WorldWideScience

Sample records for activated hepatic stellate

  1. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  2. Suppressive Effect of Orthovanadate on Hepatic Stellate Cell Activation and Liver Fibrosis in Rats

    Nishikawa, Yuji; Ohi, Naoto; Yagisawa, Akiko; Doi, Yuko; Yamamoto, Yohei; Yoshida, Masayuki; Tokairin, Takuo; Yoshioka, Toshiaki; Omori, Yasufumi; Enomoto, Katsuhiko

    2009-01-01

    Orthovanadate (OV), an inhibitor of protein tyrosine phosphatases, affects various biological processes in a cell-type-specific manner. In this study, we investigated the effect of OV on hepatic stellate cells (HSCs). When primary rat HSCs were cultured in the presence of 10% serum, they spontaneously lost characteristic stellate morphology, proliferated, and were transformed into an activated state with the formation of abundant stress fibers and increased expression of both α-smooth muscle ...

  3. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  4. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs

  5. Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC-T6 hepatic stellate cells.

    Shin, Eunjin; Lee, Chul; Sung, Sang Hyun; Kim, Young Choong; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-04-01

    The CHCl(3) fraction of Cnidium monnieri fruits significantly inhibited the proliferation of hepatic stellate cells in an in-vitro assay system employing HSC-T6 hepatic stellate cell lines. Activity-guided fractionation of the CHCl(3) fraction of C. monnieri led to the isolation of ten coumarins: osthol (1), meranzin (2), auraptenol (3), meranzin hydrate (4), 7-hydroxy-8-methoxy coumarin (5), imperatorin (6), xanthotoxol (7), xanthotoxin (8), bergapten (9) and isopimpinellin (10). Of these, compounds 1 and 6 significantly inhibited proliferation of HSCs in a time- and concentration-dependent manner. In addition, compounds 1 and 6 significantly reduced collagen content in HSC-T6 cells. PMID:21082271

  6. RETARDING EFFECT OF SAL IANOLIIC ACID B ON ACTIVATION OF RAT HEPATIC STELLATE CELLS IN VITRO

    王晓玲; 刘平; 王海南; 谭英姿

    2001-01-01

    To investigate the anti-fibrosis mechanism of salvianolic acid B in liver.Methods Hepatic stellate cells (HSCs) were isolated from liver of normal rats by in situ perfusion and density-gradient centrifugation with Nycodenz. Total RNA was extracted from cells to detect type Ⅰ collagen and smooth muscle α-actin mRNA expression using reverse transcription-polymerase chain reaction (RT-PCR). Smooth muscle α-actin protein was assayed with immunoblotting analysis. Secretion of type Ⅰ collagen in the medium was determined by ELISA.Results Both 1 μmol/L and 10μmol/L SAB suppressed type Ⅰ collagen mRNA expression and its protein secretion. 10μmol/l SAB affected the expression of smooth muscle α-actin protein.Conclusion Retarding activation of stellate cells and inhibiting type Ⅰ collagen secretion were the main mechanism of SAB on anti-fibrosis of liver.

  7. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and tran...

  8. Antiproliferative and cytotoxic effects of purple pitanga (Eugenia uniflora L.) extract on activated hepatic stellate cells.

    Denardin, Cristiane C; Parisi, Mariana M; Martins, Leo A M; Terra, Silvia R; Borojevic, Radovan; Vizzotto, Márcia; Perry, Marcos L S; Emanuelli, Tatiana; Guma, Fátima T C R

    2014-01-01

    The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect. PMID:23475531

  9. Suppression of hepatic stellate cell activation by microRNA-29b

    Highlights: → Expression of miR-29b was found to be down-regulated during the activation of hepatic stellate cells in primary culture. → Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs. → It blunted the increased expression of α-SMA, DDR2, FN1, ITGB1, and PDGFR-b mRNAs essential for stellate cell activation. → miR-29b overexpression led stellate cells to remain in a quiescent state, as evidenced by their star-like morphology. → miR-29b overexpression suppressed the expression of c-fos mRNA. -- Abstract: MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3'UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of α-SMA, DDR2, FN1, ITGB1, and PDGFR-β, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.

  10. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  11. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells

    Hella Wobser; Christoph Dorn; Thomas S Weiss; Thomas Amann; Cornelius Bollheimer; Roland Büttner; Jürgen Sc(o)lmerich; Claus Hellerbrand

    2009-01-01

    Despite the initial belief that non-alcoholic fatty liver disease is a benign disorder, it is now recognized that fbrosis progression occurs in a significant number of patients. Furthermore, hepatic steatosis has been identified as a risk factor for the progression of hepatic fibrosis in a wide range of other liver diseases. Here, we established an in vitro model to study the effect of hepatic lipid accumulation on hepatic stellate cells (HSCs), the central mediators of liver fibrogenesis. Primary human hepatocytes were incubated with the saturated fatty acid palmitate to induce intracellular lipid accumulation. Subsequently, human HSCs were incubated with conditioned media (CM) from steatotic or control hepatocytes. Lipid accumulation in hepatocytes induced the release of factors that accelerated the activation and proliferation of HSC, and enhanced their resistance to apoptosis, largely mediated via activation of the PI-3-kinase pathway. Furthermore, CM from steatotic hepatocytes induced the expression of the profibrogenic genes TGF-β, tissue inhibitor of metallo-proteinase-1 (TIMP-1), TIMP-2 and matrix-metallo-proteinase-2, as well as nuclear-factor Κb-dependent MCP-1 expression in HSC. In summary, our in vitro data indicate a potential mechanism for the pathophysiological link between hepatic steatosis and fibrogenesis in vivo. Herewith, this study provides an attractive in vitro model to study the molecular mechanisms of steatosis-induced fibrogenesis, and to identify and test novel targets for antifibrotic therapies in fatty liver disease.

  12. Epimorphin alters the inhibitory effects of SOX9 on Mmp13 in activated hepatic stellate cells.

    James Pritchett

    Full Text Available BACKGROUND AND AIMS: Liver fibrosis is a major cause of morbidity and mortality. It is characterised by excessive extracellular matrix (ECM deposition from activated hepatic stellate cells (HSCs. Although potentially reversible, treatment remains limited. Understanding how ECM influences the pathogenesis of the disease may provide insight into novel therapeutic targets for the disease. The extracellular protein Epimorphin (EPIM has been implicated in tissue repair mechanisms in several tissues, partially, through its ability to manipulate proteases. In this study, we have identified that EPIM modulates the ECM environment produced by activated hepatic stellate cells (HSCs, in part, through down-regulation of pro-fibrotic Sex-determining region Y-box 9 (SOX9. METHODS: Influence of EPIM on ECM was investigated in cultured primary rat HSCs. Activated HSCs were treated with recombinant EPIM or SOX9 siRNA. Core fibrotic factors were evaluated by immunoblotting, qPCR and chromatin immunoprecipitation (ChIP. RESULTS: During HSC activation EPIM became significantly decreased in contrast to pro-fibrotic markers SOX9, Collagen type 1 (COL1, and α-Smooth muscle actin (α-SMA. Treatment of activated HSCs with recombinant EPIM caused a reduction in α-SMA, SOX9, COL1 and Osteopontin (OPN, while increasing expression of the collagenase matrix metalloproteinase 13 (MMP13. Sox9 abrogation in activated HSCs increased EPIM and MMP13 expression. CONCLUSION: These data provide evidence for EPIM and SOX9 functioning by mutual negative feedback to regulate attributes of the quiescent or activated state of HSCs. Further understanding of EPIM's role may lead to opportunities to modulate SOX9 as a therapeutic avenue for liver fibrosis.

  13. Relevance of activated hepatic stellate cells in predicting the development of pediatric liver allograft fibrosis.

    Venturi, Carla; Reding, Raymond; Quinones, Jorge Abarca; Sokal, Etienne; Rahier, Jacques; Bueno, Javier; Sempoux, Christine

    2016-06-01

    Activated hepatic stellate cells (HSCs) are the main collagen-producing cells in liver fibrogenesis. With the purpose of analyzing their presence and relevance in predicting liver allograft fibrosis development, 162 liver biopsies of 54 pediatric liver transplantation (LT) recipients were assessed at 6 months, 3 years, and 7 years after LT. The proportion of activated HSCs, identified by α-smooth muscle actin (ASMA) immunostaining, and the amount of fibrosis, identified by picrosirius red (PSR%) staining, were determined by computer-based morphometric analysis. Fibrosis was also staged by using the semiquantitative liver allograft fibrosis score (LAFSc), specifically designed to score fibrosis in the pediatric LT population. Liver allograft fibrosis displayed progression over time by PSR% (P evolution with respect to fibrosis (P evolution with respect to fibrosis in the long term. Liver Transplantation 22 822-829 2016 AASLD. PMID:26851053

  14. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells.

    Siegmund, Sören V; Schlosser, Monika; Schildberg, Frank A; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A; Strassburg, Christian P; Schwabe, Robert F

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs. PMID:26937641

  15. Tetramethylpyrazine Inhibits Activation of Hepatic Stellate Cells through Hedgehog Signaling Pathways In Vitro

    Jue Hu

    2015-01-01

    Full Text Available Background and Aim. Tetramethylpyrazine (TMP, a major alkaloid isolated from Ligusticum chuanxiong, has been reported in hepatic fibrosis models. However, the action mechanism remains unclear. In the present study, effects of tetramethylpyrazine (TMP against hepatic stellate cell (HSC activation as well as the possible mechanisms were evaluated. Methods. Western blot assay was used to detect TMP effects on protein expression of Smo, Patched, Hhip, and Gli and to investigate the effects of TMP on Cyclin D1, Cyclin E1, CDK2, Bcl-2, Bax, and caspase expression with cyclopamine supplementation. Results. Our results showed that TMP significantly inhibits the expression of Cyclin D1, Cyclin E1, and Cyclin-dependent kinase CDK2 and changes the HSC cycle by inhibiting the proliferation of HSC. Moreover, TMP has also been shown to decrease the expression of Bcl-2 and increase the expression of Bax in HSC-T6 cells. Furthermore, TMP can inhibit the expression of connective tissue growth factor (CTGF, and the inhibitory effect was intensified after the application of joint treatment with TMP and cyclopamine. Conclusion. TMP may be an effective Hh signaling pathway inhibitor for hepatic fibrosis treatment.

  16. Bisdemethoxycurcumin Induces Apoptosis in Activated Hepatic Stellate Cells via Cannabinoid Receptor 2

    Phil Jun Lee

    2015-01-01

    Full Text Available Activated Hepatic Stellate Cells (HSCs, major fibrogenic cells in the liver, undergo apoptosis when liver injuries cease, which may contribute to the resolution of fibrosis. Bisdemethoxycurcumin (BDMC is a natural derivative of curcumin with anti-inflammatory and anti-cancer activities. The therapeutic potential of BDMC in hepatic fibrosis has not been studied thus far in the context of the apoptosis in activated HSCs. In the current study, we compared the activities of BDMC and curcumin in the HSC-T6 cell line and demonstrated that BDMC relatively induced a potent apoptosis. BDMC-induced apoptosis was mediated by a combinatory inhibition of cytoprotective proteins, such as Bcl2 and heme oxygenase-1 and increased generation of reactive oxygen species. Intriguingly, BDMC-induced apoptosis was reversed with co-treatment of sr144528, a cannabinoid receptor (CBR 2 antagonist, which was confirmed with genetic downregulation of the receptor using siCBR2. Additionally, incubation with BDMC increased the formation of death-induced signaling complex in HSC-T6 cells. Treatment with BDMC significantly diminished total intracellular ATP levels and upregulated ATP inhibitory factor-1. Collectively, the results demonstrate that BDMC induces apoptosis in activated HSCs, but not in hepatocytes, by impairing cellular energetics and causing a downregulation of cytoprotective proteins, likely through a mechanism that involves CBR2.

  17. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun, E-mail: hunkahmu@126.com

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  18. Astaxanthin prevents and reverses the activation of mouse primary hepatic stellate cells.

    Yang, Yue; Bae, Minkyung; Kim, Bohkyung; Park, Young-Ki; Koo, Sung I; Lee, Ji-Young

    2016-03-01

    Activation of hepatic stellate cells (HSCs) is a critical step that leads to the development of liver fibrosis. We showed that astaxanthin (ASTX), a xanthophyll carotenoid, displays antifibrogenic effects in LX-2 cells, a human HSC cell line. In this study, we further determined the effect of ASTX on HSC activation and inactivation using primary HSCs from C57BL/6J mice. Quiescent and activated HSCs were incubated with ASTX (25μM) at different stages of activation. ASTX prevented the activation of quiescent HSCs, as evidenced by the presence of intracellular lipid droplets and reduction of α-smooth muscle actin, an HSC activation marker. Also, ASTX reverted activated HSCs to a quiescent phenotype with the reappearance of lipid droplets with a concomitant increase in lecithin retinol acyltransferase mRNA. Cellular accumulation of reactive oxygen species was significantly reduced by ASTX, which was attributable to a decrease in NADPH oxidase 2 expression. The antifibrogenic effect of ASTX was independent of nuclear erythroid 2-related factor 2 as it was observed in HSCs from wild-type and Nrf2(-/-) mice. In conclusion, ASTX inhibits HSC activation and reverts activated HSCs to a quiescent state. Further investigation is warranted to determine if ASTX effectively prevents the development of liver fibrosis. PMID:26895661

  19. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy

  20. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Iyer, Soumya C, E-mail: chidambaram.soumya@gmail.com [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Kannan, Anbarasu [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Gopal, Ashidha [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Devaraj, Niranjali [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Halagowder, Devaraj [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India)

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  1. Atorvastatin induces apoptosis by a caspase-9-dependent pathway: an in vitro study on activated rat hepatic stellate cells

    Aprigliano, Isabella; Dudas, Joszef; Ramadori, Giuliano; Saile, Bernhard

    2008-01-01

    Background Statins are shown to have cholesterol-independent properties such as anti-inflammation and immunomodulation. Activated hepatic stellate cells (HSCs) acquire the capacity to synthesize matrix proteins in damaged liver. We tested the hypothesis that atorvastatin may be capable of inducing apoptosis in HSCs. Methods Primary cultures of rat HSCs were exposed to atorvastatin, mevalonic acid and U0126. Quantification of living, apoptotic and necrotic HSCs was performed by flow cytometry ...

  2. Activation of corticotropin releasing factor receptors up regulates collagen production by hepatic stellate cells via promoting p300 expression.

    Wang, Changzhen; Yang, Shan; Huang, Jingjing; Chen, Songlin; Li, Yuan; Li, Quanqiang

    2016-05-01

    Liver fibrosis is characterized with the over expression and excessive accumulation of extracellular matrix proteins, including collagens. The causative factors in the over production of collagens are not fully understood. This study aims to test a hypothesis that activation of corticotropin releasing factor receptors up regulates the expression of collagen in hepatic stellate cells. In this study, human hepatic stellate cell line, LX-2 cells were cultured. Expression of collagens by LX-2 cells was assessed by real time RT-PCR, Western blotting. The results showed that, upon exposure to urocortin in the culture, LX-2 cells (a human hepatic stellate cell line) increased the expression of collagen IV (Col4) markedly. The exposure to urocortin also enhanced the levels of pTip60, H3K9, RNA polymerase II and forkhead box protein 3 at the collagen promoter locus as well as increase in the expression of Col4 mRNA and protein in the cells. Blocking p300 efficiently suppressed the urocortin-induced Col4 expression in LX-2 cells and unveiled an apoptosis-inducing effect of urocortin. In conclusion, activation of CRF receptors is capable of enforcing the production of Col4 by LX-2 cells via up regulating the p300 pathway, which may contribute to the development of liver fibrosis. PMID:26756093

  3. Paclitaxel ameliorates fibrosis in hepatic stellate cells via inhibition of TGF-β/Smad activity

    2010-01-01

    AIM: To investigated if paclitaxel can attenuate hepatic fi brosis in rat hepatic stellate cells (RHSCs). METHODS: RHSCs were cultured in vitro and randomly assigned to four groups: normal control group (treated only with Dulbecco's Modified Eagle's Medium), Taxol group (200 nmol/L paclitaxel was added to the cell culture), transforming growth factor (TGF)-β group (5 ng/mL recombinant human TGF-β1 was added to the cell culture), and TGF-β + Taxol group. TGF-β signaling cascade and status of various extracel...

  4. Explore the Molecular Mechanism of Apoptosis Induced by Tanshinone IIA on Activated Rat Hepatic Stellate Cells

    Tai-Long Pan

    2012-01-01

    Full Text Available Since the activated hepatic stellate cell (HSC is the predominant event in the progression of liver fibrosis, selective clearance of HSC should be a potential strategy in therapy. Salvia miltiorrhiza roots ethanol extract (SMEE remarkably ameliorates liver fibrogenesis in DMN-administrated rat model. Next, tanshinone IIA (Tan IIA, the major compound of SMEE, significantly inhibited rat HSC viability and led to cell apoptosis. Proteome tools elucidated that increased prohibitin is involved in cell cycle arrest under Tan IIA is the treatment while knockdown of prohibitin could attenuate Tan IIA-induced apoptosis. In addition, Tan IIA mediated translocation of C-Raf which interacted with prohibitin activating MAPK and inhibiting AKT signaling in HSC. MAPK antagonist suppressed ERK phosphorylation which was necessary for Tan IIA-induced expression of Bax and cytochrome c. PD98059 also abolished Tan IIA-modulated cleavage of PARP. Our findings suggested that Tan IIA could contribute to apoptosis of HSC by promoting ERK-Bax-caspase pathways through C-Raf/prohibitin complex.

  5. Emodin protects rat liver from CCl-induced fibrogenesis via inhibition of hepatic stellate cells activation

    Miao-Xian Dong, Yan Jia, Ying-Bo Zhang, Cheng-Chong Li, Yu-Tao Geng, Li Zhou, Xue-Yan Li, Ji-Cheng Liu, Ying-Cai Niu

    2009-10-01

    Full Text Available AIM: To investigate the role of emodin in protecting the liver against fibrogenesis caused by carbon tetrachloride (CCl4 in rats and to further explore the underlying mechanisms.METHODS: Rat models of experimental hepatic fibrosis were established by injection with CCl4; the treated rats received emodin via oral administration at a dosage of 20 mg/kg twice a week at the same time. Rats injected with olive oil served as a normal group. Histopathological changes were observed by hematoxylin and eosin staining. The activities of alanine aminotransferase (ALT and aspartate aminotransferase (AST in serum and hepatic hydroxyproline content were assayed by biochemical analyses. The mRNA and protein relevant to hepatic stellate cell (HSC activation in the liver were assessed using real-time reverse transcription-polymerase chain reaction (RT-PCR, immunohistochemistry, western blotting and enzyme-linked immunosorbent assay.RESULTS: The degree of hepatic fibrosis increased markedly in the CCl4 group compared to the normal group (P < 0.01, and decreased markedly in the emodin group compared to the CCl4 group according to METAVIR scale (P < 0.01 compared with those in the normal control group (51.02 ± 10.64 IU/L and 132.28 ± 18.14 IU/L. The activities of serum ALT and AST were significantly higher in rats injected with CCl4 (289.25 ± 68.84 IU/L and 423.89 ± 35.67 IU/L, both P < 0.05. The activities of serum ALT and AST were significantly reduced by administration of emodin (176.34 ± 47.29 IU/L and 226.1 ± 44.52 IU/L, both P < 0.05. Compared with the normal controls (54.53 ± 13.46 mg/g, hepatic hydroxyproline content was significantly higher in rats injected with CCl4 (120.27 ± 28.47 mg/g, P < 0.05. Hepatic hydroxyproline content was significantly reduced in the rats treated with emodin at 20 mg/kg (71.25 ± 17.02 mg/g, P < 0.05. Emodin significantly protected the liver from injury by reducing serum AST and ALT activities and reducing hepatic

  6. miRNA studies in in vitro and in vivo activated hepatic stellate cells

    Gunter Maubach; Michelle Chin Chia Lim; Jinmiao Chen; Henry Yang; Lang Zhuo

    2011-01-01

    AIM: To understand which and how different miRNAs are implicated in the process of hepatic stellate cell (HSC) activation.METHODS: We used microarrays to examine the differential expression of miRNAs during in vitro activation of primary HSCs (pHSCs). The transcriptome changes upon stable transfection of rno-miR-146a into an HSC cell line were studied using cDNA microarrays. Selected differentially regulated miRNAs were investigated by quantitative real-time polymerase chain reaction during in vivo HSC activation. The effect of miRNA mimics and inhibitor on the in vitro activation of pHSCs was also evaluated.RESULTS: We found that 16 miRNAs were upregulated and 26 were downregulated significantly in 10-d in vitro activated pHSCs in comparison to quiescent pHSCs.Overexpression of rno-miR-146a was characterized by marked upregulation of tissue inhibitor of metalloproteinase-3, which is implicated in the regulation of tumor necrosis factor-α activity. Differences in the regulation of selected miRNAs were observed comparing in vitro and in vivo HSC activation. Treatment with miR-26a and 29a mimics, and miR-214 inhibitor during in vitro activation of pHSCs induced significant downregulation of collagen type Ⅰ transcription.CONCLUSION: Our results emphasize the different regulation of miRNAs in in vitro and in vivo activated pHSCs. We also showed that miR-26a, 29a and 214 are involved in the regulation of collagen type I mRNA.

  7. Activated effects of parathyroid hormone-related protein on human hepatic stellate cells.

    Fen-Fen Liang

    Full Text Available BACKGROUND & AIMS: After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1, which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC and LX-2 cell lines. METHODS: TGF-β1, alpha-smooth muscle actin (α-SMA, matrix metalloproteinase 2 (MMP-2, and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR after HSCs or LX-2 cells were treated with PTHrP(1-36 or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA of HSC cell culture media. RESULTS: In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. CONCLUSIONS: PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.

