optimum for Klentaq extension was between 8.5 and 8.7 with no effect of Tris concentration. Activity was directly correlated to the MgCl2 concentration and inversely correlated to the KCl concentration. This continuous assay is relevant to PCR and provides accurate measurement of polymerase activity using a defined template without the need of radiolabeled substrates. PMID:23872003

  19. DNA sequence recognition protein associated with a multiprotein form of DNA polymerase alpha

    The majority of DNA polymerase α activity in HeLa cells has been isolated and purified as a multiprotein Mr 640,000 form. A number of accessory activities cofractionate with this form of polymerase α. Among these are: Cl, C2 primer recognition proteins, primase, a 5' → 3' exonuclease, and a 5',5''',P1,P4-diadenosine tetraphosphate (Ap4A) binding protein. Preliminary results suggest an additional factor(s) or protein(s) is present in the multiprotein form of the HeLa cell DNA polymerase α which has an affinity for DNA sequences rich in A and T residues. Affinity chromatography on poly(dA)-or oligo(dT)-cellulose yields a highly purified protein. This protein has the ability to bind 3H-poly (dA) and 3H-poly(dT) in a nitrocellulose filter binding assay. The further physical properties of this protein and its DNA sequence binding specificity will be discussed

  20. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader.

    Yano, Sho T; Rothman-Denes, Lucia B

    2011-03-01

    Coliphage N4 infection leads to shut-off of host DNA replication without inhibition of host transcription or translation. We report the identification and characterization of gp8, the N4 gene product responsible for this phenotype. N4 gp8 is an Escherichia coli bacteriostatic inhibitor that colocalizes with the E. coli replisome in a replication-dependent manner. Gp8 was purified and observed to cross-link to complexes containing the replicative DNA polymerase, DNAP III, in vivo. Purified gp8 inhibits DNA polymerization by DNA polymerase III holoenzyme in vitro by interfering with polymerase processivity. Gp8 specifically inhibits the clamp-loading activity of DNAP III by targeting the delta subunit of the DNAP III clamp loader; E. coli mutations conferring gp8 resistance were identified in the holA gene, encoding delta. Delta and gp8 interact in vitro; no interaction was detected between gp8 inactive mutants and wild-type delta or between delta gp8-resistant mutants and wild-type gp8. Therefore, this work identifies the DNAP III clamp loader as a new target for inhibition of bacterial growth. Finally, we show that gp8 is not essential in N4 development under laboratory conditions, but its activity contributes to phage yield. PMID:21205014

  1. DNA polymerase I-mediated ultraviolet repair synthesis in toluene-treated Escherichia coli

    DNA synthesis after ultraviolet irradiation is low in wild type toluene-treated cells. The level of repair incorporation is greater in strains deficient in DNA polymerase I. The low level of repair synthesis is attributable to the concerted action of DNA polymerase I and polynucleotide ligase. Repair synthesis is stimulated by blocking ligase activity with the addition of nicotinamide mononucleotide (NMN) or the use of a ligase temperature-sensitive mutant. NMN stimulation is specific for DNA polymerase I-mediated repair synthesis, as it is absent in isogenic strains deficient in the polymerase function or the 5' yields 3' exonuclease function associated with DNA polymerase I. DNA synthesis that is stimulated by NMN is proportional to the ultraviolet exposure at low doses, nonconservative in nature, and is dependent on the uvrA gene product but is independent of the recA gene product. These criteria place this synthesis in the excision repair pathway. The NMN-stimulated repair synthesis requires ATP and is N-ethylmaleimide-resistant. The use of NMN provides a direct means for evaluating the involvement of DNA polymerase I in excision repair

  2. DIFFERENT RESULTS BY DIFFERENT COMMERCIAL TAQ DNA POLYMERASE IN RAPD

    2002-01-01

    @@ RAPD (Random Amplified Polymorphic DNA) technique has been widely used in animal, plant, human and microorganism research since it was first established by Williams in 1990[1-3]. But, because of low annealed temperature and short 10-nt primers, the resolution and repetition is low in RAPD. The stability of RAPD is influenced by many factors such as the concentration of template, primers, dNTP, Mg++,and Taq DNA polymerase[4-6]. The influence on amplified products of different commercial Taq DNA polymerase in RAPD was studied in this paper.

  3. Molecular basis for DNA strand displacement by NHEJ repair polymerases

    Bartlett, Edward J.; Brissett, Nigel C.; Plocinski, Przemyslaw; Carlberg, Tom; Doherty, Aidan J.

    2015-01-01

    The non-homologous end-joining (NHEJ) pathway repairs DNA double-strand breaks (DSBs) in all domains of life. Archaea and bacteria utilize a conserved set of multifunctional proteins in a pathway termed Archaeo-Prokaryotic (AP) NHEJ that facilitates DSB repair. Archaeal NHEJ polymerases (Pol) are capable of strand displacement synthesis, whilst filling DNA gaps or partially annealed DNA ends, which can give rise to unligatable intermediates. However, an associated NHEJ phosphoesterase (PE) re...

  4. Studies on DNA replication in vitro by DNA polymerase-α/primase complex from embryonic chicken brain

    DNA polymerase - α activity, characterized by its sensitivity to N-ethylmaleimide, high sedimentation coefficient, and acidic isoelectric point was found to decline with increasing embryonic age. Primase activity, the enzyme responsible for the initiation of DNA synthesis, was found to co-sediment with DNA polymerase - α activity on a continuous glycerol velocity gradient. Of all the single-stranded DNA templates tested, primase activity was found to be maximally active with poly dC. In the presence of [α-32P] GTP, primase activity was found to catalyze the formation of an alkali-labile oligoriboguanylate, 15-20 nucleotides long. The chain length of the products were not altered by the presence or absence of dGTP. Primase activity was not inhibited by a high concentration of α- amanitin. Consistent with the finding of a decline of the activity level of DNA polymerase - α, the level of DNA polymerase - α antigen was also found to decrease with embryonic age, as evidenced by ELISA with a non-neutralizing monoclonal antibody, SJK 237-71

  5. Baculovirus RNA Polymerase: Activities, Composition, and Evolution

    A.Lorena Passarelli

    2007-01-01

    Baculoviruses are the only nuclear replicating DNA-containing viruses that encode their own DNA-directed RNA polymerase (RNAP). The baculovirus RNAP is specific for the transcription of genes expressed after virus DNA replication. It is composed of four subunits, making it the simplest multisubunit RNAP known. Two subunits contain motifs found at the catalytic center of other RNAPs and a third has capping enzyme functions. The function of the fourth subunit is not known. Structural studies on this unique RNAP will provide new insights into the functions of this enzyme and the regulation of viral genes and may be instrumental to optimize the baculovirus gene expression system.

  6. DNA Polymerases Divide the Labor of Genome Replication.

    Lujan, Scott A; Williams, Jessica S; Kunkel, Thomas A

    2016-09-01

    DNA polymerases synthesize DNA in only one direction, but large genomes require RNA priming and bidirectional replication from internal origins. We review here the physical, chemical, and evolutionary constraints underlying these requirements. We then consider the roles of the major eukaryotic replicases, DNA polymerases α, δ, and ɛ, in replicating the nuclear genome. Pol α has long been known to extend RNA primers at origins and on Okazaki fragments that give rise to the nascent lagging strand. Taken together, more recent results of mutation and ribonucleotide incorporation mapping, electron microscopy, and immunoprecipitation of nascent DNA now lead to a model wherein Pol ɛ and Pol δ, respectively, synthesize the majority of the nascent leading and lagging strands of undamaged DNA. PMID:27262731

  7. Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris.

    Fei Wang

    Full Text Available The present study assessed high-level expression of the KOD DNA polymerase in Pichia pastoris. Thermococcus kodakaraensis KOD1 is a DNA polymerase that is widely used in PCR. The DNA coding sequence of KOD was optimized based on the codon usage bias of P. pastoris and synthesized by overlapping PCR, and the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus was fused to the C-terminus of KOD. The resulting novel gene was cloned into a pHBM905A vector and introduced into P. pastoris GS115 for secretory expression. The yield of the target protein reached approximately 250 mg/l after a 6-d induction with 1% (v/v methanol in shake flasks. This yield is much higher than those of other DNA polymerases expressed heterologously in Escherichia coli. The recombinant enzyme was purified, and its enzymatic features were studied. Its specific activity was 19,384 U/mg. The recombinant KOD expressed in P. pastoris exhibited excellent thermostability, extension rate and fidelity. Thus, this report provides a simple, efficient and economic approach to realize the production of a high-performance thermostable DNA polymerase on a large scale. This is the first report of the expression in yeast of a DNA polymerase for use in PCR.

  8. Chromosomal location of the human gene for DNA polymerase β

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  9. Molecular basis for DNA strand displacement by NHEJ repair polymerases.

    Bartlett, Edward J; Brissett, Nigel C; Plocinski, Przemyslaw; Carlberg, Tom; Doherty, Aidan J

    2016-03-18

    The non-homologous end-joining (NHEJ) pathway repairs DNA double-strand breaks (DSBs) in all domains of life. Archaea and bacteria utilize a conserved set of multifunctional proteins in a pathway termed Archaeo-Prokaryotic (AP) NHEJ that facilitates DSB repair. Archaeal NHEJ polymerases (Pol) are capable of strand displacement synthesis, whilst filling DNA gaps or partially annealed DNA ends, which can give rise to unligatable intermediates. However, an associated NHEJ phosphoesterase (PE) resects these products to ensure that efficient ligation occurs. Here, we describe the crystal structures of these archaeal (Methanocella paludicola) NHEJ nuclease and polymerase enzymes, demonstrating their strict structural conservation with their bacterial NHEJ counterparts. Structural analysis, in conjunction with biochemical studies, has uncovered the molecular basis for DNA strand displacement synthesis in AP-NHEJ, revealing the mechanisms that enable Pol and PE to displace annealed bases to facilitate their respective roles in DSB repair. PMID:26405198

  10. Plastid DNA polymerases from higher plants, Arabidopsis thaliana

    Previously, we described a novel DNA polymerase, designated as OsPolI-like, from rice. The OsPolI-like showed a high degree of sequence homology with the DNA polymerase I of cyanobacteria and was localized in the plastid. Here, we describe two PolI-like polymerases, designated as AtPolI-like A and AtPolI-like B, from Arabidopsis thaliana. In situ hybridization analysis demonstrated expression of both mRNAs in proliferating tissues such as the shoot apical meristem. Analysis of the localizations of GFP fusion proteins showed that AtPolI-like A and AtPolI-like B were localized to plastids. AtPolI-like B expression could be induced by exposure to the mutagen H2O2. These results suggested that AtPolI-like B has a role in the repair of oxidation-induced DNA damage. Our data indicate that higher plants possess two plastid DNA polymerases that are not found in animals and yeasts

  11. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  12. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase

    Dohrmann, Paul R.; Correa, Raul; Frisch, Ryan L.; Rosenberg, Susan M.; McHenry, Charles S.

    2016-01-01

    There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome. PMID:26786318

  13. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair

    Eukaryotic DNA polymerase δ (Pol δ) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol δ is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) and this interaction is of functional importance both in DNA replication and DNA repair. Interestingly, deletion of the last four C-terminal Pol3 residues, LSKW, in the Pol3-ct mutant does not affect DNA replication but leads to defects in homologous recombination and in break-induced replication (BIR) repair pathways. The defect associated with pol3-ct could result from a defective interaction between Pol δ and a protein involved in recombination. However, we show that the LSKW motif is required for the interaction between Pol3 C-terminal end and Pol31. This loss of interaction is relevant in vivo since we found that pol3-ct confers HU sensitivity on its own and synthetic lethality with a Pol32 deletion. Moreover, Pol3-ct shows genetic interactions, both suppression and synthetic lethality, with Pol31 mutant alleles. Structural analyses indicate that the B subunit of Pol displays a major conserved region at its surface and that Pol31 alleles interacting with Pol3-ct, correspond to substitutions of Pol31 amino acids that are situated in this particular region. Superimposition of our Pol31 model on the 3D architecture of the phylo-genetically related DNA polymerase α (Pol α) suggests that Pol3 CTD interacts with the conserved region of Pol31, thus providing a molecular basis to understand the defects associated with pol3-ct. Taken together, our data highlight a stringent dependence on Pol δ complex stability in DNA repair. (authors)

  14. UvrD facilitates DNA repair by pulling RNA polymerase backwards.

    Epshtein, Vitaly; Kamarthapu, Venu; McGary, Katelyn; Svetlov, Vladimir; Ueberheide, Beatrix; Proshkin, Sergey; Mironov, Alexander; Nudler, Evgeny

    2014-01-16

    UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. Furthermore, we show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes. PMID:24402227

  15. Comparison of six commercially-available DNA polymerases for direct PCR.

    Miura, Masashi; Tanigawa, Chihiro; Fujii, Yoshito; Kaneko, Satoshi

    2013-01-01

    The use of a "direct PCR" DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ) in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens. PMID:24213192

  16. COMPARISON OF SIX COMMERCIALLY-AVAILABLE DNA POLYMERASES FOR DIRECT PCR

    Masashi Miura

    2013-12-01

    Full Text Available SUMMARY The use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens.

  17. DNA - dependent RNA-polymerase of irradiated animal organs Communication 5. Physico-chemical changes in the enzyme molecules

    The authors investigate the changes noted in the properties of macromolecules of a DNA-dependent RNA-polymerase from rat liver and spleen 120 hours after irradiation (800 rad). In particular, they find changes in the sedimentation constant, in the electrophoretic mobility of sub-units and in their concentration and also suppression of the fermentative activity of RNA-polymerases, both in DNA isolated after irradiation and in DNA from normal organs. (V.A.P.)

  18. Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase iota.

    Johnson, Robert E; Prakash, Louise; Prakash, Satya

    2005-07-26

    Because of the near geometric identity of Watson-Crick (W-C) GxC and AxT base pairs, a given DNA polymerase forms the four possible correct base pairs with nearly identical catalytic efficiencies. However, human DNA polymerase iota (Pol iota), a member of the Y family of DNA polymerases, exhibits a marked template specificity, being more efficient at incorporating the correct nucleotide opposite template purines than opposite pyrimidines. By using 7-deazaadenine and 7-deazaguanine as the templating residues, which disrupt Hoogsteen base pair formation, we show that, unlike the other DNA polymerases belonging to the A, B, or Y family, DNA synthesis by Pol iota is severely inhibited by these N7-modified bases. These observations provide biochemical evidence that, during normal DNA synthesis, template purines adopt a syn conformation in the Pol iota active site, enabling the formation of a Hoogsteen base pair with the incoming pyrimidine nucleotide. Additionally, mutational studies with Leu-62, which lies in close proximity to the templating residue in the Pol iota ternary complex, have indicated that both factors, steric constraints within the active site and the stability provided by the hydrogen bonds in the Hoogsteen base pair, contribute to the efficiency of correct nucleotide incorporation opposite template purines by Pol iota. PMID:16014707

  19. Determining the Diagnostic Value of Mycobacterium Tuberculosis DNA in the Differentiation of Blood Samples of Patients with Active Pulmonary Tuberculosis and Healthy Controls Using Polymerase Chain Reaction

    Abasali Niazi

    2013-10-01

    Full Text Available Background: Tuberculosis (TB is now a major cause of mortality and morbidity in the world. Nowadays, different methods are used to diagnose tuberculosis. Although classical microbiological methods (such as sputum smear are specific, they have little sensitivity and the culture is also time-consuming. Using Polymerase Chain Reaction (PCR in blood samples in terms of Mycobacterium tuberculosis DNA, this study examines diagnostic power of this test in the diagnosis of pulmonary tuberculosis compared with other standard methods. Materials and Methods: In a cross-sectional descriptive-analytic study, blood samples were taken from 40 TB patients and 40 non-TB cases. Following DNA extraction by the commercial kit QIAGEN, the PCR assay was performed using IS6110 primer.Results: In this study, there were 80 people in two groups of TB and non-TB cases. Each group composed of 14 men (35% and 26 women (65%. Sensitivity, specificity as well as positive and negative predictive values obtained 37.5, 100, 100 and 61.5%, respectively.Conclusion: Despite high costs of using PCR for TB diagnosis, sensitivity of this method is low due to various factors and cannot replace current standard methods for TB diagnosis such as smear and culture. It can only be used as a complementary method to confirm diagnosis in strongly suspected cases of tuberculosis.

  20. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells.

    P J Hastings

    Full Text Available Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at approximately 200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB approximately 10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s, tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also

  1. Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells.

    Canitrot, Y; Hoffmann, J S; Calsou, P; Hayakawa, H; Salles, B; Cazaux, C

    2000-09-01

    The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions. PMID:10973926

  2. Priming DNA Replication from Triple Helix Oligonucleotides: Possible Threestranded DNA in DNA Polymerases

    Patrick P. Lestienne

    2011-01-01

    Full Text Available Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G-rich Triple Helix Primers (THP bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre.

  3. Priming DNA replication from triple helix oligonucleotides: possible threestranded DNA in DNA polymerases.

    Lestienne, Patrick P

    2011-01-01

    Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G)-rich Triple Helix Primers (THP) bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre. PMID:22229092

  4. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler. PMID:27271319

  5. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-01-01

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy. PMID:27589807

  6. Structure and function of the translesion DNA polymerases and interactions with damaged DNA

    F. Peter Guengerich

    2015-03-01

    Pre-steady-state kinetic analysis has been used to develop minimum kinetic models with rate constants of (the eight individual reaction steps in the catalytic cycle. The use of single-tryptophan mutants of Sulfolobus solfataricus Dpo4 and human (h pol κ has led to discernment of the steps for the conformation change (associated with dNTP binding and relocation and nucleotidyl transfer. X-ray crystal structures have been obtained for a number of the DNA adduct/DNA polymerase pairs in both binary and ternary complexes. Two isomeric etheno guanine adducts differ considerably in their interactions with DNA polymerases, explaining the base preferences. Further, even when several DNA polymerases cause the same mispairs with a single DNA adduct, the structural bases for this can differ considerably.

  7. Intrinsic transcript cleavage activity of RNA polymerase.

    Orlova, M; Newlands, J; Das, A; Goldfarb, A; Borukhov, S

    1995-01-01

    The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage cons...

  8. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  9. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks.

    Rozacky, Jenna; Nemec, Antoni A; Sweasy, Joann B; Kidane, Dawit

    2015-09-15

    DNA polymerase beta (Pol β) is a key enzyme for the protection against oxidative DNA lesions via its role in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5' phosphate group (5'-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5'-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation. PMID:26090616

  10. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-01

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA. PMID:27311715

  11. DNA polymerase ζ: new insight into eukaryotic mutagenesis and mammalian embryonic development

    Feng Zhu; Ming Zhang

    2003-01-01

    Information about the mechanisms that generate mutationsin eukaryotes is likely to be useful for understanding humanhealth concerns, such as genotoxicity and cancer.Eukaryotic mutagenesis is largely the outcome of attacksby' endogenous and environmental agents. Except for DNArepair, cell cycle checkpoints and DNA damage avoidance,cells have also evolved DNA damage tolerance mechanism,by which lesion-targeted mutation might occur in thegenome during replication by specific DNA polymerases tobypass the lesions (translesion DNA synthesis, TLS), ormutation on undamaged DNA templates (untargetedmutation) might be induced. DNA polymerase ζ (poiζ),which was found firstly in budding yeast Saccharomycescerevisiae and consists of catalytic subunit scRev3 and stimulating subunit scRev7, has Received more attention in recent years. Poi ζ is a member of DNA polymerase δsubfamily, which belongs to DNA polymerase B family, and exists in almost all eukaryotes. Human homolog of the scRev3gene is located in chromosome region 6q21, and the mouse equivalent maps to chromosome 10, distal to the c-myb gene and close to the Macs gene. Alternative splicing, upstream out-of frame ATG can be found in yeast scRev3, mouse and human homologs. Furthermore, the sequence from 253-323 immediate upstream of the AUG initiator codon has the potential to form a stem-loop hairpin secondary structure in REV3 mRNA, suggesting that human REV3 protein may be expressed at low levels in human cells under normal growth conditions. The functional domain analysis showed that yeast Rev3-980 tyrosine in conserved region II is at the polymerase active site. Human REV3 amino acid residues 1 776-2 195 provide a REV7binding domain, and REV7 amino acid residues 1-211provide a bind domain for REV1, REV3 and REV7 itself.More interestingly, REV7 interacts with hMAD2 and therefore might function in the cell cycle control by affecting the activation of APC (anaphase promoting complex).Currently it has been known that

  12. Long-Range PCR Amplification of DNA by DNA Polymerase III Holoenzyme from Thermus thermophilus

    Wendy Ribble

    2015-01-01

    Full Text Available DNA replication in bacteria is accomplished by a multicomponent replicase, the DNA polymerase III holoenzyme (pol III HE. The three essential components of the pol III HE are the α polymerase, the β sliding clamp processivity factor, and the DnaX clamp-loader complex. We report here the assembly of the functional holoenzyme from Thermus thermophilus (Tth, an extreme thermophile. The minimal holoenzyme capable of DNA synthesis consists of α, β and DnaX (τ and γ, δ and δ′ components of the clamp-loader complex. The proteins were each cloned and expressed in a native form. Each component of the system was purified extensively. The minimum holoenzyme from these five purified subunits reassembled is sufficient for rapid and processive DNA synthesis. In an isolated form the α polymerase was found to be unstable at temperatures above 65°C. We were able to increase the thermostability of the pol III HE to 98°C by addition and optimization of various buffers and cosolvents. In the optimized buffer system we show that a replicative polymerase apparatus, Tth pol III HE, is capable of rapid amplification of regions of DNA up to 15,000 base pairs in PCR reactions.

  13. Incomplete primer extension during in vitro DNA amplification catalyzed by Taq polymerase; exploitation for DNA sequencing.

    Olsen, D. B.; Eckstein, F.

    1989-01-01

    Polyacrylamide gel electrophoresis of DNA fragments obtained by the polymerase chain reaction using Taq polymerase revealed the presence of multiple fragments shorter than the expected product. These abortive extension products were observed even when analysis by agarose gel electrophoresis showed only a single band. The production of prematurely terminated fragments can be exploited for the sequencing of PCR products if phosphorothioate groups are incorporated base specifically during the re...

  14. Study on the Interaction of Colloidal Gold with Taq DNA Polymerase

    ZHU,Hong-Ping; MI,Li-Juan; CHEN,Shi-Mou; WANG,Wen-Feng; YAO,Si-De

    2007-01-01

    The interaction of colloidal gold with Taq DNA polymerase (Taq) was investigated in this study. Taq-gold conjugate was formed by adding the enzyme to the colloidal gold solution, as evidenced by UV-Vis spectroscopy,X-ray photoelectron spectroscopy, and photon cross correlation spectroscopy measurements. The conjugate was further characterized by transmission electron microscopy. It was found that the Taq-gold conjugate particles were still spherical and well-dispersed. The influence of gold nanoparticles on the bioactivity of Taq was studied by analyzing the yield of the polymerase chain reaction amplification. Results indicated that the enzymatic activity of Taq decreased after interaction with the colloidal gold.

  15. Recognition of Platinum-DNA Damage by Poly(ADP-Ribose) Polymerase-1†

    Zhu, Guangyu; Chang, Paul; Lippard, Stephen J.

    2010-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) was recently identified as a platinum DNA damage response protein. To investigate the binding properties of PARP-1 to different platinum-DNA adducts in greater detail, biotinylated DNA probes containing a site-specific cisplatin 1,2-d(GpG) or 1,3-d(GpTpG) intrastrand cross-link, or a cisplatin 5’-d(GC)/5’-d(GC) interstrand cross-link (ICL) were utilized in binding assays with cell free extracts (CFEs) in vitro. The activated state of PARP-1 was generated...

  16. DNA polymerase zeta (polζ) in higher eukaryotes

    Gregory N Gan; John P Wittschieben; Birgitte φ Wittschieben; Richard D Wood

    2008-01-01

    Most current knowledge about DNA polymerase zeta (pol ζ) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where polζ consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already appar-ent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genuine instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair ofinterstrand DNA erosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent devel-opments in these areas.

  17. Identification of DNA polymerase molecules repairing DNA irradiated damage and molecular biological study on modified factors of mutation rate

    To explain the development mechanism of mutation by radiation, DNA polymerase molecules repairing DNA should be identified. In this study, plasmid was constructed in order to express anti sense DNA of DNA polymerase in the cell and it was introduced into the cell by the calcium phosphate method. Polyclonal antibody of DNA polymerase δ and ε were produced so as to prove no existence of specific polymerase molecules in the cell. When center part of polymerase ε was immunized, antiserum with high antibody titer was obtained. Near terminal C of polymerase δ was immunized, then antiserum was obtained. We discovered very interesting fact that base sequence of polymerase ε published by Syvaoja was not correct. (S.Y.)

  18. Coumarins as Potential Inhibitors of DNA Polymerases and Reverse Transcriptases. Searching New Antiretroviral and Antitumoral Drugs.

    Garro, Hugo A; Pungitore, Carlos R

    2015-01-01

    Human Immunodeficiency Virus (HIV) is the viral agent of Acquired Immunodeficiency Syndrome (AIDS), and at present, there is no effective vaccine against HIV. Reverse Transcriptase (RT) is an essential enzyme for retroviral replication, such as HIV as well as for other RNA infectious viruses like Human T lymphocyte virus. Polymerases act in DNA metabolism, modulating different processes like mitosis, damage repair, transcription and replication. It has been widely documented that DNA Polymerases and Reverse Transcriptases serve as molecular targets for antiviral and antitumoral chemotherapy. Coumarins are oxygen heterocycles that are widely distributed throughout the plant kingdom. Natural coumarins have attraction due to their bioactive properties such as tumor promotion inhibitory effects, and anti-HIV activity. Coumarins and derivates exhibit potent inhibitory effects on HIV-1 replication in lymphocytes and compounds isolated from Calophyllum inophyllum or DCK derivates showed inhibitory activity against human RT. Furthermore, natural isocoumarins isolated from cultures of fungi or hydroxycoumarins were able to inhibit human DNA polymerase. In view of their importance as drugs and biologically active natural products, and their medicinally useful properties, extensive studies have been carried out on the synthesis of coumarin compounds in recent years. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), a class of antiretroviral chemotherapeutic agents, act by binding to an allosteric pocket showing, generally, low toxicity. This work tries to summarize the investigation about natural and synthetic coumarins with the ability to inhibit key enzymes that play a crucial role in DNA metabolism and their possible application as antiretroviral and antitumoral agents. PMID:26179474

  19. Heat damage to DNA polymerases as a possible cause for hyperthermic cell killing and radiosensitization by heat

    Reports in the literature suggest a causal relationship between heat effects on the activity of DNA polymerase β and hyperthermic cell killing. By using thermotolerance as a tool to investigate this possibility it was found that a poor correlation existed between these two parameters, but a good correlation was observed between the decrease in activity of this enzyme and the extent of radiosensitization by heat. To further pursue the role of DNA polymerases in the mechanism of cell killing, step-down heating procedures were introduced. No sensitization of polymerase inactivation was observed with this treatment. From the results of the experiments reported, the authors like to conclude that heat inactivation of DNA polymerase β is not to be considered as the general cause of hypethermic death

  20. Inhibitors of DNA topoisomerase or β-(but not α-) DNA polymerases alter the incision response of repair-deficient human cells after UV- or mnng-treatment

    Two types of repair-deficient human cells, those incapable of incision after UV irradiation (XPA or XPD) and those that fail to do so after incubation with MNNG (Al336 Mer/sup -/ cells), incised their DNA after treatment with UV or MNNG and incubation a) with inhibitors of DNA topoisomerase II (novobiocin) or b) with dideoxythymidine or at 450C (both inhibitory to β polymerase). This result was not produced by ara C or aphidicolin, specific inhibitors of α DNA polymerase. Thymidine incorporation in these cell lines was refractory to the β but not to the α polymerase inhibitors, although Al336 cells had normal in vitro β DNA polymerase activity with normal sensitivity to dideoxythymidine triphosphate. Thus, modulation of this activity in the cells prevented its inhibition. These results could be produced by allosteric interactions among components of an enzyme complex, similar to the ''replitase,'' that carries out DNA repair. The authors propose that DNA topoisomerase, β-DNA polymerase, a specific damage recognition protein (or proteins), and DNA nicking activity are part of this complex

  1. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair.

    Mossi, R; Ferrari, E.; Hübscher, U

    1998-01-01

    The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA transactions, we investigated the effect of DNA ligase I on various DNA synthesis events catalyzed by th...

  2. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures.

    Dunn, Matthew R; Otto, Carine; Fenton, Kathryn E; Chaput, John C

    2016-05-20

    The ability to synthesize and propagate genetic information encoded in the framework of xeno-nucleic acid (XNA) polymers would inform a wide range of topics from the origins of life to synthetic biology. While directed evolution has produced examples of engineered polymerases that can accept XNA substrates, these enzymes function with reduced activity relative to their natural counterparts. Here, we describe a biochemical strategy that enables the discovery of engineered polymerases with improved activity for a given unnatural polymerase function. Our approach involves identifying specificity determining residues (SDRs) that control polymerase activity, screening mutations at SDR positions in a model polymerase scaffold, and assaying key gain-of-function mutations in orthologous protein architectures. By transferring beneficial mutations between homologous protein structures, we show that new polymerases can be identified that function with superior activity relative to their starting donor scaffold. This concept, which we call scaffold sampling, was used to generate engineered DNA polymerases that can faithfully synthesize RNA and TNA (threose nucleic acid), respectively, on a DNA template with high primer-extension efficiency and low template sequence bias. We suggest that the ability to combine phenotypes from different donor and recipient scaffolds provides a new paradigm in polymerase engineering where natural structural diversity can be used to refine the catalytic activity of synthetic enzymes. PMID:26860781

  3. Antisense myb inhibition of purified erythroid progenitors in development and differentiation is linked to cycling activity and expression of DNA polymerase alpha

    These studies aimed to determine the expression and functional role of c-myb in erythroid progenitors with different cycling activities. In the first series of experiments the erythroid burst-forming unit (BFU-E) and colony-forming unit (CFU-E) populations from adult peripheral blood (PB), bone marrow (BM), and embryonic-fetal liver (FL) were treated with either c-myb antisense oligomers or 3H-thymidine (3H-TdR). A direct correlation was always observed between the inhibitory effect of anti-myb oligomers and the level of cycling activity. Thus, the inhibitory effect of antisense c-myb on the number of BFU-E colonies was 28.3% +/- 15.8% in PB, 53.4% +/- 9.3% in BM, and 68.2% +/- 24.5% in FL. Both adult and embryonic CFU-E were markedly inhibited. Using purified PB progenitors, we observed a similar pattern, although with slightly lower inhibitory effects. In the 3H-TdR suicide assay the killing index of BFU-E was 8.9% +/- 4.2% in PB, 29.4% +/- 6.5% in BM, and 40.1% +/- 9.6% in FL. The values for adult and embryonic CFU-E were 55.7% +/- 7.9% and 60.98% +/- 6.6%, respectively. We then investigated the kinetics of c-myb mRNA level during the erythroid differentiation of purified adult PB and FL BFU-E, as evaluated in liquid-phase culture by reverse transcription-polymerase chain reaction. Adult erythroid precursors showed a gradual increase of c-myb mRNA from day 4 through day 8 of culture and a sharp decrease at later times, whereas the expression of c-myb mRNA and protein in differentiation embryonic precursors peaked 2 days earlier. In both cases, c-myb mRNA level peaked at the CFU-E stage of differentiation. Finally, highly purified adult PB BFU-E were stimulated into cycling by a 3-day treatment with interleukin-3 in liquid phase: both the sensitivity to c-myb antisense oligomers and the 3H-TdR suicide index showed a gradual, strictly parallel increase

  4. Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity

    Lu, Gang; He, Dong; Wang, Zengchao; Ou, Shudan; Yuan, Rong; Li, Shoujun

    2016-01-01

    An influenza virus polymerase reconstitution assay based on the human, dog, or chicken RNA polymerase I (PolI) promoter has been developed and widely used to study the polymerase activity of the influenza virus in corresponding cell types. Although it is an important member of the influenza virus family and has been known for sixty years, no studies have been performed to clone the horse PolI promoter or to study the polymerase activity of equine influenza virus (EIV) in horse cells. In our study, the horse RNA PolI promoter was cloned from fetal equine lung cells. Using the luciferase assay, it was found that a 500 bp horse RNA PolI promoter sequence was required for efficient transcription. Then, using the developed polymerase reconstitution assay based on the horse RNA PolI promoter, the polymerase activity of two EIV strains was compared, and equine myxovirus resistance A protein was identified as having the inhibiting EIV polymerase activity function in horse cells. Our study enriches our knowledge of the RNA PolI promoter of eukaryotic species and provides a useful tool for the study of influenza virus polymerase activity in horse cells. PMID:27258298

  5. Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity.

    Lu, Gang; He, Dong; Wang, Zengchao; Ou, Shudan; Yuan, Rong; Li, Shoujun

    2016-01-01

    An influenza virus polymerase reconstitution assay based on the human, dog, or chicken RNA polymerase I (PolI) promoter has been developed and widely used to study the polymerase activity of the influenza virus in corresponding cell types. Although it is an important member of the influenza virus family and has been known for sixty years, no studies have been performed to clone the horse PolI promoter or to study the polymerase activity of equine influenza virus (EIV) in horse cells. In our study, the horse RNA PolI promoter was cloned from fetal equine lung cells. Using the luciferase assay, it was found that a 500 bp horse RNA PolI promoter sequence was required for efficient transcription. Then, using the developed polymerase reconstitution assay based on the horse RNA PolI promoter, the polymerase activity of two EIV strains was compared, and equine myxovirus resistance A protein was identified as having the inhibiting EIV polymerase activity function in horse cells. Our study enriches our knowledge of the RNA PolI promoter of eukaryotic species and provides a useful tool for the study of influenza virus polymerase activity in horse cells. PMID:27258298

  6. Involvement of the yeast DNA polymerase delta in DNA repair in vivo

    The POL3 encoded catalytic subunit of DNA polymerase delta possesses a highly conserved C-terminal cysteine-rich domain in Saccharomyces cerevisiae. Mutations in some of its cysteine codons display a lethal phenotype, which demonstrates an essential function of this domain. The thermosensitive mutant pol3-13, in which a serine replaces a cysteine of this domain, exhibits a range of defects in DNA repair, such as hypersensitivity to different DNA-damaging agents and deficiency for induced mutagenesis and for recombination. These phenotypes are observed at 24 degrees, a temperature at which DNA replication is almost normal; this differentiates the functions of POL3 in DNA repair and DNA replication. Since spontaneous mutagenesis and spontaneous recombination are efficient in pol3-13, we propose that POL3 plays an important role in DNA repair after irradiation, particularly in the error-prone and recombinational pathways. Extragenic suppressors of pol3-13 are allelic to sdp5-1, previously identified as an extragenic suppressor of pol3-11. SDP5, which is identical to HYS2, encodes a protein homologous to the p50 subunit of bovine and human DNA polymerase delta. SDP5 is most probably the p55 subunit of Pol delta of S. cerevisiae and seems to be associated with the catalytic subunit for both DNA replication and DNA repair. (author)

  7. Probing Conformational Changes of Human DNA Polymerase λ Using Mass Spectrometry-Based Protein Footprinting

    Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai

    2009-01-01

    Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - base...

  8. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  9. Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton.

    Schmidt, Helen F; Sakowski, Eric G; Williamson, Shannon J; Polson, Shawn W; Wommack, K Eric

    2014-01-01

    Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton. PMID:23985748

  10. Characterization of novel hepadnaviral RNA species accumulated in hepatoma cells treated with viral DNA polymerase inhibitors.

    Zhang, Pinghu; Liu, Fei; Guo, Fang; Zhao, Qiong; Chang, Jinhong; Guo, Ju-Tao

    2016-07-01

    Inhibitors of hepadnaviral DNA polymerases are predicted to inhibit both minus and plus strand of viral DNA synthesis and arrest viral DNA replication at the stage of pregenomic (pg) RNA-containing nucleocapsids. However, analyses of the RNA species of human and duck hepatitis B viruses (HBV and DHBV, respectively) in hepatoma cells treated with viral DNA polymerase inhibitors revealed the genesis of novel RNA species migrating slightly faster than the full-length pgRNA. The DNA polymerase inhibitor-induced accumulation of these RNA species were abolished in the presence of alpha-interferon or HBV nucleocapsid assembly inhibitors. Moreover, they were protected from microccocal nuclease digestion and devoid of a poly-A tail. These characteristics suggest that the novel RNA species are most likely generated from RNase H cleavage of encapsidated pgRNA, after primer translocation and synthesis of the 5' terminal portion of minus strand DNA. In support of this hypothesis, DNA polymerase inhibitor treatment of chicken hepatoma cells transfected with a DHBV genome encoding an RNase H inactive DNA polymerase (E696H) failed to produce such RNA species. Our results thus suggest that the currently available DNA polymerase inhibitors do not efficiently arrest minus strand DNA synthesis at the early stage in hepatocytes. Hence, development of novel antiviral agents that more potently suppress viral DNA synthesis or viral nucleocapsid assembly inhibitors that are mechanistically complementary to the currently available DNA polymerase inhibitors are warranted. PMID:27083116

  11. Analysis of UV-induced mutation spectra in Escherichia coli by DNA polymerase η from Arabidopsis thaliana

    DNA polymerase η belongs to the Y-family of DNA polymerases, enzymes that are able to synthesize past template lesions that block replication fork progression. This polymerase accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and therefore may contributes to resistance against sunlight in vivo, both ameliorating survival and decreasing the level of mutagenesis. We cloned and sequenced a cDNA from Arabidopsis thaliana which encodes a protein containing several sequence motifs characteristics of Polη homologues, including a highly conserved sequence reported to be present in the active site of the Y-family DNA polymerases. The gene, named AtPOLH, contains 14 exons and 13 introns and is expressed in different plant tissues. A strain from Saccharomyces cerevisiae, deficient in Polη activity, was transformed with a yeast expression plasmid containing the AtPOLH cDNA. The rate of survival to UV irradiation in the transformed mutant increased to similar values of the wild type yeast strain, showing that AtPOLH encodes a functional protein. In addition, when AtPOLH is expressed in Escherichia coli, a change in the mutational spectra is detected when bacteria are irradiated with UV light. This observation might indicate that AtPOLH could compete with DNA polymerase V and then bypass cyclobutane pyrimidine dimers incorporating two adenylates

  12. Mapping and mutation of the conserved DNA polymerase interaction motif (DPIM located in the C-terminal domain of fission yeast DNA polymerase δ subunit Cdc27

    Warbrick Emma

    2004-12-01

    Full Text Available Abstract Background DNA polymerases α and δ play essential roles in the replication of chromosomal DNA in eukaryotic cells. DNA polymerase α (Pol α-primase is required to prime synthesis of the leading strand and each Okazaki fragment on the lagging strand, whereas DNA polymerase δ (Pol δ is required for the elongation stages of replication, a function it appears capable of performing on both leading and lagging strands, at least in the absence of DNA polymerase ε (Pol ε. Results Here it is shown that the catalytic subunit of Pol α, Pol1, interacts with Cdc27, one of three non-catalytic subunits of fission yeast Pol δ, both in vivo and in vitro. Pol1 interacts with the C-terminal domain of Cdc27, at a site distinct from the previously identified binding sites for Cdc1 and PCNA. Comparative protein sequence analysis identifies a protein sequence motif, called the DNA polymerase interaction motif (DPIM, in Cdc27 orthologues from a wide variety of eukaryotic species, including mammals. Mutational analysis shows that the DPIM in fission yeast Cdc27 is not required for effective DNA replication, repair or checkpoint function. Conclusions The absence of any detectable phenotypic consequences arising from mutation of the DPIM suggests that despite its evolutionary conservation, the interaction between the two polymerases mediated by this motif is a non-essential one.

  13. Translesion DNA polymerases Pol , Pol , Pol , Pol and Rev1 are not essential for repeat-induced point mutation in Neurospora crassa

    Ranjan Tamuli; C Ravindran; Durgadas P Kasbekar

    2006-12-01

    Pol , Pol , Pol , Pol and Rev1 are specialized DNA polymerases that are able to synthesize DNA across a damaged template. DNA synthesis by such translesion polymerases can be mutagenic due to the miscoding nature of most damaged nucleotides. In fact, many mutational and hypermutational processes in systems ranging from yeast to mammals have been traced to the activity of such polymerases. We show however, that the translesion polymerases are dispensable for repeat-induced point mutation (RIP) in Neurospora crassa. Additionally, we demonstrate that the upr-1 gene, which encodes the catalytic subunit of Pol , is a highly polymorphic locus in Neurospora.

