WorldWideScience

Sample records for activated ion electron

  1. Sawtooth activity of the ion cloud in an electron-beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.

    2003-01-01

    The dynamics of an ensemble of highly charged Ar and Ba ions in an electron-beam ion trap (EBIT) was studied by recording time-resolved x-ray spectra emitted from trapped ions. Sawtoothlike signatures manifest in the spectra for a variety of EBIT operating conditions indicating a sudden collapse of the ion inventory in the trap. The collapse occurs on a time scale of approximately 100 ms and the evolution of the sawteeth is very sensitive to parameters such as electron-beam current and axial trap depth. Analysis of the measurements is based on a time-dependent calculation of the trapping process showing that sawtooth activity is caused by the feedback between the low-Z argon and high-Z barium ions. This unexpected behavior demonstrates the importance of nonlinear effects in electron-beam traps containing more than a single ion species

  2. Ion-Ion Plasmas Produced by Electron Beams

    Science.gov (United States)

    Fernsler, R. F.; Leonhardt, D.; Walton, S. G.; Meger, R. A.

    2001-10-01

    The ability of plasmas to etch deep, small-scale features in materials is limited by localized charging of the features. The features charge because of the difference in electron and ion anisotropy, and thus one solution now being explored is to use ion-ion plasmas in place of electron-ion plasmas. Ion-ion plasmas are effectively electron-free and consist mainly of positive and negative ions. Since the two ion species behave similarly, localized charging is largely eliminated. However, the only way to produce ion-ion plasmas at low gas pressure is to convert electrons into negative ions through two-body attachment to neutrals. While the electron attachment rate is large at low electron temperatures (Te < 1 eV) in many of the halogen gases used for processing, these temperatures occur in most reactors only during the afterglow when the heating fields are turned off and the plasma is decaying. By contrast, Te is low nearly all the time in plasmas produced by electron beams, and therefore electron beams can potentially produce ion-ion plasmas continuously. The theory of ion-ion plasmas formed by pulsed electron beams is examined in this talk and compared with experimental results presented elsewhere [1]. Some general limitations of ion-ion plasmas, including relatively low flux levels, are discussed as well. [1] See the presentation by D. Leonhardt et al. at this conference.

  3. Effect of electron-ion treatment on fermentative activity of food yeasts

    International Nuclear Information System (INIS)

    Sergeev, I.N.; Ostapenkov, A.M.

    1988-01-01

    Investigation into effect of electron-ion treatment (EIT) on fermentative activity (FA) of Sacch cerevisial type yeasts of 12 breed was conducted. It is shown that even within the limits of one and the same type different treatment regimes are meded. This is obviously connected with physiologic peculiarities of different yeast breeds. Therefore an individual optimal treatment regime should be determined in each particular case during EIT of different breeds

  4. Ion plasma electron gun

    International Nuclear Information System (INIS)

    Wakalopulos, G.

    1976-01-01

    In the disclosed electron gun positive ions generated by a hollow cathode plasma discharge in a first chamber are accelerated through control and shield grids into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam having a distribution adjacent to the cathode emissive surface substantially the same as the distribution of the ion beam impinging upon the cathode. After passing through the grids and the plasma discharge chamber, the electron beam exits from the electron gun via a foil window. Control of the generated electron beam is achieved by applying a relatively low control voltage between the control grid and the electron gun housing (which resides at ground potential) to control the density of the positive ions bombarding the cathode

  5. Electron-ion collisions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1982-01-01

    This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments

  6. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  7. A Variety of Activation Methods Employed in 'Activated-Ion' Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

    International Nuclear Information System (INIS)

    Oh, Han Bin; McLafferty, Fred W.

    2006-01-01

    Fragmentation efficiencies of various 'activated-ion' electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and 'in-beam' activation were almost equally efficient with ∼70% sequence coverage, while collisions were less productive. In particular, 'in-beam' activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest

  8. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  9. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  10. Effect of electronic spatial extents (ESE) of ions on overpotential of lithium ion capacitors

    International Nuclear Information System (INIS)

    Xu, Fan; Lee, Chung ho; Koo, Chong Min; Jung, Cheolsoo

    2014-01-01

    Highlights: •Electronic spatial extent (ESE) of ion characterizes its electron density volume. •The ESE of ion proposes to assess overpotential of nanoporous capacitor. •Anion with low ESE shows low overpotential of the capacitor. •The ESE is more realistic to assess overpotential than conductivity or ion size. -- Abstract: The electronic spatial extent (ESE) of ions was defined as a major concept for assessing the cause of overpotential in the charging and discharging processes of a nanoporous activated carbon (AC) electrode. The performance degradation of AC/Li half-cells was caused by the overpotential, which was in discord with the electrolyte conductivity and ion size. Compared to the overpotential with the salt concentration, the AC/Li half-cell with a high concentration had a smaller overpotential, and its discharge patterns were similar to the curves obtained from the half-cells with a smaller ESE of BF 4 − ion. The ESE is a more realistic solution for determining the overpotential of the nanoporous capacitor, such as supercapacitor and Li ion capacitor, because its capacity is dependent on the electron density at the electric double layer of the capacitor electrode

  11. The future of the SIRAD SEE facility Ion-Electron Emission Microscopy

    CERN Document Server

    Wyss, J; Kaminski, A; Magalini, A; Nigro, M; Pantano, D; Sedhykh, S

    2002-01-01

    The SIRAD facility is dedicated to radiation damage studies on semiconductor detectors, electronic devices and systems, using proton and ion beams delivered by a 15 MV tandem accelerator. It is routinely used by groups involved in detector development for elementary particle physics, electronic device physics and space applications. In particular, Single Event Effect studies are very important to the latter two activities. Presently, the facility can only characterize the global sensitivity of a device or system to single ion impacts. To map out the sensitivity of a device with micrometric resolution, following an idea developed at SANDIA, we will implement an Ion-Electron Emission Microscope (IEEM) to reconstruct the X,Y and time coordinates of an impacting energetic ion by imaging the secondary electrons emitted by the sample using a standard emission electron microscope and position sensitive detector system. After describing typical Single Event Effect activities at SIRAD we will discuss the basic princip...

  12. Future directions in electron--ion collision physics

    International Nuclear Information System (INIS)

    Reed, K.J.; Griffin, D.C.

    1992-01-01

    This report discusses the following topics: Summary of session on synergistic co-ordination of theory and experiment; synergism between experiment and theory in atomic physics; comparison of theory and experiment for electron-ion excitation and ionization; summary of session on new theoretical and computational methods; new theoretical and computational methods-r-matrix calculations; the coulomb three-body problem: a progress report; summary of session on needs and applications for electron-ion collisional data; electron-ion collisions in the plasma edge; needs and applications of theoretical data for electron impact excitation; summary of session on relativistic effects, indirect effects, resonance, etc; direct and resonant processes in electron-ion collisions; relativistic calculations of electron impact ionization and dielectronic recombination cross section for highly charged ions; electron-ion recombination in the close-coupling approximation; modified resonance amplitudes with strongly correlated channels; a density-matrix approach to the broadening of spectral lines by autoionization, radiative transitions and electron-ion collisions; towards a time-dependent description of electron-atom/ion collisions two electron systems; and comments on inclusion of the generalized bright interaction in electron impact excitation of highly charged ions

  13. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  14. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Science.gov (United States)

    Saha, Asit; Pal, Nikhil; Chatterjee, Prasanta

    2014-10-01

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  15. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  16. ECR ion source with electron gun

    Science.gov (United States)

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  17. Cornell electron beam ion source

    International Nuclear Information System (INIS)

    Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.

    1981-01-01

    An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies

  18. Ion- and electron-acoustic solitons in two-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Kakad, A. P.; Singh, S. V.; Verheest, F.

    2008-01-01

    Properties of ion- and electron-acoustic solitons are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons and hot ions using the Sagdeev pseudopotential technique. The analysis is based on fluid equations and the Poisson equation. Solitary wave solutions are found when the Mach numbers exceed some critical values. The critical Mach numbers for the ion-acoustic solitons are found to be smaller than those for electron-acoustic solitons for a given set of plasma parameters. The critical Mach numbers of ion-acoustic solitons increase with the increase of hot electron temperature and the decrease of cold electron density. On the other hand, the critical Mach numbers of electron-acoustic solitons increase with the increase of the cold electron density as well as the hot electron temperature. The ion-acoustic solitons have positive potentials for the parameters considered. However, the electron-acoustic solitons have positive or negative potentials depending whether the fractional cold electron density with respect to the ion density is greater or less than a certain critical value. Further, the amplitudes of both the ion- and electron-acoustic solitons increase with the increase of the hot electron temperature. Possible application of this model to electrostatic solitary waves observed on the auroral field lines by the Viking spacecraft is discussed

  19. Calculation of ion storage in electron beams with account of ion-ion interactions

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.; Shirkov, G.D.

    1979-01-01

    Ion storage in relativistic electron beams was calculated taking account of ion-ion charge exchange and ionization. The calculations were made for nitrogen ion storage from residual gas during the compression of electron rings in the adhezator of the JINR heavy ion accelerator. The calculations were made for rings of various parameters and for various pressures of the residual gas. The results are compared with analogous calculations made without account of ion-ion processes. It is shown that at heavy loading of a ring by ions ion-ion collisions play a significant part, and they should be taken into account while calculating ion storage

  20. Electron-impact excitation of molecular ions

    International Nuclear Information System (INIS)

    Neufeld, D.A.; Dalgarno, A.

    1989-01-01

    A simple expression is derived that relates the rate coefficient for dipole-allowed electron-impact excitation of a molecular ion in the Coulomb-Born approximation to the Einstein A coefficient for the corresponding radiative decay. Results are given for several molecular ions of astrophysical interest. A general analytic expression is obtained for the equilibrium rotational level populations in the ground vibrational state of any molecular ion excited by collisions with electrons. The expression depends only upon the electron temperature, the electron density, and the rotational constant of the molecular ion. A similar expression is obtained for neutral polar molecules

  1. Spectroscopy of heavy few-electron ions

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1986-07-01

    In this paper we ask first, why is it interesting to investigate heavy-few electron ions. Then the various accelerator-based methods to produce heavy few-electron ions are discussed. In the main part an overview on available heavy few-electron ion data and current experiments is given. The summary will end up with future aspects in this field. (orig.)

  2. Study of electron vibrational interaction parameters in chlorophosphate activated with Eu2+ ion

    International Nuclear Information System (INIS)

    Bhoyar, Priyanka D.; Dhoble, S.J.

    2014-01-01

    We present the results of theoretical study of photoluminescence of Eu 2+ ions activated chlorophosphate M 5.17 (PO 4 ) 3 Cl 5 :Eu 2+ with M = Ca, Sr and Ba estimating electron-vibrational interaction (EVI) parameters such as Huang–Rhys factor, effective phonon energy, Stokes shift and zero phonon line position. Validity of the calculated result was established by modeling the emission line which was found to be in good agreement with the measured photoluminescence spectrum of Eu 2+ doped chorophosphates. - Highlights: • The EVI parameters such as Huang–Rhys factor, effective phonon energy and zero phonon line position were estimated. • Eu 2+ ion emission observed in chlorophosphate. • Material analyzed in this work have intermediate Huang–Rhys factor, high Stokes shift and low effective phonon energy

  3. PIC simulation of the electron-ion collision effects on suprathermal electrons

    International Nuclear Information System (INIS)

    Wu Yanqing; Han Shensheng

    2000-01-01

    The generation and transportation of suprathermal electrons are important to both traditional ICF scheme and 'Fast Ignition' scheme. The author discusses the effects of electron-ion collision on the generation and transportation of the suprathermal electrons by parametric instability. It indicates that the weak electron-ion term in the PIC simulation results in the enhancement of the collisional absorption and increase of the hot electron temperature and reduction in the maximum electrostatic field amplitude while wave breaking. Therefore the energy and distribution of the suprathermal electrons are changed. They are distributed more close to the phase velocity of the electrostatic wave than the case without electron-ion collision term. The electron-ion collision enhances the self-consistent field and impedes the suprathermal electron transportation. These factors also reduce the suprathermal electron energy. In addition, the authors discuss the effect of initial condition on PIC simulation to ensure that the results are correct

  4. Ion acceleration in modulated electron beams

    International Nuclear Information System (INIS)

    Bonch-Osmolovskij, A.G.; Dolya, S.N.

    1977-01-01

    A method of ion acceleration in modulated electron beams is considered. Electron density and energy of their rotational motion are relatively low. However the effective ion-accelerating field is not less than 10 MeV/m. The electron and ion numbers in an individual bunch are also relatively small, although the number of produced bunches per time unit is great. Some aspects of realization of the method are considered. Possible parameters of the accelerator are given. At 50 keV electron energy and 1 kA beam current a modulation is realized at a wave length of 30 cm. The ion-accelerating field is 12 MeV/m. The bunch number is 2x10 3 in one pulse at a gun pulse duration of 2 μs. With a pulse repetition frequency of 10 2 Hz the number of accelerated ions can reach 10 13 -10 14 per second

  5. Electron-vibrational transitions under molecular ions collisions with slow electrons

    International Nuclear Information System (INIS)

    Andreev, E.A.

    1993-01-01

    A concept of a multichannel quantum defect is considered and basic theoretic ratios of inelastic collisional processes with the participation of molecular positive ions and slow electrons playing an important role both in atmospheric and laboratory plasma, are presented. The problem of scattering channel number limitation with the provision of S-matrix unique character is considered. Different models of electron rotation-vibrational connection under collision of two-atom molecular ions with slow electrons are analysed. Taking N 2 + as an example, a high efficiency of transitions between different electron states of a molecular ion is shown. 73 refs., 9 figs., 1 tab

  6. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-01-01

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  7. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  8. Many-electron phenomena in the ionization of ions

    International Nuclear Information System (INIS)

    Mueller, A.

    2004-01-01

    Full text: Single and multiple ionization in ion-atom collisions involve a multitude of complex interactions between the electrons and nuclei of projectile and target. Some of the complexity is avoided in studies of fast collisions when the impulse approximation can be applied and the electrons can be described as independent quasi-free particles with a known momentum distribution. For the detailed investigation of ionization mechanisms that can occur in fast ion-atom collisions, it is illuminating to consider collisions of ions (or atoms) and really free electrons with a narrow energy spread. High energy resolution in electron-ion collision studies provides access to individual, possibly even state-selective, reaction pathways. Even in the simple electron-ion collision system (simple compared with the initial ion-atom problem) single and multiple ionization still involve a multitude of complex mechanisms. Besides the direct removal of one or several electrons from the target by electron impact, resonant and non-resonant formation of intermediate multiply excited states which subsequently decay by electron emission is important in single and multiple ionization of ions and atoms. Direct ionization proceeds via one-step or multi-step knock-off mechanisms which can partly be disentangled by studying effects of different projectile species. The role of multiply excited states in the ionization can be experimentally studied in great detail by a further reduction of the initial ion-atom problem. Multiply excited states of atoms and ions can be selectively populated by photon-ion interactions making use of the potential for extreme energy resolution made available at modern synchrotron radiation sources. In the review talk, examples of studies on single and multiple ionization in electron-ion collisions will be discussed in some detail. Electron-ion collision experiments will also be compared with photon-ion interaction studies. Many-electron phenomena have been observed

  9. Compton profiles by inelastic ion-electron scattering

    International Nuclear Information System (INIS)

    Boeckl, H.; Bell, F.

    1983-01-01

    It is shown that Compton profiles (CP) can be measured by inelastic ion-electron scattering. Within the impulse approximation the binary-encounter peak (BEP) reflects the CP of the target atom whereas the electron-loss peak (ELP) is given by projectile CP's. Evaluation of experimental data reveals that inelastic ion-electron scattering might be a promising method to supply inelastic electron or photon scattering for the determination of target CP's. The measurement of projectile CP's is unique to ion scattering since one gains knowledge about wave-function effects because of the high excitation degree of fast heavy-ion projectiles

  10. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    Science.gov (United States)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  11. Effects of the electron-phonon coupling activation in collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, Eva, E-mail: zarkadoulae@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Samolyuk, German [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Weber, William J. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-07-15

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally, we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage. - Highlights: •The electron-phonon interactions in irradiation affect the energy dissipation. •The resulting damage depends on the electron-phonon interaction activation time. •The electronic stopping acts on the ions before the electron-phonon interactions.

  12. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  13. Feedback scheme for kink instability in ERL based electron ion collider

    International Nuclear Information System (INIS)

    Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.

    2011-01-01

    Kink instability presents one of the limiting factors from achieving higher luminosity in ERL based electron ion collider (EIC). However, we can take advantage of the flexibility of the linac and design a feedback system to cure the instability. This scheme raises the threshold of kink instability dramatically and provides opportunity for higher luminosity. We studied the effectiveness of this system and its dependence on the amplitude and phase of the feedback. In this paper we present results of theses studies of this scheme and describe its theoretical and practical limitations. The main advantage of an energy recovery linac (ERL) based electron ion collider (EIC) over a ring-ring type counterpart is the higher achievable luminosity. In ERL-based version, one electron beam collides with the opposing ion beam only once so that the beam-beam parameter can largely exceed the usual limitation in an electron collider ring, while the beam-beam parameter for the ion beam remains small values. The resulting luminosity may be enhanced by one order of magnitude. The beam dynamics related challenges also arise as the luminosity boost in ERL based EIC due to the significant beam-beam effect on the electron beam. The effects on the electron beam include the additional large beam-beam tune shift and nonlinear emittance growth, which are discussed. The ion beam may develop a head-tail type instability, referred as 'kink instability', through the interaction with the electron beam. In this paper, we discuss the feasibility of an active feedback system to mitigate the kink instability, by taking advantage of the flexibility of ERL. Throughout the paper, we will discuss the collision between proton and electron beam. Any other ion species can be scaled by its charge Z and ion mass A.

  14. Ion-acoustic nonlinear periodic waves in electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Chawla, J. K.; Mishra, M. K.

    2010-01-01

    Ion-acoustic nonlinear periodic waves, namely, ion-acoustic cnoidal waves have been studied in electron-positron-ion plasma. Using reductive perturbation method and appropriate boundary condition for nonlinear periodic waves, the Korteweg-de Vries (KdV) equation is derived for the system. The cnoidal wave solution of the KdV equation is discussed in detail. It is found that the frequency of the cnoidal wave is a function of its amplitude. It is also found that the positron concentration modifies the properties of the ion-acoustic cnoidal waves. The existence regions for ion-acoustic cnoidal wave in the parameters space (p,σ), where p and σ are the positron concentration and temperature ratio of electron to positron, are discussed in detail. In the limiting case these ion-acoustic cnoidal waves reduce to the ion-acoustic soliton solutions. The effect of other parameters on the characteristics of the nonlinear periodic waves is also discussed.

  15. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  16. Theoretical treatment of electron capture and excitation in two-electron system ion-atom, atom-atom collisions at low to intermediate energy

    International Nuclear Information System (INIS)

    Kimura, M.

    1986-01-01

    A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)

  17. Newly appreciated roles for electrons in ion-atom collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies

  18. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  19. Advanced ion beam analysis of materials using ion-induced fast electron

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Hiroshi; Tanabe, Atsushi; Ishihara, Toyoyuki [Tsukuba Univ., Ibaraki (Japan); and others

    1997-03-01

    Recent progress in the study of high-energy shadowing effect using ion-induced electron spectroscopy is reported with emphasis on a possibility of determination of local electronic structure in solids, which has been a difficult problem to approach with other experimental techniques. We demonstrate real-space determination of covalent-bond electron distribution in Si crystal. The analysis technique may provide a new field of ion beam analysis of solids. (author)

  20. An improved electron impact ion source power supply

    International Nuclear Information System (INIS)

    Beaver, E.M.

    1974-01-01

    An electron impact ion source power supply has been developed that offers improved ion beam stability. The electrical adjustments of ion source parameters are more flexible, and safety features are incorporated to protect the electron emitting filament from accidental destruction. (author)

  1. EUV spectrum of highly charged tungsten ions in electron beam ion trap

    International Nuclear Information System (INIS)

    Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N.

    2016-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra was investigated for electron energy from 540 to 1370 eV. Previously unreported lines were presented in the EUV range, and comparing the wavelengths with theoretical calculations identified them. (author)

  2. Ion-acoustic solitons in a plasma with electron beam

    International Nuclear Information System (INIS)

    Esfandyari, A. R.; Khorram, S.

    2001-01-01

    Ion-acoustic solitons in a collisionless plasma consisting of warm ions, hot isothermal electrons and a electron beam are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries and modified Korteweg-de Vries temperature and electron beam on ion acoustic equations. The effect of ion solitons are investigated

  3. Electron cloud and ion effects

    CERN Document Server

    Arduini, Gianluigi

    2002-01-01

    The significant progress in the understanding and control of machine impedances has allowed obtaining beams with increasing brilliance. Dense positively charged beams generate electron clouds via gas ionization, photoemission and multipacting. The electron cloud in turn interacts with the beam and the surrounding environment originating fast coupled and single bunch instabilities, emittance blow-up, additional loads to vacuum and cryogenic systems, perturbation to beam diagnostics and feedbacks and it constitutes a serious limitation to machine performance. In a similar way high brilliance electron beams are mainly affected by positively charged ions produced by residual gas ionization. Recent observations of electron cloud build-up and its effects in present accelerators are reviewed and compared with theory and with the results of state-of-the-art computer simulations. Two-stream instabilities induced by the interaction between electron beams and ions are discussed. The implications for future accelerators ...

  4. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    International Nuclear Information System (INIS)

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  5. Electron cyclotron resonance multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1975-01-01

    Three ion sources, that deliver multiply charged ion beams are described. All of them are E.C.R. ion sources and are characterized by the fact that the electrons are emitted by the plasma itself and are accelerated to the adequate energy through electron cyclotron resonance (E.C.R.). They can work without interruption during several months in a quasi-continuous regime. (Duty cycle: [fr

  6. Ion-electron recombination in merged-beams experiments

    International Nuclear Information System (INIS)

    Schmidt, H.T.

    1994-01-01

    In the present thesis, studies of recombination processes applying the technique of merged beams of fast ions and electrons are described. The main advantage of this technique is that the low relative velocity of ions and electrons necessary for these investigations can be achieved, at the same time as the velocity of the ions relative to the molecules of the residual gas is high. The high ion velocity leads to a very low reaction cross section for the leading contribution to the background signal, the capture of electrons in collisions with residual gas molecules. The experimental technique is described, emphasizing the electron beam velocity distribution and its relation to the energy resolution of the experiments. The presentation of the process of electron cooling is aimed at introducing this process as a tool for merged-beams experiments in storage rings rather than investigating the process itself. The non-resonant process of radiative recombination for non-fully stripped ions, showing evidence of incomplete screening is presented. Experimental investigation of dielectronic recombination is presented. Results of measurements of this process for He-like ions form the Aarhus single-pass experiment and the Heidelberg storage ring experiment are compared. Recombination is reduced from being the aim of the investigation to being a tool for high-precision measurements of the lifetimes of the 1s2s 3 S metastable states of HE-like ions of boron, carbon, and nitrogen, performed at the Heidelberg storage ring. The experiment is concerned with the process of dissociative recombination of molecular hydrogen ions. The discussion of this experiment emphasizes the distribution of population on the different vibrational levels of the ions in the initial state. In particular, a laser photo-dissociation technique was introduced to reduce the number of initial levels in the experiment. (EG) 24 refs

  7. Electron-ion recombination in merged beams

    International Nuclear Information System (INIS)

    Wolf, A.; Habs, D.; Lampert, A.; Neumann, R.; Schramm, U.; Schuessler, T.; Schwalm, D.

    1993-01-01

    Detailed studies of recombination processes between electrons and highly charged ions have become possible by recent improvements of merged-beams experiments. We discuss in particular measurements with stored cooled ion beams at the Test Storage Ring (TSR) in Heidelberg. The cross section of dielectronic recombination was measured with high energy resolution for few-electron systems up to the nuclear charge of Cu at a relative energy up to 2.6 keV. At low energy (∼0.1 eV) total recombination rates of several ions were measured and compared with calculated radiative recombination rates. Laser-stimulated recombination of protons and of C 6+ ions was investigated as a function of the photon energy using visible radiation. Both the total recombination rates and the stimulated recombination spectra indicate that in spite of the short interaction time in merged beams, also collisional capture of electrons into weakly bound levels (related to three-body recombination) could be important

  8. Convoy electron production by heavy ions in solids

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    The term convoy electron refers to those electrons ejected in fast ion-atom and ion-solid collisions closely matched in vector velocity to that of the incident heavy particles responsible for their ejection. Similarities and differences among electrons ejected into such states through binary electron capture to continuum and electron loss to continuum processes in single ion-atom encounters are compared and contrasted to more complex ejection processes occurring in solid targets. Puzzles posed by the apparent strong projectile Z dependence but weak emergent ion charge dependence of the yield in the case of solid targets are reviewed. Very recent progress in resolving these puzzles has been made by recent observations that the apparent mean free path for electron scattering out of the forward direction within the target is observed to be an order of magnitude greater than that for free electrons of equal velocity provided the projectile charge is high. 13 references, 2 figures, 1 table

  9. Kinetic theory for electron dynamics near a positive ion

    International Nuclear Information System (INIS)

    Wrighton, Jeffrey M; Dufty, James W

    2008-01-01

    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron–ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron–electron and electron–ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single-particle trajectories of the electron–ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron–ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron–ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas

  10. Electron-electron interaction and transfer ionization in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2008-01-01

    Recently it was pointed out that electron capture occurring in fast ion-atom collisions can proceed via a mechanism which earlier was not considered. In the present paper we study this mechanism in more detail. Similarly as in radiative capture, where the electron transfer occurs due to the interaction with the radiation field and proceeds via emission of a photon, within this mechanism the electron capture is caused by the interaction with another atomic electron leading mainly to the emission of the latter. In contrast to the electron-electron Thomas capture, this electron-electron (E-E) mechanism is basically a first-order one having similarities to the kinematic and radiative capture channels. It also possesses important differences with the latter two. Leading to transfer ionization, this first-order capture mechanism results in the electron emission mainly in the direction opposite to the motion of the projectile ion. The same, although less pronounced, feature is also characteristic for the momenta of the target recoil ions produced via this mechanism. It is also shown that the action of the E-E mechanism is clearly seen in recent experimental data on the transfer ionization in fast proton-helium collisions.

  11. 3D simulation of electron and ion transmission of GEM-based detectors

    Science.gov (United States)

    Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal

    2017-10-01

    Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.

  12. Ion induced high energy electron emission from copper

    International Nuclear Information System (INIS)

    Ruano, G.; Ferron, J.

    2008-01-01

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He + , Ne + and Ar + ) and Li + ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  13. The dynamics of electron and ion holes in a collisionless plasma

    Directory of Open Access Journals (Sweden)

    B. Eliasson

    2005-01-01

    Full Text Available We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly

  14. Incident ion charge state dependence of electron emission during slow multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Hughes, I.G.; Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    Characteristic variations in the total electron yield γ as a function of crystal azimuthal orientation are reported for slow N 2+ , N 5+ and N 6+ ions incident on a Au(011) single crystal, together with measurements of γ as a function of incident ion velocity. Kinetic electron emission is shown to arise predominantly in close collisions between incident ions and target atoms, and potential electron emission is found to be essentially constant within our present velocity range. The incident ion charge state is shown to play no role in kinetic electron emission. Extremely fast neutralization times of the order of 10 - 15 secs are needed to explain the observations

  15. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  16. Secondary electron ion source neutron generator

    Science.gov (United States)

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  17. Atomic physics of highly charged ions in an electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.

    1990-07-01

    Two electron beam ion traps are in use at LLNL for the purpose of studying the properties of very highly charged ions and their interactions with electrons. This paper reviews the operation of the traps and discusses recent experiments in three areas: precision transition energy measurements in the limit of very high ion charge, dielectronic recombination measurements for the He-like isoelectronic sequence, and measurements of x-ray polarization. 22 refs., 11 figs., 1 tab

  18. Forward electron production in heavy ion-atom and ion-solid collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table

  19. Ion current reduction in pinched electron beam diodes

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Poukey, J.W.

    1977-01-01

    A new version of a particle-in-cell diode code has been written which permits the accurate treatment of higher-current diodes with greater physical dimensions. Using this code, we have studied ways to reduce the ion current in large-aspect-ratio pinched electron beam diodes. In particular, we find that allowing the ions to reflex in such diodes lowers the ion to electron current ratio considerably. In a 3-MV R/d=24 case this ratio was lowered by a factor of 6--8 compared with the corresponding nonreflexing-ion diode, while still producing a superpinched electron beam

  20. Simulating electron clouds in heavy-ion accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2005-01-01

    Contaminating clouds of electrons are a concern for most accelerators of positively charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly magnetized, weakly magnetized, and unmagnetized. The approach to such self-consistency is described, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyroperiod in the magnets. Tests and applications are presented: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the high-current experiment [L. R. Prost, P. A. Seidl, F. M. Bieniosek, C. M. Celata, A. Faltens, D. Baca, E. Henestroza, J. W. Kwan, M. Leitner, W. L. Waldron, R. Cohen, A. Friedman, D. Grote, S. M. Lund, A. W. Molvik, and E. Morse, 'High current transport experiment for heavy ion inertial fusion', Physical Review Special Topics, Accelerators and Beams 8, 020101 (2005)], at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam on an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-time-step mover to accurately calculate the instability

  1. New experimental initiatives using very highly charged ions from an 'electron beam ion trap'

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    A short review of the experimental program in highly-charged heavy ion physics conducted at the Lawrence Livermore National Laboratory Electron Beam Ion Trap (EBIT) facility is presented. The heavy-ion research, involving ions up to fully stripped U 92+ , includes precision x-ray spectroscopy and lifetime studies, electron impact ionization and excitation cross section measurements. The investigations of ion-surface interactions following the impact of high-Z highly charged ions on surfaces are aimed to study the neutralization dynamics effecting the ion and the response of the surface as well. (author)

  2. Nonplanar ion acoustic waves with kappa-distributed electrons

    International Nuclear Information System (INIS)

    Sahu, Biswajit

    2011-01-01

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing κ) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.

  3. Ion induced high energy electron emission from copper

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)], E-mail: gdruano@ceride.gov.ar; Ferron, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina); Departamento de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)

    2008-11-15

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He{sup +}, Ne{sup +} and Ar{sup +}) and Li{sup +} ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  4. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  5. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  6. Electron collector and ion species experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.; Greenly, J.B.; Hammer, D.A.; Horioka, K.; Meyerhofer, D.D.