  8. Transforming growth factor-β1 reduces apoptosis via autophagy activation in hepatic stellate cells

    FU, MEI-YA; HE, YA-JUN; LV, XIA; LIU, ZHI-HE; SHEN, YAN; YE, GUO-RONG; DENG, YAN-MEI; SHU, JIAN-CHANG

    2014-01-01

    Autophagy is a metabolic process that is important in fibrogenesis, in which cellular components are degraded by lysosomal machinery. Transforming growth factor β1 (TGF-β1) is a potent fibrogenic cytokine involved in liver fibrosis; however, it remains elusive whether autophagy is regulated by TGF-β1 in this process. In the present study, the function of TGF-β1-mediated autophagy in the proliferation and apoptosis of hepatic stellate cells (HSCs) was investigated. A rat HSC cell line (HSC-T6) was incubated with or without TGF-β1 followed by bafilomycin A1, and microtubule-associated proteins 1A/1B light chain 3 (LC3) small interfering (si)RNA was used to inhibit autophagy in order to assess the association between TGF-β1 and autophagy. HSC-T6 cell transient transfection was accomplished with a pLVX-AcGFP-N1-rLC3B-encoding plasmid. An MTS assay and flow cytometry were utilized to detect proliferation and apoptosis of HSC-T6 cells. Quantitative polymerase chain reaction, immunofluorescence and western blot analysis were used to detect the presence of activation markers. Proliferation was increased and apoptosis was reduced in HSC-T6 cells treated with TGF-β1 compared with cells subjected to serum deprivation. However, when HSC-T6 cells were treated with bafilomycin A1 and LC3 siRNA, increased apoptosis and reduced proliferation were observed. In addition, protein and mRNA expression levels of the autophagy marker LC3 were significantly increased. GFP-LC3 punctate markings were more prolific following TGF-β1 treatment of HSC-T6 cells, indicating that TGF-β1 may rescue HSC-T6 cells from serum deprivation and reduce apoptosis via autophagy induction. The present study elucidated the possible functions of TGF-β1-mediated autophagy in the pathological process of liver fibrosis. PMID:25059289

  9. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  10. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β1-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21

  11. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    Chen, Chao [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China); Wu, Chao-Qun [Genetics Institute, Fudan University, No. 220 Handan Road, Shanghai 200433 (China); Zhang, Zong-Qi [Department of Cardiology, No. 3 Hospital, Shanghai Jiao Tong University Medical school, No.280 Mohe Road, Shanghai 201900 (China); Yao, Ding-Kang; Zhu, Liang, E-mail: 15900611429@163.com [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China)

    2011-07-15

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced {alpha}-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  12. Effects of herbal compound 861 on human hepatic stellate cell proliferation and activation

    Lin Wang; Jian Wang; Bao-En Wang; Pei-Gen Xiao; Yan-Jiang Qiao; Xue-Hai Tan

    2004-01-01

    AIM: To investigate the effects of herbal compound 861(Cpd 861) on cell proliferation in human hepatic stellate cells (LX-2) and human hepatocellular liver carcinoma cells(HepG2), and expression of α-smooth muscle actin (α-SMA)in LX-2 cells.METHODS: LX-2 and HepG2 cells were incubated withvarious concentrations of Cpd 861 (0.1-0.003 mg/mL)for 1,2, 3, 5 and 7 d. Cell proliferation was analyzed by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Effects of Cpd861on the expression of α-SMA mRNA in LX-2 cells were measured by real-time quantitative PCR method using SYBR Green I technology.RESULTS: Cpd 861, at 0.1 mg/mL, significantly inhibited LX-2 cell proliferation (15% decrease relative to control,P<0.05) after 3 d of incubation. The inhibitory effects seemed to increase with the treatment time (25% decrease after 5 d of incubation and 35% decrease after 7 d of incubation,P<0.01). However, Cpd 861 did not affect HepG2 cell proliferation at the same concentration used for LX-2 cells.The expression levels of α-SMA mRNA decreased significantly when LX-2 cells were exposed to Cpd 861 for 48 h (59%decrease relative to control, P<0.05) or 72 h (60% decrease relative to control, P<0.01).CONCLUSION: Cpd 861 can significantly inhibit LX-2 cell proliferation in a dose-dependant manner, and reduce the expression levels of α-SMA mRNA in LX-2 cells. Since hepatic cell proliferation and high level of α-SMA are associated with liver fibrosis, the results suggest that Cpd 861 may be useful in the treatment of this disease.

  13. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence.

    Jin, H; Lian, N; Zhang, F; Chen, L; Chen, Q; Lu, C; Bian, M; Shao, J; Wu, L; Zheng, S

    2016-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the major event in hepatic fibrogenesis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Although inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSCs, a better understanding of the senescence of activated HSCs can provide a new therapeutic strategy for prevention and treatment of liver fibrosis. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. The current work was aimed to evaluate the effect of curcumin on senescence of activated HSCs and to elucidate the underlying mechanisms. In this study, curcumin promoted the expression of senescence marker Hmga1 in rat fibrotic liver. In addition, curcumin increased the number of senescence-associated β-galactosidase-positive HSCs in vitro. At the same time, curcumin induced HSC senescence by elevating the expression of senescence markers P16, P21 and Hmga1, concomitant with reduced abundance of HSC activation markers α-smooth muscle actin and α1(I)-procollagen in cultured HSCs. Moreover, curcumin affected the cell cycle and telomerase activity. We further demonstrated that P53 pharmacological inhibitor pifithrin-α (PFT-α) or transfection with P53 siRNA abrogated the curcumin-induced HSC senescence in vitro. Meanwhile, curcumin disruption of P53 leading to increased senescence of activated HSCs was further verified in vivo. Further studies indicated that curcumin promoted the expression of P53 through a PPARγ activation-dependent mechanism. Moreover, promoting PPARγ transactivating activity by a PPARγ agonist 15d-PGJ2 markedly enhanced curcumin induction of senescence of activated HSCs. However, the PPARγ antagonist PD68235 eliminated curcumin induction of HSC senescence. Taken together, our results provided a novel insight into the mechanisms underlying curcumin inhibition of HSC

  14. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Yannan Qin

    2014-11-01

    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  15. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    Yu, Fujun [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Zheng, Jianjian [Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Dong, Peihong [Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Li, Guojun [Department of Hepatology, Ningbo Yinzhou Second Hospital, Ningbo, 315000 (China); Lu, Zhongqiu [Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Guo, Chuanyong; Liu, Zhanju [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072 (China); Fan, Xiaoming, E-mail: ktsqdph@163.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China)

    2015-08-07

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.

  16. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-01

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade. PMID:26089141

  17. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases human hepatic stellate cell activation.

    Harvey, Wendy A; Jurgensen, Kimberly; Pu, Xinzhu; Lamb, Cheri L; Cornell, Kenneth A; Clark, Reilly J; Klocke, Carolyn; Mitchell, Kristen A

    2016-02-17

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a halogenated aromatic hydrocarbon that elicits toxicity through the aryl hydrocarbon receptor (AhR). In the liver, gross markers of TCDD toxicity are attributed to AhR activation in parenchymal hepatocytes. However, less is known regarding the consequences of TCDD treatment on non-parenchymal cells in the liver. Hepatic stellate cells (HSCs) are non-parenchymal cells that store vitamin A when quiescent. Upon liver injury, activated HSCs lose this storage ability and instead function in the development and maintenance of inflammation and fibrosis through the production of pro-inflammatory mediators and collagen type I. Reports that TCDD exposure disrupts hepatic retinoid homeostasis and dysregulates extracellular matrix remodeling in the liver led us to speculate that TCDD treatment may disrupt HSC activity. The human HSC line LX-2 was used to test the hypothesis that TCDD treatment directly activates HSCs. Results indicate that exposure to 10nM TCDD almost completely inhibited lipid droplet storage in LX-2 cells cultured with retinol and palmitic acid. TCDD treatment also increased LX-2 cell proliferation, expression of α-smooth muscle actin, and production of monocyte chemoattractant protein-1 (MCP-1), all of which are characteristics of activated HSCs. However, TCDD treatment had no effect on Col1a1 mRNA levels in LX-2 cells stimulated with the potent profibrogenic mediator, transforming growth factor-β. The TCDD-mediated increase in LX-2 cell proliferation, but not MCP-1 production, was abolished when phosphoinositide 3-kinase was inhibited. These results indicate that HSCs are susceptible to direct modulation by TCDD and that TCDD likely increases HSC activation through a multi-faceted mechanism. PMID:26860701

  18. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2.

    Xu, Yaping; Zhao, Wenxiu; Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-02-23

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  19. Study on Effect of IH764-3, an Active Principle of Salviae miltiorrhizae, in Inducing Hepatic Stellate Cell Apoptosis

    赵东强; 姜慧卿; 修贺明; 张晓岚

    2002-01-01

    Objective: To explore the anti-fibrotic mechanism of Salviae miltiorrhizae from the view of proliferation and apoptosis of hepatic stellate cells (HSC).Methods: IH764-3, an active principle of Salviae miltiorrhizae, was used to intervene in the cultured HSC in vitro. Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) method, and the cell apoptosis was examined by electron microscopy, flow cytometer and terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling method (TUNEL).Results: MTT showed that IH764-3 has obvious inhibition on the proliferation of HSC. Specific cell apoptosis figures of HSC, such as chromatin agglutination, were seen under electron microscopy in the IH764-3 treated group. By flow cytometer, it was shown that the HSC apoptosis rate in the IH764-3 treated group was higher than that in the control group, and the apoptosis inducing effect of IH764-3 was dose- and time-dependent. TUNEL analysis showed that the HSC apoptotsis rate was 28.3±1.5% after being incubated for 48 hrs with IH764-3, which was significantly higher than that in the control group (6.7±0.6%, P<0.05).Conclusion: IH764-3 could inhibit the proliferation of HSC and induce its apoptosis. These effects may be one of the anti-fibrotic mechanisms of Salviae miltiorrhizae.

  20. Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation

    Yuh-Ching Twu

    2016-07-01

    Full Text Available In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2 protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1-induced collagen type 1 α1 (Col1a1, α-smooth muscle actin (α-SMA expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.

  1. Dietary Flavonoid Hyperoside Induces Apoptosis of Activated Human LX-2 Hepatic Stellate Cell by Suppressing Canonical NF-κB Signaling

    Bai, Liang; Tao, Yongqing; Wang, Suying; Zhi, Dexian

    2016-01-01

    Hyperoside, an active compound found in plants of the genera Hypericum and Crataegus, is reported to exhibit antioxidant, anticancer, and anti-inflammatory activities. Induction of hepatic stellate cell (HSC) apoptosis is recognized as a promising strategy for attenuation of hepatic fibrosis. In this study, we investigated whether hyperoside treatment can exert antifibrotic effects in human LX-2 hepatic stellate cells. We found that hyperoside induced apoptosis in LX-2 cells and decreased levels of α-smooth muscle actin (α-SMA), type I collagen, and intracellular reactive oxygen species (ROS). Remarkably, hyperoside also inhibited the DNA-binding activity of the transcription factor NF-κB and altered expression levels of NF-κB-regulated genes related to apoptosis, including proapoptotic genes Bcl-Xs, DR4, Fas, and FasL and anti-apoptotic genes A20, c-IAP1, Bcl-XL, and RIP1. Our results suggest that hyperoside may have potential as a therapeutic agent for the treatment of liver fibrosis. PMID:27110557

  2. Wnt5a participates in hepatic stellate cell activation observed by gene expression profile and functional assays

    Wu-Jun Xiong; Li-Juan Hu; Yi-Cheng Jian; Li-Jing Wang; Ming Jiang; Wei Li; Yi He

    2012-01-01

    AIM:To identify differentially expressed genes in quiescent and activated hepatic stellate cells (HSCs) and explore their functions.METHODS:HSCs were isolated from the normal Sprague Dawley rats by in suit perfusion of collagenase and pronase and density Nycodenz gradient centrifugation.Total RNA and mRNA of quiescent HSCs,and cultureactivated HSCs were extracted,quantified and reversely transcripted into cDNA.The global gene expression profile was analyzed by microarray with Affymetrix rat genechip.Differentially expressed genes were annotated with Gene Ontology (GO) and analyzed with Kyoto encyclopedia of genes and genomes (KEGG) pathway using the Database for Annotation,Visualization and Integrated Discovery.Microarray data were validated by quantitative real-time polymerase chain reaction (qRTPCR).The function of Wnt5a on human HSCs line LX-2was assessed with lentivirus-mediated Wnt5a RNAi.The expression of Wnt5a in fibrotic liver of a carbon tetrachloride (CCl4)-induced fibrosis rat model was also analyzed with Western blotting.RESULTS:Of the 28 700 genes represented on this chip,2566 genes displayed at least a 2-fold increase or decrease in expression at a P < 0.01 level with a false discovery rate.Of these,1396 genes were upregulated,while 1170 genes were downregulated in culture-activated HSCs.These differentially expressed transcripts were grouped into 545 GO based on biological process GO terms.The most enriched GO terms included response to wounding,wound healing,regulation of cell growth,vasculature development and actin cytoskeleton organization.KEGG pathway analysis revealed that Wnt5a signaling pathway participated in the activation of HSCs.Wnt5a was significantly increased in cultureactivated HSCs as compared with quiescent HSCs.qRTPCR validated the microarray data.Lentivirus-mediated suppression of Wnt5a expression in activated LX-2 resulted in significantly impaired proliferation,downregulated expressions of type I collagen and transforming

  3. Hepatic Stellate Cell–Targeted Delivery of Hepatocyte Growth Factor Transgene via Bile Duct Infusion Enhances Its Expression at Fibrotic Foci to Regress Dimethylnitrosamine-Induced Liver Fibrosis

    Narmada, Balakrishnan Chakrapani; Kang,Yuzhan; Venkatraman, Lakshmi; Peng, Qiwen; Sakban, Rashidah Binte; Nugraha, Bramasta; Jiang, Xuan; Bunte, Ralph M.; So, Peter T. C.; Tucker-Kellogg, Lisa; Mao, Hai-Quan; Yu, Hanry

    2013-01-01

    Liver fibrosis generates fibrotic foci with abundant activated hepatic stellate cells and excessive collagen deposition juxtaposed with healthy regions. Targeted delivery of antifibrotic therapeutics to hepatic stellate cells (HSCs) might improve treatment outcomes and reduce adverse effects on healthy tissue. We delivered the hepatocyte growth factor (HGF) gene specifically to activated hepatic stellate cells in fibrotic liver using vitamin A–coupled liposomes by retrograde intrabiliary infu...

  4. Ascorbic acid supplementation down-regulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs.

    Abhilash, P A; Harikrishnan, R; Indira, M

    2012-02-01

    Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β(1), TNF-α and α(1)(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β(1), TNF-α and α(1) (I) collagen in hepatic tissues. PMID:22149461

  5. Targeted TFO delivery to hepatic stellate cells.

    Yang, Ningning; Singh, Saurabh; Mahato, Ram I

    2011-10-30

    Triplex-forming oligonucleotides (TFOs) represent an antigene approach for gene regulation through direct interaction with genomic DNA. While this strategy holds great promise owing to the fact that only two alleles need silencing to impact gene regulation, delivering TFOs to target cells in vivo is still a challenge. Our recent efforts have focused on conjugating TFOs to carrier molecules like cholesterol to enhance their cellular uptake and mannose-6-phosphate-bovine serum albumin (M6P-BSA) to target TFO delivery to hepatic stellate cells (HSCs) for treating liver fibrosis. These approaches however are rendered less effective owing to a lack of targeted delivery, as seen with lipid-conjugates, and the potential immune reactions due to repeated dosing with high molecular weight BSA conjugated TFO. In this review, we discuss our latest efforts to enhance the effectiveness of TFO for treating liver fibrosis. We have shown that conjugation of TFOs to M6P-HPMA can enhance TFO delivery to HSCs and has the potential to treat liver fibrosis by inhibiting collagen synthesis. This TFO conjugate shows negligible immunogenicity owing to the use of HPMA, one of the least immunogenic copolymers, thereby making it a suitable and more effective candidate for antifibrotic therapy. PMID:21763370

  6. File list: DNS.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available DNS.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  7. File list: Oth.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Oth.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  8. File list: His.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available His.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  9. File list: ALL.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available ALL.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  10. File list: His.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available His.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  11. File list: His.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available His.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  12. File list: ALL.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available ALL.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  13. File list: Pol.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Pol.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  14. File list: Oth.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Oth.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  15. File list: Unc.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Unc.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  16. File list: Unc.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Unc.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  17. File list: Oth.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Oth.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  18. File list: DNS.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available DNS.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  19. File list: ALL.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available ALL.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  20. File list: Oth.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Oth.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  1. File list: ALL.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available ALL.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  2. File list: His.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available His.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  3. File list: Pol.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Pol.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  4. File list: Unc.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Unc.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  5. File list: Unc.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Unc.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  6. File list: Pol.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available Pol.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  7. File list: DNS.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available DNS.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  8. Inhibitory effect of tanshinone IIA on rat hepatic stellate cells.

    Ya-Wei Liu

    Full Text Available Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation.The cell line of rat hepatic stellate cells (HSC-T6 was stimulated with lipopolysaccharide (LPS (100 ng/ml. Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM, then induced by LPS (100 ng/ml. NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38. Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells.All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells.Our results demonstrated that Tan IIA decreased LPS-induced HSC activation.

  9. Synergistic effect of natural compounds on the fatty acid-induced autophagy of activated hepatic stellate cells.

    Lee, Kuan-Wei; Thiyagarajan, Varadharajan; Sie, Huei-Wun; Cheng, Ming-Fan; Tsai, May-Jywan; Chia, Yi-Chen; Weng, Ching-Feng

    2014-09-01

    Autophagy, a lysosomal pathway to maintain cellular homeostasis, is mediated via the mammalian target of rapamycin (mTOR)-dependent pathways. Hepatic stellate cells (HSCs), previously termed fat- or vitamin A-storing cells, can transdifferentiate into myofibroblast-like cells and are the most relevant cell type for overproduction of extracellular matrix (ECM) and development of liver fibrosis during injury. However, the role of autophagy in fat metabolism of HSCs remains unclear. This study investigates the regulatory effect of natural compounds on fatty acid-induced autophagy pathways of nonchemical-induced HSC (NHSC) and thioacetamide-induced HSC. Oleic acid (OA) and palmitic acid (PA) have shown a significant effect on cell proliferation with oil red O staining and Western blot confirming that OA and PA induce fat storage ability and autophagy protein expression in NHSC. Natural compounds rutin, curcumin, antroquinonol and benzyl cinnamate treatment have shown no effect on the autophagy protein expression. Nevertheless, cells pretreated with OA and PA then treated with rutin, curcumin, antroquinonol and benzyl cinnamate could significantly induce the light chain I/II (LC3 I/II) protein expression. In mTOR-dependent pathway, the PI3K-Class I, Akt, and p-mTOR proteins were decreased with PA treatment. However, there were no significant changes in PI3K-Class III and Beclin-1 protein expressions found to imply that this autophagy is unrelated to the mTOR-independent pathway. Taken together, the present study unveils rutin and curcumin as a possible effective stimulation for fatty acid-induced autophagy via mTOR-dependent pathways in NHSC. We further suggest the benefits of these natural compounds for alleviating liver fibrosis. PMID:24857031

  10. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H2O2), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H2O2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H2O2-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H2O2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H2O2-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes in HSCs under

  11. Effects of curcumin on peroxisome proliferator-activated receptor γ expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells

    CHENG Yang; PING Jian; XU Lie-ming

    2007-01-01

    Background The function of peroxisome proliferator-activated receptor γ (PPARγ) in hepatic fibrogenesis remains largely unknown. Curcumin is a natural substance extracted form Curcuma Longa Linn and has a variety of pharmacological effects. In this study, the effects of curcumin on the proliferation, activation and apoptosis of rat hepatic stellate cells (HSCs) through PPARγ signaling were investigated.Methods HSCs were isolated from the normal Sprague Dawley rats through in situ perfusion of the liver with Pronase E and density-gradient centrifugation with Nycodenz. Cells were treated with curcumin, troglitazone, salvianolic acid B or GW9662. The effect on HSCs proliferation was determined by MTT colorimetry. Total RNA was extracted by TRizol reagent and gene levels were determined by semi-quantitative RT-PCR. Total cellular and nuclear protein were isolated and separated by 10% sodium dodecy Isulfate polyacrylamide gel electrophoresis. Protein levels were determined by Western blot. Cell apoptosis was detected by Hoechst 33258 staining. PPARγ subcellular distribution was detected by immunofluorescent staining. The activities of MMP-2 and 9 were measured by Gelatin zymograph assay.Results Curcumin suppressed HSCs proliferation in a dose-dependent manner. As HSCs underwent gradual activation with culture prolongation the PPARγ nuclear expression level decreased. Curcumin up-regulated PPARγ expression and significantly inhibited the production of α-SMA and collagen I. PPARγ is expressed in the cytoplasm and nucleus and is evenly distributed in HSCs, but accumulated in the nucleus of HSCs and disappeared from cytoplasm after curcumin treatment. Hoechst 33258 staining showed that curcumin induced the apoptosis of culture-activated HSCs and significantly increased pro-apoptotic Bax expression and reduced anti-apoptotic Bcl-2 expression. Cyclin D1 gene, activated NFκB p65 protein and TGFβR-I protein expression were down-regulated significantly by curcumin. The

  12. Integrative analysis of the transcriptome and targetome identifies the regulatory network of miR-16: an inhibitory role against the activation of hepatic stellate cells.

    Pan, Qin; Guo, Canjie; Sun, Chao; Fan, Jiangao; Fang, Chunhua

    2014-01-01

    Hepatic stellate cell (HSC) activation is the critical event of liver fibrosis. Abnormality of miR-16 expression induces their activation. However, the action model of miR-16 remains to be elucidated because of its multiple-targeted manner. Here, we report that miR-16 restoration exerted a wide-range impact on transcriptome (2,082 differentially expressed transcripts) of activated HSCs. Integrative analysis of both targetome (1,195 targets) and transcriptome uncovered the miR-16 regulatory network based upon bio-molecular interaction databases (BIND, BioGrid, Tranfac, and KEGG), cross database searching with iterative algorithm, Dijkstra's algorithm with greedy method, etc. Eight targets in the targetome (Map2k1, Bmpr1b, Nf1, Pik3r3, Ppp2r1a, Prkca, Smad2, and Sos2) served as key regulatory network nodes that mediate miR-16 action. A set of TFs (Sp1, Jun, Crebl, Arnt, Fos, and Nf1) was recognized to be the functional layer of key nodes, which mapped the signal of miR-16 to transcriptome. In result, the comprehensive action of miR-16 abrogated transcriptomic characteristics that determined the phenotypes of activated HSCs, including active proliferation, ECM deposition, and apoptosis resistance. Therefore, a multi-layer regulatory network based upon the integration of targetome and transcriptome may underlie the global action of miR-16, which suggesting it plays an inhibitory role in HSC activation. PMID:25227104

  13. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model

    Zhang C

    2016-03-01

    Full Text Available Caiyuan Zhang,1,* Huanhuan Liu,1,* Yanfen Cui,1,* Xiaoming Li,1 Zhongyang Zhang,1 Yong Zhang,2 Dengbin Wang1 1Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 2MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs at different stages of liver fibrosis induced by carbon tetrachloride (CCl4 in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI with arginine-glycine-aspartic acid (RGD peptide modified ultrasmall superparamagnetic iron oxide nanoparticle (USPIO specifically targeting integrin αvβ3.Materials and methods: All experiments received approval from our Institutional Animal Care and Use Committee. Thirty-six rats were randomly divided into three groups of 12 subjects each, and intraperitoneally injected with CCl4 for either 3, 6, or 9 weeks. Controls (n=10 received pure olive oil. The change in T2* relaxation rate (ΔR2* pre- and postintravenous administration of RGD-USPIO or naked USPIO was measured by 3.0T clinical MRI and compared by one-way analysis of variance or the Student’s t-test. The relationship between expression level of integrin αvβ3 and liver fibrotic degree was evaluated by Spearman’s ranked correlation.Results: Activated HSCs were confirmed to be the main cell types expressing integrin αvβ3 during liver fibrogenesis. The protein level of integrin αv and β3 subunit expressed on activated HSCs was upregulated and correlated well with the progression of liver fibrosis (r=0.954, P<0.001; r=0.931, P<0.001, respectively. After injection of RGD-USPIO, there is significant difference in ΔR2* among rats treated with 0, 3, 6, and 9 weeks of CCl4 (P<0.001. The accumulation of iron particles in fibrotic liver specimen is

  14. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    Zhang, Feng [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Ni, Chunyan [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); The First People' s Hospital of Changzhou, Changzhou 213003 (China); Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Lu, Yin [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China); Zheng, Shizhong, E-mail: nytws@163.com [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China)

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  15. Effect of indole-3-carbinol on ethanol-induced liver injury and acetaldehyde-stimulated hepatic stellate cells activation using precision-cut rat liver slices.