  14. DNA polymerase I is required for premeiotic DNA replication and sporulation but not for X-ray repair in Saccharomyces cerevisiae

    We have used a set of seven temperature-sensitive mutants in the DNA polymerase I gene of Saccharomyces cerevisiae to investigate the role of DNA polymerase I in various aspects of DNA synthesis in vivo. Previously, we showed that DNA polymerase I is required for mitotic DNA replication. Here we extend our studies to several stages of meiosis and repair of X-ray-induced damage. We find that sporulation is blocked in all of the DNA polymerase temperature-sensitive mutants and that premeiotic DNA replication does not occur. Commitment to meiotic recombination is only 2% of wild-type levels. Thus, DNA polymerase I is essential for these steps. However, repair of X-ray-induced single-strand breaks is not defective in the DNA polymerase temperature-sensitive mutants, and DNA polymerase I is therefore not essential for repair of such lesions. These results suggest that DNA polymerase II or III or both, the two other nuclear yeast DNA polymerases for which roles have not yet been established, carry out repair in the absence of DNA polymerase I, but that DNA polymerase II and III cannot compensate for loss of DNA polymerase I in meiotic replication and recombination. These results do not, however, rule out essential roles for DNA polymerase II or III or both in addition to that for DNA polymerase I

  15. DNA polymerase β from rat liver. Isolation, properties, and inhibitory analysis of ahomogeneous preparation

    A simple and reproducible method for purifying DNA polymerase β from rat liver to the homogeneous state has been developed which includes the stages of the isolation and salt extraction of the chromatin and the chromatography of the proteins on DEAE-cellulose and phosphocellulose, Blue Gel A, and DNA-Sepharose. The final preparation consisted of a protein with a molecular weight 38-40 kD, a specific activity of 31 activity units/μg, and a pI value of 8.6-8.9. The total yield of active enzyme was 8.4%, calculated on the chromatin extract. The inclusion by the enzyme of radioactive dNTPs in activated DNA is effectively inhibited by dNTP (3'NH2)s, ddTTP, and dNTP(3'F)s, and, considerably more feebly, by aCTP and aNTP (3'NH2)s

  16. Structural basis for the suppression of skin cancers by DNA polymerase [eta

    Silverstein, Timothy D.; Johnson, Robert E.; Jain, Rinku; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K. (Texas-MED); (Mount Sinai Hospital)

    2010-09-13

    DNA polymerase {eta} (Pol{eta}) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Pol{eta} (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Pol{eta} (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Pol{eta} to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln55, Arg73 and Met74. Together, these features define the basis for Pol{eta}'s action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.

  17. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli.

    Zheng, Wenjun; Wang, Qingsong; Bi, Qun

    2016-04-01

    Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future. PMID:26920159

  18. Involvement of DNA polymerase δ in DNA repair synthesis in human fibroblasts at late times after ultraviolet irradiation

    DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase δ as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, the authors describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, α or δ. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase α several hundred times more strongly than it inhibits DNA polymerase δ. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase δ. It appears that repair synthesis at late time after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase δ

  19. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2

    2007-01-01

    DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recom-bination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepato-cellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepato-carcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E. coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chro-matography in an FPLC system. The analysis using isotope α-32P-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.

  20. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2

    GU Fu; LI YuYang; L(U) Hong; YOU Chun; LIU JianPing; CHEN Ao; YU Yao; WANG Xiang; WAN DaFang; GU JianRen; YUAN HanYing

    2007-01-01

    DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recombination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepatocellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepatocarcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E.coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chromatography in an FPLC system. The analysis using isotope α-32p-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.

  1. COMPARISON OF SIX COMMERCIALLY-AVAILABLE DNA POLYMERASES FOR DIRECT PCR

    Miura, Masashi; Tanigawa, Chihiro; Fujii, Yoshito; Kaneko, Satoshi

    2013-01-01

    The use of a "direct PCR" DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ) in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA poly...

  2. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ.

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J

    2016-01-01

    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  3. Single molecule measurement of the “speed limit” of DNA polymerase

    Schwartz, Jerrod J.; Quake, Stephen R

    2009-01-01

    Although DNA replication is often imagined as a regular and continuous process, the DNA polymerase enzyme is a complicated machine and can pause upon encountering physical and chemical barriers. We used single molecule measurements to make a detailed characterization of this behavior as a function of the template's secondary structure and the sequence context. Strand displacement replication through a DNA hairpin by single DNA polymerase molecules was measured in real time with near single ba...

  4. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.

    Olivier Martínez

    Full Text Available (S(C5', R(P α,β-D- Constrained Nucleic Acids (CNA are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.

  5. Eukaryotic DNA repair is blocked at different steps by inhibitors of DNA topoisomerases and of DNA polymerases α and β

    Inhibitors of (a) DNA topoisomerases (novobiocin and nalidixic acid) and of (b) eukaryotic DNA polymerases α (cytosine arabinoside) and β (dideoxythymidine) blocked different steps of DNA repair, demonstrated by the effects of the inhibitors on the relaxation of supercoiled DNA nucleoids following treatment of human cell cultures with ultraviolet light (1-3 J/m2) or MNNG (5 or 20 μM) and the subsequent restoration of the supercoiled nucleoids during repair incubation. Inhibition of repair by novobiocin was partially reversible; upon its removal from the culture medium, the nucleoid DNA of repairing cells became relaxed. The DNA polymerase inhibitors allowed the initial relaxation of DNA after treatment of the cells with ultraviolet or MNNG but delayed the regeneration of rapidly-sedimenting (supercoiled) nucleoid DNA for 2-4 h. Dideoxythymidine (1 mM) was more effective than cytosine arabinoside (1 μM) in producing this delay, but neither inhibitor by itself blocked repair permanently. Incubation of ultraviolet-irradiated cells with 1 μM cytosine arabinoside plus 1 mM dideoxythymidine blocked the completion of repair for 24 h, whereas incubation with 10 μM cytosine arabinoside or 5 mM dideoxythymidine produced only temporary repair delays of 2-4 h. Thus, it is likely that the two DNA polymerase inhibitors act upon separate targets and that both targets are involved in repair. (Auth.)

  6. Polymerase chain reaction and conventional DNA tests in detection of HPV DNA in cytologically normal and abnormal cervical scrapes

    Kalia, A.; Jalava, T.; Nieminen, P.;

    1992-01-01

    Med.mikrobiologi, polymerase chain reaction, DNA tests, human papillomavirus (HPV), cervical smear, hybridisation, cytologi, affiProbe HPV test, ViraType test......Med.mikrobiologi, polymerase chain reaction, DNA tests, human papillomavirus (HPV), cervical smear, hybridisation, cytologi, affiProbe HPV test, ViraType test...

  7. Mammalian α-polymerase: cloning of partial complementary DNA and immunobinding of catalytic subunit in crude homogenate protein blots

    A new polyclonal antibody against the α-polymerase catalytic polypeptide was prepared by using homogeneous HeLa cellα-polymerase. The antibody neutralized α-polymerase activity and was strong and specific for the α-polymerase catalytic polypeptide (M/sub r/ 183,000) in Western blot analysis of crude extracts of HeLa cells. The antibody was used to screen a cDNA library of newborn rat brain poly(A+) RNA in λgt11. A positive phage was identified and plaque purified. This phage, designated λpolα1.2, also was found to be positive with an antibody against Drosophila α-polymerase. The insert in λpolα1.2 (1183 base pairs) contained a poly(A) sequence at the 3' terminus and a short in-phase open reading frame at the 5' terminus. A synthetic oligopeptide (eight amino acids) corresponding to the open reading frame was used to raise antiserum in rabbits. Antibody affinity purified from this serum was found to be immunoreactive against purified α-polymerase by enzyme-linked immunosorbent assay and was capable of immunoprecipitating α-polymerase. This indicated the λpolα1.2 insert encoded an α-polymerase epitope and suggested that the cDNA corresponded to an α-polymerase mRNA. This was confirmed in hybrid selection experiments using pUC9 containing the cDNA insert and poly(A+) RNA from newborn rat brain; the insert hybridized to mRNA capable of encoding α-polymerase catalytic polypeptides. Northern blot analysis of rat brain poly(A+) RNA revealed that this mRNA is ∼5.4 kilobases

  8. Photodynamic inhibition of Escherichia coli DNA polymerase 1 by 8-methoxypsoralen plus near ultraviolet irradiation

    Irradiation by UV-A of E. coli DNA polymerase I in the presence of 8-methoxypsoralen (8-MOP) leads to a similar inactivation of the 5' → 3' polymerase and 3' → 5' exonuclease activities of the enzyme. The kinetics of inactivation depend on the psoralen concentration and on the duration of irradiation. The 5' → 3' exonuclease activity is first slightly stimulated at short irradiation time in the presence of 8-MOP; further irradiation leads to inhibition of this activity. The mechanism of the reactions involves oxygen as shown by the absence of any effect of UV irradiation when oxygen is removed. The results obtained in D2O, in oxygen-saturated buffer or in the presence of singlet oxygen (1O2) quenchers show that 1O2 is one of the reactive intermediate species. Irradiation of homopolymers primed with oligomers in the presence of 8-MOP inhibits their template and initiating capacity in the same dose range as that required to inactivate DNA polymerase I. Mono-adducts of 8-MOP with nucleic acid bases can act as inhibitors of both replication and initiation. (author)

  9. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization. PMID:27264557

  10. Induction of beta-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells

    Only a few of the genes involved in DNA repair in mammalian cells have been isolated, and induction of a DNA repair gene in response to DNA damage has not yet been established. DNA polymerase beta (beta-polymerase) appears to have a synthetic role in DNA repair after certain types of DNA damage. Here we show that the level of beta-polymerase mRNA is increased in CHO cells after treatment with several DNA-damaging agents

  11. COMPARISON OF SIX COMMERCIALLY-AVAILABLE DNA POLYMERASES FOR DIRECT PCR

    Masashi Miura; Chihiro Tanigawa; Yoshito Fujii; Satoshi Kaneko

    2013-01-01

    SUMMARY The use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ) in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard ...

  12. Specific inhibitors of eukaryotic DNA synthesis and DNA polymerase alpha, 3-deoxyaphidicolin and aphidicolin-17-monoacetate.

    Haraguchi, T; Oguro, M; Nagano, H; Ichihara, A; Sakamura, S

    1983-01-01

    Of several phytotoxins isolated from culture filtrates of Phoma betae Frank PS-13, an incitant of leaf spot disease of sugar beet, three have been identified as aphidicolin, 3-deoxyaphidicolin and aphidicolin-17-monoacetate. Aphidicolin is a selective inhibitor of eukaryotic DNA polymerase alpha (Ikegami et al. (1978) Nature 275, 458-460). Consequently, we studied the action mechanism of 3-deoxyaphidicolin and aphidicolin-17-monoacetate. These aphidicolin analogues markedly inhibited the in v...

  13. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine

    The involvement of DNA polymerases α, β, and δ in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase α) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [3H]thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 μg of aphidicolin/mL, 6% by 10 μM BuPdGTP, 13% by anti-(DNA polymerse α) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 μg of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase α) antibodies into HF nuclei. These results indicate that both DNA polymerase δ and β are involved in repairing DNA damage caused by MNNG

  14. Site-specifically modified oligodeoxyribonucleotides as templates for Escherichia coli DNA polymerase I.

    O'Connor, D; Stöhrer, G

    1985-01-01

    Oligodeoxyribonucleotides with site-specific modifications have been used as substrates for Escherichia coli DNA polymerase I holoenzyme and Klenow fragment. Modifications included the bulky guanine-8-aminofluorene adduct and a guanine oxidation product resembling the product of photosensitized DNA oxidation. By a combination of primers and "nick-mers", conditions of single-strand-directed DNA synthesis and nick-translation could be created. Our results show that the polymerase can bypass bot...

  15. Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification

    Dean, Frank B.; Nelson, John R.; Giesler, Theresa L.; Lasken, Roger S.

    2001-01-01

    We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and φ29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified ...

  16. Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA

    The previous demonstration that a phosphonoacetate (PAA)-resistant (PAA/sup r/) vaccinia virus mutant synthesized an altered DNA polymerase provided the key to mapping this gene. Marker rescue was performed in cells infected with wild-type PAA-sensitive (PAA/sup s/) vaccinia by transfecting with calcium phosphate-precipitated DNA from a PAA/sup r/ mutant virus. Formation of PAA/sup r/ recombinants was measured by plaque assay in the presence of PAA. Of the 12 HindIII fragments cloned in plasmid or cosmid vectors, only fragment E conferred the PAA/sup r/ phenotype. Successive subcloning of the 15-kilobase HindIII fragment E localized the marker within a 7.5-kilobase BamHI-HindIII fragment and then within a 2.9-kilobase EcoRI fragment. The location of the DNA polymerase gene, about 57 kilobases from the left end of the genome, was confirmed by cell-free translation of mRNA selected by hybridization to plasmids containing regions of PAA/sup r/ vaccinia DNA active in marker rescue. A 100,000-dalton polypeptide that comigrated with authentic DNA polymerase was synthesized. Correspondence of the in vitro translation product with purified vaccinia DNA polymerase was established by peptide mapping

  17. Mutations affecting RNA polymerase I-stimulated exchange and rDNA recombination in yeast

    HOT1 is a cis-acting recombination-stimulatory sequence isolated from the rDNA repeat unit of yeast. The ability of HOT1 to stimulate mitotic exchange appears to depend on its ability to promote high levels of RNA polymerase I transcription. A qualitative colony color sectoring assay was developed to screen for trans-acting mutations that alter the activity of HOT1. Both hypo-recombination and hyper-recombination mutants were isolated. Genetic analysis of seven HOT1 recombination mutants (hrm) that decrease HOT1 activity shows that they behave as recessive nuclear mutations and belong to five linkage groups. Three of these mutations, hrm1, hrm2, and hrm3, also decrease rDNA exchange but do not alter recombination in the absence of HOT1. Another mutation, hrm4, decreases HOT1-stimulated recombination but does not affect rDNA recombination or exchange in the absence of HOT1. Two new alleles of RAD52 were also isolated using this screen. With regard to HOT1 activity, rad52 is epistatic to all four hrm mutations indicating that the products of the HRM genes and of RAD52 mediate steps in the same recombination pathway. Finding mutations that decrease both the activity of HOT1 and exchange in the rDNA supports the hypothesis that HOT1 plays a role in rDNA recombination

  18. Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer.

    Kinoshita, Kenji; Fujimoto, Kentaro; Yakabe, Toru; Saito, Shin; Hamaguchi, Yuzo; Kikuchi, Takayuki; Nonaka, Ken; Murata, Shigenori; Masuda, Daisuke; Takada, Wataru; Funaoka, Sohei; Arai, Susumu; Nakanishi, Hisao; Yokoyama, Kanehisa; Fujiwara, Kazuhiko; Matsubara, Kenichi

    2007-01-01

    DNA microarrays are routinely used to monitor gene expression profiling and single nucleotide polymorphisms (SNPs). However, for practically useful high performance, the detection sensitivity is still not adequate, leaving low expression genes undetected. To resolve this issue, we have developed a new plastic S-BIO PrimeSurface with a biocompatible polymer; its surface chemistry offers an extraordinarily stable thermal property for a lack of pre-activated glass slide surface. The oligonucleotides immobilized on this substrate are robust in boiling water and show no significant loss of hybridization activity during dissociation treatment. This allowed us to hybridize the templates, extend the 3' end of the immobilized DNA primers on the S-Bio by DNA polymerase using deoxynucleotidyl triphosphates (dNTP) as extender units, release the templates by denaturalization and use the same templates for a second round of reactions similar to that of the PCR method. By repeating this cycle, the picomolar concentration range of the template oligonucleotide can be detected as stable signals via the incorporation of labeled dUTP into primers. This method of Multiple Primer EXtension (MPEX) could be further extended as an alternative route for producing DNA microarrays for SNP analyses via simple template preparation such as reverse transcript cDNA or restriction enzyme treatment of genome DNA. PMID:17135189

  19. Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone

    DA-LIN HU; JIAN-PING YANG; DAO-KUI FANG; YAN SHA; XIAO-ZHI TU; ZHI-XIONG ZHUANG; HUAN-WEN TANG; HAI-RONG LIANG; DONG-SHENG TANG; YI-MING LIU; WEI-DONG JI; JIAN-HUI YUAN; YUN HE; ZHENG-YU ZHU

    2007-01-01

    Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-Cl were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results MTT assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.

  20. Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters

    Schramm, Laura; Pendergrast, P. Shannon; Sun, Yuling; Hernandez, Nouria

    2000-01-01

    Transcription initiation at RNA polymerase III promoters requires transcription factor IIIB (TFIIIB), an activity that binds to RNA polymerase III promoters, generally through protein–protein contacts with DNA binding factors, and directly recruits RNA polymerase III. Saccharomyces cerevisiae TFIIIB is a complex of three subunits, TBP, the TFIIB-related factor BRF, and the more loosely associated polypeptide β″. Although human homologs for two of the TFIIIB subunits, the TATA box–binding prot...

  1. Casein Kinase 2 Associates with Initiation-Competent RNA Polymerase I and Has Multiple Roles in Ribosomal DNA Transcription

    Panova, Tatiana B; Panov, Kostya I.; Russell, Jackie; Zomerdijk, Joost C. B. M.

    2006-01-01

    Mammalian RNA polymerase I (Pol I) complexes contain a number of associated factors, some with undefined regulatory roles in transcription. We demonstrate that casein kinase 2 (CK2) in human cells is associated specifically only with the initiation-competent Pol Iβ isoform and not with Pol Iα. Chromatin immunoprecipitation analysis places CK2 at the ribosomal DNA (rDNA) promoter in vivo. Pol Iβ-associated CK2 can phosphorylate topoisomerase IIα in Pol Iβ, activator upstream binding factor (UB...

  2. Simple method for production of internal control DNA for Mycobacterium tuberculosis polymerase chain reaction assays.

    Dewit, D.; Wootton, M.; Allan, B; Steyn, L

    1993-01-01

    A simple method for the production of internal control DNA for two well-established Mycobacterium tuberculosis polymerase chain reaction assays is described. The internal controls were produced from Mycobacterium kansasii DNA with the same primers but at a lower annealing temperature than that used in the standard assays. In both assays, therefore, the internal control DNA has the same primer-binding sequences at the target DNA. One-microgram quantities of internal control DNA which was not c...

  3. Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells.

    Jeffreys, A J; Wilson, V.; Neumann, R.; Keyte, J

    1988-01-01

    Hypervariable minisatellites can be amplified from human DNA by the polymerase chain reaction, using primers from DNA flanking the minisatellite to amplify the entire block of tandem repeat units. Minisatellite alleles up to 5-10 kb long can be faithfully amplified. At least six minisatellite loci can be co-amplified from the same DNA sample and simultaneously detected to provide a reproducible and highly variable DNA fingerprint which can be obtained from nanogram quantities of human DNA. Th...

  4. Detection and Identification of Bursaphelenchus Species with DNA Fingerprinting and Polymerase Chain Reaction

    Harmey, Judith H.; Harmey, Matthew A.

    1993-01-01

    We have evaluated the potential of DNA-based methods to identify and differentiate Bursaphelenchus spp. and isolates. The isolation of a DNA probe, designated X14, and development of a DNA fingerprinting method for the identification and differentiation of Bursaphelenchus species and strains is described. Polymerase chain reaction (PCR) amplification of DNA isolated from Bursaphelenchus species using two primers derived from the sequence of the cloned repetitive DNA fragment X14 resulted in m...

  5. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp

    Giesendorf, B A; Goossens, H; Niesters, H G; Van Belkum, A; Koeken, A; Endtz, H P; Stegeman, H; Quint, W G

    1994-01-01

    The applicability of polymerase chain reaction (PCR)-mediated DNA typing, with primers complementary to dispersed repetitive DNA sequences and arbitrarily chosen DNA motifs, to study the epidemiology of campylobacter infection was evaluated. With a single PCR reaction and simple gel electrophoresis,

  6. Production of recombinant human DNA polymerase delta in a Bombyx mori bioreactor.

    Zhou, Yajing; Chen, Huiqing; Li, Xiao; Wang, Yujue; Chen, Keping; Zhang, Sufang; Meng, Xiao; Lee, Ernest Y C; Lee, Marietta Y W T

    2011-01-01

    Eukaryotic DNA polymerase δ (pol δ) plays a crucial role in chromosomal DNA replication and various DNA repair processes. It is thought to consist of p125, p66 (p68), p50 and p12 subunits. However, rigorous isolation of mammalian pol δ from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. While recombinant pol δ isolated from infected insect cells have some problems of consistency in the quality of the preparations, and the yields are much lower. To address these deficiencies, we have constructed recombinant BmNPV baculoviruses using MultiBac system. This method makes the generation of recombinant forms of pol δ containing mutations in any one of the subunits or combinations thereof extremely facile. From about 350 infected larvae, we obtained as much as 4 mg of pol δ four-subunit complex. Highly purified enzyme behaved like the one of native form by rigorous characterization and comparison of its activities on poly(dA)/oligo(dT) template-primer and singly primed M13 DNA, and its homogeneity on FPLC gel filtration. In vitro base excision repair (BER) assays showed that pol δ plays a significant role in uracil-intiated BER and is more likely to mediate LP BER, while the trimer lacking p12 is more likely to mediate SN BER. It seems likely that loss of p12 modulates the rate of SN BER and LP BER during the repair process. Thus, this work provides a simple, fast, reliable and economic way for the large-scale production of human DNA polymerase δ with a high activity and purity, setting up a new platform for our further research on the biochemical properties of pol δ, its regulation and the integration of its functions, and how alterations in pol δ function could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability. PMID:21789240

  7. Snapshots of DNA polymerase processing aberrant substrates : Structural insights into abasic site bypass and polymerization of 5-alkynylated nucleotide analogs

    Obeid, Samra

    2011-01-01

    DNA polymerases are involved in all DNA synthesis events occurring in nature. Therefore, these enzymes are essential for the maintenance of the genetic information and its stability. Structural and functional studies have added significantly to our understanding of the basic mechanisms of DNA synthesis by DNA polymerases. Thereby, X-ray crystallography has become a powerful tool to gain further insights into structure-function relationships of DNA polymerases. Based on crystal structure analy...

  8. Identification of DNA polymerase molecules repairing DNA irradiated damage and molecular biological study on modified factors of mutation rate

    Yamada, Koichi; Inoue, Shuji [National Inst. of Healthand Nutrition, Tokyo (Japan)

    1999-02-01

    DNA repairing polymerase has not been identified in human culture cells because the specificities of enzyme inhibitors used in previous studies were not so high. In this study, anti-sense oligonucleotides were transfected into human fibroblast cells by electroporation and several clones selected by geneticin treatment were found to express the RNA of the incorporated DNA. However, the expression was not significant and its reproducibility was poor. Then, a study on repairing mechanism was made using XP30 RO and XP 115 LO cells which are variant cells of xeroderma pigmentosum, a human hereditary disease aiming to identify the DNA polymerase related to the disease. There were abnormalities in DNA polymerase subunit {delta} or {epsilon} which consists DNA replication complex. Thus, it was suggested that the DNA replication of these mutant cells might terminate at the site containing such abnormality. (M.N.)

  9. Identification of DNA polymerase molecules repairing DNA irradiated damage and molecular biological study on modified factors of mutation rate

    DNA repairing polymerase has not been identified in human culture cells because the specificities of enzyme inhibitors used in previous studies were not so high. In this study, anti-sense oligonucleotides were transfected into human fibroblast cells by electroporation and several clones selected by geneticin treatment were found to express the RNA of the incorporated DNA. However, the expression was not significant and its reproducibility was poor. Then, a study on repairing mechanism was made using XP30 RO and XP 115 LO cells which are variant cells of xeroderma pigmentosum, a human hereditary disease aiming to identify the DNA polymerase related to the disease. There were abnormalities in DNA polymerase subunit δ or ε which consists DNA replication complex. Thus, it was suggested that the DNA replication of these mutant cells might terminate at the site containing such abnormality. (M.N.)

  10. Translesion synthesis by yeast DNA polymerase ζ from templates containing lesions of ultraviolet radiation and acetylaminofluorene

    Guo, Dongyu; Wu, Xiaohua; Deepak K Rajpal; Taylor, John-Stephen; Wang, Zhigang

    2001-01-01

    In the yeast Saccharomyces cerevisiae, DNA polymerase ζ (Polζ) is required in a major lesion bypass pathway. To help understand the role of Polζ in lesion bypass, we have performed in vitro biochemical analyses of this polymerase in response to several DNA lesions. Purified yeast Polζ performed limited translesion synthesis opposite a template TT (6-4) photoproduct, incorporating A or T with similar efficiencies (and less frequently G) opposite the 3′ T, and pr...

  11. Replication of N[superscript 2],3-Ethenoguanine by DNA Polymerases

    Zhao, Linlin; Christov, Plamen P.; Kozekov, Ivan D.; Pence, Matthew G.; Pallan, Pradeep S.; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter (Vanderbilt)

    2014-10-02

    The unstable DNA adduct N2,3-ethenoguanine, a product of both exposure to the carcinogen vinyl chloride and of oxidative stress, was built into an oligonucleotide, using an isostere strategy to stabilize the glycosidic bond. This modification was then used to examine the cause of mutations by DNA polymerases, in terms of both the biochemistry of the lesion and a structure of the lesion within a polymerase.

  12. DNA polymerase I modulates inducible stable DNA replication in Escherichia coli.

    Ruscitti, T; Linn, S.(Florida International University, Miami, USA)

    1992-01-01

    Mutants of Escherichia coli lacking RNase HI activity and cells induced for the SOS response express modes of DNA replication independent of protein synthesis, called constitutive and induced stable DNA replication, respectively. We report here that mutants deleted for the polA gene express induced stable DNA replication at approximately 25-fold the rate of wild-type cells, whereas constitutive stable DNA replication is not enhanced.

  13. Treatment with insulin inhibits poly(ADP-ribose)polymerase activation in a rat model of endotoxemia

    Horváth, Eszter M; Benk, Rita; Ger, Domonkos; Kiss, Levente; Szabó, Csaba

    2007-01-01

    In critically ill patients various conditions may lead to the activation of poly(ADP-ribose) polymerase (PARP). By promoting cellular energetic dysfunction, and by enhancing pro-inflammatory gene expression, PARP activation significantly contributes to the pathogenesis of shock. PARP activation is usually triggered by DNA strand breakage, which is typically the result of the overproduction of various reactive oxidant species. One of the pathophysiological conditions associated with PARP activ...

  14. RNA-DNA Differences Are Generated in Human Cells within Seconds after RNA Exits Polymerase II

    Isabel X. Wang

    2014-03-01

    Full Text Available RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs in nascent RNA. Our results show that RDDs begin to occur in RNA chains ∼55 nt from the RNA polymerase II (Pol II active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.

  15. Inhomogeneities and nonlinear dynamics of a helical DNA interacting with a RNA-polymerase

    We have numerically investigated the effects of helicity and inhomogeneities on DNA base pairs opening. The inhomogeneities are due to the site-dependent stacking and hydrogen bonding energies in DNA and protein molecules. We have considered a situation in which the active site of the RNA-polymerase molecule binds onto the promoter site of the spin-like model of the DNA molecule at the physiological temperature and creates a bubble. During the study, we have found that the helical coupling has to be very weak compared to intra-strand coupling in the real DNA molecule. Results show that inhomogeneities do not affect the general pattern of base pair opening, even as the periodic inhomogeneity introduces a train of periodic oscillations on the tail of the bubble; while the height of the bubble is an increasing function of the helical coupling parameter. The basic properties of breather-like modes, obtained here by taking into account helical structure and inhomogeneities, are essential for DNA functioning since such breathing-like modes are considered to be much better candidates for the nonlinear modes responsible for a locally open state where biological functioning takes place. (paper)

  16. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    Law, Julie A.

    2010-05-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  17. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction.

    Jackson, D P; Lewis, F A; Taylor, G R; Boylston, A W; Quirke, P

    1990-01-01

    Several DNA extraction techniques were quantitatively and qualitatively compared using both fresh and paraffin wax embedded tissue and their suitability investigated for providing DNA and RNA for the polymerase chain reaction (PCR). A one hour incubation with proteinase K was the most efficient DNA extraction procedure for fresh tissue. For paraffin wax embedded tissue a five day incubation with proteinase K was required to produce good yields of DNA. Incubation with sodium dodecyl sulphate p...

  18. Genomic fingerprints of Staphylococcus aureus of bovine origin by polymerase chain reaction-based DNA fingerprinting.

    Matthews, K R; Kumar, S. J.; O'Conner, S. A.; Harmon, R J; Pankey, J W; Fox, L. K.; Oliver, S P

    1994-01-01

    Staphylococcus aureus (n = 75) isolated from mammary secretions of cows with subclinical and clinical mastitis from several geographic locations in the USA were examined using polymerase chain reaction-based DNA fingerprinting. DNA fingerprints were produced using a synthetic oligonucleotide primer (5'GTAACGCC3') to produce a distinct spectrum of amplified DNA fragments facilitating a high degree of resolution for differentiating S. aureus strains. PCR-based DNA fingerprinting grouped the 75 ...

  19. Liquid Chromatography-Mass Spectrometry Analysis of DNA Polymerase Reaction Products

    Chowdhury, Goutam; Guengerich, F. Peter

    2011-01-01

    This unit describes experimental and analytical procedures for characterizing the efficiency and fidelity of translesion DNA synthesis across various DNA damages by DNA polymerases in vitro. This procedure utilizes primer extension assays followed by LC-MS and LC-MS/MS analysis of the extension products. Detailed explanations for the analysis of the LC-MS/MS data for deciphering the nucleotide sequences of the DNA fragments are also presented. This approach provides a significant improvement ...

  20. The levels of DNA polymerase alpha and beta during the cell cycle and their role in heat radiosensitization in CHO cells

    The levels of DNA polymerase alpha and beta were measured during the cell cycle using a whole cell assay technique. The results indicate a decrease in the levels of both enzymes during the G/sub 1/ phase and a gradual increase as cells enter the S phase. The recovery of the DNA polymerases was measured after heating for 10 minutes at 45.50C during G/sub 1/ phase or S phase. The activity of DNA polymerase beta recovers fully during 20-25 hours after heating for both G/sub 1/ phase or S phase cells. There is no recovery of the activity of the DNA polymerase alpha during this time. Survival was also measured when cells were irradiated (4 GY) at various times after hyperthermia (10 min at 45.50C), and for both G/sub 1/ and S phase the interaction between heat and x-ray disappeared fully after 20-25 hours following heating and was parallel to recovery of DNA polymerase beta. Furthermore, treatment with cyclohexamide inhibited protein synthesis and prevented recovery from heat damage assayed in terms of both cell survival and beta polymerase. These results, in addition to experiments with heat sensitization at low pH and heat protection with glycerol, indicate that beta polymerase is probably involved in repairing x-ray induced damage resulting in cell lethality

  1. Preparation of Taq DNA Polymerase by Thermal Purification%Taq DNA聚合酶的热纯化制备

    丁燕华; 刘树涛; 齐庆远

    2011-01-01

    [Objective]The paper was to improve the preparation efficacy of Taq DNA polymerase.[Method]Ni column was used to purify Taq DNA polymerase carrying with 6xHis tag, and recombined vector.Using the thermal-resistant characteristics of Taq DNA polymerase, the crude extract was treated at 75 ℃ for 1 h, and the activity of prepared enzyme solution was verified by PCR test.[Result]The recombinant pET-32A-Taq could highly express in BL21 (DE3) host bacteria and remove hybrid protein by thermal denaturation.The enzyme preparation with the activity further higher than purchased Taq DNA polymerase was obtained.[Conclusion]Taq DNA polymerase prepared by thermal purification method is simple with low cost, and can meet the needs of a large number of conventional PCR amplification.%[目的]提高Taq DNA聚合酶的制备效率.[方法]利用Ni柱亲和色谱纯化载有6xHis标记的Taq DNA聚合酶,并重组载体,利用Taq DNA聚合酶的耐热特性,对粗提液75℃处理1h,之后通过PCR试验验证制备酶液的活力.[结果]所获重组的pET-32A-Taq能够在BL21(DE3)宿主菌中高效表达并可通过热变性去除杂蛋白,获得了活力远高于购买的Taq DNA聚合酶的酶制剂.[结论]使用热纯化法制备的Taq DNA聚合酶工艺简单,成本较低,能满足常规大量PCR实验要求.

  2. Transcriptional sequencing: A method for DNA sequencing using RNA polymerase

    Sasaki, Nobuya; Izawa, Masaki; Watahiki, Masanori; Ozawa, Kaori; Tanaka, Takumi; Yoneda, Yuko; Matsuura, Shuji; Carninci, Piero; Muramatsu, Masami; Okazaki, Yasushi; Hayashizaki, Yoshihide

    1998-01-01

    We have developed a sequencing method based on the RNA polymerase chain termination reaction with rhodamine dye attached to 3′-deoxynucleoside triphosphate (3′-dNTP). This method enables us to conduct a rapid isothermal sequencing reaction in

  3. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene.

    Heilbronn, R; Jahn, G; Bürkle, A; Freese, U K; Fleckenstein, B; zur Hausen, H

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSV-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at Tm - 25 degrees C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Epstein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein. Images PMID:3023689

  4. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein.

  5. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  6. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    Furukawa, T.; Angelis, Karel; Britt, A.B.

    2015-01-01

    Roč. 6, MAY 27 (2015). ISSN 1664-462X R&D Projects: GA ČR GA13-06595S Institutional support: RVO:61389030 Keywords : DNA polymerase * DNA repair * Non homologous end joining Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.948, year: 2014

  7. Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases

    Kielkowski, Pavel; Cahová, Hana; Pohl, Radek; Hocek, Michal

    2016-01-01

    Roč. 24, č. 6 (2016), s. 1268-1276. ISSN 0968-0896 R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:61388963 Keywords : nucleosides * nucleotides * pyrimidines * DNA methyltransferases * DNA polymerases Subject RIV: CC - Organic Chemistry Impact factor: 2.793, year: 2014

  8. EFFECTIVE METHOD TO EXTRACT DNA FROM ENVIRONMENTAL SAMPLES FOR POLYMERASE CHAIN REACTION AMPLIFICATION AND DNA FINGERPRINT ANALYSIS

    A rapid direct-extraction method was used to obtain DNA from environmental soil samples. eat, enzymes, and guanidine isothiocyanate were utilized to lyse cells. he DNA was purified by agarose gel electrophoresis, amplified with 16S based primers by use of the polymerase chain rea...

  9. The β subunit sliding DNA clamp is responsible for unassisted mutagenic translesion replication by DNA polymerase III holoenzyme

    Tomer, Guy; Reuven, Nina Bacher; Livneh, Zvi

    1998-01-01

    The replication of damaged nucleotides that have escaped DNA repair leads to the formation of mutations caused by misincorporation opposite the lesion. In Escherichia coli, this process is under tight regulation of the SOS stress response and is carried out by DNA polymerase III in a process that involves also the RecA, UmuD′ and UmuC proteins. We have shown that DNA polymerase III holoenzyme is able to replicate, unassisted, through a synthetic abasic site in a gapped duplex plasmid. Here, w...

  10. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein.

    Kubota, Y; Nash, R. A.; Klungland, A; Schär, P; Barnes, D E.; Lindahl, T

    1996-01-01

    Repair of a uracil-guanine base pair in DNA has been reconstituted with the recombinant human proteins uracil-DNA glycosylase, apurinic/apyrimidinic endonuclease, DNA polymerase beta and DNA ligase III. The XRCC1 protein, which is known to bind DNA ligase III, is not absolutely required for the reaction but suppresses strand displacement by DNA polymerase beta, allowing for more efficient ligation after filling of a single nucleotide patch. We show that XRCC1 interacts directly with DNA polym...

  11. A Model of Sequence Dependent Rna-Polymerase Diffusion Along Dna

    Barbi, M; Popkov, V; Salerno, M; Barbi, Maria; Place, Christophe; Popkov, Vladislav; Salerno, Mario

    2001-01-01

    We introduce a probabilistic model for the RNA-polymerase sliding motion along DNA during the promoter search. The model accounts for possible effects due to sequence-dependent interactions between the nonspecific DNA and the enzyme. We focus on T7 RNA-polymerase and exploit the available information about its interaction at the promoter site in order to investigate the influence of bacteriophage T7 DNA sequence on the dynamics of the sliding process. Hydrogen bonds in the major groove are used as the main sequence-dependent interaction between the RNA-polymerase and the DNA. The resulting dynamical properties and the possibility of an experimental validation are discussed in details. We show that, while at large times the process reaches a pure diffusive regime, it initially displays a sub-diffusive behavior. The crossover from anomalous to normal diffusion may occur at times large enough to be of biological interest.

  12. Increased DNA damage in progression of COPD: a response by poly(ADP-ribose polymerase-1.

    Ingrid Oit-Wiscombe

    Full Text Available Chronic oxidative stress (OS, a major mechanism of chronic obstructive pulmonary disease (COPD, may cause significant damage to DNA. Poly(ADP-ribose polymerase (PARP-1 is rapidly activated by OS-induced DNA lesions. However, the degree of DNA damage along with the evolution of COPD is unclear. In peripheral blood mononuclear cells of non-smoking individuals, non-obstructive smokers, patients with COPD of all stages and those with COPD exacerbation, we evaluated DNA damage, PARP activity and PARP-1 mRNA expression using Comet Assay IV, biotinylated-NAD incorporation assay and qRT-PCR, respectively and subjected results to ordinal logistic regression modelling. Adjusted for demographics, smoking-related parameters and lung function, novel comet parameters, tail length/cell length ratio and tail migration/cell length ratio, showed the greatest increase along the study groups corresponding to the evolution of COPD [odds ratio (OR 7.88, 95% CI 4.26-14.57; p<0.001 and OR 3.91, 95% CI 2.69-5.66; p<0.001, respectively]. Analogously, PARP activity increased significantly over the groups (OR = 1.01; 95%; p<0.001. An antioxidant tetrapeptide UPF17 significantly reduced the PARP-1 mRNA expression in COPD, compared to that in non-obstructive individuals (p = 0.040. Tail length/cell length and tail migration/cell length ratios provide novel progression-sensitive tools for assessment of DNA damage. However, it remains to be elucidated whether inhibition of an elevated PARP-1 activity has a safe enough potential to break the vicious cycle of the development and progression of COPD.

  13. Priming DNA Replication from Triple Helix Oligonucleotides: Possible Threestranded DNA in DNA Polymerases

    Lestienne, Patrick P.

    2011-01-01

    Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second h...

  14. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    Su, Yan; Peter Guengerich, F

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc. PMID:27248785

  15. Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III.

    Schaub, M; Myslinski, E; Schuster, C.; Krol, A.; Carbon, P

    1997-01-01

    Staf is a zinc finger protein that we recently identified as the transcriptional activator of the RNA polymerase III-transcribed selenocysteine tRNA gene. In this work we demonstrate that enhanced transcription of the majority of vertebrate snRNA and snRNA-type genes, transcribed by RNA polymerases II and III, also requires Staf. DNA binding assays and microinjection of mutant genes into Xenopus oocytes showed the presence of Staf-responsive elements in the genes for human U4C, U6, Y4 and 7SK...

  16. Metabolic consequences of DNA damage: The role of poly (ADP-ribose) polymerase as mediator of the suicide response

    Recent studies show that DNA damage can produce rapid alterations in steady state levels of deoxynucleoside triphosphate pools, for example, MNNG or uv-irradiation cause rapid increases in dATP and dTTP pools without significant changes in dGTP or dCTP pools. In vitro, studies with purified eukaryotic DNA polymerases show that the frequency of nucleotide misincorporation was affected by alterations in relative concentrations of the deoxynucleoside triphosphates. Thus the alterations in dNTP pool sizes that occur consequent to DNA damage may contribute to an increased mutagenic frequency. Poly(ADP-ribose) polymerase mediated suicide mechanism may participate in the toxicity of adenosine deaminase deficiency and severe combined immune deficiency disease in humans. Individuals with this disease suffer severe lymphopenia due to the toxic effects of deoxyadenosine. The lymphocytotoxic effect of adenosine deaminase deficiency can be simulated in lymphocyte cell lines from normal individuals by incubating them with the adenosine deaminase inhibitor, deoxycoformycin. Incubation of such leukocytes with deoxycoformycin and deoxyadenosine results in the gradual accumulation of DNA strand breaks and the depletion of NAD+ leading to cell death over a period of several days. This depletion of NAD and loss of cell viability were effectively blocked by nicotinamide or 3-amino benzamide. Thus, persistent activation of poly(ADP-ribose) polymerase by unrepaired or recurrent DNA strand breaks may activate the suicide mechanism of cell death. This study provides a basis for the interesting suggestion that treatment with nicotinamide could block the persistent activity of poly(ADP-ribose) polymerase and may help preserve lymphocyte function in patients with adenosine deaminase deficiency. 16 refs., 3 figs., 2 tabs

  17. Polymerase study: Improved detection of Salmonella and Campylobacter through the optimized use of DNA polymerases in diagnostic real-time PCR

    Søndergaard, Mette Sofie Rousing; Löfström, Charlotta; Al-Habib, Zahra Fares Sayer;

    Diagnostic analyses of foodborne pathogens are increasingly based on molecular methods such as PCR, which can improve the sensitivity and reduce the analysis time. The core of PCR is the enzyme performing the reaction: the DNA polymerase. Changing the polymerase can influence the sensitivity and ...

  18. Circulating polymerase chain reaction chips utilizing multiple-membrane activation

    Wang, Chih-Hao; Chen, Yi-Yu; Liao, Chia-Sheng; Hsieh, Tsung-Min; Luo, Ching-Hsing; Wu, Jiunn-Jong; Lee, Huei-Huang; Lee, Gwo-Bin

    2007-02-01

    This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg µl-1. Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg µl-1. The preliminary results of the current paper were presented at the 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), Istanbul, Turkey, 22-26 January, 2006.

  19. A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase

    Bowman, William C.; Kranz, Robert G.