    1987-01-01

    Studies of the effects of an electron collector on the electron flow in an ion diode and on diode impedance history are being done with an extractor geometry ion diode (B/sub r/ magnetic insulation field) on the LION accelerator (1.5 MV, 4Ω, 40 ns). The collector is a flux-penetrable metal protrusion on the inner radius of the anode that collects electrons. This device increases the diode operating impedance particularly during the later part of the pulse when the diode impedance collapses without the collector. In the present set of experiments, several thin wires are inserted into the anode and allowed to protrude a few millimeters into the A-K gap. These wires are damaged by the electron flow during the pulse and by measuring the length of the remaining wire, the distance of the electron layer from the anode can be inferred. The ion current density is also measured in three radial locations across the diode, giving a measure, through the Child-Langmuir law, of the effective gap spacing between the anode and the electron sheath. A simple model is proposed to account for the scaling of ion current density with the diode voltage observed in the experiment

  7. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  8. Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas

    Directory of Open Access Journals (Sweden)

    Malvina B. Trzhaskovskaya

    2015-05-01

    Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.

  9. Electron - ion recombination processes - an overview

    International Nuclear Information System (INIS)

    Hahn, Yukap

    1997-01-01

    Extensive theoretical and experimental studies have been carried out for the past 20 years on electron - ion recombination processes, as they are applied to the analysis of astrophysical and laboratory plasmas. We review the basic understanding gained through these efforts, with emphasis on some of the more recent progress made in recombination theory as the recombining system is affected by time-dependent electric fields and plasma particles at low temperature. Together with collisional ionization and excitation processes, recombination is important in determining ionization balance and excited-state population in non-equilibrium plasmas. The radiation emitted by plasmas is usually the principal medium with which to study the plasma condition, as it is produced mainly during the recombination and decay of excited states of ions inside the plasma. This is especially true when the plasma under study is not readily accessible by direct probes, as in astrophysical plasmas. Moreover, external probes may sometimes cause undesirable disturbances of the plasma. Electron-ion recombination proceeds in several different modes. The direct modes include three-body recombination (TBR) and one-step radiative recombination (RR), all to the ground- and singly-excited states of the target ions. By contrast, the indirect resonant mode is a two-step dielectronic recombination (DR), which proceeds first with the formation of doubly-excited states by radiationless excitation/capture. The resonant states thus formed may relax by autoionization and/or radiative cascades. For more exotic modes of recombination, we consider off-shell dielectronic recombination (radiative DR = RDR), in which an electron capture is accompanied by simultaneous radiative emission and excitation of the target ion. Some discussion on attachment of electrons to neutral atoms, resulting in the formation of negative ions, is also given. When resonance states involve one or more electrons in high Rydberg states

  10. On the electron-ion temperature ratio established by collisionless shocks

    Science.gov (United States)

    Vink, Jacco; Broersen, Sjors; Bykov, Andrei; Gabici, Stefano

    2015-07-01

    Astrophysical shocks are often collisionless shocks, in which the changes in plasma flow and temperatures across the shock are established not through Coulomb interactions, but through electric and magnetic fields. An open question about collisionless shocks is whether electrons and ions each establish their own post-shock temperature (non-equilibration of temperatures), or whether they quickly equilibrate in the shock region. Here we provide a simple, thermodynamic, relation for the minimum electron-ion temperature ratios that should be expected as a function of Mach number. The basic assumption is that the enthalpy-flux of the electrons is conserved separately, but that all particle species should undergo the same density jump across the shock, in order for the plasma to remain charge neutral. The only form of additional electron heating that we allow for is adiabatic heating, caused by the compression of the electron gas. These assumptions result in an analytic treatment of expected electron-ion temperature ratio that agrees with observations of collisionless shocks: at low sonic Mach numbers, Ms ≲ 2, the electron-ion temperature ratio is close to unity, whereas for Mach numbers above Ms ≈ 60 the electron-ion temperature ratio asymptotically approaches a temperature ratio of Te/Ti = me/ ⟨ mi ⟩. In the intermediate Mach number range the electron-ion temperature ratio scales as Te/Ti ∝ Ms-2. In addition, we calculate the electron-ion temperature ratios under the assumption of adiabatic heating of the electrons only, which results in a higher electron-ion temperature ratio, but preserves the Te/Ti ∝ Ms-2 scaling. We also show that for magnetised shocks the electron-ion temperature ratio approaches the asymptotic value Te/Ti = me/ ⟨ mi ⟩ for lower magnetosonic Mach numbers (Mms), mainly because for a strongly magnetised shock the sonic Mach number is larger than the magnetosonic Mach number (Mms ≤ Ms). The predicted scaling of the electron-ion

  11. Cross-sections of charge and electronic states change of particles at ion-ion and ion-molecule collisions

    International Nuclear Information System (INIS)

    Panov, M.N.; Afrosimov, V.V.; Basalaev, A.A.; Guschina, N.A.; Nikulin, V.K.

    2006-01-01

    The interactions of protons and alpha-particles with hydrocarbons are investigated. A quantum-mechanical computation of the electronic structure of all hydrocarbons from methane to butane and its fragment ions was performed in the Hartree-Fock RHF/UHF approximation using a GAMESS program (General Atomic Molecular Electron Structure System). The correlation energy was taken into account within the framework of MP2 perturbation theory. The structural parameters of the hydrocarbon molecules and their charged and neutral fragments were calculated in two cases: in the geometry of the parent molecule or of the relaxation states. The difference of the full energy of the same fragments in and out of brackets gives us the vibration excitation energies of the fragments at the moment of creation. Additional Mulliken effective charges (in electron charge units) of atoms in the fragments have been calculated. The calculations show that removing one electron from the ethane molecule without electronic excitation produced a single charged molecular ion in vibration state with binding energy of hydrogen atoms, some decimal eV. As results we obtain C 2 H 6 + and C 2 H 5 + . Additional fragmentation of hydrocarbon needs electronic excitation of produced single charged ions. Cross sections for electron capture and excitation processes in collisions between the hydrogen-like He + , B 4+ and O 7+ ions have been evaluated. The purpose of the theory within this project during the period under review was to get for the first time new data on Single-Electron Capture (SEC) and Excitation Processes (EP) in collisions of He + (1s) ions with hydrogen-like impurity ions B 4+ (1s) and O 7+ (1s) in the energy range for He + ions from 0.2 MeV to 3.0 MeV. The calculations were carried out by using the method of close-coupling equations with basis sets of eleven and ten quasimolecular two-electron states for reactions (1, 2) and (3, 4), respectively (entrance channel, seven charge transfer channels

  12. Electron capture by highly charged ions from surfaces and gases

    International Nuclear Information System (INIS)

    Allen, F.

    2008-01-01

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar 17+ and Ar 18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu -1 , charge-selected and then decelerated down to 5 eVu -1 for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar 17+ and Ar 18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu -1 , charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar 16+ and Xe 44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  13. Electron capture in ion atom and ion-ion collisions

    International Nuclear Information System (INIS)

    Barat, M.

    1986-01-01

    Electron capture (EC) by positive ions in collision with various targets has remained one of the most important subjects of research since the early 30's. From a theoretical point of view, EC is obviously a coupled 3-body problem: at least two cores and an active electron that jumps between them. Practical interest in EC arose in a variety of fields. Recently a renewed interest arose from the physics of thermonuclear fusion, where capture by highly charged ionic impurities were found to be an important process in tokamak devices. For that reasons, a number of reviews were devoted to this subject during the past years, including lectures given in various NATO advanced science institutes. The aim of this lecture is not at all to add a new review to this list, but (i) to summarize the very basis of the present theoretical approaches at low and moderate collision energy, (ii) to pinpoint some crucial difficulties in the theoretical treatment, (iii) to select specific examples which, to the taste of the author, reflect some present practical interest, or some significant advances. 48 references, 38 figures, 1 table

  14. Electron cloud effects in intense, ion beam linacs theory and experimental planning for heavy-ion fusion

    International Nuclear Information System (INIS)

    Molvik, A.W.; Cohen, R.H.; Lund, S.M.; Bieniosek, F.M.; Lee, E.P.; Prost, L.R.; Seidl, P.A.; Vay, Jean-Luc

    2002-01-01

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Without special preparation a large fractional electron population ((ge)1%) is predicted in the High-Current Experiment (HCX), but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the ∼4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron flow is limited to drift velocities (E x B and (del)B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as the their effect on the ion beam

  15. Electron-Cloud Simulation and Theory for High-Current Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Cohen, R; Friedman, A; Lund, S; Molvik, A; Lee, E; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-01-01

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize the distinguishing features of electron cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds. We also present results from several ingredients in this capability: (1) We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2) We simulate of the effect of specified electron cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics

  16. Electron-cloud simulation and theory for high-current heavy-ion beams

    Directory of Open Access Journals (Sweden)

    R. H. Cohen

    2004-12-01

    Full Text Available Stray electrons can arise in positive-ion accelerators for heavy-ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize the distinguishing features of electron-cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds (also applicable to other accelerators. We also present results from several ingredients in this capability. (1 We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2 We simulate the effect of specified electron-cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing-mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope “breathing” mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3 We report first results from a long-time-step algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics.

  17. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  18. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1979-05-01

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H + ) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  19. Electron string ion sources for carbon ion cancer therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Katagiri, K.; Noda, K. [National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  20. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  1. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  2. Free-electron lasers with magnetized ion-wiggler

    International Nuclear Information System (INIS)

    Mehdian, H.; Jafari, S.; Hasanbeigi, A.; Ebrahimi, F.

    2009-01-01

    Significant progress has been made using laser ionized channels to guide electron beams in the ion focus regime in a free-electron laser. Propagation of an electron beam in the ion focusing regime (IFR) allows the beam to propagate without expanding from space-charge repulsion. The ninth-degree polynomial dispersion relation for electromagnetic and space-charge waves is derived analytically by solving the electron momentum transfer and wave equations. The variation of resonant frequencies and peak growth rates with axial magnetic field strength has been demonstrated. Substantial enhancement in peak growth rate is obtained as the axial field frequency approaches the gyroresonance frequency.

  3. Experimental determination of the electron-avalanche and the electron-ion recombination coefficient

    NARCIS (Netherlands)

    Ernst, G.J.; Boer, A.G.

    1980-01-01

    The electron-ion recombination coefficient γ and the avalanche coefficient δ = (α − a) · vd, where α and a are the ionizat ion and attachment coefficients respectively and vd the drift velocity of the electrons, have been experimentally determined in a self-sustained CO2-laser system (1:1:3 mixture)

  4. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  5. Electron cooling of PB$^{54+}$ ions in the low energy ion ring (LEIR)

    CERN Document Server

    Bosser, Jacques; Chanel, M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Tranquille, G

    1998-01-01

    For the preparation of dense bunches of lead ions for the LHC, electron cooling will be essential for accumula tion in a storage ring at 4.2 MeV/u. Tests have been carried out on the LEAR ring (renamed LEIR for Low Energy Ion Ring) in order to determine the optimum parameters for a future state-of-the-art electron cooling device which would be able to cool linac pulses of lead ions in less than 100 ms. The experiments focused on the generation of a stable high intensity electron beam that is needed to free space in both longitudinal and transverse phase space for incoming pulses. Investigations on the ion beam lifetime in the presence of the electron beam and on the dependency of the cooling times on the optical settings of the storage ring will also be discussed. This paper concentrates on the cooling aspects with the multiturn injection, vacuum, and high intensity aspects discussed in a companion paper at this conference.

  6. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  7. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  8. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  9. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  10. Secondary emission of negative ions and electrons resulting from electronic sputtering of cesium salts

    International Nuclear Information System (INIS)

    Allali, H.; Nsouli, B.; Thomas, J.P.

    1993-04-01

    Secondary ion emission of negative ions and electrons from alkali salts bombarded with high energy (9 MeV) Ar +++ is discussed. Quite different features are observed according to the nature of the salt investigated (halide or oxygenated). In the case of cesium, the electron emission from halides is characterized by intense electron showers (several hundred electrons) with narrow distributions in intensity and orientation. Conversely, for oxygenated salts, these distributions are broader, much less intense (one order of magnitude), and the ion emission exhibits an dissymmetry, which has never been observed for inorganics. This last result is interpreted in terms of radiolysis of the oxygenated salt, a process well documented for gamma-ray irradiation, but not yet reported in secondary ion emission. (author) 17 refs.; 10 figs

  11. Production processes of multiply charged ions by electron impact

    International Nuclear Information System (INIS)

    Oda, Nobuo

    1980-02-01

    First, are compared the foil or gas stripper and the ion sources utilizing electron-atom ionizing collisions, which are practically used or are under development to produce multiply charged ions. A review is made of the fundamental physical parameters such as successive ionization potentials and various ionization cross sections by electron impact, as well as the primary processes in multiply charged ion production. Multiply charged ion production processes are described for the different existing ion sources such as high temperature plasma type, ion-trapping type and discharge type. (author)

  12. On novel mechanisms of slow ion induced electron emission

    International Nuclear Information System (INIS)

    Eder, H.

    2000-09-01

    The present work has contributed in new ways to the field of slow ion induced electron emission. First, measurements of the total electron yield γ for impact of slow singly and multiply charged ions on atomically clean polycrystalline gold and graphite have been made. The respective yields were determined by current measurements and measurements of the electron number statistics. A new mechanism for kinetic emission (KE) below the so called 'classical threshold' was found and discussed. For a given ion species and impact velocity a slight decrease of the yields was found for ion charge state q = 1 toward 3, but no significant differences in KE yields for higher q values. Comparison of the results from gold and graphite showed overall similar behavior, but for C+ a relatively strong difference was observed and ascribed to more effective electron promotion in the C-C- than in the C-Au system. Secondly, for the very specific system H0 on LiF we investigated single electron excitation processes under grazing incidence conditions. In this way long-range interactions of hydrogen atoms with the ionic crystal surface could be probed. Position- and velocity-dependent electron production rates were found which indicate that an electron promotion mechanism is responsible for the observed electron emission. Thirdly, in order to investigate the importance of plasmon excitation and -decay in slow ion induced electron emission, measurements of electron energy distributions from impact of singly and doubly charged ions on poly- and monocrystalline aluminum surfaces were performed. From the results we conclude that direct plasmon excitation by slow ions occurs due to the potential energy of the projectile in a quasi-resonant fashion. The highest relative plasmon intensities were found for impact of 5 keV Ne+ on Al(111) with 5 % of the total yield. For impact of H + and H 2 + characteristical differences were observed for Al(111) and polycrystalline aluminum. We show that

  13. Electron emission from solids induced by swift heavy ions

    International Nuclear Information System (INIS)

    Xiao Guoqing

    2000-01-01

    The recent progresses in experimental and theoretical studies of the collision between swift heavy ion and solids as well as electron emission induced by swift heavy ion in solids were briefly reviewed. Three models, Coulomb explosion, thermal spike and repulsive long-lived states, for interpreting the atomic displacements stimulated by the electronic energy loss were discussed. The experimental setup and methods for measuring the electron emission from solids were described. The signification deviation from a proportionality between total electron emission yields and electronic stopping power was found. Auger-electron and convoy-electron spectra are thought to be a probe for investigating the microscopic production mechanisms of the electronic irradiation-damage. Electron temperature and track potential at the center of nuclear tracks in C and polypropylene foils induced by 5 MeV/u heavy ions, which are related to the electronic excitation density in metals and insulators respectively, were extracted by measuring the high resolution electron spectra

  14. Fluid aspects of electron streaming instability in electron-ion plasmas

    International Nuclear Information System (INIS)

    Jao, C.-S.; Hau, L.-N.

    2014-01-01

    Electrons streaming in a background electron and ion plasma may lead to the formation of electrostatic solitary wave (ESW) and hole structure which have been observed in various space plasma environments. Past studies on the formation of ESW are mostly based on the particle simulations due to the necessity of incorporating particle's trapping effects. In this study, the fluid aspects and thermodynamics of streaming instabilities in electron-ion plasmas including bi-streaming and bump-on-tail instabilities are addressed based on the comparison between fluid theory and the results from particle-in-cell simulations. The energy closure adopted in the fluid model is the polytropic law of d(pρ −γ )/dt=0 with γ being a free parameter. Two unstable modes are identified for the bump-on-tail instability and the growth rates as well as the dispersion relation of the streaming instabilities derived from the linear theory are found to be in good agreement with the particle simulations for both bi-streaming and bump-on-tail instabilities. At the nonlinear saturation, 70% of the electrons are trapped inside the potential well for the drift velocity being 20 times of the thermal velocity and the pρ −γ value is significantly increased. Effects of ion to electron mass ratio on the linear fluid theory and nonlinear simulations are also examined

  15. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society

  16. Transport of secondary electrons and reactive species in ion tracks

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  17. Measuring the electron-ion ring parameters by bremsstrahlung

    International Nuclear Information System (INIS)

    Inkin, V.D.; Mozelev, A.A.; Sarantsev, V.P.

    1982-01-01

    A system is described for measuring the number of electrons and ions in the electron-ion rings of a collective heavy ion accelerator. The system operation is based on detecting gamma quanta of bremsstrahlung following the ring electron interaction with the nuclei of neutral atoms and ions at different stages of filling the ring with ions. The radiation detector is a scintillation block - a photomultiplier operating for counting with NaI(Tl) crystal sized 30x30 mm and ensuring the detection efficiency close to unity. The system apparatus is made in the CAMAC standard and rems on-line with the TRA/i miniature computer. The block-diagrams of the system and algorithm of data processing are presented. A conclusion is drawn that the results of measuring the ring parameters with the use of the diagnostics system described are in good agreement within the range of measuring errors with those obtained by means of the diagnostics system employing synchrotron radiation and induction sensors

  18. Electron removal from H and He atoms in collisions with C q+ , O q+ ions

    Science.gov (United States)

    Janev, R. K.; McDowell, M. R. C.

    1984-06-01

    Cross sections for electron capture and ionisation in collision of partially and completely stripped C q+ , N q+ and O q+ ions with hydrogen and helium atoms have been calculated at selected energies. The classical trajectory Monte Carlo method was used with a variable-charge pseudopotential to describe the interaction of the active electron with the projectile ion. A scalling relationship has been derived for the electron removal (capture and ionisation) cross section which allows a unifield representation of the data.

  19. Axial ion-electron emission microscopy of IC radiation hardness

    Science.gov (United States)

    Doyle, B. L.; Vizkelethy, G.; Walsh, D. S.; Swenson, D.

    2002-05-01

    A new system for performing radiation effects microscopy (REM) has been developed at Sandia National Laboratory in Albuquerque. This system combines two entirely new concepts in accelerator physics and nuclear microscopy. A radio frequency quadrupole (RFQ) linac is used to boost the energy of ions accelerated by a conventional Tandem Van de Graaff-Pelletron to velocities of 1.9 MeV/amu. The electronic stopping power for heavy ions is near a maximum at this velocity, and their range is ˜20 μm in Si. These ions therefore represent the most ionizing form of radiation in nature, and are nearly ideal for performing single event effects testing of integrated circuits. Unfortunately, the energy definition of the RFQ-boosted ions is rather poor (˜ a few %), which makes problematic the focussing of such ions to the submicron spots required for REM. To circumvent this problem, we have invented ion electron emission microscopy (IEEM). One can perform REM with the IEEM system without focussing or scanning the ion beam. This is because the position on the sample where each ion strikes is determined by projecting ion-induced secondary electrons at high magnification onto a single electron position sensitive detector. This position signal is then correlated with each REM event. The IEEM system is now mounted along the beam line in an axial geometry so that the ions pass right through the electron detector (which is annular), and all of the electrostatic lenses used for projection. The beam then strikes the sample at normal incidence which results in maximum ion penetration and removes a parallax problem experienced in an earlier system. Details of both the RFQ-booster and the new axial IEEM system are given together with some of the initial results of performing REM on Sandia-manufactured radiation hardened integrated circuits.

  20. Evolution of Field-Aligned Electron and Ion Densities From Whistler Mode Radio Soundings During Quiet to Moderately Active Period and Comparisons With SAMI2 Simulations

    Science.gov (United States)

    Reddy, A.; Sonwalkar, V. S.; Huba, J. D.

    2018-02-01

    Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.

  1. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    Science.gov (United States)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  2. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  3. Bursts of electron waves modulated by oblique ion waves

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1984-01-01

    Experimental evidence is presented which shows small packets of electron plasma waves modulated by large amplitude obliquely propagating non-linear ion plasma waves. Very often the whole system is modulated by an oscillation near the ion gyro frequency or its harmonics. The ion waves seem to be similar to those measured in the current carrying auroral plasma. These results suggest that the generation of ion and electron waves in the auroral plasma may be correlated

  4. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  5. Electron emission during multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Meyer, F.W.; Zehner, D.M.

    1990-01-01

    Recent measurements of electron spectra for slow multicharged N ion-surface collisions are presented. The emphasis is on potential emission, i.e. the electron emission related to the neutralization of the ions. When using N ions that carry a K shell vacancy into the collision, characteristic K Auger electron emission from the projectiles is observed, as well as, for specific surfaces, target atom Auger transitions (resulting from vacancy transfer). Measurements of the intensity of these Auger transitions as a function of the time the ions spend above the surface can serve as a useful probe of the timescales characterizing the relevant neutralization processes. This technique is elucidated with the help of some computer simulations. It is shown that neutralization timescales required in the atomic ladder picture, in which neutralization takes place by resonant capture followed by purely intra-atomic Auger transitions, are too long to explain our experimental results. The introduction of additional neutralization/de-excitation mechanisms in the simulations leads to much better agreement with the experiments

  6. Electron-impact ionization of multicharged ions at ORNL: 1985--1992

    International Nuclear Information System (INIS)

    Gregory, D.C.; Bannister, M.E.

    1994-07-01

    Absolute cross sections are presented in graphs and tables for single ionization of forty-one ions, multiple ionization of four ions, and for dissociation and ionization of two molecular ions by electron impact. This memo is the third in a series of manuscripts summarizing previously published as well as unpublished ionization cross section measurements at ORNL; contents of the two previous memos are also referenced in this work. All work tabulated in this memo involved ion beams generated in the ORNL-ECR ion source and utilized the ORNL electron-ion crossed beams apparatus. Target ions range from atomic number Z = 8 (oxygen) to Z = 92 (uranium) in initial charge states from +1 to +16. Electron impact energies typically range from threshold to 1500 eV

  7. Dust ion-acoustic shock waves in magnetized pair-ion plasma with kappa distributed electrons

    Science.gov (United States)

    Kaur, B.; Singh, M.; Saini, N. S.

    2018-01-01

    We have performed a theoretical and numerical analysis of the three dimensional dynamics of nonlinear dust ion-acoustic shock waves (DIASWs) in a magnetized plasma, consisting of positive and negative ion fluids, kappa distributed electrons, immobile dust particulates along with positive and negative ion kinematic viscosity. By employing the reductive perturbation technique, we have derived the nonlinear Zakharov-Kuznetsov-Burgers (ZKB) equation, in which the nonlinear forces are balanced by dissipative forces (associated with kinematic viscosity). It is observed that the characteristics of DIASWs are significantly affected by superthermality of electrons, magnetic field strength, direction cosines, dust concentration, positive to negative ions mass ratio and viscosity of positive and negative ions.

  8. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  9. Electron capture by highly charged low-velocity ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Dubois, R.; Justiniano, E.; Gray, T.J.; Can, C.

    1982-01-01

    This paper describes the use of a fast heavy ion beam to produce, by bombardment of gaseous targets, highly-charged low-velocity recoil ions, and the use of these secondary ions in turn as projectiles in studies of electron capture and ionization in low-energy collision systems. The interest in collisions involving low-energy highly-charged projectiles comes both from the somewhat simplifying aspects of the physics which attend the long-range capture and from applications to fusion plasmas, astrophysics and more speculative technology such as the production of X-ray lasers. The ions of interest in such applications should have both electronic excitation and center-of-mass energies in the keV range and cannot be produced by simply stripping fast heavy ion beams. Several novel types of ion source have been developed to produce low-energy highly-charged ions, of which the secondary ion recoil source discussed in this paper is one. (Auth.)

  10. Electronic excitations in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Burgdoerfer, J.

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs

  11. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  12. Monte Carlo simulations of secondary electron emission due to ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mahady, Kyle [Univ. of Tennessee, Knoxville, TN (United States); Tan, Shida [Intel Corp., Santa Clara, CA (United States); Greenzweig, Yuval [Intel Israel Ltd., Haifa (Israel); Livengood, Richard [Intel Corp., Santa Clara, CA (United States); Raveh, Amir [Intel Israel Ltd., Haifa (Israel); Fowlkes, Jason D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rack, Philip [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes this study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.

  13. Electron inertia effects for an electron fluid model by the applied-B ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A V; Levchenko, S V [Kurchatov Institute, Moscow (Russian Federation). Nuclear Fusion Institute

    1997-12-31

    Numerical calculations within the framework of the one-dimensional vortex-like electron fluid model in applied-B ion diodes, taking account the electron inertia effects, are presented. The existence of the additional relation between the magnetic field and the electric potential offers an opportunity to reduce the ion diode problem to the system of the algebraic equations for the constants introduced. The ion current density in an ion diode is determined only by the magnetic flux cut out by the virtual cathode. As an illustration, the ion diode impedance for the KALIF device was calculated. (author). 2 figs., 6 refs.

  14. The structural design and the electron optics of a hybrid electron-ion gun

    International Nuclear Information System (INIS)

    Bas, E.B.; Gisler, E.; Stucki, F.

    1984-01-01

    This paper describes a new kind of a particle gun called the hybrid gun. It is able to deliver a finely focused electron or ion beam simply by reversing the polarity of the acceleration voltage. The detailed design features of the gun are given and the electron-ion optical properties are discussed. (author)

  15. Electron-cyclotron-resonance ion sources (review)

    International Nuclear Information System (INIS)

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs

  16. Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.

    2009-01-01

    Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.

  17. Electronic stopping in ion-fullerene collisions

    NARCIS (Netherlands)

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  18. Collective ion acceleration by relativistic electron beams in plasmas

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.

    1991-01-01

    A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena

  19. Sensitivity of Electron Transfer Mediated Decay to Ion Pairing.

    Science.gov (United States)

    Pohl, Marvin N; Richter, Clemens; Lugovoy, Evgeny; Seidel, Robert; Slavíček, Petr; Aziz, Emad F; Abel, Bernd; Winter, Bernd; Hergenhahn, Uwe

    2017-08-17

    Ion pairing in electrolyte solutions remains a topic of discussion despite a long history of research. Very recently, nearest-neighbor mediated electronic de-excitation processes of core hole vacancies (electron transfer mediated decay, ETMD) were proposed to carry a spectral fingerprint of local solvation structure and in particular of contact ion pairs. Here, for the first time, we apply electron-electron coincidence detection to a liquid microjet, and record ETMD spectra of Li 1s vacancies in aqueous solutions of lithium chloride (LiCl) in direct comparison to lithium acetate (LiOAc). A change in the ETMD spectrum dependent on the electrolyte anion identity is observed for 4.5 M salt concentration. We discuss these findings within the framework of the formation and presence of contact ion pairs and the unique sensitivity of ETMD spectroscopy to ion pairing.

  20. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  1. Enhanced electron/fuel-ion equilibration through impurity ions: Studies applicable to NIF and Omega

    Science.gov (United States)

    Petrasso, R. D.; Sio, H.; Kabadi, N.; Lahmann, B.; Simpson, R.; Parker, C.; Frenje, J.; Gatu Johnson, M.; Li, C. K.; Seguin, F. H.; Rinderknecht, H.; Casey, D.; Grabowski, P.; Graziani, F.; Taitano, W.; Le, A.; Chacon, L.; Hoffman, N.; Kagan, G.; Simakov, A.; Zylstra, A.; Rosenberg, M.; Betti, R.; Srinivasan, B.; Mancini, R.

    2017-10-01

    In shock-driven exploding-pushers, a platform used extensively to study multi-species and kinetic effects, electrons and fuel ions are far out of equilibrium, as reflected by very different temperatures. However, impurity ions, even in small quantities, can couple effectively to the electrons, because of a Z2 dependence, and in turn, impurity ions can then strongly couple to the fuel ions. Through this mechanism, electrons and fuel-ions can equilibrate much faster than they otherwise would. This is a quantitative issue, depending upon the amount and Z of the impurity. For NIF and Omega, we consider the role of this process. Coupled non-linear equations, reflecting the temperatures of the three species, are solved for a range of conditions. Consideration is also given to ablatively driven implosions, since impurities can similarly affect the equilibration. This work was supported in part by DOE/NNSA DE-NA0002949 and DE-NA0002726.

  2. Fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons

    International Nuclear Information System (INIS)

    Sabry, R.; Shukla, P. K.; Moslem, W. M.

    2009-01-01

    Properties of fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive the energy integral equation with a new Sagdeev potential. The latter is analyzed to examine the existence regions of the solitary pulses. It is found that the solitary excitations strongly depend on the mass and density ratios of the positive and negative ions as well as the nonthermal electron parameter. Numerical solution of the energy integral equation clears that both positive and negative potentials exist together. It is found that faster solitary pulses are taller and narrower. Furthermore, increasing the electron nonthermality parameter (negative-to-positive ions density ratio) decreases (increases) the localized excitation amplitude but increases (decreases) the pulse width. The present model is used to investigate the solitary excitations in the (H + ,O 2 - ) and (H + ,H - ) plasmas, where they are presented in the D- and F-regions of the Earth's ionosphere. This investigation should be helpful in understanding the salient features of the fully nonlinear ion-acoustic solitary waves in space and in laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.

  3. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  4. Ion and electron beam studies and applications of natural and synthetic diamonds

    International Nuclear Information System (INIS)

    Sellschop, J.P.F.; Connell, S.H.; Sideras-Haddad, E.; Stemmet, M.C.; Naidoo, S.; Bharuth-Ram, K.; Haricharun, H.

    1992-01-01

    'Nuclear' probes are shown to be powerful diagnostic analytical tools for the interrogation of diamond, whether natural or synthetic. The full sweep of such probes ranges from electrons to heavy ions, and spans energies over the keV to GeV range. Neutrons are singularly appropriate for the bulk trace element analysis of diamond, while charged particle (activation) analysis is appropriate for lighter element determination, and for surface and depth profiling specification. Energetic ions are effectively deployed for the study of the amorpisation and extrusion of diamond, and for ion implantation with the view to the production of devices in diamond. Resonant nuclear reactions are used effectively in establishing the 'macroscopic' distribution of dopants, while the used of pulsed ion beams in time dependent perturbed angular distribution studies gives information on 'microscopic' lattice location of impurities. Ion channeling in diamond sets near-theoretical parameterization of Lindhard channeling theory. Electron and positron channeling is interesting in its own right, and in the former case is shown to give rise to channeling radiation for few-MeV electron energies. At GeV electron energies, channeling is important as a powerful, polarized monochromatic photon source. Muons are an elegant tool in diamond studies, and the formation of muonium permits of (radiation damage-free) hydrogen-equivalent studies. Two relatively unused nuclear techniques, Moessbauer spectroscopy and Positron Annihilation, are shown to give unique information on diamond. Finally the use of diamond as a detector of radiation is indicated. (author)

  5. Electron detachment in ion-atom collisions

    International Nuclear Information System (INIS)

    Vreugd, C. de.