    Guo, Yu; Wu, Xiao-Qian; Zhang, Chun; Liao, Zhang-Xiu; Wu, Yong; Xia, Zheng-Yuan; Wang, Hui

    2010-12-01

    1. Indole-3-carbinol (I3C), a major indole compound found in high levels in cruciferous vegetables, shows a broad spectrum of biological activities. However, few studies have reported the effect of I3C on alcoholic liver injury. In the present study, we investigated the protective effect of I3C on acute ethanol-induced hepatotoxicity and acetaldehyde-stimulated hepatic stellate cells (HSC) activation using precision-cut liver slices (PCLS). 2. Rat PCLS were incubated with 50 mmol/L ethanol or 350 μmol/L acetaldehyde, and different concentrations (100-400 μmol/L) of I3C were added into the culture system of these two liver injury models, respectively. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde (MDA) content in tissue. Activities of alcoholic enzymes were also determined. α-Smooth muscle actin (α-SMA), transforming growth factor (TGF-β(1) ) and hydroxyproline (HYP) were used as indices to evaluate the activation of HSC. In addition, matrix metalloproteinase-1 (MMP-1) and the tissue inhibitor of metalloproteinase (TIMP-1) were observed to estimate collagen degradation. 3. I3C significantly reduced the enzyme leakage in ethanol-treated slices. In I3C groups, cytochrome P450 (CYP) 2E1 activities were inhibited by 40.9-51.8%, whereas alcohol dehydrogenase (ADH) activity was enhanced 1.6-fold compared with the ethanol-treated group. I3C also showed an inhibitory effect against HSC activation and collagen production stimulated by acetaldehyde. After being incubated with I3C (400 μmol/L), the expression of MMP-1 was markedly enhanced, whereas TIMP-1 was decreased. 4. These results showed that I3C protected PCLS against alcoholic liver injury, which might be associated with the regulation of ethanol metabolic enzymes, attenuation of oxidative injury and acceleration of collagen degradation. PMID:20880187

  16. Inhibition of Endothelin-1-Mediated Contraction of Hepatic Stellate Cells by FXR Ligand

    Jiang Li; Ramalinga Kuruba; Annette Wilson; Xiang Gao; Yifei Zhang; Song Li

    2010-01-01

    Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen ...

  17. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  18. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  19. File list: InP.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available InP.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  20. File list: InP.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available InP.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  1. File list: NoD.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available NoD.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  2. File list: InP.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available InP.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  3. File list: InP.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available InP.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  4. File list: NoD.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available NoD.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  5. File list: NoD.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available NoD.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  6. File list: NoD.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Full Text Available NoD.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  7. The HIV matrix protein p17 promotes the activation of human hepatic stellate cells through interactions with CXCR2 and Syndecan-2.

    Barbara Renga

    Full Text Available BACKGROUND: The human immunodeficiency virus type 1 (HIV-1 p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs, a key cell type involved in matrix deposition in liver fibrotic disorders. AIM: In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. METHODS: LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. RESULTS: Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. CONCLUSIONS: The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs.

  8. Standardized Salvia miltiorrhiza Extract Suppresses Hepatic Stellate Cell Activation and Attenuates Steatohepatitis Induced by a Methionine-Choline Deficient Diet in Mice

    Hak Sung Lee

    2014-06-01

    Full Text Available The aim of this study was to examine the effect of standardized extract of Salvia miltiorrhiza (SME on gene and protein expression of non-alcoholic steatohepatitis (NASH-related factors in activated human hepatic stellate cells (HSC, and in mice with steatohepatitis induced by a methionine-choline deficient (MCD diet. Male C57BL/6J mice were placed on an MCD or control diet for 8 weeks and SME (0, 0.1, 0.5 and 1 mg/kg body weight was administered orally every other day for 4 or 6 weeks. HSCs from the LX-2 cell line were treated with transforming growth factor β-1 (TGF-β1 or TGF-β1 plus SME (0.1–10 μg/mL. To investigate the effect of SME on reactive oxygen species (ROS-induced condition, LX-2 cells were treated with hydrogen peroxide (H2O2 or H2O2 plus SME (0.1–100 μg/mL. MCD administration for 12 weeks increased mRNA expression of tumor necrosis factor (TNF-α, TGF-β1, interleukin-1β (IL-1β, C-reactive protein (CRP, α-smooth muscle actin (α-SMA, type I collagen, matrix metalloproteinase-2 (MMP-2 and MMP-9. TGF-β1-induced LX-2 cells exhibited similar gene expression patterns. SME treatment significantly reduced the mRNA and protein expression of NASH-related factors in the mouse model and HSCs. Histopathological liver analysis showed improved non-alcoholic fatty liver disease (NAFLD activity and fibrosis score in SME-treated mice. The in vivo studies showed that SME had a significant effect at low doses. These results suggest that SME might be a potential therapeutic candidate for NAFLD treatment.

  9. Inhibition on the production of collagen type Ⅰ, Ⅲ of activated hepatic stellate cells by antisense TIMP-1 recombinant plasmid

    Wen-Bin Liu; Chang-Qing Yang; Wei Jiang; Yi-Qing Wang; Jing-Sheng Guo; Bo-Ming He; Ji-Yao Wang

    2003-01-01

    AIM: To investigate the inhibition effects on the productionof collagen type I, Ⅲ secreted by activated rat hepatic stellatecells (rHSCs) by antisense tissue inhibitors of metalloproteinase1 (TIMP-1) recombinant plasmid through elevating interstitialcollagenase activity.METHODS: rHSCs were extracted from normal rat liverby pronase and collagenase digestion and purified bycentrifugal elutriation, and were cultured on plastic dishesuntil they were activated to a myofibroblastic phenotypeafter 7-10 days. RT-Nest-PCR and gene recombinanttechniques were used to construct the rat antisense TIMP-1 recombinant plasmids which can express in eucaryoticcells. The recombinant plasmid and the pcDNA3 emptyplasmid were transfected in rHSCs by Effectene (QIAGEN)separately. Cells were selected after growing in DMEMcontaining 400 μg/ml G418 for 2-3 weeks. Expression ofexogenous gene was assessed by Northern blot, andexpression oflIMP-1 in rHSCs was determined by Northernblot and Western blot. We tested the interstitial collagenaseactivity with FITC-labled type I collagen as substrate.Ultimately, we quantified the type Ⅰ, Ⅲ collagen byWestern blot.RESULTS: The exogenous antisense TIMP-1 recombinantplasmid could be expressed in rHSCs well, which couldblock the expression of TIMP-1 greatly, the ratio of TIMP-1/GAPDH was 0.67, 2.41, and 2.97 separately at mRNAlevel (P<0.05); the ratio of TIMP-1/β-actin was 0.31, 0.98and 1.32 separately at protein level (P<0.05); It mightelevate active and latent interstitial collagenase activity,the collagenase activity was 0.3049, 0.1411 and 0.1196respectively. (P<0.05), which led to promotion thedegradation of type Ⅰ, Ⅲ collagen, the ratio of collagen I/β-actin was 0.63, 1.78 and 1.92 separately (P<0.05); andthe ratio of collagen Ⅲ/β-actin was 0.59, 1.81 and 1.98separately (P<0.05).CONCLUSION: These data shows that the antisense TIMP-1 recombinant plasmid has the inhibitory effects on theproduction of type Ⅰ, Ⅲ collagens

  10. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis

    Deng, Xin; Liang, Jian; Lin, Zhi-Xiu; Wu, Fa-Sheng; Zhang, Ya-Ping; Zhang, Zhi-Wei

    2010-01-01

    AIM: To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.

  11. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3.

    Liang, Chunli; Bu, Shurui; Fan, Xiaoming

    2016-07-01

    The microRNA (miR)-29 family is closely associated with fibrotic processes by virtue of its low expression in many tissues during organ fibrosis. The present study investigated whether miR-29b overexpression suppressed hepatic stellate cell (HSC) activation and its interactions with transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog 3 (Smad3), a classical signal transduction pathway contributing to the activation of HSCs. The results showed that transfection of LX-2 (human HSC) cells with miR-29b mimic or pSUPER-Smad3 silencing (si)RNA resulted in significantly increased expression of miR-29b and decreased expression of Smad3. miR-29b overexpression inhibited proliferation of LX-2 cells 24 h after transfection. Both miR-29b overexpression and Smad3 silencing antagonized the effects of TGF-β1 on the expression of α-smooth muscle actin (α-SMA) and collagen type I (col-1). Furthermore, infection with miR-29b mimics suppressed Smad3 and TGF-β1 expression, suggesting that miR-29b inhibited LX-2 activation mediated by both Smad3 and TGF-β1. Nevertheless, primary miR-29a/b1, miR-29b2/c and mature miR-29b were downregulated by TGF-β1 and stimulated by Smad3 silencing, suggesting that TGF-β1/Smad3 signalling pathway regulate not just mature miR-29b but also its transcription. In summary, our results show overwhelming evidence corroborating the suppressive effect of miR-29b on TGF-β1-induced LX-2 cell activation. The results also revealed the existence of crosstalk between miR-29b and TGF-β1/Smad3 during LX-2 activation, suggesting a feedback loop between miR-29b and TGF-β1/Smad3 signalling that promotes liver fibrosis. Copyright © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd. PMID:27273381

  12. Assessing activation of hepatic stellate cells by 99mTc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study

    Objective: Hepatic stellate cell (HSC) activation, which is accompanied by increased expression of integrin αvβ3, is an important factor in liver fibrogenesis. Molecular imaging targeting the integrin αvβ3 could provide a non-invasive method for evaluating the expression and the function of the integrin αvβ3 on the activated HSCs (aHSCs) in the injured liver, and then provide important prognostic information. 99mTc-3PRGD2 is such a radiotracer specific for integrin αvβ3. In this study, we aimed to compare the differences in liver uptake and retention of the 99mTc-3PRGD2 between normal liver and injured liver to evaluate the feasibility of 99mTc-3PRGD2 scintigraphy for this purpose. Methods: We used planar scintigraphy to assess changes in integrin αvβ3 binding of intravenously-administered 99mTc-3PRGD2 in the livers of rats with thioacetamide (TAA)-induced liver fibrosis compared with the controls. We co-injected cold c(RGDyK) with 99mTc-3PRGD2 to assess the specific binding of the radiotracer. We performed Sirius red staining to assess liver fibrosis, immunofluorescent colocalization to identify the location of integrin αvβ3 expressed in the fibrotic liver, and we measured protein and messenger RNA expression of integrin αvβ3 and alpha smooth muscle actin (α-SMA) in the control and fibrotic livers. Results: The fibrotic livers showed enhanced 99mTc-3PRGD2 uptake and retention. The radiotracer was demonstrated to bind specifically with the integrin αvβ3 mainly expressed on the aHSCs. The liver-to-heart ratio at 30 min post-injection was higher in the fibrotic livers than in the control livers (TAA, 1.98 ± 0.08 vs. control, 1.50 ± 0.12, p < 0.01). The liver t1/2 was longer than in the controls (TAA, 27.07 ± 10.69 min vs. control, 12.67 ± 4.10 min, p < 0.01). The difference of heart t1/2 between the two groups was not statistically significant (TAA, 3.13 ± 0.63 min vs. control, 3.41 ± 0.77 min, p = 0.94). Conclusions: 99mTc-3PRGD2 molecular

  13. Mass Spectrometry-based Quantitative Proteomic Profiling of Human Pancreatic and Hepatic Stellate Cell Lines

    Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A; Conwell, Darwin L; Steen, Hanno

    2013-01-01

    The functions of the liver and the pancreas differ; however, chronic inflammation in both organs is associated with fibrosis. Evidence suggests that fibrosis in both organs is partially regulated by organ-specific stellate cells. We explore the proteome of human hepatic stellate cells (hHSC) and human pancreatic stellate cells (hPaSC) using mass spectrometry (MS)-based quantitative proteomics to investigate pathophysiologic mechanisms. Proteins were isolated from whole cell lysates of immorta...

  14. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study

    Lu, Le; Wang, Jinlong; Lu, Hongwei [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China); Zhang, Guoyu [West Hospital Ward 1, Shaanxi Provincial People' s Hospital, No.256, Youyi Road(west), Xi' an, Shaanxi 710068 (China); Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China); Li, Yiming, E-mail: yiminngli@163.com [Department of General Surgery, The Second Affiliated Hospital of Xi' an Jiaotong University, No.157, West 5th Road, Xi' an, Shaanxi 710004 (China)

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.

  15. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl4) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression

  16. Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells

    Wang, Zhi-Ming; ZHOU, LE-YUAN; Liu, Bin-Bin; JIA, QIN-AN; DONG, YIN-YING; XIA, YUN-HONG; Ye, Sheng-Long

    2014-01-01

    The aim of the present study was to examine the effects of activated hepatic stellate cells (HSCs) and their paracrine secretions, on hepatocellular cancer cell growth and gene expression in vitro and in vivo. Differentially expressed genes in McA-RH7777 hepatocellular carcinoma (HCC) cells following non-contact co-culture with activated stellate cells, were identified by a cDNA microarray. The effect of the co-injection of HCC cells and activated HSCs on tumor size in rats was also investiga...

  17. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  18. Hepatic stellate cells and innate immunity in alcoholic liver disease

    Yang-Gun Suh; Won-Il Jeong

    2011-01-01

    Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.

  19. MR Imaging of activated hepatic stellate cells in liver injured by CCl4 of rats with integrin-targeted ultrasmall superparamagnetic iron oxide

    To demonstrate the feasibility of the ultrasmall superparamagnetic iron oxide (USPIO) modified by cyclo (Arg-Gly-Asp-Try-Cys) peptide (c(RGDyC)-USPIO) for targeting hepatic stellate cells (HSCs). A c(RGDyC)-USPIO probe was prepared by conjugating c(RGDyC) with USPIO through a thiol-maleinide interaction. The specificity of c(RGDyC)-USPIO for HSCs was investigated in vitro. In vivo, normal and fibrosis rats were treated with either c(RGDyC)-USPIO or USPIO, and magnetic resonance imaging (MRI) of the rats performed after administration of the probes for 4 h. The T2 relaxation times changes before and after probe injection were analyzed and the locations of probes in normal or injured mice were identified histologically. The hydrodynamic size of c(RGDyC)-USPIO was 13 ± 3 nm. HSCs took up more specific probes than plain ones. The reduction of T2 relaxation times in fibrosis rat by c(RGDyC)-USPIO was much greater than that by USPIO (P vβ3 integrins was feasible using a clinical 1.5-Tesla MR system. (orig.)

  20. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  1. Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation

    Hong Shen; Guo-Jiang Huang; Yue-Wen Gong

    2003-01-01

    AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation.

  2. Distribution of hepatic stellate cells and their role in the development of parasitic fibrosis and liver cirrhosis in domestic animals

    Kukolj Vladimir; Nešić Slađan; Vučićević Ivana

    2015-01-01

    Increasing of the extracellular matrix in rats, as well as in humans, occurs as a consequence of hepatic stellate cells (HSCs) activity. The objective of this work was to investigation the role of these cells in the development of fibrosis and liver cirrhosis which occurs as a consequence of infection of sheep and goats with large (Fasciola hepatica) and small (Dicrocoelium dendriticum) fluke. Liver samples taken from 12 cattle and 10 sheep infected under n...

  3. The activation of rat hepatic stellate cells stimulated with hepatitis B virus in vitro%乙型肝炎病毒对大鼠肝星状细胞活化的影响

    袁建国; 王新国; 崔霞; 刘凤华; 王凤华; 宋吉奎; 赵洪奎

    2011-01-01

    目的 观察乙型肝炎病毒(HBV)对大鼠肝星状细胞(HSC)是否有作用. 方法 用Friedman方法分离大鼠HSC,蔗糖梯度浓度法纯化HBV.用不同浓度HBV刺激HSC 24h,检测上清液中的前胶原蛋白Ⅲ.选前胶原蛋白Ⅲ分泌增加的细胞作为研究对象,检测其细胞内C/EBPs、PPAR7、RAR表达情况,了解HBV是否影响HSC活化通路. 结果 HBV可以呈浓度依赖方式刺激大鼠HSCs分泌前胶原蛋白Ⅲ,在浓度为3.0×105拷贝/ml时可以使前胶原蛋白Ⅲ分泌明显增加.C/EBPs的表达明显减少,而RAR受体表达明显增加、PPAR7表达无变化. 结论 HBV对大鼠HSC具有直接激活作用,促其合成Ⅲ型前胶原蛋白.这可能与其刺激C/EBP表达减少和RAR表达增加有关.%Objective To observe the effects of HBV on rat hepatic stellate cells(HSC).Methods HSC were isolated by the method of Friedman and HBV was purified by concentrated sucrose gradient.HSC were stimulated with different concentrations of HBV for 24 hrs and the supernatant procollagen Ⅲ was found to be detected.Cells with increased procollagen Ⅲ secretion were selected to check for the intracellular C/EBPs, PPARγ, RAR expression to investigate if HBV had affected the HSC activation pathway.Results Secretion of procollagen Ⅲ by HBV stimulated rat HSC was concentration dependent.At the concentration of 3.0× 105 copies/ml, secretion of procollagen Ⅲ increased significantly.The expression of C/EBPs decreased significantly, while the RAR receptor expression was increased and PPARγ remained unchange.Conclusion HBV has a direct stimulus on HSC to promote the synthesis of procollagen Ⅲ, which may be associated with C/EBP decrease and RAR increase.

  4. Variable expression of cystatin C in cultured trans-differentiating rat hepatic stellate cells

    Axel M Gressner; Birgit Lahme; Steffen K Meurer; Olav Gressner; Ralf Weiskirchen

    2006-01-01

    AIM: To study the expression of cystatin C (CysC), its regulation by transforming growth factor-β1 (TGF-β1)and platelet-derived growth factor (PDGF) and the potential interference of CysC with TGF-β1 signaling in this special cell type.METHODS: We evaluated the CysC expression in cultured, profibrogenic hepatic stellate cells and transdifferentiated myofibroblasts by Northern and Western blotting and confocal laser scanning microscopy.RESULTS: CysC was increased significantly in the course of trans-differentiation. Both TGF-β1 and PDGFBB suppressed CysC expression. Furthermore, CysC secretion was induced by the treatment with TGF-β1.Although CysC induced an increased binding affinity of TGF-β receptor type Ⅲ (beta-glycan) as assessed by chemical cross-linking with [125I]-TGF-β1, it did not modulate TGF-β1 signal transduction as shown by evaluating the Smad2/3 phosphorylation status and [CAGA]-MLP-luciferase reporter gene assay. Interestingly,the shedding of type Ⅲ TGF-β receptor beta-glycan was reduced in CysC-treated cells. Our data indicated that CysC expression was upregulated during transdifferentiation.CONCLUSION: Increased CysC levels in the serum of patients suffering from liver diseases are at least partially due to a higher expression in activated hepatic stellate cells. Furthermore, TGF-β1 influences the secretion of CysC, highlighting a potentially important role of cysteine proteases in the progression of hepatic fibrogenesis.

  5. Role of ethanol in the regulation of hepatic stellate cell function

    Jian-Hua Wang; Robert G Batey; Jacob George

    2006-01-01

    Evidence has accumulated to suggest an important role of ethanol and/or its metabolites in the pathogenesis of alcohol-related liver disease. In this review, the fibrogenic effects of ethanol and its metabolites on hepatic stellate cells (HSCs) are discussed. In brief,ethanol interferes with retinoid metabolism and its signaling, induces the release of fibrogenic cytokines such as transforming growth factor β-1 (TGFβ-1) from HSCs, up-regulates the gene expression of collagen I and enhances type Ⅰ collagen protein production by HSCs.Ethanol further perpetuates an activated HSC phenotype through extracellular matrix remodeling. The underlying pathophysiologic mechanisms by which ethanol exerts these pro-fibrogenic effects on HSCs are reviewed.

  6. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis

    Xin Deng, Jian Liang, Zhi-Xiu Lin, Fa-Sheng Wu, Ya-Ping Zhang, Zhi-Wei Zhang

    2010-01-01

    AIM: To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.METHODS: A proteomic strategy combining two-dimensional gel electrophoresis and ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) was used to study the differential expression of proteins and Western blotting was use...

  7. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis

    2010-01-01

    AIM:To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.METHODS: A proteomic strategy combining two-dimensional gel electrophoresis and ultraperform ance liquid chromatographyelectrospray ionizationtandem mass spectrometry (UPLCESIMS/MS) was used to study the differential expression of proteins and Western blotting was used to validate the re...