    1998-01-01

    A commonly accepted view of gene regulation in bacteria that has emerged over the last decade is that promoters are transcriptionally activated by one of two general mechanisms. The major type involves activator proteins that bind to DNA adjacent to where the RNA polymerase (RNAP) holoenzyme binds, usually assisting in recruitment of the RNAP to the promoter. This holoenzyme uses the housekeeping ς70 or a related factor, which directs the core RNAP to the promoter and assists in melting the D...

  20. DNA amplification by polymerase chain reaction from brain tissues embedded in paraffin.

    Gall, K; Pavelić, J.; Jadro-Santel, D.; Poljak, M; Pavelić, K.

    1993-01-01

    A method which enables analysis of DNA from archival paraffin embedded normal and malignant brain tissue is described. The demonstration of a 317-bp long beta-actin DNA sequence by the polymerase chain reaction (PCR) was used to identify which fixation procedure, deparaffinization time and DNA extraction procedure would give the best results. Tissue specimens 1-39 years old were included in the experiments. Specimens fixed in either 10% formalin, Carnoy's or AMeX fixative were found to be bes...

  1. Microdissection and polymerase chain reaction amplification of genomic DNA from histological tissue sections.

    Moskaluk, C A; Kern, S.E.

    1997-01-01

    Polymerase chain reaction (PCR)-based assays are being used increasingly to study the molecular genetic changes that occur in minute cellular lesions that are identified in histological sections. It is often desirable to microdissect the cells of interest in a lesion, isolating them from surrounding normal tissue to obtain the purest representation of genomic DNA possible. We present here an optimized microdissection and DNA extraction protocol that reliably produces PCR-amplifiable DNA from ...

  2. Mismatch repair causes the dynamic release of an essential DNA polymerase from the replication fork

    Klocko, Andrew D.; Schroeder, Jeremy W.; Walsh, Brian W.; Lenhart, Justin S.; Evans, Margery L.; Simmons, Lyle A.

    2011-01-01

    Mismatch repair (MMR) corrects DNA polymerase errors occurring during genome replication. MMR is critical for genome maintenance, and its loss increases mutation rates several hundredfold. Recent work has shown that the interaction between the mismatch recognition protein MutS and the replication processivity clamp is important for MMR in Bacillus subtilis. To further understand how MMR is coupled to DNA replication, we examined the subcellular localization of MMR and DNA replication proteins...

  3. Comparison of Large Subunits of Type II DNA-dependent RNA Polymerases from Higher Plants.

    Kidd, G H; Link, G; Bogorad, L

    1979-10-01

    Two-dimensional tryptic mapping of (125)I-labeled polypeptides has been employed to compare the large subunits of type II DNA-dependent RNA polymerases from maize, parsley (Petroselinum sativum), and wheat. Maps of the 220 kilodalton (kd) and 140 kd subunits from wheat RNA polymerase II differ from those of the corresponding subunits from parsley enzyme II. The 180 kd subunits from maize and parsley type II enzymes also yield dissimilar tryptic maps. Thus, despite similarities in molecular mass, the large subunits of wheat, parsley, and maize type II RNA polymerases are unique to each individual plant species. PMID:16661032

  4. Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase.

    Le Grice, S F; Naas, T; Wohlgensinger, B; Schatz, O.

    1991-01-01

    We have purified and determined functional parameters of reconstituted, recombinant HIV-1 reverse transcriptase (RT) heterodimers within which either the p66 or p51 polypeptide was selectively mutated in one or both aspartic acid residues constituting the proposed polymerase active site (-Y-M-D-D-). Heterodimers containing a mutated p51 polypeptide retain almost wild type levels of both RNA-dependent DNA polymerase and ribonuclease H (RNaseH) activity. In contrast, heterodimers whose p66 poly...

  5. Comparison of proteases in DNA extraction via quantitative polymerase chain reaction.

    Eychner, Alison M; Lebo, Roberta J; Elkins, Kelly M

    2015-06-01

    We compared four proteases in the QIAamp DNA Investigator Kit (Qiagen) to extract DNA for use in multiplex polymerase chain reaction (PCR) assays. The aim was to evaluate alternate proteases for improved DNA recovery as compared with proteinase K for forensic, biochemical research, genetic paternity and immigration, and molecular diagnostic purposes. The Quantifiler Kit TaqMan quantitative PCR assay was used to measure the recovery of DNA from human blood, semen, buccal cells, breastmilk, and earwax in addition to low-template samples, including diluted samples, computer keyboard swabs, chewing gum, and cigarette butts. All methods yielded amplifiable DNA from all samples. PMID:25197027

  6. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase

    Manrao, Elizabeth A; Derrington, Ian M.; Laszlo, Andrew H; Langford, Kyle W.; Hopper, Matthew K; Gillgren, Nathaniel; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H.

    2012-01-01

    Nanopore technologies are being developed for fast and direct sequencing of single DNA molecules through detection of ionic current modulations as DNA passes through a pore’s constriction1,2. Here we demonstrate the ability to resolve changes in current that correspond to a known DNA sequence by combining the high sensitivity of a mutated form of the protein pore Mycobacterium smegmatis porin A (MspA)3 with phi29 DNA polymerase (DNAP)4, which controls the rate of DNA translocation through the...

  7. Structural Insight into Processive Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations

    Lee, Young-Sam; Kennedy, W. Dexter; Yin, Y. Whitney; (Texas)

    2010-09-07

    Human mitochondrial DNA polymerase (Pol {gamma}) is the sole replicase in mitochondria. Pol {gamma} is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol {gamma} holoenzyme and, separately, a variant of its processivity factor, Pol {gamma}B. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol {gamma}A interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol {gamma} structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.

  8. On the DNA polymerase-a mutant: Immunofluorescence assay of UV-induced thymidine dimers in Aphr-4-2 cells

    Aphidicolin inhibits purified DNA polymerases-a and -d in vitro and inhibits mitosis in animal cells. The Chinese hamster V79 cell mutant, Aphr-4-2, was selected for its ability to form colonies in cultured medium supplemented with 1.0 microM aphidicolin. At this concentration, the parental wild-type V79 cells (clone 743x) have a survival rate of less than 10(-7). The mutant DNA polymerase-a is resistant to aphidicolin at concentrations that are inhibitory to the wild-type V79 DNA polymerase-a. The apparent Km for dCTP of the mutant DNA polymerase-a is consistently lower than that of the wild-type DNA polymerase-a. This mutant exhibits slow growth, mutator activity, hypersensitivity, and hypermutability to UV. We wanted to know the basis of UV hypersensitivity in this mutant. Using the antisera (UV2) raised against UV-induced thymidine dimers and a sensitive immunofluorescence assay to measure UV-induced thymidine dimers and with detection in ACAS 570 Workstation, we observed that 50% of the thymidine dimers disappeared within 5 h after irradiation and more than 80% of the dimers were removed within 24 h in both cell lines. These results indicate that the recognition, incision, and excision steps in nucleotide excision repair pathway are normal in the mutant. In order to know if there is a difference in DNA polymerase-a or -d activities in the parental V79(wt) and Aphr-4-2 cells, DNA polymerases were partially purified from the parental and the mutant cells using sequential centrifugation and column chromatographies on DEAE-cellulose (DE23 and DE52) to remove DNA polymerases-beta and -gamma. More than 90% of the enzymatic activities from both cells showed characteristics of DNA polymerase-a type on the basis of these criteria: sensitivity to butyl phenyl dGTP (1 microM) and to IgG raised against DNA polymerase-a (SJK 132-20)

  9. DNA structure in human RNA polymerase II promoters

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves;

    1998-01-01

    in a region upstream of the transcriptional start point and significantly higher downstream. Investigation of the sequence composition in the two regions shows that the bendability profile originates from the sequential structure of the DNA, rather than the general nucleotide composition...... in sequence and bendability, which is in phase with the DNA helical pitch. The periodic bendability profile shows bending peaks roughly at every 10bp with stronger bending at 20bp intervals. These observations suggest that DNA in the region downstream of the transcriptional start point is able to...

  10. Optimization of asymmetric polymerase chain reaction for rapid fluorescent DNA sequencing.

    Wilson, R K; Chen, C; Hood, L

    1990-02-01

    A high-throughput method for the preparation of single-stranded template DNA, which is suitable for sequence analysis using fluorescent labeling chemistry, is described here. In this procedure, the asymmetric polymerase chain reaction is employed to amplify recombinant plasmid or bacteriophage DNA directly from colonies or plaques. The use of amplification primers located at least 200 base pairs 5' to the site of sequencing primer annealing removes the need for extensive purification of the asymmetric polymerase chain reaction product. Instead, the single-stranded product DNA is purified by a simple isopropanol precipitation step and then directly sequenced using fluorescent dye-labeled oligonucleotides. This method significantly reduces the time and labor required for template preparation and improves fluorescent DNA sequencing strategies by providing a much more uniform yield of single-stranded DNA. PMID:2317375

  11. The antitumor toxin CD437 is a direct inhibitor of DNA polymerase α.

    Han, Ting; Goralski, Maria; Capota, Emanuela; Padrick, Shae B; Kim, Jiwoong; Xie, Yang; Nijhawan, Deepak

    2016-07-01

    CD437 is a retinoid-like small molecule that selectively induces apoptosis in cancer cells, but not in normal cells, through an unknown mechanism. We used a forward-genetic strategy to discover mutations in POLA1 that coincide with CD437 resistance (POLA1(R)). Introduction of one of these mutations into cancer cells by CRISPR-Cas9 genome editing conferred CD437 resistance, demonstrating causality. POLA1 encodes DNA polymerase α, the enzyme responsible for initiating DNA synthesis during the S phase of the cell cycle. CD437 inhibits DNA replication in cells and recombinant POLA1 activity in vitro. Both effects are abrogated by the identified POLA1 mutations, supporting POLA1 as the direct antitumor target of CD437. In addition, we detected an increase in the total fluorescence intensity and anisotropy of CD437 in the presence of increasing concentrations of POLA1 that is consistent with a direct binding interaction. The discovery of POLA1 as the direct anticancer target for CD437 has the potential to catalyze the development of CD437 into an anticancer therapeutic. PMID:27182663

  12. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    Highlights: • The UV sensitivity of POLH−/− cells was suppressed by disruption of WRNIP1. • In WRNIP1−/−/−/POLH−/− cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH−/− cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH−/−) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation

  13. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    Yoshimura, Akari, E-mail: akari_yo@stu.musashino-u.ac.jp [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Kobayashi, Yume [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Tada, Shusuke [Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Seki, Masayuki [Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai-shi, Miyagi 981-8558 (Japan); Enomoto, Takemi [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan)

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  14. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids.

    Goubet, Astrid; Chardon, Antoine; Kumar, Pawan; Sharma, Pawan K; Veedu, Rakesh N

    2013-02-01

    C5-Ethynylbenzenesulfonamide-modified nucleotide (EBNA) was investigated as substrate of various DNA polymerases. The experiments revealed that KOD, Phusion and Klenow DNA polymerases successfully accepted EBNA-T nucleotide as a substrate and yielded the fully extended DNA. KOD DNA polymerase was found to be the most efficient enzyme to furnish EBNA-T containing DNA in good yields. Phusion DNA polymerase efficiently amplified the template containing EBNA-T nucleotides by PCR. PMID:23265899

  15. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction.

    Jackson, D P; Lewis, F A; Taylor, G R; Boylston, A W; Quirke, P

    1990-01-01

    Several DNA extraction techniques were quantitatively and qualitatively compared using both fresh and paraffin wax embedded tissue and their suitability investigated for providing DNA and RNA for the polymerase chain reaction (PCR). A one hour incubation with proteinase K was the most efficient DNA extraction procedure for fresh tissue. For paraffin wax embedded tissue a five day incubation with proteinase K was required to produce good yields of DNA. Incubation with sodium dodecyl sulphate produced very poor yields, while boiling produced 20% as much DNA as long enzyme digestion. DNA extracted by these methods was suitable for the PCR amplification of a single copy gene. Proteinase K digestion also produced considerable amounts of RNA which has previously been shown to be suitable for PCR analysis. A delay before fixation had no effect on the amount of DNA obtained while fixation in Carnoy's reagent results in a much better preservation of DNA than formalin fixation, allowing greater yields to be extracted. Images PMID:1696290

  16. Functions of replication factor C and proliferating-cell nuclear antigen: Functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4

    The proliferating-cell nuclear antigen (PCNA) and the replication factors A and C (RF-A and RF-C) are cellular proteins essential for complete elongation of DNA during synthesis from the simian virus 40 origin of DNA replication in vitro. All three cooperate to stimulate processive DNA synthesis by DNA polymerase δ on a primed single-stranded M13 template DNA and as such can be categorized as DNA polymerase accessory proteins. Biochemical analyses with highly purified RF-C and PCNA have demonstrated functions that are completely analogous to the functions of bacteriophage T4 DNA polymerase accessory proteins. A primer-template-specific DNA binding activity and a DNA-dependent ATPase activity copurified with the multisubunit protein RF-C and are similar to the functions of the phage T4 gene 44/62 protein complex. Furthermore, PCNA stimulated the RF-C ATPase activity and is, therefore, analogous to the phage T4 gene 45 protein, which stimulates the ATPase function of the gene 44/62 protein complex. Indeed, some primary sequence similarities between human PCNA and the phage T4 gene 45 protein could be detected. These results demonstrate a striking conservation of the DNA replication apparatus in human cells and bacteriophage T4

  17. Active RNA polymerases: mobile or immobile molecular machines?

    Argyris Papantonis

    Full Text Available It is widely assumed that active RNA polymerases track along their templates to produce a transcript. We test this using chromosome conformation capture and human genes switched on rapidly and synchronously by tumour necrosis factor alpha (TNFalpha; one is 221 kbp SAMD4A, which a polymerase takes more than 1 h to transcribe. Ten minutes after stimulation, the SAMD4A promoter comes together with other TNFalpha-responsive promoters. Subsequently, these contacts are lost as new downstream ones appear; contacts are invariably between sequences being transcribed. Super-resolution microscopy confirms that nascent transcripts (detected by RNA fluorescence in situ hybridization co-localize at relevant times. Results are consistent with an alternative view of transcription: polymerases fixed in factories reel in their respective templates, so different parts of the templates transiently lie together.

  18. Cloning of Thermostable DNA Polymerase Gene from a Thermophilic Brevibacillus sp. Isolated from Sikidang Crater, Dieng Plateu, Central Java

    Lucia Dhiantika Witasari

    2015-11-01

    Full Text Available Thermostable DNA polymerase has an important role for amplifying small amount of DNA through polymerase chain reaction (PCR. Thermophillic bacteria Brevibacillus sp. was isolated from Sikidang Crater, Dieng Plateu, Central Java. Previous study showed that crude protein of the isolate could be used in PCR. Unfortunately, like most native thermostable enzymes, the thermostable DNA polymerase of the isolate is synthesized in a very low level and therefore is cumbersome to purify. The purpose of this research is to clone thermostable DNA polymerase gene of the isolate. The DNA polymerase gene was amplified by means of PCR using spesific primers. The amplified fragment was then isolated, purified, and ligated into the pGEM-T cloning vector. The recombinant plasmid was then transformed to competent E. coli JM109 cells using heat shock method. The cloned thermostable DNA polymerase gene from the thermophilic isolate was then characterized for its nucleotide base sequence. The result showed that the DNA Pol I gene was successfully be amplified from the isolate DNA genom, resulting in ± 2,7 kb DNA fragment in length. Sequence analysis of segment of targeted gene showed high similarity to that of thermostable DNA polymerase genes from other Bacillus.Key words : Thermostable DNA Pol I, Brevibacillus sp., PCR, cloning

  19. Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA

    Ana Lisa do Vale Gomes; Fábio L Melo; Roberto P Werkhauser; Frederico GC Abath

    2006-01-01

    This report describes the development of a SYBR Green I based real time polymerase chain reaction (PCR) protocol for detection on the ABI Prism 7000 instrument. Primers targeting the gene encoding the SSU rRNA were designed to amplify with high specificity DNA from Schistosoma mansoni, in a real time quantitative PCR system. The limit of detection of parasite DNA for the system was 10 fg of purified genomic DNA, that means less than the equivalent to one parasite cell (genome ~580 fg DNA). Th...

  20. Translesion Synthesis DNA Polymerase: A Novel DNA Polymerase%跨损伤合成的DNA聚合酶——一类新的DNA聚合酶

    陈建明; 余应年

    2001-01-01

    although there are many repair pathways in cells, some lesions still escape repair inevitably and remain in genome. In cells, the molecular mechanism of translesion DNA synthesis has been one of the major unsolved problems in DNA repair for a long time. Recently, it was found that the members of a structurally related UmuC/DinB protein superfarnily have DNA polyrnerase function. Unlike the classical replicative DNA polymerases, these newly identified DNA polymerases can carry out translesion DNA synthesis in both error prone/mutagenic and/or error-free ways. It was also found that their functions are conserved from bacteria to human.%细胞虽然拥有多种修复途径,但有些DNA损伤仍不可避免地会逃避修复而在基因组上保留下来,细胞跨 损伤DNA合成的分子机制一直是DNA修复中主要的未解决问题之一.最近通过对一类结构相关性UmuC/DinB 蛋白质超家族成员的研究发现它们具有DNA聚合酶功能.这类新发现的DNA聚合酶不同于经典的复制性DNA 聚合酶,它们能以易误/突变(error-prone/mutagenic)或无误(error-free)方式进行跨损伤(translesion)DNA合 成,并且从细菌到人在进化上功能保守.

  1. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase α

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol α from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol α with IC50 value of 0.5 μM, and did not influence the activities of other replicative pols such as pols δ and ε, but also showed no effect on pol α activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD50 values of 38.0-44.4 μM. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol α-specific inhibitor, but also as a candidate drug for anti-cancer treatment

  2. Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase.

    Le Grice, S F; Naas, T; Wohlgensinger, B; Schatz, O

    1991-12-01

    We have purified and determined functional parameters of reconstituted, recombinant HIV-1 reverse transcriptase (RT) heterodimers within which either the p66 or p51 polypeptide was selectively mutated in one or both aspartic acid residues constituting the proposed polymerase active site (-Y-M-D-D-). Heterodimers containing a mutated p51 polypeptide retain almost wild type levels of both RNA-dependent DNA polymerase and ribonuclease H (RNaseH) activity. In contrast, heterodimers whose p66 polypeptide was likewise mutated exhibit wild type RNaseH activity but are deficient in RNA-dependent DNA polymerase activity. These results indicate that in heterodimer RT, the p51 component cannot compensate for active site mutations eliminating the activity of p66, indirectly implying that solely the p66 aspartic acid residues of heterodimer are crucial for catalysis. PMID:1718745

  3. Detection of Rickettsia rickettsii DNA in clinical specimens by using polymerase chain reaction technology.

    Tzianabos, T; Anderson, B E; McDade, J E

    1989-01-01

    A polymerase chain reaction (PCR) procedure for detecting rickettsial DNA was developed and shown to be specific for Rickettsia rickettsii and R. conorii, the etiologic agents of Rocky Mountain spotted fever (RMSF) and Boutonneuse fever, respectively. Blood clots were obtained from nine confirmed RMSF patients and six controls and analyzed for the presence of rickettsial DNA by the PCR method. A defined region of the rickettsial genome was successfully amplified from seven of the nine clinica...

  4. Modulation of Pleurodeles waltl DNA Polymerase mu Expression by Extreme Conditions Encountered during Spaceflight

    Véronique Schenten; Nathan Guéguinou; Sarah Baatout; Jean-Pol Frippiat

    2013-01-01

    DNA polymerase μ is involved in DNA repair, V(D)J recombination and likely somatic hypermutation of immunoglobulin genes. Our previous studies demonstrated that spaceflight conditions affect immunoglobulin gene expression and somatic hypermutation frequency. Consequently, we questioned whether Polμ expression could also be affected. To address this question, we characterized Polμ of the Iberian ribbed newt Pleurodeles waltl and exposed embryos of that species to spaceflight conditions or to e...

  5. Pin1 Interacts with the Epstein-Barr Virus DNA Polymerase Catalytic Subunit and Regulates Viral DNA Replication

    Narita, Yohei; Murata, Takayuki; Ryo, Akihide; Kawashima, Daisuke; Sugimoto, Atsuko; Kanda, Teru; Kimura, Hiroshi; Tsurumi, Tatsuya

    2013-01-01

    Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein is known as a regulator which recognizes phosphorylated Ser/Thr-Pro motifs and increases the rate of cis and trans amide isomer interconversion, thereby altering the conformation of its substrates. We found that Pin1 knockdown using short hairpin RNA (shRNA) technology resulted in strong suppression of productive Epstein-Barr virus (EBV) DNA replication. We further identified the EBV DNA polymerase catalytic subunit, BALF5,...

  6. Cloning and expression of cDNA for human poly(ADP-ribose)polymerase

    cDNAs encoding poly(ADP-ribose) polymerase from a human hepatoma λgt11 cDNA library were isolated by immunological screening. One insert of 1.3 kilobases (kb) consistently hybridized on RNA gel blots to an mRNA species of 3.6-3.7 kb, which is consistent with the size of RNA necessary to code for the polymerase protein (116 kDa). This insert was subsequently used in both in vitro hybrid selection and hybrid-arrested translation studies. An mRNA species from HeLa cells of 3.6-3.7 kb was selected that was translated into a 116-kDa protein, which was selectively immunoprecipitated with anti-poly(ADP-ribose) polymerase. To confirm that the 1.3-kb insert from λgt11 encodes for poly(ADP-ribose) polymerase, the insert was used to screen a 3- to 4-kb subset of a transformed human fibroblast cDNA library in the Okayama-Berg vector. One of these vectors was tested in transient transfection experiments in COS cells. This cDNA insert contained the complete coding sequence for polymerase. Using pcD-p(ADPR)P as probe, it was observed that the level of poly(ADP-ribose) polymerase mRNA was elevated at 5 and 7 hr of S phase of the HeLa cell cycle, but was unaltered when artificial DNA strand breaks are introduced in HeLa cells by alkylating agents

  7. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases

    Mačková, Michaela; Boháčová, Soňa; Perlíková, Pavla; Poštová Slavětínská, Lenka; Hocek, Michal

    2015-01-01

    Roč. 16, č. 15 (2015), s. 2225-2236. ISSN 1439-4227 R&D Projects: GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : DNA * nucleotides * polymerases * pyrrolopyrimidines Subject RIV: CC - Organic Chemistry Impact factor: 3.088, year: 2014

  8. Polyvinylpyrrolidone-Agarose Gel Electrophoresis Purification of Polymerase Chain Reaction-Amplifiable DNA from Soils

    Young, Charles C.; Burghoff, Robert L.; Keim, Lois G.; Minak-Bernero, Vera; Lute, James R.; Hinton, Stephen M.

    1993-01-01

    This communication describes a modification of agarose gel electrophoresis to provide a rapid and simple method for the purification of polymerase chain reaction-amplifiable DNA from soil. This modification is to add polyvinylpyrrolidone to the agarose gel. The polyvinylpyrrolidone addition retards the electrophoretic mobility of denaturing phenolic compounds so that they do not comigrate with nucleic acids.

  9. On-Chip integration of sample pretreatment and Multiplex polymerase chain reaction (PCR) for DNA analysis

    Brivio, Monica; Snakenborg, Detlef; Søgaard, E.; Ahlford, A.; Syvänen, A.-C; Kutter, Jörg Peter; Wolff, Anders

    In this paper we present a modular lab-on-a-chip system for integrated sample pre-treatment (PT) by magnetophoresis and DNA amplification by polymerase chain reaction (PCR). It consists of a polymer-based microfluidic chip mounted on a custom-made thermocycler (Figure 1) and includes a simple and...

  10. A molecular biological study on the identification of the molecular species of DNA polymerases for repairing radiation-damaged DNA and the factors modifying the mutation rate

    Aiming at prevention and treatment of radiation damages, the authors have been investigating DNA damages by X-ray and its repairing mechanism, however, the molecular species of DNA polymerase which mediate the repairing could not been identified by biochemical methods using various inhibitors because of their low specificity. Therefore, in this study, anti-sense oligonucleotides for DNA polymerase α, δ and ε were obtained by chemical synthesis and transduced into human fibroblast cell, NB1RGB by three methods; endocytotic method, electroporation method and lipofection method. For the first method, the addition of those peptides into the cell culture at 5 μM inhibited the polymerase activity by up to 30% and it was economically difficult to use at higher concentrations than it. For the electroporation method, different conditions were tested in the respects of initial potential, time constant and buffer, but the uptake of thimidine was scarcely decreased in the surviving cells, suggesting that the surviving rate would be short in the cells electroporated with those anti-sense peptides. For the lipofection method, among several cationic lipids tested, lipofectamine significantly enlarged the decrease of thymidine uptake by anti-sense δ, however it was considered that its application to DNA repairing is difficult because lipofectamine is strongly cytotoxic. Therefore, construction of a vector which allows to express anti-sense RNA in those cells is undertaken. (M.N.)

  11. Sensitivitas dan Spesifisitas Nested Polymerase Chain Reaction untuk Mendeteksi DNA Coxiella burnetii (SENSITIVITY AND SPECIFICITY OF NESTED POLYMERASE CHAIN REACTION FOR DETECTION OF COXIELLA BURNETII DNA

    Trioso Purnawarman

    2014-04-01

    Full Text Available Sensitivity and specificity of nested polymerase chain reaction (nested PCR to detect Coxiella burnetii(C. burnetii DNA were studied. The primer system which consists of external primers (OMP1 and OMP2and internal primers (OMP3 and OMP4, was designed from the nucleotide sequence of the com I geneencoding for 27 kDa outer membrane protein and used to specifically amplify a 501 bp and 438 bp fragment.This nested PCR assay was 50 fold more sensitive than that of using PCR external primer only. TheNested PCR has a detection limit as low as 300 pg/?l. Specificity studies showed that nested PCR onlydetected C. burnetii DNA and did not happened Brucella abortus, Escherichia coli, Pseudomonas aeruginosaand Campylobacter Jejuni DNA. Nested PCR has high senstively and specificaly diagnostic method of C.burnetii as agent of Q fever disease.

  12. Cost-effective optimization of real-time PCR based detection of Campylobacter and Salmonella with inhibitor tolerant DNA polymerases

    Fachmann, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Hoorfar, Jeffrey;

    2015-01-01

    AIMS: The aim of this study was to cost-effectively improve detection of foodborne pathogens in PCR inhibitory samples through the use of alternative DNA polymerases. METHODS AND RESULTS: Commercially available polymerases (n=16) and PCR master mixes (n=4) were screened on DNA purified from bacte...

  13. Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases

    Koonin Eugene V

    2006-12-01

    Full Text Available Abstract Background The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology. Results I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB whereas the bacterial replicative DNA polymerase (PolC is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the

  14. Highly sensitive polymerase chain reaction-free quantum dot-based quantification of forensic genomic DNA

    Highlights: ► Genomic DNA quantification were performed using a quantum dot-labeled Alu sequence. ► This probe provided PCR-free determination of human genomic DNA. ► Qdot-labeled Alu probe-hybridized genomic DNAs had a 2.5-femtogram detection limit. ► Qdot-labeled Alu sequence was used to assess DNA samples for human identification. - Abstract: Forensic DNA samples can degrade easily due to exposure to light and moisture at the crime scene. In addition, the amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. The accurately quantified extracted genomic DNA is then used as a DNA template in polymerase chain reaction (PCR) amplification for short tandem repeat (STR) human identification. Accordingly, highly sensitive and human-specific quantification of forensic DNA samples is an essential issue in forensic study. In this work, a quantum dot (Qdot)-labeled Alu sequence was developed as a probe to simultaneously satisfy both the high sensitivity and human genome selectivity for quantification of forensic DNA samples. This probe provided PCR-free determination of human genomic DNA and had a 2.5-femtogram detection limit due to the strong emission and photostability of the Qdot. The Qdot-labeled Alu sequence has been used successfully to assess 18 different forensic DNA samples for STR human identification.

  15. The Establishment of an Assay to Measure DNA Polymerase-Catalyzed Repair of UVB-Induced DNA Damage in Skin Cells and Screening of DNA Polymerase Enhancers from Medicinal Plants.

    Ikeoka, Sawako; Nakahara, Tatsuo; Iwahashi, Hiroyasu; Mizushina, Yoshiyuki

    2016-01-01

    An in vitro assay method was established to measure the activity of cellular DNA polymerases (Pols) in cultured normal human epidermal keratinocytes (NHEKs) by modifying Pol inhibitor activity. Ultraviolet (UV) irradiation enhanced the activity of Pols, especially DNA repair-related Pols, in the cell extracts of NHEKs. The optimal ultraviolet B (UVB) exposure dose and culture time to upregulate Pols activity was 100 mJ/cm² and 4-h incubation, respectively. We screened eight extracts of medicinal plants for enhancement of UVB-exposed cellular Pols activity using NHEKs, and found that rose myrtle was the strongest Pols enhancer. A Pols' enhancement compound was purified from an 80% ethanol extract of rose myrtle, and piceatannol was isolated by spectroscopic analysis. Induction of Pol activity involved synergy between UVB irradiation and rose myrtle extract and/or piceatannol. Both the extract and piceatannol reduced UVB-induced cyclobutane pyrimidine dimer production, and prevented UVB-induced cytotoxicity. These results indicate that rose myrtle extract and piceatannol, its component, are potential photo-protective candidates for UV-induced skin damage. PMID:27153062

  16. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2ʹ-modified DNA

    Chen, Tingjian; Hongdilokkul, Narupat; Liu, Zhixia; Adhikary, Ramkrishna; Tsuen, Shujian S.; Romesberg, Floyd E.

    2016-06-01

    The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2ʹ positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2ʹ-OMe-modified oligonucleotides and their DNA counterparts via ‘transcription’ and ‘reverse transcription’ or, more importantly, that PCR-amplify partially C2ʹ-OMe- or C2ʹ-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.

  17. Single-Molecule Investigation of Response to Oxidative DNA Damage by a Y-Family DNA Polymerase.

    Raper, Austin T; Gadkari, Varun V; Maxwell, Brian A; Suo, Zucai

    2016-04-12

    Y-family DNA polymerases are known to bypass DNA lesions in vitro and in vivo and rescue stalled DNA replication machinery. Dpo4, a well-characterized model Y-family DNA polymerase, is known to catalyze translesion synthesis across a variety of DNA lesions including 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxo-dG). Our previous X-ray crystallographic, stopped-flow Förster resonance energy transfer (FRET), and computational simulation studies have revealed that Dpo4 samples a variety of global conformations as it recognizes and binds DNA. Here we employed single-molecule FRET (smFRET) techniques to investigate the kinetics and conformational dynamics of Dpo4 when it encountered 8-oxo-dG, a major oxidative lesion with high mutagenic potential. Our smFRET data indicated that Dpo4 bound the DNA substrate in multiple conformations, as suggested by three observed FRET states. An incoming correct or incorrect nucleotide affected the distribution and stability of these states with the correct nucleotide completely shifting the equilibrium toward a catalytically competent complex. Furthermore, the presence of the 8-oxo-dG lesion in the DNA stabilized both the binary and ternary complexes of Dpo4. Thus, our smFRET analysis provided a basis for the enhanced efficiency which Dpo4 is known to exhibit when replicating across from 8-oxo-dG. PMID:27002236

  18. Interaction of hyperthermia and radiation in tolerant and nontolerant HeLa S3 cells: role of DNA polymerase inactivation

    The activities of DNA polymerase α and β were measured in tolerant and nontolerant HeLa S3 suspension cells. The heat-inactivation of the enzymes and their recovery when cells were incubated at 370C after the heat challenge was compared to the synergistic action of heat and x-radiation and its disappearance at the level of cell survival. Thermotolerant cells were radiosensitized by heat similarly to nontolerant cells, but the sensitization decreased more rapidly in the tolerant cells when time at 370C was allowed between the two treatments. For polymerase activities the extent of inactivation, as well as the kinetics of recovery, were similar in tolerant and nontolerant cells. (author)

  19. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases.

    Wang, Xuxiang; Zhang, Jianye; Li, Yingjia; Chen, Gang; Wang, Xiaolong

    2015-02-01

    Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity. PMID:25517220

  20. Active DNA Demethylation Mediated by DNA Glycosylases

    Zhu, Jian-Kang

    2009-01-01

    Active DNA demethylation is involved in many vital developmental and physiological processes of plants and animals. Recent genetic and biochemical studies in Arabidopsis have demonstrated that a subfamily of DNA glycosylases function to promote DNA demethylation through a base excision-repair pathway. These specialized bifunctional DNA glycosylases remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, resulting in a gap that is then filled with an unmethylated ...

  1. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains. PMID:26154586

  2. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach

    Iñiguez Alena M

    2003-01-01

    Full Text Available The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pretreatment was essential to overcome the DNA degradation and the serial dilutions helped with to prevent polymerase chain reaction (PCR inhibitors. Moreover, the random amplified polymorphic DNA-PCR has been shown to be a reliable technique for further experiments to recover specific aDNA sequences.

  3. Promoter and nonspecific DNA binding by the T7 RNA polymerase.

    Smeekens, S.P.; Romano, L J

    1986-01-01

    T7 RNA polymerase plays an important role in both the transcription and replication of bacteriophage T7. In this study we have used a nitrocellulose filter binding assay to examine the binding properties of the T7 RNA polymerase with T7 promoters cloned into plasmid DNAs. Promoter-specific binding was shown to be relatively insensitive to variations in the ionic strength of the incubation solution but dependent on the helical structure of the DNA. On the other hand, nonpromoter interior-site ...

  4. Production of Recombinant Human DNA Polymerase Delta in a Bombyx mori Bioreactor

    Zhou, Yajing; Chen, Huiqing; Li, Xiao; Wang, Yujue; Chen, Keping; Zhang, Sufang; MENG, XIAO; Lee, Ernest Y. C.; Lee, Marietta Y.W.T.

    2011-01-01

    Eukaryotic DNA polymerase δ (pol δ) plays a crucial role in chromosomal DNA replication and various DNA repair processes. It is thought to consist of p125, p66 (p68), p50 and p12 subunits. However, rigorous isolation of mammalian pol δ from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. While recombinant pol δ isolated from infected insect cells have some problems of consistency in the quality of the preparations, and the yields are muc...

  5. DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae.

    Meyer, Damon; Fu, Becky Xu Hua; Heyer, Wolf-Dietrich

    2015-12-15

    Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces cerevisiae cells to analyze DSBs requiring microhomologies for repair, known as microhomology-mediated end-joining (MMEJ). MMEJ repair efficiency increased concomitant with microhomology length and decreased upon introduction of mismatches. The central proteins in homologous recombination (HR), Rad52 and Rad51, suppressed MMEJ in this system, suggesting a competition between HR and MMEJ for the repair of a DSB. Importantly, we found that DNA polymerase delta (Pol δ) is critical for MMEJ, independent of microhomology length and base-pairing continuity. MMEJ recombinants showed evidence that Pol δ proofreading function is active during MMEJ-mediated DSB repair. Furthermore, mutations in Pol δ and DNA polymerase 4 (Pol λ), the DNA polymerase previously implicated in MMEJ, cause a synergistic decrease in MMEJ repair. Pol λ showed faster kinetics associating with MMEJ substrates following DSB induction than Pol δ. The association of Pol δ depended on RAD1, which encodes the flap endonuclease needed to cleave MMEJ intermediates before DNA synthesis. Moreover, Pol δ recruitment was diminished in cells lacking Pol λ. These data suggest cooperative involvement of both polymerases in MMEJ. PMID:26607450

  6. Inhibitory effect of tocotrienol on eukaryotic DNA polymerase λ and angiogenesis

    Tocotrienols, vitamin E compounds that have an unsaturated side chain with three double bonds, selectively inhibited the activity of mammalian DNA polymerase λ (pol λ) in vitro. These compounds did not influence the activities of replicative pols such as α, δ, and ε, or even the activity of pol β which is thought to have a very similar three-dimensional structure to the pol β-like region of pol λ. Since δ-tocotrienol had the strongest inhibitory effect among the four (α- to δ-) tocotrienols, the isomer's structure might be an important factor in the inhibition of pol λ. The inhibitory effect of δ-tocotrienol on both intact pol λ (residues 1-575) and a truncated pol λ lacking the N-terminal BRCA1 C-terminus (BRCT) domain (residues 133-575, del-1 pol λ) was dose-dependent, with 50% inhibition observed at a concentration of 18.4 and 90.1 μM, respectively. However, del-2 pol λ (residues 245-575) containing the C-terminal pol β-like region was unaffected. Tocotrienols also inhibited the proliferation of and formation of tubes by bovine aortic endothelial cells, with δ-tocotrienol having the greatest effect. These results indicated that tocotrienols targeted both pol λ and angiogenesis as anti-cancer agents. The relationship between the inhibition of pol λ and anti-angiogenesis by δ-tocotrienol was discussed

  7. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  8. Suppression of rolling circle amplification by nucleotide analogs in circular template for three DNA polymerases.

    Tang, Suming; Wei, Hua; Hu, Tianyu; Jiang, Jiquan; Chang, Jinglin; Guan, Yifu; Zhao, Guojie

    2016-08-01

    Among wide applications of nucleotide analogs, their roles in enzyme catalytic reactions are significant in both fundamental and medical researches. By introducing analogs into circular templates, we succeeded in determining effects of four analogs on RCA efficiency for three different DNA polymerases. Results showed an obvious suppression effect for 2'-OMeRNA modification, which might be due to the size of the C2'-modified moieties. 2'-F RNA, LNA and PS had little interference, suggesting good analog candidates for application in RCA. Different polymerases and nucleobases made a little difference according to analogs we used. These results are useful for understanding polymerase catalytic mechanism and analogs applications in RCA reaction. PMID:27151504

  9. B Family DNA Polymerases Asymmetrically Recognize Pyrimidines and Purines

    Lund, T. J.; Cavanaugh, N. A.; Joubert, Nicolas; Urban, M.; Patro, J. N.; Hocek, Michal; Kuchta, R. D.

    2011-01-01

    Roč. 50, č. 33 (2011), s. 7243-7250. ISSN 0006-2960 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : active-site tightness * genetic alphabet * deoxynucleoside * phosphoramidites Subject RIV: CC - Organic Chemistry Impact factor: 3.422, year: 2011

  10. Direct and site-specific quantification of RNA 2'-O-methylation by PCR with an engineered DNA polymerase.

    Aschenbrenner, Joos; Marx, Andreas

    2016-05-01

    Methylation of the 2'-hydroxyl-group of ribonucleotides is found in all major classes of RNA in eukaryotes and is one of the most abundant posttranscriptional modifications of stable RNAs. In spite of intense studies, the multiple functions of RNA 2'-O-methylation are still not understood. One major obstacle in the field are the technical demanding detection methods, which are typically laborious and do not always deliver unambiguous results. We present a thermostable KlenTaq DNA polymerase variant with significant reverse transcription activity that is able to discriminate 2'-O-methylated from unmethylated RNAs. The engineered enzyme catalyzes DNA synthesis from DNA as well as RNA templates and enables expeditious quantification of 2'-O-methylation of individual nucleotides directly from total RNA extracts by a simple qRT-PCR. PMID:27016740

  11. Identification of a Taq DNA polymerase inhibitor from the red seaweed Symphyocladia latiuscula.

    Jin, Hyung Joo; Oh, Mi Young; Jin, Deuk Hee; Hong, Yong Ki

    2008-07-01

    Two inhibitors of Taq DNA polymerase were isolated from the marine red alga Symphyocladia latiuscula. The inhibitors were purified by methanol extraction, molecular fractionation below 3000 MW and reverse-phase HPLC. The purified compound SL-1 containing three bromines was identified as 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (C7H5Br3O3: MW374) by NMR and MS analyses. The purified compound SL-2 was identified as 2,3, 6-tribromo-4,5-dihydroxybenzyl methyl ether(C8H7Br3O3: MW388). In a 25-microl reaction mixture containing 1.5 units of Taq DNA polymerase, the enzyme was completely inhibited by 0.5 microg SL-1 or 5 microg SL-2. PMID:19195384

  12. Enzymatic Synthesis of Modified Oligonucleotides by PEAR Using Phusion and KOD DNA Polymerases

    Wang, Xuxiang; Zhang, Jianye; Li, Yingjia; Chen, Gang; Wang, Xiaolong

    2015-01-01

    Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase–endonuclease amplification reaction (PEAR) for amplification of natural and 5′-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2′-deoxy-2′-fluoro-(2′-F) and 2′-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with on...

  13. Triplex DNA: A new platform for polymerase chain reaction – based biosensor

    Yubin Li; Xiangmin Miao; Liansheng Ling

    2015-01-01

    Non - specific PCR amplification and DNA contamination usually accompany with PCR process, to overcome these problems, here we establish a sensor for thrombin by sequence - specific recognition of the PCR product with molecular beacon through triplex formation. Probe A and probe B were designed for the sensor, upon addition of thrombin, two probes hybridized to each other and the probe B was extended in the presence of Klenow Fragment polymerase and dNTPs. The PCR amplification occurred with ...