    1980-01-01

    The electron detachment process that occurs in negative ion-atom collisions is investigated. Differential cross sections were measured for the collisions of F - , Cl - , Br - , I - on He, Ne, Ar, Kr, Xe, Na and K. Electron energy distributions were obtained for some of the systems. (Auth.)

  6. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  7. A new approach to nuclear microscopy: The ion-electron emission microscope

    International Nuclear Information System (INIS)

    Doyle, B.L.; Vizkelethy, G.; Walsh, D.S.; Senftinger, B.; Mellon, M.

    1998-01-01

    A new multidimensional high lateral resolution ion beam analysis technique, Ion-Electron Emission Microscopy or IEEM is described. Using MeV energy ions, IEEM is shown to be capable of Ion Beam Induced Charge Collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IIEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion

  8. Ion accumulation in an electron plasma confined on magnetic surfaces

    International Nuclear Information System (INIS)

    Berkery, John W.; Marksteiner, Quinn R.; Pedersen, Thomas Sunn; Kremer, Jason P.

    2007-01-01

    Accumulation of ions can alter and may destabilize the equilibrium of an electron plasma confined on magnetic surfaces. An analysis of ion sources and ion content in the Columbia Non-neutral Torus (CNT) [T.S. Pedersen, J.P. Kremer, R.G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgreen, and X. Sarasola, Fusion Sci. Technol. 50, 372 (2006)] is presented. In CNT ions are created preferentially at locations of high electron temperature, near the outer magnetic surfaces. A volumetric integral of n e ν iz gives an ion creation rate of 2.8x10 11 ions/s. This rate of accumulation would cause neutralization of a plasma with 10 11 electrons in about half a second. This is not observed experimentally, however, because currently in CNT ions are lost through recombination on insulated rods. From a steady-state balance between the calculated ion creation and loss rates, the equilibrium ion density in a 2x10 -8 Torr neutral pressure, 7.5x10 11 m -3 electron density plasma in CNT is calculated to be n i =6.2x10 9 m -3 , or 0.8%. The ion density is experimentally measured through the measurement of the ion saturation current on a large area probe to be about 6.0x10 9 m -3 for these plasmas, which is in good agreement with the predicted value

  9. Numerical simulation methods for electron and ion optics

    International Nuclear Information System (INIS)

    Munro, Eric

    2011-01-01

    This paper summarizes currently used techniques for simulation and computer-aided design in electron and ion beam optics. Topics covered include: field computation, methods for computing optical properties (including Paraxial Rays and Aberration Integrals, Differential Algebra and Direct Ray Tracing), simulation of Coulomb interactions, space charge effects in electron and ion sources, tolerancing, wave optical simulations and optimization. Simulation examples are presented for multipole aberration correctors, Wien filter monochromators, imaging energy filters, magnetic prisms, general curved axis systems and electron mirrors.

  10. Multiple-electron processes in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs

  11. TARGET EXCITATION IN BARE ION XE/AR COLLISIONS STUDIED BY ELECTRON TARGET ION COINCIDENCES

    NARCIS (Netherlands)

    DENIJS, G; HOEKSTRA, R; MORGENSTERN, R

    We present electron spectra resulting from collisions of bare ions N-15(7+) and C-13(6+) on Ar and the charge state distribution of target ions resulting from C-13(6+)-Xe collisions. From both type of experiments we find evidence that electron capture accompanied by target excitation is an important

  12. Developments at an electrostatic cryogenic storage ring for electron-cooled keV energy ion beams

    International Nuclear Information System (INIS)

    Vogel, Stephen

    2016-01-01

    This work is devoted to final setup activities and the commissioning of an electrostatic cryogenic storage ring (CSR) at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. The first cryogenic operation of CSR in 2015 has been documented and characterized using a set of non-destructive beam diagnostic tools developed within this work. These are (1) the current pick-up system for the determination of the current of the stored ion beam and its velocity, (2) a position pick-up system for measuring the transverse position of the ion beam center at six symmetric locations of the storage ring circumference, and (3) a Schottky pick-up system for the monitoring of coasting ion beams. Despite the requirements imposed by the cryogenic operation, the developed diagnostic system demonstrated its full functionality. First characterizations of the storage ring properties and the performance of the diagnostic system are presented. Based on previous work, an electron cooling system for CSR has been developed and largely realized. With the implementation into CSR in 2016, the electron cooler will enhance the storage ring into a unique experimental facility for electron-ion collision studies. With this CSR is on the track to become the first cryogenic storage ring featuring actively cooled ion beams.

  13. Laser-induced electron--ion recombination used to study enhanced spontaneous recombination during electron cooling

    International Nuclear Information System (INIS)

    Schramm, U.; Wolf, A.; Schuess ler, T.; Habs, D.; Schwalm, D.; Uwira, O.; Linkemann, J.; Mueller, A.

    1997-01-01

    Spontaneous recombination of highly charged ions with free electrons in merged velocity matched electron and ion beams has been observed in earlier experiments to occur at rates significantly higher than predicted by theoretical estimates. To study this enhanced spontaneous recombination, laser induced recombination spectra were measured both in velocity matched beams and in beams with well defined relative velocities, corresponding to relative electron-ion detuning energies ranging from 1 meV up to 6.5 meV where the spontaneous recombination enhancement was found to be strongly reduced. Based on a comparison with simplified calculations, the development of the recombination spectra for decreasing detuning energies indicates additional contributions at matched velocities which could be related to the energy distribution of electrons causing the spontaneous recombination rate enhancement

  14. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  15. New method of ionization energy calculation for two-electron ions

    International Nuclear Information System (INIS)

    Ershov, D.K.

    1997-01-01

    A new method for calculation of the ionization energy of two-electron ions is proposed. The method is based on the calculation of the energy of second electron interaction with the field of an one-electron ion the potential of which is well known

  16. Relativistic nonlinear waves of cyclotron in electron and electron-ion plasmas

    International Nuclear Information System (INIS)

    Bruno, R.

    1981-12-01

    Dispersion relations for electron-cyclotron and ion-cyclotron waves are examined in two models of plasmas, the first propagating in fluent electronic plasmas (''streaming'') as well as in fluent electron-ionic plasmas, and the last in fluent electron-ionic plasmas. The identification of the propagation modes is realized with the aid of a special technique of polinomial expantion of the dispersion relation in the limit of large frequencies and short wavelenghts. The analisys so developed on these dispersion relations for fluent plasmas show that: (i) the wave amplitudes are frequency dependent; (ii) the ''resonances'' frequencies of the respective estationary plasmas must be re-examined with the relations between wave amplitudes and the propagation frequencies near these frequencies; (iii) the electric field amplitudes for the non-linear waves of electron-cyclotron and ion-cyclotron go to zero in the limits of the respective cyclotron frequencies in both fluent plasma models. (M.W.O.) [pt

  17. Calculations on Electron Capture in Low Energy Ion-Molecule Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, P.C. [Oak Ridge National Lab., TN (United States); Zygelman, B. [W.M. Keck Lab. for Computational Physics, Univ. of Nevada, Las Vegas, NV (United States); Kirby, K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    1997-12-31

    Recent progress on the application of a quantal, molecular-orbital, close-coupling approach to the calculation of electron capture in collisions of multiply charged ions with molecules is discussed. Preliminary results for single electron capture by N{sup 2+} with H{sub 2} are presented. Electron capture by multiply charged ions colliding with H{sub 2} is an important process in laboratory and astrophysical plasmas. It provides a recombination mechanism for multiply charged ions in x-ray ionized astronomical environments which may have sparse electron and atomic hydrogen abundances. In the divertor region of a tokamak fusion device, charge exchange of impurity ions with H{sub 2} plays a role in the ionization balance and the production of radiative energy loss leading to cooling, X-ray and ultraviolet auroral emission from Jupiter is believed to be due to charge exchange of O and S ions with H{sub 2} in the Jovian atmosphere. Solar wind ions interacting with cometary molecules may have produced the x-rays observed from Comet Hyakutake. In order to model and understand the behavior of these environments, it is necessary to obtain total, electronic state-selective (ESS), and vibrational (or rotational) state-selective (VSS) capture cross sections for collision energies as low as 10 meV/amu to as high as 100 keV/amu in some instances. Fortunately, charge transfer with molecular targets has received considerable experimental attention. Numerous measurements have been made with flow tubes, ion traps, and ion beams. Flow tube and ion trap studies generally provide information on rate coefficients for temperatures between 800 K and 20,000 K. In this article, we report on the progress of our group in implementing a quantum-mechanical Molecular Orbital Close Coupling (MOCC) approach to the study of electron capture by multiply charged ions in collisions with molecules. We illustrate this with a preliminary investigation of Single Electron Capture (SEC) by N{sup 2+} with H

  18. Structure of very heavy few-electron ions - new results from the heavy ion storage ring, ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Bosch, F.; Kandler, T.

    1993-08-01

    The heavy ion synchrotron/storage ring facility at GSI, SIS/ESR, provides intense beams of cooled, highly-charged ions up to naked uranium (U 92+ ). By electron capture during ion-atom collisions in the gas target of the ESR or by recombination at ion-electron encounters in the ''electron cooler'' excited states are populated. The detailed structure of very heavy one-, two- and three-electron ions is studied. The different mechanisms leading to the excited states are described, as well as the new experimental tools now available for a detailed spectroscopy of these interesting systems. Special emphasis is given to X-ray transitions to the groundstates in H- and He-like systems. For the heaviest species the groundstate Lambshift can now be probed on an accuracy level of better than 10% using solid-state X-ray detectors. Applying dispersive X-ray analyzing techniques, this accuracy will certainly be improved in future. However, utilizing the dielectronic resonances for a spectroscopy, the structure in Li-like heavy ions can already be probed now on the sub eV level. (orig.)

  19. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1998-01-01

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ , and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ , and U 34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ , and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  20. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    1999-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  1. Flow shear stabilization of hybrid electron-ion drift mode in tokamaks

    International Nuclear Information System (INIS)

    Bai, L.

    2001-01-01

    In this paper, a model of sheared flow stabilization on hybrid electron-ion drift mode is proposed. At first, in the presence of dissipative trapped electrons, there exists an intrinsic oscillation mode in tokamak plasmas, namely hybrid dissipative trapped electron-ion temperature gradient mode (hereafter, called as hybrid electron-ion drift mode). This conclusion is in agreement with the observations in the simulated tokamak experiment on the CLM. Then, it is found that the coupling between the sheared flows and dissipative trapped electrons is proposed as the stabilization mechanism of both toroidal sheared flow and poloidal sheared flow on the hybrid electron-ion drift mode, that is, similar to the stabilizing effect of poloidal sheared flow on edge plasmas in tokamaks, in the presence of both dissipative trapped electrons and toroidal sheared flow, large toroidal sheared flow is always a strong stabilizing effect on the hybrid electron-ion drift mode in internal transport barrier location, too. This result is consistent with the experimental observations in JT-60U. (author)

  2. Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations

    International Nuclear Information System (INIS)

    Waltz, R. E.; Candy, J.; Fahey, M.

    2007-01-01

    Electron temperature gradient (ETG) transport is conventionally defined as the electron energy transport at high wave number (high-k) where ions are adiabatic and there can be no ion energy or plasma transport. Previous gyrokinetic simulations have assumed adiabatic ions (ETG-ai) and work on the small electron gyroradius scale. However such ETG-ai simulations with trapped electrons often do not have well behaved nonlinear saturation unless fully kinetic ions (ki) and proper ion scale zonal flow modes are included. Electron energy transport is separated into ETG-ki at high-k and ion temperature gradient-trapped electron mode (ITG/TEM) at low-k. Expensive (more computer-intensive), high-resolution, large-ion-scale flux-tube simulations coupling ITG/TEM and ETG-ki turbulence are presented. These require a high effective Reynolds number R≡[k(max)/k(min)] 2 =μ 2 , where μ=[ρ si /ρ si ] is the ratio of ion to electron gyroradii. Compute times scale faster than μ 3 . By comparing the coupled expensive simulations with (1) much cheaper (less compute-intensive), uncoupled, high-resolution, small, flux-tube ETG-ki and with (2) uncoupled low-resolution, large, flux-tube ITG/TEM simulations, and also by artificially turning ''off'' the low-k or high-k drives, it appears that ITG/TEM and ETG-ki transport are not strongly coupled so long as ETG-ki can access some nonadiabatic ion scale zonal flows and both high-k and low-k are linearly unstable. However expensive coupled simulations are required for physically accurate k-spectra of the transport and turbulence. Simulations with μ≥30 appear to represent the physical range μ>40. ETG-ki transport measured in ion gyro-Bohm units is weakly dependent on μ. For the mid-radius core tokamak plasma parameters studied, ETG-ki is about 10% of the electron energy transport, which in turn is about 30% of the total energy transport (with negligible ExB shear). However at large ExB shear sufficient to quench the low-k ITG

  3. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  4. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    Science.gov (United States)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  5. Electron loss mechanisms in collisions of He+ ions with various targets

    International Nuclear Information System (INIS)

    Sant'Anna, M.M.; Melo, W.S.; Santos, A.C.F.; Sigaud, G.M.; Montenegro, E.C.

    1995-01-01

    The electron loss of high-velocity ions by neutral atoms is due to two different and competing mechanisms. In the screening mode, the electron loss is basically due to the nucleus-electron interaction, with the target electrons assuming the passive role of decreasing the Coulomb field of the target nucleus in the vicinity of the projectile active electron. For a fixed projectile velocity, this contribution is expected to give a non-linear dependence with the target atomic number Z 2 due to the incomplete screening at the impact parameter region where the projectile ionization is more likely to occur. Within first-order theories, if the screening is completely absent, the expected dependence would be Z 2 2 ; with screening, it should scale between Z 2 and Z 2 2 . On the other hand, in the antiscreening mode, where the loss is due to the action of the target electrons and the target nucleus plays no active role, the expected dependence would be approximately linear with Z 2 . Thus, for first-order theories, the expected overall dependence with Z 2 would be dominated by the screening mode as Z 2 increases. We have measured total electron-loss cross sections of He + ions impinging upon He, Ne, Ar, Kr and Xe targets in the energy range from 1.0 to 4.0 MeV to complement previous measurements and the results point towards a much smaller contribution from the screening mode than expected from first-order theories, possibly due to a saturation effect manifested only in the screening channel. (orig.)

  6. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  7. Simultaneous electron capture and excitation in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Graham, W.G.; Clark, M.; Shafroth, S.M.; Johnson, B.M.; Jones, K.; Meron, M.

    1982-01-01

    A review of recent efforts to observe simultaneous electron capture-and-K-shell excitation in ion-atom collisions is presented. This process which has been referred to as resonant-transfer-and-excitation (RTE), is qualitatively analogous to dielectronic recombination (inverse Auger transition) in free-electron-ion collisions, and, hence, is expected to be resonant. Experimentally, events having the correct signature for simultaneous capture-and-excitation are isolated by detecting projectile K x rays in coincidence with ions which capture a single electron. In a recent experiment involving 70-160 MeV S 13+ ions incident on Ar, a maximum was observed in the yield of projectile K x rays associated with electron capture. This maximum is attributed to simultaneous capture - and excitation. The position (120 MeV) and width (60 MeV) of the observed maximum are in good agreement with theoretical calculations. The data indicate that RTE is an important mechanism for inner-shell vacancy production in the energy range studied

  8. Fragmentation of cluster ions produced by electron impact ionization

    International Nuclear Information System (INIS)

    Parajuli, R.

    2001-12-01

    By studying fragmentation of dimer and cluster ions produced by electron impact ionization of a neutral cluster beam, it is possible to elucidate structure, stability and energetics of these species and the dynamics of the corresponding decay reactions. Fragmentation of carbon cluster ions formed from C 6 0 fullerenes, rare gas cluster ions and dimer ions and simple molecular cluster ions (oxygen and nitrogen) and dimer ions have been studied in this thesis using a high resolution two sector field mass spectrometer of reversed geometry and a NIER type electron impact ion source. Spontaneous decay reactions of triply and quadruply charged C 4 0 z + and C 4 1 z + cluster ions which are formed from C 6 0 fullerenes by electron impact ionization have been analyzed. A new but very weak decay reaction for the even-sized carbon clusters ions is observed, namely loss of C 3 . The odd-sized clusters ions preferentially decay by loss of carbon atoms and, to a lesser degree, trimers. A weak signal due to C 2 loss is observed for C 4 1 3 + ion. These decay channels are discussed in terms of the geometric structure of these metastable, relatively cold cluster ions. Measurements on metastable fragmentation of mass selected rare gas cluster ions (Ne, Ar, Kr) which are produced by electron impact ionization of a neutral rare gas cluster beam have been carried out. From the shape of the fragment ion peaks (MIKE scan technique) information about the distribution of kinetic energy that is released in the decay reaction can be deduced. In this study, the peak shape observed for cluster ions with sizes larger than five is Gaussian and thus from the peak width the mean kinetic energy release of the corresponding decay reactions can be calculated. Using finite heat bath theory, the binding energies of the decaying cluster ions are calculated from these data and have been compared to data in the literature where available. In addition to the decay reactions of cluster ions the metastable

  9. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  10. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P

    2013-01-01

    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  11. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    Science.gov (United States)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  12. Ion and electron swarm studies of relevance to plasma processing: positive ion-molecule and electron-molecule studies of SF6 and derivatives

    International Nuclear Information System (INIS)

    Atterbury, C.; Kennedy, R.A.; Critchley, A.D.J.; Mayhew, C.A.

    2002-01-01

    Many sequential and parallel chemical reactions involving charged species occur in a plasma. Data needed to model plasma's chemical and physical environment includes cross-section, rate coefficients, and product ion distribution of electron-molecule and ion-molecule processes. Such reactions are studied by our group away from the complexity of the plasma environment, with experimental techniques that allow us to concentrate on a single process, where usually only one or two species are involved. A molecule commonly used in plasma etching applications is SF 6 1,2 . We have performed a series of positive ion-molecule and electron attachment studies on SF 6 and related molecules, including SeF 6 , TeF 6 (i.e. XF 6 molecules), SF 5 CF 3 and SF 5 Cl (i.e. SF 5 X molecules) 3- (. The studies of ion reactions with and electron attachment to SF 6 and physically similar molecules are of value when seeking to understand the ion and electron chemistry occurring in SF 6 containing plasma. The result of these studies are presented in this poster. Ion-molecule reactions. Rate coefficients and ion product branching ratios have been determined with the Selected Ion Flow Tube (SIFT) at room temperature (300 K) for reactions of SF 5 X with the following twenty-two cations; Ne + , F + , Ar + , N 2 + , N + , CO + , CO 2 + , O + , N 2 O + , O 2 + , SF 4 + , CF 2 + , SF + , SF 2 + , NO 2 + , SF 5 + , NO + , CF + , CF 3 + , SF 3 + , and H 3 O + (listed in order of decreasing recombination energy). SF 2 + , NO 2 + , NO + , SF 3 + , and H 3 O + are found to be unreacted with both SF 5 CF 3 and SF 5 Cl. The majority of the other reactions proceed with rate coefficients that are close to the capture value. Those found to occur at rates significantly less than the capture mechanism value re the reactions of O 2 + , SF + , SF 5 + , and CF 3 + with SF 5 CF 3 , and SF 4 + and SF 5 + with SF 5 Cl. Several distinction processes are observed among the large number of reactions studied, including

  13. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  14. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  15. Electron cyclotron resonance (E.C.R.) multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1978-01-01

    High charge state ions can be produced by electron bombardment inside targets when the target electron density n (cm -3 ) multiplied by the ion transit time through the target tau (sec) is: n tau > 5.10 9 cm -3 sec. The relative velocity between electrons and ions determines the balance between stripping and capture i.e. the final ion charge state. (In a stripper foil fast ions interact with slow electrons involving typically n approximately 10 24 cm -3 , tau approximately 10 -14 sec). In the E.C.R. source a cold ion plasma created in a first stage diffuses slowly through a second stage containing a hot E.C.R. plasma with n > 3.10 11 cm -3 and tau > 10 -2 sec. Continuous beams of several μA of C 6+ N 7+ Ne 9+ A 11+ are extracted from the second stage with normalized emittances of approximately 0.5 π mm mrad. The absence of cathodes and plasma arcs makes the source very robust, reliable and well-fitted for cyclotron injection. A super conducting source is under development

  16. Swift-heavy ion track electronics (SITE)

    International Nuclear Information System (INIS)

    Fink, D.; Chadderton, L.T.; Hoppe, K.; Fahrner, W.R.; Chandra, A.; Kiv, A.

    2007-01-01

    An overview about the state-of-art of the development of a new type of nanoelectronics based on swift-heavy ions is given. Polymeric as well as silicon-based substrates have been used, and both latent and etched ion tracks play a role. Nowadays the interest has shifted from simple scaling-down of capacitors, magnets, transformers, diodes, transistors, etc. towards new types of ion track-based structures hitherto unknown in electronics. These novel structures, denoted by the acronyms 'TEAMS' (tunable electrically anisotropic material on semiconductor) and 'TEMPOS' (tunable electronic material with pores in oxide on semiconductor), may exhibit properties of tunable resistors, capacitors, diodes, sensors and transistors. Their general current/voltage characteristics are outlined. As these structures are often influenced by ambient physical or chemical parameters they also act as sensors. A peculiarity of these structures is the occurrence of negative differential resistances (NDRs) which makes them feasible for applications in tunable flip-flops, amplifiers and oscillators

  17. Swift-heavy ion track electronics (SITE)

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [Hahn-Meitner-Institute Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)]. E-mail: fink@hmi.de; Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, G.P.O. Box 4, ACT (Australia); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Fahrner, W.R. [Chair of Electronic Devices, Inst. of Electrotechnique, Fernuniversitaet, Hagen (Germany); Chandra, A. [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Kiv, A. [Ben Gurion University of the Negev, Israel, P.O. Box 653, Beer-Sheva, 84105 (Israel)

    2007-08-15

    An overview about the state-of-art of the development of a new type of nanoelectronics based on swift-heavy ions is given. Polymeric as well as silicon-based substrates have been used, and both latent and etched ion tracks play a role. Nowadays the interest has shifted from simple scaling-down of capacitors, magnets, transformers, diodes, transistors, etc. towards new types of ion track-based structures hitherto unknown in electronics. These novel structures, denoted by the acronyms 'TEAMS' (tunable electrically anisotropic material on semiconductor) and 'TEMPOS' (tunable electronic material with pores in oxide on semiconductor), may exhibit properties of tunable resistors, capacitors, diodes, sensors and transistors. Their general current/voltage characteristics are outlined. As these structures are often influenced by ambient physical or chemical parameters they also act as sensors. A peculiarity of these structures is the occurrence of negative differential resistances (NDRs) which makes them feasible for applications in tunable flip-flops, amplifiers and oscillators.

  18. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    Science.gov (United States)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  19. Radiative electron capture by channeled ions

    International Nuclear Information System (INIS)

    Pitarke, J.M.; Ritchie, R.H.; Tennessee Univ., Knoxville, TN

    1989-01-01

    Considerable experimental data have been accumulated relative to the emission of photons accompanying electron capture by swift, highly stripped atoms penetrating crystalline matter under channeling conditions. Recent data suggest that the photon energies may be less than that expected from simple considerations of transitions from the valence band of the solid to hydrogenic states on the moving ion. We have studied theoretically the impact parameter dependence of the radiative electron capture (REC) process, the effect of the ion's wake and the effect of capture from inner shells of the solid on the photon emission probability, using a statistical approach. Numerical comparisons of our results with experiment are made. 13 refs., 6 figs

  20. Electron emission from Inconel under ion bombardment

    International Nuclear Information System (INIS)

    Alonso, E.V.; Baragiola, R.A.; Ferron, J.; Oliva-Florio, A.

    1979-01-01

    Electron yields from clean and oxidized Inconel 625 surfaces have been measured for H + ,H 2 + ,He + ,O + and Ar + ions at normal incidence in the energy range 1.5 to 40 keV. These measurements have been made under ultrahigh vacuum and the samples were freed of surface contaminants by bombarding with high doses of either 20 keV H 2 + or 30 keV Ar + ions. Differences in yields of oxidized versus clean surfaces are explained in terms of differences in the probability that electrons internally excited escape upon reaching the surface. (author)

  1. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  2. Electron-electron correlation in two-photon double ionization of He-like ions

    Science.gov (United States)

    Hu, S. X.

    2018-01-01

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.

  3. Atomic physics measurements in an electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Beiersdorfer, P.; Bennett, C.

    1989-01-01

    An electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged ions (q ≤ 70/+/) for x-ray spectroscopy measurements. Recent measurements of transition energies and electron excitation cross sections for x-ray line emission are summarized. 13 refs., 10 figs

  4. Extreme ultra-violet emission spectroscopy of highly charged gadolinium ions with an electron beam ion trap

    International Nuclear Information System (INIS)

    Ohashi, Hayato; Nakamura, Nobuyuki; Sakaue, Hiroyuki A

    2013-01-01

    We present extreme ultra-violet emission spectra of highly charged gadolinium ions obtained with an electron beam ion trap at electron energies of 0.53–1.51 keV. The electron energy dependence of the spectra in the 5.7–11.3 nm range is compared with calculation with the flexible atomic code. (paper)

  5. Secondary electrons as probe of preequilibrium stopping power of ions penetrating solids

    International Nuclear Information System (INIS)

    Kroneberger, K.; Rothard, H.; Koschar, P.; Lorenzen, P.; Groeneveld, K.O.; Clouvas, A.; Veje, E.; Kemmler, J.

    1990-01-01

    The passage of ions through solid media is accompanied by the emission of low energy secondary electrons. At high ion velocities v p (i.e. v p > 10 7 cm/s) the kinetic emission of electrons as a result of direct Coulomb interaction between the ion and the target electron is the dominant initial production mechanism. The energy lost by the ion and, thus, transferred to the electrons is known as electronic stopping power in the solid. Elastic and inelastic interactions of primary, liberated electrons on their way through the bulk and the surface of the solid modify strongly their original energy and angular distribution and, in particular, leads to the transfer of their energy to further, i.e. secondary electrons (SE), such that the main part of the deposited energy of the ion is eventually over transferred to SE. It is, therefore, suggestive to assume a proportionality between the electronic stopping power S sm-bullet of the ion and the total SE yield g, i.e. the number of electrons ejected per ion. Following Sternglass the authors consider schematically for kinetic SE emission contributions from two extreme cases: (a) SEs produced mostly isotropically with large impact parameter, associated with an escape depth L SE from the solid; (b) SEs produced mostly unisotropically in forward direction with small impact parameter (δ-electrons), associated with a transport length L δ

  6. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  7. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  8. Numerical Investigation on Electron and Ion Transmission of GEM-based Detectors

    Directory of Open Access Journals (Sweden)

    Bhattacharya Purba

    2018-01-01

    Full Text Available ALICE at the LHC is planning a major upgrade of its detector systems, including the TPC, to cope with an increase of the LHC luminosity after 2018. Different R&D activities are currently concentrated on the adoption of the Gas Electron Multiplier (GEM as the gas amplification stage of the ALICE-TPC upgrade version. The major challenge is to have low ion feedback in the drift volume as well as to ensure a collection of good percentage of primary electrons in the signal generation process. In the present work, Garfield simulation framework has been adopted to numerically estimate the electron transparency and ion backflow fraction of GEM-based detectors. In this process, extensive simulations have been carried out to enrich our understanding of the complex physical processes occurring within single, triple and quadruple GEM detectors. A detailed study has been performed to observe the effect of detector geometry, field configuration and magnetic field on the above mentioned characteristics.

  9. Numerical Investigation on Electron and Ion Transmission of GEM-based Detectors

    Science.gov (United States)

    Bhattacharya, Purba; Sahoo, Sumanya Sekhar; Biswas, Saikat; Mohanty, Bedangadas; Majumdar, Nayana; Mukhopadhyay, Supratik

    2018-02-01

    ALICE at the LHC is planning a major upgrade of its detector systems, including the TPC, to cope with an increase of the LHC luminosity after 2018. Different R&D activities are currently concentrated on the adoption of the Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The major challenge is to have low ion feedback in the drift volume as well as to ensure a collection of good percentage of primary electrons in the signal generation process. In the present work, Garfield simulation framework has been adopted to numerically estimate the electron transparency and ion backflow fraction of GEM-based detectors. In this process, extensive simulations have been carried out to enrich our understanding of the complex physical processes occurring within single, triple and quadruple GEM detectors. A detailed study has been performed to observe the effect of detector geometry, field configuration and magnetic field on the above mentioned characteristics.

  10. Indirect processes in electron-ion scattering

    International Nuclear Information System (INIS)

    Bottcher, C.; Griffin, D.C.; Pindzola, M.S.; Phaneuf, R.A.

    1983-10-01

    A summary is given of an informal workshop held at Oak Ridge National Laboratory on June 22-23, 1983, in which the current status of theoretical calculations of indirect processes in electron-ion scattering was reviewed. Processes of particular interest in astrophysical and fusion plasmas were emphasized. Topics discussed include atomic structure effects, electron-impact ionization, and dielectronic recombination

  11. Indirect processes in electron-ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bottcher, C.; Griffin, D.C.; Pindzola, M.S.; Phaneuf, R.A.

    1983-10-01

    A summary is given of an informal workshop held at Oak Ridge National Laboratory on June 22-23, 1983, in which the current status of theoretical calculations of indirect processes in electron-ion scattering was reviewed. Processes of particular interest in astrophysical and fusion plasmas were emphasized. Topics discussed include atomic structure effects, electron-impact ionization, and dielectronic recombination.

  12. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  13. Effect of nonthermal electrons on oblique electrostatic excitations in a magnetized electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alinejad, H. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)

    2012-05-15

    The linear and nonlinear propagation of ion-acoustic waves are investigated in a magnetized electron-positron-ion (e-p-i) plasma with nonthermal electrons. In the linear regime, the propagation of two possible modes and their evolution are studied via a dispersion relation. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. Then, the Korteweg-de Vries equation describing the dynamics of ion-acoustic solitary waves is derived from a weakly nonlinear analysis. The influence on the solitary wave characteristics of relevant physical parameters such as nonthermal electrons, magnetic field, obliqueness, positron concentration, and temperature ratio is examined. It is observed that the increasing nonthermal electrons parameter makes the solitary structures much taller and narrower. Also, it is revealed that the magnetic field strength makes the solitary waves more spiky. The present investigation contributes to the physics of the nonlinear electrostatic ion-acoustic waves in space and laboratory e-p-i plasmas in which wave damping produces an electron tail.

  14. Electron and ion kinetics in a micro hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G J; Iza, F; Lee, J K [Electronics and Electrical Engineering Department, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2006-10-21

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall.