  8. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO) in combination with sorafenib or fluorouracil (5-FU), in both hepatic tumor cells and stromal cells. Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC50: 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC50: 11.8 μM in LX2; 9.9 μM in HepG2). In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr) drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC)

  9. Berberine Inhibition of Fibrogenesis in a Rat Model of Liver Fibrosis and in Hepatic Stellate Cells

    Ning Wang

    2016-01-01

    Full Text Available Aim. To examine the effect of berberine (BBR on liver fibrosis and its possible mechanisms through direct effects on hepatic stellate cells (HSC. Methods. The antifibrotic effect of BBR was determined in a rat model of bile duct ligation- (BDL- induced liver fibrosis. Multiple cellular and molecular approaches were introduced to examine the effects of BBR on HSC. Results. BBR potently inhibited hepatic fibrosis induced by BDL in rats. It exhibited cytotoxicity to activated HSC at doses nontoxic to hepatocytes. High doses of BBR induced apoptosis of activated HSC, which was mediated by loss of mitochondrial membrane potential and Bcl-2/Bax imbalance. Low doses of BBR suppressed activation of HSC as evidenced by the inhibition of α-smooth muscle actin (α-SMA expression and cell motility. BBR did not affect Smad2/3 phosphorylation but significantly activated 5′ AMP-activated protein kinase (AMPK signalling, which was responsible for the transcriptional inhibition by BBR of profibrogenic factors α-SMA and collagen in HSC. Conclusion. BBR is a promising agent for treating liver fibrosis through multiple mechanisms, at least partially by directly targeting HSC and by inhibiting the AMPK pathway. Its value as an antifibrotic drug in patients with liver disease deserves further investigation.

  10. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. PMID:25498792

  11. Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen.

    Ma, Jian-Cang; Huang, Xin; Shen, Ya-Wei; Zheng, Chen; Su, Qing-Hua; Xu, Jin-Kai; Zhao, Jun

    2016-08-01

    Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis. PMID:27031437

  12. Activation of nuclear factor kappa B (NF-κB by connective tissue growth factor (CCN2 is involved in sustaining the survival of primary rat hepatic stellate cells

    Gao Runping

    2005-11-01

    Full Text Available Abstract Background/Aims Connective tissue growth factor (CCN2 is a matricellular protein that plays a role in hepatic stellate cell (HSC-mediated fibrogenesis. The aim of this study was to investigate the regulation by CCN2 of cell survival pathways in primary HSC. Methods Primary HSC were obtained by in situ enzymatic perfusion of rat liver. NF-κB activation was assessed by immunoblotting for IκBα phosphorylation and degradation and by NF-κB p50 or p65 nuclear accumulation. NF-κB DNA-binding activity was determined by gel mobility shift assay while NF-κB response gene expression was evaluated using a luciferase reporter. Cell viability was assessed by Trypan blue staining or ATP luminescent assay while apoptosis was evaluated by caspase-3 activity. Results CCN2 induced IκBα phosphorylation and degradation as well as nuclear accumulation of NF-κB. Activated NF-κB comprised three dimers, p65/p65, p65/p50 and p50/p50, that individually bound to DNA-binding sites and subsequently triggered transcriptional activity. This was confirmed by showing that CCN2 promoted activity of a NF-κB luciferase reporter. CCN2 promoted survival of serum-starved HSC and protected the cells from death induced by blocking the NF-κB signaling pathway using Bay-11-7082, a specific inhibitor of IκBα phosphorylation. Conclusion CCN2 contributes to the survival of primary HSC through the NF-κB pathway.

  13. Differentially expressed genes identified by microarray analysis following leptin treatment of hepatic stellate cells

    ZHONG Li-hua; CHENG Jun; ZHU Li-ying

    2010-01-01

    Background Liver fibrosis is the process through which numerous chronic liver diseases develop into liver cirrhosis. Leptin can activate hepatic stellate cells (HSCs) and play an important role in the formation of liver fibrosis. However, the process by which leptin activates HSCs is complicated, and research on this process is limited. The aim of this study was to explore the related changes in gene expression and the control mechanisms involved in leptin activated HSCs to understand the overall mechanism of liver fibrosis development. Methods We cultivate rat HSCs, with and without stimulation by leptin, and extracted mRNA. Differentially expressed genes were detected by microarray analysis. Results The differentially expressed genes identified included six upregulated genes and six downregulated genes. The representative upregulated genes included short chain dehydrogenase (CY5/CY3=2.265) and pulmonary surfactant protein A1 (CY5/CY3=2.036). The significant downregulated gene encoded hepatic stearoyl coenzyme A desaturase 1 (SCD-1) (CY5/CY3=0.351).Conclusion Leptin might mediate the molecular biological mechanisms of liver fibrosis.

  14. Effects of vitamin E on the proliferation and collagen synthesis of rat hepatic stellate cells treated with IL-2 or TNF-α

    展玉涛; 王宇; 魏来; 陈红松

    2003-01-01

    Objective To study the effects of vitamin E on the proliferation and collagen synthesis of rat hepatic stellate cells treated with interleukin-2 (IL-2 ) or tumor necrosis factor-α (TNF-α).Methods Hepatic stellate cells were isolated from male Sprague-Dawley rats by using modified Friedman's method. Using the isolated cells cultured and treated with IL-2 or TNF-α, we studied the effects of vitamin E on their proliferation and collagen synthesis through an 3 H-thymidine and 3 H-proline incorporation assay, as well as through observation of these cells under a contrary phase microscope. Results Adding IL-2 increased the both proliferation and collagen synthesis of hepatic stellate cells. Their proliferation was also increased by the addition of TNF-α, although it decreased collagen synthesis. Vitamin E had marked inhibitory effects on the ability of cells treated with IL-2 or TNF-α to reproduce or synthesize collagen.Conclusion Vitamin E can inhibit the proliferation and collagen synthesis of hepatic stellate cells. It is possible that vitamin E affects liver fibrosis through these activities.

  15. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    Reiter, Florian P., E-mail: florian.reiter@med.uni-muenchen.de [Department of Medicine II, Liver Center Munich, University of Munich, Marchioninistr. 15, D-81377 Munich (Germany); Hohenester, Simon; Nagel, Jutta M.; Wimmer, Ralf; Artmann, Renate; Wottke, Lena [Department of Medicine II, Liver Center Munich, University of Munich, Marchioninistr. 15, D-81377 Munich (Germany); Makeschin, Marie-Christine; Mayr, Doris [Institute of Pathology, University of Munich, Thalkirchner Str. 36, D-80337 Munich (Germany); Rust, Christian [Department of Medicine I, Krankenhaus Barmherzige Brüder, Romanstr. 93, D-80639 Munich (Germany); Trauner, Michael [Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna (Austria); Denk, Gerald U. [Department of Medicine II, Liver Center Munich, University of Munich, Marchioninistr. 15, D-81377 Munich (Germany)

    2015-04-03

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has

  16. 1,25-(OH)2-vitamin D3 prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4−/− model

    Background/Purpose of the study: Vitamin D3-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D3-administration has thus been proposed as a therapeutic approach. Vitamin D3 has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH)2-vitamin D3 inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen®-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4−/− (Abcb4−/−)-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4−/−-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4−/−-mice, administration of calcitriol ameliorates inflammatory liver-damage but has no effect on biliary fibrosis after 4 weeks of treatment

  17. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  18. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  19. HPMA Polymer-based Site-specific Delivery of Oligonucleotides to Hepatic Stellate Cells

    Yang, Ningning; Ye, Zhaoyang; Li, Feng; Mahato, Ram I.

    2009-01-01

    The objective was to determine whether bioconjugation of type I collagen specific triplex forming oligonucleotide (TFO) to N-(2-hydroxypropyl) methacrylamide (HPMA) containing tetrapeptide Gly-Phe-Leu-Gly (GFLG) and mannose 6-phosphate (M6P) can provide their targeted delivery to hepatic stellate cells (HSCs). Following bioconjugation, M6P-GFLG-HPMA-GFLG-32P-TFO was characterized by PAGE, HPLC and GPC, and then its biodistribution was determined. TFO was dissociated from the conjugate when in...

  20. Hepatic Stellate Cells Regulate Immune Response via Induction of Myeloid Suppressor Cells

    Chou, Hong-Shiue; Hsieh, Ching-Chuan; Yang, Horng-Ren; Wang, Lianfu; Arakawa, Yusuke; Brown, Kathleen; Wu, Qingyu; Lin, Feng; Peters, Marion; Fung, John J.; Lu, Lina; Qian, Shiguang

    2011-01-01

    Although organ transplants have been applied for decades, outcomes of somatic cell transplants remain disappointing, presumably due to lack of appropriate supporting stromal cells. Thus, cotransplantation with liver stromal cells, hepatic stellate cells (HSC), achieves long-term survival of islet allografts in mice via induction of effector T cell apoptosis and generation of regulatory T (Treg) cells. In this study, we provide evidence both in vitro and in vivo that HSC can promote generation...

  1. Inhibition of endothelin-1-mediated contraction of hepatic stellate cells by FXR ligand.

    Jiang Li

    Full Text Available Activation of hepatic stellate cells (HSCs plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1. The farnesoid X receptor (FXR is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands.

  2. Intracellular Glutathione Depletion by Oridonin Leads to Apoptosis in Hepatic Stellate Cells

    Liang-Mou Kuo

    2014-03-01

    Full Text Available Proliferation of hepatic stellate cells (HSCs plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin, a diterpenoid isolated from Rabdosia rubescens, and its underlying mechanisms were investigated in rat HSC cell line, HSC-T6. We found that oridonin inhibited cell viability of HSC-T6 in a concentration-dependent manner. Oridonin induced a reduction in mitochondrial membrane potential and increases in caspase 3 activation, subG1 phase, and DNA fragmentation. These apoptotic effects of oridonin were completely reversed by thiol antioxidants, N-acetylcysteine (NAC and glutathione monoethyl ester. Moreover, oridonin increased production of reactive oxygen species (ROS, which was also inhibited by NAC. Significantly, oridonin reduced intracellular glutathione (GSH level in a concentration- and time-dependent fashion. Additionally, oridonin induced phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase (MAPK. NAC prevented the activation of MAPKs in oridonin-induced cells. However, selective inhibitors of MAPKs failed to alter oridonin-induced cell death. In summary, these results demonstrate that induction of apoptosis in HSC-T6 by oridonin is associated with a decrease in cellular GSH level and increase in ROS production.

  3. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  4. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells

  5. Localization of Xenobiotic Transporter OCTN1/SLC22A4 in Hepatic Stellate Cells and Its Protective Role in Liver Fibrosis.

    Tang, Yaliang; Masuo, Yusuke; Sakai, Yoshio; Wakayama, Tomohiko; Sugiura, Tomoko; Harada, Ryuichi; Futatsugi, Azusa; Komura, Takuya; Nakamichi, Noritaka; Sekiguchi, Hirotaka; Sutoh, Keita; Usumi, Koji; Iseki, Shoichi; Kaneko, Shuichi; Kato, Yukio

    2016-05-01

    Xenobiotic transporters play key roles in disposition of certain therapeutic agents, although limited information is available on their roles other than pharmacokinetic issues. Here, suppressive effect of multispecific organic cation transporter OCTN1/SLC22A4 on liver fibrosis was proposed in liver injury models. After injection of hepatotoxins such as dimethylnitrosamine (DMN) or concanavalin A, hepatic fibrosis, and oxidative stress, evaluated in terms of Sirius red and 4-hydroxy-2-nonenal staining, respectively, were more severe in liver of octn1/slc22a4 gene knockout (octn1(-/-)) mice than that in wild-type mice. DMN treatment markedly increased α-smooth muscle actin and F4/80, markers of activated stellate and Kupffer cells, respectively, in liver of octn1(-/-), but had less effect in wild-type mice. Thus, octn1/slc22a4 gene deletion results in more severe hepatic fibrosis, oxidative stress, and inflammation. DMN-treated wild-type mice showed increased Octn1 staining and hepatic concentration of its food-derived antioxidant ergothioneine (ERGO). The upregulated Octn1 was co-localized with α-smooth muscle actin. Functional expression of Octn1 was demonstrated in activated human hepatic stellate cell lines, LI90 and LX-2. Provision of ERGO-rich feed ameliorated DMN-induced liver fibrosis and oxidative stress. Overall, Octn1 is upregulated in activated stellate cells, resulting in increased delivery of its substrate antioxidant ERGO and a protective effect against liver fibrosis. PMID:27020986

  6. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells

    It is well known that hepatic stellate cells (HSC) develop into cells, which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that β-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119, an inhibitor of the glycogen synthase kinase 3β, led to reduced β-catenin phosphorylation, induced nuclear translocation of β-catenin, elevated glutamine synthetase production, impeded synthesis of α-smooth muscle actin and Wnt5a, but promoted the expression of glial fibrillary acidic protein, Wnt10b, and paired-like homeodomain transcription factor 2c. In addition, canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that β-catenin-dependent Wnt signaling maintains the quiescent state of HSC and, similar to stem and progenitor cells, influences their developmental fate

  7. GFAP promoter directs lacZ expression specifically in a rat hepatic stellate cell line

    Gunter Maubach; Michelle Chin Chia Lim; Chun-Yan Zhang; Lang Zhuo

    2006-01-01

    AIM: The GFAP was traditionally considered to be a biomarker for neural glia (mainly astrocytes and nonmyelinating Schwann cells). Genetically, a 2.2-kb human GFAP promoter has been successfully used to target astrocytes in vitro and in vivo. More recently, GFAP was also established as one of the several makers for identifying hepatic stellate cells (HSC). In this project,possible application of the same 2.2-kb human GFAP promoter for targeting HSC was investigated.METHODS: The GFAP-lacZ transgene was transfected into various cell lines (HSC, hepatocyte, and other nonHSC cell types). The transgene expression specificity was determined by X-gal staining of the β-galactosidase activity. And the responsiveness of the transgene was tested with a typical pro-fibrotic cytokine TGF-β1. The expression of endogenous GFAP gene was assessed by real-time RT-PCR, providing a reference for the transgene expression.RESULTS: The results demonstrated for the first time that the 2.2 kb hGFAP promoter was not only capable of directing HSC-specific expression, but also responding to a known pro-fibrogenic cytokine TGF-β1 by upregulation in a dose- and time-dependent manner, similar to the endogenous GFAP.CONCLUSION: In conclusion, these findings suggested novel utilities for using the GFAP promoter to specifically manipulate HSC for therapeutic purpose.

  8. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells

    Qin Pan; Yu-Qin Wang; Guang-Ming Li; Xiao-Yan Duan; Jian-Gao Fan

    2015-01-01

    Activation of hepatic stellate cells (HSCs) depending on epithelial-to-mesenchymal transition (EMT) reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET) of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY) recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EM...

  9. Effects of dietary supplementation with vitamin E and selenium on rat hepatic stellate cell apoptosis

    Xiu-Hua Shen; Wu-Feng Cheng; Xuan-Hai Li; Jian-Qin Sun; Feng Li; Ling Ma; Liang-Min Xie

    2005-01-01

    AIM: To evaluate the effects of dietary supplementation with vitamin E and selenium on proliferation and apoptosis of hepatic stellate cells (HSCs), in acute liver injury induced by CCl4, and to explore their role in the recovery from hepatic fibrosis phase.METHODS: An acute liver damage model of rats was established by intraperitoneal injection of carbon tetrachloride (0.3 mL/100 g body weight) twice a week,then the rats were killed at 6, 24, 48, and 72 h after the first and third injection, respectively. A liver fibrosis model was established by the same injection for 8 wk. Then three rats were killed at 3, 7, 14, and 28 d after the last injection,respectively. The rats from the intervention group were fed with chow supplemented with vitamin E (250 mg/kg)and selenium (0.2 mg/kg), and the rats in the normal control group and pathological group were given standard chow.Livers were harvested and stained with hematoxylin and eosin, Sirius red. Activated HSCs were determined by α-smooth muscle actin immunohistochemistry staining.Apoptotic HSCs were determined by dual staining with the terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL) and α-smooth muscle actin immunohistochemistry. Serum alanine aminotransferase and aspartate aminotransferase were also analyzed.RESULTS: In the acute liver damage model, the degree of liver injury was more serious in the pathological group than in the intervention group. At each time point, the number of activated HSCs was less in the intervention group than in the pathological group, while the number of apoptotic HSCs was more in the intervention group than in the pathological group. In the liver fibrosis model,the degree of liver fibrosis was more serious in the pathological group than in the intervention group. At each time point, the number of activated HSCs was less in the intervention group than in the pathological group, and the number of apoptotic HSCs was more in the intervention group than in the

  10. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression ...

  11. Specific shRNA targeting of FAK influenced collagen metabolism in rat hepatic stellate cells

    Robert; Barrett

    2010-01-01

    AIM:To investigate the effects and mechanism of disruption of focal adhesion kinase(FAK) expression on collagen metabolism in rat hepatic stellate cells(HSC).METHODS:The plasmids expressing FAK short hairpin RNA(shRNA) were transfected into HSC-T6 cells,and the level of FAK expression was determined by both real-time quantitative polymerase chain reaction(QPCR) and Western blotting analysis.The production of type collagen and type collagen in FAK-disrupted cells was analyzed by real-time Q-PCR.The level of ...

  12. Deregulation of energy metabolism promotes antifibrotic effects in human hepatic stellate cells and prevents liver fibrosis in a mouse model.

    Karthikeyan, Swathi; Potter, James J; Geschwind, Jean-Francois; Sur, Surojit; Hamilton, James P; Vogelstein, Bert; Kinzler, Kenneth W; Mezey, Esteban; Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-15

    Liver fibrosis and cirrhosis result from uncontrolled secretion and accumulation of extracellular matrix (ECM) proteins by hepatic stellate cells (HSCs) that are activated by liver injury and inflammation. Despite the progress in understanding the biology liver fibrogenesis and the identification of potential targets for treating fibrosis, development of an effective therapy remains elusive. Since an uninterrupted supply of intracellular energy is critical for the activated-HSCs to maintain constant synthesis and secretion of ECM, we hypothesized that interfering with energy metabolism could affect ECM secretion. Here we report that a sublethal dose of the energy blocker, 3-bromopyruvate (3-BrPA) facilitates phenotypic alteration of activated LX-2 (a human hepatic stellate cell line), into a less-active form. This treatment-dependent reversal of activated-LX2 cells was evidenced by a reduction in α-smooth muscle actin (α-SMA) and collagen secretion, and an increase in activity of matrix metalloproteases. Mechanistically, 3-BrPA-dependent antifibrotic effects involved down-regulation of the mitochondrial metabolic enzyme, ATP5E, and up-regulation of glycolysis, as evident by elevated levels of lactate dehydrogenase, lactate production and its transporter, MCT4. Finally, the antifibrotic effects of 3-BrPA were validated in vivo in a mouse model of carbon tetrachloride-induced liver fibrosis. Results from histopathology & histochemical staining for collagen and α-SMA substantiated that 3-BrPA promotes antifibrotic effects in vivo. Taken together, our data indicate that sublethal, metronomic treatment with 3-BrPA blocks the progression of liver fibrosis suggesting its potential as a novel therapeutic for treating liver fibrosis. PMID:26525850

  13. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis

    Yan Wang; Xiao-Yu Jiang; Li Liu; Hui-Qing Jiang

    2008-01-01

    AIM:To investigate the role of phosphatidylinositol 3-kinase(PI 3-K)/Akt signaling pathway in the balance of HSC activation and apoptosis in rat hepatic stellate cells(HSC).METHODS:An activated HSC cell line was used in this study.LY 294002,the PI 3-K/Akt signal pathway blocker was used to investigate the molecular events on apoptosis in HSC and to interpret the role of this pathway in HSC apoptosis.Immunocytochemistry,Western blot and reverse transcription polymerase chain reaction(RT-PCR)analysis were applied to detect the expression of PI 3-K,and simultaneously phosphorylated-Akt(p-Akt)and total-Akt were determined by Western blot.The HSC apoptosis was examined by annexin-V/propidium iodide double-labelled flow cytometry and transmission electron microscopy.RESULTS:The apoptosis rates in LY 294002(30.82% ±2.90%)and LY 294002+PDGF-BB(28.16%±2.58%)groups were significantly increased compared with those of control(9.02%±1.81%)and PDGF-BB(4.35%±1.18%).PDGF-BB augmented PI 3-K and p-Akt expression.LY 294002 significantly reduced the contents of PI 3-K and p-Akt.mRNA transcription evaluated by RT-PCR showed similar tendencies as protein expression.CONCLUSION:Inhibition of PI 3-K/Akt signaling pathway Induces apoptosis in HSC.(C)2008 The WJG Press.All rights reserved.

  14. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells

    Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2016-04-01

    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.

  15. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  16. RNA Interference Targeting Leptin Gene Effect on Hepatic Stellate Cells

    XUE Xiulan; LIN Jusheng; SONG Yuhu; SUN Xuemei; ZHOU Hejun

    2005-01-01

    To construct the specific siRNA expression vectors and investigate their effect on leptin and collagen I in HSC, which provide a new approach to the prevent and treat hepatic fibrosis. The five siRNAs against leptin gene were transcript synthesized intracellularly by expression templates of plasmid vector psiRNA-hH1neo. The recombinant leptin siRNA plasmid vectors could express in eukaryocyte , and then to evaluate them by using enzyme cutting and sequencing. The recombinant plasmids were transfected into HSCs using Lipofectamine methods respectively. The cells were selected after growing in DMEM containing 300 μg/mL G418 for about 4 weeks. Gene expression of leptin and collagen I were showed by Western blot analysis and reverse transcription polymerase chain reaction (RT-PCR). Identification by enzyme cutting and sequencing showed that the leptin siRNA expression vectors were constructed successfully, and leptin siRNA could inhibit the leptin and collagen I gene expression effectively. It was concluded that RNA interference-mediated silencing of leptin gene diminished leptin and collagen I gene expression in HSCs. Furthermore, attenuated the extracellular matrix over-deposition at the same time. Leptin gene is ideal targets of gene therapy for liver fibrosis.

  17. Activation of Pancreatic Stellate Cells in Human and Experimental Pancreatic Fibrosis

    Haber, Paul S; Keogh, Gregory W.; Apte, Minoti V.; Moran, Corey S.; Stewart, Nancy L.; Crawford, Darrell H.G.; Pirola, Romano C.; McCaughan, Geoffrey W.; Ramm, Grant A; Wilson, Jeremy S.

    1999-01-01

    The mechanisms of pancreatic fibrosis are poorly understood. In the liver, stellate cells play an important role in fibrogenesis. Similar cells have recently been isolated from the pancreas and are termed pancreatic stellate cells. The aim of this study was to determine whether pancreatic stellate cell activation occurs during experimental and human pancreatic fibrosis. Pancreatic fibrosis was induced in rats (n = 24) by infusion of trinitrobenzene sulfonic acid (TNBS) into the pancreatic duc...

  18. Graptopetalum paraguayense ameliorates chemical-induced rat hepatic fibrosis in vivo and inactivates stellate cells and Kupffer cells in vitro.

    Li-Jen Su

    Full Text Available BACKGROUND: Graptopetalum paraguayense (GP is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN- and carbon tetrachloride (CCl(4-induced liver injury rats. METHODS: Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs and Kupffer cells, respectively, were evaluated. RESULTS: Oral administration of MGP significantly alleviated DMN- or CCl(4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. CONCLUSIONS: The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.