  14. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin; Stone, Michael P. (Vanderbilt)

    2012-07-18

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves

  15. Hamster endogenous retrovirus (HaER) - distinct properties of structural proteins and DNA polymerase

    The structural proteins as well as some features of the RNA-dependent DNA polymerase of the hamster endogenous retrovirus (HaER) were examined. The polypeptide pattern of this virus is substantially different from that of other known retroviruses in containing major polypeptides with molecular weights of 68000, 59000, 27000, 24000 daltons. Double antibody competitive radioimmunoassays showed that the HaER particles do not share any detectable antigenic relatedness with the murine viruses' p30, but manifest a considerable relatedness with the feline leukemia virus p27 and a slight cross-reactivity with the rat virus major protein. The RNA-dependent DNA polymerase of HaER virus has a molecular size of approximately 73000 daltons and in contrast to other mammalian retroviruses shows no significant preference for Mn2+ over Mg2+. Apart from the lack of antigenic relatedness between the HaER virus proteins and the p30 protein of murine viruses, there is also no antigenic relatedness between HaER and murine viruses insofar as their DNA polymerase is concerned. (Author)

  16. Impacts of carbon nanotubes on biochemical reactions: insight into interaction between carbon nanotubes and DNA polymerase enzyme

    Uysal, Ebru; Meral, Yüce; Meral, Yuce; Hasan KURT

    2014-01-01

    Recently, the Polymerase Chain Reaction technique has begun to benefit from nanotechnology. In this paper, effects of carbon nanotubes in the Polymerase Chain Reaction were investigated by Electrophoresis, Circular Dichroism Spectrometry and Dynamic Light Scattering Techniques. The unique ability to amplify low copy number DNA within minutes has made in vitro Polymerase Chain Reaction (PCR) one of the most essential techniques in modern biology. In order to harness this technique to its full ...

  17. An ATF/CREB site is the major regulatory element in the human herpesvirus 6 DNA polymerase promoter.

    Agulnick, A D; Thompson, J R; Ricciardi, R P

    1994-01-01

    Human herpesvirus 6 (HHV-6) is a recently described T-cell pathogen whose medical relevance and molecular biology are just beginning to be addressed. As a first look at the regulation of viral genes, control of the HHV-6 DNA polymerase promoter was examined. Polymerase gene transcription in HHV-6-infected cells was found to initiate from a single site located 115 bases upstream of the translation start codon. A polymerase promoter-chloramphenicol acetyltransferase reporter gene construct fail...

  18. On the promoter complex formation rate of E. coli RNA polymerases with T7 phage DNA.

    Belintsev, B N; Zavriev, S.K.; Shemyakin, M.F.

    1980-01-01

    Influence of ionic strength on the kinetics of the promoter complex formation between E. coli RNA polymerase and T7 phage DNA was investigated using a membrane filter assay. The enzyme-promoter association rate constant was determined. It varies from 10(9) to 3 x 10(7) M-1 sec-1 when the ionic strength is changed from zero to 0.15 M NaCl. Basing on the theoretical analysis of experimental data obtained the model for the promoter site selection assuming the enzyme sliding along the DNA is disc...

  19. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction.

    Tsai, Y L; Olson, B H

    1992-01-01

    The polymerase chain reaction (PCR) was used to amplify an Escherichia coli 16S ribosomal gene fragment from sediments with high contents of humic substances. Total DNA was extracted from 1 g of E. coli seeded or unseeded samples by a rapid freeze-and-thaw method. Several approaches (use of Bio-Gel P-6 and P-30 and Sephadex G-50 and G-200 columns, as well as use of the Stoffel fragment) were used to reduce interference with the PCR. The best results were obtained when crude DNA extracts conta...

  20. Isolation, sequencing and overexpression of the gene encoding the theta subunit of DNA polymerase III holoenzyme.

    J.R. Carter; Franden, M A; Aebersold, R.; Kim, D.R.; McHenry, C S

    1993-01-01

    The gene encoding the theta subunit of DNA polymerase III holoenzyme, designated holE, was isolated using a strategy in which peptide sequence was used to derive a DNA hybridization probe. Sequencing of the gene, which maps to 41.43 centisomes of the chromosome, revealed a 76-codon open reading frame predicted to produce a protein of 8,846 Da. When placed in a tac promoter expression vector, the open reading frame directed expression of a protein, that comigrated with authentic theta subunit ...

  1. Bacteriophage T7 DNA polymerase: cloning and high-level expression.

    Reutimann, H; Sjöberg, B M; Holmgren, A.

    1985-01-01

    Phage T7 DNA polymerase consists of a 1:1 complex of the viral T7 gene 5 protein and the host cell thioredoxin. A 3.25-kilobase T7 DNA fragment containing the complete coding sequence of gene 5, and the nearby genes 4.7 and 5.3, was cloned in the BamHI site of the plasmid pBR322. Transformation of the thioredoxin-negative (trxA-) Escherichia coli strain BH215 with the recombinant plasmid pRS101 resulted in large overproduction of gene 5 protein corresponding to a level about 60-fold higher th...

  2. Mechanism of Translesion Synthesis Past an Equine Estrogen-DNA Adduct by Y-Family DNA Polymerases

    Yasui, Manabu; Suzuki, Naomi; Liu, Xiaoping; Kim, Yoshinori Okamoto Sung Yeon; Laxmi, Y. R. Santosh; Shibutani, Shinya

    2007-01-01

    4-Hydroxyequilenin (4-OHEN)-dC is a major, potentially mutagenic DNA adduct induced by equine estrogens used for hormone replacement therapy. To study the miscoding property of 4-OHEN-dC and the involvement of Y-family human DNA polymerases (pols) η, κ and ι in that process, we incorporated 4-OHEN-dC into oligodeoxynucleotides and used them as templates in primer extension reactions catalyzed by pol η, κ and ι. Pol η inserted dAMP opposite 4-OHEN-dC, accompanied by lesser amounts of dCMP and ...

  3. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase.

    Manrao, Elizabeth A; Derrington, Ian M; Laszlo, Andrew H; Langford, Kyle W; Hopper, Matthew K; Gillgren, Nathaniel; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H

    2012-04-01

    Nanopore technologies are being developed for fast and direct sequencing of single DNA molecules through detection of ionic current modulations as DNA passes through a pore's constriction. Here we demonstrate the ability to resolve changes in current that correspond to a known DNA sequence by combining the high sensitivity of a mutated form of the protein pore Mycobacterium smegmatis porin A (MspA) with phi29 DNA polymerase (DNAP), which controls the rate of DNA translocation through the pore. As phi29 DNAP synthesizes DNA and functions like a motor to pull a single-stranded template through MspA, we observe well-resolved and reproducible ionic current levels with median durations of ∼28 ms and ionic current differences of up to 40 pA. Using six different DNA sequences with readable regions 42-53 nucleotides long, we record current traces that map to the known DNA sequences. With single-nucleotide resolution and DNA translocation control, this system integrates solutions to two long-standing hurdles to nanopore sequencing. PMID:22446694

  4. Structural and mechanistic investigations into a DNA polymerase from Drosophila melanogaster embryos

    A procedure for isolating DNA polymerase α (DNAPα) from Drosophila melanogaster embryos is described. A novel affinity chromatographic step exploits the differential binding affinity exhibited by this enzyme for poly A and poly G agarose. DNAPα isolated from embryos of 9 hour average age appears identical to an enzyme previously described. A potentially larger form of the enzyme is isolated from 2.5 hour average age embryos. Two independent methods were used to demonstrate that DNAPα obeys a rigidly ordered substrate binding mechanism with template-primer binding being prerequisite to dNTP binding. One method, utilizing alternative pathway kinetics, is described here for the first time. Pyridoxal-5-phosphate (PLP) was found to inhibit DNAPα reversibly, at low stoichiometry and with a saturation effect, all criteria for an affinity label. Furthermore, PLP inhibition is dependent on pH and MgCl2 concentration in the range of optimal DNAP activity. From protection experiments with normal substrates and dideoxyterminated primers and from the effects of substrates and PLP on initial velocities, it was conclusively shown that PLP inhibits DNAP by binding at two different sites. A procedure for the isolation of a pyridoxal kinase from Lactobacillus casei, optimal reaction conditions of the purified enzyme and its use in the synthesis of 32P PLP are all described

  5. Effects of DNA strand breaks on transcription by RNA polymerase III: insights into the role of TFIIIB and the polarity of promoter opening

    Kassavetis, George A.; Grove, Anne; Geiduschek, E.Peter

    2002-01-01

    Certain deletion mutants of the Brf1 and Bdp1 subunits of transcription factor (TF) IIIB retain the ability to recruit RNA polymerase (pol) III to its promoters, but fail to support promoter opening: deletions within an internal Bdp1 segment interfere with initiation of DNA strand separation, and an N-terminal Brf1 deletion blocks propagation of promoter opening past the transcriptional start site. The ability of DNA strand breaks to restore pol III transcription activity to these defective T...

  6. Novel enzyme immunoassay and optimized DNA extraction for the detection of polymerase-chain-reaction-amplified viral DNA from paraffin-embedded tissue.

    Merkelbach, S.; Gehlen, J.; Handt, S.; Füzesi, L

    1997-01-01

    Four different DNA extraction methods were compared to determine their ability to provide DNA for amplification of viral sequences from paraffin-embedded human tissue samples by polymerase chain reaction (PCR). The suitability of extraction methods was assessed using parameters like DNA yield, length of recovered DNA fragments, and duration. Furthermore, the efficiency of amplifying a human single-copy gene, the beta-globin gene, from DNA samples was tested. The best preservation of DNA molec...

  7. Rapid isolation of DNA from fresh and preserved fish scales for polymerase chain reaction.

    Yue, G H; Orban, L

    2001-05-01

    We developed a simple and inexpensive method to extract DNA from fresh and preserved fish scales. The procedure is based on boiling the scales in 5% Chelex 100, followed by digestion with proteinase K and subsequent absorption of genomic DNA using silica. A single fresh scale from larger species (e.g., tilapia) or a few scales from smaller species (e.g., 4 scales from zebrafish) provide over 200 ng of DNA, enough for at least 40 polymerase chain reaction amplifications. The procedure is applicable for DNA isolation not only from fresh and ethanol-preserved scales, but also from dried and formaldehyde-treated samples, and thus might be useful for investigating specimens stored in museums and other collections. Since the removal of a few scales is a gentle means of sample collection, this technique will allow analysis of genetic diversity, mating systems, and parentage in populations of endangered or ornamental fish with minimal experimental influence. PMID:14961356

  8. Glycyrrhetinic acid and its derivatives as inhibitors of poly(ADP-ribose)polymerases 1 and 2, apurinic/apyrimidinic endonuclease 1 and DNA polymerase β

    Salakhutdinov N. F.; Schreiber V.; Khodyreva S. N.; Ilina E. S.; Kutuzov M. M.; Sukhanova M. V.; Salomatina O. V.; Zakharenko A. L.; Lavrik O. I.

    2012-01-01

    Aim. For strengthening the efficiency of monofunctional alkylating antineoplastic drugs it is important to lower the capacity of base excision repair (BER) system which corrects the majority of DNA damages caused by these reagents. The objective was to create inhibitors of the key BER enzymes (PARP1, PARP2, DNA polymerase β, and APE1) by the directed modification of glycyrrhetinic acid (GA). Methods. Amides of GA were produced from the GA acetate by formation of the corresponding acyl chlorid...

  9. Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases.

    Kielkowski, Pavel; Cahová, Hana; Pohl, Radek; Hocek, Michal

    2016-03-15

    New types of double-headed 2'-deoxycytidine 5'-O-triphosphates (dC(XC)TPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dC(XC)TPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins. PMID:26899597

  10. Structural relationships among the multiple forms of DNA-dependent RNA polymerase II from cultured parsley cells

    DNA-dependent RNA polymerase II (or B) was purified from cultured parsley cells, and its molecular structure was examined in detail. Upon centrifugation through glycerol gradients, RNA polymerase II sediments as a single band with an apparent sedimentation constant of 15S. No contamination with RNA polymerases I or III could be detected when the activity of purified RNA polymerase II was assayed in the presence of high concentrations of α-amanitin. Analysis of purified RNA polymerase II be nondenaturing and denaturing polyacrylamide gel electrophoresis revealed that this enzyme exists in multiple forms. They were designated II(O), II(A), and II(B). It is suggested that each form has a subunit of Mr = 140000 as well as smaller polypeptides in common. They differ, however, in the molecular weights of their largest subunits which is 220000 in form II(O), 200000 in form II(A), and 180000 in form II(B). These large subunits were labelled with 125I, digested with trypsin, and tryptic digests were compared by two-dimensional analysis on thin-layer plates (Elder et al. (1977) J. Biol. Chem. 252, 6510-6515). Fingerprints of tryptic digests from the polypeptides with Mr = 220000, Mr = 200000, and Mr = 180000 were similar. It is, therefore, suggested that these subunits are stucturally related. A tryptic digest was also produced from the subunit with Mr = 140000. Its fingerprint was found to yield a considerably different distribution of peptides as compared to those from the three large subunits. (orig.)

  11. NMR Assignment of Polymerase β labeled with 2H, 13C, and 15N in complex with substrate DNA

    Mueller, Geoffrey A.; DeRose, Eugene F.; Kirby, Thomas W.; London, Robert E.

    2007-01-01

    DNA Polymerase β is a multifunctional enzyme involved in base excision repair of nuclear DNA in vertebrate cells. It has been extensively studied as a model for mechanistic studies of the nucleotidyl transferase reaction, DNA synthesis fidelity, and protein-DNA interactions. Previous studies of 13C-methyl-methionine labeled Rat pol β revealed extensive dynamics in response to various DNA repair substrates (Bose-Basu et. al, 2004). We present here the first assignments of the full-length prote...

  12. Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations

    Leary Jeffry J

    2002-05-01

    Full Text Available Abstract Background The thymidine kinase (tk mutagenesis assay is often utilized to determine the frequency of herpes simplex virus (HSV replication-mediated mutations. Using this assay, clinical and laboratory HSV-2 isolates were shown to have a 10- to 80-fold higher frequency of spontaneous mutations compared to HSV-1. Methods A panel of HSV-1 and HSV-2, along with polymerase-recombinant viruses expressing type 2 polymerase (Pol within a type 1 genome, were evaluated using the tk and non-HSV DNA mutagenesis assays to measure HSV replication-dependent errors and determine whether the higher mutation frequency of HSV-2 is a distinct property of type 2 polymerases. Results Although HSV-2 have mutation frequencies higher than HSV-1 in the tk assay, these errors are assay-specific. In fact, wild type HSV-1 and the antimutator HSV-1 PAAr5 exhibited a 2–4 fold higher frequency than HSV-2 in the non-HSV DNA mutatagenesis assay. Furthermore, regardless of assay, HSV-1 recombinants expressing HSV-2 Pol had error rates similar to HSV-1, whereas the high mutator virus, HSV-2 6757, consistently showed signficant errors. Additionally, plasmid DNA containing the HSV-2 tk gene, but not type 1 tk or LacZ DNA, was shown to form an anisomorphic DNA stucture. Conclusions This study suggests that the Pol is not solely responsible for the virus-type specific differences in mutation frequency. Accordingly, it is possible that (a mutations may be modulated by other viral polypeptides cooperating with Pol, and (b the localized secondary structure of the viral genome may partially account for the apparently enhanced error frequency of HSV-2.

  13. Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ.

    Yoon, Jung-Hoon; Park, Jeseong; Conde, Juan; Wakamiya, Maki; Prakash, Louise; Prakash, Satya

    2015-12-15

    Translesion synthesis (TLS) DNA polymerases (Pols) promote replication through DNA lesions; however, little is known about the protein factors that affect their function in human cells. In yeast, Rev1 plays a noncatalytic role as an indispensable component of Polζ, and Polζ together with Rev1 mediates a highly mutagenic mode of TLS. However, how Rev1 functions in TLS and mutagenesis in human cells has remained unclear. Here we determined the role of Rev1 in TLS opposite UV lesions in human and mouse fibroblasts and showed that Rev1 is indispensable for TLS mediated by Polη, Polι, and Polκ but is not required for TLS by Polζ. In contrast to its role in mutagenic TLS in yeast, Rev1 promotes predominantly error-free TLS opposite UV lesions in humans. The identification of Rev1 as an indispensable scaffolding component for Polη, Polι, and Polκ, which function in TLS in highly specialized ways opposite a diverse array of DNA lesions and act in a predominantly error-free manner, implicates a crucial role for Rev1 in the maintenance of genome stability in humans. PMID:26680302

  14. Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA

    Ana Lisa do Vale Gomes

    2006-10-01

    Full Text Available This report describes the development of a SYBR Green I based real time polymerase chain reaction (PCR protocol for detection on the ABI Prism 7000 instrument. Primers targeting the gene encoding the SSU rRNA were designed to amplify with high specificity DNA from Schistosoma mansoni, in a real time quantitative PCR system. The limit of detection of parasite DNA for the system was 10 fg of purified genomic DNA, that means less than the equivalent to one parasite cell (genome ~580 fg DNA. The efficiency was 0.99 and the correlation coefficient (R² was 0.97. When different copy numbers of the target amplicon were used as standards, the assay could detect at least 10 copies of the specific target. The primers used were designed to amplify a 106 bp DNA fragment (Tm 83ºC. The assay was highly specific for S. mansoni, and did not recognize DNA from closely related non-schistosome trematodes. The real time PCR allowed for accurate quantification of S. mansoni DNA and no time-consuming post-PCR detection of amplification products by gel electrophoresis was required. The assay is potentially able to quantify S. mansoni DNA (and indirectly parasite burden in a number of samples, such as snail tissue, serum and feces from patients, and cercaria infested water. Thus, these PCR protocols have potential to be used as tools for monitoring of schistosome transmission and quantitative diagnosis of human infection.

  15. BORRELIA BURGDORFERI DNA IN BIOLOGICAL SAMPLES FROM PATIENTS WITH SARCOIDOSIS USING THE POLYMERASE CHAIN REACTION TECHNIQUE

    连伟; 罗慰慈

    1995-01-01

    Polymerase chain reaction (PCR) was used to detect the presence of Borretia burgdoferi DNA in biological samples from patients with sarcoidcsis. The target DNA sequence was of chromosomal origin. The amplified DNA sequence was analyzed by agarose gel electrophoresis, PAGE with silver staining, and the identity of amplified DNA was confirmed by restriction enzyme cleavage and DNA-DNA hybridlzation with a 32P-labelled probe. The assay was sensitive to fewer than two copies of B. burgdor feri genome, even in the presence of a 104-fold excess of human eukaryotic DNA, and was also specific to different B. burgdorferl strains tested. Sera seroiogieally positive to B. burgdorferi (n=26), broncbemlveolar lavage fluid and supematant of BALF (n=26) and peripheral blood (n=9) from sarcoidosis patients were tested. The positive rate was low (4/26, 2/26, and 0/9, respectively). It was considered that DNA from B. bur gdor feri may be identified in a minority of patients with s,arcoidosis, and it may play a pathogenetic rote in such cases. More studies need to be done before advancing the hypothesis of an etiologic role of B. burgdorferi in sarcoidosis.

  16. Separation of DNA-dependent polymerate activities in Micrococcus radiodurans

    DNA polymerase activities in Micrococcus radiodurans were separated into two fractions after purification more than 2000 fold. They differ in pH optimum and residual activities in the absence of a full deoxyribonucleoside triphosphates complement. NAD partly inhibited one of the activities. Both activities were eluted as a single peak on gel filtration and sedimented at the same rate on glycerol gradient centrifugation. Molecular weight 140000 was calculated from Stokes radius and sedimentation constant. Deoxyribonuclease activity was detected on one of the polymerase activities which preferentially degraded double-stranded DNA. Priming activity of nicked DNA was reduced by γ-radiation. These results have been related to the possible roles in repair synthesis in vivo or DNA synthesis in permeable cells of M. radiodurans

  17. Direct method for detecting small quantities of hepatitis B virus DNA in serum and plasma using the polymerase chain reaction.

    Zeldis, J B; Lee, J. H.; Mamish, D; Finegold, D J; Sircar, R; Q. Ling; Knudsen, P J; Kuramoto, I K; Mimms, L T

    1989-01-01

    Serum components inhibit DNA polymerase, thereby obviating direct detection of serum viral DNA sequences by the polymerase chain reaction (PCR). This has necessitated extraction of nucleic acid from sera before performing PCR and has resulted in loss of sensitivity. By adsorbing virus to a solid surface (microcentrifuge tubes or antibody coated microparticles) followed by proteinase K digestion, as little as three viruses per 200 microliters serum may be directly detected by PCR without nucle...

  18. Over-expression of the catalytic core of mitochondrial DNA (mtDNA) polymerase in the nervous system of Drosophila melanogaster reduces median life span by inducing mtDNA depletion

    Martínez-Azorín, Francisco; Calleja, Manuel; Hernández-Sierra, Rosana; Farr, Carol L.; Kaguni, Laurie S.; Garesse, Rafael

    2016-01-01

    DNA polymerase γ (pol γ) is the sole DNA polymerase devoted to mitochondrial DNA (mtDNA) replication. We have characterized the molecular and physiological effects of over-expression of the catalytic subunit of pol γ, pol γ-α, in the nervous system of Drosophila melanogaster using the upstream activation sequence (UAS)/yeast transcriptional activator by binding to UAS (GAL4) system. Tissue-specific over-expression of pol γ-α was confirmed by immunoblot analysis, whereas the very low levels of endogenous protein are undetectable in UAS or GAL4 control lines. The transgenic flies over-expressing pol γ-α in the nervous system showed a moderate increase in pupal lethality, and a significant decrease in the median life span of adult flies. Moreover, these flies displayed a decrease in the rate of synthesis of mtDNA, which is accompanied by a significant mtDNA depletion, and a corresponding decrease in the levels of mitochondrial transcription factor A (mtTFA). Biochemical analysis showed an oxidative phosphorylation (OXPHOS) defect in transgenic flies, which were more susceptible to oxidative stress. Although we did not detect apoptosis in the nervous system of adult transgenic flies, brains of larvae over-expressing pol γ-α showed evidence of increased cell death that correlates with the observed phenotypes. Our data establish an animal model that mimics some of the features of human mtDNA depletion syndromes. PMID:17999718

  19. The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA

    Chilkova, Olga; Stenlund, Peter; Isoz, Isabelle; Stith, Carrie M.; Grabowski, Pawel; Lundström, Else-Britt; Burgers, Peter M.; Johansson, Erik

    2007-01-01

    Saccharomyces cerevisiae DNA polymerase δ (Pol δ) and DNA polymerase ε (Pol ε) are replicative DNA polymerases at the replication fork. Both enzymes are stimulated by PCNA, although to different levels. To understand why and to explore the interaction with PCNA, we compared Pol δ and Pol ε in physical interactions with PCNA and nucleic acids (with or without RPA), and in functional assays measuring activity and processivity. Using surface plasmon resonance technique, we show that Pol ε has a high affinity for DNA, but a low affinity for PCNA. In contrast, Pol δ has a low affinity for DNA and a high affinity for PCNA. The true processivity of Pol δ and Pol ε was measured for the first time in the presence of RPA, PCNA and RFC on single-stranded DNA. Remarkably, in the presence of PCNA, the processivity of Pol δ and Pol ε on RPA-coated DNA is comparable. Finally, more PCNA molecules were found on the template after it was replicated by Pol ε when compared to Pol δ. We conclude that Pol ε and Pol δ exhibit comparable processivity, but are loaded on the primer-end via different mechanisms. PMID:17905813

  20. Rescue of Newcastle disease virus from cloned cDNA using an RNA polymerase II promoter.

    Li, Bao-Yu; Li, Xue-Rui; Lan, Xi; Yin, Xiang-Pin; Li, Zhi-Yong; Yang, Bin; Liu, Ji-Xing

    2011-06-01

    A new system was developed to improve the efficiency and simplify the procedure of recovery of Newcastle disease virus (NDV) from cloned cDNA. A full-length cDNA clone of mesogenic NDV vaccine strain Mukteswar was assembled from five subgenomic cDNA fragments and cloned into a plasmid allowing transcription driven by cellular RNA polymerase II. The full-length viral cDNA was flanked by hammerhead ribozyme (HamRz) and hepatitis delta virus ribozyme (HdvRz) sequences, resulted in the synthesis of antigenomic RNA with exact termini. Without supplying T7 RNA polymerase, infectious NDV could be generated efficiently in some eukaryotic cell lines by simultaneous transcription of antigenomic RNA from the full-length plasmid and expression of NP, P and L proteins from helper plasmids introduced by cotransfection. The efficiency of recovery with the conventional T7 promoter system based on BRS-T7 cells and the cytomegalovirus (CMV) promoter system was compared, and the results demonstrate that the new system facilitates the generation of recombinant NDV and more efficient than the T7 rescue system using BRS-T7. PMID:21327786

  1. Mutations Affecting Potassium Import Restore the Viability of the Escherichia coli DNA Polymerase III holD Mutant

    Durand, Adeline

    2016-01-01

    Mutants lacking the ψ (HolD) subunit of the Escherichia coli DNA Polymerase III holoenzyme (Pol III HE) have poor viability, but a residual growth allows the isolation of spontaneous suppressor mutations that restore ΔholD mutant viability. Here we describe the isolation and characterization of two suppressor mutations in the trkA and trkE genes, involved in the main E. coli potassium import system. Viability of ΔholD trk mutants is abolished on media with low or high K+ concentrations, where alternative K+ import systems are activated, and is restored on low K+ concentrations by the inactivation of the alternative Kdp system. These findings show that the ΔholD mutant is rescued by a decrease in K+ import. The effect of trk inactivation is additive with the previously identified ΔholD suppressor mutation lexAind that blocks the SOS response indicating an SOS-independent mechanism of suppression. Accordingly, although lagging-strand synthesis is still perturbed in holD trkA mutants, the trkA mutation allows HolD-less Pol III HE to resist increased levels of the SOS-induced bypass polymerase DinB. trk inactivation is also partially additive with an ssb gene duplication, proposed to stabilize HolD-less Pol III HE by a modification of the single-stranded DNA binding protein (SSB) binding mode. We propose that lowering the intracellular K+ concentration stabilizes HolD-less Pol III HE on DNA by increasing electrostatic interactions between Pol III HE subunits, or between Pol III and DNA, directly or through a modification of the SSB binding mode; these three modes of action are not exclusive and could be additive. To our knowledge, the holD mutant provides the first example of an essential protein-DNA interaction that strongly depends on K+ import in vivo. PMID:27280472

  2. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    A. Copani; J.J.M. Hoozemans; F. Caraci; M. Calafiore; E.S. van Haastert; R. Veerhuis; A.J.M. Rozemuller; E. Aronica; M.A. Sortino; F. Nicoletti

    2006-01-01

    Cultured neurons exposed to synthetic beta-amyloid (A beta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  3. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration ofa transgene.

    Tomoyuki eFurukawa

    2015-05-01

    Full Text Available The DNA double-strand break (DSB is a critical type of damage, and can be induced by both endogenous sources (e.g. errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork and exogenous sources (e.g. ionizing radiation or radiomimetic chemicals. Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ, much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1 displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2, both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway.

  4. Triplex DNA: A new platform for polymerase chain reaction-based biosensor.

    Li, Yubin; Miao, Xiangmin; Ling, Liansheng

    2015-01-01

    Non-specific PCR amplification and DNA contamination usually accompany with PCR process, to overcome these problems, here we establish a sensor for thrombin by sequence-specific recognition of the PCR product with molecular beacon through triplex formation. Probe A and probe B were designed for the sensor, upon addition of thrombin, two probes hybridized to each other and the probe B was extended in the presence of Klenow Fragment polymerase and dNTPs. The PCR amplification occurred with further addition of Taq DNA Polymerase and two primers, the PCR product was recognized by molecular beacon through triplex formation. The fluorescence intensity increased with the logarithm of the concentration of thrombin over the range from 1.0 × 10(-12) M to 1.0 × 10(-7) M, with a detection limit of 261 fM. Moreover, the effect of DNA contamination and non - specific amplification could be ignored completely in the proposed strategy. PMID:26268575

  5. A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation.

    Jennifer Yamtich

    Full Text Available Several germline single nucleotide polymorphisms (SNPs have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β, encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER, a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797 in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility.

  6. Synchronization of HeLa cell cultures by inhibition of DNA polymerase alpha with aphidicolin.

    Pedrali-Noy, G; Spadari, S; Miller-Faurès, A; Miller, A O; Kruppa, J; Koch, G

    1980-01-01

    Both the inhibitory effect of aphidicolin on the replicative alpha-polymerase and the reversibility of its action in vivo (Pedrali-Noy & Spadari, 1979, Biochem. Biophys. Res. Commun. 88, 1194-2002) allow the synchronization of cells in culture. Aphidicolin prevents G1 cells from entering the DNA synthetic period, blocks cells in "S" phase, allows G2, M and G1 cells to continue the cell cycle and to accumulate at the G1/S border. Aphidicolin is a more useful reagent than hydroxyurea and thymid...

  7. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  8. Crystallization and preliminary X-ray analysis of the Plasmodium falciparum apicoplast DNA polymerase.

    Milton, Morgan E; Choe, Jun-yong; Honzatko, Richard B; Nelson, Scott W

    2015-03-01

    Infection by the parasite Plasmodium falciparum is the leading cause of malaria in humans. The parasite has a unique and essential plastid-like organelle called the apicoplast. The apicoplast contains a genome that undergoes replication and repair through the action of a replicative polymerase (apPOL). apPOL has no direct orthologs in mammalian polymerases and is therefore an attractive antimalarial drug target. No structural information exists for apPOL, and the Klenow fragment of Escherichia coli DNA polymerase I, which is its closest structural homolog, shares only 28% sequence identity. Here, conditions for the crystallization of and preliminary X-ray diffraction data from crystals of P. falciparum apPOL are reported. Data complete to 3.5 Å resolution were collected from a single crystal (2 × 2 × 5 µm) using a 5 µm beam. The space group P6522 (unit-cell parameters a = b = 141.8, c = 149.7 Å, α = β = 90, γ = 120°) was confirmed by molecular replacement. Refinement is in progress. PMID:25760711

  9. Interactions of the DNA Polymerase X From African Swine Fever Virus With the ssDNA. Properties of the Total DNA-Binding Site and the Strong DNA-Binding Subsite§

    Jezewska, Maria J.; Szymanski, Michal R.; Bujalowski, Wlodzimierz

    2011-01-01

    Interactions of the polymerase X from the African Swine Fever Virus with the ssDNA have been studied, using quantitative fluorescence titration and fluorescence resonance energy transfer techniques. The primary DNA-binding subsite of the enzyme, independent of the DNA conformation, is located on the C-terminal domain. Association of the bound DNA with the catalytic N-terminal domain finalizes the engagement of the total DNA-binding site of the enzyme and induces a large topological change in ...

  10. Evidence against a Simple Tethering Model for Enhancement of Herpes Simplex Virus DNA Polymerase Processivity by Accessory Protein UL42

    Chaudhuri, Murari; Parris, Deborah S.

    2002-01-01

    The DNA polymerase holoenzyme of herpes simplex virus type 1 (HSV-1) is a stable heterodimer consisting of a catalytic subunit (Pol) and a processivity factor (UL42). HSV-1 UL42 differs from most DNA polymerase processivity factors in possessing an inherent ability to bind to double-stranded DNA. It has been proposed that UL42 increases the processivity of Pol by directly tethering it to the primer and template (P/T). To test this hypothesis, we took advantage of the different sensitivities o...

  11. Searching for association of the CAG repeat polymorphism in the mitochondrial DNA polymerase gamma gene (POLG) with colorectal cancer.

    Linkowska, Katarzyna; Jawień, Arkadiusz; Marszałek, Andrzej; Skonieczna, Katarzyna; Grzybowski, Tomasz

    2015-01-01

    Mitochondrial DNA polymerase gamma (POLG) is the only DNA polymerase involved in maintaining the mitochondrial genome. Recent studies demonstrated an association of CAG repeat polymorphism in the second exon of POLG gene with the risk of cancer. We investigated the CAG repeat variability in the POLG gene in tumor and non-tumor tissues from colorectal cancer patients and in DNA samples isolated from blood obtained from age-matched healthy persons. Somatically occuring CAG-repeat alterations in cancer tissues have been observed in 10% of patients, but no association has been found between the CAG repeat variants in the POLG gene and colorectal cancer risk. PMID:26317126

  12. DNA amplification fingerprinting using 10 x polymerase chain reaction buffer with ammonium sulfate for human identification

    The polymerase chain reaction (PCR) - based DNA amplification fingerprinting (DAF) or randomly amplified polymorphic DNA (RAPD) is based on a strategy using a single arbitrary oligonucleotide primer to generate anonymous amplification of genomic DNA. On this basic strategy, in this study, we aimed to test individual differences and usefulness of 2 basic primers (5-CGCGCCGG-3 and 5-TGCCGAGCTG-3) and examined whether there is a positive effect on results of 10 x PCR buffer with ammonium sulfate. A new approach in DNA fingerprinting, 10 x PCR buffer with ammonium sulfate, is presented in the study. Primers with single 8 and 10 nucleotides in length and 2 different PCR buffers with or without ammonium sulfate were used to identify 135 volunteers with no blood relationship. This study was carried out at the Pharmacology Laboratory, University of Gaziantep, School of Medicine, Turkey between 1999 and 2000. An average of 10 major bands representing 500-1500 base pair (bp) in length was determined as amplified DNA products on standard agarose gels for these volunteers. The use of ammonium sulfate in 10 x PCR buffers has increased to 92% success ratio of individual difference obtained from the 8 nucleotides primer. With this study, more reliable results can be obtained by using ammonium sulfate in 10 x PCR buffers. (author)

  13. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases

    Scott D McCulloch; Thomas A Kunkel

    2008-01-01

    In their seminal publication describing the structure of the DNA double helix [1], Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.

  14. Nucleotide insertion initiated by van der Waals interaction during polymerase beta DNA replication

    Arulsamy, Andrew Das

    2011-01-01

    Immortality will remain a fantasy for as long as aging is determined by the erroneous biochemical reactions during a particular DNA replication. The replication and base excision repair mechanism, associated to eukaryotic DNA polymerase-beta enzyme are central to maintaining a healthy cell. Here, we give a series of unambiguous theoretical analyses and prove that the exclusive biochemical reaction involved in a single nucleotide insertion into the DNA primer can be efficiently tracked using the renormalized van der Waals interaction of the stronger type, and the Hermansson blue-shifting hydrogen bond effect. We found that there are two biochemical steps involved to complete the insertion of a single dCTP into the 3' end of a DNA primer. First, the O3' (from a DNA primer) initiates the nucleophilic attack on P_alpha?(from an incoming dCTP), in response, O3_alpha (bonded to P_alpha) retaliates by interacting with H' (bonded to O3'). These interactions are shown to be strongly interdependent and require the form...

  15. Slow rate of phosphodiester bond formation accounts for the strong bias that Taq DNA polymerase shows against 2',3'-dideoxynucleotide terminators.

    Brandis, J W; Edwards, S G; Johnson, K A

    1996-02-20

    Taq and T7 DNA polymerases have become basic molecular biology "tools" for DNA sequence analysis. However, Taq, unlike T7 DNA polymerase, is strongly biased against the incorporation of 2',3'-dideoxynucleotide triphosphates (ddNTPs) indicating very different substrate selectivities. Equilibrium binding and rate constants were measured for 2',3'-ddNTPs as well as for several other 3'-substituted terminators and compared to 2'-deoxynucleotide substrates (dNTPs). In steady-state experiments, Taq Pol I was strongly biased in favor of dATP1 over ddATP incorporation by about 700 to 1, in contrast to T7 DNA polymerase which showed a preference of only about 4 to 1. Manganese reduced but did not eliminate selectivity against 2',3'-ddNTPs. Transient kinetic traces indicated different rate-limiting steps for substrate and terminator incorporation. Further mechanistic studies showed that the binding constants for substrates and terminators were equivalent. However, the rate constants for phosphodiester bond formation for 2',3'-ddNTPs were 200-3000-fold lower than for dNTPs. Alternative terminators showed only slight improvements. The data were consistent with a model in which both substrates and terminators undergo ground-state binding followed by formation of a tight-binding Enz.DNA.Nucleotide complex. Immediately after complex formation, substrates undergo a rapid nucleoside phosphoryl transfer reaction. However, the reaction rates for terminators were slower presumably due to misalignment of reactive groups in the active site. Thus, the strong bias that Taq DNA polymerase shows against terminators is due to a very slow "chemistry" step. Such a strong bias has several kinetic consequences for DNA sequence patterns. These consequences are discussed in the text. PMID:8652560

  16. Poly(ADP-ribose polymerase (PARP-1 is not involved in DNA double-strand break recovery

    Fernet Marie

    2003-07-01

    Full Text Available Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose polymerase (PARP-1 in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility to neocarzinostatin below 1.5 nM drug. Restoration of PARP-1 expression in PARP-1-/- 3T3s by retroviral transfection of the full PARP-1 cDNA did not induce any change in neocarzinostatin response. Moreover the incidence and the rejoining kinetics of neocarzinostatin-induced DNA double-strand breaks were identical in PARP-1+/+ and PARP-1-/- 3T3s. Poly(ADP-ribose synthesis following γ-rays and H2O2 was observed in PARP-1-proficient cells only. In contrast neocarzinostatin, even at supra-lethal concentration, was unable to initiate PARP-1 activation yet it induced H2AX histone phosphorylation in both PARP1+/+ and PARP-1-/- 3T3s as efficiently as γ-rays and H2O2. Conclusions The results show that PARP-1 is not a major determinant of DNA double-strand break recovery with either strand break rejoining or cell survival as an endpoint. Even though both PARP-1 and ATM activation are major determinants of the cell response to γ-rays and H2O2, data suggest that PARP-1-dependent poly(ADP-ribose synthesis and ATM-dependent H2AX phosphorylation, are not inter-related in the repair pathway of neocarzinostatin-induced DNA double-strand breaks.

  17. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes.

    Maul, Robert W; MacCarthy, Thomas; Frank, Ekaterina G; Donigan, Katherine A; McLenigan, Mary P; Yang, William; Saribasak, Huseyin; Huston, Donald E; Lange, Sabine S; Woodgate, Roger; Gearhart, Patricia J

    2016-08-22

    DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation. PMID:27455952

  18. Resolution of the diadenosine 5',5'''-P1,P4-tetraphosphate binding subunit from a multiprotein form of HeLa cell DNA polymerase α

    A diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) binding subunit has been resolved from a high molecular weight (640,000) multiprotein form of DNA polymerase α [deoxy-nucleoside triphosphate:DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7] from HeLa cells. The Ap4A binding activity copurifies with the DNA polymerizing activity during the course of purification. Hydrophobic chromatograpy on butylagarose resolves the Ap4A binding activity from the DNA polymerase. The Ap4A binding activity is protein in nature since the binding of Ap4A is abolished by treatment of the isolated binding activity with proteinase K but is insensitive to treatment with DNase or RNase. The molecular weight of the Ap4A binding protein, as determined by polyacrylamide gel electrophoresis under nondenaturing conditions or by NaDodSO4/polyacrylamide gel electrophoresis after photoaffinity labeling of the protein with [32P]Ap4A is 92,000 or 47,000. The binding activity of this protein is highly specific for Ap4A

  19. Association of DNA sequence variation in mitochondrial DNA polymerase with mitochondrial DNA synthesis and risk of oral cancer.

    Datta, Sayantan; Ray, Anindita; Roy, Roshni; Roy, Bidyut

    2016-01-10

    Enzymes responsible for mitochondrial (mt) DNA synthesis and transcription are encoded by nuclear genome and inherited mutations in these genes may play important roles in enhancing risk of precancer and cancer. Here, genetic variations in 23 functionally relevant tagSNPs in 6 genes responsible for mtDNA synthesis and transcription were studied in 522 cancer and 241 precancer (i.e. leukoplakia) patients and 525 healthy controls using Illumina Golden Gate assay to explore association with risk of oral precancer and cancer. Two SNPs, rs41553913 at POLRMT and rs9905016 at POLG2, significantly increased risk of oral leukoplakia and cancer, respectively, at both genotypic and allelic levels. Gene-environment interaction models also revealed that tobacco habits and SNPs at POLG2 and TFAM may modulate risk of both leukoplakia and cancer. In silico analysis of published data-set also revealed that variant heterozygote (TC) significantly increased transcription of POLG2 compared to wild genotype (p=0.03). Cancer tissues having variant allele genotypes (TC+CC) at POLG2 contained 1.6 times (pcancer tissues having wild genotype (TT). In conclusion, polymorphisms at POLG2 and POLRMT increased risk of oral cancer and leukoplakia, respectively, probably modulating synthesis and activity of the enzymes. Enhanced synthesis of mtDNA in cancer tissues may have implication in carcinogenesis, but the mechanism is yet to be explored. PMID:26403317

  20. Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps

    Manjula Pandey

    2014-03-01

    Full Text Available By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.

  1. Electrostatic map of T7 DNA. Comparative analysis of functional and electrostatic properties of T7 RNA polymerase specific promoters

    Kamzolova, S. G.; Beskaravainy, P. M.; Osypov, A. A.; Dzhelyadin, T. R.; Temlyakova, E. A.; Sorokin, A. A.

    2013-01-01

    The entire T7 bacteriophage genome contains 39937 base pairs (Database NCBI RefSeq N1001604). Here, electrostatic potential distribution around double helical T7 DNA was calculated by Coulomb method using the computer program of Sorokin A.A. Electrostatic profiles of 17 promoters recognized by T7 phage specific RNA polymerase were analyzed. It was shown that electrostatic profiles of all T7 RNA polymerase specific promoters can be characterized by distinctive motifs which are specific for eac...