  15. Electron and ion kinetics in a micro hollow cathode discharge

    International Nuclear Information System (INIS)

    Kim, G J; Iza, F; Lee, J K

    2006-01-01

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall

  16. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  17. Ion production and trapping in electron rings

    International Nuclear Information System (INIS)

    Gluckstern, R.C.; Ruggiero, A.G.

    1979-08-01

    The electron beam in the VUV and X-ray rings of NSLS will ionize residual gas by collisions. Positive ions will be produced with low velocity, and will be attracted by the electron beam to the beam axis. If they are trapped in stable (transverse) orbits, they may accumulate, thereby increasing the ν/sub x,z/ of the individual electrons. Since the accumulated ions are unlikely to be of uniform density, a spread in ν/sub x,z/ will also occur. Should these effects be serious, it may be necessary to introduce clearing electrodes, although this may increase Z/n in the rings, thereby adding to longitudinal instability problems. The seriousness of the above effect for the VUV and X-ray rings is estimated

  18. Fragment ion and electron emission from C sub 6 sub 0 by fast heavy ion impact

    CERN Document Server

    Mizuno, T; Itoh, A; Tsuchida, H; Nakai, Y

    2003-01-01

    Correlation between electron emission and fragmentation of C sub 6 sub 0 was studied using 847keV Si sup + ions. Mass distribution of fragment ions, number distribution of secondary electrons, and final charge distribution of outgoing projectiles were successfully measured by means of a triple coincidence time-of-flight method. Strong correlation was observed for electron emission and fragmentation.

  19. Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas

    International Nuclear Information System (INIS)

    Masood, W.; Rizvi, H.

    2011-01-01

    Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the small amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.

  20. Characterization of electron temperature by simulating a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Yeong Heum [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Ghergherehchi, Mitra; Kim, Sang Bum; Jun, Woo Jung [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Lee, Jong Chul; Mohamed Gad, Khaled Mohamed [Sungkyunkwan University, WCU Department of Energy Science, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Namgoong, Ho [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of); Chai, Jong Seo, E-mail: jschai@skku.edu [Sungkyunkwan University, School of Information & Communication Engineering, 2066, Seobu-ro, Jangan-gu, Suwon-si (Korea, Republic of)

    2016-12-01

    Multicusp ion sources are used in cyclotrons and linear accelerators to produce high beam currents. The structure of a multicusp ion source consists of permanent magnets, filaments, and an anode body. The configuration of the array of permanent magnets, discharge voltage of the plasma, extraction bias voltage, and structure of the multicusp ion source body decide the quality of the beam. The electrons are emitted from the filament by thermionic emission. The emission current can be calculated from thermal information pertaining to the filament, and from the applied voltage and current. The electron trajectories were calculated using CST Particle Studio to optimize the plasma. The array configuration of the permanent magnets decides the magnetic field inside the ion source. The extraction bias voltage and the structure of the multicusp ion source body decide the electric field. Optimization of the electromagnetic field was performed with these factors. CST Particle Studio was used to calculate the electron temperature with a varying permanent magnet array. Four types of permanent magnet array were simulated to optimize the electron temperature. It was found that a 2-layer full line cusp field (with inverse field) produced the best electron temperature control behavior.

  1. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    International Nuclear Information System (INIS)

    Inoue, T.; Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-01-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz

  2. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  3. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  4. A simple photoionization scheme for characterizing electron and ion spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wituschek, A.; Vangerow, J. von; Grzesiak, J.; Stienkemeier, F.; Mudrich, M., E-mail: mudrich@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany)

    2016-08-15

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  5. Evaluation of electron beam stabilization for ion implant processing

    Science.gov (United States)

    Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.

    1999-06-01

    With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.

  6. Electron backstream to the source plasma region in an ion source

    International Nuclear Information System (INIS)

    Ohara, Y.; Akiba, M.; Arakawa, Y.; Okumura, Y.; Sakuraba, J.

    1980-01-01

    The flux of backstream electrons to the source plasma region increases significantly with the acceleration voltage of an ion beam, so that the back plate in the arc chamber should be broken for quasi-dc operation. The flux of backstream electrons is estimated at the acceleration voltage of 50--100 kV for a proton beam with the aid of ion beam simulation code. The power flux of backstream electrons is up to about 7% of the total beam output at the acceleration voltage of 75 kV. It is pointed out that the conventional ion sources such as the duoPIGatron or the bucket source which use a magnetic field for source plasma production are not suitable for quasi-dc and high-energy ion sources, because the surface heat flux of the back plate is increased by the focusing of backstream electrons and the removal of it is quite difficult. A new ion source which has an electron beam dump in the arc chamber is proposed

  7. Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Matteson, S.; Nicolet, M.A.

    1979-01-01

    The magnitude and characteristics of the currents which flow in the target and the chamber of an MeV ion backscattering spectrometer are examined. Measured energy distributions and the magnitude of high-energy secondary electron currents are reported. An empirical universal curve is shown to fit the energy distribution of secondary electrons for several combinations of ion energy, targets and ion species. The magnitude of tertiary electron currents which arise at the vacuum vessel walls is determined for various experimental situations and is shown to be non-negligible in many cases. An experimental arrangement is described which permits charge integrations to 1% arruracy without restricting access to the target as a Faraday cage does. (Auth.)

  8. Electron beam ion trap bi-annual report 1996/1997

    International Nuclear Information System (INIS)

    Schneider, D.

    1999-01-01

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U 92+ ), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime and

  9. A hybrid gyrokinetic ion and isothermal electron fluid code for astrophysical plasma

    Science.gov (United States)

    Kawazura, Y.; Barnes, M.

    2018-05-01

    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) Schekochihin et al. (2009) [9]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into AstroGK, an Eulerian δf gyrokinetics code specialized to a slab geometry Numata et al. (2010) [41]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant-Friedrichs-Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼ 2√{mi /me } ∼ 100 times faster than AstroGK with a single ion species and kinetic electrons where mi /me is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron-ion temperature ratio and plasma beta.

  10. Advances in electron cooling in heavy-ion storage rings

    International Nuclear Information System (INIS)

    Danared, H.

    1994-01-01

    The efficiency of electron cooling can be improved by reducing the temperature of the electrons. If the magnetic field at the location of the electron gun is stronger than in the region where the electrons interact with the ions, and the field gradient is adiabatic with respect to the cyclotron motion of the electrons, the resulting expansion of the electron beam reduces its transverse temperature by a factor equal to the ratio between the two fields. A ten times expanded electron beam was introduced in the CRYRING electron cooler in the summer of 1993, and similar arrangements have since then been made at the TSR ring in Heidelberg and at ASTRID in Aarhus. The reduction of the transverse electron temperature has increased cooling rates with large factors, and improves the energy resolution and increases count rates when the cooler is used as an electron target for ion-electron recombination experiments

  11. Electron-translation effects in heavy-ion scattering

    International Nuclear Information System (INIS)

    Heinz, U.; Greiner, W.; Mueller, B.

    1981-01-01

    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for delta electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

  12. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  13. Electron-ion-x-ray spectrometer system

    International Nuclear Information System (INIS)

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.

    1993-01-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays

  14. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  15. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.

    1989-01-01

    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs

  16. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  17. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  18. Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection

    Science.gov (United States)

    Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.; hide

    2016-01-01

    In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.

  19. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  20. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  1. X-ray spectroscopy of hydrogen-like ions in an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Tarbutt, M.R.; Crosby, D.; Silver, J.D. [Univ. of Oxford, Clarendon Lab. (United Kingdom); Myers, E.G. [Dept. of Physics, Florida State Univ., Tallahassee, FL (United States); Nakamura, N.; Ohtani, S. [ICORP, JST, Chofu, Tokyo (Japan)

    2001-07-01

    The X-ray emission from highly charged hydrogen-like ions in an electron beam ion trap is free from the problems of satellite contamination and Doppler shifts inherent in fast-beam sources. This is a favourable situation for the measurement of ground-state Lamb shifts in these ions. We present recent progress toward this goal, and discuss a method whereby wavelength comparison between transitions in hydrogenlike ions of different nuclear charge Z, enable the measurement of QED effects without requiring an absolute calibration.

  2. Ion collection efficiency of ionization chambers in electron beams

    International Nuclear Information System (INIS)

    Garcia, S.; Cecatti, E.R.

    1984-01-01

    When ionization chambers are used in pulsed radiation beams the high-density of ions produced per pulse permits ion recombination, demanding the use of a correction factor. An experimental technique using the charge collected at two different voltages permits the calculation of the ion collection efficiency. The ion collection efficiency of some common ionization chambers in pulsed electron beams were studied as a function of electron energy, dose rate and depth. Accelerators with magnetic scanning system, in which the instantaneous dose rate is much greater than the average dose rate, present a smaller collection efficiency than accelerators with scattering foil. The results lead to the introduction of a correction factor for ion recombination that is the reciprocal of the ion collection efficiency. It is also suggested a simple technique to connect an external variable DC power supply in a Baldwin Farmer dosemeter. (Author) [pt

  3. Electron capture by fast protons from helium-like ions

    International Nuclear Information System (INIS)

    Samanta, R.; Purkait, M.

    2011-01-01

    Four-body formalism of boundary corrected continuum intermediate state (BCCIS-4B) approximation have been applied to calculate the single-electron capture cross sections by fast protons through some helium-like ions in a large energy range from 30-1000 keV. In this model, distortion has been taken into account in the entrance channel. In the final channel, the passive electron plays the role of screening of the target ion. However, continuum states of the projectile and the electron in the field of the residual target ion are included. The comparison of the results is made with those of other theoretical investigations and experimental findings. The present calculated results are found to be in good agreement with the available experimental findings. (authors)

  4. Extraction of highly charged ions from the Berlin Electron Beam Ion Trap for interactions with a gas target

    International Nuclear Information System (INIS)

    Allen, F.I.; Biedermann, C.; Radtke, R.; Fussmann, G.

    2006-01-01

    Highly charged ions are extracted from the Berlin Electron Beam Ion Trap for investigations of charge exchange with a gas target. The classical over-the-barrier model for slow highly charged ions describes this process, whereby one or more electrons are captured from the target into Rydberg states of the ion. The excited state relaxes via a radiative cascade of the electron to ground energy. The cascade spectra are characteristic of the capture state. We investigate x-ray photons emitted as a result of interactions between Ar 17+ ions at energies ≤5q keV with Ar atoms. Of particular interest is the velocity dependence of the angular momentum capture state l c

  5. New electron-ion-plasma equipment for modification of materials and products surface

    International Nuclear Information System (INIS)

    Koval', N.N.

    2013-01-01

    Electron-ion-plasma treatment of materials and products, including surface clearing and activation, formation surface layers with changed chemical and phase structure, increased hardness and corrosion resistance; deposition of various functional coatings, has received a wide distribution in a science and industry. Widespread methods of ion-plasma modification of material and product surfaces are ion etching and activation, ion-plasma nitriding, arc or magnetron deposition of functional coatings, including nanostructured. The combination of above methods of surface modification allows essentially to improve exploitation properties of treated products and to optimize the characteristics of modified surfaces for concrete final requirements. For the purpose of a combination of various methods of ion-plasma treatment in a single work cycle at Institute of High Current Electronics of SB RAS (IHCE SB RAS) specialized technological equipment 'DUET', 'TRIO' and 'QUADRO' and 'KVINTA' have been developed. This equipment allow generating uniform low-temperature gas plasma at pressures of (0.1-1) Pa with concentration of (10 9 -10 11 ) cm -3 in volume of (0.1-1) m 3 . In the installations consistent realization of several various operations of materials and products treatment in a single work cycle is possible. The operations are preliminary heating and degassing, ion clearing, etching and activation of materials and products surface by plasma of arc discharges; chemicothermal treatment (nitriding) for formation of diffusion layer on a surface of treated sample using plasma of nonself-sustained low-pressure arc discharge; deposition of single- or multilayered superhard (≥40 GPa) nanocrystalline coatings on the basis of pure metals or their compounds (nitrides, carbides, carbonitrides) by the arc plasma-assisted method. For realization of the modes all installations are equipped by original sources of gas and metal plasma. Besides, in

  6. Z1 dependence of ion-induced electron emission from aluminum

    International Nuclear Information System (INIS)

    Alonso, E.V.; Baragiola, R.A.; Ferron, J.; Jakas, M.M.; Oliva-Florio, A.

    1980-01-01

    We have measured the electron emission yields γ of clean aluminum under bombardment with H + , H 2 + , D + , D 2 + , He + , B + , C + , N + , N 2 + , O + , O 2 + , F + , Ne + , S + , Cl + , Ar + , Kr + , and Xe + in the energy range 1.2--50 keV. The clean surfaces were prepared by in situ evaporation of high-purity Al under ultra-high-vacuum conditions. It is found that kinetic electron emission yields γ/sub k/, obtained after subtracting from the measured γ a contribution due to potential emission, are roughly proportional to the electronic stopping powers, for projectiles lighter than Al. For heavier projectiles there is a sizable contribution to electron emission from collisions involving rapidly recoiling target atoms, which increases with the mass of the projectile, and which dominates the threshold and near-threshold behavior of kinetic emission. The results, together with recently reported data on Auger electron emission from ion-bombarded Al show that the mechanism proposed by Parilis and Kishinevskii of inner-shell excitation and subsequent Auger decay is negligible for light ions and probably small for heavy ions on Al and in our energy range. We thus conclude that kinetic electron emission under bombardment by low-energy ions results mainly from the escape of excited valence electrons

  7. Experiments on ion space-charge neutralization with pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [CERN LHC-Division, Geneva (Switzerland)

    1997-12-31

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes was investigated experimentally. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant and may reach a factor of 4 for highly charged ions from an Al target. (author). 7 figs., 3 -refs.

  8. Hyperpolarizabilities of one and two electron ions under strongly coupled plasma

    International Nuclear Information System (INIS)

    Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard

    2013-01-01

    Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.

  9. Evaporative cooling of highly charged ions in EBIT [Electron Beam Ion Trap]: An experimental realization

    International Nuclear Information System (INIS)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-01-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs

  10. Effects of positron density and temperature on large amplitude ion-acoustic waves in an electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Nejoh, Y.N.

    1997-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with positrons. We have presented the region of existence of the ion-acoustic waves by analysing the structure of the pseudopotential. The region of existence sensitively depends on the positron to electron density ratio, the ion to electron mass ratio and the positron to electron temperature ratio. It is shown that the maximum Mach number increases as the positron temperature increases and the region of existence of the ion-acoustic waves spreads as the positron temperature increases. 12 refs., 6 figs

  11. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation

    Science.gov (United States)

    Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.

    2018-01-01

    The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. [Figure not available: see fulltext.

  12. Large amplitude ion-acoustic waves in a plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.; Sanuki, H.

    1995-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with an electron beam, by the pseudopotential method. The region of the existence of large amplitude ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the electron beam temperature, the ion temperature, the electrostatic potential, and the concentration of the electron beam density. It turns out that the region of the existence spreads as the beam temperature increases but the effect of the electron beam velocity is relatively small. New findings of large amplitude ion-acoustic waves in a plasma with an electron beam are predicted. copyright 1995 American Institute of Physics

  13. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  14. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    Kondo, K.; Okamura, M.; Yamamoto, T.; Sekine, M.

    2012-01-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  15. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  16. Electrical properties of irradiated PVA film by using ion/electron beam

    Science.gov (United States)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  17. Recent activities at the ORNL multicharged ion research facility (MIRF)

    International Nuclear Information System (INIS)

    Meyer, F.W.; Bannister, M.E.; Hale, J.W.; Havener, C.C.; Krause, H.F.; Vane, C.R.; Deng, S.; Draganic, I.N.; Harris, P.R.

    2012-01-01

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: 'M' can now refer to either 'Multicharged' or 'Molecular'. The paper is followed by the slides of the presentation. (authors)

  18. Parallel electric fields accelerating ions and electrons in the same direction

    International Nuclear Information System (INIS)

    Hultqvist, B; Lundin, R.

    1988-01-01

    In this contribution the authors present Viking observations of electrons and positive ions which move upward along the magnetic field lines with energies of the same order of magnitude. The authors propose that both ions and electrons are accelerated by an electric field which has low-frequency temporal variations such that the ions experience and average electrostatic potential drop along the magnetic field lines whereas the upward streaming electrons are accelerated in periods of downward pointing electric field which is quasi-static for the electrons and forces them to beam out of the field region before the field changes direction

  19. Faraday rotation in an electron-positron plasma containing a fraction of ions

    International Nuclear Information System (INIS)

    Hall, J.O.; Shukla, P.K.

    2005-01-01

    The Faraday rotation in a magnetized electron-positron plasma containing a fraction of ions is investigated by using a multifluid description. It is shown that the Faraday rotation for circularly polarized electromagnetic waves with frequencies much larger than the electron/positron plasma and electron gyrofrequencies is proportional to the ion number density and the magnitude of the ambient magnetic-field strength. The results are relevant for astrophysical observations and diagnostics of laboratory electron-positron-ion magnetoplasmas

  20. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    Science.gov (United States)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  1. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    International Nuclear Information System (INIS)

    Schneider, D.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA's astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th 80+ can be performed routinely. Measurements of the rates and cross sections for electron transfer from H 2 performed to determine the lifetime of HCI up to Xe q+ and Th q+ (35 ≤ q ≤ 80) have been studied at mean energies estimated to be ∼ 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events

  2. Theoretical study of the electronic structure of different states of the KRb+ molecular ion

    International Nuclear Information System (INIS)

    Korek, M.; Younis, G.

    2000-01-01

    Full text.The molecular activities in ultra-cold alkali atom trapping stimulate theoretical developments to compute relevant adiabatic potential curves, especially in the framework of the pseudopotential methods. For these methods the molecular ion KRb+ is treated as system with one active electron moving in a field of two ionic cores, where core valence electron interactions are presented by an effective potential. Potential energies have been calculated over a wide range of internuclear distance (5.0-60a o ) for the lowest states of symmetry 2 Σ, 2 Π, 2 Δ and Ω for the molecular ion KRb+. To avoid an over estimation of the dissociation energy the perturbative treatment is replaced by an l-dependent core-polarization potential of the Foucrault et al. For the one valence electron of the two considered atoms, we recalculated the polarization potential cut-off parameters r k l , and r R b l by taking l=0,1,2 and r i 2 =r i 3 . Molecular orbital for the molecular ion KRb+ were derived from Self Consistent Field calculations (SCF), and full valence Configuration Interaction (IC) calculations were performed. Extensive tables of energy values versus internuclear distance are displayed and molecular spectroscopic constants have been derived, for the first time, for the bound states with regular shape

  3. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  4. The influence of electron inertia on the modulational instability of ion-acoustic waves

    International Nuclear Information System (INIS)

    Parkes, E.J.

    1993-01-01

    The influence of electron inertia, ion streaming and weak relativistic effects on the modulational instability of ion-acoustic waves in a collisionless unmagnetized plasma is investigated. The derivative expansion method is used to derive a nonlinear Schroedinger equation, from which an instability criterion is deduced. When electron inertia is ignored, ion streaming and weak relativistic effects have little effect on the instability criterion. It is shown that when electron inertia is taken into account, the instability criterion is sensitive to weakly relativistic ion streaming, but not to the ratio of electron mass to ion mass. (Author)

  5. Strong electron dissipation by a mode converted ion hybrid (Bernstein) wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Ram, A.K.

    1996-01-01

    The fast wave approximation, extended to include the effects of electron dissipation, is used to calculate the power mode converted to the ion hybrid (Bernstein) wave in the vicinity of the ion hybrid resonance. The power absorbed from the fast wave by ion cyclotron damping and by electron Landau and transit time damping (including cross terms) is also calculated. The fast wave equation is solved for either the Budden configuration of a cut-off-resonance pair or the triplet configuration of cut-off-resonance-cut-off. The fraction mode converted is compared for the triplet case and the Budden multi-pass situation. The electron damping rate of the ion hybrid wave is obtained from the local dispersion relation and a ray tracing code is used to calculate the damping of the mode converted ion hybrid wave by the electrons as it propagates away from the resonance. Quantitative results for a range of conditions relevant to JET, TFTR and ITER are given. copyright 1996 American Institute of Physics

  6. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  7. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  8. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  9. Characteristics of electron-ion whistlers and their application to ionospheric probing

    International Nuclear Information System (INIS)

    Singh, S.N.; Tiwari, S.; Tolpadi, S.K.

    1976-01-01

    In this communication the effect of ion temperature on the propagation of electron-ion whistlers in the ionosphere is investigated. A general expression including the effect of ion temperature is derived for the group travel time for the electron-ion whistler as it travels from the base of the ionosphere to the satellite. A study of the dependence of the group travel time for the proton whislters. Further, from the expression for the group travel time including the effect of the ion temperature in conjunction with the generalized dispersion relation a relation for the cyclotron damping rate (both temporal and spatial) has been obtained. A detailed study if the cyclotron damping rate with travel time and ion temperature leads to the conclusion that the observed amplitude cutoff characteristics for the proton whistler can be explained on the basis of the mechanism of cyclotron damping. It is also shown that the knowledge of the group travel time of an electron-ion whistler can be used to estimate the ion temperature at the satellite

  10. Pseudoclassical approach to electron and ion density correlations in simple liquid metals

    International Nuclear Information System (INIS)

    Vericat, F.; Tosi, M.P.; Pastore, G.

    1986-04-01

    Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)

  11. Variations of plasmaspheric field-aligned electron and ion densities (90-4000 km) during quiet to moderately active (Kp < 4) geomagnetic conditions

    Science.gov (United States)

    Sonwalkar, V. S.; Reddy, A.

    2017-12-01

    Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.

  12. Electron ejection from solids induced by fast highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Schiwietz, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD; Xiao, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD

    1996-02-01

    Total electron-ejection yields and Auger-electron spectra for highly-charged ions interacting with different foil targets have been investigated in this work. New experimental and theoretical data for normal incident 5 MeV/u heavy ions on graphite and polypropylene foils are presented and discussed. These two materials have been selected as model systems representing conductors and insulator targets. Our measured projectile nuclear-charge dependence of the total electron yield from carbon foils clearly deviates from results of some transport models that predict a proportionality with respect to the electronic stopping power of the projectiles. Possible reasons for this deviation are discussed. We have also extended our measurements on cascade-induced C-KLL Auger-electron production. The corresponding results for 5 MeV/u S ions on carbon were obtained with a new method and agree fairly well with previous data. Furthermore, we have performed an experimental and theoretical investigation on the nuclear-track potential in insulators. Comparison of experimental data with theoretical results for N{sup 7+}, Ne{sup 9+}, Ar{sup 16+} and Ni{sup 23+} ions allow for an estimate of the electron/hole pair recombination time at the center of the track in polypropylene. (orig.).

  13. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  14. Electron transport effects in ion induced electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium)]. E-mail: adubus@ulb.ac.be; Pauly, N. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium); Roesler, M. [Karl-Pokern-Str. 12, D-12587 Berlin (Germany)

    2007-03-15

    Ion induced electron emission (IIEE) is usually described as a three-step process, i.e. electron excitation by the incident projectile, electron transport (and multiplication) and electron escape through the potential barrier at the surface. In many cases, the first step of the process has been carefully described. The second step of the process, i.e. electron transport and multiplication, has often been treated in a very rough way, a simple decreasing exponential law being sometimes used. It is precisely the aim of the present work to show the importance of a correct description of electron transport and multiplication in a theoretical calculation of IIEE. A short overview of the electron transport models developed for IIEE is given in this work. The so-called 'Infinite medium slowing-down model' often used in recent works is evaluated by means of Monte Carlo simulations. In particular, the importance of considering correctly the semi-infinite character of the medium and the boundary condition at the vacuum-medium interface is discussed. Quantities like the electron escape depth are also briefly discussed. This evaluation has been performed in the particular case of protons (25keV

  15. The g-factor of the bound electron in hydrogenic ions

    International Nuclear Information System (INIS)

    Quint, Wolfgang

    2001-01-01

    We report on the measurement of the g-factor of the electron bound in an atomic ion. A single hydrogenic ion ( 12 C 5+ ) is stored in a Penning trap. The electronic spin state of the ion is monitored via the continuous Stern-Gerlach effect in a quantum non-demolition measurement. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g-factor of the bound electron is obtained by varying the microwave frequency and counting the number of spin flips for a fixed time interval. Applications of the continuous Stern-Gerlach effect include high-accuracy tests of bound-state quantum electrodynamics (QED), the measurement of the atomic mass of the electron, the determination of the fine structure constant α, and the measurement of nuclear g-factors

  16. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  17. Electron-Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Science.gov (United States)

    Tan, Lun C.

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron-ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  18. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  19. Do Electrons and Ions Coexist in an EBIT?

    International Nuclear Information System (INIS)

    Lapierre, A.; Crespo Lopez-Urrutia, J.R.; Braun, J.; Brenner, G.; Bruhns, H.; Fischer, D.; Gonzalez Martinez, A.J.; Mironov, V.; Osborne, C. J.; Sikler, G.; Soria Orts, R.; Tawara, H.; Ullrich, J.; Yamazaki, Y.

    2005-01-01

    Detailed analysis of an extended exponential tail observed in the decay curve of the 2P3/2-2P1/2 magnetic dipole (M1) transition in boron-like Ar13+ provides evidence that electrons and ions might coexist in the same spatial region in the Heidelberg Electron Beam Ion Trap (HD-EBIT). On this basis, new trapping-cooling-recombination schemes for positron-antiproton plasmas are envisioned, integrated in a magnetic bottle configuration that should be able to trap the subsequently formed recombined cold antihydrogen. Moreover, the EBIT configuration, providing excellent spectroscopic access to the trapping region via seven view ports is shown to be well suited for performing precision spectroscopy of antiprotonic ions. Those might be generated either by recombination of antiprotons with neutral gas atoms or through radiative recombination and state-selective dielectronic-recombination-like processes with highly charged ions produced and stored in the EBIT simultaneously in a nested trap configuration

  20. Electron and ion distribution functions in magnetopause reconnection

    Science.gov (United States)

    Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.

    2015-12-01

    We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.

  1. Structure and electron-ion correlation of liquid germanium

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2005-08-15

    Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.

  2. Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.

    2004-01-01

    Electron cyclotron resonance (ECR) ion sources are scientific instruments particularly useful for physics: they are extensively used in atomic, nuclear, and high energy physics, for the production of multicharged beams. Moreover, these sources are also of fundamental interest for plasma physics, because of the very particular properties of the ECR plasma. This article describes the state of the art on the physics of the ECR plasma related to multiply charged ion sources. In Sec. I, we describe the general aspects of ECR ion sources. Physics related to the electrons is presented in Sec. II: we discuss there the problems of heating and confinement. In Sec. III, the problem of ion production and confinement is presented. A numerical code is presented, and some particular and important effects, specific to ECR ion sources, are shown in Sec. IV. Eventually, in Sec. V, technological aspects of ECR are presented and different types of sources are shown

  3. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1987-10-01

    Multiple electron capture is reported for Ca 17+ in Ar. Close collisions are defined by the observation of a coincident Ca K or Ar K x-ray. A large number of electrons is transferred to the projectile in a single close collision when the Ca ion projectile is of the order of the Ar L-shell electron velocity. The cross section for electron capture is reported

  4. An experimental program for collective acceleration of ions using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Vijayan, T.; Raychowdhury, P.; Iyengar, S.K.

    1992-01-01

    A program of collective ion acceleration using intense relativistic electron beam (IREB) of 0.25-1MeV, 6-80kA, 60ns on the Kilo Ampere Linear Injector (KALI) systems to accelerate light and heavy ions to high energies approaching GeV with currents over tens of amperes, is envisaged in this report. The accelerator will make use of the intense space-charge field of electron beam in vacuum for accelerating ions which are injected into it. For ion injection, various alternatives, such as, localized gas puff, dielectric insert, laser plasma, etc. have been considered as present and long-term objectives. Among the variety of diagnostic methods chosen for characterizing the accelerated ions include range-energy in foil, CR-39 track detector, nuclear activation technique and time-of-flight for energy and species determination; ion Faraday cup for current measurement; and Thomson parabola analyzer for determining the post-acceleration charge-state. In the proposed MAHAKALI collective accelerator, protons of energy over 10 MeV and higher charge state metal ions around a GeV are predicted using a REB of 1MeV, 30kA, 60ns from KALI-5000. In present experiments using KALI-200 with REB parameters of 250keV, 60kA, 80ns, protons over a MeV and carbon and fluorine ions respectively for 12MeV and 16MeV in significant currents have been accelerated. (author). 35 refs., figs., tabs

  5. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  6. Numerical model of electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  7. RF-driven ion source with a back-streaming electron dump

    Science.gov (United States)

    Kwan, Joe; Ji, Qing

    2014-05-20

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

  8. ELECTRON BEAM ION SOURCE PRE-INJECTOR DIGNOSTICS

    International Nuclear Information System (INIS)

    WILINSKI, M.; ALESSI, J.; BEEBE, E.; BELLAVIA, S.; PIKIN, A.

    2006-01-01

    A new ion pre-injector line is currently under design at Brookhaven National Laboratory (BNL) for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL,). Collectively, this new line is referred to as the EBIS project. This pre-injector is based on an Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (R-FQ) accelerator, and a linear accelerator. The new EBIS will be able to produce a wide range of heavy ion species as well as rapidly switching between species. To aid in operation of the pre-injector line, a suite of diagnostics is currently proposed which includes faraday cups, current transformers, profile monitors, and a pepperpot emittance measurement device

  9. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    Science.gov (United States)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}zz≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  10. Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation

    Science.gov (United States)

    Shamim, M. M.; Scheuer, J. T.; Fetherston, R. P.; Conrad, J. R.

    1991-11-01

    An experimental procedure has been developed to measure electron emission due to energetic ion bombardment during plasma source ion implantation. Spherical targets of copper, stainless steel, graphite, titanium alloy, and aluminum alloy were biased negatively to 20, 30, and 40 kV in argon and nitrogen plasmas. A Langmuir probe was used to detect the propagating sheath edge and a Rogowski transformer was used to measure the current to the target. The measurements of electron emission coefficients compare well with those measured under similar conditions.

  11. ENERGETIC PHOTON AND ELECTRON INTERACTIONS WITH POSITIVE IONS

    Energy Technology Data Exchange (ETDEWEB)

    Phaneuf, Ronald A. [UNR

    2013-07-01

    The objective of this research is a deeper understanding of the complex multi-electron interactions that govern inelastic processes involving positive ions in plasma environments, such as those occurring in stellar cares and atmospheres, x-ray lasers, thermonuclear fusion reactors and materials-processing discharges. In addition to precision data on ionic structure and transition probabilities, high resolution quantitative measurements of ionization test the theoretical methods that provide critical input to computer codes used for plasma modeling and photon opacity calculations. Steadily increasing computational power and a corresponding emphasis on simulations gives heightened relevance to precise and accurate benchmark data. Photons provide a highly selective probe of the internal electronic structure of atomic and molecular systems, and a powerful means to better understand more complex electron-ion interactions.