  19. Establishment of a New Procedure for Isolating Rat Hepatic Stellate Cells%建立一种改良方法分离大鼠肝星状细胞

    李玉莲; 宋正己; 范红; 彭伟; 陈艳敏; 万苹

    2012-01-01

    Objective To build an efficient procedure for isolating rat hepatic stellate cells. Methods Primary hepatic stellate cells ( HSC) were isolated from normal Sprague-Dawley ( SD) rats by infusion and combined digestion of pronase E and collagenase Ⅳ ex situ. Hepatic stellate cells were purified by density centrifugation with 12% Nycodenz. Autofluorescenes, desmin and smooth muscle actin ( α -SMA) immunofluorescence staining identified and assayed purity of HSC. HSC were activated by culture on uncoated plastic tissue culture dish and culture in a higher glucose Dulbecco s modified eagles medium ( DMEM) supplemented with 10% fetal calf serum under 37℃ contained 5% CO2 95% air incubater. Results The harvest rate of hepatic stellate cells was about 3.7 0.6 107 per rat, and the viability was more than 90%. Hepatic stellate cells could be activated by culture for more than 7 days. Conclusion This reformed method is more efficient to isolate hepatic stellate cell and by culture the hepatic stellate cells can be activated.%目的 建立一种经济、稳定可靠的HSC分离方法,为体外研究提供细胞模型.方法 Hanks液在体灌洗大鼠肝脏,离体后用Ⅳ胶原酶、链蛋白酶、DNaseI消化肝脏,12% Nycodenz连续梯度液分离大鼠HSC,计数细胞得率,0.2%台盼蓝染色计算细胞活率.自发荧光、Desmin、α-SMA免疫荧光染色对HSC进行鉴定和纯度分析.结果 分离HSC得率(3.7±0.6)×107/只大鼠,细胞活率>90%,分离第1天自发荧光和第3天desmin 染色阳性细胞>90%.HSC随着体外培养形态明显改变,分离培养7 d后α-SMA阳性细胞>90%,培养14 d或传代后>95%.结论 肝脏离体后消化能达到在体消化同样的效果,应用Nycodenz密度分离介质可获得满意的HSC得率和纯度.

  20. Biological effects of extract from newborn porcine liver on hepatocytes, hepatic stellate cells, and hepatoma cell line

    2008-01-01

    Objective: Porcine liver extract has been shown to be effective in the clinical treatment of severe hepatitis. The aim of the present study was to study its antifibrotic as well as immune regulatory effect in vitro. Methods: Hepatocytes, hepatic stellate cells (HSCs), hepatoma cell line (HepG2) and human peripheral blood mononuclear cells (PMNCs) were studied with respect to proliferation, extracellular matrix production and apoptotic activities by proliferation assay, radioimmunoassay, gene transfection, reporter gene analysis and flow cytometry, respectively. Results: A strong stimulatory proliferation effect was observed in hepatocytes, and an inhibitory effect was found in HSCs. Hyaluronic acid (HA) production and reporter gene activities driven by various α1(Ⅰ) procollagen gene promoters in HSC-T6 were significantly decreased after treatment with the extract. Fluo-Anexin V binding apoptotic HepG2 cells were more prominent in the presence of 60 μg/ml extract. More CD4+/CD69+ positive T lymphocytes existed in the presence of the extract. Conclusion: Porcine liver extract is effective for antifibrogenesis via hepatocyte regeneration, HSC and hepatoma cell inhibition in vitro. The elevation of active T lymphocytes is helpful for immune surveillance. Fine mapping of the extract is necessary in order to get definite molecules which are essential in all described functions.

  1. Tetrandrine stimulates the apoptosis of hepatic stellate cells and ameliorates development of fibrosis in a thioacetamide rat model

    Ming-Fu Yin; Li-Hua Lian; Dong-Ming Piao; Ji-Xing Nan

    2007-01-01

    AIM: To investigate the therapeutic effect of tetrandrine on liver fibrosis induced by thioacetamide in rats in vivo and in vitro.METHODS: In vitro study: we investigated the effect of tetrandrine on the apoptosis of rat hepatic stellate cells transformed by simian virus 40 (T-HSC/Cl-6), which retains the features of activated cells. In vivo study:hepatic fibrosis was induced in rats by thioacetamide.Tetrandrine was given orally to rats at doses of 5, 10 or 20 mg/kg for 4 wk compared with intraperitoneal injection of interferon-r.RESULTS: In vitro study: 5, 10 or 25 μg/mL of tetrandrine-induced activation of caspase-3 in t-HSC/Cl-6 cells occurred dose-depenclently. In vivo study: tetrandrine treatment as well as interferon-r significantly ameliorated the development of fibrosis as determined by lowered serum levels of aspartate aminotransferase (AST),alanine aminotransferase (ALT), total bilirubin (T-Bil)and the levels of liver hydroxyproline (Hyp), hyaluronic acid (HA), laminin (LN) and also improved histological findings. The effects of tetrandrine at the concentration of 20 mg/kg were better than the other concentration groups.CONCLUSION: Tetrandrine promotes the apoptosis of activated HSCs in vitro. Tetrandrine administration can prevent liver fibrosis and liver damage induced by thioacetamide in rats in vivo, indicating that it might exert a direct effect on rat HSCs.

  2. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways

    Fang, Ling, E-mail: fangling_1984@126.com; Zhan, Shuxiang; Huang, Cheng; Cheng, Xi; Lv, Xiongwen; Si, Hongfang; Li, Jun, E-mail: lj@ahmu.edu.cn

    2013-11-01

    TRPM7, a non-selective cation channel of the TRP channel superfamily, is implicated in diverse physiological and pathological processes including cell proliferation. Recently, TRPM7 has been reported in hepatic stellate cells (HSCs). Here, we investigated the contribution role of TRPM7 in activated HSC-T6 cell (a rat hepatic stellate cell line) proliferation. TRPM7 mRNA and protein were measured by RT-PCR and Western blot in rat model of liver fibrosis in vivo and PDGF-BB-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPM7 were dramatically increased in CCl{sub 4}-treated rat livers. Stimulation of HSC-T6 cells with PDGF-BB resulted in a time-dependent increase of TRPM7 mRNA and protein. However, PDGF-BB-induced HSC-T6 cell proliferation was inhibited by non-specific TRPM7 blocker 2-aminoethoxydiphenyl borate (2-APB) or synthetic siRNA targeting TRPM7, and this was accompanied by downregulation of cell cycle proteins, cyclin D1, PCNA and CDK4. Blockade of TRPM7 channels also attenuated PDGF-BB induced expression of myofibroblast markers as measured by the induction of α-SMA and Col1α1. Furthermore, the phosphorylation of ERK and AKT, associated with cell proliferation, decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TRPM7 channels contribute to perpetuated fibroblast activation and proliferation of PDGF-BB induced HSC-T6 cells via the activation of ERK and PI3K pathways. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 mRNA and protein in the fibrotic livers from CCl{sub 4}-treated rats. • Increasing expression of TRPM7 mRNA and protein during HSC activation. • Blockade of TRPM7 inhibited the PDGF-BB induced proliferation of HSC-T6 cells. • Blockade of TRPM7 decreased α-SMA and Col1α1 expressions in activated HSC-T6 cells. • TRPM7 up-regulation contributes to the activation of ERK and AKT pathways.

  3. Hedgehog信号通路对肝星状细胞激活和增殖的影响%Regulation of hepatic stellate cell activation and proliferation by Hedgehog signal pathway

    王刚; 李涛; 封益飞; 冷希圣

    2009-01-01

    Objective To study the expression of Hedgehog signal pathway in rat hepatic stellate cell (HSC) line rHSC-99. The method of RNAi was adopted to inhibit Hedgehog signal pathway,and estimate the regulation role of Hedgehog signal pathway in activation and proliferation of HSC. Methods RTPCR was used to detect the expression of Hedgehog signal pathway in rat HSC line rHSC-99. Transcripts of siRNA sequence of the genes Ihh,Smo,and Gli2 were designed,and transfected into HSC respectively. Then the expression of these mRNAs were detected by SYBR green flurogenic quantitative PCR. The expression of α-SMA was detected by Western blot. The variation of type I collagen in culture supernatant of HSC was detected by ELISA. The proliferation of HSC was measured by MTT assay. Results HSC expressed mRNAs of Ihh,Smo,Ptc,Gli2,Gli3. The expression of these mRNAs could be reduced by trans-fecting plasmids encoded siRNA of Ihh,Smo or Gli2 (0. 254 ±0.130,0.221 ±0. 150,0. 235 ±0. 110 vs 1 ,P<0.01). Transfection experiment demonstrated the reduction of the expression of α-SMA (0. 191 ± 0.014,0. 357 ± 0. 021,0. 086 ± 0. 016 vs 1. 143 ± 0. 017, P<0. 01) and secretion of collagen I (22.9±2.0,16.4±1.4,17.6±1.8 vs 40.7 ±4.3,P<0.01) in HSC,and HSC proliferation was decreased (0.204 ±0.019,0. 226 ±0. 014,0. 228 ±0.015 vs 0. 412 ±0. 016,P<0.05). Conclusion This study showed the expression of Hedgehog signal pathway in HSC. Down-regulation of Hedgehog signal pathway may inhibit HSC activation and proliferation.%目的 观察Hedgehog信号通路在肝星状细胞(HSC)中的表达情况及Hedgehog信号通路对HSC激活和增殖的调控作用.方法 采用逆转录-聚合酶链反应(RT-PCR)的方法检测大鼠HSC细胞株rHSC-99中Hedgehog信号通路各成分的表达.构建含Ihh、Smo、Gli2的干扰片段的质粒,分别转染HSC,用SYBR Green荧光定量PCR的方法检测转染后Ihh、Smo、Gli2的表达,Western blot方法检测HSC中α-SMA表达,酶联免疫吸附试

  4. Septum Transversum-Derived Mesothelium Gives Rise to Hepatic Stellate Cells and Perivascular Mesenchymal Cells in Developing Mouse Liver

    Asahina, Kinji; Zhou, Bin; William T Pu; Tsukamoto, Hidekazu

    2011-01-01

    The septum transversum mesenchyme (STM) signals to induce hepatogenesis from the foregut endoderm. Hepatic stellate cells (HSCs) are sinusoidal pericytes assumed to originate from the STM and participate in mesenchymal-epithelial interaction in embryonic and adult livers. However, the developmental origin of HSCs remains elusive due to the lack of markers for STM and HSCs. We previously identified submesothelial cells (SubMCs) beneath mesothelial cells (MCs) as a potential precursor for HSCs ...

  5. Effects of sinusoidal endothelial cell conditioned medium on the expressionof connective tissue growth factor in rat hepatic stellate cells

    Xiao Jing Liu; Fang Liu; Wen Jun Xiao; Ming Hui Huang; Song Min Huang; Yi Ping Wang

    2000-01-01

    AIM To investigate the effects of sinusoidal endothelial cell (SEC) conditioned medium on the expression ofconnective tissue growth factor (CTGF) in rat hepatic stellate cells (HSC).METHODS By in situ collagenase perfusion and two-step Percoll gradient centrifugation, SECs wereisolated and cultured from normally and CCl4-treated Wistar rats, and the SEC conditioned media werecollected. HSCs were prepared from Wistar rats by in situ perfusion and single-step Nycodenz gradient, andwere cultured with SEC conditioned media. Expression of CTGF in HSC was assessed using reversetranscription-polymerase chain reaction (RT-PCR).RESULTS Expression of CTGF was not found in freshly isolated HSC and in primary culture of HSC onday 4 with SEC conditioned media from normal rats, but was present in primary culture of HSC on day 4 withSEC conditioned media from CCl4-induced liver fibrosis rats. Expression of CTGF was observed in culture-activated HSCs, and the effect of SEC conditioned media from CCl4-induced liver fibrosis rats on theexpression of CTGF gene in activated HSCs was not significant.CONCLUSION Expression of CTGF might be relative to the activation of HSC and the liver fibrogenesis,and damaged SECs play a very important role in the early stage of activation of HSC.

  6. Cervical Vagal Nerve Stimulation Activates the Stellate Ganglion in Ambulatory Dogs

    Rhee, Kyoung-Suk; Hsueh, Chia-Hsiang; Hellyer, Jessica A.; Park, Hyung Wook; Lee, Young Soo; Garlie, Jason; Onkka, Patrick; Doytchinova, Anisiia T.; Garner, John B.; Patel, Jheel; Chen, Lan S.; Fishbein, Michael C.; Everett, Thomas; Lin, Shien-Fong; Chen, Peng-Sheng

    2015-01-01

    Background and Objectives Recent studies showed that, in addition to parasympathetic nerves, cervical vagal nerves contained significant sympathetic nerves. We hypothesized that cervical vagal nerve stimulation (VNS) may capture the sympathetic nerves within the vagal nerve and activate the stellate ganglion. Materials and Methods We recorded left stellate ganglion nerve activity (SGNA), left thoracic vagal nerve activity (VNA), and subcutaneous electrocardiogram in seven dogs during left cer...

  7. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis. PMID:23525364

  8. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage.

    Diana N D'Ambrosio

    Full Text Available Hepatic stellate cell (HSC lipid droplets are specialized organelles for the storage of retinoid, accounting for 50-60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i increased expression of typical markers of HSC activation; (ii decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT; (iii decreased triglyceride levels; (iv increased expression of genes associated with lipid catabolism; and (v an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1.Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be "primed" and ready for rapid response to acute liver injury.

  9. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-03-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (EN(KO)) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in EN(KO) mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  10. Distribution of hepatic stellate cells and their role in the development of parasitic fibrosis and liver cirrhosis in domestic animals

    Kukolj Vladimir

    2015-01-01

    Full Text Available Increasing of the extracellular matrix in rats, as well as in humans, occurs as a consequence of hepatic stellate cells (HSCs activity. The objective of this work was to investigation the role of these cells in the development of fibrosis and liver cirrhosis which occurs as a consequence of infection of sheep and goats with large (Fasciola hepatica and small (Dicrocoelium dendriticum fluke. Liver samples taken from 12 cattle and 10 sheep infected under natural conditions with large and small fluke were fixed in formalin and embedded in paraffin. Paraffin clips were stained with hematoxylin- eosin and masson trichrome method, and immunohistochemical method for α-smooth muscle actin (α-SMA. All tested samples were divided into three groups according to histological criteria: livers of infected animals with the first degree of fibrosis, livers of infected animals with the second degree of fibrosis, and livers of infected animals with cirrhosis. Distribution of HSCs depended on the degree of liver fibrosis. Immunohistochemically reactive HSCs were predominantly placed in perisinusoidal space. In liver samples with cirrhosis, HSCs were placed on the periphery of pseudolobulus. Cells of a different shape and size were positive to α-SMA. HSCs play an important role in synthesis of components of extracellular matrix during the development of parasitic fibrosis and liver cirrhosis in domestic animals.

  11. In vivo effects of Chinese herbal recipe, Danshaohuaxian, on apoptosis and proliferation of hepatic stellate cells in hepatic fibrotic rats

    Xiao-Xia Geng; Qin Yang; Ru-Jia Xie; Xin-Hua Luo; Bing Han; Li Ma; Cheng-Xiu Li; Ming-Liang Cheng

    2005-01-01

    AIM: To investigate the effects of Danshaohuaxian (DSHX),a Chinese herbal recipe, on the apoptosis and cell cycles of hepatic stellate cells (HSCs) in rat hepatic fibrosis and its possible mechanisms. METHODS: Seventy-six male Wistar rats were randomly divided into normal control group, hepatic fibrosis group,non-DSHX-treated group and DSHX-treated group. Except for the normal control group, rat hepatic fibrotic models were induced by subcutaneous injection of carbon tetrachloride (CCl4), drinking alcohol, giving diet of hyperlipid and hypoprotein for 8 wk. When the hepatic fibrotic models were produced, 12 rats of hepatic fibrosis group (15 rats survived, others died during the 8 wk) were sacrificed to collect blood and livers. HSCs were isolated from the other 3 rats to detect the apoptotic index (AI) and cell cycles by flow cytometry. DSHX was then given to the DSHX-treated group (1.0 g/kg, PO daily) for 8 wk. At the same time, normal control group and non-DSHX-treated group were given normal saline for 8 wk. At end of the experiment, some rats in these three groups were sacrificed to collect blood and livers, the other rats were used for HSC isolation to detect the apoptotic index (AI) and cell cycles. Then the liver index, serum hyaluronic acid (HA) and alanine aminotransferase (ALT),degree of hepatic fibrosis, urinary excretion of hydroxyproline (Hyp) and expression of collagen types Ⅰ and Ⅲ (COL Ⅰ and Ⅲ) in these four groups were detected respectively.RESULTS: Compared with the indexes of the hepatic fibrosis group and non-DSHX-treated group, the DSHX-treated group revealed a liver index of (0.0267±0.0017 vs 0.0423±0.0044, 0.0295±0.0019, P<0.05), levels of serum HA (200.78±31.71 vs316.17±78.48, 300.86±72.73, P<0.05)and ALT(93.13±5.79 vs 174.5±6.02, 104.75±6.54, P<0.01),and stage of hepatic fibrosis (1.30 vs 4.25, 2.60, P<0.01)all reduced. The urinary excretion of Hyp increased (541.09±73.39 vs 62.00±6.40, 182.44±30.83, P<0

  12. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    Run-Ping Gao; David R Brigstock

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-b1 to the culture medium. Semiquantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen Ⅰ, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen Ⅰ, and an increase in produced and secreted CCN2 or extracellular collagen Ⅰ protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen Ⅰ protein. Furthermore, the TGF-b1-induced increase in mRNA or protein for CCN2 or collagen Ⅰ was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-b1-induced collagen Ⅰ production in human HSCs and regulates entry of the cells into Sphase.

  13. Liver cirrhosis and hepatic stellate cells Cirrose hepática e células estreladas do figado

    Daniel Ferracioli Brandão

    2006-01-01

    Full Text Available The cirrhosis represents the final stage of several chronic hepatic diseases and it is characterized by the presence of fibrosis and morphologic conversion from the normal hepatic architecture into structurally abnormal nodules. In the evolution of the disease there is loss of the normal vascular relationship and portal hypertension. There are also regenerative hepatocelular alterations that become more prominent with the progression of the disease. The liver transplantation continues to be the only therapeutic option in cases of disease in terminal phase. The hepatic stellate cells (HSC are perisinusoidal cells that store vitamin A and produce growth factors, citocins, prostaglandins and other bioactive substances. They can suffer an activation process that convert them to cells with a phenotype similar to myofibroblasts. When activated, they present increased capacity of proliferation, mobility, contractility and synthesis of collagen and other components of extracelular matrix. They possess cytoplasmic processes adhered to sinusoids and can affect the sinusoidal blood flow. HSC are important in pathogenesis of fibrosis and portal hypertension.A cirrose representa o estágio final de diversas doenças hepáticas crônicas e é caracterizada pela presença de fibrose e conversão da arquitetura hepática normal em nódulos estruturalmente anormais. Na evolução da doença ocorre perda da relação vascular normal e hipertensão portal. Há também alterações regenerativas hepatocelulares que se tornam mais proeminentes com a progressão da doença. O transplante hepático permanece como a única opção terapêutica nos casos de doença em fase terminal. As células estreladas hepáticas (CEH são células perisinusoidais que armazenam vitamina A e produzem fatores de crescimento, citocinas, prostaglandinas e outras substâncias bioativas. Podem sofrer um processo de ativação para um fenótipo semelhante a miofibroblastos. Quando ativadas

  14. Hepatic Stellate Cell-Derived Microvesicles Prevent Hepatocytes from Injury Induced by APAP/H2O2

    Renwei Huang

    2016-01-01

    Full Text Available Hepatic stellate cells (HSCs, previously described for liver-specific mesenchymal stem cells (MSCs, appear to contribute to liver regeneration. Microvesicles (MVs are nanoscale membrane fragments, which can regulate target cell function by transferring contents from their parent cells. The aim of this study was to investigate the effect of HSC-derived MVs on xenobiotic-induced liver injury. Rat and human hepatocytes, BRL-3A and HL-7702, were used to build hepatocytes injury models by n-acetyl-p-aminophenol n-(APAP or H2O2 treatment. MVs were prepared from human and rat HSCs, LX-2, and HST-T6 and, respectively, added to injured BRL-3A and HL-7702 hepatocytes. MTT assay was utilized to determine cell proliferation. Cell apoptosis was analyzed by flow cytometry and hoechst33258 staining. Western blot was used for analyzing the expression of activated caspase-3. Liver injury indicators, alanine aminotransferase (ALT, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH in culture medium were also assessed. Results showed that (1 HSC-MVs derived from LX-2 and HST-T6 were positive to CD90 and annexin V surface markers; (2 HSC-MVs dose-dependently improved the viability of hepatocytes in both injury models; (3 HSC-MVs dose-dependently inhibited the APAP/H2O2 induced hepatocytes apoptosis and activated caspase-3 expression and leakage of LDH, ALT, and AST. Our results demonstrate that HSC-derived MVs protect hepatocytes from toxicant-induced injury.

  15. Expression of Basic Fibroblast Growth Factor in Rat Liver Fibrosis and Hepatic Stellate Cells

    2005-01-01

    The expression of basic fibroblast growth factor (bFGF) in rat liver fibrosis and hepatic stellate cells (HSCs) and the relationship between the expression of bFGF and rat liver fibrogenesis were studied. Sixty male SD rats (230-260 g) were divided into 4 groups randomly (the 0 week group, 1 week group, 4 week group and 8 week group). Liver fibrosis was induced by subcutaneous injection of carbon tetrachloride. The sections of rats' liver in each group were tested by VanGieson (V-G) staining and immunohistochemistry. The expression of bFGF mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). HSCs were isolated by the combined methods of collagenase Ⅳ perfusion and density gradient centrifugation. The expression of bFGF protein in cultured HSCs was detected by Western blot. Images of immunohistochemistry detec tion, agarose gel electrophoresis of RT-PCR and SDS-polyacrylamide gel electrophoresis of Western blot were analyzed semiquantitatively by image-analyzing system. The results were analyzed by statistics. The results showed that the fibers were gradually increased in the sections of rat liver with the prolongation of the model induction. At the end of the 8th weeks, liver fibrosis was formed.The expression of bFGF detected by immunohistochemistry showed a similar tendency of gradual increase. At the end of the 8th weeks, the bFGF expression could be observed in many regions in sections and the strongest expression was in interstitial cells including HSCs and some hepatocytes in regions around the portal area and central veins. Also there was moderate expression widely in extracellular matrix (ECM). In RT-PCR detection and Western blot detection of HSCs cultured in vitro, the similar tendency of gradual increase was evident either. It is suggested that bFGF is related with liver fibrosis of rats closely and may be a fibrogenesis factor of liver. bFGF possibly regulates liver fibrogenesis through regulating metabolism of extracellular

  16. Human pancreatic cancer-associated stellate cells remain activated after in vivo chemoradiation

    Marina Carla Cabrera

    2014-05-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is characterized by an extensive fibrotic reaction or desmoplasia and complex involvement of the surrounding tumor microenvironment. Pancreatic stellate cells are a key mediator of the pancreatic matrix and they promote progression and invasion of pancreatic cancer by increasing cell proliferation and offering protection against therapeutic interventions. Our study utilizes human tumor-derived pancreatic stellate cells (HTPSCs isolated from fine needle aspirates of pancreatic cancer tissue from patients with locally advanced, unresectable pancreatic adenocarcinoma before and after treatment with full dose gemcitabine plus concurrent hypo-fractionated stereotactic radiosurgery. We show that HTPSCs survive in vivo chemotherapy and radiotherapy treatment and display a more activated phenotype post therapy. These data support the idea that stellate cells play an essential role in supporting and promoting pancreatic cancer and further research is needed to develop novel treatments targeting the pancreatic tumor microenvironment.