  2. RNA polymerase motors on DNA track: effects of traffic congestion on RNA synthesis

    Tripathi, Tripti

    2007-01-01

    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by a ssDNA. In some circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track. We refer to such collective movements of the RNAPs as RNAP traffic because of the similarities between the collective dynamics of the RNAPs on ssDNA track and that of vehicles in highway traffic. In this paper we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechano-chemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the ssDNA track. We also suggest novel experiments for testing o...

  3. Translesion replication by DNA polymerase beta is modulated by sequence context and stimulated by fork-like flap structures in DNA.

    Daube, S S; Arad, G; Livneh, Z

    2000-01-18

    Mutations in the human genome are clustered in hot-spot regions, suggesting that some sequences are more prone to accumulate mutations than others. These regions are therefore more likely to lead to the development of cancer. Several pathways leading to the creation of mutations may be influenced by the DNA sequence, including sensitivity to DNA damaging agents, and repair mechanisms. We have analyzed sequence context effects on translesion replication, the error-prone repair of single-stranded DNA regions carrying lesions. By using synthetic oligonucleotides containing systematic variations of sequences flanking a synthetic abasic site, we show that translesion replication by the repair polymerase DNA polymerase beta is stimulated to a moderate extent by low stacking levels of the template nucleotides downstream of the lesion, combined with homopolymeric runs flanking the lesion both upstream and downstream. A strong stimulation of translesion replication by DNA polymerase beta was seen when fork-like flap structures were introduced into the DNA substrate downstream of the lesion. Unlike for gapped substrates, this stimulation was independent of the presence of a phosphate group at the 5' terminus of the flap. These results suggest that DNA polymerase beta may participate in cellular DNA transactions involving higher order structures. The significance of these results for in vivo translesion replication is discussed. PMID:10631001

  4. Role of DNA polymerase α in chromosomal aberration production by ionizing radiation

    The authors have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes and, as a post-treatment, interacts synergistically with X rays to produce greatly enhanced aberration yields. Because DNA polymerase α is the only DNA-synthetic or repair enzyme known to be affected by aphidicolin, the authors infer that this enzyme is directly involved in the repair of DNA lesions which, if unrepaired, can result in visible chromosomal aberrations. The present experiments were undertaken to further explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G2 phase of the cell cycle. Earlier experiments in which cells were simply fixed at times after treatment when the frequency of metaphases in the DNA-synthetic S phase of the cell cycle is zero in typical percentage labeled mitoses curves for human lymphocytes did not completely rule out the possibility that the aberrations induced by aphidicolin actually arose in a small subpopulation of cells actually in the S phase, and not in G2 cells. Furthermore, the yield of X-ray-induced aberrations in G2 cells falls rapidly as a function of increasing irradiation-fixation interval, so comparisons of yields at particular fixation times can be misleading if the cells in each group do not progress through G2 at the same rate. The experiments reported here utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment and serial Colcemid collections and fixations to determine aberration yields over as much of the G2 phase as feasible

  5. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase

    Genna, Vito; Gaspari, Roberto; Dal Peraro, Matteo; De Vivo, Marco

    2016-01-01

    Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nu...

  6. Poly(ADP-Ribose) Polymerase-1 and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand Break Repair Following Ionizing Radiation

    Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring γH2AX foci and neutral comets. Complementary in vitro enzyme kinetics assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (Kdapp = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.

  7. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities

    Khadka, Prabhat; Hsu, Joseph K; Veith, Sebastian; Tadokoro, Takashi; Shamanna, Raghavendra A.; Mangerich, Aswin; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs ...

  8. Domains of the Brf component of RNA polymerase III transcription factor IIIB (TFIIIB): functions in assembly of TFIIIB-DNA complexes and recruitment of RNA polymerase to the promoter.

    Kassavetis, G A; Bardeleben, C; Kumar, A; Ramirez, E.; Geiduschek, E P

    1997-01-01

    Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) is composed of three subunits: the TATA-binding protein, the TFIIB-related protein Brf, and B". TFIIIB, which is brought to RNA polymerase III-transcribed genes indirectly through interaction with DNA-bound TFIIIC or directly through DNA recognition by the TATA-binding protein, in turn recruits RNA polymerase III to the promoter. N-terminally deleted derivatives of Brf have been examined for their ability to interact with DNA-bound T...

  9. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  10. A chloroplast DNA deletion located in RNA polymerase gene rpoC2 in CMS lines of sorghum.

    Chen, Z; Muthukrishnan, S; Liang, G H; Schertz, K F; Hart, G E

    1993-01-01

    Fertile lines of sorghum (Sorghum bicolor) were shown to differ from cytoplasmic male sterile (CMS) lines by the presence of a 3.8 kb HindIII chloroplast DNA fragment in the former and a smaller (3.7 kb) fragment in the latter. DNA/DNA hybridization studies showed that these two fragments are homologous. Fertile plants from S. versicolor, S. almum, S. halepense, and Sorghastrum nutans (Yellow Indiangrass) also have the 3.8 kb fragment, and CMS lines studied containing A1, A2 and A3 cytoplasms have the 3.7 kb fragment. The size difference between the two fragments was localized to a 1.0 kb SacI-HindIII fragment by restriction mapping. A 165 bp deletion, which is flanked by a 51 bp tandem repeat, was identified in the CMS lines by sequencing the clones. Comparison of the two sequences with those from maize, rice, tobacco, spinach, pea, and liverwort revealed that the deleted sequence is located in the middle of the RNA polymerase beta" subunit encoded by the gene rpoC2. The amino acid sequence deleted in the CMS lines is in a monocot-specific region which contains two protein motifs that are characteristic of several transcriptional activation factors, namely, a leucine zipper motif and an acidic domain capable of forming an amphipathic alpha-helix. Further studies designed to determine whether or not the deletion is involved in CMS of sorghum are underway. PMID:8437572

  11. Topology of the RNA polymerase active center probed by chimeric rifampicin-nucleotide compounds.

    Mustaev, A; Zaychikov, E; Severinov, K.; Kashlev, M; Polyakov, A.; Nikiforov, V.; Goldfarb, A

    1994-01-01

    Spatial organization of the binding sites for the priming substrate, the template DNA, and the transcription inhibitor rifampicin (Rif) in Escherichia coli RNA polymerase (EC 2.7.7.6) was probed with chimeric compounds in which Rif is covalently attached to a ribonucleotide. The compounds bind to RNA polymerase in bifunctional manner and serve as substrates for RNA chain extension, yielding chains up to 8 nucleotides in length, with Rif linked to their 5' termini. These products act as potent...

  12. DNA vector-based RNAi approach for stable depletion of poly(ADP-ribose) polymerase-1

    RNA-mediated interference (RNAi) is a powerful technique that is now being used in mammalian cells to specifically silence a gene. Some recent studies have used this technique to achieve variable extent of depletion of a nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). These studies reported either transient silencing of PARP-1 using double-stranded RNA or stable silencing of PARP-1 with a DNA vector which was introduced by a viral delivery system. In contrast, here we report that a simple RNAi approach which utilizes a pBS-U6-based DNA vector containing strategically selected PARP-1 targeting sequence, introduced in the cells by conventional CaPO4 protocol, can be used to achieve stable and specific silencing of PARP-1 in different types of cells. We also provide a detailed strategy for selection and cloning of PARP-1-targeting sequences for the DNA vector, and demonstrate that this technique does not affect expression of its closest functional homolog PARP-2

  13. Cell proliferation and DNA dependent DNA polymerase estimation in acute lymphoblastic leukaemia during treatment with prednisone and vincristine

    The presence of DNA polymerase and primer-template DNA in lymphoblast nuclei by measuring the in vitro incorporation of 3H-thymidine-5'-triphosphate (3H-TTP) was studied in 10 patients with acute lymphoblastic leukemia. Protein synthesis and various other cytokinetic parameters were also studied. After prednisone (P) administration a marked decrease in 3H-TTP labelling index (3H-TTP LI) was apparent together with an inhibition of 3H-leucine incorporation (3H-LEU LI) into lymphoblasts. A moderate decrease in 3H-TDR labelling index (3H-TDR LI) and a later decrease in mitotic index (MI) were seen. Single cell DNA measurements showed a depletion of 3H-TDR labelled lymphoblasts in early part of S-phase apparent at 24 h lasting up to 54 h after P administration. Vincristine given as a flash injection later in the study period caused an immediate rise of the MI, at the same time the P induced decline in 3H-TTP LI, 3H-TDR LI and 3H-LEU LI were continued in most patients. P is thought to damage the cells both in and outside the cell cycle. In the cell cycle the effect of P is an arresting effect in G1. (author)

  14. RNA polymerase motor on DNA track: effects of interactions, external force and torque

    Tripathi, Tripti

    2008-01-01

    RNA polymerase (RNAP) is like a mobile molecular workshop that polymerizes a RNA molecule by adding monomeric subunits one by one, while moving step by step on the DNA template itself. Here we develop a theoretical model by incorporating their steric interactions and mechanochemical cycles which explicitly captures the cyclical shape changes of each motor. Using this model, we explain not only the dependence of the average velocity of a RNAP on the externally applied load force, but also predict a {\\it nonmotonic} variation of the average velocity on external torque. We also show the effect of steric interactions of the motors on the total rate of RNA synthesis. In principle, our predictions can be tested by carrying out {\\it in-vitro} experiments.

  15. Site-specific mutagenesis of Drosophila proliferating cell nuclear antigen enhances its effects on calf thymus DNA polymerase δ

    Miller Holly

    2004-08-01

    Full Text Available Abstract Background We and others have shown four distinct and presumably related effects of mammalian proliferating cell nuclear antigen (PCNA on DNA synthesis catalyzed by mammalian DNA polymerase δ(pol δ. In the presence of homologous PCNA, pol δ exhibits 1 increased absolute activity; 2 increased processivity of DNA synthesis; 3 stable binding of synthetic oligonucleotide template-primers (t1/2 of the pol δ•PCNA•template-primer complex ≥2.5 h; and 4 enhanced synthesis of DNA opposite and beyond template base lesions. This last effect is potentially mutagenic in vivo. Biochemical studies performed in parallel with in vivo genetic analyses, would represent an extremely powerful approach to investigate further, both DNA replication and repair in eukaryotes. Results Drosophila PCNA, although highly similar in structure to mammalian PCNA (e.g., it is >70% identical to human PCNA in amino acid sequence, can only substitute poorly for either calf thymus or human PCNA (~10% as well in affecting calf thymus pol δ. However, by mutating one or only a few amino acids in the region of Drosophila PCNA thought to interact with pol δ, all four effects can be enhanced dramatically. Conclusions Our results therefore suggest that all four above effects depend at least in part on the PCNA-pol δ interaction. Moreover unlike mammals, Drosophila offers the potential for immediate in vivo genetic analyses. Although it has proven difficult to obtain sufficient amounts of homologous pol δ for parallel in vitro biochemical studies, by altering Drosophila PCNA using site-directed mutagenesis as suggested by our results, in vitro biochemical studies may now be performed using human and/or calf thymus pol δ preparations.

  16. Influence of inhibitors of poly(ADP-ribose) polymerase on DNA repair, chromosomal alterations, and mutations.

    Natarajan, A T; van Zeeland, A A; Zwanenburg, T S

    1983-01-01

    The influence of inhibitors of poly(ADP-ribose) polymerase such as 3-aminobenzamide (3AB) and benzamide (B) on the spontaneously occurring as well as mutagen induced chromosomal aberrations, sister chromatid exchanges (SCEs) and point mutations has been studied. In addition, we have measured the influence of 3AB on DNA repair following treatment with physical and chemical mutagens. Post treatment of X-irradiated mammalian cells with 3AB increases the frequencies of induced chromosomal aberrations by a factor of 2 to 3. Both acentric fragments and exchanges increase indicating that the presence of 3AB slows down the repair of DNA strand breaks (probably DNA double strand breaks), thus making breaks available for interaction with each other to give rise to exchanges. 3AB, when present in the medium containing bromodeoxyuridine(BrdUrd) during two cell cycles, increases the frequencies of SCEs in Chinese hamster ovary cells (CHO) in a concentration dependent manner leading to about a 10-fold increase at 10 mM concentration. Most 3AB induced SCEs occur during the second cell cycle, in which DNA containing bromouridine (BU) is used as template for replication. BU containing DNA appears to be prone to errors during replication. The extent of increase in the frequencies of SCEs by 3AB is correlated with the amount of BU incorporated in the DNA of the cells. The frequencies of spontaneously occurring DNA single strand breaks in cells grown in BrdUrd containing medium are higher than in the cells grown in normal medium and this increase depends on the amount of BU incorporated in the DNA of these cells. We have studied the extent of increase in the frequencies of SCEs due to 1 mM 3AB in several human cell lines, including those derived from patients suffering from genetic diseases such as ataxia telangiectasia (A-T), Fanconi's anemia (FA), and Huntington's chorea. None of these syndromes showed any increased response when compared to normal cells. 3AB, however, increased the

  17. Catalytic DNA with phosphatase activity

    Chandrasekar, Jagadeeswaran; Silverman, Scott K.

    2013-01-01

    Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase ac...

  18. TBP-TAF Complex SL1 Directs RNA Polymerase I Pre-initiation Complex Formation and Stabilizes Upstream Binding Factor at the rDNA Promoter*||

    Friedrich, J. Karsten; Panov, Kostya I.; Cabart, Pavel; Russell, Jackie; Zomerdijk, Joost C. B. M.

    2005-01-01

    Knowledge of the role of components of the RNA polymerase I transcription machinery is paramount to understanding regulation of rDNA expression. We describe key findings for the roles of essential transcription factor SL1 and activator upstream binding factor (UBF). We demonstrate that human SL1 can direct accurate Pol I transcription in the absence of UBF and can interact with the rDNA promoter independently and stably, consistent with studies of rodent SL1 but contrary to previous reports o...

  19. The Second Subunit of DNA Polymerase Delta Is Required for Genomic Stability and Epigenetic Regulation1[OPEN

    Cheng, Jinkui; Lai, Jinsheng; Gong, Zhizhong

    2016-01-01

    DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α. The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression. PMID:27208288

  20. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Montgomery Roy D

    2006-04-01

    Full Text Available Abstract Background Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. Results We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus from cell culture and lymphocystis disease virus (iridovirus and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1. The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. Conclusion The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified

  1. Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases.

    Liao, Chia-Sheng; Lee, Gwo-Bin; Wu, Jiunn-Jong; Chang, Chih-Ching; Hsieh, Tsung-Min; Huang, Fu-Chun; Luo, Ching-Hsing

    2005-01-15

    This paper presents a micro polymerase chain reaction (PCR) chip for the DNA-based diagnosis of microorganism genes and the detection of their corresponding antibiotic-resistant genes. The micro PCR chip comprises cheap biocompatible soda-lime glass substrates with integrated thin-film platinum resistors as heating/sensing elements, and is fabricated using micro-electro-mechanical-system (MEMS) techniques in a reliable batch-fabrication process. The heating and temperature sensing elements are made of the same material and are located inside the reaction chamber in order to ensure a uniform temperature distribution. This study performs the detection of several genes associated with upper respiratory tract infection microorganisms, i.e. Streptococcus pneumoniae, Haemopilus influenze, Staphylococcu aureus, Streptococcus pyogenes, and Neisseria meningitides, together with their corresponding antibiotic-resistant genes. The lower thermal inertia of the proposed micro PCR chip relative to conventional bench-top PCR systems enables a more rapid detection operation with reduced sample and reagent consumption. The experimental data reveal that the high heating and cooling rates of the system (20 and 10 degrees C/s, respectively) permit successful DNA amplification within 15 min. The micro PCR chip is also capable of performing multiple DNA amplification, i.e. the simultaneous duplication of multiple genes under different conditions in separate reaction wells. Compared with the large-scale PCR system, it is greatly advantageous for fast diagnosis of multiple infectious diseases. Multiplex PCR amplification of two DNA segments in the same well is also feasible using the proposed micro device. The developed micro PCR chip provides a crucial tool for genetic analysis, molecular biology, infectious disease detection, and many other biomedical applications. PMID:15590288

  2. Efficiency, specificity and DNA polymerase-dependence of translesion replication across the oxidative DNA lesion 8-oxoguanine in human cells

    The oxidation product of guanine, 8-oxoguanine, is a major lesion formed in DNA by intracellular metabolism, ionizing radiation, and tobacco smoke. Using a recently developed method for the quantitative analysis of translesion replication, we have studied the bypass of 8-oxoguanine in vivo by transfecting human cells with a gapped plasmid carrying a site-specific 8-oxoguanine in the ssDNA region. The efficiency of bypass in the human large-cell lung carcinoma cell line H1299 was 80%, and it was similar when assayed in the presence of aphidicolin, an inhibitor of DNA polymerases α, δ and ε. A similar extent of bypass was observed also in XP-V cells, defective in pol η, both in the absence and presence of aphidicolin. DNA sequence analysis indicated that the major nucleotide inserted opposite the 8-oxoguanine was the correct nucleotide C, both in H1299 cells (81%) and in XP-V cells (77%). The major mutagenic event was the insertion of an A, both in H1299 and XP-V cells, and it occurred at a frequency of 16-17%, significantly higher than previously reported. Interestingly, the misinsertion frequency of A opposite 8-oxoguanine was decreased in XP-V cells in the presence of aphidicolin, and misinsertion of G was observed. This modulation of the mutagenic specificity at 8-oxoguanine is consistent with the notion that while not essential for the bypass reaction, pol η and pol δ, when present, are involved in bypass of 8-oxoguanine in vivo

  3. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η.

    Genna, Vito; Gaspari, Roberto; Dal Peraro, Matteo; De Vivo, Marco

    2016-04-01

    Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases. PMID:26935581

  4. Integrity and Biological Activity of DNA after UV Exposure

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  5. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates

    Güixens Gallardo, Pedro; Hocek, Michal; Perlíková, Pavla

    2016-01-01

    Roč. 26, č. 2 (2016), s. 288-291. ISSN 0960-894X R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:61388963 Keywords : DNA polymerases * nucleotide addition * primer extension * oligonucleotides * twisted intercalating nucleic acid Subject RIV: CC - Organic Chemistry Impact factor: 2.420, year: 2014

  6. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA

    Ikonen, Satu; Macíčková-Cahová, Hana; Pohl, Radek; Šanda, Miloslav; Hocek, Michal

    2010-01-01

    Roč. 8, č. 5 (2010), s. 1194-1201. ISSN 1477-0520 R&D Projects: GA MŠk LC512; GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506 Keywords : steroids * nucleosides * nucleoside triphosphates * DNA polymerase Subject RIV: CC - Organic Chemistry Impact factor: 3.451, year: 2010

  7. A comparison of three DNA extractive procedures with Leptospira for polymerase chain reaction analysis

    Veloso IF

    2000-01-01

    Full Text Available Three DNA extraction methods were evaluated in this study: proteinase K followed by phenol-chloroform; a plant proteinase (E6870 followed by phenol-chloroform; and boiling of leptospires in 0.1 mM Tris, pH 7.0 for 10 min at 100°C, with no phenol treatment. Every strain treated with proteinase K or E6870 afforded positive polymerase chain reaction (PCR reaction. On the other hand, from five strains extracted by the boiling method, three did not feature the 849 bp band characteristic in Leptospira. We also evaluated by RAPD-PCR, DNAs from serovars isolated with proteinase K and proteinase 6870 with primers B11/B12. Each of the DNA samples provided PCR profiles in agreement with previous data. Moreover, the results with E6870 showed less background non-specific amplification, suggesting that removal of nucleases was more efficient with E6870. The limit for detection by PCR using Lep13/Lep14 was determined to be 10(2 leptospira, using the silver stain procedure.

  8. A power-efficient thermocycler based on induction heating for DNA amplification by polymerase chain reaction

    Pal, Debjani; Venkataraman, V.; Mohan, K. Naga; Chandra, H. Sharat; Natarajan, Vasant

    2004-09-01

    We have built a thermocycler based on the principles of induction heating for polymerase chain reaction (PCR) of target sequences in DNA samples of interest. The cycler has an average heating rate of ˜0.8 °C/s and a cooling rate of ˜0.5 °C/s, and typically takes ˜4 h to complete a 40-cycle PCR protocol. It is power-efficient (˜6 W per reaction tube), micro-processor controlled, and can be adapted for battery operation. Using this instrument, we have successfully amplified a 350 bp segment from a plasmid and SRY, the human sex determining gene, which occurs as a single-copy sequence in genomic DNA of human males. The PCR products from this thermocycler are comparable to those obtained by the use of commercially available machines. Its easy front-end operation, low-power design, portability and low cost makes it suitable for diagnostic field applications of PCR.

  9. Series DNA Amplification Using the Continuous-Flow Polymerase Chain Reaction Chip

    Joung, Seung-Ryong; Kang, Chi Jung; Kim, Yong-Sang

    2008-02-01

    We proposed a continuous-flow polymerase chain reaction (PCR) chip that can be used for series DNA amplification. The continuous-flow PCR chip has several advantages such as fast thermal cycling, series of amplifications, cost-effective fabrication, portability, and fluorescence detection. The continuous-flow PCR chip is composed of two parts namely poly(dimethylsiloxane) (PDMS) microchannel for sample injection and indium-tin-oxide (ITO) heater/glass chip for thermal cycling. The fabricated microchannel width and depth are 250 and 200 µm, respectively. Also, the total working length of the PDMS microchannel is 1340 mm which is equivalent for 20 cycles of amplification. A 2:2:3 microchannel length ratio for three different temperature zones namely denaturation, annealing, and extension was assigned, respectively. Upon the operation of the fabricated continuous-flow PCR chip, the amplification of plasmid DNA pKS-GFP with 720 base pairs and PG-noswsi with 300 base pairs were found successfully with a total reaction time of 15 min.

  10. Colon Cancer-associated DNA Polymerase β Variant Induces Genomic Instability and Cellular Transformation*

    Nemec, Antonia A.; Donigan, Katherine A.; Murphy, Drew L.; Jaeger, Joachim; Sweasy, Joann B.

    2012-01-01

    Rapidly advancing technology has resulted in the generation of the genomic sequences of several human tumors. We have identified several mutations of the DNA polymerase β (pol β) gene in human colorectal cancer. We have demonstrated that the expression of the pol β G231D variant increased chromosomal aberrations and induced cellular transformation. The transformed phenotype persisted in the cells even once the expression of G231D was extinguished, suggesting that it resulted as a consequence of genomic instability. Biochemical analysis revealed that its catalytic rate was 140-fold slower than WT pol β, and this was a result of the decreased binding affinity of nucleotides by G231D. Residue 231 of pol β lies in close proximity to the template strand of the DNA. Molecular modeling demonstrated that the change from a small and nonpolar glycine to a negatively charged aspartate resulted in a repulsion between the template and residue 231 leading to the distortion of the dNTP binding pocket. In addition, expression of G231D was insufficient to rescue pol β-deficient cells treated with chemotherapeutic agents suggesting that these agents may be effectively used to treat tumors harboring this mutation. More importantly, this suggests that the G231D variant has impaired base excision repair. Together, these data indicate that the G231D variant plays a role in driving cancer. PMID:22573322

  11. Modulation of Pleurodeles waltl DNA polymerase mu expression by extreme conditions encountered during spaceflight.

    Schenten, Véronique; Guéguinou, Nathan; Baatout, Sarah; Frippiat, Jean-Pol

    2013-01-01

    DNA polymerase µ is involved in DNA repair, V(D)J recombination and likely somatic hypermutation of immunoglobulin genes. Our previous studies demonstrated that spaceflight conditions affect immunoglobulin gene expression and somatic hypermutation frequency. Consequently, we questioned whether Polμ expression could also be affected. To address this question, we characterized Polμ of the Iberian ribbed newt Pleurodeles waltl and exposed embryos of that species to spaceflight conditions or to environmental modifications corresponding to those encountered in the International Space Station. We noted a robust expression of Polμ mRNA during early ontogenesis and in the testis, suggesting that Polμ is involved in genomic stability. Full-length Polμ transcripts are 8-9 times more abundant in P. waltl than in humans and mice, thereby providing an explanation for the somatic hypermutation predilection of G and C bases in amphibians. Polμ transcription decreases after 10 days of development in space and radiation seem primarily involved in this down-regulation. However, space radiation, alone or in combination with a perturbation of the circadian rhythm, did not affect Polμ protein levels and did not induce protein oxidation, showing the limited impact of radiation encountered during a 10-day stay in the International Space Station. PMID:23936065

  12. Modulation of Pleurodeles waltl DNA polymerase mu expression by extreme conditions encountered during spaceflight.

    Véronique Schenten

    Full Text Available DNA polymerase µ is involved in DNA repair, V(DJ recombination and likely somatic hypermutation of immunoglobulin genes. Our previous studies demonstrated that spaceflight conditions affect immunoglobulin gene expression and somatic hypermutation frequency. Consequently, we questioned whether Polμ expression could also be affected. To address this question, we characterized Polμ of the Iberian ribbed newt Pleurodeles waltl and exposed embryos of that species to spaceflight conditions or to environmental modifications corresponding to those encountered in the International Space Station. We noted a robust expression of Polμ mRNA during early ontogenesis and in the testis, suggesting that Polμ is involved in genomic stability. Full-length Polμ transcripts are 8-9 times more abundant in P. waltl than in humans and mice, thereby providing an explanation for the somatic hypermutation predilection of G and C bases in amphibians. Polμ transcription decreases after 10 days of development in space and radiation seem primarily involved in this down-regulation. However, space radiation, alone or in combination with a perturbation of the circadian rhythm, did not affect Polμ protein levels and did not induce protein oxidation, showing the limited impact of radiation encountered during a 10-day stay in the International Space Station.

  13. DNA polymerase eta participates in the mutagenic bypass of adducts induced by benzo[a]pyrene diol epoxide in mammalian cells.

    Alden C Klarer

    Full Text Available Y-family DNA-polymerases have larger active sites that can accommodate bulky DNA adducts allowing them to bypass these lesions during replication. One member, polymerase eta (pol eta, is specialized for the bypass of UV-induced thymidine-thymidine dimers, correctly inserting two adenines. Loss of pol eta function is the molecular basis for xeroderma pigmentosum (XP variant where the accumulation of mutations results in a dramatic increase in UV-induced skin cancers. Less is known about the role of pol eta in the bypass of other DNA adducts. A commonly encountered DNA adduct is that caused by benzo[a]pyrene diol epoxide (BPDE, the ultimate carcinogenic metabolite of the environmental chemical benzo[a]pyrene. Here, treatment of pol eta-deficient fibroblasts from humans and mice with BPDE resulted in a significant decrease in Hprt gene mutations. These studies in mammalian cells support a number of in vitro reports that purified pol eta has error-prone activity on plasmids with site-directed BPDE adducts. Sequencing the Hprt gene from this work shows that the majority of mutations are G>T transversions. These data suggest that pol eta has error-prone activity when bypassing BPDE-adducts. Understanding the basis of environmental carcinogen-derived mutations may enable prevention strategies to reduce such mutations with the intent to reduce the number of environmentally relevant cancers.

  14. Characterization of family IV UDG from Aeropyrum pernix and its application in hot-start PCR by family B DNA polymerase.

    Xi-Peng Liu

    Full Text Available Recombinant uracil-DNA glycosylase (UDG from Aeropyrum pernix (A. pernix was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG were studied using oligonucleotides carrying a deoxyuracil (dU base. The optimal temperature range and pH value for dU removal by ApeUDG were 55-65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases.

  15. Detection of DNA sequence polymorphisms in carcinogen metabolism genes by polymerase chain reaction

    Bell, D.A. (National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States))

    1991-01-01

    The glutathione transferase mu gene (GST1) and the debrisoquine hydroxylase gene (CYP2D6) are known to be polymorphic in the human population and have been associated with increased susceptibility to cancer. Smokers with low lymphocyte GST mu activity are at higher risk for lung cancer, while low debrisoquine hydroxylase activity has been correlated with lower risk for lung and bladder cancer. Phenotypic characterization of these polymorphisms by lymphocyte enzyme activity (GST) and urine metabolite ratios (debrisoquine) is cumbersome for population studies. Recent cloning and sequencing of the mutant alleles of these genes has allowed genotyping via the polymerase chain reaction (PCR). Advantages of PCR approaches are speed, technical simplicity, and minimal sample requirements. This article reviews the PCR-based methods for detection of genetic polymorphisms in human cancer susceptibility genes.

  16. Detection of DNA sequence polymorphisms in carcinogen metabolism genes by polymerase chain reaction.

    Bell, D A

    1991-01-01

    The glutathione transferase mu gene (GST1) and the debrisoquine hydroxylase gene (CYP2D6) are known to be polymorphic in the human population and have been associated with increased susceptibility to cancer. Smokers with low lymphocyte GST mu activity are at higher risk for lung cancer, while low debrisoquine hydroxylase activity has been correlated with lower risk for lung and bladder cancer. Phenotypic characterization of these polymorphisms by lymphocyte enzyme activity (GST) and urine metabolite ratios (debrisoquine) is cumbersome for population studies. Recent cloning and sequencing of the mutant alleles of these genes has allowed genotyping via the polymerase chain reaction (PCR). Advantages of PCR approaches are speed, technical simplicity, and minimal sample requirements. This article reviews the PCR-based methods for detection of genetic polymorphisms in human cancer susceptibility genes. PMID:1684153

  17. Biochemical analysis of DNA polymerase η fidelity in the presence of replication protein A.

    Samuel C Suarez

    Full Text Available DNA polymerase η (pol η synthesizes across from damaged DNA templates in order to prevent deleterious consequences like replication fork collapse and double-strand breaks. This process, termed translesion synthesis (TLS, is an overall positive for the cell, as cells deficient in pol η display higher mutation rates. This outcome occurs despite the fact that the in vitro fidelity of bypass by pol η alone is moderate to low, depending on the lesion being copied. One possible means of increasing the fidelity of pol η is interaction with replication accessory proteins present at the replication fork. We have previously utilized a bacteriophage based screening system to measure the fidelity of bypass using purified proteins. Here we report on the fidelity effects of a single stranded binding protein, replication protein A (RPA, when copying the oxidative lesion 7,8-dihydro-8-oxo-guanine(8-oxoG and the UV-induced cis-syn thymine-thymine cyclobutane pyrimidine dimer (T-T CPD. We observed no change in fidelity dependent on RPA when copying these damaged templates. This result is consistent in multiple position contexts. We previously identified single amino acid substitution mutants of pol η that have specific effects on fidelity when copying both damaged and undamaged templates. In order to confirm our results, we examined the Q38A and Y52E mutants in the same full-length construct. We again observed no difference when RPA was added to the bypass reaction, with the mutant forms of pol η displaying similar fidelity regardless of RPA status. We do, however, observe some slight effects when copying undamaged DNA, similar to those we have described previously. Our results indicate that RPA by itself does not affect pol η dependent lesion bypass fidelity when copying either 8-oxoG or T-T CPD lesions.

  18. AP endonuclease knockdown enhances methyl methanesulfonate hypersensitivity of DNA polymerase β knockout mouse embryonic fibroblasts

    Apurinic/apyrimidinic (AP) endonuclease (Apex) is required for base excision repair (BER), which is the major mechanism of repair for small DNA lesions such as alkylated bases. Apex incises the DNA strand at an AP site to leave 3'-OH and 5'-deoxyribose phosphate (5'-dRp) termini. DNA polymerase β (PolB) plays a dominant role in single nucleotide (Sn-) BER by incorporating a nucleotide and removing 5'-dRp. Methyl methanesulfonate (MMS)-induced damage is repaired by Sn-BER, and thus mouse embryonic fibroblasts (MEFs) deficient in PolB show significantly increased sensitivity to MMS. However, the survival curve for PolB-knockout MEFs (PolBKOs) has a shoulder, and increased sensitivity is only apparent at relatively high MMS concentrations. In this study, we prepared Apex-knockdown/PolB-knockout MEFs (AKDBKOs) to examine whether BER is related to the apparent resistance of PolBKOs at low MMS concentrations. The viability of PolBKOs immediately after MMS treatment was significantly lower than that of wild-type MEFs, but there was essentially no effect of Apex-knockdown on cell viability in the presence or absence of PolB. In contrast, relative counts of MEFs after repair were decreased by Apex knockdown. Parental PolBKOs showed especially high sensitivity at >1.5 mM MMS, suggesting that PolBKOs have another repair mechanism in addition to PolB-dependent Sn-BER, and that the back-up mechanism is unable to repair damage induced by high MMS concentrations. Interestingly, AKDBKOs were hypersensitive to MMS in a relative cell growth assay, suggesting that MMS-induced damage in PolB-knockout MEFs is repaired by Apex-dependent repair mechanisms, presumably including long-patch BER. (author)

  19. The Y-Family DNA Polymerase Dpo4 Uses a Template Slippage Mechanism To Create Single-Base Deletions

    Y Wu; R Wilson; J Pata

    2011-12-31

    The Y-family polymerases help cells tolerate DNA damage by performing translesion synthesis, yet they also can be highly error prone. One distinctive feature of the DinB class of Y-family polymerases is that they make single-base deletion errors at high frequencies in repetitive sequences, especially those that contain two or more identical pyrimidines with a 5? flanking guanosine. Intriguingly, different deletion mechanisms have been proposed, even for two archaeal DinB polymerases that share 54% sequence identity and originate from two strains of Sulfolobus. To reconcile these apparent differences, we have characterized Dpo4 from Sulfolobus solfataricus using the same biochemical and crystallographic approaches that we have used previously to characterize Dbh from Sulfolobus acidocaldarius. In contrast to previous suggestions that Dpo4 uses a deoxynucleoside triphosphate (dNTP)-stabilized misalignment mechanism when creating single-base deletions, we find that Dpo4 predominantly uses a template slippage deletion mechanism when replicating repetitive DNA sequences, as was previously shown for Dbh. Dpo4 stabilizes the skipped template base in an extrahelical conformation between the polymerase and the little-finger domains of the enzyme. This contrasts with Dbh, in which the extrahelical base is stabilized against the surface of the little-finger domain alone. Thus, despite sharing a common deletion mechanism, these closely related polymerases use different contacts with the substrate to accomplish the same result.

  20. A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase

    Bowman, William C.; Kranz, Robert G.

    1998-01-01

    A commonly accepted view of gene regulation in bacteria that has emerged over the last decade is that promoters are transcriptionally activated by one of two general mechanisms. The major type involves activator proteins that bind to DNA adjacent to where the RNA polymerase (RNAP) holoenzyme binds, usually assisting in recruitment of the RNAP to the promoter. This holoenzyme uses the housekeeping ς70 or a related factor, which directs the core RNAP to the promoter and assists in melting the DNA near the RNA start site. A second type of mechanism involves the alternative sigma factor (called ς54 or ςN) that directs RNAP to highly conserved promoters. In these cases, an activator protein with an ATPase function oligomerizes at tandem sites far upstream from the promoter. The nitrogen regulatory protein (NtrC) from enteric bacteria has been the model for this family of activators. Activation of the RNAP/ς54 holoenzyme to form the open complex is mediated by the activator, which is tethered upstream. Hence, this class of protein is sometimes called the enhancer binding protein family or the NtrC class. We describe here a third system that has properties of each of these two types. The NtrC enhancer binding protein from the photosynthetic bacterium, Rhodobacter capsulatus, is shown in vitro to activate the housekeeping RNAP/ς70 holoenzyme. Transcriptional activation by this NtrC requires ATP binding but not hydrolysis. Oligomerization at distant tandem binding sites on a supercoiled template is also necessary. Mechanistic and evolutionary questions of these systems are discussed. PMID:9637689

  1. Tripartite Motif-containing 33 (TRIM33) protein functions in the poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response through interaction with Amplified in Liver Cancer 1 (ALC1) protein.

    Kulkarni, Atul; Oza, Jay; Yao, Ming; Sohail, Honeah; Ginjala, Vasudeva; Tomas-Loba, Antonia; Horejsi, Zuzana; Tan, Antoinette R; Boulton, Simon J; Ganesan, Shridar

    2013-11-01

    Activation of poly(ADP-ribose) polymerase (PARP) near sites of DNA breaks facilitates recruitment of DNA repair proteins and promotes chromatin relaxation in part through the action of chromatin-remodeling enzyme Amplified in Liver Cancer 1 (ALC1). Through proteomic analysis we find that ALC1 interacts after DNA damage with Tripartite Motif-containing 33 (TRIM33), a multifunctional protein implicated in transcriptional regulation, TGF-β signaling, and tumorigenesis. We demonstrate that TRIM33 is dynamically recruited to DNA damage sites in a PARP1- and ALC1-dependent manner. TRIM33-deficient cells show enhanced sensitivity to DNA damage and prolonged retention of ALC1 at sites of DNA breaks. Conversely, overexpression of TRIM33 alleviates the DNA repair defects conferred by ALC1 overexpression. Thus, TRIM33 plays a role in PARP-dependent DNA damage response and regulates ALC1 activity by promoting its timely removal from sites of DNA damage. PMID:23926104

  2. Tripartite Motif-containing 33 (TRIM33) Protein Functions in the Poly(ADP-ribose) Polymerase (PARP)-dependent DNA Damage Response through Interaction with Amplified in Liver Cancer 1 (ALC1) Protein*

    Kulkarni, Atul; Oza, Jay; Yao, Ming; Sohail, Honeah; Ginjala, Vasudeva; Tomas-Loba, Antonia; Horejsi, Zuzana; Tan, Antoinette R.; Boulton, Simon J.; Ganesan, Shridar

    2013-01-01

    Activation of poly(ADP-ribose) polymerase (PARP) near sites of DNA breaks facilitates recruitment of DNA repair proteins and promotes chromatin relaxation in part through the action of chromatin-remodeling enzyme Amplified in Liver Cancer 1 (ALC1). Through proteomic analysis we find that ALC1 interacts after DNA damage with Tripartite Motif-containing 33 (TRIM33), a multifunctional protein implicated in transcriptional regulation, TGF-β signaling, and tumorigenesis. We demonstrate that TRIM33 is dynamically recruited to DNA damage sites in a PARP1- and ALC1-dependent manner. TRIM33-deficient cells show enhanced sensitivity to DNA damage and prolonged retention of ALC1 at sites of DNA breaks. Conversely, overexpression of TRIM33 alleviates the DNA repair defects conferred by ALC1 overexpression. Thus, TRIM33 plays a role in PARP-dependent DNA damage response and regulates ALC1 activity by promoting its timely removal from sites of DNA damage. PMID:23926104

  3. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  4. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    Shen, Cenchao; Yang, Wenjuan; Ji, Qiaoli; Maki, Hisaji; Dong, Anjie; Zhang, Zhizhou

    2009-11-01

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  5. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    Ghosh, Sharmistha

    2010-04-06

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Phylogenetic analysis of DNA and RNA polymerases from a Moniliophthora perniciosa mitochondrial plasmid reveals probable lateral gene transfer.

    Andrade, B S; Góes-Neto, A

    2015-01-01

    The filamentous fungus Moniliophthora perniciosa is a hemibiotrophic basidiomycete that causes witches' broom disease of cacao (Theobroma cacao L.). Many fungal mitochondrial plasmids are DNA and RNA polymerase-encoding invertrons with terminal inverted repeats and 5'-linked proteins. The aim of this study was to carry out comparative and phylogenetic analyses of DNA and RNA polymerases for all known linear mitochondrial plasmids in fungi. We performed these analyses at both gene and protein levels and assessed differences between fungal and viral polymerases in order to test the lateral gene transfer (LGT) hypothesis. We analyzed all mitochondrial plasmids of the invertron type within the fungal clade, including five from Ascomycota, seven from Basidiomycota, and one from Chytridiomycota. All phylogenetic analyses generated similar tree topologies regardless of the methods and datasets used. It is likely that DNA and RNA polymerase genes were inserted into the mitochondrial genomes of the 13 fungal species examined in our study as a result of different LGT events. These findings are important for a better understanding of the evolutionary relationships between fungal mitochondrial plasmids. PMID:26535725

  7. Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery

    Functionalized tetrapodal ZnO nanostructures are tested in plasmid DNA experiments (1) as a solid-phase adsorbent for plasmid DNA purification (2) as improving reagents in a polymerase chain reaction (PCR) and (3) as novel carriers for gene delivery. The amino-modification, the tetrapod-like shape of the nanostructure and its high biocompatibility all contribute to measurements showing promise for applications. A sol-gel method is used for silica coating and amino-modification. Plasmid DNA is purified through reversible conjugations of amino-modified ZnO tetrapods with DNA. Also, as additional reagents, functionalized tetrapods are shown to improve the amount of PCR product. For transfection, ZnO tetrapods provide some protection against deoxyribonuclease cleavage of plasmid DNA and deliver plasmid DNA into cells with little cytotoxicity

  8. Evaluation of polymerase chain reaction for the detection of Paracoccidioides brasiliensis DNA on serum samples from patients with paracoccidioidomycosis

    Cecília Eugenia Charbel

    2006-03-01

    Full Text Available The aim of this study was to demonstrate the DNA of Paracoccidioides brasiliensis in human serum samples of patients with paracoccidioidomycosis using the polymerase chain reaction (PCR. The diagnosis of paracoccidioidomycosis (PCM was defined by microscopic observation of the fungus on direct exam or histopathology, culture, and serological positivity. DNA from serum of 33 patients with PCM was extracted and submitted to nested-PCR using primers from the gp 43 gene. Only one sample was positive on nested-PCR. We conclude that the prevalence of fungemia in patients with different clinical forms of PCM is low, limiting the use of serum DNA detection as an alternative diagnostic tool.