  12. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  13. Study of heliumlike neon using an electron beam ion trap

    International Nuclear Information System (INIS)

    Wargelin, B.J.; Kahn, S.M.; Beiersdorfer, P.

    1992-01-01

    The 2-to-1 spectra of several astrophysically abundant He-like ions are being studied using the Electron Beam Ion Trap (EBIT) at Lawrence Livermore National Laboratory. Spectra are recorded for a broad range of plasma parameters, including electron density, energy, and ionization balance. We describe the experimental equipment and procedure and present some typical data

  14. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  15. The status of the Electron Beam Ion Sources

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs

  16. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-12-31

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes` efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  17. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D. [ed.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  18. Accelerated electron exchange between U4+ and UO22+ by foreign metal ions

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Onitsuka, Hatsuki; Takeda, Kunihiko

    1990-01-01

    The rate constant of U 4+ -UO 2 2+ electron exchange (k et ) was increased by more than 100 times in the presence of various metal ions. The larger rate constant was observed for the smaller difference of the standard reduction potential strength between metal ion and UO 2 2+ ion (Δμ θ e ). Detailed investigation of the electron exchange reaction in the presence of Mo 5+ suggested that the mechanism of the electron transfer reaction catalyzed by metal ions is the outer-sphere type independent of U-Clcomplex ions. (author)

  19. Monte Carlo simulation of heavy ion induced kinetic electron emission from an Al surface

    CERN Document Server

    Ohya, K

    2002-01-01

    A Monte Carlo simulation is performed in order to study heavy ion induced kinetic electron emission from an Al surface. In the simulation, excitation of conduction band electrons by the projectile ion and recoiling target atoms is treated on the basis of the partial wave expansion method, and the cascade multiplication process of the excited electrons is simulated as well as collision cascade of the recoiling target atoms. Experimental electron yields near conventional threshold energies of heavy ions are simulated by an assumption of a lowering in the apparent surface barrier for the electrons. The present calculation derives components for electron excitations by the projectile ion, the recoiling target atoms and the electron cascades, from the calculated total electron yield. The component from the recoiling target atoms increases with increasing projectile mass, whereas the component from the electron cascade decreases. Although the components from the projectile ion and the electron cascade increase with...

  20. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  1. Ion-induced electron emission from clean metals

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Ferron, J.; Oliva-Florio, A.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1979-01-01

    We report recent experimental work on electron emission from clean polycrystalline metal surfaces under ion bombardment. We critically discuss existing theories and point out the presently unsolved problems. (orig.)

  2. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions (updated 1993)

    International Nuclear Information System (INIS)

    Tawara, H.

    1993-04-01

    Following our previous compilations [IPPJ-AM-45 (1986), NIFS-DATA-7 (1990)], bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1980-1992 are included. For easy finding references for particular combination of collision partners, a simple list is also provided. (author) 1542 refs

  3. Electron paramagnetic resonance of transition ions

    CERN Document Server

    Abragam, Anatole

    1970-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  4. Kinetic Simulation of Fast Electron Transport with Ionization Effects and Ion Acceleration

    International Nuclear Information System (INIS)

    Robinson, A. P. L.; Bell, A. R.; Kingham, R. J.

    2005-01-01

    The generation of relativistic electrons and multi-MeV ions is central to ultra intense (> 1018Wcm-2) laser-solid interactions. The production of energetic particles by lasers has a number of potential applications ranging from Fast Ignition ICF to medicine. In terms of the relativistic (fast) electrons the areas of interest can be divided into three areas. Firstly there is the absorption of laser energy into fast electrons and MeV ions. Secondly there is the transport of fast electrons through the solid target. Finally there is a transduction stage, where the fast electron energy is imparted. This may range from being the electrostatic acceleration of ions at a plasma-vacuum interface, to the heating of a compressed core (as in Fast Ignitor ICF).We have used kinetic simulation codes to study the transport stage and electrostatic ion acceleration. (Author)

  5. Effect of electron emission on an ion sheath structure

    International Nuclear Information System (INIS)

    Mishra, M K; Phukan, A; Chakraborty, M

    2014-01-01

    This article reports on the variations of ion sheath structures due to the emission of both hot and cold electrons in the target plasma region of a double plasma device. The ion sheath is produced in front of a negatively biased plate. The plasma is produced by hot filament discharge in the source region, and no discharge is created in the target region of the device. The plate is placed in the target (diffused plasma) region where cold electron emitting filaments are present. These cold electrons are free from maintenance of discharge, which is sustained in the source region. The hot ionizing electrons are present in the source region. Three important parameters are changed by both hot and cold electrons i.e. plasma density, plasma potential and electron temperature. The decrease in plasma potential and the increase in plasma density lead to the contraction of the sheath. (paper)

  6. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  7. Creation and dynamical co-evolution of electron and ion channel transport barriers

    International Nuclear Information System (INIS)

    Newman, D.E.

    2002-01-01

    A wide variety of magnetic confinement devices have found transitions to an enhanced confinement regime. Simple dynamical models have been able to capture much of the dynamics of these barriers however an open question has been the disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard ('ion channel' barrier. By adding to simple barrier model an evolution equation for electron fluctuations we can investigate the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. Barrier formation in the electron channel is even more sensitive to the alignment of the various gradients making up the sheared radial electric field than the ion barrier is. Electron channel heat transport is found to significantly increase after the formation of the ion channel barrier but before the electron channel barrier is formed. This increased transport is important in the barrier evolution. (author)

  8. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  9. Simulation studies of electron acceleration by ion ring distributions in solar flares

    International Nuclear Information System (INIS)

    McClements, K.G.; Bingham, R.; Su, J.J.; Dawson, J.M.; Spicer, D.S.

    1990-07-01

    Using a 21/2-D fully relativistic electromagnetic particle-in-cell code (PIC) we have investigated a potential electron acceleration mechanism in solar flares. The free energy is provided by ions which have a ring velocity distribution about the magnetic field direction. Ion rings may be produced by perpendicular shocks, which could in turn be generated by the super-Alfvenic motion of magnetic flux tubes emerging from the photosphere or by coronal mass ejections (CMEs). Such ion distributions are known to be unstable to the generation of lower hybrid waves, which have phase velocities in excess of the electron thermal speed parallel to the field and can therefore resonantly accelerate electrons in that direction. The simulations show the transfer of perpendicular ion energy to energetic electrons via lower hybrid wave turbulence. With plausible ion ring velocities, the process can account for the observationally inferred fluxes and energies of non-thermal electrons during the impulsive phase of flares. Our results also show electrostatic wave generation close to the plasma frequency: we suggest that this is due to bump-in-tail instability of the electron distribution. (author)

  10. Linear electrostatic waves in a three-component electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mugemana, A., E-mail: mugemanaa@gmail.com; Moolla, S. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lazarus, I. J. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Durban 4000 (South Africa)

    2014-12-15

    Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.

  11. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen

    1979-01-01

    The kinetic emission of secondary electrons from ion-bombarded solid surfaces is split into two contributions, a direct one caused by ionizing collisions between the bombarding ion and target atoms, and an indirect one originating from ionizing collisions undergone by recoil atoms with other target...... atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...

  12. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  13. Nonlinear waves in electron-positron-ion plasmas including charge separation

    Science.gov (United States)

    Mugemana, A.; Moolla, S.; Lazarus, I. J.

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.

  14. Modeling secondary electron emission from nanostructured materials in helium ion microscope

    International Nuclear Information System (INIS)

    Ohya, K.; Yamanaka, T.

    2013-01-01

    Charging of a SiO 2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers ( 2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO 2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO 2 layer

  15. Electron-Ion Beam Coupling Through Collective Interactions

    National Research Council Canada - National Science Library

    Wheelock, Adrian; Cooke, David L; Gatsonis, Nikolaos A

    2006-01-01

    .... It is shown that Coulomb collisions, which can act to match velocities through strong ion-electron collisions between particles with low relative velocities, are far too slow to explain the phenomenon...

  16. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    Science.gov (United States)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  17. Suppression secondary electrons from target surface under pulsed ion beams bombardment

    International Nuclear Information System (INIS)

    Yang Zhen; Peng Yufei; Long Jidong; Lan Chaohui; Dong Pan; Shi Jinshui

    2012-01-01

    The producing mechanism of secondary electrons from target surface under ion beams bombardment is discussed. Several methods to suppress the secondary electrons in special vacuum devices and their advantages and disadvantages are introduced. The ways of using self-bias and curved surface target are proposed and verified in the experiment. The results show that the secondary electrons can be effectively suppressed when the self-bias is larger than 80 V. The secondary electron yield decreases by using curved surface target instead of flat target. The secondary electron yield calculated from the experimental data is about 0.67, which is slightly larger than the value (0.58) from the literature due to the impurities of the ion beam and target surface. The effect of suppressing the electron countercurrent by the self-bias method is analyzed. The result shows that the self-bias method can not only suppress the secondary electrons from target surface under ion beams bombardment, but also suppress the electron countercurrent resulting from the instability of the pulsed power source. (authors)

  18. The ion-electron correlation function in liquid metals

    International Nuclear Information System (INIS)

    Takeda, S.; Tamaki, S.; Waseda, Y.

    1985-01-01

    The structure factors of liquid Zn at 723 K, Sn at 523 K and Bi at 573 K have been determined by neutron diffraction with sufficient accuracy and compared with those of X-ray diffraction. A remarkable difference in the structural information between the two methods is clearly found around the first peak region as well as in the slightly varied peak positions, and it is apparently larger than the experimental errors. With these facts in mind, a new method evaluating the ion-electron correlation function in liquid metals has been proposed by using the measured structural data of X-rays and neutrons, with the help of theoretical values of the electron-electron correlation function by he Utsumi-Ichimaru scheme. This method has been applied to liquid Zn, Sn and Bi, and the radial distribution function of valence electrons around an ion has been estimated, from which the ionic radius and the schematic diagram of the electron distribution map are obtained. The ionic radii evaluated in this work have been found to agree well with those proposed by Pauling. (author)

  19. Electrostatic analyzer for electron and ion energy in glow discharge tube

    International Nuclear Information System (INIS)

    Bong Kil Yeon.

    1984-01-01

    The project, the construction and use of an electrostatic energy analyser (Faraday Cup) are described explaining physically its working mechanism. The analyser was used in a glow discharge tube with air and an air-argon mixture. A chapter with the theory of the glow discharge is included. The ion and electron temperatures, the plasma potential and the distribution function for ions and electrons were measured. The electron temperature and plasma potential were also measured using a Langmuir probe and the results show reasonable agreement with the results of the analyser. Good fits of the experimental electron and ion distribution functions were obtained with Maxwellian distributions centered values near the plasma potential. Finally, we discuss the performance of the analyser compared to Langmuir probes. (author) [pt

  20. ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS

    NARCIS (Netherlands)

    MORGENSTERN, R

    1993-01-01

    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons,

  1. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments

    Directory of Open Access Journals (Sweden)

    Zhengfeng Fan

    2017-01-01

    Full Text Available The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into the hot spot are less than unity assuming electrons and ions have the same temperature [Meezan et al., Phys. Plasmas 22, 062703 (2015], which is not self-consistent because it can lead to negative ablator mixing into the hot spot. Actually, this non-consistency implies ion-electron non-equilibrium within the hot spot. From our study, we can infer that ion-electron non-equilibrium exists in high-foot implosions and the ion temperature could be ∼9% larger than the equilibrium temperature in some NIF shots.

  2. Ion assistance effects on electron beam deposited MgF sub 2 films

    CERN Document Server

    Alvisi, M; Della Patria, A; Di Giulio, M; Masetti, E; Perrone, M R; Protopapa, M L; Tepore, A

    2002-01-01

    Thin films of MgF sub 2 have been deposited by the ion-assisted electron-beam evaporation technique in order to find out the ion beam parameters leading to films of high laser damage threshold whose optical properties are stable under uncontrolled atmosphere conditions. It has been found that the ion-assisted electron-beam evaporation technique allows getting films with optical properties (refraction index and extinction coefficient) of high environmental stability by properly choosing the ion-source voltage and current. But, the laser damage fluence at 308 nm was quite dependent on the assisting ion beam parameters. Larger laser damage fluences have been found for the films deposited by using assisting ion beams delivered at lower anode voltage and current values. It has also been found that the films deposited without ion assistance were characterized by the highest laser damage fluence (5.9 J/cm sup 2) and the lowest environmental stability. The scanning electron microscopy analysis of the irradiated areas...

  3. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  4. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  5. Anomalous electron heating and energy balance in an ion beam generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guethlein, G.

    1987-04-01

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H/sub 2/ gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy.

  6. Precipitation in Ni-Si during electron and ion irradiation

    Science.gov (United States)

    Lucas, G. E.; Zama, T.; Ishino, S.

    1986-11-01

    This study was undertaken to further investigate how the nature of the irradiation condition affects precipitation in a dilute Ni-Si system. Transmission electron microscopy (TEM) discs of a solution annealed Ni alloy containing 5 at% Si were irradiated with 400 keV Ar + ions, 200 keV He + ions and 1 MeV electrons at average displacement rates in the range 2 × 10 -5dpa/s to 2 × 10 -3dpa/s at temperatures in the range 25°C to 450°C. Samples irradiated with electrons were observed in situ in an HVEM, while ion irradiated specimens were examined in a TEM after irradiation. Precipitation of Ni 3Si was detected by the appearance of superlattice spots in the electron diffraction patterns. It was found that as the mass of the irradiating species increased, the lower bound temperature at which Ni 3Si precipitation was first observed increased. For electron irradiation, the lower bound temperature at 2 × 10 -3dpa/s was ˜125°C, whereas for 400 keV Ar + irradiation at a similar average displacement rate the lower boundary was approximately 325°C. This suggests that cascade disordering competes with radiation induced solute segregation.

  7. Precipitation in Ni-Si during electron and ion irradiation

    International Nuclear Information System (INIS)

    Lucas, G.E.; Zama, T.; Ishino, S.

    1986-01-01

    This study was undertaken to further investigate how the nature of the irradiation condition affects precipitation in a dilute Ni-Si system. Transmission electron microscopy (TEM) discs of a solution annealed Ni alloy containing 5 at% Si were irradiated with 400 keV Ar + ions, 200 keV He + ions and 1 MeV electrons at average displacement rates in the range 2x10 -5 dpa/s to 2x10 -3 dpa/s at temperatures in the range 25 0 C to 450 0 C. Samples irradiated with electrons were observed in situ in an HVEM, while ion irradiated specimens were examined in a TEM after irradiation. Precipitation of Ni 3 Si was detected by the appearance of superlattice spots in the electron diffraction patterns. It was found that as the mass of the irradiating species increased, the lower bound temperature at which Ni 3 Si precipitation was first observed increased. For electron irradiation, the lower bound temperature at 2x10 -3 dpa/s was ∝125 0 C, whereas for 400 keV Ar + irradiation at a similar average displacement rate the lower boundary was approximately 325 0 C. This suggests that cascade disordering competes with radiation induced solute segregation. (orig.)

  8. A cold cathode of a gas-discharge electron-ion gun

    International Nuclear Information System (INIS)

    1974-01-01

    A cold cathode of a gas-discharge electron-ion gun is constructed in order to continuously replace the eroded material by feeding a wire or a set of coaxial cylinders in the spot where the ions hit the cathode. In this way, the form of the cathode and the electric-field configuration is preserved which guarantees the conservation of a sharp narrow electron beam profile

  9. Electron-capture negative-ion mass spectrometry: a technique for environmental contaminant identification

    International Nuclear Information System (INIS)

    Stemmler, E.A.

    1986-01-01

    Electron capture negative ion mass spectrometry (ECNIMS) is a method used to generate negative ions in a mass spectrometer by electron-molecule reactions. This technique facilitates the sensitive and selective detection of many toxic contaminants in environmental samples. Applications of this technique have been hindered by the limited understanding of instrumental parameters, by the questionable reproducibility of negative ion mass spectra, and by the inability to interpret negative ion mass spectra. Instrumental parameters which were important to control include the ion source temperature, ion source pressure, sample concentration, and the focus lens potential. The ability to obtain reproducible spectra was demonstrated by measurement of the spectrum of decafluorotriphenylphosphine (DFTPP) over a period of one year. Negative ion fragmentation mechanisms were studied by measuring the spectra of structurally related classes of compounds and isotopically labelled compounds. These results were combined with data obtained by other researchers. Fragmentations characteristic of particular functional groups or molecular structures have been summarized. From this data set, guidelines for the interpretation of electron capture negative ion mass spectra have been developed

  10. Spin-dependent electron emission from metals in the neutralization of He+ ions

    International Nuclear Information System (INIS)

    Alducin, M.; Roesler, M.; Juaristi, J.I.; Muino, R. Diez; Echenique, P.M.

    2005-01-01

    We calculate the spin-polarization of electrons emitted in the neutralization of He + ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He + ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He + ion neutralization process and on the electronic properties of the surface

  11. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  12. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  13. Secondary Electron Emission from Solid Hydrogen and Deuterium Resulting from Incidence of keV Electrons and Hydrogen Ions

    DEFF Research Database (Denmark)

    Sørensen, H.

    1977-01-01

    are small, in contrast to what is expected for insulating materials. One explanation is that the secondary electrons lose energy inside the target material by exciting vibrational and rotational states of the molecules, so that the number of electrons that may escape as secondary electrons is rather small....... The losses to molecular states will be largest for hydrogen, so that the SEE coefficients are smallest for solid hydrogen, as was observed. For the incidence of ions, the values of δ for the different molecular ions agree when the number of secondary electrons per incident atom is plotted versus the velocity...... or the stopping power of the incident particles. Measurements were also made for oblique incidence of H+ ions on solid deuterium for angles of incidence up to 75°. A correction could be made for the emission of secondary ions by also measuring the current calorimetrically. At largest energies, the angular...

  14. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  15. Electron capture into excited states of multi-charged ions

    International Nuclear Information System (INIS)

    Dijkkamp, D.

    1985-01-01

    This thesis deals with charge exchange reactions in slow collisions of multi-charged ions with neutral atoms or molecules. These reactions proceed very efficiently via a curve crossing mechanism, which leads to preferential population of excited states of the ion. The subsequent decay of these states leads to the emission of characteristic radiation. From wavelength resolved measurements of the absolute intensity of this radiation, cross sections for selective population of the excited (n,l-) states of the ion were determined. In addition, for some systems the total capture cross section was measured directly by means of charge state analysis of the secondary projectile ions. The role of charge exchange processes in fusion plasmas and in astrophysical plasmas is indicated. An experimental set-up is described with emphasis on the Electron Cyclotron Resonance Ion Source that was used in the experiments. Results for collisions of C 6+ , N 6+ , O 6+ and Ne 6+ with He, H 2 and Ar are presented as well as for electron capture from Li atoms by C 4+ and He 2+ . The interaction of the iso-electronic sequence C 4+ , N 5+ , O 6+ with atomic hydrogen, molecular hydrogen and helium is studied. First results for partial and total cross sections in collisions of fully stripped carbon, nitrogen and oxygen ions with atomic hydrogen are presented. These data are of particular importance for applications in fusion diagnostics. The data indicate that calculations of both molecular and atomic orbital type yield correct results, if an extended basis set is used. (Auth.)

  16. Molecular effects in ion-electron emission from clean metal surfaces

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Auciello, O.; Ferron, J.; Lantschner, G.; Oliva Florio, A.

    1978-01-01

    The authors have measured electron emission yields from clean Al, Cu and Ag under 2-50 keV H + , D + , H 2 + impact. It is found that molecular ion yields are lower than twice the yield of atomic ions. No isotope effects are observed for equal-velocity ions. (Auth.)

  17. Modeling ion sensing in molecular electronics

    International Nuclear Information System (INIS)

    Chen, Caroline J.; Smeu, Manuel; Ratner, Mark A.

    2014-01-01

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H + ), alkali metal cations (M + ), calcium ions (Ca 2+ ), and hydronium ions (H 3 O + ) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C 9 H 7 NS 2 ), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M + + QDT species containing monovalent cations, where M + = H + , Li + , Na + , or K + . Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from −0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry

  18. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions, updated 1990

    International Nuclear Information System (INIS)

    Tawara, H.

    1990-08-01

    Following a previous compilation, new bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1989 are surveyed. For easy finding references for particular combination of collision partners, a simple list is also provided. Furthermore, for convenience, a copy of the previous compilation (IPPJ-AM-45 (1986)) is included. (author) 1363 refs

  19. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    International Nuclear Information System (INIS)

    Panitzsch, Lauri

    2013-01-01

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet (∼45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to other

  20. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Panitzsch, Lauri

    2013-02-08

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet ({approx}45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to

  1. A new concept Tandem thermal dissociator/electron impact ion source for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1995-01-01

    An innovative thermal dissociation/electron impact ionization positive ion source is presently under design at the Oak Ridge National Laboratory for potential use for generating RIBs at the Holifield Radioactive Ion Beam Facility (HRIBF). Because of the low probability of simultaneously dissociating and efficiently ionizing the individual atomic constituents with conventional, hot-cathode, electron-impact ion sources, the ion beams extracted from these sources often appear as a mixture of several molecular sideband beams. In this way, the intensity of the species of interest is diluted. We have conceived an Ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high efficiency characteristics of an electron impact ionization source. If the concept proves to be a viable option, the source will be used as a complement to the electron beam plasma ion sources already in use at the HRIBF. The design features and principles of operation of the source are described in this article

  2. ELectron stopping of heavy ions in a matter

    International Nuclear Information System (INIS)

    Akhiezer, I.A.; Davydov, L.N.

    1978-01-01

    The theory of heavy ion stopping by electrons in solids is analyzed with an aim to establish which physical mechanisms are of importance at different ion velocity values v. The theory is presented for deep inelastic collisions taking the main part in stopping at v > Zsub(1)sup(1/3) v 0 (z 1 is the atomic number of the ion, v 0 is the Bohr velocity). Elastic scattering (relative to the incident ion) are investigated. It is shown that the contribution from these processes to the stopping cross-section is predominant at Zsub(1)sup(1/3) v 0 > v > Zsub(1)sup(2/3) v 0

  3. Saturation mechanism of decaying ion temperature gradient driven turbulence with kinetic electrons

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro

    2016-01-01

    We present full-f gyrokinetic simulations of the ion temperature gradient driven (ITG) turbulence including kinetic electrons. By comparing decaying ITG turbulence simulations with adiabatic and kinetic electron models, an impact of kinetic electrons on the ITG turbulence is investigated. It is found that significant electron transport occurs even in the ITG turbulence, and both ion and electron temperature profiles are relaxed. In steady states, both cases show upshifts of nonlinear critical ion temperature gradients from linear ones, while their saturation mechanisms are qualitatively different. In the adiabatic electron case, the ITG mode is stabilized by turbulence driven zonal flows. On the other hand, in the kinetic electron case, passing electrons transport shows fine resonant structures at mode rational surfaces, which generate corrugated density profiles. Such corrugated density profiles lead to fine radial electric fields following the neoclassical force balance relation. The resulting E × B shearing rate greatly exceeds the linear growth rate of the ITG mode. (author)

  4. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  5. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  6. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  7. Experimental investigations of single-electron detachment processes from H- ions colliding with MeV/u, highly charged ions

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Imai, T.; Uskov, D.B.; Presnyakov, L.P.

    1999-01-01

    Single electron detachment processes from negative hydrogen ions under collisions with MeV/u highly charged ions have been investigated using the so-called crossed-beams technique. The preliminary results of the single-electron detachment cross sections obtained is found to be in crude agreement with some empirical and theoretical estimations. (orig.)

  8. Double electron transfer in ion-atom collisions

    International Nuclear Information System (INIS)

    Martinez, A.E

    1990-01-01

    Continuum distorted wave (CDW) and CDW-EIS (electron-ion scattering) approximations are used to study the resonant double capture by collision of alpha particles on He targets for intermediate and high energies. Calculations of total cross-sections based on the Independent Event Approximation are presented. A good agreement with experimental results was found, even without the inclusion of the dynamic and angular correlation of captured electrons. (Author). 11 refs., 1 fig

  9. Determination of low-energy ion-induced electron yields from thin carbon foils

    International Nuclear Information System (INIS)

    Allegrini, Frederic; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter

    2003-01-01

    Ion beams crossing thin carbon foils can cause electron emission from the entrance and exit surface. Thin carbon foils are used in various types of time-of-flight (TOF) mass spectrometers to produce start pulses for TOF measurements. The yield of emitted electrons depends, among other parameters, on the energy of the incoming ion and its mass, and it has been experimentally determined for a few projectile elements. The electron emission yield is of great importance for deriving abundance ratios of elements and isotopes in space plasmas using TOF mass spectrometers. We have developed a detector for measuring ion-induced electron yields, and we have extended the electron yield measurements for oxygen to energies relevant for solar wind research. We also present first measurements of the carbon foil electron emission yield for argon and iron in the solar wind energy range

  10. Effect of ion and ion-beam mass ratio on the formation of ion-acoustic solitons in magnetized plasma in the presence of electron inertia

    International Nuclear Information System (INIS)

    Kalita, B. C.; Barman, S. N.

    2009-01-01

    The propagation of ion-acoustic solitary waves in magnetized plasma with cold ions and ion-beams together with electron inertia has been investigated theoretically through the Korteweg-de Vries equation. Subject to the drift velocity of the ion beam, the existence of compressive solitons is found to become extinct as α (=cold ion mass/ion-beam mass) tends to 0.01 when γ=0.985 (γ is the beam velocity/phase velocity). Interestingly, a transitional direction of propagation of solitary waves has been unearthed for change over, from compressive solitons to rarefactive solitons based on α and σ υ (=cosine of the angle θ made by the wave propagation direction ξ with the direction of the magnetic field) for fixed Q(=electron mass/ion mass). Further, the direction of propagation of ion-acoustic waves is found to be the deterministic factor to admit compressive or rarefactive solitons subject to beam outsource.

  11. Electron-impact ionization of heavy atomic ions

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Griffin, D.C.; Bottcher, C.

    1987-01-01

    General theoretical methods for the calculation of direct and indirect processes in the electron-impact ionization of heavy atomic ions are reviewed. Cross section results for Xe 8+ and U 89+ are presented. 12 refs., 4 figs

  12. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    Science.gov (United States)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  13. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  14. Electronic sputtering by swift highly charged ions of nitrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Caron, M.; Haranger, F.; Rothard, H.; Ban d'Etat, B.; Boduch, P.; Clouvas, A.; Potiriadis, C.; Neugebauer, R.; Jalowy, T.

    2001-01-01

    Electronic sputtering with heavy ions as a function of both electronic energy loss dE/dx and projectile charge state q was studied at the French heavy ion accelerator GANIL. Amorphous carbon (untreated, and sputter-cleaned and subsequently exposed to nitrogen) was irradiated with swift highly charged ions (Z=6-73, q=6-54, energy 6-13 MeV/u) in an ultrahigh vacuum scattering chamber. The fluence dependence of ion-induced electron yields allows to deduce a desorption cross-section σ which varies approximately as σ∼(dE/dx) 1.65 or σ∼q 3.3 for sputter-cleaned amorphous carbon exposed to nitrogen. This q dependence is close to the cubic charge dependence observed for the emission of H + secondary ions which are believed to be emitted from the very surface. However, the power law σ∼(dE/dx) 1.65 , related to the electronic energy loss gives the best empirical description. The dependence on dE/dx is close to a quadratic one thus rather pointing towards a thermal evaporation-like effect

  15. Power consumption in positive ion beam converter with electrostatic electron suppressor

    International Nuclear Information System (INIS)

    Hashimoto, Kiyoshi; Sugawara, Tohru

    1985-01-01

    The power recovery characteristics of an in-line direct beam converter provided with electrostatic electron suppressor were studied numerically by tracing the orbits of fast primary ions and secondary charged particles generated along their beam path by collision with background gas molecules. It is shown that, in reference to the electrostatic field potential at the point of impact, the energy distribution of secondary ions impinging on the suppressor has two peaks-one corresponding to a zone of high positive potential surrounding the collector and the other to one of slightly negative potential around the electron suppressor. Secondary electron emission from the suppressor is ascribed mainly to the latter peak, associated with impingement of slower secondary ions. Far much power consumed in secondary particle acceleration is spent for emitting electrons from the suppressor than for secondary ions generated by beam-gas collision. The upper limit of background pressure is discussed on the basis of criteria prescribed for restricting the power consumed in this secondary particle acceleration, as for practical convenience of electrode cooling. Numerical examples are given of calculations based on particle trajectory analysis of both primary ions and secondary particles, for the case of a 100 keV-proton sheet beam 10 cm thick of 35 mA/cm 2 current density. (author)

  16. Neoclassical electron heat conduction in tokamaks performed by the ions

    International Nuclear Information System (INIS)

    Ware, A.A.

    1987-07-01

    The increment to neoclassical ion heat conduction caused by electron collisions is shown to act like electron heat conduction since the energy is taken from and given back to the electrons at each diffusion step length. It can exceed electron neoclassical heat conduction by an order of magnitude

  17. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-04-01

    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  18. A new apparatus for electron-ion multiple coincidence momentum imaging spectroscopy

    International Nuclear Information System (INIS)

    Morishita, Y.; Kato, M.; Pruemper, G.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Oura, M.; Yamaoka, H.; Suzuki, I.H.; Saito, N.

    2006-01-01

    We have developed a new experimental apparatus for the electron-ion multiple coincidence momentum imaging spectroscopy in order to obtain the angular distributions of vibration-resolved photoelectrons from molecules fixed in space. The apparatus consists of a four-stage molecular supersonic jet and a spectrometer analyzing three-dimensional momenta of fragment ions and electrons in coincidence

  19. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  20. Evidence for electron-based ion generation in radio-frequency ionization.

    Science.gov (United States)

    Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2016-01-01

    Radio-frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi-volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive- and negative-ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4-T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We show that RF-generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6 F6 ) molecules to generate C6 F6 (●-) . Intensity of observed C6 F6 (●-) species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post-RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) for post-RF FT-ICR MS agreed with the previously reported value (1.60 (±0.30) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) from low-pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF-generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Status report on the development of a tubular electron beam ion source

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E.N.; Pikin, A.I.

    2004-01-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm 2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations

  2. Device for monitoring electron-ion ring parameters

    International Nuclear Information System (INIS)

    Tyutyunnikov, S.I.; Shalyapin, V.N.