  17. Silencing tissue inhibitors of metalloproteinases (TIMPs) with short interfering RNA reveals a role for TIMP-1 in hepatic stellate cell proliferation

    Fowell, Andrew J., E-mail: ajf2@soton.ac.uk [Liver and Pancreas Group, University of Southampton, Division of Infection, Inflammation and Immunity, Southampton General Hospital, Southampton (United Kingdom); Collins, Jane E.; Duncombe, Dale R.; Pickering, Judith A. [Liver and Pancreas Group, University of Southampton, Division of Infection, Inflammation and Immunity, Southampton General Hospital, Southampton (United Kingdom); Rosenberg, William M.C. [Centre for Hepatology, Division of Medicine, University College London, London (United Kingdom); Benyon, R. Christopher [Liver and Pancreas Group, University of Southampton, Division of Infection, Inflammation and Immunity, Southampton General Hospital, Southampton (United Kingdom)

    2011-04-08

    Research highlights: {yields} Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis. {yields} We used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. {yields} Specific silencing of TIMP-1, but not TIMP-2, significantly reduces HSC proliferation and is associated with reduced Akt phosphorylation. {yields} TIMP-1 is localised in part to the HSC nucleus. {yields} TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. -- Abstract: Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis through the secretion of fibrillar collagens and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2. TIMPs are believed to promote hepatic fibrosis by inhibiting both matrix degradation and apoptosis of HSC. In other cell types, there is evidence that TIMP-1 has effects on proliferation, however the role of TIMPs in the regulation of HSC proliferation remains unexplored. Therefore, we have used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. TIMP-1 and -2 siRNA were highly effective, producing peak target protein knockdown compared to negative control siRNA of 92% and 63%, respectively. Specific silencing of TIMP-1, using siRNA, significantly reduced HSC proliferation. TIMP-1 was localised in part to the HSC nucleus and TIMP-1 siRNA resulted in loss of both cytoplasmic and nuclear TIMP-1. Attenuated proliferation was associated with reduced Akt phosphorylation and was partially rescued by addition of recombinant TIMP-1. We have revealed a novel autocrine mitogenic effect of TIMP-1 on HSC, which may involve Akt-dependent and specific nuclear mechanisms of action. We suggest that TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. Moreover

  18. Silencing tissue inhibitors of metalloproteinases (TIMPs) with short interfering RNA reveals a role for TIMP-1 in hepatic stellate cell proliferation

    Research highlights: → Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis. → We used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. → Specific silencing of TIMP-1, but not TIMP-2, significantly reduces HSC proliferation and is associated with reduced Akt phosphorylation. → TIMP-1 is localised in part to the HSC nucleus. → TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. -- Abstract: Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis through the secretion of fibrillar collagens and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2. TIMPs are believed to promote hepatic fibrosis by inhibiting both matrix degradation and apoptosis of HSC. In other cell types, there is evidence that TIMP-1 has effects on proliferation, however the role of TIMPs in the regulation of HSC proliferation remains unexplored. Therefore, we have used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. TIMP-1 and -2 siRNA were highly effective, producing peak target protein knockdown compared to negative control siRNA of 92% and 63%, respectively. Specific silencing of TIMP-1, using siRNA, significantly reduced HSC proliferation. TIMP-1 was localised in part to the HSC nucleus and TIMP-1 siRNA resulted in loss of both cytoplasmic and nuclear TIMP-1. Attenuated proliferation was associated with reduced Akt phosphorylation and was partially rescued by addition of recombinant TIMP-1. We have revealed a novel autocrine mitogenic effect of TIMP-1 on HSC, which may involve Akt-dependent and specific nuclear mechanisms of action. We suggest that TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. Moreover, these findings, together

  19. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  20. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    Fang, Ling, E-mail: fangling_1984@126.com [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); Zhan, Shuxiang [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Li, Jun, E-mail: lj@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China)

    2014-10-15

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  1. Disruption of intermolecular disulfide bonds in PDGF-BB dimers by N-acetyl-L-cysteine does not prevent PDGF signaling in cultured hepatic stellate cells

    Oxidative stress is important in the pathogenesis of liver fibrosis through its induction of hepatic stellate cell (HSC) proliferation and enhancement of collagen synthesis. Reactive oxygen species have been found to be essential second messengers in the signaling of both major fibrotic growth factors, platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β), in cultured HSC and liver fibrosis. The non-toxic aminothiol N-acetyl-L-cysteine (NAC) inhibits cellular activation and attenuates experimental fibrosis in liver. Prior reports show that NAC is capable of reducing the effects of TGF-β in biological systems, in cultured endothelial cells, and HSC through its direct reducing activity upon TGF-β molecules. We here analyzed the effects of NAC on PDGF integrity, receptor binding, and downstream signaling in culture-activated HSC. We found that NAC dose-dependently induces disintegration of PDGF in vitro. However, even high doses (>20 mM) were not sufficient to prevent the phosphorylation of the PDGF receptor type β, extracellular signal-regulated kinase, or protein kinase B (PKB/Akt). Therefore, we conclude that the PDGF monomer is still active. The described antifibrotic effects are therefore mainly attributable to the structural impairment of TGF-β signaling components reported previously

  2. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells.

    Pan, Qin; Wang, Yu-Qin; Li, Guang-Ming; Duan, Xiao-Yan; Fan, Jian-Gao

    2015-01-01

    Activation of hepatic stellate cells (HSCs) depending on epithelial-to-mesenchymal transition (EMT) reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET) of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY) recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β 1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β 1 at both transcription and translation levels. Restoration of TGF-β 1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) as characterized by the abolishment of EMT markers (α-SMA and desmin) and reoccurrence of MET marker (E-cadherin). In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4-) induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs. PMID:26881209

  3. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells

    Qin Pan

    2015-01-01

    Full Text Available Activation of hepatic stellate cells (HSCs depending on epithelial-to-mesenchymal transition (EMT reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β1 at both transcription and translation levels. Restoration of TGF-β1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT to mesenchymal-to-epithelial transition (MET as characterized by the abolishment of EMT markers (α-SMA and desmin and reoccurrence of MET marker (E-cadherin. In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4- induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs.

  4. Study on Effects of Extracts from Salvia Miltiorrhiza and Curcuma Longa in Inhibiting Phosphorylated Extracellular Signal Regulated Kinase Expression in Rat's Hepatic Stellate Cells

    CHENG Yang; PING Jian; LIU Cheng; TAN Ying-zi; CHEN Gao-feng

    2006-01-01

    Objective: To study the effect of salvianolic acid B (SAB) and curcumin, the extracts of Salvia Miltiorrhiza and Curcuma Longa, on the proliferation and activation of hepatic stellate cell (HSC), and the extracellular signal regulated kinase (ERK) expression in it. Methods: Rat's HSC-T6 were cultured and treated by SAB or curcumin. The inhibitory effect on cell proliferation was determined by 3-(4,5-dimthyl-2-2thiazoly)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetry, and the expression levels of α smooth actin (α-SMA), collagen type Ⅰ , and ERK were determined by Western blot. Results: SAB and curcumin inhibited the proliferation and activation of rat's HSC-T6 in dose-dependent fashion and significantly reduced the expression level of α-SMA ( P<0.01 ). Curcumin significantly reduced the expression of collagen type Ⅰ( P<0.05). Both SAB and curcumin showed insignificant effect on the ERK expression level, but they could significantly reduce the level of phosphorylated-ERK expression, showing significant difference as compared with that in the control group ( P<0.01 and P<0.05 respectively). Conclusion: SAB and curcumin could significantly inhibit the proliferation, activation of HSC, and the production of type Ⅰ collagen in HSC, the mechanism may be associated with their inhibition on ERK phosphorylation.

  5. Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury.

    Arya J Bahrami

    Full Text Available Liver fibrosis is mediated by hepatic stellate cells (HSCs, which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR-mediated signaling, via endothelin-1 (ET-1 and angiotensin II (AngII, increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5, an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs. Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.

  6. Leptin facilitates proliferation of hepatic stellate cells through up-regulation of platelet-derived growth factor receptor

    In the present study, we investigated the effect of leptin on proliferation of hepatic stellate cells (HSCs) in vitro. Proliferation of 3-day cultured rat HSCs was assessed by incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the nuclei. The percentages of BrdU-positive cells were increased in the presence of PDGF-BB (5 ng/ml) for 8 h as expected. Co-incubation with leptin (10-100 nM) potentiates this PDGF-dependent increase in BrdU positive cells in a dose-dependent manner. Messenger RNA for PDGF receptor α and β subunits was increased almost 2- to 3-fold by incubation with leptin for 6 h. Further, pre-incubation with leptin for 6 h enhanced PDGF-induced increases in phospho-p44/42 MAP kinase and phospho-Akt levels in a dose-dependent manner. In the same condition, however, leptin per se did not increase phospho-STAT 3 and phospho-p44/42 MAP kinase levels. Instead, leptin increased phospho-Akt levels in HSCs within 30 min, suggesting that the phosphatidylinositol 3 kinase (PI3K)/Akt pathway is involved in the mechanism by which leptin accelerates the proliferation of HSCs. In conclusion, the present study clearly indicated that leptin potentiates PDGF-dependent proliferative responses of HSCs in vitro

  7. The effect of synthesized RGD peptide on the secretion of extracellular matrix (ECM) by the hepatic stellate cell

    Objective: To study the effect of RGD peptide on the secretion of extracellular matrix by primary hepatic stellate cells. Methods: The RGD peptide was synthesized by chemical method. HSCs were isolated from SD rat by in situ perfusion of liver and cultured for 48 hours. The culture was divided into 4 parts: 1)Control (no agent added) 2) TGF β1 added ( TGF β1 5ng/ml), 3)RGD added (RGD 100 μg/ml), 4)Combined agents added (TGF β1 5ng/ ml and RGD 100 μg/ml). Afterwards , they were further cultured for 3 days. The levels of ECM in the culture supernatant were detected with radioimmunoassay. Results: The levels of HA, LN and PC III in the parts with TGF β1 and combined agent were significantly higher than those in the control, while the levels in culture with RGD remained unchanged. The levels of LN and PCIII in the culture with combined agents were significantly lower than those in the culture with TGF β1. Conclusion: RGD peptide could decrease the levels of LN and PCIII in HSCs culture, suggesting inhibition of secretion of ECM by primary HSCs. The probable mechanism involved might be a competitive combination with integrin. (authors)

  8. Herbal compound 861 regulates mRNA expression of collagen synthesis- and degradation-related genes in human hepatic stellate cells

    Lin Wang; Bao-En Wang; Jian Wang; Pei-Gen Xiao; Xue-Hai Tan

    2008-01-01

    AIM: To identify the role of herbal compound 861 (Cpd 861) in the regulation of mRNA expression of collagen synthesis- and degradation-related genes in human hepatic stellate cells (HSCs).METHODS: mRNA levels of collagen types I and III, matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 2 (MMP-2), membrane type-1 matrix metalloproteinase (MT1-MMP), tissue inhibitor of metalloproteinase 1 (TIMP-1), and transforming growth factor β1 (TGF-βi) in cultured-activated HSCs treated with Cpd 861 or interferon-γ (IFN-γ) were determined by real-time PCR.RESULTS: Both Cpd 861 and IFN-γ reduced the mRNA levels of collagen type Ⅲ, MMP-2 and TGF-βl. Moreover, Cpd 861 significantly enhanced the MMP-1 mRNA levels while down-regulated the TIMP-1 mRNA expression, increasing the ratio of MMP-1 to TIMP-1 to (6.3 + 0.3)-fold compared to the control group.CONCLUSION: The anti-fibrosis function of Cpd 861 may be mediated by both decreased interstitial collagen sythesis by inhibiting the transcription of collagen type in and TGF-pi and increased degradation of these collagens by up-regulating MMP-1 and down-regulating TIMP-1 mRNA levels.

  9. The effect of down-regulation of Smad3 by RNAi on hepatic stellate cells and a carbon tetrachloride-induced rat model of hepatic fibrosis

    Z.R. Wang

    2011-02-01

    Full Text Available Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs. The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30 and the treated group (N = 20 were injected subcutaneously with 40% (v/v carbon tetrachloride (CCl4-olive oil (3 mL/kg, and the normal control group (N = 30 was injected with olive oil (3 mL/kg. In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS, and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid. The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05 and the serum indices were greatly improved (P < 0.01. These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.

  10. Adenoviral transduction of PTEN induces apoptosis of cultured hepatic stellate cells

    HAO Li-sen; ZHANG Xiao-lan; AN Jun-yan; YAO Dong-mei; Justin Karlin; FANG Shu-ming; JIANG Hui-qing; BAI Wen-yuan; CHEN Shuang

    2009-01-01

    @@ Hepatic fibrosis is the liver's wound healing response to virtually all forms of chronic liver injury: toxic insult, viral infection, immunological conditions and metabolic diseases. Uncontrolled liver fibrosis eventually results in cirrhosis and associated complications, such as cancer and liver failure.

  11. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation

  12. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  13. 法尼酯衍生物X受体活化对肝星状细胞TIMP-1、TIMP-2及MMP-2表达的调节作用%Regulatory effeots of FXR activation on expression of TIMP-1, TIMP-2 and MMP-2 in hepatic stellate cells

    陈科全; 周碧瑶; 陈雅莹; 邹原方; 周宇

    2013-01-01

    Objective To determine whether the regulator of bile acid and carbohydrate metabolism in hepatic stellate cells ( HSCs) , Far-nesoid X receptor ( FXR) , mediates the expression of fibrosis - related genes tissue inhibitor of matrix metalloproteinase ( TIMP) - 1 , TIMP - 2, and matrix metalloproteinase - 2 ( MMP - 2). Methods An in vitro cell culture system with the rat HSC - T6 line was used to evaluate the effects of FXR by treating with the synthetic FXR agonist GW4064 at various concentrations (0. 01 , 0. 1 and 1 μmol/L) for 18 h. Untreated cells served as controls. The mRNA levels of FXR, TIMP - 1 , TIMP - 2, and MMP - 2 were measured by real - time reverse transcription PCR. The protein levels of TIMP - 1 , TIMP - 2, and MMP - 2 were determined by western blotting. The significance of intergroup differences was assessed by single - factor one - way ANOVA statistical analysis. Results Treatment with GW4064 led to significantly increased mRNA expression of FXR (0.01 μmol/L vs. control, P 0. 05 ) . Unlike the 0.01 μmol/L concentration of GW4064, the 0. 1 and 1 μmol/L concentrations reduced the TIMP - 1 and TIMP - 2 mRNA and protein expressions to levels significantly lower than that in the controls ( all P < 0. 05). GW4064 treatment increased MMP - 2 mRNA and protein expressions and the 1 μmol/L mediated increase was significantly higher than that of the control (P <0. 01). Conclusion Activation of FXR on HSCs may contribute to fibrosis by down - regulating TIMP - 1 and TIMP - 2 and up - regulating MMP - 2 , which mediate the balance of extracellular matrix synthesis and degradation; thus, FXR ligands may represent useful therapeutic targets of liver fibrosis.%目的 研究法尼酯衍生物X受体(FXR)对肝星状细胞基质金属蛋白酶组织抑制因子-1(TIMP-1)和基质金属蛋白酶组织抑制因子-2(TIMP-2)及基质金属蛋白酶-2(MMP-2)表达的影响.方法 应用FXR人工合成配体GW4064(0.01、0.1、1μmol/L)处理大

  14. Genetic characteristics of the human hepatic stellate cell line LX-2.

    Ralf Weiskirchen

    Full Text Available The human hepatic cell line LX-2 has been described as tool to study mechanisms of hepatic fibrogenesis and the testing of antifibrotic compounds. It was originally generated by immortalisation with the Simian Vacuolating Virus 40 (SV40 transforming (T antigen and subsequent propagation in low serum conditions. Although this immortalized line is used in an increasing number of studies, detailed genetic characterisation has been lacking. We here have performed genetic characterisation of the LX-2 cell line and established a single-locus short tandem repeat (STR profile for the cell line and characterized the LX-2 karyotype by several cytogenetic and molecular cytogenetic techniques. Spectral karyotyping (SKY revealed a complex karyotype with a set of aberrations consistently present in the metaphases analyses which might serve as cytogenetic markers. In addition, various subclonal and single cell aberrations were detected. Our study provides criteria for genetic authentication of LX-2 and offers insights into the genotype changes which might underlie part of its phenotypic features.

  15. Role of TGF-β signaling in differentiation of mesothelial cells to vitamin A-poor hepatic stellate cells in liver fibrosis.

    Li, Yuchang; Lua, Ingrid; French, Samuel W; Asahina, Kinji

    2016-02-15

    Mesothelial cells (MCs) form a single layer of the mesothelium and cover the liver surface. A previous study demonstrated that, upon liver injury, MCs migrate inward from the liver surface and give rise to hepatic stellate cells (HSCs) in biliary fibrosis induced by bile duct ligation (BDL) or myofibroblasts in CCl4-induced fibrosis. The present study analyzed the role of transforming growth factor-β (TGF-β) signaling in mesothelial-mesenchymal transition (MMT) and the fate of MCs during liver fibrosis and its regression. Deletion of TGF-β type II receptor (Tgfbr2) gene in cultured MCs suppressed TGF-β-mediated myofibroblastic conversion. Conditional deletion of Tgfbr2 gene in MCs reduced the differentiation of MCs to HSCs and myofibroblasts in the BDL and CCl4 models, respectively, indicating that the direct TGF-β signaling in MCs is responsible to MMT. After BDL and CCl4 treatment, MC-derived HSCs and myofibroblasts were distributed near the liver surface and the thickness of collagen was increased in Glisson's capsule beneath the liver surface. Fluorescence-activated cell sorting analysis revealed that MC-derived HSCs and myofibroblasts store little vitamin A lipids and have fibrogenic phenotype in the fibrotic livers. MCs contributed to 1.4 and 2.0% of activated HSCs in the BDL and CCl4 models, respectively. During regression of CCl4-induced fibrosis, 20% of MC-derived myofibroblasts survived in the liver and deactivated to vitamin A-poor HSCs. Our data indicate that MCs participate in capsular fibrosis by supplying vitamin A-poor HSCs during a process of liver fibrosis and regression. PMID:26702136

  16. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells.

    Yosuke Osawa

    Full Text Available Tumor necrosis factor (TNF-α, which is a mediator of hepatotoxicity, has been implicated in liver fibrosis. However, the roles of TNF-α on hepatic stellate cell (HSC activation and liver fibrosis are complicated and remain controversial. To explore this issue, the role of TNF-α in cholestasis-induced liver fibrosis was examined by comparing between TNF-α(-/- mice and TNF-α(+/+ mice after bile duct ligation (BDL. Serum TNF-α levels in mice were increased by common BDL combined with cystic duct ligation (CBDL+CDL. TNF-α deficiency reduced liver fibrosis without affecting liver injury, inflammatory cell infiltration, and liver regeneration after CBDL+CDL. Increased expression levels of collagen α1(I mRNA, transforming growth factor (TGF-β mRNA, and α-smooth muscle actin (αSMA protein by CBDL+CDL in the livers of TNF-α(-/- mice were comparable to those in TNF-α(+/+ mice. Exogenous administration of TNF-α decreased collagen α1(I mRNA expression in isolated rat HSCs. These results suggest that the reduced fibrosis in TNF-α(-/- mice is regulated in post-transcriptional level. Tissue inhibitor of metalloproteinase (TIMP-1 plays a crucial role in the pathogenesis of liver fibrosis. TIMP-1 expression in HSCs in the liver was increased by CBDL+CDL, and the induction was lower in TNF-α(-/- mice than in TNF-α(+/+ mice. Fibrosis in the lobe of TIMP-1(-/- mice with partial BDL was also reduced. These findings indicate that TNF-α produced by cholestasis can promote liver fibrosis via TIMP-1 production from HSCs. Thus, targeting TNF-α and TIMP-1 may become a new therapeutic strategy for treating liver fibrosis in cholestatic liver injury.

  17. Carvedilol Improves Inflammatory Response, Oxidative Stress and Fibrosis in the Alcohol-Induced Liver Injury in Rats by Regulating Kuppfer Cells and Hepatic Stellate Cells.

    Raimundo Fernandes de Araújo Júnior

    Full Text Available To evaluate the anti-inflammatory, anti-oxidant and antifibrotic effects of carvedilol (CARV in rats with ethanol-induced liver injury.Liver injury was induced by gavage administration of alcohol (7 g/kg for 28 consecutive days. Eighty Wistar rats were pretreated with oral CARV at 1, 3, or 5 mg/kg or with saline 1 h before exposure to alcohol. Liver homogenates were assayed for interleukin (IL-1β, IL-10, and tumor necrosis factor (TNF-α level as well as for myeloperoxidase (MPO activity and malonyldialdehyde (MDA and glutathione (GSH levels. Serum aspartate aminotransferase (AST activity and liver triglyceride (TG levels were also assayed. Immunohistochemical analyses of cyclooxygenase 2 (COX-2, receptor activator of nuclear factor kappa-B/ligand (RANK/RANKL, suppressor of cytokine signalling (SOCS1, the Kupffer cell marker IBA-1 (ionized calcium-binding adaptor molecule 1, intercellular adhesion molecule 1 (ICAM-1, superoxide dismutase (SOD-1, and glutathione peroxidase (GPx-1 expression were performed. Confocal microscopy analysis of IL-1β and NF-κB expression and real-time quantitative PCR analysis for TNFα, PCI, PCIII, and NF-κB were performed.CARV treatment (5 mg/kg during the alcohol exposure protocol was associated with reduced steatosis, hepatic cord degeneration, fibrosis and necrosis, as well as reduced levels of AST (p < 0.01, ALT (p < 0.01, TG (p < 0.001, MPO (p < 0.001, MDA (p < 0.05, and proinflammatory cytokines (IL-1β and TNF-α, both p < 0.05, and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001 and GSH (p < 0.05, compared to the alcohol-only group. Treatment with CARV 5 mg/kg also reduced expression levels of COX-2, RANK, RANKL, IBA-1, and ICAM-1 (all p < 0.05, while increasing expression of SOCS1, SOD-1, and GPx-1 (all p < 0.05 and decreasing expression of IL-1β and NF-κB (both, p < 0.05. Real-time quantitative PCR analysis showed that mRNA production of TNF-α, procollagen type I (PCI, procollagen

  18. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells

    Zenger, Katharina

    2015-07-19

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones.