  9. DECREASED mtDNA, OXIDATIVE STRESS, CARDIOMYOPATHY, AND DEATH FROM TRANSGENIC CARDIAC TARGETED HUMAN MUTANT POLYMERASE γ *

    Lewis, William; Day, Brian J; Kohler, James J.; Hosseini, Seyed H.; Sherine S. L. Chan; Green, Elgin; Haase, Chad P.; Keebaugh, Erin; Long, Robert; Ludaway, Tomika; Russ, Rodney; Steltzer, Jeffrey; Tioleco, Nina; Santoianni, Robert; Copeland, William C.

    2006-01-01

    POLG is the human gene that encodes the catalytic subunit of DNA polymerase γ (Pol γ), the replicase for human mtDNA. A POLG Y955C point mutation causes human chronic progressive external ophthalmoplegia (CPEO), a mitochondrial disease with eye muscle weakness and mtDNA defects. Y955C POLG was targeted transgenically (TG) to the murine heart. Survival was determined in four TG (+/−) lines and wild type (WT) littermates (−/−). Left ventricle (LV) performance (echocardiography and MRI), heart r...

  10. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase

    Fonfria, Elena; Marshall, Ian C B; Benham, Christopher D; Boyfield, Izzy; Brown, Jason D; Hill, Kerstin; Hughes, Jane P; Skaper, Stephen D.; McNulty, Shaun

    2004-01-01

    TRPM2 (melastatin-like transient receptor potential 2 channel) is a nonselective cation channel that is activated under conditions of oxidative stress leading to an increase in intracellular free Ca2+ concentration ([Ca2+]i) and cell death. We investigated the role of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) on hydrogen peroxide (H2O2)-mediated TRPM2 activation using a tetracycline-inducible TRPM2-expressing cell line.In whole-cell patch-clamp recordings, intracellular adenine...

  11. Thermodynamic and mechanistic insights into translesion DNA synthesis catalyzed by Y-family DNA polymerase across a bulky double-base lesion of an antitumor platinum drug

    Brabec, Viktor; Malina, Jaroslav; Margiotta, N.; Natile, G.; Kašpárková, Jana

    2012-01-01

    Roč. 18, č. 48 (2012), s. 15439-15448. ISSN 0947-6539 R&D Projects: GA ČR(CZ) GAP205/11/0856; GA ČR(CZ) GAP301/10/0598 Institutional research plan: CEZ:AV0Z50040702 Keywords : DNA polymerase * platinum * calorimetry Subject RIV: BO - Biophysics Impact factor: 5.831, year: 2012

  12. Cloning of the cDNAs for the small subunits of bovine and human DNA polymerase {delta} and chromosomal location of the human gene (POLD2)

    Zhang, Jian; Tan, Cheng-Keat; Downey, K.M. [Univ. of Miami School of Medicine, FL (United States)] [and others

    1995-09-01

    cDNAs encoding the small subunit of bovine and human DNA polymerase {delta} have been cloned and sequenced. The predicted polypeptides, 50,885 and 51,289 Daltons, respectively, are 94% identical, similar to the catalytic subunits. The high degree of conservation of the polypeptides suggests an essential function for the small subunit in the heterodimeric core enzyme. Although the catalytic subunit of DNA polymerase 5 shares significant homology with those of the herpes virus family of DNA polymerases, the small subunit of mammalian DNA polymerase 6 is not homologous to the small subunit of either herpes simplex virus type 1 DNA polymerase (UL42 protein) or the Epstein-Barr virus DNA polymerase (BMRF1 protein). Searches of the protein databases failed to detect significant homology with any protein sequenced thus far. PCR analysis of DNA from a panel of human-hamster hybrid cell lines localized the gene (POLD2) for the small subunit of DNA polymerase 5 to human chromosome 7. 45 refs., 2 figs., 2 tabs.

  13. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in anin vitrotranscription assay using RNA polymerase fromBacillus subtilisandEscherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by theE. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. PMID:27001521

  14. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  15. Dihydrothymidine and thymidine glycol triphosphates as substrates for DNA polymerases: differential recognition of thymine C5-C6 bond saturation and sequence specificity of incorporation.

    Ide, H; Wallace, S. S.

    1988-01-01

    The ability of dihydrothymidine (DHdTTP) and thymidine glycol (dTTP-GLY) 5'-triphosphates to serve as substrates for different DNA polymerases was investigated. DHdTTP but not dTTP-GLY was used as a substrate by E. coli DNA polymerase I (Pol I). Within the detection limit of the assay used, neither T4 DNA polymerase nor avian myeloblastosis virus (AMV) reverse transcriptase used DHdTTP or dTTP-GLY as substrates. The ability of DHdTTP and dTTP-GLY to undergo enzyme-catalyzed turnover to the mo...

  16. Structural Characterization of RNA Polymerase II Complexes Arrested by a Cyclobutane Pyrimidine Dimer in the Transcribed Strand of Template DNA*

    Tornaletti, Silvia; Reines, Daniel; Hanawalt, Philip C.

    1999-01-01

    We have characterized the properties of immunopurified transcription complexes arrested at a specifically located cyclobutane pyrimidine dimer (CPD) using enzymatic probes and an in vitro transcription system with purified RNA polymerase II (RNAP II) and initiation factors. To help understand how RNAP II distinguishes between a natural impediment and a lesion in the DNA to initiate a repair event, we have compared the conformation of RNAP II complexes arrested at a CPD with complexes arrested...

  17. Dexamethasone increases the number of RNA polymerase II molecules transcribing integrated mouse mammary tumor virus DNA and flanking mouse sequences.

    Firzlaff, J M; Diggelmann, H

    1984-01-01

    In mouse Ltk- cells that were transfected with recombinant bacteriophage DNA containing a complete proviral copy of an integrated endogenous mouse mammary tumor virus (MMTV) with its flanking cellular sequences, the newly acquired MMTV proviruses were transcribed in a glucocorticoid-responsive fashion. After hormone treatment of selected cell clones in culture we isolated the nuclei, elongated the nascent RNA chains in vitro, and determined the number of RNA polymerase II molecules on the tra...

  18. Rapid, simple method for treating clinical specimens containing Mycobacterium tuberculosis to remove DNA for polymerase chain reaction.

    Buck, G E; O'Hara, L C; Summersgill, J T

    1992-01-01

    Several simplified methods for treating mycobacteria to release DNA for amplification by the polymerase chain reaction (PCR) were investigated. The most effective of the methods was sonication. Samples were placed in screw-capped microcentrifuge tubes that were then placed in a plastic rack. The rack was floated in a dish of water next to the ultrasonic probe so that the ultrasonic energy was transmitted through the walls of the tubes. This allowed multiple samples to be processed safely and ...

  19. Role for DNA Polymerase κ in the Processing of N2-N2-Guanine Interstrand Cross-links*S⃞

    Minko, Irina G.; Harbut, Michael B.; Kozekov, Ivan D.; Kozekova, Albena; Jakobs, Petra M.; Olson, Susan B; Moses, Robb E.; Harris, Thomas M.; Rizzo, Carmelo J.; Lloyd, R. Stephen

    2008-01-01

    Although there exists compelling genetic evidence for a homologous recombination-independent pathway for repair of interstrand cross-links (ICLs) involving translesion synthesis (TLS), biochemical support for this model is lacking. To identify DNA polymerases that may function in TLS past ICLs, oligodeoxynucleotides were synthesized containing site-specific ICLs in which the linkage was between N2-guanines, similar to cross-links formed by mitomycin C and enals. Here, ...

  20. Genotyping the hepatitis B virus with a fragment of the HBV DNA polymerase gene in Shenyang, China

    Juan Feng; Ding Yang; Ma Ying; Dou Xiao

    2011-01-01

    Abstract The hepatitis B virus (HBV) has been classified into eight genotypes (A-H) based on intergenotypic divergence of at least 8% in the complete nucleotide sequence or more than 4% in the S gene. To facilitate the investigation of the relationship between the efficacy of drug treatment and the mutation with specific genotype of HBV, we have established a new genotyping strategy based on a fragment of the HBV DNA polymerase gene. Pairwise sequence and phylogenetic analyses were performed ...

  1. DNA-directed Polymerase Subunits Play a Vital Role in Human Telomeric Overhang Processing

    Diotti, Raffaella; Kalan, Sampada; Matveyenko, Anastasiya; Loayza, Diego

    2014-01-01

    Telomeres consist of TTAGGG repeats bound by the shelterin complex and end with a 3' overhang. In humans, telomeres shorten at each cell division, unless telomerase (TERT) is expressed and able to add telomeric repeats. For effective telomere maintenance, the DNA strand complementary to that made by telomerase must be synthesized. Recent studies have discovered a link between different activities necessary to process telomeres in the S-phase of the cell cycle in order to ref...

  2. Identification, isolation, and characterization of the structural gene encoding the delta' subunit of Escherichia coli DNA polymerase III holoenzyme.

    J.R. Carter; Franden, M A; Aebersold, R.; McHenry, C S

    1993-01-01

    The gene encoding the delta' subunit of DNA polymerase III holoenzyme, designated holB, was cloned by a strategy in which peptide sequence was used to derive a DNA hybridization probe. The gene maps to 24.95 centisomes of the chromosome. Sequencing of holB revealed a 1,002-bp open reading frame predicted to produce a 36,936-Da protein. The gene has a ribosome-binding site and promoter that are highly similar to the consensus sequences and is flanked by two potential open reading frames. Prote...

  3. Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery.

    Fernet Marie; Giocanti Nicole; Noël Georges; Mégnin-Chanet Frédérique; Favaudon Vincent

    2003-01-01

    Abstract Background The cytotoxicity and the rejoining of DNA double-strand breaks induced by γ-rays, H2O2 and neocarzinostatin, were investigated in normal and PARP-1 knockout mouse 3T3 fibroblasts to determine the role of poly(ADP-ribose) polymerase (PARP-1) in DNA double-strand break repair. Results PARP-1-/- were considerably more sensitive than PARP-1+/+ 3T3s to induced cell kill by γ-rays and H2O2. However, the two cell lines did not show any significant difference in the susceptibility...

  4. p21CDKN1A Regulates the Binding of Poly(ADP-Ribose) Polymerase-1 to DNA Repair Intermediates

    Dutto, Ilaria; Sukhanova, Maria; Tillhon, Micol; Cazzalini, Ornella; Stivala, Lucia A.; Scovassi, A. Ivana; Lavrik, Olga; Prosperi, Ennio

    2016-01-01

    The cell cycle inhibitor p21CDKN1A was previously found to interact directly with DNA nick-sensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro. Using model photoreactive BER substrates contain...

  5. Influence of EDTA and magnesium on DNA extraction from blood samples and specificity of polymerase chain reaction

    H. Khosravinia; Ramesha, KP

    2007-01-01

    This study consisting of two trails conducted to examine the impact of initial EDTA level added to blood samples on quantity and quality of genomic DNA isolated from avian fresh blood and the influence of initial EDTA level with various levels of $MgCl_2$ added to polymerase chain reaction (PCR) final volume on amplification pattern. EDTA level added to collected blood samples had no significant impact on quantity as well as quality of extracted genomic DNA. However, higher levels of EDTA inc...

  6. Influence of inhibitors of poly(ADP-ribose) polymerase on DNA repair, chromosomal alterations, and mutations

    Natarajan, A.T.; van Zeeland, A.A.; Zwanenburg, T.S.

    1983-01-01

    The influence of inhibitors of poly(ADP-ribose) polymerase such as 3-aminobenzamide (3AB) and benzamide (B) on the spontaneously occurring as well as mutagen induced chromosomal aberrations, sister chromatid exchanges (SCEs) and point mutations has been studied. In addition, the influence of 3AB on DNA repair was measured following treatment with physical and chemical mutagens. Post treatment of X-irradiated mammalian cells with 3AB increases the frequencies of induced chromosomal aberrations by a factor of 2 to 3. 3AB, when present in the medium containing bromodeoxyuridine(BrdUrd) during two cell cycles, increases the frequencies of SCEs in Chinese hamster ovary cells (CHO) in a concentration dependent manner leading to about a 10-fold increase at 10 mM concentration. The extent of increase in the frequencies of SCEs due to 1 mM 3AB in several human cell lines has been studied, including those derived from patients suffering from genetic diseases such as ataxia telangiectasia (A-T), Fanconi's anemia (FA), and Huntington's chorea. None of these syndromes showed any increased response when compared to normal cells. 3AB, however, increased the frequencies of spontaneously occurring chromosomal aberrations in A-T and FA cells. 3AB does not influence the frequencies of SCEs induced by UV or mitomycin C (MMC) in CHO cells. However, it increases the frequencies of SCEs induced by ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS). Under the conditions in which 3AB increases the frequencies of spontaneously occurring as well as induced SCEs, it does not increase the frequencies of point mutations in hypoxanthine-guanine phosphoribosyltransferase (HGPRT) locus. 3AB does not influence the amount of repair replication following dimethylsulphate (DMS) treatment of human fibroblasts, or UV irradiated human lymphocytes.

  7. Optimisation of an asymmetric polymerase chain reaction assay for the amplification of single-stranded DNA from Wuchereria bancrofti for electrochemical detection

    Vasuki Venkatesan; Sugeerappa Laxmanappa Hoti; Nagalakshmi Kamaraj; Somnath Ghosh; Kaushik Rajaram

    2013-01-01

    Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence ...

  8. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans.

    Meyer, W.; Mitchell, T G; Freedman, E Z; Vilgalys, R

    1993-01-01

    In conventional DNA fingerprinting, hypervariable and repetitive sequences (minisatellite or microsatellite DNA) are detected with hybridization probes. As demonstrated here, these probes can be used as single primers in the polymerase chain reaction (PCR) to generate individual fingerprints. Several conventional DNA fingerprinting probes were used to prime the PCR, yielding distinctive, hypervariable multifragment profiles for different strains of Cryptococcus neoformans. PCR fingerprinting ...

  9. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.; (UPENN)

    2009-12-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.

  10. Novel enzyme immunoassay and optimized DNA extraction for the detection of polymerase-chain-reaction-amplified viral DNA from paraffin-embedded tissue.

    Merkelbach, S.; Gehlen, J.; Handt, S.; Füzesi, L.

    1997-01-01

    Four different DNA extraction methods were compared to determine their ability to provide DNA for amplification of viral sequences from paraffin-embedded human tissue samples by polymerase chain reaction (PCR). The suitability of extraction methods was assessed using parameters like DNA yield, length of recovered DNA fragments, and duration. Furthermore, the efficiency of amplifying a human single-copy gene, the beta-globin gene, from DNA samples was tested. The best preservation of DNA molecules could be achieved by binding the DNA onto a silica column before further purification. Viral DNA sequences could be amplified by PCR in DNA extracted from routinely processed paraffin blocks from cases with clinically or morphologically suspected cytomegalovirus or Epstein-Barr virus infections. The PCR products were specified by a novel liquid hybridization assay called PCR-enzyme-linked immunosorbent assay. Using this assay, the time-consuming Southern hybridization could be replaced and the time requirement for the detection of PCR products could be reduced from 1 day to 4 hours. The assay system described here represents a reliable, sensitive, and specific method for the detection of viral DNA from paraffin-embedded tissue samples. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:9137080

  11. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC50 of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases α, δ and ε is 15, 45 and 125 μM, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC50 = 88 μM), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication

  12. Neue Enzymeigenschaften durch gerichtete Evolution : Entwicklung und Charakterisierung einer thermostabilen Reversen Transkriptase aus einer DNA-abhängigen DNA-Polymerase

    Sauter, Katharina B. M.

    2007-01-01

    Through screening of DNA polymerase libraries that contain arbitrary randomized mutants generated by epPCR, we were able to identify enzymes that exhibit RT-PCR function, a function that is imperceptible in the wildtype enzyme. As demonstrated, the identified mutants might find immediate applications and provide the basis for the development of new means for single-step RT-PCR technologies like pathogen RNA detection or gene expression analysis in real time.

  13. DNA-recognition by a σ54 transcriptional activator from Aquifex aeolicus

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G.; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E.

    2014-01-01

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) f...

  14. The molecular basis of selective promoter activation by the sigmaS subunit of RNA polymerase.

    Typas, Athanasios; Becker, Gisela; Hengge, Regine

    2007-03-01

    Different environmental stimuli cause bacteria to exchange the sigma subunit in the RNA polymerase (RNAP) and, thereby, tune their gene expression according to the newly emerging needs. Sigma factors are usually thought to recognize clearly distinguishable promoter DNA determinants, and thereby activate distinct gene sets, known as their regulons. In this review, we illustrate how the principle sigma factor in stationary phase and in stressful conditions in Escherichia coli, sigmaS (RpoS), can specifically target its large regulon in vivo, although it is known to recognize the same core promoter elements in vitro as the housekeeping sigma factor, sigma70 (RpoD). Variable combinations of cis-acting promoter features and trans-acting protein factors determine whether a promoter is recognized by RNAP containing sigmaS or sigma70, or by both holoenzymes. How these promoter features impose sigmaS selectivity is further discussed. Moreover, additional pathways allow sigmaS to compete more efficiently than sigma70 for limiting amounts of core RNAP (E) and thereby enhance EsigmaS formation and effectiveness. Finally, these topics are discussed in the context of sigma factor evolution and the benefits a cell gains from retaining competing and closely related sigma factors with overlapping sets of target genes. PMID:17302812

  15. Characterization of an RNA-directed DNA polymerase from a cell line derived from a radiation-induced lymphoma in mice

    An RNA-directed DNA polymerase was purified from a cell line derived from a radiation-induced lymphoma in NIH Swiss mice which produced non-infectious type C virus particles. The enzyme was isolated from a high speed particulate fraction which bands at a density of 1.16-1.19 g/ml in a sucrose gradient, and purified by successive chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a KCl optimum of 50 mM, and a Mn2+ optimum of 0.25 mM. It prefers (dT)15.(A)sub(n) to (dT)15.(dA)sub(n) as the primer template and transcribes the poly(C) strand of (dG)15.(C)sub(n) and (dG)15.(OMeC)sub(n). It transcribes heteropolymeric regions of avian myeloblastosis virus 70 S RNA, and is inhibited by antiserum to Rauscher murine leukemia virus DNA polymerase. Comparison of the properties of DNA polymerase purified from radiation-induced lymphoma cells with the DNA polymerase purified from non-defective murine type C RNA tumor viruses shows that the mouse lymphoma enzyme is both biochemically and immunologically related to murine leukemia virus DNA polymerases. (Auth.)

  16. Amplification of plasmid DNA bound on soil colloidal particles and clay minerals by the polymerase chain reaction

    2007-01-01

    Polymerase chain reaction (PCR) was used to amplify a 600-base pair (bp) sequence of plasmid pGEX-2T DNA bound on soil colloidal particles from Brown soil (Alfisol) and Red soil (Ultisol), and three different minerals (goethite, kaolinite, montmorillonite). DNA bound on soil colloids, kaolinite, and montmorillonite was not amplified when the complexes were used directly but amplification occurred when the soil colloid or kaolinite-DNA complex was diluted, 10- and 20-fold. The montmorillonite-DNA complex required at least 100-fold dilution before amplification could be detected. DNA bound on goethite was amplified irrespective of whether the complex was used directly, or diluted 10- and 20-fold. The amplification of mineral-bound plasmid DNA by PCR is, therefore, markedly influenced by the type and concentration of minerals used. This information is of fundamental importance to soil molecular microbial ecology with particular reference to monitoring the fate of genetically engineered microorganisms and their recombinant DNA in soil environments.

  17. A new measurement approach of ionizing radiation in irradiated trout (Oncorhynchus mykiss) by Randomly Polymorphic DNA-Polymerase Chain Reaction.

    Şakalar, Ergün; Mol, Sühendan

    2016-05-01

    Trout (Oncorhynchus mykiss) were irradiated at doses of 0.250, 0.500, 1, 3, 5, 7 and 9 kGy in gamma cell. DNAs were extracted from the irradiated samples before and after storage. 1ERP primers were designed, and RAPD-PCR (Randomly Polymorphic DNA-Polymerase Chain Reaction) was applied to make randomly amplifications on the DNA of the irradiated samples. Agarose gel profiles of irradiated fish were obtained to determine change of band profiles. In addition, DNA fragmentation occurring in each dose was determined by comet assay for the verification of methodology developed in this study. The molecular methodology was developed to estimate ionizing radiation (IR) level in irradiated fish. This methodology allows the analysis of the trout irradiated up to the dose limit of around 0.5 kGy and stored for a period of three months. PMID:27407216

  18. The level of Ets-1 protein is regulated by poly(ADP-ribose polymerase-1 (PARP-1 in cancer cells to prevent DNA damage.

    Arnaud J Legrand

    Full Text Available Ets-1 is a transcription factor that regulates many genes involved in cancer progression and in tumour invasion. It is a poor prognostic marker for breast, lung, colorectal and ovary carcinomas. Here, we identified poly(ADP-ribose polymerase-1 (PARP-1 as a novel interaction partner of Ets-1. We show that Ets-1 activates, by direct interaction, the catalytic activity of PARP-1 and is then poly(ADP-ribosylated in a DNA-independent manner. The catalytic inhibition of PARP-1 enhanced Ets-1 transcriptional activity and caused its massive accumulation in cell nuclei. Ets-1 expression was correlated with an increase in DNA damage when PARP-1 was inhibited, leading to cancer cell death. Moreover, PARP-1 inhibitors caused only Ets-1-expressing cells to accumulate DNA damage. These results provide new insight into Ets-1 regulation in cancer cells and its link with DNA repair proteins. Furthermore, our findings suggest that PARP-1 inhibitors would be useful in a new therapeutic strategy that specifically targets Ets-1-expressing tumours.

  19. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B

    Chénard, Caroline; Wirth, Jennifer F.

    2016-01-01

    ABSTRACT   Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. PMID:27302758

  20. Development of DNA affinity techniques for the functional characterization of purified RNA polymerase II transcription factors

    Affinity adsorption, precipitation, and partitioning techniques have been developed to purify and characterize RNA Pol II transcription components from whole cell extracts (WCE) (HeLa) and nuclear extracts (K562). The titration of these extracts with multicopy constructs of the Ad2 MLP but not pUC8, inhibits transcriptional activity. DNA-binding factors precipitated by this technique are greatly enriched by centrifugation. Using this approach, factors binding to the upstream promoter sequence (UPS) of the Ad2 MLP have been rapidly isolated by Mono Q, Mono S, and DNA affinity chromatography. By U.V. crosslinking to nucleotides containing specific 32P-phosphodiester bonds within the recognition sequence, this factor is identified as a M/sub r/ = 45,000 polypeptide. To generate an assay system for the functional evaluation of single transcription components, a similar approach using synthetic oligonucleotide sequences spanning single promoter binding sites has been developed. The addition of a synthetic 63-mer containing the UPS element of the Ad2 MLP to HeLa WCE inhibited transcription by 60%. The addition of partially purified UPS binding protein, but not RNA Pol II, restored transcriptional activity. The addition of synthetic oligonucleotides containing other regulatory sequences not present in the Ad2 MLP was without effect

  1. In vitro bypass of the major malondialdehyde- and base propenal-derived DNA adduct by human Y-family DNA polymerases κ, ι, and Rev1.

    Maddukuri, Leena; Eoff, Robert L; Choi, Jeong-Yun; Rizzo, Carmelo J; Guengerich, F Peter; Marnett, Lawrence J

    2010-09-28

    3-(2'-Deoxy-β-d-erythro-pentofuranosyl)pyrimido-[1,2-a]purin-10(3H)-one (M(1)dG) is the major adduct derived from the reaction of DNA with the lipid peroxidation product malondialdehyde and the DNA peroxidation product base propenal. M(1)dG is mutagenic in Escherichia coli and mammalian cells, inducing base-pair substitutions (M(1)dG → A and M(1)dG → T) and frameshift mutations. Y-family polymerases may contribute to the mutations induced by M(1)dG in vivo. Previous reports described the bypass of M(1)dG by DNA polymerases η and Dpo4. The present experiments were conducted to evaluate bypass of M(1)dG by the human Y-family DNA polymerases κ, ι, and Rev1. M(1)dG was incorporated into template-primers containing either dC or dT residues 5' to the adduct, and the template-primers were subjected to in vitro replication by the individual DNA polymerases. Steady-state kinetic analysis of single nucleotide incorporation indicates that dCMP is most frequently inserted by hPol κ opposite the adduct in both sequence contexts, followed by dTMP and dGMP. dCMP and dTMP were most frequently inserted by hPol ι, and only dCMP was inserted by Rev1. hPol κ extended template-primers in the order M(1)dG:dC > M(1)dG:dG > M(1)dG:dT ∼ M(1)dG:dA, but neither hPol ι nor Rev1 extended M(1)dG-containing template-primers. Liquid chromatography-mass spectrometry analysis of the products of hPol κ-catalyzed extension verified this preference in the 3'-GXC-5' template sequence but revealed the generation of a series of complex products in which dAMP is incorporated opposite M(1)dG in the 3'-GXT-5' template sequence. The results indicate that DNA hPol κ or the combined action of hPol ι or Rev1 and hPol κ bypass M(1)dG residues in DNA and generate products that are consistent with some of the mutations induced by M(1)dG in mammalian cells. PMID:20726503

  2. In Vitro Bypass of the Major Malondialdehyde- and Base Propenal-Derived DNA Adduct by Human Y-family DNA Polymerases κ, ι, and Rev1†

    2010-01-01

    3-(2′-Deoxy-β-d-erythro-pentofuranosyl)pyrimido-[1,2-a]purin-10(3H)-one (M1dG) is the major adduct derived from the reaction of DNA with the lipid peroxidation product malondialdehyde and the DNA peroxidation product base propenal. M1dG is mutagenic in Escherichia coli and mammalian cells, inducing base-pair substitutions (M1dG → A and M1dG → T) and frameshift mutations. Y-family polymerases may contribute to the mutations induced by M1dG in vivo. Previous reports described the bypass of M1dG by DNA polymerases η and Dpo4. The present experiments were conducted to evaluate bypass of M1dG by the human Y-family DNA polymerases κ, ι, and Rev1. M1dG was incorporated into template-primers containing either dC or dT residues 5′ to the adduct, and the template-primers were subjected to in vitro replication by the individual DNA polymerases. Steady-state kinetic analysis of single nucleotide incorporation indicates that dCMP is most frequently inserted by hPol κ opposite the adduct in both sequence contexts, followed by dTMP and dGMP. dCMP and dTMP were most frequently inserted by hPol ι, and only dCMP was inserted by Rev1. hPol κ extended template-primers in the order M1dG:dC > M1dG:dG > M1dG:dT ∼ M1dG:dA, but neither hPol ι nor Rev1 extended M1dG-containing template-primers. Liquid chromatography−mass spectrometry analysis of the products of hPol κ-catalyzed extension verified this preference in the 3′-GXC-5′ template sequence but revealed the generation of a series of complex products in which dAMP is incorporated opposite M1dG in the 3′-GXT-5′ template sequence. The results indicate that DNA hPol κ or the combined action of hPol ι or Rev1 and hPol κ bypass M1dG residues in DNA and generate products that are consistent with some of the mutations induced by M1dG in mammalian cells. PMID:20726503

  3. A new building block for DNA network formation by self-assembly and polymerase chain reaction

    Holger Bußkamp; Sascha Keller; Marta Robotta; Malte Drescher; Andreas Marx

    2014-01-01

    The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled ob...

  4. Overcoming RNA inhibition in the fluorescent polymerase chain reaction assay to enhance detection of bovine DNA in cattle feeds.

    Sawyer, Mary; Rensen, Gabriel; Smith, Wayne; Yee, Melanie; Wong, Alice; Osburn, Bennie; Cullor, James

    2004-01-01

    The practice of incorporating mammalian protein in ruminant feeds was banned in the United States in 1997 as a measure to avoid transmission of bovine spongiform encephalopathy (BSE). A sensitive means of identifying the banned additives in feeds would be by detection of species-specific DNA using the polymerase chain reaction (PCR). However, problems may arise in the PCR due to the presence of inhibitory substances. Using human DNA as an internal PCR control, inhibitory substances were evident in the DNA extraction products of cattle feeds. The results of heating experiments excluded enzymes as a cause of inhibition, and spectrophotometric calculations suggested the possibility of RNA contamination. Co-electrophoresis of untreated and RNAse digested extracts confirmed the presence of RNA in the undigested product. Seven cattle feeds were spiked with predetermined amounts of bovine meat and bone meal (BMBM). The DNA extracted products were treated with RNAse and the bovine specific mitochondrial DNA (B-mtDNA) was amplified by PCR. The minimum level of detection of B-mtDNA was influenced by RNAse treatment and feed composition. RNAse treatment decreased false-negative results overall by 75%. False-negative results were decreased 100% in the higher BMBM concentrations and 50% in the lower BMBM concentrations. Also, each cattle feed was spiked to attain a 2% wt/wt concentration with each swine, fish, sheep, or poultry product, or cattle dried blood. Amplification of B-mtDNA occurred only with the cattle dried blood and only in three feeds in which B-mtDNA was detected at the only level tested (2%). A commercial immunochromotographic assay (Neogen) detected the spiked BMBM in only one of the seven feeds and only at the upper concentration (1%). PMID:15992269

  5. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA.

    Ikonen, Satu; Macícková-Cahová, Hana; Pohl, Radek; Sanda, Miloslav; Hocek, Michal

    2010-03-01

    Aqueous Sonogashira cross-coupling reactions of 5-iodopyrimidine or 7-iodo-7-deazaadenine nucleosides with bile acid-derived terminal acetylenes linked via an ester or amide tether gave the corresponding bile acid-nucleoside conjugates. Analogous reactions of halogenated nucleoside triphosphates gave directly bile acid-modified dNTPs. Enzymatic incorporation of these modified nucleotides to DNA was successfully performed using Phusion polymerase for primer extension. One of the dNTPs (dCTP bearing cholic acid) was also efficient for PCR amplification. PMID:20165813

  6. Molecular cloning, sequencing, and overexpression of the structural gene encoding the delta subunit of Escherichia coli DNA polymerase III holoenzyme.

    J.R. Carter; Franden, M A; Aebersold, R.; McHenry, C S

    1992-01-01

    Using an oligonucleotide hybridization probe, we have mapped the structural gene for the delta subunit of Escherichia coli DNA polymerase III holoenzyme to 14.6 centisomes of the chromosome. This gene, designated holA, was cloned and sequenced. The sequence of holA matches precisely four amino acid sequences obtained for the amino terminus of delta and three internal tryptic peptides. A holA-overproducing plasmid that directs the expression of delta up to 4% of the soluble protein was constru...

  7. Alkylsulfanylphenyl derivatives of cytosine and 7-deazaadenine nucleosides, nucleotides and nucleoside triphosphates. Synthesis, polymerase incorporation to DNA and electrochemical study

    Macíčková-Cahová, Hana; Pohl, Radek; Horáková Brázdilová, Petra; Havran, Luděk; Špaček, Jan; Fojta, Miroslav; Hocek, Michal

    2011-01-01

    Roč. 17, č. 21 (2011), s. 5833-5841. ISSN 0947-6539 R&D Projects: GA MŠk(CZ) LC06035; GA MŠk LC512; GA ČR GA203/09/0317; GA AV ČR(CZ) IAA400040901 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA polymerases * electrochemistry * nucleosides * nucleotides * organosulfur compounds Subject RIV: CC - Organic Chemistry Impact factor: 5.925, year: 2011

  8. THE INHIBITORY EFFECT OF EXTRACT OF CAMELLIA SINENSIS AND EXTRACT OF CAMELLIA PTILOPHYLLA CHANG ON DNA POLYMERASE OF EHRLICH ASCITES CARCINOMA CELLS

    Xian Lijian; Liu Zongchao; Pan Qichao; Li Hanxi

    1998-01-01

    Objective:To detect the effect of extract of Camellia Sinensis (ECS) and extract of Camellia Ptilophylla Chang (ECPC) on DNA polymerase (Pol) of Ehrlich ascites tumor cells. Methods: Referring to the method of K.Ono, Pol was extracted from Ehrlich ascites tumor cells in mice. Pol α, β, and γ were separated by phosphocellulose column chromatography and were identified. The effect of ECPC and ECS on Pol was studied. Results: ECPC and ECS were shown to inhibit the activity of Pol α, β, and γ. IC50 values of ECS on Polα, β, and γ were 10.2μ g/ml, 9.9μ g/ml and 28.9 μ g/mlrespectively. IC50 values of ECPC on Pol α, Pol β and Pol γ were 5.6 μ g/ml, 15 μ g/ml and 14.7 μ g/mlrespectively. The modes of inhibition of ECPC on Pol α,Pol β and Pol γ were noncompetitive with respect to template DNA. The Ki values of ECPC on Pol α, β, and γ were 2.68± 0.12 μ g/ml, 2.24 ± 0. 12 μ g/ml , 2.56 ±0. 18 μ g/ml . Conclusion: ECPC and ECS were shown to have inhibitory effect on DNA polymerase of tumor cells. The mode of inhibition of ECPC on Pol α, Pol βand Pol γwere noncompetitive with respect to template DNA.

  9. Estimation and Preparation of the Hypervariable Regions I/II Templates for Mitochondrial DNA Typing From Human Bones and Teeth Remains Using Singleplex Quantitative Polymerase Chain Reaction.

    Le, Thien Ngoc; Van Phan, Hieu; Dang, Anh Tuan Mai; Nguyen, Vy Thuy

    2016-09-01

    A method was designed for estimating and sequencing of mitochondrial DNA (mtDNA) that effectively and more quickly provides a complete mtDNA profile. In this context, we have developed this novel strategy for typing mtDNA from 10 bones and teeth remains (3 months to 44 years). The quantification of mtDNA was achieved by singleplex real-time polymerase chain reaction of the hypervariable region I fragment (445 bp) and hypervariable region II fragment (617 bp). Combined with the melting curve analysis, we have determined as little as 10 pg of mtDNA template that is suitable for sequence analysis. Furthermore, quantitative polymerase chain reaction products were directly used for following step of mtDNA typing by Sanger sequencing. This method allows the profile to be completely provided for faster human identification. PMID:27356010

  10. Using the Polymerase Chain Reaction in an Undergraduate Laboratory to Produce "DNA Fingerprints."

    Phelps, Tara L.; And Others

    1996-01-01

    Presents a laboratory exercise that demonstrates the sensitivity of the Polymerase Chain Reaction as well as its potential application to forensic analysis during a criminal investigation. Can also be used to introduce, review, and integrate population and molecular genetics topics such as genotypes, multiple alleles, allelic and genotypic…

  11. Characterization of DNA polymerase β from Danio rerio by overexpression in E. coli using the in vivo/in vitro compatible pIVEX plasmid

    Ishikawa Mitsuru

    2011-10-01

    Full Text Available Abstract Background Eukaryotic DNA polymerase β (pol β, the polymerase thought to be responsible for DNA repair synthesis, has been extensively characterized in rats and humans. However, pol β has not been purified or enzymatically characterized from the model fish species Danio rerio (zebrafish. We used the in vitro/in vivo dual expression system plasmid, pIVEX, to express Danio rerio pol β (Danio pol β for biochemical characterization. Results Danio pol β encoded by the in vitro/in vivo-compatible pIVEX plasmid was expressed in E. coli BL21(DE3, BL21(DE3pLysS, and KRX, and in vitro as a C-terminal His-tagged protein. Danio pol β expressed in vitro was subject to proteolysis; therefore, bacterial overexpression was used to produce the protein for kinetic analyses. KRX cells were preferred because of their reduced propensity for leaky expression of pol β. The cDNA of Danio rerio pol β encodes a protein of 337 amino acids, which is 2-3 amino acids longer than other pol β proteins, and contains a P63D amino acid substitution, unlike mammalian pol βs. This substitution lies in a hairpin sequence within an 8-kDa domain, likely to be important in DNA binding. We performed extensive biochemical characterization of Danio pol β in comparison with rat pol β, which revealed its sensitivity to metal ion activators (Mn2+ and Mg2+, its optimum salt concentration (10 mM KCl and 50 mM NaCl, alkaline pH optimum (pH 9.0, and low temperature optimum (30°C. Substituting Mn2+ for Mg2+ resulted in 8.6-fold higher catalytic efficiency (kcat/Km. Conclusions Our characterization of pol β from a model fish organism contributes to the study of the function and evolution of DNA polymerases, which are emerging as important cellular targets for chemical intervention in the development of anticancer agents.

  12. Structural and Functional Analysis of Sulfolobus solfataricus Y-Family DNA Polymerase Dpo4-Catalyzed Bypass of the Malondialdehyde−Deoxyguanosine Adduct

    Eoff, Robert L.; Stafford, Jennifer B.; Szekely, Jozsef; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter; Marnett, Lawrence J.; (Vanderbilt)

    2010-01-12

    Oxidative stress can induce the formation of reactive electrophiles, such as DNA peroxidation products, e.g., base propenals, and lipid peroxidation products, e.g., malondialdehyde. Base propenals and malondialdehyde react with DNA to form adducts, including 3-(2'-deoxy-{beta}-d-erythro-pentofuranosyl)pyrimido[1,2-{alpha}]purin-10(3H)-one (M{sub 1}dG). When paired opposite cytosine in duplex DNA at physiological pH, M{sub 1}dG undergoes ring opening to form N{sup 2}-(3-oxo-1-propenyl)-dG (N{sup 2}-OPdG). Previous work has shown that M{sub 1}dG is mutagenic in bacteria and mammalian cells and that its mutagenicity in Escherichia coli is dependent on induction of the SOS response, indicating a role for translesion DNA polymerases in the bypass of M{sub 1}dG. To probe the mechanism by which translesion polymerases bypass M{sub 1}dG, kinetic and structural studies were conducted with a model Y-family DNA polymerase, Dpo4 from Sulfolobus solfataricus. The level of steady-state incorporation of dNTPs opposite M{sub 1}dG was reduced 260-2900-fold and exhibited a preference for dATP incorporation. Liquid chromatography-tandem mass spectrometry analysis of the full-length extension products revealed a spectrum of products arising principally by incorporation of dC or dA opposite M{sub 1}dG followed by partial or full-length extension. A greater proportion of -1 deletions were observed when dT was positioned 5' of M{sub 1}dG. Two crystal structures were determined, including a 'type II' frameshift deletion complex and another complex with Dpo4 bound to a dC-M{sub 1}dG pair located in the postinsertion context. Importantly, M{sub 1}dG was in the ring-closed state in both structures, and in the structure with dC opposite M{sub 1}dG, the dC residue moved out of the Dpo4 active site, into the minor groove. The results are consistent with the reported mutagenicity of M{sub 1}dG and illustrate how the lesion may affect replication events.

  13. Stoichiometric complex formation by proliferating cell nuclear antigen (PCNA) and its interacting protein: purification and crystallization of the DNA polymerase and PCNA monomer mutant complex from Pyrococcus furiosus

    A stable stoichiometric complex of archaeal DNA polymerase with proliferating cell nuclear antigen (PCNA) was formed using a PCNA monomer mutant and the complex was successfully crystallized. Replicative DNA polymerase interacts with processivity factors, the β-subunit of DNA polymerase III or proliferating cell nuclear antigen (PCNA), in order to function with a long template DNA. The archaeal replicative DNA polymerase from Pyrococcus furiosus interacts with PCNA via its PCNA-interacting protein (PIP) motif at the C-terminus. The PCNA homotrimeric ring contains one PIP interacting site on each monomer and since the ring can accommodate up to three molecules simultaneously, formation of a stable stoichiometric complex of PCNA with its interacting protein has been difficult to control in vitro. A stable complex of the DNA polymerase with PCNA, using a PCNA monomer mutant, has been purified and crystallized. The best ordered crystal diffracted to 3.0 Å resolution using synchrotron radiation. The crystals belong to space group P21212, with unit-cell parameters a = 225.3, b = 123.3, c = 91.3 Å

  14. A tumor necrosis factor α- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase δ and proliferating cell nuclear antigen

    He, Hua; Tan, Cheng-Keat; Downey, Kathleen M.; So, Antero G.

    2001-01-01

    A cDNA encoding a protein of 36 kDa, polymerase delta-interacting protein 1 (PDIP1), that interacts with the small subunit (p50) of DNA polymerase δ (pol δ) was identified in a two-hybrid screen of a HepG2 cDNA library by using p50 as bait. The interaction of PDIP1 with p50 was confirmed by pull-down assays, and a similar assay was used to demonstrate that PDIP1 interacts directly with the proliferating cell nuclear antigen (PCNA). PCNA and p50 bound to PDIP1 simultaneously, and PDIP1 stimula...

  15. Characterization of an RNA-dependent RNA polymerase activity associated with La France isometric virus.

    Goodin, M M; Schlagnhaufer, B; Weir, T; Romaine, C. P.

    1997-01-01

    Purified preparations of La France isometric virus (LIV), an unclassified, double-stranded RNA (dsRNA) virus of Agaricus bisporus, were associated with an RNA-dependent RNA polymerase (RDRP) activity. RDRP activity cosedimented with the 36-nm isometric particles and genomic dsRNAs of LIV during rate-zonal centrifugation in sucrose density gradients, suggesting that the enzyme is a constituent of the virion. Enzyme activity was maximal in the presence of all four nucleotides, a reducing agent ...

  16. relA-dependent RNA polymerase activity in Escherichia coli.