    1982-01-01

    The invention is classified as the method of collective ion acceleration. The device for electron-ion ring parameters monitoring is described. The invention is aimed at increasing functional possibilities of the device at the expense of the enchance in the number of the ring controlled parameters. The device comprises three similar plane mirrors installed over accelerating tube circumference and a mirror manufactured in the form of prism and located in the tube centre, as well as the system of synchrotron radiation recording and processing. Two plane mirrors are installed at an angle of 45 deg to the vertical axis. The angle of the third plane mirror 3 α and that of prismatic mirror 2 α to the vertical axis depend on geometric parameters of the ring and accelerating tube and they are determined by the expression α=arc sin R K /2(R T -L), where R K - ring radius, R T - accelerating tube radius, L - the height of segment, formed by the mirror and inner surface of the accelerating tube. The device suggested permits to determine longitudinal dimensions of the ring, its velocity and the number of electrons and ions in the ring

  3. First experiments with the Greifswald electron-beam ion trap

    Science.gov (United States)

    Schabinger, B.; Biedermann, C.; Gierke, S.; Marx, G.; Radtke, R.; Schweikhard, L.

    2013-09-01

    The former Berlin electron-beam ion trap (EBIT) was moved to Greifswald. In addition to x-ray studies the setup will be used for the investigation of interaction processes between highly charged ions and atomic clusters such as charge exchange and fragmentation. The EBIT setup has now been reassembled and highly charged ions have been produced from Xe-Ar gas mixtures to study the ‘sawtooth effect’. In addition, the layout of the extraction beamline, the interaction region and product analysis for interaction studies with highly charged ions are presented.

  4. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Emadi, E.; Zahed, H. [Physics Department, Faculty of Science, Sahand University of Technology, 51335–1996 Tabriz (Iran, Islamic Republic of)

    2016-08-15

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.

  5. Model of charge-state distributions for electron cyclotron resonance ion source plasmas

    Directory of Open Access Journals (Sweden)

    D. H. Edgell

    1999-12-01

    Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.

  6. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  7. The development of pulsed ion sources with explosive ions emission for deposition of films and coatings with ion and electron mixing

    International Nuclear Information System (INIS)

    Korenev, S.

    1998-01-01

    The development of pulsed ion sources with explosive ion emission for deposition of films and coatings with ion and electron mixing is considered in the report. The deposition of films and coatings with high hardness and high resistance on the basis using this source on the working voltage 50--100 kV is presented. The deposition of TiB(2), W and other films is discussed and comparison with other results. The experimental results of pulsed electron/ion mixing are considered. The main characteristics of these films and coating are considered. The cluster mechanism of deposition of films and coatings are discussed. The main question of structure of these films on the basis of surface cluster fractal structure is suggested and discussed. The study of structure of these films showed the new kind of structure of these films and coatings

  8. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    International Nuclear Information System (INIS)

    Nation, J.A.

    1996-01-01

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives

  9. "Electron/Ion Sponge"-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries.

    Science.gov (United States)

    Liu, Jilei; Chen, Zhen; Chen, Shi; Zhang, Bowei; Wang, Jin; Wang, Huanhuan; Tian, Bingbing; Chen, Minghua; Fan, Xiaofeng; Huang, Yizhong; Sum, Tze Chien; Lin, Jianyi; Shen, Ze Xiang

    2017-07-25

    One key challenge facing room temperature Na-ion batteries lies in identifying earth-abundant, environmentally friendly and safe materials that can provide efficient Na + storage sites in Na-ion batteries. Herein, we report such a material, polyoxometalate Na 2 H 8 [MnV 13 O 38 ] (NMV), with entirely different composition and structure from those cathode compounds reported before. Ex-situ XPS and FTIR analyses reveal that NMV cathode behaves like an "electron/Na-ion sponge", with 11 electrons/Na + acceptability per mole, which has a decisive contribution to the high capacity. The extraordinary structural features, evidenced by X-ray crystallographic analysis, of Na 2 H 8 [MnV 13 O 38 ] with a flexible 2D lamellar network and 1D open channels provide diverse Na ion migration pathways, yielding good rate capability. First-principle calculations demonstrate that a super-reduced state, [MnV 13 O 38 ] 20- , is formed with slightly expanded size (ca. 7.5%) upon Na + insertion compared to the original [MnV 13 O 38 ] 9- . This "ion sponge" feature ensures the good cycling stability. Consequently, benefiting from the combinations of "electron/ion sponge" with diverse Na + diffusion channels, when revealed as the cathode materials for Na-ion batteries, Na 2 H 8 [MnV 13 O 38 ]/G exhibits a high specific capacity (ca. 190 mA h/g at 0.1 C), associates with a good rate capability (130 mA h/g at 1 C), and a good capacity retention (81% at 0.2 C). Our results promote better understanding of the storage mechanism in polyoxometalate host, enrich the existing rechargeable SIBs cathode chemistry, and enlighten an exciting direction for exploring promising cathode materials for Na-ion batteries.

  10. Electron loss process and cross section of multiply charged ions by neutral atoms

    International Nuclear Information System (INIS)

    Karashima, S.; Watanabe, T.

    1985-01-01

    The significance of experimental and theoretical results on the electron loss and capture of ions in matter plays an important role in the charge equilibrium problems of fusion plasma physics and of accelerator physics. In the report, we calculate electron stripping cross section by using the binary encounter approximation (BEA). Our treatment of the electron loss process is based on BEA, in which the nucleus of B screened by the surrounding electrons collides with electrons in the ion A sup(q+). The basic approximation in EBA is that the ion interacts with only one electron or nucleus of the target atom at a time. In the calculation for Li sup(2+) + H, we have found that EBA will give approximately reliable results. (Mori, K.)

  11. Dynamic plasma screening effects on electron capture process in hydrogenic ion fully stripped ion collisions in dense plasmas

    International Nuclear Information System (INIS)

    Jung, Y.

    1997-01-01

    In dense plasmas, dynamic plasma screening effects are investigated on electron capture from hydrogenic ions by past fully stripped ions. The classical Bohr Lindhard model has been applied to obtain the electron capture probability. The interaction potential in dense plasmas is represented in terms of the longitudinal dielectric function. The classical straight-line trajectory approximation is applied to the motion of the projectile ion in order to visualize the electron capture probability as a function of the impact parameter, projectile energy, and plasma parameters. The electron capture probability including the dynamic plasma screening effect is always greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. When the projectile velocity is greater than the plasma electron thermal velocity, the interaction potential is almost unshielded. The difference between the dynamic and static plasma screening effects is more significant for low energy projectiles. It is found that the static screening formula obtained by the Debye Hueckel model overestimates the plasma screening effects on the electron capture processes in dense plasmas. copyright 1997 American Institute of Physics

  12. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  13. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rios, L. A. [Centro Brasileiro de Pesquisas Físicas and Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Galvão, R. M. O. [Centro Brasileiro de Pesquisas Físicas and Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Instituto de Física, Universidade de São Paulo, 05508-900 São Paulo (Brazil)

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  14. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaescu, Dan, E-mail: Dan.Nicolaescu@kt2.ecs.kyoto-u.ac.jp [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Sakai, Shigeki [Nissin Ion Equipment Co., Ltd., 575 Kuze Tonoshiro-cho, Minami-ku, Kyoto 601-8205 (Japan); Gotoh, Yasuhito [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ishikawa, Junzo [Department of Electronics and Information Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2011-07-21

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy ({sup 11}B{sup +}, {sup 31}P{sup +},{sup 75}As{sup +}, E{sub ion}=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  15. Applications of factor analysis to electron and ion beam surface techniques

    International Nuclear Information System (INIS)

    Solomon, J.S.

    1987-01-01

    Factor analysis, a mathematical technique for extracting chemical information from matrices of data, is used to enhance Auger electron spectroscopy (AES), core level electron energy loss spectroscopy (EELS), ion scattering spectroscopy (ISS), and secondary ion mass spectroscopy (SIMS) in studies of interfaces, thin films, and surfaces. Several examples of factor analysis enhancement of chemical bonding variations in thin films and at interfaces studied with AES and SIMS are presented. Factor analysis is also shown to be of great benefit in quantifying electron and ion beam doses required to induce surface damage. Finally, examples are presented of the use of factor analysis to reconstruct elemental profiles when peaks of interest overlap each other during the course of depth profile analysis. (author)

  16. Influence of superthermal electrons on obliquely propagating ion-acoustic solitons in magnetized plasmas

    International Nuclear Information System (INIS)

    Kadijani, M Nouri; Abbasi, H; Pajouh, H Hakimi

    2011-01-01

    The effect of superthermal electrons, modeled by a Lorentzian velocity distribution function, on the oblique propagation characteristics of linear and nonlinear ion-acoustic waves in an electron-ion plasma in the presence of a uniform external magnetic field is investigated. First, the linear dispersion relations of the fast and slow modes are obtained. It is shown that the superthermal electrons make both modes propagate with smaller phase velocities. Then, the Korteweg-de Vries equation describing the propagation of nonlinear slow and fast ion-acoustic waves is derived. It is shown that the presence of superthermal electrons has a significant influence on the nature of magnetized ion-acoustic solitons. That is, for a larger population of the superthermal electrons, the soliton velocity of both modes in the laboratory frame significantly decreases and the soliton are slimmer, and on approaching the Maxwellian limit, the width becomes maximum.

  17. Oxide-cathode activation and surface temperature calculation of electron cooler

    International Nuclear Information System (INIS)

    Li Jie; Yang Xiaodong; Mao Lijun; Li Guohong; Yuan Youjin; Liu Zhanwen; Zhang Junhui; Yang Xiaotian; Ma Xiaoming; Yan Tailai

    2011-01-01

    The pollution on electron gun ceramic insulation of electron cooler restricted the operation of electron cooler at HIRFL-CSR main ring. To cool and accumulate ion beam well, the pollution was cleared and a new oxide-coated cathode was assembled. The processes of cathode replacement,vacuum chamber baking-out, and thermal decomposition of coating binders and alkaline earth metal carbonates, and cathode activation are presented. The electron gun perveance of 10.6 μA/V 1.5 was attained under the heating power of 60 W. The typical surface temperature of oxide-coated cathode that is calculated through grey-body radiation is 1 108 K which shows a comparable result to the experimental measurement 1 078 K. The perveance growth of electron gun during the electron cooler operation is also explained by partial activation of the cathode. (authors)

  18. Control of secondary electrons from ion beam impact using a positive potential electrode

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  19. Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources

    Directory of Open Access Journals (Sweden)

    V. Mironov

    2017-01-01

    Full Text Available The particle-in-cell Monte Carlo collisions code nam-ecris is used to simulate the electron cyclotron resonance ion source (ECRIS plasma sustained in a mixture of Kr with O_{2}, N_{2}, Ar, Ne, and He. The model assumes that ions are electrostatically confined in the ECR zone by a dip in the plasma potential. A gain in the extracted krypton ion currents is seen for the highest charge states; the gain is maximized when oxygen is used as a mixing gas. The special feature of oxygen is that most of the singly charged oxygen ions are produced after the dissociative ionization of oxygen molecules with a large kinetic energy release of around 5 eV per ion. The increased loss rate of energetic lowly charged ions of the mixing element requires a building up of the retarding potential barrier close to the ECR surface to equilibrate electron and ion losses out of the plasma. In the mixed plasmas, the barrier value is large (∼1  V compared to pure Kr plasma (∼0.01  V, with longer confinement times of krypton ions and with much higher ion temperatures. The temperature of the krypton ions is increased because of extra heating by the energetic oxygen ions and a longer time of ion confinement. In calculations, a drop of the highly charged ion currents of lighter elements is observed when adding small fluxes of krypton into the source. This drop is caused by the accumulation of the krypton ions inside plasma, which decreases the electron and ion confinement times.

  20. Structural and electronic properties of ion-implanted superconductors

    International Nuclear Information System (INIS)

    Bernas, H.; Nedellec, P.

    1980-01-01

    Recent work on ion implanted superconductors is reviewed. In situ x-ray, channeling, resistivity, and electron tunneling experiments now approach the relation between lattice order (or disorder) and superconductivity

  1. Electron-capture process and ion mobility spectra in plasma chromatography

    International Nuclear Information System (INIS)

    Karasek, F.W.; Spangler, G.E.

    1981-01-01

    The basic principles of plasma chromatography are introduced and ion mobility relationships presented. The relationships of plasma chromatography to electron-capture detector mechanisms are discussed, including electron energy considerations and electron-capture reactions. A number of experimental studies by plasma chromatography are described. (C.F.)

  2. Impulse approximation treatment of electron-electron excitation and ionization in energetic ion-atom collisions

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Lee, D.H.; Sanders, J.M.; Richard, P.

    1993-01-01

    The effect of electron-electron interactions between projectile and target electrons observed in recent measurements of projectile K-shell excitation and ionization using 0 projectile Auger electron spectroscopy are analysed within the framework of the impulse approximation (IA). The IA formulation is seen to give a good account of the threshold behavior of both ionization and excitation, while providing a remarkably simple intuitive picture of such electron-electron interactions in ion-atom collisions in general. Thus, the applicability of the IA treatment is extended to cover most known processes involving such interactions including resonance transfer excitation, binary encounter electron production, electron-electron excitation and ionization. (orig.)

  3. Introductory remarks on electron capture by multicharged ions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1979-01-01

    An overview is presented of applications of multicharged-ion electron capture and, through the qualitative assessment of availability of information, the general status of current understanding of such capture. A chart is given on which the various ion collision processes are related to other pertinent fields of physical research notably fusion, astrophysics, the solar corona, and lasers. The production and transport of ions is also noted. The symposium considers collision velocities less than 4 x 10 8 cm/s, where the capture cross sections are largest and where most of the available results are quite recent

  4. Double differential distributions of electron emission in ion-atom and electron-atom collisions using an electron spectrometer

    International Nuclear Information System (INIS)

    Misra, Deepankar; Thulasiram, K.V.; Fernandes, W.; Kelkar, Aditya H.; Kadhane, U.; Kumar, Ajay; Singh, Yeshpal; Gulyas, L.; Tribedi, Lokesh C.

    2009-01-01

    We study electron emission from atoms and molecules in collisions with fast electrons and heavy ions (C 6+ ). The soft collision electrons (SE), two center electron emission (TCEE), the binary encounter (BE) events and the KLL Auger lines along with the elastically scattered peaks (in electron collisions) are studied using a hemispherical electrostatic electron analyzer. The details of the measurements along with description of the spectrometer and data acquisition system are given. The angular distributions of the low energy (few eV) electrons in soft collisions and the binary encounter electrons at keV energies are compared with quantum mechanical models based on the first Born (B1) and the continuum distorted wave-Eikonal initial state approximation (CDW-EIS).

  5. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    International Nuclear Information System (INIS)

    Shurygin, R. V.; Morozov, D. Kh.

    2014-01-01

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li 0 atoms and Li +1 ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li +1 ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li 0 atoms and Li +1 ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li 0 atoms on the wall are obtained. The calculations show that the presence of Li +1 ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li +1 density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of radiative cooling of the near-wall plasma

  6. Electron collisions and internal excitation in stored molecular ion beams

    International Nuclear Information System (INIS)

    Buhr, H.

    2006-01-01

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He + 2 . The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He + 2 , which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD + is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  7. Electron collisions and internal excitation in stored molecular ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Buhr, H.

    2006-07-26

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He{sup +}{sub 2}. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He{sup +}{sub 2}, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD{sup +} is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  8. Electron-ion collision rates in atomic clusters irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Moll, M; Hilse, P; Schlanges, M; Bornath, Th; Krainov, V P

    2010-01-01

    In atomic clusters irradiated by femtosecond laser pulses, plasmas with high density and high temperature are created. The heating is mainly caused by inverse bremsstrahlung, i.e. determined by electron-ion collisions. In the description of the scattering of electrons on noble gas ions in such plasmas, it is important to account for the inner structure of the ions and the screening by the surrounding plasma medium which can be accomplished by using suitable model potentials. In the wide parameter range met in experiments, the Born approximation is not applicable. Instead, the electron-ion collision frequency is calculated on the basis of classical momentum transport cross sections. Results are presented for xenon, krypton and argon ions in different charge states. A comparison of these results to those for the scattering on Coulomb particles with the same charge shows an enhancement of the collision frequency. The Born approximation, however, leads to an overestimation.

  9. Resonant inelastic scattering of quasifree electrons on ions

    International Nuclear Information System (INIS)

    Grabbe, S.

    1994-01-01

    Several studies of resonant-transfer excitation (RTE) have been reported in ion-atom collisions where the doubly excited autoionizing states are produced. Such a complex collision can be approximated as the scattering of quasifree electrons of the target from the projectile ion. Most of the investigations have been restricted to the deexcitation of the autoionizing states to the ground state by Auger electron emission. It has been shown that there is a strong interference between the elastic scattering amplitude and the resonance amplitude. The authors present here the cases where the corresponding interference is between the inelastic scattering and the resonance process. Recent work on 3 ell 3 ell ' resonances that decay predominantly to n=2 states will be presented for C 5+ -molecular hydrogen collisions

  10. Spin polarization of a magnetic electron gas induced by a van Vleck ion

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. do

    1978-11-01

    The mutual polarization of a magnetic electron gas and a van Vleck ion, interacting via exchange, are theoretically investigated using the double-time Green function method. A pair of equations describing the dynamics of the electron gas and the ion are conveniently decoupled and an analytic expression for the electron gas polarization, which depends on the square of the exchange parameter, is obtained. Besides a RKKY-like term, a new term associated to the process of formation of the magnetic moment of the ion appears [pt

  11. Electron impact ionization of highly charged lithiumlike ions

    International Nuclear Information System (INIS)

    Wong, K.L.

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti 19+ ) and Z=26 (iron, Fe 23+ ) and to Z=56 (barium, Ba 53+ ). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented

  12. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  13. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    NARCIS (Netherlands)

    Antonov, A. N.; Gaidarov, M. K.; Ivanov, M. V.; Kadrev, D. N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.; Audouin, L.; Khan, E.; Tassan-Got, L.; Aumann, T.; Beller, P.; Boretzky, K.; Dolinskii, A.; Egelhof, P.; Emling, H.; Franzke, B.; Geissel, H.; Kelic-Heil, A.; Kester, O.; Kurz, N.; Litvinov, Y.; Muenzenberg, G.; Nolden, F.; Schmidt, K. -H.; Scheidenberger, Ch.; Simon, H.; Steck, M.; Weick, H.; Enders, J.; Pietralla, N.; Richter, A.; Schrieder, G.; Zilges, A.; Distler, M. O.; Merkel, H.; Mueller, U.; Junghans, A. R.; Lenske, H.; Fujiwara, M.; Suda, T.; Kato, S.; Adachi, T.; Hamieh, S.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Woertche, H.; Berg, G. P. A.; Koop, I. A.; Logatchov, P. V.; Otboev, A. V.; Parkhomchuk, V. V.; Shatilov, D. N.; Shatunov, P. Y.; Shatunov, Y. M.; Shiyankov, S. V.; Shvartz, D. I.; Skrinsky, A. N.; Chulkov, L. V.; Danilin, B. V.; Korsheninnikov, A. A.; Kuzmin, E. A.; Ogloblin, A. A.; Volkov, V. A.; Grishkin, Y.; Lisin, V. P.; Mushkarenkov, A. N.; Nedorezov, V.; Polonski, A. L.; Rudnev, N. V.; Turinge, A. A.; Artukh, A.; Avdeichikov, V.; Ershov, S. N.; Fomichev, A.; Golovkov, M.; Gorshkov, A. V.; Grigorenko, L.; Klygin, S.; Krupko, S.; Meshkov, I. N.; Rodin, A.; Sereda, Y.; Seleznev, I.; Sidorchuk, S.; Syresin, E.; Stepantsov, S.; Ter-Akopian, G.; Teterev, Y.; Vorontsov, A. N.; Kamerdzhiev, S. P.; Litvinova, E. V.; Karataglidis, S.; Alvarez Rodriguez, R.; Borge, M. J. G.; Ramirez, C. Fernandez; Garrido, E.; Sarriguren, P.; Vignote, J. R.; Fraile Prieto, L. M.; Lopez Herraiz, J.; Moya de Guerra, E.; Udias-Moinelo, J.; Amaro Soriano, J. E.; Rojo, A. M. Lallena; Caballero, J. A.; Johansson, H. T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.; Golubev, P.; Rudolph, D.; Hencken, K.; Jourdan, J.; Krusche, B.; Rauscher, T.; Kiselev, D.; Trautmann, D.; Al-Khalili, J.; Catford, W.; Johnson, R.; Stevenson, P. D.; Barton, C.; Jenkins, D.; Lemmon, R.; Chartier, M.; Cullen, D.; Bertulani, C. A.; Heinz, A.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the

  14. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    Science.gov (United States)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  15. Spectral line shape simulation for electron stark-broadening of ion emitters in plasmas

    International Nuclear Information System (INIS)

    Dufour, Emmanuelle; Calisti, Annette; Talin, Bernard; Gigosos, Marco A.; Gonzalez, Manuel A.; Dufty, Jim W.

    2002-01-01

    Electron broadening for ions in plasmas is investigated in the framework of a simplified semi-classical model involving an ionic emitter imbedded in an electron gas. A regularized Coulomb potential that removes the divergence at short distances is postulated for the ion-electron interaction. Line shape simulations based on Molecular Dynamics for the ion impurity and the electrons, accounting for all the correlations, are reported. Comparisons with line shapes obtained with a quasi-particle model show expected correlation effects. Through an analysis of the results with the line shape code PPP, it is inferred that the correlation effect results mainly from the microfield dynamic properties

  16. Excitation of electrostatic ion cyclotron wave in electron beam plasma system

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1984-01-01

    The electrostatic ion cyclotron waves excited in an electron beam plasma system was investigated. The excitation condition of the waves was calculated by using Harris type dispersion relation under some assumption, and its comparison with the experimental result was made. Beam plasma discharge is a kind of RF discharge, and it is caused by the waves generated by the interaction of electron beam with plasma. It was shown that electrostatic ion cyclotron waves seemed to be the most probable as excited waves. But the excitation mechanism of these waves has not been concretely investigated. In this study, the excitation condition of electrostatic ion cyclotron waves was calculated as described above. The experimental apparatus and the results of potential, electric field and ion saturation current in beam plasma, electron drift motion in azimuthal direction and the waves excited in beam plasma are reported. The frequency of oscillation observed in beam plasma corresponds to the harmonics or subharmonics of ion cyclotron frequency. The calculation of Harris type dispersion relation, the numerical calculation and the comparison of the experimental result with the calculated result are described. (Kako, I.)

  17. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    Science.gov (United States)

    Teruya, Alan T [Livermore, CA; Elmer,; John, W [Danville, CA; Palmer, Todd A [State College, PA

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  18. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    International Nuclear Information System (INIS)

    Nakagawa, T.

    2014-01-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams

  19. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  20. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  1. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    International Nuclear Information System (INIS)

    Panwar, A.; Ryu, C. M.; Bains, A. S.

    2014-01-01

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c ,κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ω ci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present

  2. Electron and ion beam transport to fusion targets

    International Nuclear Information System (INIS)

    Freeman, J.R.; Baker, L.; Miller, P.A.; Mix, L.P.; Olsen, J.N.; Poukey, J.W.; Wright, T.P.

    1979-01-01

    ICF reactors have been proposed which incorporate a gas-filled chamber to reduce x-ray and debris loading of the first wall. Focused beams of either electrons or ions must be transported efficiently for 2-4 m to a centrally located fusion target. Laser-initiated current-carrying plasma discharge channels provide the guiding magnetic field and the charge- and current-neutralizing medium required for beam propagation. Computational studies of plasma channel formation in air using a 1-D MHD model with multigroup radiation diffusion have provided a good comparison with the expansions velocity and time dependent refractivity profile determined by holographic interferometry. Trajectory calculations have identified a beam expansion mechanism which combines with the usual ohmic dissipation to reduce somewhat the transported beam fluence for electrons. Additional trajectory calculations have been performed for both electrons and light ions to predict the limits on the particle current density which can be delivered to a central target by overlapping the many independently-generated beams. Critical features of the use of plasma channels for transport and overlap of charged particle beams are being tested experimentally with up to twelve electron beams from the Proto II accelerator

  3. Projectile electron loss in collisions of light charged ions with helium

    International Nuclear Information System (INIS)

    Yin Yong-Zhi; Chen Xi-Meng; Wang Yun

    2014-01-01

    We investigate the single-electron loss processes of light charged ions (Li 1+,2+ , C 2+,3+,5+ , and O 2+,3+ ) in collisions with helium. To better understand the experimental results, we propose a theoretical model to calculate the cross section of projectile electron loss. In this model, an ionization radius of the incident ion was defined under the classical over-barrier model, and we developed ''strings'' to explain the processes of projectile electron loss, which is similar with the molecular over-barrier model. Theoretical calculations are in good agreement with the experimental results for the cross section of single-electron loss and the ratio of double-to-single ionization of helium associated with one-electron loss. (atomic and molecular physics)

  4. Excited-atom production by electron and ion bombardment of alkali halides

    International Nuclear Information System (INIS)

    Walkup, R.E.; Avouris, P.; Ghosh, A.P.

    1987-01-01

    We present experimental results on the production of excited atoms by electron and ion bombardment of alkali halides. For the case of electron bombardment, Doppler shift measurements show that the electronically excited atoms have a thermal velocity distribution in equilibrium with the surface temperature. Measurements of the absolute yield of excited atoms, the distribution of population among the excited states, and the systematic dependence on incident electron current and sample temperature support a model in which the excited atoms are produced by gas-phase collisions between desorbed ground-state atoms and secondary electrons. In contrast, for the case of ion bombardment, the excited atoms are directly sputtered from the surface, with velocity distributions characteristic of a collision cascade, and with typical energies of --10 eV

  5. Oblique Propagation of Electrostatic Waves in a Magnetized Electron-Positron-Ion Plasma in the Presence of Heavy Particles

    Science.gov (United States)

    Sarker, M.; Hossen, M. R.; Shah, M. G.; Hosen, B.; Mamun, A. A.

    2018-06-01

    A theoretical investigation is carried out to understand the basic features of nonlinear propagation of heavy ion-acoustic (HIA) waves subjected to an external magnetic field in an electron-positron-ion plasma that consists of cold magnetized positively charged heavy ion fluids and superthermal distributed electrons and positrons. In the nonlinear regime, the Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations describing the propagation of HIA waves are derived. The latter admits a solitary wave solution with both positive and negative potentials (for K-dV equation) and only positive potential (for mK-dV equation) in the weak amplitude limit. It is observed that the effects of external magnetic field (obliqueness), superthermal electrons and positrons, different plasma species concentration, heavy ion dynamics, and temperature ratio significantly modify the basic features of HIA solitary waves. The application of the results in a magnetized EPI plasma, which occurs in many astrophysical objects (e.g. pulsars, cluster explosions, and active galactic nuclei) is briefly discussed.

  6. Dissociative recombination of interstellar ions: electronic structure calculations for HCO+

    International Nuclear Information System (INIS)

    Kraemer, W.P.; Hazi, A.U.

    1985-01-01

    The present study of the interstellar formyl ion HCO + is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO + process. Similar calculations for the isoelectronic ions HOC + and HN 2 + are in progress. 60 refs

  7. Electron Landau damping of ion Bernstein waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1998-01-01

    Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)

  8. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  9. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  10. Investigation of the Decelerating Field of an Electron Multiplier under Negative Ion Impact

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Kjeldgaard, K.

    1973-01-01

    The effect of the decelerating field of an electron multiplier towards negative ions was investigated under standard mass spectrometric conditions. Diminishing of this decelerating field by changing of the potential of the electron multiplier increased the overall sensitivity to negative ions...

  11. Vortex structures in dense electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q [Theoretical Plasma Physics Division, PINSTECH, P O Nilore, Islamabad (Pakistan)], E-mail: qamar_haque@hotmail.com

    2009-11-15

    A linear dispersion relation for electrostatic quantum drift and acoustic waves has been found for dense electron-positron-ion magnetoplasmas. Both the fermion and thermal temperature effects have been considered for electrons and positrons. In the nonlinear regime, a stationary solution in the form of dipolar vortices has been obtained. For illustration, the results were applied to the astrophysical plasma of the atmosphere of neutron stars/pulsars.

  12. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    Science.gov (United States)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-02-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.

  13. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  14. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Gougam, Leila Ait [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-03-15

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  15. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud

    2016-01-01

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  16. Successive ionization of positive ions of carbon and nitrogen by electron bombardment

    International Nuclear Information System (INIS)

    Donets, E.D.; Ilyushchenko, V.I.

    Experimental studies of deep ionization of heavy ions are described. The applications of such studies in atomic physics, plasma physics and space physics are discussed. Investigations using intersecting ion-electron beams, shifted beams and ion trap sources are described, and data are presented for multi-charged ions of carbon, oxygen and nitrogen. A detailed description of the development of the IEL (electron beam ionizer) source, and the KRION (cryogenic version) source is given, and further data for the multiple ionization of carbon and nitrogen are given for charge states up to C 6+ and N 7+ . The advantages and disadvantages of the KRION source are discussed, and preliminary studies of a new torroidal ion trap source (HIRAC) are presented. (11 figs, 57 refs) (U.S.)

  17. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  18. A novel spectrometer for studying exotic nuclei with the electron/ion collider ELISe

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Adachi, T.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Woertche, H.J.; Simon, H.; Koop, I.A.; Couder, M.; Fujiwara, M.

    2011-01-01

    A novel concept of an electron spectrometer developed for the ELISe facility is presented. This spectrometer will be constructed as a part of the international Facility for Antiprotons and Ion Research (FAIR) at GSI Helmholtzzentrum fuer Schwerionenforschung. The spectrometer is designed to analyze electron scattering at the ion-electron interaction region of the NESR and EAR colliding storage rings with a high resolution and a large solid angle. A pre-deflector with a zero-field central channel along the path of the intersecting beam allows the measurement of scattered electrons without interfering with the circulating beams. Ion-optical and magnet design calculations are presented to demonstrate the feasibility and achievement of realistic design specifications.

  19. Ion and electron Kappa distribution functions in the plasma sheet.

    Science.gov (United States)

    Moya, P. S.; Stepanova, M. V.; Espinoza, C.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    We present a study of ion and electron flux spectra in the Earth's plasma sheet using kappa distribution functions. Satellite data from the THEMIS mission were collected for thousands of crossings through the plasma sheet, between 7 and 35 Re and during the years 2008-2009. The events were separated according to the geomagnetic activity at the time. Our results show the distribution of the kappa index and characteristic energies across the plasma sheet and its evolution with distance to Earth for quiet times and for the substorm expansion and recovery phases. For the ions, it is observed that the kappa values tend to decrease outwards and that this effect is more significant in the dusk sector, where the smallest values are found for distances beyond 15 Re. The main effect of the substorms appears as an enhancement of this behavior. The electrons show a much more homogeneous distribution in quiet times, with a mild tendency for larger kappa values at larger distances. During substorms, the kappa values tend to equalize and appear very homogenous during expansion. However, they exhibit a significant increase in the dusk sector during the recovery substorm phase. Finally, we observe that the characteristic energy of the particles during substorms increases and concentrate at distances less than 15 Re.