  19. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones

  20. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl4-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation

  1. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: sol4@pitt.edu [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  2. Matrix metalloproteinase-1 induction by diethyldithiocarbamate is regulated via Akt and ERK/miR222/ETS-1 pathways in hepatic stellate cells.

    Liu, Tianhui; Wang, Ping; Cong, Min; Zhang, Dong; Liu, Lin; Li, Hongyi; Zhai, Qingling; Li, Zhuo; Jia, Jidong; You, Hong

    2016-08-01

    Matrix metalloproteinase-1 (MMP-1) plays an important role in fibrolysis by degrading excessively deposited collagen I and III. We previously demonstrated that diethyldithiocarbamate (DDC) up-regulates MMP-1 in hepatic stellate cells via the ERK1/2 and Akt signalling pathways. In the current study, we attempted to further explore the molecular mechanisms involved in the regulation of MMP-1. We treated a co-cultured system that included hepatocytes (C3A) and hepatic stellate cells (LX-2) with DDC. The data revealed that the transcriptional factor ETS-1, which is an important regulator of MMP-1, was up-regulated in LX-2 cells following DDC treatment. Furthermore, the up-regulation of MMP-1 by DDC has been abrogated through employing si-ETS-1 to block expression of ETS-1. We found that DDC significantly inhibited the expression of miR-222 in LX-2 cells. We transfected miR-222 mimic into LX-2 cells and then co-cultured the cells with C3A. The up-regulation of ETS-1 and MMP-1 in LX-2 cells treated with DDC were inhibited after miR-222 mimic transfection. These data indicate that DDC up-regulated MMP-1 in LX-2 cells through the miR-222/ETS-1 pathway. Finally, we treated the co-cultured system with an Akt inhibitor (T3830) and an ERK1/2 inhibitor (U0126). Both T3830 and U0126 blocked the suppression of miR-222 by DDC in LX-2. Collectively, these data indicate that DDC up-regulated MMP-1 in LX-2 cells through the Akt and ERK/miR-222/ETS-1 pathways. Our study provides experimental data that will aid the control of the process of fibrolysis in liver fibrosis prevention and treatment. PMID:27412967

  3. miR-181b Promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients

    Highlights: ► miR-181a and miR-181b, especially, miR-181b could be induced by transforming growth factor-beta 1 (TGF-β1) in hepatic stellate cells. ► miR-181b could promote HSC-T6 cell proliferation by directly targeting the negative cell regulator-p27 in HSC-T6 cell. ► miR-181b was identified as potential serum diagnostic marker for liver cirrhosis patients. -- Abstract: MicroRNAs, as a kind of negative gene regulators, were demonstrated to be involved in many types of diseases. In this study, we found that transforming growth factor-beta 1 could induce the expression of miR-181a and miR-181b, and miR-181b increased in the much higher folds than miR-181a. Because of the important role of transforming growth factor-beta 1 in HSC activation and liver cirrhosis, we investigate the effect of miR-181a and miR-181b on HSC proliferation. The results showed that miR-181b could promote HSC-T6 cell proliferation by regulating cell cycle. Further study showed p27, the cell cycle regulator, was the direct target of miR-181b in HSC-T6 cell. But miR-181a had no effects on HSC-T6 cell proliferation and cell cycle, and did not target p27. Interestingly, miR-181b is elevated significantly in serum of liver cirrhosis cases comparing to that of normal persons, whereas miR-181a expression was in the similar level with that of normal persons. These results suggested that miR-181b could be induced by TGF-β1 and promote the growth of HSCs by directly targeting p27. The elevation of miR-181b in serum suggested that it may be potential diagnostic biomarkers for cirrhosis. As for miR-181a, it may work in TGF-β1 pathway by a currently unknown mechanism.

  4. Sirtuin 3 (SIRT3) Regulates α-Smooth Muscle Actin (α-SMA) Production through the Succinate Dehydrogenase-G Protein-coupled Receptor 91 (GPR91) Pathway in Hepatic Stellate Cells.

    Li, Ying Hui; Choi, Dae Hee; Lee, Eun Hye; Seo, Su Ryeon; Lee, Seungkoo; Cho, Eun-Hee

    2016-05-01

    Sirtuin 3 (SIRT3) is an NAD(+)-dependent protein deacetylase. Recent studies have shown that SIRT3 expression is decreased in nonalcoholic fatty liver disease (NAFLD). Moreover, SIRT3 is a key regulator of succinate dehydrogenase (SDH), which catalyzes the oxidation of succinate to fumarate. Increased succinate concentrations and the specific G protein-coupled receptor 91 (GPR91) are involved in the activation of hepatic stellate cells (HSCs). In this study, we aimed to establish whether SIRT3 regulated the SDH activity, succinate, and GPR91 expression in HSCs and an animal model of NAFLD. Our goal was also to determine whether succinate released from hepatocytes regulated HSC activation. Inhibiting SIRT3 using SIRT3 siRNA exacerbated HSC activation via the SDH-succinate-GPR91 pathway, and SIRT3 overexpression or honokiol treatment attenuated HSC activation in vitro In isolated liver and HSCs from methionine- and choline-deficient (MCD) diet-induced NAFLD, the expression of SIRT3 and SDH activity was decreased, and the succinate concentrations and GPR91 expression were increased. Moreover, we found that GPR91 knockdown or resveratrol treatment improved the steatosis in MCD diet-fed mice. This investigation revealed a novel mechanism of the SIRT3-SDH-GPR91 cascade in MCD diet-induced HSC activation in NAFLD. These findings highlight the biological significance of novel strategies aimed at targeting SIRT3 and GPR91 in HSCs with the goal of improving NAFLD treatment. PMID:26912655

  5. Effect of angiotensin Ⅱ and angiotensin Ⅱ type 1 receptor antagonist on the proliferation,contraction and collagen synthesis in rat hepatic stellate cells

    LIU Jun; GONG Hao; ZHANG Zhong-tao; WANG Yu

    2008-01-01

    Background Angiotensin Ⅱ(Ang Ⅱ)is a very important vasoactive peptide that acts upon hepatic stellate cells(HSCs),which are major effector cells in hepatic cirrhosis and portal hypertension.The present study was aimed to investigate the effects of Ang Ⅱ and angiotensin Ⅱ type 1 receptor antagonist(AT1RA)on the proliferation,contraction and collagen synthesis in HSCs.Methods HSC-T6 rat hepatic stellate cell Iine was studied.The proliferation of the HSC cells was evaluated by MTT colorimetric assay while HSC DNA synthesis was measured by3 H-thymidine incorporation.The effects of angiotensin Ⅱ and AT1 RA on HSCs contraction were studied by analVSIs of the contraction of the collagen Iattice.CelI culture media were analyzed by RT-PCR to detect secretion of collagen Ⅰ(Col Ⅰ),collagen Ⅲ(Col Ⅲ)and transforming growth factor β1 (TGF-β1)by enzyme Iinked Immunosorbent assay.HSC was harvested to measure collagen Ⅰ,collagen Ⅲ and tissue inhibitor of metalloproteinase-1(TIMP-1)mRNA expression.Results Ang Ⅱ((1 x10-10-1×10-4)mol/L)stimulated DNA synthesis and proliferation in HSCs compared with untreated control cells.AT1 RA inhibited angiotensin Ⅱ induced proliferation of HSCs.A Iinear increase in the contractive area of collagen lattice correlated with the concentration of angiotensin Ⅱ(1×10-9-1×10-5mol/L)and with time over 48 hours.ATlRA blocks angiotensin Ⅱ induced contraction of collagen Iattice.Coll,Col Ⅲ and TGF-β1 levels of the Ang Ⅱ group were higher than those of control group and this increase was downregulated by AT1RA.The mRNA expressions of ColⅠ,CoI Ⅲ and TIMP-1 were higher in HSCs from the Ang Ⅱ group than the control group and downregulated by AT1RA.Conclusions Angiotensin Ⅱ increased DNA synthesis and proliferation of HSCs in a dose-dependent manner,stimulated the contraction of HSCs dose-and time-dependently.Angiotensin also promoted excretion of Col Ⅰ,ColⅢand TGF-β1 Ievels and stimulated Col Ⅰ,Col Ⅲ and

  6. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  7. Stellate Cell Activation in Tropical Calcific Pancreatitis Compared to Alcoholic Pancreatitis, Adenocarcinoma of Pancreas and Normal Pancreas

    Johny Cyriac

    2012-07-01

    Full Text Available ContextPancreatic stellate cell (PSC is known to be the source of fibrosis in pancreatic pathology of various etiologies. However, there is no published data on activation of PSCs in tropical calcific pancreatitis. ObjectivesThe present study was undertaken to estimate the proportion of activated stellate cells, in a semi-quantitative manner, in normal pancreas and pancreatic fibrosis due to, tropical calcific pancreatitis, alcoholic chronic pancreatitis and pancreatic adenocarcinoma. PatientsSurgically resected specimen from patients with tropical calcific pancreatitis (n=22, alcoholic chronic pancreatitis(n=16, adenocarcinoma of pancreas (n=20 and normal pancreas (n=20 were included. Main outcome measuresExpression of CD34, and alpha-smooth muscle actin (α-SMA was assessed by immunohistochemistry. Morphometry was performed by a pointcounting procedure and CD34 positive areas were excluded from α-SMA positive areas for estimating activated PSCs. StatisticsThe one-way ANOVA and the Tukey multiple comparison test were used to compare the proportion ofactivated stellate cells among the four categories. ResultsIn all the disease conditions studied, namely, tropical calcific pancreatitis (16.7±14.5%, mean±SD, alcoholic chronic pancreatitis (13.6±12.4% and pancreatic adenocarcinoma (22.8±14.4%, there was highly significant (P<0.001 increased percentage of activated PSCs compared to normal pancreas (-0.9±6.4%. Proportion of activated PSCs in tropical calcific pancreatitis was similar to that in cases of alcoholic chronic pancreatitis and pancreatic adenocarcinoma. Such activation is documented for the first time in tropical calcific pancreatitis while it is known for the other causes. ConclusionsThe present study suggests that a final common pathway of PSC activation leads to fibrogenesis in tropical calcific pancreatitis just as in other pancreatic pathologies.

  8. Molecular regulation of pancreatic stellate cell function

    Jaster Robert

    2004-10-01

    Full Text Available Abstract Until now, no specific therapies are available to inhibit pancreatic fibrosis, a constant pathological feature of chronic pancreatitis and pancreatic cancer. One major reason is the incomplete knowledge of the molecular principles underlying fibrogenesis in the pancreas. In the past few years, evidence has been accumulated that activated pancreatic stellate cells (PSCs are the predominant source of extracellular matrix (ECM proteins in the diseased organ. PSCs are vitamin A-storing, fibroblast-like cells with close morphological and biochemical similarities to hepatic stellate cells (also known as Ito-cells. In response to profibrogenic mediators such as various cytokines, PSCs undergo an activation process that involves proliferation, exhibition of a myofibroblastic phenotype and enhanced production of ECM proteins. The intracellular mediators of activation signals, and their antagonists, are only partially known so far. Recent data suggest an important role of enzymes of the mitogen-activated protein kinase family in PSC activation. On the other hand, ligands of the nuclear receptor PPARγ (peroxisome proliferator-activated receptor γ stimulate maintenance of a quiescent PSC phenotype. In the future, targeting regulators of the PSC activation process might become a promising approach for the treatment of pancreatic fibrosis.

  9. Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells.

    Silvia Berardis

    Full Text Available Adult-derived human liver stem/progenitor cells (ADHLSC are obtained after primary culture of the liver parenchymal fraction. The cells are of fibroblastic morphology and exhibit a hepato-mesenchymal phenotype. Hepatic stellate cells (HSC derived from the liver non-parenchymal fraction, present a comparable morphology as ADHLSC. Because both ADHLSC and HSC are described as liver stem/progenitor cells, we strived to extensively compare both cell populations at different levels and to propose tools demonstrating their singularity. ADHLSC and HSC were isolated from the liver of four different donors, expanded in vitro and followed from passage 5 until passage 11. Cell characterization was performed using immunocytochemistry, western blotting, flow cytometry, and gene microarray analyses. The secretion profile of the cells was evaluated using Elisa and multiplex Luminex assays. Both cell types expressed α-smooth muscle actin, vimentin, fibronectin, CD73 and CD90 in accordance with their mesenchymal origin. Microarray analysis revealed significant differences in gene expression profiles. HSC present high expression levels of neuronal markers as well as cytokeratins. Such differences were confirmed using immunocytochemistry and western blotting assays. Furthermore, both cell types displayed distinct secretion profiles as ADHLSC highly secreted cytokines of therapeutic and immuno-modulatory importance, like HGF, interferon-γ and IL-10. Our study demonstrates that ADHLSC and HSC are distinct liver fibroblastic cell populations exhibiting significant different expression and secretion profiles.

  10. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis.

    Zhang, Ying; Zhao, Xin; Chang, Yanzhong; Zhang, Yuanyuan; Chu, Xi; Zhang, Xuan; Liu, Zhenyi; Guo, Hui; Wang, Na; Gao, Yonggang; Zhang, Jianping; Chu, Li

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. PMID:27095094

  11. Unfolded protein response induced by Brefeldin A increases collagen type I levels in hepatic stellate cells through an IRE1α, p38 MAPK and Smad-dependent pathway.

    de Galarreta, Marina Ruiz; Navarro, Amaia; Ansorena, Eduardo; Garzón, Antonia García; Mòdol, Teresa; López-Zabalza, María J; Martínez-Irujo, Juan J; Iraburu, María J

    2016-08-01

    Unfolded protein response (UPR) triggered as a consequence of ER stress has been shown to be involved in the development of different pathologies, including fibrotic disorders. In the present paper we explore the role played by UPR on a key fibrogenic parameter in the liver: collagen type I levels in activated hepatic stellate cells (HSC). Using Brefeldin A (BFA) as an ER stress inducer we found that UPR correlated with enhanced mRNA and protein levels of collagen type I in a cell line of immortalized non-tumoral rat HSC. Analysis of the three branches of UPR revealed the activation of IRE1α, PERK and ATF6 in response to BFA, although PERK activation was shown not to be involved in the fibrogenic action of BFA. BFA also activated p38 MAPK in an IRE1α-dependent way and the p38 MAPK inhibitor SB203580 prevented the increase in collagen type I mRNA and protein levels caused by BFA, suggesting the involvement of this kinase on this effect. Analysis of Smad activation showed that phosphorylated nuclear levels of Smad2 and 3 were increased in response to BFA treatment. Inhibition of Smad3 phosphorylation by SIS3 prevented the enhancement of collagen type I levels caused by BFA. Pretreatment with IRE1α and p38 MAPK inhibitors also prevented the increased p-Smad3 accumulation in the nucleus, suggesting an IRE1α-p38 MAPK-Smad pathway to be responsible for the fibrogenic action of BFA on HSC. PMID:27155082

  12. Thrombin activation and liver inflammation in advanced hepatitis C virus infection

    González-Reimers, Emilio; Quintero-Platt, Geraldine; Martín-González, Candelaria; Pérez-Hernández, Onán; Romero-Acevedo, Lucía; Santolaria-Fernández, Francisco

    2016-01-01

    Hepatitis C virus (HCV) infection is associated with increased thrombotic risk. Several mechanisms are involved including direct endothelial damage by the HCV virus, with activation of tissue factor, altered fibrinolysis and increased platelet aggregation and activation. In advanced stages, chronic HCV infection may evolve to liver cirrhosis, a condition in which alterations in the portal microcirculation may also ultimately lead to thrombin activation, platelet aggregation, and clot formation. Therefore in advanced HCV liver disease there is an increased prevalence of thrombotic phenomena in portal vein radicles. Increased thrombin formation may activate hepatic stellate cells and promote liver fibrosis. In addition, ischemic changes derived from vascular occlusion by microthrombi favor the so called parenchymal extinction, a process that promotes collapse of hepatocytes and the formation of gross fibrous tracts. These reasons may explain why advanced HCV infection may evolve more rapidly to end-stage liver disease than other forms of cirrhosis.

  13. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.

    Heine, Annkristin; Schilling, Judith; Grünwald, Barbara; Krüger, Achim; Gevensleben, Heidrun; Held, Stefanie Andrea Erika; Garbi, Natalio; Kurts, Christian; Brossart, Peter; Knolle, Percy; Diehl, Linda; Höchst, Bastian

    2016-03-01

    Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8(+) T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches. PMID:26786874

  14. 小鼠肝星状细胞分离与鉴定%Isolation and identification of the hepatic stellate cells from ICR mice

    顾锡娟; 万维琴; 朱丹丹; 何兴新; 杨亚楠; 何雪; 徐费凡; 郑科; 段义农

    2013-01-01

    OBJECTIVE To establish an economic method for the isolation and identification of hepatic stellate cells (HSCs)from mice.METHODS HSCs were isolated from the liver of ICR mice weighted about 30g by Type Ⅳ collagenase and Dnase Ⅰ digestion.To isolate HSCs of mice,we used the method of noncontinuous density gradient centrifugation by Percoll solution.The viability of the isolated cells was determined by trypan blue staining assay.HSCs were identified by Oil Red 0 staining and immunocytochemical staining of desmin.RESULTS The average number of the HSCs from a single mouse liver was 6.5×105.The viability of the cells was over 91% and the purify was over 92%.CONCLUSION This study establishes a convenient and effective scheme for the isolation and identification of the HSCs from the ICR mice.%目的 探讨小鼠肝星状细胞的分离、培养方法,提高其分离效率.方法 取体重约30 g的雄性ICR小鼠,用Ⅳ型胶原酶、Dnase Ⅰ进行体内门静脉灌注消化小鼠肝脏细胞,经过Percoll不连续密度梯度离心法分离小鼠肝星状细胞.台盼蓝拒染方法鉴定细胞存活率,紫外激发下观察自发荧光,油红O染色和结蛋白细胞免疫荧光染色鉴定细胞.结果 小鼠肝星状细胞得率为6.5×105/只,存活率在91%以上,纯度大于92%.结论 该实验建立了简便而有效的小鼠肝星状细胞分离与鉴定方法.

  15. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Highlights: ► We designed novel recombinant albumin-RBP fusion proteins. ► Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). ► Fusion proteins are successfully internalized into and inactivate PSCs. ► RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I–III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumindomainIII (R-III) and albumindomainI-RBP-albuminIII (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises of stellate cell inactivation-inducing moiety and targeting moiety, which may lead to the development of effective anti

  16. Hepatitis B virus replication in acute glomerulonephritis with chronic active hepatitis.

    Cadrobbi, P; Bortolotti, F; Zacchello, G.; Rinaldi, R; Armigliato, M; Realdi, G

    1985-01-01

    A 3 year old boy who had chronic active hepatitis type B with features of ongoing liver damage and active virus replication, developed acute membranous glomerulonephritis two years after the clinical onset of liver disease, when both hepatitis B e antigen and antibody were detectable in serum. After withdrawal of short term steroid treatment and resolution of hepatitis B virus replication, both glomerulonephritis and chronic hepatitis went into remission. Some months later hepatitis B surface...

  17. Stellate Ganglion Block Reduces the Radicular Pain and Salivary Alpha-Amylase Activity in Patients with Cervical Spondylosis

    Takashi Egashira

    2015-03-01

    Full Text Available Background The effects of stellate ganglion block (SGB on radicular pain associated with cervical spondylosis remain to be clarified. So we measured salivary alpha-amylase which reflects sympathetic nerve activity under psychological stress after SGB block or trigger points injection (TPI. Study Design A randomized, prospective, controlled trial Setting After institutional approval and informed consent, 40 patients who was suffered from neck-shoulder pain associated with cervical radiculopathy were randomly divided into two groups according to nerve block treatment. Group A (n=20, male 10 patients, female 10 patients, 50±8yr, mean±SD received SGB and group B (n=20, male 10 patients, female 10 patients, 52±6yr received TPI. SGB or TPI was produced by 6 ml of 1% mepivacaine a total of 5 times (twice per week. Visual analogue scale (VAS and the concentration of salivary alpha-amylase were measured before (T0 each nerve block and 3 days (T1, 6 days (T2, 9 days (T3, 12 days (T4 and 15days (T5 after each nerve block. The consumption of non-steroidal anti-inflammatory drug (NSAID was measured at T0 and T5 in each group. Results In group A, VAS was median 74 (range 60, 78 at T0 and showed a significant decrease at T3 [53 (48, 65, p<0.05], T4 [50 (42, 66, p<0.05] and T5 [48 (26,57, p<0.05]. The concentration of salivary alpha-amylase was median 116 (range 96, 144 KU/ml at T0 and showed a significant decrease at T3 [86 (79, 105, p<0.05], T4 [79 (68, 88] and T5 [70 (55, 84, p<0.05]. In group B, VAS and the concentration of salivary alpha-amylase showed no change throughout the time course. VAS in group A was significant lower than that in group B at T3, T4 and T5. The concentration of salivary alpha-amylase was significant lower than that in group B at T4 and T5. The consumption of NSAID in group A was significantly lower than that in group B at T5. Limitations Subjects are out patients. Patients include radicular pain due to different pathogenesis, e

  18. Isolation of rat hepatic stellate cells by nonperfusion method and identification of isolated cells%非灌流法分离大鼠肝星形细胞及其鉴定

    刘朋飞; 周余来; 冯业童; 吴昊昱; 刘迪; 董超; 吴璇; 石毅

    2012-01-01

    目的 采用非灌流法分离大鼠肝星形细胞(Hepatic stellate cell,HSC),并进行鉴定.方法 采用非灌流法结合酶消化法分离大鼠肝脏细胞,密度梯度离心进一步分离HSC,油红染色检测HSC胞质中的脂滴,免疫组化法检测细胞中α-平滑肌肌动蛋白(α-Smooth muscle actin,α-SMA)、结蛋白(Desmin)及神经胶质酸性蛋白(Glial fibrillary acidic protein,GFAP)的表达.结果 非灌流法结合酶消化法可成功分离大鼠HSC;密度梯度离心纯化的HSC经油红染色,细胞核周围可见红色脂滴;该细胞中α-SMA、结蛋白及GFAP的免疫组化染色结果均呈阳性,细胞着色率可达90%以上.结论 成功建立了大鼠HSC的非灌流分离模式,所获得的HSC纯度较高,该方法稳定简便,具有一定的推广应用价值.%Objective To isolate rat hepatic stellate cells (HSCs) by nonperfusion method and identify the isolated cells. Methods Rat liver cells were isolated by nonperfusion method combined with enzyme digestion method, from which HSCs were further isolated by density gradient centrifugation. The lipid droplets in cytoplasm of HSCs were determined by oil red staining, while the expressions of a-smooth muscle actin (a-SMA), desmin and neuroglia acid protein (GFAP) by immunohistochemical staining. Results Rat HSCs were successfully isolated by nonperfusion method combined with enzyme digestion method. After oil red staining, red lipid droplets were found around the nucleus in HSCs purified by density gradient centrifugation. All the positive rates of a-SMA, desmin and GFAP were more than 90% in immunohistochemical staining. Conclusion The nonperfusion isolating mode of rat HSC was established successfully, by which highly purified HSCs were obtained. The method was stable, simple, and worthy of popularization.