    Ryals, J; Bremer, H

    1982-01-01

    Parameters relating to RNA synthesis were measured after a temperature shift from 30 to 42 degrees C, in a relA+ and relA- isogenic pair of Escherichia coli strains containing a temperature-sensitive valyl tRNA synthetase. The following results were obtained: (i) the rRNA chain growth rate increased 2-fold in both strains; (ii) newly synthesized rRNA became unstable in both strains; (iii) the stable RNA gene activity (rRNA and tRNA, measured as stable RNA synthesis rate relative to the total ...

  17. Comparison of real-time and quantitative polymerase chain reaction assays in detection of cytomegalovirus DNA in clinical specimens

    To compare the real-time (RT) and qualitative (Q) polymerase chain reaction (PCR) assays for detection of Cytomegalovirus (CMV) DNA. The study took place in the Department of Microbiology, Erciyes University, Kayseri and in Iontek Laboratory, Istanbul, Turkey, from August to December 2006. One hundred and seven clinical specimens from 67 patients were included in the study. Cytomegalovirus DNA was investigated using RT-PCR kit (Fluorion Iontek, Turkey) and Q-PCR kit (Fluorion Iontek, Turkey). Deoxyribonucleic acid sequencing was applied to the samples that yielded discrepant results in both assays. Mac Nema's Chi Square test was used for statistical analysis. Of the specimens, 27 were found positive with both assays: 9 with only RT-PCR, and 11 with only Q-PCR assay. Both assays were found negative in 60 of the specimens. There was a good agreement between the 2 assays in 87(81.3%) of the specimens. There was no statistical significant difference between the assays (p>0.05). Two of the 11 samples that RT-PCR negative Q-PCR positive, and 3 of 9 samples that RT-PCR positive Q-PCR negative were found to be CMV DNA positive by DNA sequencing. A good level of concordance between RT-PCR and Q-PCR assays for CMV DNA detection has been found. (author)

  18. An RNA polymerase II-and AGO4-associated protein acts in RNA-directed DNA methylation

    Gao, Zhihuan

    2010-04-21

    DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm. © 2010 Macmillan Publishers Limited. All rights reserved.

  19. Babesia bovis and B. bigemina DNA detected in cattle and ticks from Zimbabwe by polymerase chain reaction

    I. Smeenk

    2000-07-01

    Full Text Available From blood collected from 94 cattle at 12 locations in the eastern and northeastern areas of Zimbabwe, DNA was extracted and analysed by polymerase chain reaction with primers previously reported to be specific for Babesia bigemina and Babesia bovis. Overall, DNA of Babesia bigemina was detected in the blood of 33/94 (35 % cattle and DNA from B. bovis was detected in 27/58 (47 % of cattle. The prevalence of DNA of B. bigemina was significantly higher in young animals (<2 years (23/46 than in animals over 2 years of age (10/48; (chi2 = 8.77; P < 0.01 %. Although tick sampling was not thorough, Boophilus decoloratus could be collected at 7/9 sites sampled and Boophilus microplus at 4/9 sites. Of the 20 B. decoloratus allowed to oviposit before PCR analysis, 1 (5 % contained DNA that could be amplified with primers for B. bigemina while 12 (60 % were positive with primers for B. bovis. Of the B. microplus allowed to oviposit, 11/16 (69 % were positive for B. bovis DNAby PCR and 2/16 (12 % were positive for B. bigemina.

  20. Intramolecular telomeric G-quadruplexes dramatically inhibit DNA synthesis by replicative and translesion polymerases, revealing their potential to lead to genetic change.

    Deanna N Edwards

    Full Text Available Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication. Coincidentally, these bulky structures when present in the DNA template might also hinder the action of DNA polymerases. In this study, single-stranded telomeric templates with the potential to form G-quadruplexes were examined for their effects on a variety of replicative and translesion DNA polymerases from humans and lower organisms. Our results demonstrate that single-stranded templates containing four telomeric GGG runs fold into intramolecular G-quadruplex structures. These intramolecular G quadruplexes are somewhat dynamic in nature and stabilized by increasing KCl concentrations and decreasing temperatures. Furthermore, the presence of these intramolecular G-quadruplexes in the template dramatically inhibits DNA synthesis by various DNA polymerases, including the human polymerase δ employed during lagging strand replication of G-rich telomeric strands and several human translesion DNA polymerases potentially recruited to sites of replication blockage. Notably, misincorporation of nucleotides is observed when certain translesion polymerases are employed on substrates containing intramolecular G-quadruplexes, as is extension of the resulting mismatched base pairs upon dynamic unfolding of this secondary structure. These findings reveal the potential for blockage of DNA replication and genetic changes related to sequences capable of forming intramolecular G-quadruplexes.

  1. The Bacillus subtilis DnaD and DnaB Proteins Exhibit Different DNA Remodelling Activities

    Zhang, Wenke; Carneiro, Maria J. V. M.; Turner, Ian J.; ALLEN, Stephanie; Roberts, Clive J.; Soultanas, Panos

    2005-01-01

    Primosomal protein cascades load the replicative helicase onto DNA. In Bacillus subtilis a putative primosomal cascade involving the DnaD-DnaB-DnaI proteins has been suggested to participate in both the DnaA and PriA-dependent loading of the replicative helicase DnaC onto the DNA. Recently we discovered that DnaD has a global remodelling DNA activity suggesting a more widespread role in bacterial nucleoid architecture. Here, we show that DnaB forms a “square-like” tetramer with a hole in the ...

  2. Screening of mammalian DNA polymerase and topoisomerase inhibitors from Garcinia mangostana L. and analysis of human cancer cell proliferation and apoptosis.

    Onodera, Takefumi; Takenaka, Yukiko; Kozaki, Sachiko; Tanahashi, Takao; Mizushina, Yoshiyuki

    2016-03-01

    We purified and identified eight xanthones from mangosteen (Garcinia mangostana L.) and investigated whether these compounds inhibited the activities of mammalian DNA polymerases (Pols) and human DNA topoisomerases (Topos). β-Mangostin was the strongest inhibitor of both mammalian Pols and human Topos among the isolated xanthones, with 50% inhibitory concentration (IC50) values of 6.4-39.6 and 8.5-10 µM, respectively. Thermal transition analysis indicated that β-mangostin did not directly bind to double-stranded DNA, suggesting that this compound directly bound the enzyme protein rather than the DNA substrate. β-Mangostin showed the strongest suppression of human cervical cancer HeLa cell proliferation among the eight compounds tested, with a 50% lethal dose (LD50) of 27.2 µM. This compound halted cell cycle in S phase at 12-h treatment and induced apoptosis. These results suggest that decreased proliferation by β-mangostin may be a result of the inhibition of cellular Pols rather than Topos, and β-mangostin might be an anticancer chemotherapeutic agent. PMID:26781450

  3. Two-color fluorescence detection of Poly (ADP-Ribose Polymerase-1 (PARP-1 cleavage and DNA strand breaks in etoposide-induced apoptotic cells

    C Soldani

    2009-12-01

    Full Text Available During apoptosis, the nuclear enzyme Poly(ADPRibose Polymerase-1 (PARP-1 catalyzes the rapid and transient synthesis of poly(ADP-ribose from NAD+ and becomes inactive when cleaved by caspases. The regulation of these two opposite roles of PARP-1 is still unknown. We have recently investigated PARP-1 activation/degradation in Hep-2 cells driven to apoptosis by actinomycin D. In the present work, we have extended our analysis to the effect of the DNA damaging agent etoposide, and paid attention to the relationship between PARP-1 cleavage and DNA fragmentation. An original fluorescent procedure was developed to simultaneously identify in situ the p89 proteolytic fragment of PARP-1 (by immunolabeling and DNA degradation (by the TUNEL assay. The presence of p89 was observed both in cells with advanced signs of apoptosis (where the PARP-1 fragment is extruded from the nucleus into the cytoplasm and in TUNEL-negative cells, with only incipient signs of chromatin condensation; this evidence indicates that PARP-1 degradation in etoposide-treated apoptotic cells may precede DNA cleavage.

  4. Hydrogen-Bonding Capability of a Templating Difluorotoluene Nucleotide Residue in an RB69 DNA Polymerase Ternary Complex

    Xia, Shuangluo; Konigsberg, William H.; Wang, Jimin (Yale)

    2011-08-29

    Results obtained using 2,4-difluorotoluene nucleobase (dF) as a nonpolar thymine isostere by Kool and colleagues challenged the Watson-Crick dogma that hydrogen bonds between complementary bases are an absolute requirement for accurate DNA replication. Here, we report crystal structure of an RB69 DNA polymerase L561A/S565G/Y567A triple mutant ternary complex with a templating dF opposite dTTP at 1.8 {angstrom}-resolution. In this structure, direct hydrogen bonds were observed between: (i) dF and the incoming dTTP, (ii) dF and residue G568 of the polymerase, and (iii) dF and ordered water molecules surrounding the nascent base pair. Therefore, this structure provides evidence that a templating dF can form novel hydrogen bonds with the incoming dTTP and with the enzyme that differ from those formed with a templating dT.

  5. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells

    Srivastava, Amit Kumar; Han, Chunhua; Zhao, Ran; Cui, Tiantian; Dai, Yuntao; Mao, Charlene; Zhao, Weiqiang; Zhang, Xiaoli; Yu, Jianhua; Wang, Qi-En

    2015-01-01

    Cancer stem cells (CSCs) exhibit enhanced chemo/radiotherapy resistance, and their survival following cancer treatment is believed to be responsible for tumor recurrence and metastasis. Thus, understanding the mechanisms through which CSCs survive conventional chemotherapy is essential for identification of new therapeutic strategies to prevent tumor relapse. Our findings that ovarian CSCs survive cisplatin treatment through elevated expression of polymerase η represent an opportunity to erad...

  6. Structure-Function Relationships in Miscoding by Sulfolobus solfataricus DNA Polymerase Dpo4: GUANINE N2,N2-DIMETHYL SUBSTITUTION PRODUCES INACTIVE AND MISCODING POLYMERASE COMPLEXES

    Zhang, Huidong; Eoff, Robert L.; Kozekov, Ivan D.; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter; (Vanderbilt)

    2009-08-13

    Previous work has shown that Y-family DNA polymerases tolerate large DNA adducts, but a substantial decrease in catalytic efficiency and fidelity occurs during bypass of N{sup 2},N{sup 2}-dimethyl (Me{sub 2})-substituted guanine (N{sup 2},N{sup 2}-Me{sub 2}G), in contrast to a single methyl substitution. Therefore, it is unclear why the addition of two methyl groups is so disruptive. The presence of N{sup 2},N{sup 2}-Me{sub 2}G lowered the catalytic efficiency of the model enzyme Sulfolobus solfataricus Dpo4 16,000-fold. Dpo4 inserted dNTPs almost at random during bypass of N{sup 2},N{sup 2}-Me{sub 2}G, and much of the enzyme was kinetically trapped by an inactive ternary complex when N{sup 2},N{sup 2}-Me{sub 2}G was present, as judged by a reduced burst amplitude (5% of total enzyme) and kinetic modeling. One crystal structure of Dpo4 with a primer having a 3{prime}-terminal dideoxycytosine (Cdd) opposite template N{sup 2},N{sup 2}-Me{sub 2}G in a post-insertion position showed Cdd folded back into the minor groove, as a catalytically incompetent complex. A second crystal had two unique orientations for the primer terminal Cdd as follows: (i) flipped into the minor groove and (ii) a long pairing with N{sup 2},N{sup 2}-Me{sub 2}G in which one hydrogen bond exists between the O-2 atom of Cdd and the N-1 atom of N{sup 2},N{sup 2}-Me{sub 2}G, with a second water-mediated hydrogen bond between the N-3 atom of C{sub dd} and the O-6 atom of N{sup 2},N{sup 2}-Me{sub 2}G. A crystal structure of Dpo4 with dTTP opposite template N{sup 2},N{sup 2}-Me{sub 2}G revealed a wobble orientation. Collectively, these results explain, in a detailed manner, the basis for the reduced efficiency and fidelity of Dpo4-catalyzed bypass of N{sup 2},N{sup 2}-Me{sub 2}G compared with mono-substituted N{sup 2}-alkyl G adducts.

  7. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach

    Iñiguez Alena M; Araújo Adauto; Ferreira Luiz Fernando; Vicente Ana Carolina P

    2003-01-01

    The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA) present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pre...

  8. UmuDAb: An Error-Prone Polymerase Accessory Homolog Whose N-Terminal Domain Is Required for Repression of DNA Damage Inducible Gene Expression in Acinetobacter baylyi.

    Travis A Witkowski

    Full Text Available In many bacteria, the DNA damage response induces genes (SOS genes that were repressed by LexA. LexA represses transcription by binding to SOS promoters via a helix-turn-helix motif in its N-terminal domain (NTD. Upon DNA damage, LexA cleaves itself and allows induction of transcription. In Acinetobacter baumannii and Acinetobacter baylyi, multiple genes are induced by DNA damage, and although the Acinetobacter genus lacks LexA, a homolog of the error-prone polymerase subunit UmuD, called UmuDAb, regulates some DNA damage-induced genes. The mechanism of UmuDAb regulation has not been determined. We constructed UmuDAb mutant strains of A. baylyi to test whether UmuDAb mediates gene regulation through LexA-like repressor actions consisting of relief of repression through self-cleavage after DNA damage. Real-time quantitative PCR experiments in both a null umuDAb mutant and an NTD mutant showed that the DNA damage-inducible, UmuDAb-regulated gene ddrR was highly expressed even in the absence of DNA damage. Protein modeling identified a potential LexA-like helix-turn-helix structure in the UmuDAb NTD, which when disrupted, also relieved ddrR and umuDAb repression under non-inducing conditions. Mutations in a putative SOS box in the shared umuDAb-ddrR promoter region similarly relieved these genes' repression under non-inducing conditions. Conversely, cells possessing a cleavage-deficient UmuDAb were unable to induce gene expression after MMC-mediated DNA damage. This evidence of a UmuDAb repressor mechanism was contrasted with the failure of umuDAb to complement an Escherichia coli umuD mutant for UmuD error-prone DNA replication activity. Similarly, A. baumannii null umuDAb mutant cells did not have a reduced UmuD'2UmuC-mediated mutation rate after DNA damage, suggesting that although this UmuDAb protein may have evolved from a umuDC operon in this genus, it now performs a LexA-like repressor function for a sub-set of DNA damage-induced genes.

  9. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang; (NU Sinapore); (Nankai); (Oxford); (Chinese Aca. Sci.); (Tsinghua)

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  10. Divergent Contributions of Conserved Active Site Residues to Transcription by Eukaryotic RNA Polymerases I and II

    Olga V. Viktorovskaya

    2013-09-01

    Full Text Available Multisubunit RNA polymerases (msRNAPs exhibit high sequence and structural homology, especially within their active sites, which is generally thought to result in msRNAP functional conservation. However, we show that mutations in the trigger loop (TL in the largest subunit of RNA polymerase I (Pol I yield phenotypes unexpected from studies of Pol II. For example, a well-characterized gain-of-function mutation in Pol II results in loss of function in Pol I (Pol II: rpb1- E1103G; Pol I: rpa190-E1224G. Studies of chimeric Pol II enzymes hosting Pol I or Pol III TLs suggest that consequences of mutations that alter TL dynamics are dictated by the greater enzymatic context and not solely the TL sequence. Although the rpa190-E1224G mutation diminishes polymerase activity, when combined with mutations that perturb Pol I catalysis, it enhances polymerase function, similar to the analogous Pol II mutation. These results suggest that Pol I and Pol II have different rate-limiting steps.

  11. Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/ enhancer-binding protein beta binding sites

    Savic, Daniel; Roberts, Brian S.; Carleton, Julia B.; Partridge, E. Christopher; White, Michael A.; Cohen, Barak A.; Cooper, Gregory M.; Gertz, Jason; Myers, Richard M.

    2015-01-01

    Transcription factors (TFs) bind to thousands of DNA sequences in mammalian genomes, but most of these binding events appear to have no direct effect on gene expression. It is unclear why only a subset of TF bound sites are actively involved in transcriptional regulation. Moreover, the key genomic features that accurately discriminate between active and inactive TF binding events remain ambiguous. Recent studies have identified promoter-distal RNA polymerase II (RNAP2) binding at enhancer elements, suggesting that these interactions may serve as a marker for active regulatory sequences. Despite these correlative analyses, a thorough functional validation of these genomic co-occupancies is still lacking. To characterize the gene regulatory activity of DNA sequences underlying promoter-distal TF binding events that co-occur with RNAP2 and TF sites devoid of RNAP2 occupancy using a functional reporter assay, we performed cis-regulatory element sequencing (CRE-seq). We tested more than 1000 promoter-distal CCAAT/enhancer-binding protein beta (CEBPB)-bound sites in HepG2 and K562 cells, and found that CEBPB-bound sites co-occurring with RNAP2 were more likely to exhibit enhancer activity. CEBPB-bound sites further maintained substantial cell-type specificity, indicating that local DNA sequence can accurately convey cell-type–specific regulatory information. By comparing our CRE-seq results to a comprehensive set of genome annotations, we identified a variety of genomic features that are strong predictors of regulatory element activity and cell-type–specific activity. Collectively, our functional assay results indicate that RNAP2 occupancy can be used as a key genomic marker that can distinguish active from inactive TF bound sites. PMID:26486725

  12. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II.

    Wang, Ying; Qu, Jie; Ji, Shaoyi; Wallace, Andrew J; Wu, Jian; Li, Yi; Gopalan, Venkat; Ding, Biao

    2016-05-01

    Some DNA-dependent RNA polymerases (DdRPs) possess RNA-dependent RNA polymerase activity, as was first discovered in the replication of Potato spindle tuber viroid (PSTVd) RNA genome in tomato (Solanum lycopersicum). Recent studies revealed that this activity in bacteria and mammals is important for transcriptional and posttranscriptional regulatory mechanisms. Here, we used PSTVd as a model to uncover auxiliary factors essential for RNA-templated transcription by DdRP PSTVd replication in the nucleoplasm generates (-)-PSTVd intermediates and (+)-PSTVd copies. We found that the Nicotiana benthamiana canonical 9-zinc finger (ZF) Transcription Factor IIIA (TFIIIA-9ZF) as well as its variant TFIIIA-7ZF interacted with (+)-PSTVd, but only TFIIIA-7ZF interacted with (-)-PSTVd. Suppression of TFIIIA-7ZF reduced PSTVd replication, and overexpression of TFIIIA-7ZF enhanced PSTVd replication in planta. Consistent with the locale of PSTVd replication, TFIIIA-7ZF was found in the nucleoplasm and nucleolus, in contrast to the strictly nucleolar localization of TFIIIA-9ZF. Footprinting assays revealed that only TFIIIA-7ZF bound to a region of PSTVd critical for initiating transcription. Furthermore, TFIIIA-7ZF strongly enhanced the in vitro transcription of circular (+)-PSTVd by partially purified Pol II. Together, our results identify TFIIIA-7ZF as a dedicated cellular transcription factor that acts in DdRP-catalyzed RNA-templated transcription, highlighting both the extraordinary evolutionary adaptation of viroids and the potential of DdRPs for a broader role in cellular processes. PMID:27113774

  13. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II[OPEN

    Qu, Jie; Ji, Shaoyi; Wallace, Andrew J.; Wu, Jian; Li, Yi; Gopalan, Venkat; Ding, Biao

    2016-01-01

    Some DNA-dependent RNA polymerases (DdRPs) possess RNA-dependent RNA polymerase activity, as was first discovered in the replication of Potato spindle tuber viroid (PSTVd) RNA genome in tomato (Solanum lycopersicum). Recent studies revealed that this activity in bacteria and mammals is important for transcriptional and posttranscriptional regulatory mechanisms. Here, we used PSTVd as a model to uncover auxiliary factors essential for RNA-templated transcription by DdRP. PSTVd replication in the nucleoplasm generates (−)-PSTVd intermediates and (+)-PSTVd copies. We found that the Nicotiana benthamiana canonical 9-zinc finger (ZF) Transcription Factor IIIA (TFIIIA-9ZF) as well as its variant TFIIIA-7ZF interacted with (+)-PSTVd, but only TFIIIA-7ZF interacted with (−)-PSTVd. Suppression of TFIIIA-7ZF reduced PSTVd replication, and overexpression of TFIIIA-7ZF enhanced PSTVd replication in planta. Consistent with the locale of PSTVd replication, TFIIIA-7ZF was found in the nucleoplasm and nucleolus, in contrast to the strictly nucleolar localization of TFIIIA-9ZF. Footprinting assays revealed that only TFIIIA-7ZF bound to a region of PSTVd critical for initiating transcription. Furthermore, TFIIIA-7ZF strongly enhanced the in vitro transcription of circular (+)-PSTVd by partially purified Pol II. Together, our results identify TFIIIA-7ZF as a dedicated cellular transcription factor that acts in DdRP-catalyzed RNA-templated transcription, highlighting both the extraordinary evolutionary adaptation of viroids and the potential of DdRPs for a broader role in cellular processes. PMID:27113774

  14. New insights into the QuikChange™ process guide the use of Phusion DNA polymerase for site-directed mutagenesis.

    Xia, Yongzhen; Chu, Wenqiao; Qi, Qingsheng; Xun, Luying

    2015-01-01

    The QuikChange™ site-directed mutagenesis method is popular but imperfect. An improvement by using partially overlapping primers has been reported several times; however, it is incompatible with the proposed mechanism. The QuikChange™ method using complementary primers is proposed to linearly amplify a target plasmid with the products annealing to produce double-stranded DNA molecules with 5'-overhangs. The overhang annealing is supposed to form circular plasmids with staggered breaks, which can be repaired in Escherichia coli after transformation. Here, we demonstrated that the PCR enzyme fills the 5'-overhangs in the early cycles, and the product is then used as the template for exponential amplification. The linear DNA molecules with homologous ends are joined to generate the plasmid with the desired mutations through homologous recombination in E. coli. The correct understanding is important to method improvements, guiding us to use partially overlapping primers and Phusion DNA polymerase for site-directed mutagenesis. Phusion did not amplify a plasmid with complementary primers but used partially overlapping primers to amplify the plasmid, producing linear DNA molecules with homologous ends for site-directed mutagenesis. PMID:25399421

  15. Local chromatin microenvironment determines DNMT activity : from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase

    van der Wijst, Monique G. P.; Venkiteswaran, Muralidhar; Chen, Hui; Xu, Guo-Liang; Plosch, Torsten; Rots, Marianne G.

    2015-01-01

    Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known fun

  16. Direct detection of Mycobacterium tuberculosis in sputum by polymerase chain reaction and DNA hybridization.

    Nolte, F S; Metchock, B; McGowan, J. E.; Edwards, A; Okwumabua, O; Thurmond, C; Mitchell, P S; Plikaytis, B; Shinnick, T

    1993-01-01

    A polymerase chain reaction (PCR) assay for the rapid diagnosis of pulmonary tuberculosis was developed by using oligonucleotide primers to amplify a fragment of IS6110, an insertion sequence repeated multiple times in the chromosome of Mycobacterium tuberculosis. Sediment obtained from sputa processed by the N-acetyl-L-cysteine-NaOH method was suspended in a simple lysis buffer and was heated at 100 degrees C for 30 min prior to amplification. A dUTP-uracil N-glycosylase PCR protocol was use...

  17. In Vitro Bypass of the Major Malondialdehyde- and Base Propenal-Derived DNA Adduct by Human Y-family DNA Polymerases κ, ι, and Rev1†

    Maddukuri, Leena; Robert L Eoff; Choi, Jeong-Yun; Rizzo, Carmelo J.; Guengerich, F. Peter; Marnett, Lawrence J.

    2010-01-01

    3-(2′-Deoxy-β-d-erythro-pentofuranosyl)pyrimido-[1,2-a]purin-10(3H)-one (M1dG) is the major adduct derived from the reaction of DNA with the lipid peroxidation product malondialdehyde and the DNA peroxidation product base propenal. M1dG is mutagenic in Escherichia coli and mammalian cells, inducing base-pair substitutions (M1dG → A and M1dG → T) and frameshift mutations. Y-family polymerases may contribute to the mutations induced by M1dG in vivo. Previous reports described the bypass of M1dG...

  18. Frameshift Deletion by Sulfolobus solfataricus P2 DNA Polymerase Dpo4 T239W Is Selective for Purines and Involves Normal Conformational Change Followed by Slow Phosphodiester Bond Formation*

    Zhang, Huidong; Beckman, Jeff W.; Guengerich, F. Peter

    2009-01-01

    The human DNA polymerase κ homolog Sulfolobus solfataricus DNA polymerase IV (Dpo4) produces “−1” frameshift deletions while copying unmodified DNA and, more frequently, when bypassing DNA adducts. As judged by steady-state kinetics and mass spectrometry, bypass of purine template bases to produce these deletions occurred rarely but with 10-fold higher frequency than with pyrimidines. The DNA adduct 1,N2-etheno-2′-deoxyguanosine, with a larger stacking surface than canonical purines, showed t...

  19. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis

    Graphical abstract: -- Highlights: •Recombinase polymerase amplification is a powerful DNA method operating at 40 °C. •The combination RPA–ELISA gives excellent performances for high-throughput analysis. •Screening of food safety threats has been done using standard laboratory equipment. •Allergens, GMOs, bacteria, and fungi have been successfully determined. -- Abstract: Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR–ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA–ELISA combination is proposed for amplification at a low, constant temperature (40 °C) in a short time (40 min), for the hybridisation of labelled products to specific 5′-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA–ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA–ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings

  20. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis

    Santiago-Felipe, S.; Tortajada-Genaro, L.A.; Puchades, R.; Maquieira, A., E-mail: amaquieira@qim.upv.es

    2014-02-06

    Graphical abstract: -- Highlights: •Recombinase polymerase amplification is a powerful DNA method operating at 40 °C. •The combination RPA–ELISA gives excellent performances for high-throughput analysis. •Screening of food safety threats has been done using standard laboratory equipment. •Allergens, GMOs, bacteria, and fungi have been successfully determined. -- Abstract: Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR–ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA–ELISA combination is proposed for amplification at a low, constant temperature (40 °C) in a short time (40 min), for the hybridisation of labelled products to specific 5′-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA–ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA–ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings.

  1. Testing promoter activity in the trypanosome genome: isolation of a metacyclic-type VSG promoter, and unexpected insights into RNA polymerase II transcription.

    McAndrew, M; Graham, S; Hartmann, C; Clayton, C

    1998-09-01

    In trypanosomes, most genes are arranged in polycistronic transcription units. Individual mRNAs are generated by 5'-trans splicing and 3' polyadenylation. Remarkably, no regulation of RNA polymerase II transcription has been detected although many RNAs are differentially expressed during kinetoplastid life cycles. Demonstration of specific class II promoters is complicated by the difficulty in distinguishing between genuine promoter activity and stimulation of trans splicing. Using vectors that were designed to allow the detection of low promoter activities in a transcriptionally silent chromosomal context, we isolated a novel trypanosome RNA polymerase I promoter. We were however unable to detect class II promoter activity in any tested DNA fragment. We also integrated genes which were preceded by a T3 promoter into the genome of cells expressing bacteriophage T3 polymerase: surprisingly, transcription was alpha-amanitin sensitive. One possible interpretation of these results is that in trypanosomes, RNA polymerase II initiation is favored by genomic accessibility and double-strand melting. PMID:9709032

  2. Specific Residues in the Connector Loop of the Human Cytomegalovirus DNA Polymerase Accessory Protein UL44 Are Crucial for Interaction with the UL54 Catalytic Subunit

    Loregian, Arianna; Appleton, Brent A; Hogle, James M.; Coen, Donald M.

    2004-01-01

    The human cytomegalovirus DNA polymerase includes an accessory protein, UL44, which has been proposed to act as a processivity factor for the catalytic subunit, UL54. How UL44 interacts with UL54 has not yet been elucidated. The crystal structure of UL44 revealed the presence of a connector loop analogous to that of the processivity subunit of herpes simplex virus DNA polymerase, UL42, which is crucial for interaction with its cognate catalytic subunit, UL30. To investigate the role of the UL...

  3. Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions.

    Kouji Hirota

    2010-10-01

    Full Text Available Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR and translesion DNA synthesis (TLS. TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V, and DNA polymerase ζ by generating POLη(-/-/POLζ(-/- cells from the chicken DT40 cell line. POLζ(-/- cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη(-/-/POLζ(-/- cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ(-/- cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells.

  4. Identification and characterization of a DNA primase activity present in herpes simplex virus type 1-infected HeLa cells

    A novel DNA primase activity has been identified in HeLa cells infected with herpes simplex virus type 1 (HSV-1). Such an activity has not been detected in mock-infected cells. The primase activity coeluted with a portion of HSV-1 DNA polymerase from single-stranded DNA agarose columns loaded with high-salt extracts derived from infected cells. This DNA primase activity could be distinguished from host HeLa cell DNA primase by several criteria. First, the pH optimum of the HSV primase was relatively broad and peaked at 8.2 to 8.7 pH units. Second, freshly isolated HSV DNA primase was less salt sensitive than the HeLa primase. Third, antibodies raised against individual peptides of the calf thymus DNA polymerase:primase complex cross-reacted with the HeLa primase but did not react with the HSV DNA primase. Fourth, freshly prepared HSV DNA primase appeared to be associated with the HSV polymerase, but after storage at 4 degree C for several weeks, the DNA primase separated from the viral DNA polymerase. This free DNA primase had an apparent molecular size of approximately 40 kilodaltons, whereas free HeLa DNA primase had an apparent molecular size of approximately 110 kilodaltons. On the basis of these data, the authors believe that the novel DNA primase activity in HSV-infected cells may be virus coded and that this enzyme represents a new and important function involved in the replication of HSV DNA

  5. The S229L Colon Tumor-associated Variant of DNA Polymerase β Induces Cellular Transformation as a Result of Decreased Polymerization Efficiency*

    Nemec, Antonia A.; Murphy, Drew L.; Donigan, Katherine A.; Sweasy, Joann B.

    2014-01-01

    DNA polymerase β (Pol β) plays a key role in base excision repair (BER) by filling in small gaps that are generated after base adducts are excised from the DNA. Pol β is mutated in a large number of colorectal tumors, and these mutations may drive carcinogenesis. In the present study, we wished to determine whether the S229L somatic Pol β variant identified in a stage 3 colorectal tumor is a driver of carcinogenesis. We show that S229L does not possess any defects in binding to either DNA or nucleotides compared with the WT enzyme, but exhibits a significant loss of polymerization efficiency, largely due to an 8-fold decrease in the polymerization rate. S229L participates in BER, but due to its lower catalytic rate, does so more slowly than WT. Expression of S229L in mammalian cells induces the accumulation of BER intermediate substrates, chromosomal aberrations, and cellular transformation. Our results are consistent with the interpretation that S229L is a driver of carcinogenesis, likely as a consequence of its slow polymerization activity during BER in vivo. PMID:24668809

  6. PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation.

    Kannan, P; Yu, Y; Wankhade, S; Tainsky, M A

    1999-01-01

    Overexpression of transcription factor AP-2 has been implicated in the tumorigenicity of the human teratocarcinoma cell lines PA-1 that contain an activated ras oncogene. Here we show evidence that overexpression of AP-2 sequesters transcriptional coactivators which results in self-inhibition. We identified AP-2-interacting proteins and determined whether these proteins were coactivators for AP-2-mediated transcription. One such interacting protein is polyADP-ribose polymerase (PARP). PARP su...

  7. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication.

    Shinbrot, Eve; Henninger, Erin E; Weinhold, Nils; Covington, Kyle R; Göksenin, A Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M; Gibbs, Richard A; Sander, Chris; Pursell, Zachary F; Wheeler, David A

    2014-11-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  8. Repair of UV induced DNA lesions in ribosomal gene chromatin and the role of "Odd" RNA polymerases (I and III).

    Charton, Romain; Guintini, Laetitia; Peyresaubes, François; Conconi, Antonio

    2015-12-01

    In fast growing eukaryotic cells, a subset of rRNA genes are transcribed at very high rates by RNA polymerase I (RNAPI). Nuclease digestion-assays and psoralen crosslinking have shown that they are open; that is, largely devoid of nucleosomes. In the yeast Saccharomyces cerevisae, nucleotide excision repair (NER) and photolyase remove UV photoproducts faster from open rRNA genes than from closed and nucleosome-loaded inactive rRNA genes. After UV irradiation, rRNA transcription declines because RNAPI halt at UV photoproducts and are then displaced from the transcribed strand. When the DNA lesion is quickly recognized by NER, it is the sub-pathway transcription-coupled TC-NER that removes the UV photoproduct. If dislodged RNAPI are replaced by nucleosomes before NER recognizes the lesion, then it is the sub-pathway global genome GG-NER that removes the UV photoproducts from the transcribed strand. Also, GG-NER maneuvers in the non-transcribed strand of open genes and in both strands of closed rRNA genes. After repair, transcription resumes and elongating RNAPI reopen the rRNA gene. In higher eukaryotes, NER in rRNA genes is inefficient and there is no evidence for TC-NER. Moreover, TC-NER does not occur in RNA polymerase III transcribed genes of both, yeast and human fibroblast. PMID:26411875

  9. Analysis of colorectal cancer and polyp for presence herpes simplex virus and cytomegalovirus DNA sequences by polymerase chain reaction

    Sahar Mehrabani khasraghi

    2016-05-01

    Full Text Available Introduction: In recent years, it was demonstrated that there is a clear association between the complicated course of colorectal cancer (CRC and the presence of herpes viruses. Despite a great number of published reports, the exact pathogenic role of herpes viruses remains unclear in these patients. The purpose of this study is to explore the prevalence of herpes simplex virus (HSV and cytomegalovirus (CMV in patients with CRC and polyp in comparison with healthy subjects using the polymerase chain reaction (PCR method. Methods: In this case-control study, 15 biopsies of patients with CRC and 20 colorectal polyp sample were selected. From each patient, two tissue samples were obtained: one sample from malignant tissue, and the other from normal colorectal tissue in an area located 15 cm away from the malignant tissue. Furthermore, 35 samples from healthy people as controls were selected. After DNA extraction, PCR was used to determine HSV and CMV genomes by specific primers. A statistical analysis was performed using the chi-square test. Results: Five CRC patients (33.3% had HSV DNA detected in both the malignant and the matched normal tissue. Five CRC patients (33.3% and seven polyp patients (35.0% had CMV DNA detected in both the malignant and the matched normal tissue. HSV DNA was found in 20% and CMV DNA in 37.1% of samples from healthy people as a control group. Thus, no significant association was observed between the prevalence of HSV and CMV, and an incidence of CRC and polyps according to the location of the samples as compared with the control group. Conclusion: The findings demonstrated that there is no direct molecular evidence to support the association between HSV and CMV and human colorectal malignancies. However, the results from this study do not exclude a possible oncogenic role of these viruses in the neoplastic development of colon cells.

  10. Interacting RNA polymerase motors on DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis

    Tripathi, Tripti

    2007-01-01

    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by a DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechano-chemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two new measures of {\\it fluctuations} in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis dep...

  11. Processivity factor of KSHV contains a nuclear localization signal and binding domains for transporting viral DNA polymerase into the nucleus

    Kaposi's sarcoma-associated human herpesvirus (KSHV) encodes a processivity factor (PF-8, ORF59) that forms homodimers and binds to viral DNA polymerase (Pol-8, ORF9). PF-8 is essential for stabilizing Pol-8 on template DNA so that Pol-8 can incorporate nucleotides continuously. Here, the intracellular interaction of these two viral proteins was examined by confocal immunofluorescence microscopy. When individually expressed, PF-8 was observed exclusively in the nucleus, whereas Pol-8 was found only in the cytoplasm. However, when co-expressed, Pol-8 was co-translocated with PF-8 into the nucleus. Mutational analysis revealed that PF-8 contains a nuclear localization signal (NLS) as well as domains located at the N-terminus and the C-proximal regions that are required for Pol-8 binding. This study suggests that the mechanism that enables PF-8 to transport Pol-8 into the nucleus is the first critical step required for Pol-8 and PF-8 to function processively in KSHV DNA synthesis

  12. A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast.

    Toyoaki Natsume

    Full Text Available Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+, which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication.

  13. A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast.

    Natsume, Toyoaki; Tsutsui, Yasuhiro; Sutani, Takashi; Dunleavy, Elaine M; Pidoux, Alison L; Iwasaki, Hiroshi; Shirahige, Katsuhiko; Allshire, Robin C; Yamao, Fumiaki

    2008-01-01

    Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1) kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1) in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+), which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication. PMID:18493607

  14. Biological activity of SV40 DNA

    This thesis deals with a study on the biological activity of SV40 DNA. The transforming activity of SV40 DNA and DNA fragments is investigated in order to define as precisely as possible the area of the viral genome that is involved in the transformation. The infectivity of SV40 DNA is used to study the defective repair mechanisms of radiation damages of human xeroderma pigmentosum cells. (C.F.)

  15. Detection of Nesopora caninum-specific DNA from cerebrospinal fluid by polymerase chain reaction in a dog with confirmed neosporosis.

    Ishigaki, Kyohei; Noya, Masahiko; Kagawa, Yumiko; Ike, Kazunori; Orima, Hiromitsu; Imai, Soichi

    2012-08-01

    A one-month male Greyhound dog presented with a swinging gait of the hindlimbs, and later developed muscular atrophy of the femoral region and hyperextension of hindlimbs. The dog had positive serum IFAT titers to Neospora caninum, but a negative titer in the cerebrospinal fluid (CSF). N. caninum-specific DNA was amplified from the CSF using a semi-nested polymerase chain reaction assay. Clusters of protozoa in biopsied muscle fibers were subsequently confirmed as N. caninum tachyzoites by immunohistochemical examination. Early recognition and treatment are necessary for effective recovery of clinical canine neosporosis, but antemortem diagnosis is difficult. We suggest that the detection of parasite deoxyribonucleic acid in the CSF is a useful antemortem diagnostic method in facilitating treatment of this disease. PMID:22446406

  16. Single primer-mediated circular polymerase chain reaction for hairpin DNA cloning and plasmid editing.

    Huang, Jiansheng; Khan, Inamullah; Liu, Rui; Yang, Yan; Zhu, Naishuo

    2016-05-01

    We developed and validated a universal polymerase chain reaction (PCR) method, single primer circular (SPC)-PCR, using single primer to simultaneously insert and amplify a short hairpin sequence into a vector with a high success rate. In this method, the hairpin structure is divided into two parts and fused into a vector by PCR. Then, a single primer is used to cyclize the chimera into a mature short hairpin RNA (shRNA) expression vector. It is not biased by loop length or palindromic structures. Six hairpin DNAs with short 4-nucleotide loops were successfully cloned. Moreover, SPC-PCR was also applied to plasmid editing within 3 h with a success rate higher than 95%. PMID:26792375

  17. Designer Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction.

    Finke, Alexander; Bußkamp, Holger; Manea, Marilena; Marx, Andreas

    2016-08-16

    Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA-based material with cell-adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA-based material shows cell-repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment. PMID:27410200

  18. Detection of Trypanosoma cruzi DNA within murine cardiac tissue sections by in situ polymerase chain reaction

    Joshua E Lane

    2003-04-01

    Full Text Available The use of in situ techniques to detect DNA and RNA sequences has proven to be an invaluable technique with paraffin-embedded tissue. Advances in non-radioactive detection systems have further made these procedures shorter and safer. We report the detection of Trypanosoma cruzi, the causative agent of Chagas disease, via indirect and direct in situ polymerace chain reaction within paraffin-embedded murine cardiac tissue sections. The presence of three T. cruzi specific DNA sequences were evaluated: a 122 base pair (bp sequence localized within the minicircle network, a 188 bp satellite nuclear repetitive sequence and a 177 bp sequence that codes for a flagellar protein. In situ hybridization alone was sensitive enough to detect all three T. cruzi specific DNA sequences.

  19. Nucleotide insertion initiated by van derWaals interaction during polymerase beta DNA replication

    Andrew Das Arulsamy

    2013-09-01

    We present here an unambiguous theoretical analyses and to show that the exclusive biochemical reaction involved in a single nucleotide insertion into the DNA primer can be efficiently tracked using the renormalized van derWaals (vdW) interaction of a stronger type, the Hermansson blue-shifting hydrogen bond effect, and the Arunan composite hydrogen-vdW bond. We find that there are two biochemical steps involved to complete the insertion of a single base (cytosine) into the 3' end of a DNA primer. First, the O3' (from a DNA primer) initiates the nucleophilic attack on P (from an incoming dCTP), in response, O3 (bonded to P) interacts with H' (bonded to O3'). These interactions are shown to be strongly interdependent and require the forming and breaking of P—O and H—O covalent bonds, which in turn imply that we do not need any external energy supply.

  20. The roles of APE1, APE2, DNA polymerase β and mismatch repair in creating S region DNA breaks during antibody class switch

    Schrader, Carol E.; Guikema, Jeroen E.J.; Wu, Xiaoming; Stavnezer, Janet

    2008-01-01

    Immunoglobulin class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded DNA breaks (DSBs) in immunoglobulin switch region DNA. The initial steps of DSB formation have been elucidated: cytosine deamination by activation-induced cytidine deaminase (AID) and the generation of abasic sites by uracil-DNA glycosylase (UNG). We show that abasic sites are converted into single-strand breaks (SSBs) by apurinic/apyrimidinic endonucleases (APE1 and ...