  20. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Wu Musheng; Xu Bo; Ouyang Chuying

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. (topical review)

  1. Excitation and ionization of ions by electron impact. Technical progress report, September 1, 1977--May 31, 1978

    International Nuclear Information System (INIS)

    Feeney, R.K.; Hughes, D.W.; Hoak, G.B.; Priester, D.C.; Sayle, W.E.

    1978-01-01

    This effort is devoted to the measurement of electron impact collision processes of importance in controlled thermonuclear research. Electron impact, single and multiple ionization of ions and charge exchange processes are being studied. A program to develop ion sources for future collision experiments is also included. Preliminary measurements of the electron impact triple and quadruple ionization cross sections of Pb + ions have been completed. Measurements were made over the range of electron energies from the respective thresholds to 1000 eV. A hollow-cathode discharge type ion source and associated m/e analyzer has been constructed. A charge exchange apparatus suitable for the measurement of electron capture and stripping cross sections of selected singly charged metallic ions and neutrals is being designed. This apparatus will be employed with the hollow-cathode ion source module. A Penning Ion Gauge (PIG) type ion source of multiply charge ions is in continuing development

  2. Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst

    Science.gov (United States)

    Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang

    2016-01-01

    TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.

  3. Quantum tunneling recombination in a system of randomly distributed trapped electrons and positive ions.

    Science.gov (United States)

    Pagonis, Vasilis; Kulp, Christopher; Chaney, Charity-Grace; Tachiya, M

    2017-09-13

    During the past 10 years, quantum tunneling has been established as one of the dominant mechanisms for recombination in random distributions of electrons and positive ions, and in many dosimetric materials. Specifically quantum tunneling has been shown to be closely associated with two important effects in luminescence materials, namely long term afterglow luminescence and anomalous fading. Two of the common assumptions of quantum tunneling models based on random distributions of electrons and positive ions are: (a) An electron tunnels from a donor to the nearest acceptor, and (b) the concentration of electrons is much lower than that of positive ions at all times during the tunneling process. This paper presents theoretical studies for arbitrary relative concentrations of electrons and positive ions in the solid. Two new differential equations are derived which describe the loss of charge in the solid by tunneling, and they are solved analytically. The analytical solution compares well with the results of Monte Carlo simulations carried out in a random distribution of electrons and positive ions. Possible experimental implications of the model are discussed for tunneling phenomena in long term afterglow signals, and also for anomalous fading studies in feldspars and apatite samples.

  4. Exploding metal film active anode source experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.D.; Bordonaro, G.J.; Greenly, J.B.; Hammer, D.A.

    1989-01-01

    In this paper the authors report results using an extractor geometry magnetically insulated ion diode on the 0.5 TW LION accelerator. Experiments with an exploding metal film active anode plasma source (EMFAAPS) have shown that intense beams with significantly improved turn-on time compared to epoxy-filled-groove anodes can be produced. A new geometry, in which a plasma switch is used to provide the current path that explodes the thin film anode, has improved the ion efficiency (to typically 70%) compared with the previous scheme in which an electron collector on the anode provided this current. Leakage electron current is reduced when no collector is used

  5. Recombination of H(3+) and D(3+) ions with electrons

    Science.gov (United States)

    Johnsen, R.; Gougousi, T.; Golde, M. F.

    1994-01-01

    Flowing-afterglow measurements in decaying H3(+) or D3(+) plasmas suggest that de-ionization does not occur by simple binary recombination of a single ion species. We find that vibrational excitation of the ions fails to provide an explanation for the effect, contrary to an earlier suggestion. Instead, we suggest that collisional stabilization of H3** Rydberg molecules by ambient electrons introduces an additional dependence on electron density. The proposed mechanism would permit plasma de-ionization to occur without the need for dissociative recombination by the mechanism of potential-surface crossings.

  6. Theory of nuclear excitation by electron capture for heavy ions

    International Nuclear Information System (INIS)

    Palffy, Adriana; Scheid, Werner; Harman, Zoltan

    2006-01-01

    We investigate the resonant process of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy-ion collision systems

  7. Magnetic holes in the dipolarized magnetotail: ion and electron anisotropies

    Science.gov (United States)

    Shustov, P.; Artemyev, A.; Zhang, X. J.; Yushkov, E.; Petrukovich, A. A.

    2017-12-01

    We conduct statistics on magnetic holes observed by THEMIS spacecraft in the near-Earth magnetotail. Groups of holes are detected after dipolarizations in the quiet, equatorial plasma sheet. Magnetic holes are characterized by significant magnetic field depressions (up to 50%) and strong electron currents ( 10-50 nA/m2), with spatial scales much smaller than the ion gyroradius. These magnetic holes are populated by hot (>10 keV), transversely anisotropic electrons supporting the pressure balance. We present statistical properties of these sub-ion scale magnetic holes and discuss possible mechanisms on the hole formation.

  8. Flow direction variations of low energy ions as measured by the ion electron sensor (IES) flying on board of Rosetta

    Science.gov (United States)

    Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom

    2015-04-01

    The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as defined above) we were able to identify two flow directions

  9. Binary encounter electron production in ion-atom collisions

    International Nuclear Information System (INIS)

    Grabbe, S.; Bhalla, C.P.; Shingal, R.

    1993-01-01

    The binary encounter electrons are produced by hard collisions between the target electrons and the energetic projectiles. Richard et al. found the measured double differential cross section for BEe production at zero degree laboratory scattering angle, in collisions of F q+ with H 2 and He targets, to increase as the charge state of the projectile was decreased. The binary encounter electron production has recently been a subject of detailed investigations. We have calculated the differential elastic scattering cross sections of electrons from several ions incorporating the exchange contribution of the continuum and the bound orbitals in addition to the static potential. The double differential binary encounter electron production cross sections are presented using the impulse approximation

  10. Theoretical study of the electron stopping power in ion planar channeling

    International Nuclear Information System (INIS)

    Haymann, P.

    1974-01-01

    A theory recently developed by the authors for slow and fast electrons is shown to be also applicable to channeled ions and to explain the experimental results about electron loss phenomena as a whole. The theory is based on the fundamental hypothesis of the nonadiabaticity of the ion-target interactions. How essential an exponential form of the interaction pseudo-potential is in explaining the energy exchange mechanism at the walls may be deduced from a quasi-classical development of the quantum model. The theory also allows a number of new experiments to be envisaged in the field of surface electron states [fr

  11. Limitation of the electron emission in an ion diode with magnetic self-insulation

    International Nuclear Information System (INIS)

    Pushkarev, A. I.; Isakova, Yu. I.; Guselnikov, V. I.

    2011-01-01

    The results of a study of the generation of a pulsed ion beam of gigawatt power formed by a diode with an explosive-emission potential electrode in a mode of magnetic self-insulation are presented. The studies were conducted at the TEMP-4M ion accelerator set in double pulse formation mode: the first pulse was negative (300-500 ns and 100-150 kV) and the second, positive (150 ns and 250-300 kV). The ion current density was 20-40 A/cm 2 ; the beam composition was protons and carbon ions. It was shown that plasma is effectively formed over the entire working surface of the graphite potential electrode. During the ion beam generation, a condition of magnetic cutoff of electrons along the entire length of the diode (B/B cr ≥ 4) is fulfilled. Because of the high drift rate, the residence time of the electrons and protons in the anode-cathode gap is 3-5 ns, while for the C + carbon ions, it is more than 8 ns. This denotes low efficiency of magnetic self-insulation in a diode of such a design. At the same time, it has been experimentally observed that, during the generation of ion current (second pulse), the electronic component of the total current is suppressed by a factor of 1.5-2 for a strip diode with plane and focusing geometry. A new model of the effect of limiting the electron emission explaining the decrease in the electronic component of the total current in a diode with magnetic self-insulation is proposed.

  12. Facilities for in situ ion beam studies in transmission electron microscopes

    International Nuclear Information System (INIS)

    Allen, C.W.; Ohnuki, S.; Takahashi, H.

    1993-08-01

    Interfacing an ion accelerator to a transmission electron microscope (TEM) allows the analytical functions of TEM imaging and electron diffraction from very small regions to be employed during ion-irradiation effects studies. At present there are ten such installations in Japan, one in France and one in the USA. General specifications of facilities which are operational in 1993 are summarized, and additional facilities which are planned or being proposed are briefly described

  13. Development status of electron cyclotron resonance ion sources (ECRIS). Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zakhary, S G [Ion Sources and Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    The present review provides a very brief introduction of the historical development of this recent trend type of ion sources. There are two main types of this source which use the microwave power (2.45 up to 20 GHz). ECR ion sources that can generate substantial currents of very high charge state ions ( for example ions of U with charge state +39, with intensities of a few hundred nano amperes for injection directly into cyclotrons or synchrotrons), and the microwave sources that can generate currents (100-500 mA) for ion implanters and accelerator injectors. In this work, the theory of the microwave discharge and influence of resonance on increasing the power density consumed by the discharge are studied. The power density consumed by the discharge is found to increase with increase of number of electrons in the discharge, and decreases with increase of discharge pressure. The description of the main components and factors affecting the design of the source are declared. Also the factors enhancing source performance such as: plasma cooling by the addition of light ions which absorb energy from the heavy ions thereby increasing the lifetime of the heavy ions, and increasing the extent of highly charged ions. Injection of electrons into the discharge increases the extracted ion current, and the decrease of the magnetic field in the extraction region decreases the beam emittance. 12 figs.

  14. Ion emission from laser-produced plasmas with two electron temperatures

    International Nuclear Information System (INIS)

    Wickens, L.M.; Allen, J.E.; Rumsby, P.T.

    1978-01-01

    An analytic theory for the expansion of a laser-produced plasma with two electron temperatures is presented. It is shown that from the ion-emission velocity spectrum such relevant parameters as the hot- to -cold-electron density ratio, the absolute hot- and cold-electron temperatures, and a sensitive measure of hot- and cold-electron temperature ratio can be deduced. A comparison with experimental results is presented

  15. Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.

    Science.gov (United States)

    Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V

    2010-11-05

    The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.

  16. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  17. Focusing peculiarities of ion-channel guiding on a relativistic electron beam in a free-electron laser with a three-dimensional wiggler

    International Nuclear Information System (INIS)

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2014-01-01

    In a free-electron laser the ‘natural focusing’ effect of a three-dimensional wiggler is too weak to confine the transport of a relativistic electron beam when the beam has a high current and consequently an external focusing system is often needed. In this paper we study the focusing peculiarities of an ion-channel guide field on an electron beam. Nonlinear simulations of an electron beam transport show that, compared to an axial guide magnetic field, the ion-channel guide field results in smaller velocity–space and configuration–space spreads. The intrinsic mechanism of this physical phenomenon is that the ion-channel guide field confines the trajectory of the electron motion resulting in a smaller instantaneous curvature radius and a slighter curvature-center excursion than an axial guide magnetic field does. It is also found that, unlike with an axial guide magnetic field, over-focusing may occur if the ion-channel guide field is too strong. (paper)

  18. Electron excitation collision strengths for positive atomic ions: a collection of theoretical data

    International Nuclear Information System (INIS)

    Merts, A.L.; Mann, J.B.; Robb, W.D.; Magee, N.H. Jr.

    1980-03-01

    This report contains data on theoretical and experimental cross sections for electron impact excitation of positive atomic ions. It is an updated and corrected version of a preliminary manuscript which was used during an Atomic Data Workshop on Electron Excitation of Ions held at Los Alamos in November 1978. The current status of quantitative knowledge of collisional excitation collision strengths is shown for highly stripped ions where configuration mixing, relativistic and resonance effects may be important. The results show a reasonably satisfactory state for first-row isoelectronic ions and indicate that a considerable amount of work remains to be done for second-row and heavier ions

  19. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    CERN Document Server

    Kitagawa, A; Sekiguchi, M; Yamada, S; Jincho, K; Okada, T; Yamamoto, M; Hattori, T G; Biri, S; Baskaran, R; Sakata, T; Sawada, K; Uno, K

    2000-01-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C/sup 4+/ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e mu A for C/sup 4+/ and 1.1e mA for Ar/sup 8+/, respectively. (14 refs).

  20. Dynamics in ion-molecule collisions at high velocities: One- and two-electron processes

    International Nuclear Information System (INIS)

    Wang, Yudong.

    1992-01-01

    This dissertation addresses the dynamic interactions in ion-molecule collisions. Theoretical methods are developed for single and multiple electron transitions in fast collisions with diatomic molecules by heavy-ion projectiles. Various theories and models are developed to treat the three basic inelastic processes (excitation, ionization and charge transfer) involving one and more electrons. The development, incorporating the understanding of ion-atom collision theories with some unique characteristics for molecular targets, provides new insights into phenomena that are absent from collisions with atomic targets. The influence from the multiple scattering centers on collision dynamics is assessed. For diatomic molecules, effects due to a fixed molecular orientation or alignment are calculated and compared with available experimental observations. Compared with excitation and ionization, electron capture, which probes deeper into the target, presents significant two-center interference and strong orientation dependence. Attention has been given in this dissertation to exploring mechanisms for two-and multiple electron transitions. Application of independent electron approximation to transfer excitation from molecular hydrogen is studied. Electron-electron interaction originated from projectile and target nuclear centers is studied in conjunction with the molecular nature of target. Limitations of the present theories and models as well as possible new areas for future theoretical and experimental applications are also discussed. This is the first attempt to describe multi-electron processes in molecular dynamics involving fast highly charged ions

  1. Properties of magnetized Coulomb crystals of ions with polarizable electron background

    Science.gov (United States)

    Kozhberov, A. A.

    2018-06-01

    We have studied phonon and thermodynamic properties of a body-centered cubic (bcc) Coulomb crystal of ions with weakly polarized electron background in a uniform magnetic field B. At B = 0, the difference between phonon moments calculated using the Thomas-Fermi (TF) and random phase approximations is always less than 1% and for description of phonon properties of a crystal, TF formalism was used. This formalism was successfully applied to investigate thermodynamic properties of magnetized Coulomb crystals. It was shown that the influence of the polarization of the electron background is significant only at κ TF a > 0.1 and T ≪ T p ( 1 + h2 ) - 1 / 2 , where κTF is the Thomas-Fermi wavenumber, a is the ion sphere radius, T p ≡ ℏ ω p is the ion plasma temperature, h ≡ ω B / ω p , ωB is the ion cyclotron frequency, and ωp is the ion plasma frequency.

  2. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    International Nuclear Information System (INIS)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-01-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented. copyright 1998 American Institute of Physics

  3. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches

    Science.gov (United States)

    Lindner, F. H.; Bin, J. H.; Englbrecht, F.; Haffa, D.; Bolton, P. R.; Gao, Y.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Parodi, K.; Thirolf, P. G.; Schreiber, J.

    2018-01-01

    Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

  4. Structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.

    1980-08-01

    The static structure factor of liquid alkali metals near freezing, and its dependence on temperature and pressure, are evaluated in an electron-ion plasma model from an accurate theoretical determination of the structure factor of the one-component classical plasma and electron-screening theory. Very good agreement is obtained with the available experimental data. (author)

  5. Surface treatment by the ion flow from electron beam generated plasma in the forevacuum pressure range

    Directory of Open Access Journals (Sweden)

    Klimov Aleksandr

    2018-01-01

    Full Text Available The paper presents research results of peculiarities of gas ion flows usage and their generation from large plasma formation (>50 sq.cm obtained by electron beam ionization of gas in the forevacuum pressure range. An upgraded source was used for electron beam generation, which allowed obtaining ribbon electron beam with no transmitting magnetic field. Absence of magnetic field in the area of ion flow formation enables to obtain directed ion flows without distorting their trajectories. In this case, independent control of current and ion energy is possible. The influence of electron beam parameters on the parameters of beam plasma and ion flow – current energy and density – was determined. The results of alumina ceramics treatment with a beam plasma ions flow are given.

  6. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)

    2013-01-15

    Obliquely propagating ion-acoustic soliatry waves are examined in a magnetized plasma composed of kappa distributed electrons and fluid ions with finite temperature. The Sagdeev potential approach is used to study the properties of finite amplitude solitary waves. Using a quasi-neutrality condition, it is possible to reduce the set of equations to a single equation (energy integral equation), which describes the evolution of ion-acoustic solitary waves in magnetized plasmas. The temperature of warm ions affects the speed, amplitude, width, and pulse duration of solitons. Both the critical and the upper Mach numbers are increased by an increase in the ion temperature. The ion-acoustic soliton amplitude increases with the increase in superthermality of electrons. For auroral plasma parameters, the model predicts the soliton speed, amplitude, width, and pulse duration, respectively, to be in the range of (28.7-31.8) km/s, (0.18-20.1) mV/m; (590-167) m, and (20.5-5.25) ms, which are in good agreement with Viking observations.

  7. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    International Nuclear Information System (INIS)

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-01-01

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta β e = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field B o , and ion heating is preferentially perpendicular to B o . The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating

  8. Theory of nuclear excitation by electron capture for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gagyi-Palffy, A.

    2006-07-01

    The resonant process of nuclear excitation by electron capture (NEEC) in collisions involving highly-charged ions has been investigated theoretically. NEEC is a rare recombination process in which a free electron is captured into a bound shell of an ion with the simultaneous excitation of the nucleus. Total cross sections for NEEC followed by the radiative decay of the excited nucleus are presented for various collision systems. The possibility to observe the NEEC in scattering experiments with trapped or stored ions was discussed focusing on the cases with the largest calculated resonance strength. As the photons emitted in different channels of the electron recombination process are indistinguishable in the total cross section, the interference between NEEC followed by the radiative decay of the nucleus and radiative recombination was investigated. The angular distribution of the emitted photons in the recombination process provides means to discern the two processes. Angular differential cross sections for the emitted photons in the case of E2 nuclear transitions were presented for several heavy elements. (orig.)

  9. Dynamical coupling of electrons and ions in Xray-induced dynamics

    International Nuclear Information System (INIS)

    Saalmann, Ulf; Camacho, Abraham; Rost, Jan-Michael

    2015-01-01

    Photo-absorption from short and intense Xray pulses by a molecule or a cluster triggers a complicated electron and ion dynamics. Whereas the excitation process concerns largely core-shell electrons, there are various subsequent relaxation channels like electronic decays and ionic Coulomb explosion. We will discuss the interplay of those processes for molecular clusters and fullerenes. (paper)

  10. Microstructured liquid metal electron and ion sources (MILMES/MILMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Mitterauer, J [Technische Universitaet Wien (Austria). Institut fuer Allgemeine Elektrotechnik und Elektronik

    1997-12-31

    Ion or electron beams can be emitted from liquid metal wetted needles, or from capillaries or slits into which the liquid metal is allowed to flow. Large-area liquid metal field emission sources have been proposed recently, using either two-dimensional, regular arrays of cones or capillaries, or even a substrate with an intrinsically microstructured surface covered by a liquid metal film. This latter concept has been realized in a pilot experiment by in situ wicking and wetting of a porous sintered metal disc. Microstructured liquid metal ion or electron sources are capable of operating in a pulsed mode at a current level which is orders of magnitude above that for steady-state operation. (author). 3 figs., 10 refs.

  11. Nonextensive electron and ion dust charging currents

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2011-01-01

    The correct nonextensive electron and ion charging currents are presented for the first time based on the orbit motion limited approach. For -1< q<1, where q measures the amount of plasma nonextensivity, the nonextensive electron charging current is expressed in terms of the hypergeometric function. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate succinctly the effects of nonextensive charge carriers. The obtained formulas bring a possibility to build theories on nonlinear collective process in variable charge nonextensive dusty plasmas.

  12. Effects of ionization and ion loss on dust ion- acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Science.gov (United States)

    Tribeche, Mouloud; Mayout, Saliha

    2016-07-01

    The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  13. Propagation of Ion Solitary Pulses in Dense Astrophysical Electron-Positron-Ion Magnetoplasmas

    Science.gov (United States)

    Ata-Ur-Rahman; A. Khan, S.; Qamar, A.

    2015-12-01

    In this paper, we theoretically investigate the existence and propagation of low amplitude nonlinear ion waves in a dense plasma under the influence of a strong magnetic field. The plasma consists of ultra-relativistic and degenerate electrons and positrons and non-degenerate cold ions. Firstly, the appearance of two distinct linear modes and their evolution is studied by deriving a dispersion equation with the aid of Fourier analysis. Secondly, the dynamics of low amplitude ion solitary structures is investigated via a Korteweg-de Vries equation derived by employing a reductive perturbation method. The effects of various plasma parameters like positron concentration, strength of magnetic field, obliqueness of field, etc., are discussed in detail. At the end, analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.

  14. Fragmentation of molecular ions in slow electron collisions

    International Nuclear Information System (INIS)

    Novotny, Steffen

    2008-01-01

    The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons, the so called dissociative recombination (DR), has been investigated in storage ring experiments at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with high resolution fragment imaging detection. Provided with well directed cold electrons the fragmentation kinematics were measured down to meV collision energies where pronounced rovibrational Feshbach resonances appear in the DR cross section. For thermally excited HD + the fragmentation angle and the kinetic energy release were studied at variable precisely controlled electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described for the first time by Legendre polynomials higher 2 nd order and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H 2 + produced in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as the fragmentation dynamics at selected resonances were measured individually in the lowest two vibrational and first three excited rotational states. State-specific DR rates and angular dependences are reported. (orig.)

  15. Fragmentation of molecular ions in slow electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Steffen

    2008-06-25

    The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons, the so called dissociative recombination (DR), has been investigated in storage ring experiments at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with high resolution fragment imaging detection. Provided with well directed cold electrons the fragmentation kinematics were measured down to meV collision energies where pronounced rovibrational Feshbach resonances appear in the DR cross section. For thermally excited HD{sup +} the fragmentation angle and the kinetic energy release were studied at variable precisely controlled electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described for the first time by Legendre polynomials higher 2{sup nd} order and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H{sub 2}{sup +} produced in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as the fragmentation dynamics at selected resonances were measured individually in the lowest two vibrational and first three excited rotational states. State-specific DR rates and angular dependences are reported. (orig.)

  16. Note on measuring electronic stopping of slow ions

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2017-11-01

    Extracting stopping cross sections from energy-loss measurements requires careful consideration of the experimental geometry. Standard procedures for separating nuclear from electronic stopping treat electronic energy loss as a friction force, ignoring its dependence on impact parameter. In the present study we find that incorporating this dependence has a major effect on measured stopping cross sections, in particular for light ions at low beam energies. Calculations have been made for transmission geometry, nuclear interactions being quantified by Bohr-Williams theory of multiple scattering on the basis of a Thomas-Fermi-Molière potential, whereas electronic interactions are characterized by Firsov theory or PASS code. Differences between the full and the restricted stopping cross section depend on target thickness and opening angle of the detector and need to be taken into account in comparisons with theory as well as in applications of stopping data. It follows that the reciprocity principle can be violated when checked on restricted instead of full electronic stopping cross sections. Finally, we assert that a seeming gas-solid difference in stopping of low-energy ions is actually a metal-insulator difference. In comparisons with experimental results we mostly consider proton data, where nuclear stopping is only a minor perturbation.

  17. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  18. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.

    2001-01-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D - , is close to the production of negative ions of light hydrogen isotope, H - . The comparison of the experimental data with the calculated ones shows that the most probable process of the H - and D - ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  19. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  20. Electron-deficient anthraquinone derivatives as cathodic material for lithium ion batteries

    Science.gov (United States)

    Takeda, Takashi; Taniki, Ryosuke; Masuda, Asuna; Honma, Itaru; Akutagawa, Tomoyuki

    2016-10-01

    We studied the electronic and structural properties of electron-deficient anthraquinone (AQ) derivatives, Me4N4AQ and TCNAQ, and investigated their charge-discharge properties in lithium ion batteries along with those of AQ. Cyclic voltammogram, X-ray structure analysis and theoretical calculations revealed that these three acceptors have different features, such as different electron-accepting properties with different reduction processes and lithium coordination abilities, and different packing arrangements with different intermolecular interactions. These differences greatly affect the charge-discharge properties of lithium ion batteries that use these compounds as cathode materials. Among these compounds, Me4N4AQ showed a high charge/discharge voltage (2.9-2.5 V) with high cyclability (>65% of the theoretical capacity after 30 cycles; no decrease after 15 cycles). These results provide insight into more in-depth design principles for lithium ion batteries using AQ derivatives as cathodic materials.

  1. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  2. Fast ions and hot electrons in the laser--plasma interaction

    International Nuclear Information System (INIS)

    Gitomer, S.J.; Jones, R.D.; Begay, F.; Ehler, A.W.; Kephart, J.F.; Kristal, R.

    1986-01-01

    Data on the emission of energetic ions produced in laser--matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x-ray-determined hot electron temperature. Five theoretical models have been used to explain this correlation. The models include (1) a steady-state spherically symmetric fluid model with classical electron heat conduction, (2) a steady-state spherically symmetric fluid model with flux limited electron heat conduction, (3) a simple analytic model of an isothermal rarefaction followed by a free expansion, (4) the lasneX hydrodynamics code [Comments Plasma Phys. Controlled Fusion 2, 85 (1975)], calculations employing a spherical expansion and simple initial conditions, and (5) the lasneX code with its full array of absorption, transport, and emission physics. The results obtained with these models are in good agreement with the experiments and indicate that the detailed shape of the correlation curve between mean fast ion energy and hot electron temperature is due to target surface impurities at the higher temperatures (higher laser intensities) and to the expansion of bulk target material at the lower temperatures (lower laser intensities)

  3. Emission of low-energetic electrons in collisions of heavy ions with solid targets

    International Nuclear Information System (INIS)

    Lineva, Natallia

    2008-07-01

    At the UNILAC accelerator, we have initiated a project with the objective to investigate lowenergy electrons, emitted from solid, electrically conductive targets after the impact of swift light and heavy ions. For this purposes, we have installed, optimized, and put into operation an electrostatic toroidal electron spectrometer. First, investigations of electrons, emitted from solid-state targets after the bombardment with a monochromatic electron beam from an electron gun, has been carried out. The proposed method combines the results of the measurements with the results of dedicated Monte Carlo simulations. The method has been elaborated in a case study for carbon targets. The findings have been instrumental for the interpretation of our measurements of electrons emitted in collisions of swift ions with the same carbon targets. Our investigations focused on following ion beams: protons and (H + 3 )-molecules of the same energy, as well as on carbon ions with two different energies. Thin carbon, nickel, argon and gold foils has been used as targets. Electrons in the energy range between 50 eV and 1 keV have been investigated. The measured electron distributions, both integral as well as differential with respect to the polar angle, have been compared to simple standard theories for gases as well as to the results of TRAX simulations, the latter being based on data from gaseous targets. Dedicated TRAX simulations have been performed only for the carbon targets, applying the method mentioned above. Within our experimental uncertainties, we observe a good agreement of the measured and TRAX simulated data. That leads us to the conclusion that - as a first order approximation - the electron emission pattern from ion-atom collisions in solid-state targets and the one from single collisions in gases are similar. (orig.)

  4. Differential multi-electron emission induced by swift highly charged gold ions penetrating carbon foils

    Science.gov (United States)

    Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T. J. M.

    2007-05-01

    First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au24+ (11 MeV/u) on a thin carbon foil (28 μg/cm2).

  5. Differential multi-electron emission induced by swift highly charged gold ions penetrating carbon foils

    International Nuclear Information System (INIS)

    Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T.J.M.

    2007-01-01

    First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au 24+ (11 MeV/u) on a thin carbon foil (28 μg/cm 2 )

  6. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments

    OpenAIRE

    Zhengfeng Fan; Yuanyuan Liu; Bin Liu; Chengxin Yu; Ke Lan; Jie Liu

    2017-01-01

    The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016)], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into...

  7. Effects of fast monoenergetic electrons on the ion dynamics near the cathode in a pulsed direct current plasma sheath

    International Nuclear Information System (INIS)

    Sharifian, M.; Shokri, B.

    2008-01-01

    A detailed one-dimensional simulation of the ion dynamics of the plasma sheath near a substrate (cathode) in the presence of fast monoenergetic electrons has been carried out in this article. The sheath evolution is investigated by using a fluid model assuming that the ions, plasma electrons and monoenergetic, fast electrons act as three fluids (fluid approach). The effect of the density of fast electrons on the ion density, ion velocity, and ion energy near the cathode and the evolution of the sheath boundary in front of the cathode are separately explored. Also, the variation of the ion velocity and ion density at the vicinity of the cathode as a function of time is investigated in the absence and presence of the electron beam. Results indicate that the presence of fast electrons in the sheath causes significant change in the sheath thickness and therefore basically changes the ion velocity, ion density, and ion impact energy on the cathode compared to the absence of the electron beam case

  8. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  9. Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks

    International Nuclear Information System (INIS)

    Dieckmann, M E; Sarri, G; Kourakis, I; Borghesi, M; Bret, A; Perez Alvaro, E

    2012-01-01

    The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low. (paper)

  10. Plasma wave observations during electron and ion gun experiments

    International Nuclear Information System (INIS)

    Olsen, R.C.; Lowery, D.R.; Weddle, L.E.

    1988-01-01

    Plasma wave instruments with high temporal and frequency resolution in the 0-6 kHz frequency range have been used to monitor electron gun-employing charge control experiments with the USAF/NASA p78-2 satellite, in order to determine whether plasma wave signatures consistent with the previous inference of electron heating were present. Strong plasma waves were noted near the electron gyrofrequency; these waves can heat ambient low energy electrons, as previously inferred. Attention is given to the two distinct classes of behavior revealed by the ion gun experiments. 16 references

  11. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  12. Indirect mechanisms in electron-impact ionization of multiply charged ions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Gregory, D.C.

    1986-09-01

    The important role of indirect-ionization mechanisms in electron-impact ionization of multiply charged ions has been emphasized by some recent experiments conducted with the ORNL-ECR multicharged ion source. Illustrative examples of investigations of the Mg-isoelectronic and Fe-isonuclear sequences are presented and compared with the results of detailed theoretical calculations. New experimental data is also presented concerning the role of resonance effects in the ionization of Li-like O 5+ and Na-like Fe 15+ ions

  13. CINEMA (Cubesat for Ion, Neutral, Electron, MAgnetic fields)

    Science.gov (United States)

    Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Wang, L.; Sample, J. G.; Horbury, T. S.; Roelof, E. C.; Lee, D.; Seon, J.; Hines, J.; Vo, H.; Tindall, C.; Ho, J.; Lee, J.; Kim, K.