  1. Discrimination of Arcobacter butzleri isolates by polymerase chain reaction-mediated DNA fingerprinting

    Atabay, H. I.; Bang, Dang Duong; Aydin, F.; Erdogan, H. M.; Madsen, Mogens

    2002-01-01

    Aims: The objective of this study was to subtype Arcobacter butzleri isolates using RAPD-PCR. Methods and Results: Thirty-five A. butzleri isolates obtained from chicken carcasses were examined. PCR-mediated DNA fingerprinting technique with primers of the variable sequence motifs was used to...... detect polymorphism within the isolates. Eleven distinct DNA profiles were obtained as follows: Of the 35 strains, 10 as profile 4; seven as profile 1; five as profile 3; three as profiles 2 and 9; two as profile 10; one as profiles 5, 6, 7, 8 and 11. Conclusions: Chicken carcasses sold in markets were...

  2. Activities of a lagging DNA strand synthesis of nucleoprotein complexes harboring an extrachromosomal DNA closely related to avian myeloblastosis virus core-bound DNA

    Nucleoprotein (NP) complexes constituting the material of the post-microsomal sediment (POMS) and its three basic components (A, B, C), harboring an extrachromosomal DNA closely related to AMV DNA were found to.possess DNA- and RNA-synthesizing activities (SAs) reflecting the ability of this material to be intensely labelled for DNA and RNA, respectively. The types of these NA-SAs were compatible with those significant for a lagging DNA strand synthesis (LSS). The use of selective inhibitors and of the proliferating cell nuclear antigen (PCNA) disclosed a successive involvement of alpha DNA polymerase (pol) and PCNA-insensitive delta DNA pol in LSS. In this respect, we show gradual changes in the representation of activities (As) of both mentioned DNA pols in the NP complexes of the individual POMS components. Those of POMS component C contained alpha DNA pol As only, while a distinct portion of DNA SAs of POMS component B was represented on expense of alpha DNA pol As by PCNA-insensitive delta DNA pol (epsilon DNA pol), As which represented practically all the DNA SAs of POMS component A. The type of RNA SAs of this material represented mostly by primase (Pr) As corresponded well with the nature of LSS. An exception was represented by a minor portion of RNA-SAs of POMS component A which was alpha amanitine-sensitive like RNA pol II. Moreover, analyzing this natural model replication system, we found that the carbonyl diphosphonate (COMDP), a selective inhibitor of the PCNA-insensitive delta DNA pol, was a strong activator of Pr-As and/or Pr-alpha DNA pol As of NP complexes of POMS component C. (authors)

  3. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template.

    Papanicolaou, C; Lecomte, P; Ninio, J

    1986-06-01

    When Escherichia coli DNA polymerase I (Pol I) replicates a homopolymer, the excision/polymerization (exo/pol) ratio varies with enzyme and initiator concentration. The study of this effect in the case of poly(dA).oligo(dT) replication led us to propose a mnemonic model for Pol I, in which the 3' to 5' excision activity warms up when the enzyme is actively polymerizing, and cools down when it dissociates from the template. The model predicts that the exo/pol ratio must increase with processivity length and initiator concentration and decrease with enzyme concentration. It predicts also that contact of the enzyme with one template alters its excision efficiency towards another template. The exo/pol ratio and processivities of Pol I and its Klenow fragment were studied on four templates: poly(dA).(dT)10, poly(dT).(dA)10, poly(dC).(dG)10 and poly(dI).(dC)10. We show that the Klenow fragment is usually much less processive than Pol I and when this is the case it has a much lower exo/pol ratio. At equal processivity, the exo/pol ratios are nearly equal. Furthermore, many factors that influence processivity length (e.g. manganese versus magnesium, inorganic pyrophosphate, ionic strength) influence the exo/pol ratio in the same direction. The study of deaminated poly(dC) replication, where we followed incorporation and excision of both G and A residues, allowed us to assign the origin of the dNMP variations to changes in the 3' to 5' proof-reading activity of Pol I. Similarly, the lower dNMP turnover of the Klenow fragment observed with deaminated poly(dC) was specifically assigned to a decreased 3' to 5' exonuclease activity. The exo/pol ratio generally increased with initiator and decreased with enzyme concentration, in agreement with the model, except for poly(dI).oligo(dC), where it decreased with initiator concentration. However, by terminating chain elongation with dideoxy CTP, we showed directly that, even in this system, excision is relatively inefficient at the

  4. Factors influencing DNA expansion in the course of polymerase chain reaction

    Vondrušková, Jitka; Pařízková, Naďa; Kypr, Jaroslav

    2007-01-01

    Roč. 26, č. 1 (2007), s. 65-82. ISSN 1525-7770 R&D Projects: GA MZd(CZ) NM7634 Institutional research plan: CEZ:AV0Z50040702 Keywords : DNA expansion * PCR * microsatellites Subject RIV: BO - Biophysics Impact factor: 0.723, year: 2007

  5. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    Kopper, F.; Bierwirth, C.; Schon, M.;

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (gamma H2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on transiesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  6. A rapid method for sequencing of rRNA gene(s) amplified by polymerase chain reaction using an automated DNA sequencer

    Dwivedi, P.P.; Patel, B.K.C.; Rees, G.N.; Ollivier, Bernard

    1996-01-01

    A method for DNA sequencing of ribosomal RNA (rRNA) genes, amplified by polymerase chain reaction (PCR), using internal primers, designed on the basis of conserved regions of rRNA genes for determining a near complete sequence (99%) of the gene using an automated DNA sequencer (Applied Biosystem Incorporation, USA) is described. The procedure is extremely rapid as cloning of the gene is not required for sequence determination. In addition time consuming steps such as ethanol precipitation and...

  7. [The development of a test-system for the quantitative and qualitative evaluation of DNA content in criminalistic objects by the real-time polymerase chain reaction].

    Lapenkov, M I; Plakhina, N V; Alekseev, Ia I; Varlamov, D A

    2011-01-01

    An original test-system for the preliminary quantitative and qualitative evaluation of isolated DNA is proposed by the polymerase chain reaction in real time (PCR-RT) based on the TaqMan technology. This test-system permits to simultaneously measure the amount of DNA in the sample, identify the genetic gender, and detect PCR inhibitors. The method has been approbated in the practical work of forensic medical experts. PMID:21735715

  8. Genotypic Characterization of UL23 Thymidine Kinase and UL30 DNA Polymerase of Clinical Isolates of Herpes Simplex Virus: Natural Polymorphism and Mutations Associated with Resistance to Antivirals▿

    Burrel, Sonia; Deback, Claire; Agut, Henri; Boutolleau, David

    2010-01-01

    The molecular mechanisms of herpes simplex virus (HSV) resistance to antiviral drugs interfering with viral DNA synthesis reported so far rely on the presence of mutations within UL23 (thymidine kinase [TK]) and UL30 (DNA polymerase) genes. The interpretation of genotypic antiviral resistance assay results requires the clear distinction between resistance mutations and natural interstrain sequence variations. The objectives of this work were to describe extensively the natural polymorphism of...

  9. Detection of varicella-zoster virus DNA using the polymerase chain reaction in an immunocompromised patient with transverse myelitis secondary to herpes zoster.

    Grant, A. D.; Fox, J D; Brink, N. S.; Miller, R F

    1993-01-01

    A case of herpes zoster transverse myelitis is described in which the clinical diagnosis was confirmed by demonstrating the presence of varicella-zoster virus (VZV) DNA in the cerebrospinal fluid (CSF) by amplification using the polymerase chain reaction. This case illustrates the potential role of the selective amplification of VZV DNA from CSF in contributing to the diagnosis of neurological complications associated with VZV infection.

  10. Requirement for XLF/Cernunnos in alignment-based gap filling by DNA polymerases lambda and mu for nonhomologous end joining in human whole-cell extracts.

    Akopiants, Konstantin; Zhou, Rui-Zhe; Mohapatra, Susovan; Valerie, Kristoffer; Lees-Miller, Susan P; Lee, Kyung-Jong; Chen, David J; Revy, Patrick; de Villartay, Jean-Pierre; Povirk, Lawrence F

    2009-07-01

    XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5' or 3' overhangs, and no joining at all of partially complementary 3' overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase lambda, but was restored by addition of either polymerase lambda or polymerase mu. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex. PMID:19420065

  11. Study on Suitability of KOD DNA Polymerase for Enzymatic Production of Artificial Nucleic Acids Using Base/Sugar Modified Nucleoside Triphosphates

    Satoshi Obika

    2010-11-01

    Full Text Available Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2′-ONHCH2CH2-4′ linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.

  12. Polymerase chain reaction detection of adenovirus DNA sequences in human lymphocytes

    Araújo Aufra A.

    2001-01-01

    Full Text Available Human lymphoid cells frequently carry adenoviruses and DNA sequences have been identified in peripheral blood lymphocytes by Southern blot and PCR, although these cells are not permissive for virus replication, suggesting persistence of the viral genome. In order to investigate this phenomenon we screened non-symptomatic volunteers for adenovirus DNA presence and E1A gene expression. DNA samples extracted from peripheral blood mononuclear cells of 51 volunteers were submitted to PCR using primers for a conserved hexon sequence, followed by nested PCR. Adenovirus sequences were detected in 27 samples (52.9%. After more than one year, new samples of these positive volunteers were analyzed and in 70.8% of the cases the result was maintained. Since this could be due to a possible persistence we checked if the early gene E1A was involved analyzing its expression by RT-PCR. For that purpose we developed a pair of primers to target a conserved region in the E1A gene. The RT-PCR results for E1A were negative for all samples. Using these primers it was possible to detect adenovirus sequences directly by PCR in DNA samples and we found 84% agreement in comparison to the hexon analysis. Our data suggest a high occurrence and persistence of adenovirus genome sequences in human lymphoid cells, and an indication that a region other than E1A is involved in persistence. We also can say that E1A gene is a good choice for amplification as a tool in adenovirus detection, avoiding the high risk of contamination in the nested PCR procedure necessary for hexon detection.

  13. Improved Production of Gutted Adenovirus in Cells Expressing Adenovirus Preterminal Protein and DNA Polymerase

    Hartigan-O’Connor, Dennis; Amalfitano, Andrea; Chamberlain, Jeffrey S.

    1999-01-01

    Production of gutted, or helper-dependent, adenovirus vectors by current methods is inefficient. Typically, a plasmid form of the gutted genome is transfected with helper viral DNA into 293 cells; the resulting lysate is serially passaged to increase the titer of gutted virions. Inefficient production of gutted virus particles after cotransfection is likely due to suboptimal association of replication factors with the abnormal origins found in these plasmid substrates. To test this hypothesis...

  14. DETECTION OF HUMAN PAPILLOMAVIRUS DNA SEQUENCES IN ORAL LESIONS USING POLYMERASE CHAIN REACTION

    M. R. Zarei

    2007-07-01

    Full Text Available "nThe purpose of the present study was to estimate the frequency of HPV DNA in four groups of oral lesions, including oral squamous cell carcinoma. Sixty paraffin-embedded oral tissue samples were examined for the presence of HPV DNAs using the PCR technique. These specimens were obtained from patients with oral squamous cell carcinoma (OSCC, leukoplakia, oral lichen planus (OLP, and pyogenic granuloma (PG. Consensus primers for L1 region (MY09 and MY11 and specific primers were used for detection of HPV DNA sequences in this study. we detected HPV DNA in 60% (9 out of 15 of OSCCs, 26.7% (4 out of 15 of leukoplakia, 13.3% (2 out of 15 of OLPs, and 6.7% (1 out of 15 of PGs. Statistical analysis showed that the prevalence of HPV in OSCC was significantly higher than other groups (P < 0.05. The frequency of HPV-16 and 18 detection in OSCC samples were 40% and 20%, respectively. The prevalence of these high risk HPVs was significantly higher in OSCC group (P < 0.05. The results of the present study show a successive increase of detection rate of HPV-16 and 18 DNAs from low level in samples of pyogenic granuloma and non-premalignant or questionably premalignant lesions of OLP to premalignant leukoplakia and to OSCC."n "n "n "n "n 

  15. Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10 in fission yeast

    Gregan Juraj

    2005-06-01

    Full Text Available Abstract Background Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease. Results Insertion of a TEV protease cleavage site into Cdc23 allows in vivo removal of the C-terminal 170 aa of the protein by TEV protease induction, resulting in an S phase arrest. This C-terminal fragment of Cdc23 is not retained in the nucleus after cleavage, showing that it lacks a nuclear localization signal and ability to bind to chromatin. Using an in situ chromatin binding procedure we have determined how the S phase chromatin association of DNA polymerase α-primase and the GINS (Sld5-Psf1-Psf2-Psf3 complex is affected by Cdc23 inactivation. The chromatin binding and sub-nuclear distribution of DNA primase catalytic subunit (Spp1 is affected by Cdc23 cleavage and also by inactivation of Cdc23 using a degron allele, implying that DNA polymerase α-primase function is dependent on Cdc23. In contrast to the effect on Spp1, the chromatin association of the Psf2 subunit of the GINS complex is not affected by Cdc23 inactivation. Conclusion An important function of Cdc23 in the elongation step of DNA replication may be to assist in the docking of DNA polymerase α-primase to chromatin.

  16. Detection of Wuchereria bancrofti DNA in paired serum and urine samples using polymerase chain reaction-based systems

    Camila Ximenes

    2014-12-01

    Full Text Available The Global Program for the Elimination of Lymphatic Filariasis (GPELF aims to eliminate this disease by the year 2020. However, the development of more specific and sensitive tests is important for the success of the GPELF. The present study aimed to standardise polymerase chain reaction (PCR-based systems for the diagnosis of filariasis in serum and urine. Twenty paired biological urine and serum samples from individuals already known to be positive for Wuchereria bancrofti were collected during the day. Conventional PCR and semi-nested PCR assays were optimised. The detection limit of the technique for purified W. bancrofti DNA extracted from adult worms was 10 fg for the internal systems (WbF/Wb2 and 0.1 fg by using semi-nested PCR. The specificity of the primers was confirmed experimentally by amplification of 1 ng of purified genomic DNA from other species of parasites. Evaluation of the paired urine and serum samples by the semi-nested PCR technique indicated only two of the 20 tested individuals were positive, whereas the simple internal PCR system (WbF/Wb2, which has highly promising performance, revealed that all the patients were positive using both samples. This study successfully demonstrated the possibility of using the PCR technique on urine for the diagnosis of W. bancrofti infection.

  17. Replication Bypass of the trans-4-Hydroxynonenal-Derived (6S,8R,11S)-1,N[superscript 2]-Deoxyguanosine DNA Adduct by the Sulfolobus solfataricus DNA Polymerase IV

    Banerjee, Surajit; Christov, Plamen P.; Kozekova, Albena; Rizzo, Carmelo J.; Egli, Martin; Stone, Michael P. (Vanderbilt)

    2014-10-02

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of {omega}-6 polyunsaturated fatty acids in vivo. Michael addition of the N{sub 2}-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N{sub 2}-dGuo (1,N{sub 2}-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua {yields} Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, the (6S,8R,11S)-1,N

  18. Prevalence of mutations in HBV DNA polymerase gene associated with nucleos(tide resistance in treatment-naive patients with Chronic Hepatitis B in Central China

    Youyun Zhao

    2016-04-01

    Full Text Available Abstract Objective There are a lot of disagreements in the studies on hepatitis B virus (HBV DNA polymerase mutation rate associated with nucleos(tide analogues (NAs in treatment-naive chronic hepatitis B (CHB patients. This is the first study aimed to investigate the prevalence of spontaneous HBV resistance mutations in Central China. Methods This study included treatment-naive patients with CHB from June 2012 to May 2015 receiving care at the Institute of Liver Disease in Central China. All patients completed a questionnaire covering different aspects, such as family medical history, course of liver disease, medication history, alcohol use, among others. Mutations in HBV DNA polymerase associated with NAs resistance were detected using INNO-LiPA assay. Results 269 patients were infected with HBV genotype B (81.4%, C (17.9%, and both B and C (0.7%. Mutations in HBV DNA polymerase were detected in 24 patients (8.9% including rtM204I/V (n = 6, rtN236T (n = 5, rtM250V (n = 2, rtL180M (n = 2, rtT184G (n = 1, rtM207I (n = 1, rtS202I (n = 1, rtM204V/I & rtL180M (n = 5, and rtM204I & rtM250V (n = 1. Conclusion Spontaneous HBV resistance mutations in HBV DNA polymerase were found in treatment-naive patients with CHB in Central China. These findings suggest that we should analyze HBV DNA polymerase resistance mutation associated with NAs before giving antiviral therapy such as lamivudine (LAM, adefovir (ADV, and telbivudine (LdT.

  19. Polymerase synthesis of base-modified DNA: New methods and new applications

    Balintová, Jana; Daďová, Jitka; Kielkowski, Pavel; Ménová, Petra; Vaníková, Zuzana; Riedl, Jan; Raindlová, Veronika; Fojta, Miroslav; Hocek, Michal

    Praha: Institute of Organic Chemistry and Biochemistry AS CR, v. v. i, 2014 - (Hocek, M.), s. 66-67. (Collection Symposium Series. 14). ISBN 978-80-86241-50-0. [Symposium on Chemistry of Nucleic Acid Components /16./. Český Krumlov (CZ), 08.06.2014-13.06.2014] R&D Projects: GA ČR GA203/09/0317; GA ČR GBP206/12/G151; GA ČR GA14-04289S Institutional support: RVO:61388963 ; RVO:68081707 Keywords : nucleic acids * base-modified DNA * dNTPs Subject RIV: CC - Organic Chemistry; BO - Biophysics (BFU-R)

  20. Glycyrrhetinic acid and its derivatives as inhibitors of poly(ADP-ribosepolymerases 1 and 2, apurinic/apyrimidinic endonuclease 1 and DNA polymerase β

    Salakhutdinov N. F.

    2012-06-01

    Full Text Available Aim. For strengthening the efficiency of monofunctional alkylating antineoplastic drugs it is important to lower the capacity of base excision repair (BER system which corrects the majority of DNA damages caused by these reagents. The objective was to create inhibitors of the key BER enzymes (PARP1, PARP2, DNA polymerase β, and APE1 by the directed modification of glycyrrhetinic acid (GA. Methods. Amides of GA were produced from the GA acetate by formation of the corresponding acyl chloride, amidation with the appropriate amine and subsequent deacylation. Small library of 2-cyano substituted derivatives of GA methyl esters was obtained by the structural modification of GA framework and carboxylic acid group. The inhibitory capacity of the compounds was estimated by comparison of the enzyme activities in specific tests in the presence of compounds versus their absence. Results. None of tested compounds inhibits PARP1 significantly. Unmodified GA and its morpholinic derivative were shown to be weak inhibitors of PARP2. The derivatives of GA containing keto-group in 11 triterpene framework were shown to be moderate inhibitors of pol β. Compound 3, containing 12-oxo-9(11-en moiety in the ring C, was shown to be a single inhibitor of APE1 among all compounds studied. Conclusions. The class of GA derivatives, selective pol β inhibitors, was found out. The selective inhibitor of APE1 and weak selective inhibitor of PARP2 were also revealed.

  1. Mechanistic analysis of RNA synthesis by RNA-dependent RNA polymerase from two promoters reveals similarities to DNA-dependent RNA polymerase.

    Adkins, S; Stawicki, S S; Faurote, G; Siegel, R W; Kao, C. C.

    1998-01-01

    The brome mosaic virus (BMV) RNA-dependent RNA polymerase (RdRp) directs template-specific synthesis of (-)-strand genomic and (+)-strand subgenomic RNAs in vitro. Although the requirements for (-)-strand RNA synthesis have been characterized previously, the mechanism of subgenomic RNA synthesis has not. Mutational analysis of the subgenomic promoter revealed that the +1 cytidylate and the +2 adenylate are important for RNA synthesis. Unlike (-)-strand RNA synthesis, which required only a hig...

  2. Distinct energetics and closing pathways for DNA polymerase β with 8-oxoG template and different incoming nucleotides

    Wang Yanli

    2007-02-01

    Full Text Available Abstract Background 8-Oxoguanine (8-oxoG is a common oxidative lesion frequently encountered by DNA polymerases such as the repair enzyme DNA polymerase β (pol β. To interpret in atomic and energetic detail how pol β processes 8-oxoG, we apply transition path sampling to delineate closing pathways of pol β 8-oxoG complexes with dCTP and dATP incoming nucleotides and compare the results to those of the nonlesioned G:dCTP and G:dATPanalogues. Results Our analyses show that the closing pathways of the 8-oxoG complexes are different from one another and from the nonlesioned analogues in terms of the individual transition states along each pathway, associated energies, and the stability of each pathway's closed state relative to the corresponding open state. In particular, the closed-to-open state stability difference in each system establishes a hierarchy of stability (from high to low as G:C > 8-oxoG:C > 8-oxoG:A > G:A, corresponding to -3, -2, 2, 9 kBT, respectively. This hierarchy of closed state stability parallels the experimentally observed processing efficiencies for the four pairs. Network models based on the calculated rate constants in each pathway indicate that the closed species are more populated than the open species for 8-oxoG:dCTP, whereas the opposite is true for 8-oxoG:dATP. Conclusion These results suggest that the lower insertion efficiency (larger Km for dATP compared to dCTP opposite 8-oxoG is caused by a less stable closed-form of pol β, destabilized by unfavorable interactions between Tyr271 and the mispair. This stability of the closed vs. open form can also explain the higher insertion efficiency for 8-oxoG:dATP compared to the nonlesioned G:dATP pair, which also has a higher overall conformational barrier. Our study offers atomic details of the complexes at different states, in addition to helping interpret the different insertion efficiencies of dATP and dCTP opposite 8-oxoG and G.

  3. Mechanisms of DNA repair, recombination and mutagenesis in Saccharomyces cerevisiae

    Full text. 1. It was confirmed that from the six DNA polymerases discovered in yeast cells, only DNA polymerases δ, ε and ζ are engaged in dark repair of lesions caused by UV-light and MMS. DNA polymerase δ is involved in the repair of both types of lesions, while DNA polymerase ε and ζ only in lesions caused by UV and MMS, respectively. Other polymerases are not involved or play only a minor role in repair. The results obtained are being prepared for publication. 2. Studies on the involvement of the three replicative DNA polymerases in mitotic gene conversion induced by mono- and bifunctional psoralens (and also by UV- light or MMS) revealed that DNA polymerases α and δ are the main polymerases responsible for induced intragenic conversion. DNA polymerase ε seems to play minor role in this process. It is possible that DNA polymerase α may also be involved in DNA repair synthesis but only in cases when the opening of new replication forks is necessary for repair. 3. Studies on the influence of mutations in the replicative and nonreplicative DNA polymerases on adaptive mutations in the cells of Saccharomyces cerevisiae were continued. We found that thermosensitive mutation in the POL2 gene encoding DNA polymerase ε increased the frequency of adaptive mutation in a similar manner as found earlier for DNA polymerase δ. A similar effect was observed also in strains with deletions in the MSH3 gene responsible for mismatch repair. Mutations in other DNA polymerases, including the essential DNA polymerase α and the inessential DNA polymerases β and ζ revealed no effect on this process. Analysis of DNA sequences in the revertants showed that in all cases the obtained reversions resulted from a single nucleotide deletion most often in sequences having short homopolymer tracts. The results obtained suggest that errors arising during DNA elongation and their persistence in mutants deficient in mismatch repair activity seem to be the source of the adaptive

  4. Detection of Human Parvovirus B19 Nonstrutural Protein DNA by Nested-Polymerase Chain Reaction in Gravida Serum and Pregnant Tissues

    2006-01-01

    A new nested-polymerase chain reaction (nested-PCR) assay was developed to detect human parvovirus B19 DNA corresponding to the nonstructural protein in clinical specimens in a routine diagnostic laboratory. The sensitivity of this highly specific assay was up to 0. 005 fg of B19 DNA. Parvovirus B19 was identified in sera of 20 pregnant women with abnormal pregnant outcome. Among these 20 cases, intrauterine parvovirus infection did exist in 7 pregnant women because parvovirus B19 DNA was detected in the pregnant tissues of them such as placenta tissues,chorionic villi, amniotic fluid, fetal spleen, liver and abdominal fluids.

  5. Typing of Plasmodium falciparum DNA from 2 years old Giemsa-stained dried blood spots using nested polymerase chain reaction assay.

    Kumar, D; Dhiman, S; Rabha, B; Goswami, D; Yadav, K; Deka, M; Veer, V; Baruah, I

    2016-01-01

    A panel of 129 Giemsa-stained thick blood spots (TBS) confirmed for Plasmodium falciparum infection having different levels of parasite density were collected from a malaria endemic area. DNA was extracted and nested polymerase chain reaction (PCR) assay was performed to amplify P. falciparum DNA. Nested PCR assay successfully amplified P. falciparum DNA at a very low parasitaemia of ~10 parasites/μl of blood. Current PCR assay is very simple and can be used retrospectively to monitor the invasion and prevalence of different Plasmodium species in endemic areas. PMID:27080775

  6. Detection of novel organisms associated with salpingitis, by use of 16S rDNA polymerase chain reaction.

    Hebb, Jennifer K; Cohen, Craig R; Astete, Sabina G; Bukusi, Elizabeth A; Totten, Patricia A

    2004-12-15

    Although Chlamydia trachomatis and Neisseria gonorrhoeae are established causes of salpingitis, the majority of cases have no known etiology. We used broad-range 16S rDNA polymerase chain reaction to identify novel, possibly uncultivable, bacteria associated with salpingitis and identified bacterial 16S sequences in Fallopian-tube specimens from 11 (24%) of 45 consecutive women with laparoscopically confirmed acute salpingitis (the case patients) and from 0 of 44 women seeking tubal ligations (the control subjects) at Kenyatta National Hospital, Nairobi, Kenya. Bacterial phylotypes most closely related to Leptotrichia spp. were detected as the sole phylotypes in 1, and mixed with other bacterial phylotypes in 2, specimens. Novel bacterial phylotypes and those associated with bacterial vaginosis, including Atopobium vaginae, were identified in 3 specimens. N. gonorrhoeae and Streptococcus pyogenes were identified in 2 and 1 specimens, respectively. The finding of novel phylotypes associated with salpingitis has important implications for the etiology, pathogenesis, and treatment of this important reproductive-tract disease syndrome. PMID:15551209

  7. Conserved interaction of Ctf18-RFC with DNA polymerase ε is critical for maintenance of genome stability in Saccharomyces cerevisiae.

    Okimoto, Hiroko; Tanaka, Seiji; Araki, Hiroyuki; Ohashi, Eiji; Tsurimoto, Toshiki

    2016-05-01

    Human Ctf18-RFC, a PCNA loader complex, interacts with DNA polymerase ε (Polε) through a structure formed by the Ctf18, Dcc1 and Ctf8 subunits. The C-terminal stretch of Ctf18, which is highly conserved from yeast to human, is necessary to form the Polε-capturing structure. We found that in the budding yeast Saccharomyces cerevisiae, Ctf18, Dcc1 and Ctf8 formed the same structure through the conserved C-terminus and interacted specifically with Polε. Thus, the specific interaction of Ctf18-RFC with Polε is a conserved feature between these proteins. A C-terminal deletion mutant of Ctf18 (ctf18(ΔC) ) exhibited the same high sensitivity to hydroxyurea as the complete deletion strain (ctf18Δ) or ATPase-deficient mutant (ctf18(K189A) ), but was somewhat less sensitive to methyl methanesulfonate than either of them. These phenotypes were also observed in dcc1Δ and ctf8Δ, predicted to be deficient in the interaction with Polε. Furthermore, both plasmid loss and gross chromosomal rearrangement (GCR) rates were increased in ctf18(ΔC) cells to the same extent as in ctf18Δ cells. These results indicate that the Ctf18-RFC/Polε interaction plays a crucial role in maintaining genome stability in budding yeast, probably through recruitment of this PCNA loader to the replication fork. PMID:26987677

  8. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis.

    Chase, Dorothy M; Elliott, Diane G; Pascho, Ronald J

    2006-07-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids. PMID:16921877

  9. Randomly amplified polymorphic DNA-polymerase chain reaction analysis of two different populations of cultured Korean catfish Silurus asotus

    Jong-Man Yoon; Gye-Woong Kim

    2001-12-01

    Genetic similarity and diversity of cultured catfish Silurus asotus populations collected from two areas in western Korea were examined using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Out of 20 random primers tested, 5 produced 1344 RAPD bands ranging from 8.2 to 13.6 polymorphic bands per primer. The polymorphic bands in these populations ranged from 56.4% to 59.6%. Polymorphic bands per lane within populations ranged from 4.9% to 5.3%. The similarity within the Kunsan population varied from 0.39 to 0.82 with a mean (± SD) of 0.56 ± 0.08. The level of bandsharing values was 0.59 ± 0.07 within the catfish population from Yesan. The genetic similarity in cultured catfish populations may have been caused because individuals from two populations were reared in the same environmental conditions or by inbreeding during several generations. However, in view of bandsharing values, polymorphic bands and also the specific major bands that were inter-population-specific, significant genetic differentiation between these populations were present even if bandsharing (BS) values were somewhat numerically different. Therefore, the number of RAPD polymorphisms identified in this study may be sufficient to permit estimating genetic similarity and diversity. However, in future, additional populations, sampling sites and individuals will be necessary to make up for these weak points.

  10. Optimisation of an asymmetric polymerase chain reaction assay for the amplification of single-stranded DNA from Wuchereria bancrofti for electrochemical detection

    Vasuki Venkatesan

    2013-09-01

    Full Text Available Single-stranded DNA (ssDNA is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.

  11. Optimisation of an asymmetric polymerase chain reaction assay for the amplification of single-stranded DNA from Wuchereria bancrofti for electrochemical detection.

    Venkatesan, Vasuki; Hoti, Sugeerappa Laxmanappa; Kamaraj, Nagalakshmi; Ghosh, Somnath; Rajaram, Kaushik

    2013-09-01

    Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring. PMID:24037206

  12. Error-Prone Translesion DNA Synthesis by Escherichia coli DNA Polymerase IV (DinB on Templates Containing 1,2-dihydro-2-oxoadenine

    Masaki Hori

    2010-01-01

    Full Text Available Escherichia coli DNA polymerase IV (Pol IV is involved in bypass replication of damaged bases in DNA. Reactive oxygen species (ROS are generated continuously during normal metabolism and as a result of exogenous stress such as ionizing radiation. ROS induce various kinds of base damage in DNA. It is important to examine whether Pol IV is able to bypass oxidatively damaged bases. In this study, recombinant Pol IV was incubated with oligonucleotides containing thymine glycol (dTg, 5-formyluracil (5-fodU, 5-hydroxymethyluracil (5-hmdU, 7,8-dihydro-8-oxoguanine (8-oxodG and 1,2-dihydro-2-oxoadenine (2-oxodA. Primer extension assays revealed that Pol IV preferred to insert dATP opposite 5-fodU and 5-hmdU, while it inefficiently inserted nucleotides opposite dTg. Pol IV inserted dCTP and dATP opposite 8-oxodG, while the ability was low. It inserted dCTP more effectively than dTTP opposite 2-oxodA. Pol IV's ability to bypass these lesions decreased in the order: 2-oxodA > 5-fodU~5-hmdU > 8-oxodG > dTg. The fact that Pol IV preferred to insert dCTP opposite 2-oxodA suggests the mutagenic potential of 2-oxodA leading to A:T→G:C transitions. Hydrogen peroxide caused an ~2-fold increase in A:T→G:C mutations in E. coli, while the increase was significantly greater in E. coli overexpressing Pol IV. These results indicate that Pol IV may be involved in ROS-enhanced A:T→G:C mutations.

  13. The ORF59 DNA polymerase processivity factor homologs of Old World primate RV2 rhadinoviruses are highly conserved nuclear antigens expressed in differentiated epithelium in infected macaques

    Burnside Kellie L

    2009-11-01

    Full Text Available Abstract Background ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV, is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. Results We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1 and three species of macaques (RFHVMm, RFHVMn and RFHVMf, and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively. We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus and MneRV2 (pig-tail, with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses

  14. RNA Polymerase II Second Largest Subunit Molecular Identification of Boletus griseipurpureus Corner From Thailand and Antibacterial Activity of Basidiocarp Extracts

    Aung-aud-chariya, Amornrat; Bangrak, Phuwadol; Lumyong, Saisamorn; Phupong, Worrapong; Aggangan, Nelly Siababa; Kamlangdee, Niyom

    2015-01-01

    Background: Boletus griseipurpureus Corner, an edible mushroom, is a putative ectomycorrhizal fungus. Currently, the taxonomic boundary of this mushroom is unclear and its bitter taste makes it interesting for evaluating its antibacterial properties. Objectives: The purpose of this study was to identify the genetic variation of this mushroom and also to evaluate any antibacterial activities. Materials and Methods: Basidiocarps were collected from 2 north-eastern provinces, Roi Et and Ubon Ratchathani, and from 2 southern provinces, Songkhla and Surat Thani, in Thailand. Genomic DNA was extracted and molecular structure was examined using the RNA polymerase II (RPB2) analysis. Antibacterial activities of basidiocarp extracts were conducted with Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29523 and methicillin-resistant Staphylococcus aureus (MRSA) 189 using the agar-well diffusion method. Results: All the samples collected for this study constituted a monophyletic clade, which was closely related with the Boletus group of polypore fungi. For the antibacterial study, it was found that the crude methanol extract of basidiomes inhibited the growth of all bacteria in vitro more than the crude ethyl acetate extract. Conclusions: Basidomes collected from four locations in Thailand had low genetic variation and their extracts inhibited the growth of all tested bacteria. The health benefits of this edible species should be evaluated further. PMID:25834720

  15. Powdered Activated Carbon: An Alternative Approach to Genomic DNA Purification.

    Barbarić, Lucija; Bačić, Ivana; Grubić, Zorana

    2015-07-01

    Forensic evidence samples are routinely found as stains on various substrates, which may contain substances known to inhibit polymerase chain reaction (PCR). The goal of this study was to evaluate post-Chelex(®) 100 purification using powdered activated carbon (PAC). Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the DNA recovery and inhibitor removal using PAC with those of the Amicon(®) Ultra 100K. For extracted bloodstains on soil and wood substrates, PAC and Amicon(®) Ultra 100K generated similar DNA yield and quality. Moreover, the two methods significantly decreased the concentration of humic substances and tannins compared to nonpurified extracts (p < 0.001). In instances where extracts contained indigo dye (bloodstains on denim), Amicon(®) Ultra 100K performed better than PAC due to improved amplifiability. Efficient adsorption of humic substances and tannins, which are common inhibitors, indicates PAC's potential application in the purification of high-template DNA extracts. PMID:25929735

  16. Replication Fidelity of Escherichia Coli DNA Polymerase III Holoenzyme in Vitro and Repair of Heteroduplex DNA with Multibase Loops in Vivo.

    Carraway, Margaretha Bernardina Maria

    The genetic integrity of an organism is maintained by accurate replication and correction of asymmetry in the DNA. To study replication fidelity, single-stranded plasmid DNA containing the mnt gene, was replicated in vitro with DNA polymerase III holoenzyme by extension of a complimentary annealed primer. On this plasmid the mnt region is fused to a promoterless tet gene. Accurate replication of mnt generates a tetracycline sensitive phenotype, errors in replication are identified by mutation to tetracycline resistance. Mismatch repair deficient mutH cells were transformed to ampicillin-resistance by replicated circles. The mutations in mnt were identified by replica plating and selecting for tetracycline resistant cells. The mutation rate was 1 in 100,000. DNA sequence analysis of 65 isolates identified 33 single base changes, 20 deletions and 12 concurrent deletions and insertions. Except for the deletions and substitutions, identical mutations were isolated in vivo in mismatch repair deficient cells. Therefore, in vitro replication errors resemble those isolated in vivo. Heteroduplexes with loops occur as a result of replication or recombination. To examine if E. coli converts these molecules to a homoduplex via DNA repair, plasmid heteroduplexes with loops of 5, 7, 9, 192, 410 or 514 bases in mnt were constructed. Conversion was examined by tranforming the plasmid heteroduplexes into E. coli lysogens which had a non-functional mnt gene fused to a promoterless lac gene. Repair of the heteroduplex to wild type yields white/tetracycline sensitive colonies; repair to the mutant yields red/tetracycline resistant colonies and no repair results in red-white (mixed)/tetracycline resistant colonies. No significant change in colony color distribution was observed when the heteroduplexes were transformed into wild type and the following mutant strains: pcnB, mutS, recA, recD, recBC sbcBC, recF, recJ, recR, recN, recO, recG ruvC, ruvB, lexA3, lexA51, uvrA, recBC sbcBC rec

  17. Association Between Single Nucleotide Polymorphisms in DNA Polymerase Kappa Gene and Breast Cancer Risk in Chinese Han Population: A STROBE-Compliant Observational Study.

    Dai, Zhi-Jun; Liu, Xing-Han; Ma, Yun-Feng; Kang, Hua-Feng; Jin, Tian-Bo; Dai, Zhi-Ming; Guan, Hai-Tao; Wang, Meng; Liu, Kang; Dai, Cong; Yang, Xue-Wen; Wang, Xi-Jing

    2016-01-01

    DNA polymerases are responsible for ensuring stability of the genome and avoiding genotoxicity caused by a variety of factors during DNA replication. Consequently, these proteins have been associated with an increased cancer risk. DNA polymerase kappa (POLK) is a specialized DNA polymerase involved in translesion DNA synthesis (TLS) that allows DNA synthesis over the damaged DNA. Recently, some studies investigated relationships between POLK polymorphisms and cancer risk, but the role of POLK genetic variants in breast cancer (BC) remains to be defined. In this study, we aimed to evaluate the effects of POLK polymorphisms on BC risk.We used the Sequenom MassARRAY method to genotype 3 single nucleotide polymorphisms (SNPs) in POLK (rs3213801, rs10077427, and rs5744533), in order to determine the genotypes of 560 BC patients and 583 controls. The association of genotypes and BC was assessed by computing the odds ratio (OR) and 95% confidence intervals (95% CIs) from logistic regression analyses.We found a statistically significant difference between patient and control groups in the POLK rs10077427 genotypic groups, excluding the recessive model. A positive correlation was also found between positive progesterone receptor (PR) status, higher Ki67 index, and rs10077427 polymorphism. For rs5744533 polymorphism, the codominant, dominant, and allele models frequencies were significantly higher in BC patients compared to healthy controls. Furthermore, our results indicated that rs5744533 SNP has a protective role in the postmenopausal women. However, we failed to find any associations between rs3213801 polymorphism and susceptibility to BC.Our results indicate that POLK polymorphisms may influence the risk of developing BC, and, because of this, may serve as a prognostic biomarker among Chinese women. PMID:26765445

  18. Stimulation of mouse DNA primase-catalyzed oligoribonucleotide synthesis by mouse DNA helicase B.

    Saitoh, A; S. Tada; Katada, T; Enomoto, T.

    1995-01-01

    Many prokaryotic and viral DNA helicases involved in DNA replication stimulate their cognate DNA primase activity. To assess the stimulation of DNA primase activity by mammalian DNA helicases, we analyzed the synthesis of oligoribonucleotides by mouse DNA polymerase alpha-primase complex on single-stranded circular M13 DNA in the presence of mouse DNA helicase B. DNA helicase B was purified by sequential chromatography through eight columns. When the purified DNA helicase B was applied to a M...

  19. Participation of deoxyribonucleic acid polymerase alpha in amplification of ribosomal deoxyribonucleic acid in Xenopus laevis.

    Zimmermann, W.; Weissbach, A

    1981-01-01

    Aphidicolin, a known inhibitor of eucaryotic deoxyribonucleic acid (DNA) polymerase alpha, efficiently inhibited amplification of ribosomal DNA during oogenesis in Xenopus laevis. DNA polymerase alpha, but not DNA polymerase gamma, as isolated from ovaries, was sensitive to aphidicolin. DNA polymerase beta was not detectable in Xenopus ovary extracts. Therefore, DNA polymerase alpha plays a major role in ribosomal ribonucleic acid gene amplification.

  20. Cadmium treatment suppresses DNA polymerase δ catalytic subunit gene expression by acting on the p53 and Sp1 regulatory axis.

    Antoniali, Giulia; Marcuzzi, Federica; Casarano, Elena; Tell, Gianluca

    2015-11-01

    Cadmium (Cd) is a carcinogenic and neurotoxic environmental pollutant. Among the proposed mechanisms for Cd toxic effects, its ability to promote oxidative stress and to inhibit, in vitro, the activities of some Base Excision DNA Repair (BER) enzymes, such as hOGG1, XRCC1 and APE1, have been already established. However, the molecular mechanisms at the basis of these processes are largely unknown especially at sub-lethal doses of Cd and no information is available on the effect of Cd on the expression levels of BER enzymes. Here, we show that non-toxic treatment of neuronal cell lines, with pro-mitogenic doses of Cd, promotes a significant time- and dose-dependent down-regulation of DNA polymerase δ (POLD1) expression through a transcriptional mechanism with a modest effect on Polβ, XRCC1 and APE1. We further elucidated that the observed transcriptional repression on Polδ is acted by through competition by activated p53 on Sp1 at POLD1 promoter and by a squelching effect. We further proved the positive effect of Sp1 not only on POLD1 expression but also on Polβ, XRCC1 and APE1 expression, suggesting that Sp1 has pleiotropic effects on the whole BER pathway. Our results indicated that Cd-mediated impairment of BER pathway, besides acting on the enzymatic functions of some key proteins, is also exerted at the gene expression level of Polδ by acting on the p53-Sp1 regulatory axis. These data may explain not only the Cd-induced neurotoxic effects but also the potential carcinogenicity of this heavy metal. PMID:26519823