    2009-12-01

    The NSF-funded CINEMA mission will provide cutting-edge magnetospheric science and critical space weather measurements, including high sensitivity mapping and high cadence movies of ring current, >4 keV Energetic Neutral Atom (ENA), as well as in situ measurements of suprathermal electrons (>~2 keV) and ions (>~ 4 keV) in the auroral and ring current precipitation regions, all with ~1 keV FWHM resolution and uniform response up to ~100 keV. A Suprathermal Electron, Ion, Neutral (STEIN) instrument adds an electrostatic deflection system to the STEREO STE (SupraThermal Electron) 4-pixel silicon semiconductor sensor to separate ions from electrons and from ENAs up to ~20 keV. In addition, inboard and outboard (on an extendable 1m boom) magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. A new attitude control system (ACS) uses torque coils, a solar aspect sensor and the magnetometers to de-tumble the 3u CINEMA spacecraft, then spin it up to ~1 rpm with the spin axis perpendicular to the ecliptic, so STEIN can sweep across most of the sky every minute. Ideally, CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. An S-band transmitter will be used to provide > ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station. Two more identical CINEMA spacecraft will be built by Kyung Hee University (KHU) in Korea under their World Class University (WCU) program, to provide stereo ENA imaging and multi-point in situ measurements. Furthermore, CINEMA’s development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft will be important for future nanosatellite space missions.

  14. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-01

    Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v vph diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.

  15. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    International Nuclear Information System (INIS)

    Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid

  16. Color center annealing and ageing in electron and ion-irradiated yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Costantini, Jean-Marc; Beuneu, Francois

    2005-01-01

    We have used X-band electron paramagnetic resonance (EPR) measurements at room-temperature (RT) to study the thermal annealing and RT ageing of color centers induced in yttria-stabilized zirconia (YSZ), i.e. ZrO 2 :Y with 9.5 mol% Y 2 O 3 , by swift electron and ion-irradiations. YSZ single crystals with the orientation were irradiated with 2.5 MeV electrons, and implanted with 100 MeV 13 C ions. Electron and ion beams produce the same two color centers, namely an F + -type center (singly ionized oxygen vacancy) and the so-called T-center (Zr 3+ in a trigonal oxygen local environment) which is also produced by X-ray irradiations. Isochronal annealing was performed in air up to 973 K. For both electron and ion irradiations, the defect densities are plotted versus temperature or time at various fluences. The influence of a thermal treatment at 1373 K of the YSZ single crystals under vacuum prior to the irradiations was also investigated. In these reduced samples, color centers are found to be more stable than in as-received samples. Two kinds of recovery processes are observed depending on fluence and heat treatment

  17. Geometric and electronic structures of molecular ions from high energy collisions

    International Nuclear Information System (INIS)

    Groeneveld, K.O.

    1983-01-01

    This chapter examines the characteristics of heavy ion collision and of beam foil spectroscopy. It discusses the kinematic consequences of the high energies and presents results from ''Coulomb explosion'' and structure determination of molecular ions. It demonstrates that studies of molecular ions with accelerators can provide electronic and geometric structure information of molecules or molecular ions and points out that the understanding of the microscopic processes at such high energies is incomplete and needs further experimental and theoretical efforts

  18. Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma.

    Science.gov (United States)

    Fu, Zhen-Guo; Wang, Zhigang; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2015-09-01

    The problem of electron-ion temperature relaxation in beryllium plasma at various densities (0.185-18.5g/cm^{3}) and temperatures [(1.0-8)×10^{3} eV] is investigated by using the generalized Lenard-Balescu theory. We consider the correlation effects between electrons and ions via classical and quantum static local field corrections. The numerical results show that the electron-ion pair distribution function at the origin approaches the maximum when the electron-electron coupling parameter equals unity. The classical result of the Coulomb logarithm is in agreement with the quantum result in both the weak (Γ_{ee}1) electron-electron coupling ranges, whereas it deviates from the quantum result at intermediate values of the coupling parameter (10^{-2}Coulomb logarithm will decrease and the corresponding relaxation rate ν_{ie} will increase. In addition, a simple fitting law ν_{ie}/ν_{ie}^{(0)}=a(ρ_{Be}/ρ_{0})^{b} is determined, where ν_{ie}^{(0)} is the relaxation rate corresponding to the normal metal density of Be and ρ_{0}, a, and b are the fitting parameters related to the temperature and the degree of ionization 〈Z〉 of the system. Our results are expected to be useful for future inertial confinement fusion experiments involving Be plasma.

  19. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  20. Ion and electron parameters in the alcator C tokamak scrape-off region

    International Nuclear Information System (INIS)

    Wan, A.S.H.

    1986-05-01

    Janus is a bi-directional, multi-functional edge probe used to diagnose the ion and electron parameters in the Alcator C tokamak scrape-off region. Two mirror image sets of diagnostics are aligned to face the electron and ion sides along magnetic field lines. Each set of diagnostics consists of a retarding-field energy analyzer (RFEA), a Langmuir probe, and a calorimeter. The RFEA can alternatively sample both the ion and electron parallel energy distribution functions during a tokamak discharge. From the Langmuir probe, one can infer electron temperature, density, and the plasma floating potential. Simple Langmuir probe theory is found to yield the best agreement between the measured Langmuir probe characteristics and the RFEA-inferred T/sub e/. The calorimeter independently detects the total parallel heat flux incident to an electrically floating plate. The measured sheath transmission coefficient, however, is typically lower than the theoretically predicted value by a factor of approx.3. Together these diagnostics enable detailed, localized edge plasma characterization on Alcator C

  1. Experimental efforts at NIST towards one-electron ions in circular Rydberg states

    International Nuclear Information System (INIS)

    Tan, Joseph N; Guise, Nicholas D; Brewer, Samuel M

    2011-01-01

    Experimental effort is underway at NIST to enable tests of theory with one-electron ions synthesized in circular Rydberg states from captured bare nuclei. Problematic effects that limit the accuracy of predicted energy levels for low-lying states are vanishingly small for high-angular-momentum (high-L) states; in particular, the nuclear size correction for high-L states is completely negligible for any foreseeable improvement of measurement precision. As an initial step towards realizing such states, highly charged ions are extracted from the NIST electron beam ion trap (EBIT) and steered through the electrodes of a Penning trap. The goal is to capture bare nuclei in the Penning trap for experiments to make one-electron atoms in circular Rydberg states with dipole (E1) transitions in the optical domain accessible to a frequency comb.

  2. Atomic physics at the Argonne PII ECR [electron cyclotron resonance] Ion Source

    International Nuclear Information System (INIS)

    Dunford, R.W.; Berry, H.G.; Billquist, P.J.; Pardo, R.C.; Zabransky, B.J.; Bakke, E.; Groeneveld, K.O.; Hass, M.; Raphaelian, M.L.A.

    1987-01-01

    An atomic physics beam line has been set up at the Argonne PII ECR Ion Source. The source is on a 350-kV high-voltage platform which is a unique feature of particular interest in work on atomic collisions. We describe our planned experimental program which includes: measurement of state-selective electron-capture cross sections, studies of doubly-excited states, precision spectroscopy of few-electron ions, tests of quantum electrodynamics, and studies of polarization transfer using optically pumped polarized alkali targets. The first experiments will be measurements of cross sections for electron capture into specific nl subshells in ion-atom collisions. Our method is to observe the characteristic radiation emitted after capture using a VUV spectrometer. Initial data from these experiments are presented. 12 refs., 4 figs

  3. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  4. Phase-mixing of Langmuir oscillations in cold electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Chandan [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-07-15

    Space-time evolution of Langmuir oscillations in a cold homogeneous electron-positron-ion plasma has been analyzed by employing a straightforward perturbation expansion method, showing phase-mixing and, thus, wave-breaking of excited oscillations at arbitrary amplitudes. Within an assumption of infinitely massive ions, an approximate phase-mixing time is found to scale as ω{sub pe}t{sub mix}∼[(6/δ{sup 2})((2−α){sup 5/2}/(1−α))]{sup 1/3}, where “δ” and “α” (= n{sub 0i}/n{sub 0e}) are the amplitude of perturbation and the ratio of equilibrium ion density to equilibrium electron density, respectively, and ω{sub pe}∼√(4πn{sub 0e}e{sup 2}/m) is the electron plasma frequency. The results presented on phase-mixing of Langmuir modes in multispecies plasmas are expected to be relevant to laboratory and astrophysical environments.

  5. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence

  6. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    International Nuclear Information System (INIS)

    Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong

    2009-01-01

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  7. Surface potential measurement of insulators in negative-ion implantation by secondary electron energy-peak shift

    International Nuclear Information System (INIS)

    Nagumo, Shoji; Toyota, Yoshitaka; Tsuji, Hiroshi; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1993-01-01

    Negative-ion implantation is expected to realize charge-up free implantation. In this article, about a way to specify surface potential of negative-ion implanted insulator by secondary-electron-energy distribution, its principle and preliminary experimental results are described. By a measuring system with retarding field type energy analyzer, energy distribution of secondary electron from insulator of Fused Quartz in negative-carbon-ion implantation was measured. As a result the peak-shift of its energy distribution resulted according with the surface potential of insulator. It was found that surface potential of insulator is negatively charged by only several volts. Thus, negative-ion implanted insulator reduced its surface charge-up potential (without any electron supply). Therefore negative-ion implantation is considered to be much more effective method than conventional positive-ion implantation. (author)

  8. Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Hu, Zhimin; Watanabe, Hirofumi; Li, Yueming; Kato, Daiji; Currell, Fred J.; Tong Xiaomin; Watanabe, Tsutomu; Ohtani, Shunsuke

    2011-01-01

    In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.

  9. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Gaidarov, M.K. [INRNE-BAS Sofia (Bulgaria); Ivanov, M.V. [Grupo de Physica Nuclear, Complutense University of Madrid (Spain); Kadrev, D.N. [INRNE-BAS Sofia (Bulgaria); Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B. [Centre d' Etudes Nucleaires Bordeaux-Gradingnan (CENBG) (France); Belier, G.; Chatillon, A.; Granier, T.; Taieb, J. [CEA Bruyeres-le-Chatel (France); Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S. [CEA Saclay (France); Farget, F.; Schmitt, C. [GANIL Caen (France)

    2011-05-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented.

  10. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    International Nuclear Information System (INIS)

    Antonov, A.N.; Gaidarov, M.K.; Ivanov, M.V.; Kadrev, D.N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented.

  11. Electron and ion magnetohydrodynamic effects in plasma opening switches

    International Nuclear Information System (INIS)

    Grossmann, J.M.; DeVore, C.R.; Ottinger, P.F.

    1993-01-01

    Preliminary results are presented of a numerical code designed to investigate electron and ion magnetohydrodynamic effects in plasma erosion opening switches. The present model is one-dimensional and resolves effects such as the JxB deformation of the plasma, and the penetration of magnetic field either by anomalous resistivity or electron magnetohydrodynamics (Hall effect). Comparisons with exact analytic results and experiment are made

  12. Monte Carlo modeling of ion beam induced secondary electrons

    Energy Technology Data Exchange (ETDEWEB)

    Huh, U., E-mail: uhuh@vols.utk.edu [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Cho, W. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Joy, D.C. [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10–100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. - Highlights: • The Universal ASTAR Yield Curve was derived from data recently published by NIST. • IONiSE incorporated with the Curve will predict iSE yield for elements and compounds. • This approach can also handle other ion beams by changing basic scattering profile.

  13. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Adnan, Muhammad; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); Physics Institute, Federal University of Rio Grande do Sul (UFRGS), 915051-970, Porto Alegre, RS (Brazil)

    2014-09-15

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  14. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    Science.gov (United States)

    Adnan, Muhammad; Mahmood, S.; Qamar, Anisa

    2014-09-01

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg-de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  15. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  16. Are we ready to test QED in two-electron ions

    International Nuclear Information System (INIS)

    Ermolaev, A.M.

    1981-01-01

    The great improvement on the accuracy of the measured transition intervals in two-electron ions achieved recently is discussed with reference to reports of Berry (ANL) and Silver (Oxford) on the precision determination of the 2s 3 S 1 - 2p 3 P/sub J/, J = 0, and 2, intervals in the ions with intermediate Z

  17. Theoretical progress in studying the characteristic x-ray emission from heavy few-electron ions

    International Nuclear Information System (INIS)

    Surzhykov, Andrey; Stohlker, Thomas; Fritzsche, Stephan; Kabachnik, Nikolai M

    2009-01-01

    Recent theoretical progress in the study of the x-ray characteristic emission from highly-charged, few-electron ions is reviewed. These investigations show that the bound-state radiative transitions in high-Z ions provide a unique tool for better understanding the interplay between the structural and dynamical properties of heavy ions. In order to illustrate such an interplay, detailed calculations are presented for the K α1 decay of the helium-like uranium ions U 90+ following radiative electron capture, Coulomb excitation and dielectronic recombination processes.

  18. The Strength of Chaos: Accurate Simulation of Resonant Electron Scattering by Many-Electron Ions and Atoms in the Presence of Quantum Chaos

    Science.gov (United States)

    2017-01-20

    AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos : accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...of quantum chaos Igor Bray CURTIN UNIVERSITY OF TECHNOLOGY Final Report 01/20/2017 DISTRIBUTION A: Distribution approved for public release. AF...SUBTITLE The Strength of Chaos : accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos

  19. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  20. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    International Nuclear Information System (INIS)

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  1. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    Science.gov (United States)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  2. Electron capture to autoionizing states of multiply charged ions

    International Nuclear Information System (INIS)

    Mack, E.M.

    1987-01-01

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+ ) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 50 0 . Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H 2 ) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C 6+ , the H-like and He-like ions of C, N and O, He-like Ne 8+ and Ne-like Ar 8+ . Excited metastable projectiles used are C 5+ (2s), He-like projectiles A q+ (1s2s 3 S) and Ar 8+ (...2p 5 3s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  3. Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator

    Science.gov (United States)

    Gamelin, A.; Bruni, C.; Radevych, D.

    2018-05-01

    The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.

  4. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N.; Santhana Raman, P. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Xu, X.; Pang, R.; Kan, J. A. van, E-mail: phyjavk@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-02-15

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  5. Non-planar ion-acoustic solitary waves and their head-on collision in a plasma with nonthermal electrons and warm adiabatic ions

    Energy Technology Data Exchange (ETDEWEB)

    Han Jiuning; He Yonglin; Chen Yan; Zhang Kezhi; Ma Baohong [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)

    2013-01-15

    By using the model of Cairns et al.[Geophys. Rev. Lett. 22, 2709 (1995)], the head-on collision of cylindrical/spherical ion-acoustic solitary waves in an unmagnetized non-planar plasma consisting of warm adiabatic ions and nonthermally distributed electrons is investigated. The extended Poincare-Lighthill-Kuo perturbation method is used to derive the modified Korteweg-de Vries equations for ion-acoustic solitary waves in this plasma system. The effects of the plasma geometry m, the ion to electron temperature ratio {sigma}, and the nonthermality of the electron distribution {alpha} on the interaction of the colliding solitary waves are studied. It is found that the plasma geometries have a big impact on the phase shifts of solitary waves. Also it is important to note that the phase shifts induced by the collision of compressive and rarefactive solitary waves are very different. We point out that this study is useful to the investigations about the observations of electrostatic solitary structures in astrophysical as well as in experimental plasmas with nonthermal energetic electrons.

  6. Electron and Negative Ion Densities in C2F6 and CHF3 Containing Inductively Coupled Discharges

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Electron and negative ion densities have been measured in inductively coupled discharges containing C 2 F 6 and CHF 3 . Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10 12 cm -2 (line-integrated) or approximately 9 x 10 11 cm -3 . The negative ion density peaked at approximately 1.3 x 10 11 cm -3 . A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F - . Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF 4 , C 2 F 6 and CHF 3 discharges

  7. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    Science.gov (United States)

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  8. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu; Aly, Shawkat Mohammede; Usman, Anwar; Parida, Manas R.; Del Gobbo, Silvano; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  9. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  10. Dispersion characteristics of a two-beam electron-ion system in a magnetic field

    International Nuclear Information System (INIS)

    Kapchinskij, M.I.; Rozanov, N.E.

    1982-01-01

    Without an assumption of the problem potentiality the dispersion properties of a two-beam system important for the realization of the autoresonance method of the acceleration are investigated for the different configurations of an electron flow and arbitrary radii of an ion beam. Two models are used. In the first the ion beam is considered a homogeneous dielectric medium of low density, which permits to apply to the problem the method of perturbations and examine both continuous and thin-wall tubular electron beams. The second model based on an assumption of the self-similarity of beam density change permits to describe ion instabilities of both the cyclotron and Langmuir waves of the electron beam in the quasistatic long-wave limit. Comparison of the results shows that both approaches in the longwave limit give the same qualitative dependence of instability increments on the system parameters and the complicated qualitative dependence. It is shown that for the purposes of the collective ion acceleration it is necessary to decrease the ion beam radius, as it permits to avoid the development of stray instabilities [ru

  11. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  12. New Statistical Multiparticle Approach to the Acceleration of Electrons by the Ion Field in Plasmas

    Directory of Open Access Journals (Sweden)

    Eugene Oks

    2010-01-01

    Full Text Available The phenomenon of the acceleration of the (perturbing electrons by the ion field (AEIF significantly reduces Stark widths and shifts in plasmas of relatively high densities and/or relatively low temperature. Our previous analytical calculations of the AEIF were based on the dynamical treatment: the starting point was the ion-microfield-caused changes of the trajectories and velocities of individual perturbing electrons. In the current paper, we employ a statistical approach: the starting point is the electron velocity distribution function modified by the ion microfield. The latter had been calculated by Romanovsky and Ebeling in the multiparticle description of the ion microfield. The result shows again the reduction of the electron Stark broadening. Thus two totally different analytical approaches (dynamical and statistical agree with each other and therefore disprove the corresponding recent fully-numerical simulations by Stambulchik et al. that claimed an increase of the electron Stark broadening.

  13. Electron emission induced by resonant coherent ion-surface interaction at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1992-01-01

    A new spectroscopy based on the resonant coherently induced electron loss to the continuum in ion-surface scattering under grazing incidence is proposed. A series of peaks, corresponding to the energy differences determined by the resonant interaction with the rows of atoms in the surface, is predicted to appear in the energy distribution of electrons emitted from electronic states bound to the probe. Calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with a glancing angle of 0--2 mrad show a total yield close to 1

  14. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    Directory of Open Access Journals (Sweden)

    Mark D. Parker

    2013-01-01

    Full Text Available Determining the effective concentration (i.e., activity of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.

  15. Ion temperature effects on magnetotail Alfvén wave propagation and electron energization: ION TEMPERATURE EFFECTS ON ALFVÉN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Damiano, P. A. [Princeton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey USA; Johnson, J. R. [Princeton Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey USA; Chaston, C. C. [Space Sciences Laboratory, University of California, Berkeley California USA; School of Physics, University of Sydney, Sydney New South Wales Australia

    2015-07-01

    A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which also implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.

  16. Ab initio theory of the electronic structure of nf-ions in solids and liquids

    International Nuclear Information System (INIS)

    Kulagin, N.

    1998-01-01

    Full text: In the books and papers we developed the self-consistent field theory of nl- ions in Me+n:[L]k- clusters, where k is number of ligands - L, by ion-ligands distance - R. The results which were obtained for all RE and AC ions for Me+n:[L]k, where L - F - , O -2 and so on ligands, are closely corresponded to experimental data. The expression for energy of the cluster may be write as: E = E 0 + kE 1 + k'(E z + E c + E e + E ex ), (Eq.1), where E 0 and E 1 are the energies of the free nl-ion and surrounding one; E z , E c and E e are the energy of electrons interaction with 'strange' nucleus, Coulomb electron-electron interaction and exchange one. E ex is the energy of the interaction of electrons and nucleus with external field. The equations for the radial one-electron wave functions of the ions in the cluster were obtained by minimizing the Eq. 1 for the radial orbitals of the central ion and ligand one. We have received the general system of equations of the self-consistent field for cluster in liquids and solid states. The results of calculations of the energy structure of clusters and values of the standard radial integrals (spectroscopy parameters) for Ac-ions in 1-2-3 superconductors and RE-ions in garnet crystals by different values of R are qualitatively and quantitatively correct. We've got the best results for pressure dependence of Nd ions spectra, change of optical and X-Ray spectra after irradiation of garnets. We explained the nature of anomalous in SrTiO 3 and separate lasers crystals by used of results of the calculations. In the framework of our approach we obtained the best accuracy for the energy of X- Ray lines for all nf- ions in solids and liquids

  17. Ion and electron Van de Graaff accelerators of Kyoto University

    International Nuclear Information System (INIS)

    Fukuzawa, F.; Imanishi, N.; Tomita, M.; Norisawa, K.; Yoshida, K.; Ohdaira, T.

    1990-01-01

    Two Van de Graaff accelerators are available at the Uji campus of Kyoto University. One is a 4MV machine, which is used for heavy ion acceleration, while the other is a 2MV machine for electron acceleration. These machines have been modified in various parts and currently used very actively in many fields of investigation. Important modifications of the 4MV machine are: use of a newly developed accelerating tube, addition of a charge-changer before the analyzing magnet, renewal of the charging belt, and development of a microbeam system for PIXE and RBS analysis. An attempt is now being made to accelerate micro-particles using the 2MV machine. The new accelerating tube has bucket type electrodes with large accelerating apertures. By charge-changing the accelerated 1+ ions to higher charge states, 2+, 3+, ..., at the entrance of the analyzing magnet, Ar ions with energies of up to 2.73, 6.21, .... MeV can be deflected to the duct. Scanning microbeam PIXE and RBS are powerful tools for analysis of spatial elemental distribution. Calculations suggest that a beam size of about 3 μm can be attained by using an object aperture of 10μm in diameter and controlling the beam divergence within 10μ rad in both directions. (N.K.)

  18. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  19. Summary: Electron-cloud effects and fast-ion instability

    International Nuclear Information System (INIS)

    Furman, Miguel A.

    2000-01-01

    This is my summary of the talks on the electron-cloud effect and the fast-ion instability that were presented at the 8th ICFA Beam Dynamics Mini-Work shop on Two-Stream Instabilities in Particle Accelerators and Storage Rings,Santa Fe, NM, February 16--18, 2000

  20. Electron spin resonance investigations on polycarbonate irradiated with U ions

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Reyes-Romero, J

    2001-12-01

    Electron spin resonance investigations on polycarbonate irradiated with uranium ions are reported. The dependence of the resonance line parameters (line intensity, line width, double integral) on penetration depth and dose is studied. The nature of free radicals induced in polycarbonate by the incident ions is discussed in relation with the track structure. The presence of severe exchange interactions among free radicals is noticed.

  1. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  2. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy; Fragmentation de la molecule C60 par impact d'ions legers etudiee en multicorrelation. Sections efficaces, spectroscopie d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rentenier, A

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H{sub n}{sup +} with n=1,2,3, He{sup q+} with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  3. Electron impact ionization of heavy ions: some surprises

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    This paper reports the results of calculations of electron impact ionization cross sections for a variety of heavy ions using a distorted wave Born-exchange approximation. The target is described by a Hartree-Fock wavefunction. The scattering matrix element is represented by a triple partial wave expansion over incident, scattered, and ejected (originally bound) continuum states. These partial waves are computed in the potentials associated with the initial target (incident and scattered waves) and the residual ion (ejected waves). A Gauss integration was performed over the distribution of energy between the two final state continuum electrons. For ionization of closed d- and f-subshells, the ejected f-waves were computed in frozen-core term-dependent Hartree-Fock potentials, which include the strong repulsive contribution in singlet terms which arises from the interaction of an excited orbital with an almost closed shell. Ground state correlation was included in some calculations of ionization of d 10 subshells

  4. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    Science.gov (United States)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  5. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  6. Overview of the Livermore electron beam ion trap project

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Behar, E.; Boyce, K.R.; Brown, G.V.; Chen, H.; Gendreau, K.C.; Graf, A.; Gu, M.-F.; Harris, C.L.; Kahn, S.M.; Kelley, R.L.; Lepson, J.K.; May, M.J.; Neill, P.A.; Pinnington, E.H.; Porter, F.S.; Smith, A.J.; Stahle, C.K.; Szymkowiak, A.E.; Tillotson, A.; Thorn, D.B.; Traebert, E.; Wargelin, B.J.

    2003-01-01

    The Livermore electron beam ion trap facility has recently been moved to a new location within LLNL, and new instrumentation was added, including a 32-pixel microcalorimeter. The move was accompanied by a shift of focus toward in situ measurements of highly charged ions, which continue with increased vigor. Overviews of the facility, which includes EBIT-I and SuperEBIT, and the research projects are given, including results from optical spectroscopy, QED, and X-ray line excitation measurements

  7. Reciprocity in the electronic stopping of slow ions in matter

    International Nuclear Information System (INIS)

    Sigmund, P.

    2008-01-01

    The principle of reciprocity, i.e., the invariance of the inelastic excitation in ion-atom collisions against interchange of projectile and target, has been applied to the electronic stopping cross section of low-velocity ions and tested empirically on ion-target combinations supported by a more or less adequate amount of experimental data. Reciprocity is well obeyed (within ∼10%) for many systems studied, and deviations exceeding ∼20% are exceptional. Systematic deviations such as gas-solid or metal-insulator differences have been looked for but not identified on the present basis. A direct consequence of reciprocity is the equivalence of Z 1 with Z 2 structure for random slowing down. This feature is reasonably well supported empirically for ion-target combinations involving carbon, nitrogen, aluminium and argon. Reciprocity may be utilized as a criterion to reject questionable experimental data. In cases where a certain stopping cross section has not been or cannot be measured, the stopping cross section for the inverted system may be available and serve as a first estimate. It is suggested to build in reciprocity as a fundamental requirement into empirical interpolation schemes directed at the stopping of low-velocity ions. Examination of the SRIM and MSTAR codes reveals cases where reciprocity is obeyed accurately, but deviations of up to a factor of two are common. In case of heavy ions such as gold, electronic stopping cross sections predicted by SRIM are asserted to be almost an order of magnitude too high. (authors)

  8. Reciprocity in the electronic stopping of slow ions in matter

    Science.gov (United States)

    Sigmund, P.

    2008-04-01

    The principle of reciprocity, i.e., the invariance of the inelastic excitation in ion-atom collisions against interchange of projectile and target, has been applied to the electronic stopping cross section of low-velocity ions and tested empirically on ion-target combinations supported by a more or less adequate amount of experimental data. Reciprocity is well obeyed (within ~10%) for many systems studied, and deviations exceeding ~20% are exceptional. Systematic deviations such as gas-solid or metal-insulator differences have been looked for but not identified on the present basis. A direct consequence of reciprocity is the equivalence of Z1 with Z2 structure for random slowing down. This feature is reasonably well supported empirically for ion-target combinations involving carbon, nitrogen, aluminium and argon. Reciprocity may be utilized as a criterion to reject questionable experimental data. In cases where a certain stopping cross section has not been or cannot be measured, the stopping cross section for the inverted system may be available and serve as a first estimate. It is suggested to build in reciprocity as a fundamental requirement into empirical interpolation schemes directed at the stopping of low-velocity ions. Examination of the SRIM and MSTAR codes reveals cases where reciprocity is obeyed accurately, but deviations of up to a factor of two are common. In case of heavy ions such as gold, electronic stopping cross sections predicted by SRIM are asserted to be almost an order of magnitude too high.

  9. Analytic theory of the spherical electron to ion convertor

    International Nuclear Information System (INIS)

    Verdeyen, J.T.; Miller, P.A.

    1980-01-01

    Calculations will be presented which indicate that one could, with high efficiency, convert the electron beam energy transported from many pinched diode to ions at a reasonably sized evacuated spherical shell - or a light bulb

  10. Theoretical and experimental study of the electron distribution function in the plasma of an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Girard, A.; Perret, C.; Bourg, F.; Khodja, H.; Melin, G.; Lecot, C.

    1997-01-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are mirror machines which can deliver important fluxes of Highly Charged Ions (HCI). These performances are strongly correlated with hot electrons sustained by an RF wave. This paper presents an analysis of the EDF in an ECR source. In the first part of the paper a one-dimensional Fokker-Planck code for the Electron Distribution Function is presented: this code includes a quasilinear diffusion operator for the RF wave, a collision term and a source term due to electron impact ionization. The present status of this code is presented. In the second part of the paper experiments related to the measurement of the EDF are presented: electron density, diamagnetism, electron endloss current have been measured at the Quadrumafios ECRIS. With these results it is possible to give a precise description of the EDF. (author)

  11. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  13. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    Mueller, D.; Grisham, L.; Kaganovich, I.; Watson, R. L.; Horvat, V.; Zaharakis, K. E.; Peng, Y.

    2002-01-01

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  14. Kinetic electron emission from metal surfaces induced by impact of slow ions

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Zdeněk; Lorinčík, Jan

    -, č. 625 (2014), s. 7-9 ISSN 0039-6028 R&D Projects: GA MŠk(CZ) ME10086 Institutional support: RVO:67985882 Keywords : Ion induced kinetic electron emission * Electronic excitation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.925, year: 2014

  15. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling

    International Nuclear Information System (INIS)

    Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan

    2014-01-01

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography

  16. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu [Accelerator Engineering Corporation, Chiba (Japan)

    2001-11-19

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  17. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    International Nuclear Information System (INIS)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki; Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu

    2001-01-01

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  18. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  19. Giant resonance phenomena in the electron impact ionization of heavy atoms and ions

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    Heavy atoms and ions offer an interesting opportunity to study atomic physics in a region where the atomic structure is dominated by the interelectronic interactions. One illustration of this is the profound term dependence of atomic orbitals for certain configurations of heavy atoms and ions. The appearance of giant scattering resonances in the cross sections for ionization of heavy atoms by electron impact is a manifestation of resonance behavior. Such resonant structures arise from the double well nature of the scattering potential and have recently been identified in the cross sections for the electron impact ionization of several xenon-like ions. The results of calculations showing effects for a variety of other ions are summarized. 7 refs., 4 figs

  20. Ionic fragmentation channels in electron collisions of small molecular ions

    International Nuclear Information System (INIS)

    Hoffmann, Jens

    2009-01-01

    Dissociative Recombination (DR) is one of the most important loss processes of molecular ions in the interstellar medium (IM). Ion storage rings allow to investigate these processes under realistic conditions. At the Heidelberg test storage ring TSR a new detector system was installed within the present work in order to study the DR sub-process of ion pair formation (IPF). The new detector expands the existing electron target setup by the possibility to measure strongly deflected negative ionic fragments. At the TSR such measurements can be performed with a uniquely high energy resolution by independently merging two electron beams with the ion beam. In this work IPF of HD + , H 3 + and HF + has been studied. In the case of HD + the result of the high resolution experiment shows quantum interferences. Analysis of the quantum oscillations leads to a new understanding of the reaction dynamics. For H 3 + it was for the first time possible to distinguish different IPF channels and to detect quantum interferences in the data. Finally the IPF of HF + was investigated in an energy range, where in previous experiments no conclusive results could be obtained. (orig.)