  19. Screening and isolation for anti-hepatofibrotic components from medicinal mushrooms using TGF-(β1-induced live fibrosis in hepatic stellate cells.

    Geng, Yan; Wang, Jing; Xie, Minfeng; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury that could lead to liver failure, but treatment remains ineffective. In this study, we investigated anti-hepatic fibrosis activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia from six commercially available medicinal mushrooms in submerged culture, namely Antrodia camphorata, Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. Their anti-fibrotic activities were evaluated via inhibition against accumulation of TGF-β1-induced collagen deposition in CFSC-8B cells. Hex, Chl, and MeOH extracts of A. camphorata and Hex extract of A. mellea significantly decreased collagen production. Bioactivity-guided fractionation led to the identification of seven compounds using UPLC-Q-TOF-MS from the Hex Fr.2 of A. camphorata. At the molecular level, Hex Fr.2 of A. camphorata suppressed α-SMA, Collagen I, Collagen III, and Fibronectin expression induced by TGF-β1 in CFSC-8B cells as indicated by qRT-PCR analysis. They also inhibited α-SMA and Collagen I protein expression according to western blot analyses. Mechanistically, Hex Fr.2 of A. camphorata negatively regulates TGF-β1/Smad2/3 signaling. Our studies demonstrate that A. camphorata has in vitro anti-hepatofibrotic activity and that there is great potential for the discovery of new drugs for the treatment of liver fibrosis by screening more medicinal mushrooms. PMID:25404218

  20. [Plasma cholinesterase activity in hepatic diseases].

    Araoud, Manel; Mhenni, Hamida; Hellara, Ilhem; Hellara, Olfa; Neffati, Fadoua; Douki, Wahiba; Mili, Marwa; Saffar, Hammouda; Najjar, Mohamed Fadhel

    2013-01-01

    Plasma cholinesterase activity (ChE) may vary in some pathological circumstances. We studied the changes in activity of this enzyme according to the type of liver injury, to assess the interest of this parameter in the diagnosis of liver diseases. Our study was performed on 102 patients with different liver diseases and 53 healthy controls. The ChE activity was lower in patients compared to control group (p < 0.0001), and more pronounced in cirrhotic patients compared to those suffering from hepatitis. Elevated activities of AST, ALT, GGT and ALP and bilirubinemia, and decreased albuminemia were noted in patients compared to controls (p < 0.001). Hypoalbuminemia was significantly important in cirrhotic patients compared to those suffering from cholestasis or hepatitis. A correlation between ChE and bilirubin, albumin and serum protein was found in patients with cirrhosis or those with chronic hepatitis. A significantly lower activity of ChE was found in patients with hepatic insufficiency (HI). In case of suspicion of HI, the prescription of ChE activity could guide or confirm the diagnosis of the impairment. PMID:23747666

  1. The pancreatic stellate cell: a star on the rise in pancreatic diseases

    Omary, M. Bishr; Lugea, Aurelia; Lowe, Anson W.; Pandol, Stephen J.

    2007-01-01

    Pancreatic stellate cells (PaSCs) are myofibroblast-like cells found in the areas of the pancreas that have exocrine function. PaSCs are regulated by autocrine and paracrine stimuli and share many features with their hepatic counterparts, studies of which have helped further our understanding of PaSC biology. Activation of PaSCs induces them to proliferate, to migrate to sites of tissue damage, to contract and possibly phagocytose, and to synthesize ECM components to promote tissue repair. Su...

  2. 姜黄素对肝星状细胞株CTGF表达的影响%Effect of curcumin on expression of CTGF in the hepatic stellate cell line HSC-T6

    谢明; 廖晓宏; 杨元胜; 戴绍军; 汤绍迁; 王静

    2006-01-01

    目的:研究姜黄素(curcumin)体外对肝星状细胞(hepatic stellate cell,HSC)的作用,以研究curcumin抗肝纤维化作用的可能机制.方法:MTT法测定curcumin对肝细胞株HSC-T6的抑制率,用RT-PCR检测curcumin对肝细胞株结缔组织生长因子(connectivetissue growth factor,CTGF)mRNA表达的影响,用Western blot法检测对其蛋白质表达的影响.结果:Curcumin对肝细胞株HSC-T6的增殖有抑制作用,且呈时效和量效关系,以10 μmol/L的效果最佳;通过RT-PCR和Western blot法的检测发现curcumin能抑制CTGF的mRNA和蛋白质的表达.结论:Curcumin能在体外抑制HSC的生长,而且可以抑制细胞的CTGF的表达,可能这就是curcumin抗肝纤维化的一个作用机制.

  3. Mononeuropathy Multiplex in a Patient with Chronic Active Hepatitis B

    Nam, Tai Seung; Lee, Seung Han; Park, Man Seok; Choi, Kang Ho; Kim, Joon Tae; Choi, Seong Min; Kim, Byeong Chae; Kim, Myeong Kyu; Cho, Ki Hyun

    2010-01-01

    Background Mononeuropathy multiplex is a rare complication during the course of chronic hepatitis B, despite various neuropathies following acute hepatitis B having been reported previously. Case Report A 30-year-old man presented with sensorimotor symptoms in multiple peripheral nerves. The serological tests for hepatitis were consistent with chronic active hepatitis B. After treatment with oral prednisone combined with an antiviral agent, the sensory and motor symptoms improved and hepatiti...

  4. Retroperitoneal lymphadenopathy: an extrahepatic feature of chronic active hepatitis.

    Hayek, T.; Markel, A.; Goldfeld, M.; Ben-Arie, Y.; Brook, G. J.

    1994-01-01

    We report a patient with chronic active hepatitis in whom one of the initial findings was retroperitoneal lymphadenopathy, detected by abdominal ultrasound examination. Extrahepatic presenting findings of chronic active hepatitis may include arthritis, urticaria, pleurisy and pericarditis, while abdominal lymphadenopathy has been only rarely described. Chronic active hepatitis should be included in the differential diagnosis of abdominal lymphadenopathy.

  5. Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction.

    Christopher J Scarlett

    Full Text Available BACKGROUND AND AIMS: Chronic pancreatitis and pancreatic cancer are characterised by extensive stellate cell mediated fibrosis, and current therapeutic development includes targeting pancreatic cancer stroma and tumor-host interactions. Recent evidence has suggested that circulating bone marrow derived stem cells (BMDC contribute to solid organs. We aimed to define the role of circulating haematopoietic cells in the normal and diseased pancreas. METHODS: Whole bone marrow was harvested from male β-actin-EGFP donor mice and transplanted into irradiated female recipient C57/BL6 mice. Chronic pancreatitis was induced with repeat injections of caerulein, while carcinogenesis was induced with an intrapancreatic injection of dimethylbenzanthracene (DMBA. Phenotype of engrafted donor-derived cells within the pancreas was assessed by immunohistochemistry, immunofluorescence and in situ hybridisation. RESULTS: GFP positive cells were visible in the exocrine pancreatic epithelia from 3 months post transplantation. These exhibited acinar morphology and were positive for amylase and peanut agglutinin. Mice administered caerulein developed chronic pancreatitis while DMBA mice exhibited precursor lesions and pancreatic cancer. No acinar cells were identified to be donor-derived upon cessation of cerulein treatment, however rare occurrences of bone marrow-derived acinar cells were observed during pancreatic regeneration. Increased recruitment of BMDC was observed within the desmoplastic stroma, contributing to the activated pancreatic stellate cell (PaSC population in both diseases. Expression of stellate cell markers CELSR3, PBX1 and GFAP was observed in BMD cancer-associated PaSCs, however cancer-associated, but not pancreatitis-associated BMD PaSCs, expressed the cancer PaSC specific marker CELSR3. CONCLUSIONS: This study demonstrates that BMDC can incorporate into the pancreas and adopt the differentiated state of the exocrine compartment. BMDC that

  6. The relationship between the morphous changes of hepatic stellate cells and liver microcirculatory disturbance in patients with chronic hepatitis B%慢性乙型肝炎肝星状细胞形态改变与肝脏微循环障碍的关系

    汪念; 丁体龙; 马勇; 沈烈; 张文学; 于莉

    2012-01-01

    Objective To study the relationship between the morphous changes of hepatic stellate cells (HSCs) and liver microcirculatory disturbance in patients with chronic hepatitis B. Methods The number of lipid droplets and the changes of bulk density in hepatic stellate cells were observed by light microscope. Ultrastructure of HSCs and the changes of microcir-culation of sinus hepaticus were observed by transmission electron microscope (TEM). Results In patients with chronic hepatitis fl, the number of lipid droplets in hepatic stellate cells and typical HSCs reduced, while transitional HSCs increased. The surface of nuclear envelop showed anomalism; Rough endoplasmic reticulum intracytoplasm increased obviously, most of which expanded, and middling electron density floccule could be observed. Golgi complex became prosperous. Collagenous fibril a-round the HSCs turned more notably. Decreased sizes and reduced numbers of sinusoidal endothelial cells'(SECs) penestrate and collagen deposited in Disse space. Basal lamina could be found on SECs and WP ( Weibel-Palade) bodies were found in SECs. Conclusion The morphous changes of HSCs after being stimulated is an important promoting agent to liver microcircu-lation disturbance in patients with chronic hepatitis B.%目的 研究慢性乙型肝炎肝星状细胞形态改变与肝脏微循环障碍的关系.方法 采用光镜观察肝星状细胞内脂滴数和体密度的变化,同时采用透射电镜观察肝星状细胞超微结构的变化和肝窦微循环结构的改变.结果 慢性乙型肝炎肝星状内脂滴数减少,典型肝星状细胞数量减少,过渡型肝星状细胞数量增多,超微结构显示核被膜表面不规则,胞质内粗面内质网明显增多,多扩张,内有中等电子密度的絮状物质,高尔基复合体发达,细胞周围胶原原纤维量明显增多.肝窦内皮细胞窗孔减少变小,有的肝窦内皮细胞内出现WP( Weibel-Palade body)小体,狄氏腔中胶原纤维沉积增多,

  7. 小鼠肝星状细胞的分离纯化新方法的建立与应用%Construction and application of a new method for isolation and purification of mouse hepatic stellate cells

    李亚琳

    2012-01-01

    Objective To develop a simple,economic and efficient method for isolation of mouse hepatic stellate cells(HSC)and to construct cell model for research on hepatic fibrosis. Methods Single cell suspension was prepared by predigestion, using enzyme perfusion, adequate digestion by vibrating and utilization of medimachine system. HSC were isolated by monolayer gradient centrifu-gation with lymphocytic cell separating medium directly. Results The harvested cell number was about 1×106 for each two mice, with cell motility rate of 92% ,determined by trypan blue exclusion staining. Originally isolated HSC issued blue fluorescent under exciting light of 328 nm. Oil red staining and Desmin immune fluorescent chemical showed the purity of HSC was 90%. Conclusion A method for the isolation of mouse HSC,could be used for the research of hepatic fibrosis and biological characteristics of primary HSC,was successfully constructed,which was simple,efficient and easy to operate and apply.%目的 介绍一种简便、经济、高产的小鼠肝星状细胞(HSC)分离方法,为肝纤维化的研究提供细胞模型.方法 参照国内外方法并加以改良,采用酶灌注预消化及随后的震荡充分消化,合并Medimachine系统制成单细胞悬液.用人淋巴细胞分离液直接铺梯度,采用单层梯度离心法一步分离HSC.结果 两只小鼠HSC得率可达1×106个,台盼蓝染色显示细胞活率达92%.初分离的HSC在328 nm激发光下自发蓝绿色荧光,油红染色及结蛋白免疫细胞化学染色鉴定纯度达90%.结论 建立了一种实用的小鼠HSC分离方法,可用于肝纤维化和原代HSC的生物学行为研究.该方法简便、实用、高产,不需特殊设备,便于推广应用.

  8. A Vitamin D Receptor/SMAD Genomic Circuit Gates Hepatic Fibrotic Response

    Ding, Ning; Yu, Ruth T; Subramaniam, Nanthakumar; Sherman, Mara H.; Wilson, Caroline; Rao, Renuka; Leblanc, Mathias; Coulter, Sally; He, Mingxiao; Scott, Christopher; Lau, Sue L.; Atkins, Annette R.; Barish, Grant D.; Gunton, Jenny E.; Liddle, Christopher

    2013-01-01

    Liver fibrosis is a reversible wound-healing response involving TGFβ1 activation of hepatic stellate cells (HSCs). Here we show that vitamin D receptor (VDR) ligands inhibit HSC activation and abrogate liver fibrosis, while Vdr knockout mice spontaneously developed hepatic fibrosis. Mechanistically, we describe a pronounced redistribution of genome wide VDR binding sites (VDR cistrome) in HSCs elicited by a TGFβ1 pro-fibrotic insult. This TGFβ1-induced VDR cistrome overlaps extensively with S...

  9. Correlation of Tc-99m GSA hepatic studies with biopsies in patients with chronic active hepatitis.

    Tomiguchi, S; Kira, T; Oyama, Y; Nabeshima, M; Nakashima, R; Tsuji, A; Kojima, A; Takahashi, M; Yoshimatsu, S; Sagara, K

    1995-08-01

    To determine whether scintigraphic findings of Tc-99m DTPA-galactosyl-HSA (GSA) correspond to histopathologic findings, Tc-99m GSA hepatic scintigraphy and biopsy were compared in 65 patients with chronic active hepatitis. After injecting 185 MBq of Tc-99m GSA, anterior images were obtained at 5 minutes and 15 minutes. Scintigrams were classified into three grades according to the extent of visualization of the cardiac blood pool on 5 minute and 15 minute images. Biopsies were subjectively graded for findings of necrosis and fibrosis. Scintigraphic grades on 5 minute images were correlated with hepatic necrosis and fibrosis and those on 15-minute images with hepatic fibrosis. Scintigraphic abnormalities of Tc-99m GSA correlated well with histopathologic abnormalities, especially with hepatic fibrosis and necrosis in patients with chronic active hepatitis. PMID:7586877

  10. Betulin and betulinic acid attenuate ethanol-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS), cytokine (TNF-α, TGF-β) production and by influencing intracellular signaling

    Background/aims: Liver fibrosis has been reported to be inhibited in vivo by oleanolic and ursolic acids. However, the mechanisms of the action of those triterpenoids are poorly understood. In this study, we aimed to determine the antifibrotic potential of other triterpenes, betulin and betulinic acid, and to characterize their influence on the signal transduction pathways involved in ethanol-activated hepatic stellate cells (HSCs). Methods: Investigated was the influence of preincubation of rat HSCs with betulin and betulinic acid, at non-toxic concentrations, on ethanol-induced toxicity, migration, and several markers of HSC activation such as smooth muscle α-actin (α-SMA) and procollagen I expression, release of reactive oxygen species (ROS) and cytokines: tumor necrosis factor-α (TNF-α) and tumor growth factor-β1 (TGF-β1), and production of metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). To assess the mechanism of the action of those triterpenes, intracellular signals such as nuclear factor-κB (NFκB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) induced by ethanol were examined. Results: In vitro, betulin, but not betulinic acid, protected HSCs against ethanol toxicity. However, both betulin and betulinic acid inhibited the production of ROS by HSCs treated with ethanol and inhibited their migration as well as ethanol-induced TNF-α, and TGF-β1, production. Betulin and betulinic acid down-regulated ethanol-induced production of TIMP-1 and TIMP-2. Betulin and betulinic acid, also decreased ethanol-induced activity of MMP-2. In ethanol-induced HSCs, betulin inhibited the activation of the p38 MAPK and the JNK transduction pathways, while betulinic acid inhibited the JNK transduction pathway only. They also significantly inhibited phosphorylation of IκB and Smad 3 and attenuated the activation of TGF-β1 and NFκB/IκB transduction signaling. Conclusion: The results

  11. Molecular regulation of pancreatic stellate cell function

    Jaster Robert

    2004-01-01

    Abstract Until now, no specific therapies are available to inhibit pancreatic fibrosis, a constant pathological feature of chronic pancreatitis and pancreatic cancer. One major reason is the incomplete knowledge of the molecular principles underlying fibrogenesis in the pancreas. In the past few years, evidence has been accumulated that activated pancreatic stellate cells (PSCs) are the predominant source of extracellular matrix (ECM) proteins in the diseased organ. PSCs are vitamin A-storing...

  12. Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex

    Qian-Quan eSun

    2014-11-01

    Full Text Available Brain derived neurotrophic factor (BDNF plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However it is uncealr how specific BDNF’s effects are on diffeerent circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV, we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF’s effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e. feed-forward inhibition; whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF.

  13. Effect of caffeine on signaling transduction of TGF-β1 and CTGF in hepatic stellate cell-T6 stimulated by acetaldehyde%咖啡因对乙醛诱导的HSC-T6中TGF-β1,CTGF信号转导通路的影响

    管文婕; 吕雄文; 杨万枝; 李俊

    2012-01-01

    Objective To explore the effect of caffeine on proliferation in hepatic stellate cell stimulated by acetaldehyde and its signaling pathway of TGF-β and CTGF. Methods Trials are divided into normal group( regular training ), model group, adenosine receptor group,which were given caffeine( 4 mmol · L-1 ),adenosine A2A receptor antagonist ZM241385( 1 μmol · L-1 ),adenosine A2A receptor agonists CGS21680( 1 μmol · L-1 ),caffeine + CGS21680,ZM241385 + CGS21680 and HSC-T6 respectively,stimulated by acetaldehyde after 1 h,before continueing to cultivate 48 h. The protein expression of a-SMA was analyzed by immunocytochemistry methods. The mR-NA expressions of TGF-β1 and CTGF were measured by RT-PCR. The protein expression of CTGF was analyzed by western blot methods. Results Caffeine or ZM241385 treatment inhibited the increase expressions of TGF-β1, CTGF, α-SMA in the HSC-T6,likewise,as with CGS21680 plus caffeine or ZM241385 groups, caffeine or ZM241385 prevented the adenosine A2A receptor agonist from stimulating an increase in hepatic stellate cell. Conclusion Caffeine can suppress the activation of α-SMA in HSC-T6 stimulated by acetaldehyde. Caffeine treatment inhibited the increase expressions of TGF-βl and CTGF in the HSC-T6,the mechanisms of which may be related to the expression of adenosine A2A receptor.%目的 探讨咖啡因(caffeine)对乙醛诱导的大鼠肝星状细胞系(Hepatic Stellate Cell-T6,HSC-T6)中转化生长因子-β1(Transforming Growth Factor-β1,TGF-β1),结缔组织生长因子(Connective Tissue Growth Factor,CTGF)信号转导通路的影响.方法 实验设正常组(常规培养),模型组及腺苷受体(Adenosine Receptor,AR)调节剂干预组.分别给予caffeine(4 mmol·L-1)[1-2],腺苷A2A受体拮抗剂ZM241385(1 μmol·L-1)[3],腺苷A2A受体激动剂CGS21680(1 μmol·L-1)[3],caffeine+CGS21680,ZM241385+CGS21680 与HSC-T6共同培养,1 h后加入终浓度200 μmol·L-1的乙醛刺激(每12 h补充1次),继续培养48 h.采

  14. Interaction of Stellate Cells with Pancreatic Carcinoma Cells

    Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells), various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC) in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction

  15. Diagnosis of chronic active hepatitis in a miniature schnauzer

    Hendrix, Alana D.

    2004-01-01

    A 12-year-old male castrated miniature schnauzer was presented with a history of abdominal distension. Serum biochemical analysis and abdominal ultrasonography indicated hepatic disease. A wedge biopsy provided a diagnosis of chronic active hepatitis. A therapeutic regime was initiated to improve the quality of life and slow the progression of this disease is described.

  16. Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways

    Weibo Chen; Junhua Wu; Hua Shi; Zhongxia Wang; Guang Zhang; Yin Cao; Chunping Jiang; Yitao Ding

    2014-01-01

    Purpose. Tumor microenvironment confers drug resistance to kinase inhibitors by increasing RKT ligand levels that result in the activation of cell-survival signaling including PI3K and MAPK signals. We assessed whether HSC-LX2 coculture conferred sorafenib resistance in Huh7 and revealed the mechanism underlying the drug resistance. Experimental Design. The effect of LX2 on sorafenib resistance was determined by coculture system with Huh7 cells. The rescue function of LX2 supernatants was ass...

  17. Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways

    Weibo Chen

    2014-01-01

    Full Text Available Purpose. Tumor microenvironment confers drug resistance to kinase inhibitors by increasing RKT ligand levels that result in the activation of cell-survival signaling including PI3K and MAPK signals. We assessed whether HSC-LX2 coculture conferred sorafenib resistance in Huh7 and revealed the mechanism underlying the drug resistance. Experimental Design. The effect of LX2 on sorafenib resistance was determined by coculture system with Huh7 cells. The rescue function of LX2 supernatants was assessed by MTT assay and fluorescence microscopy. The underlying mechanism was tested by administration of pathway inhibitors and manifested by Western blotting. Results. LX2 coculture significantly induced sorafenib resistance in Huh7 by activating p-Akt that led to reactivation of p-ERK. LX2 secreted HGF into the culture medium that triggered drug resistance, and exogenous HGF could also induce sorafenib resistance. The inhibition of p-Akt blocked sorafenib resistance caused by LX2 coculture. Increased phosphorylation of Jak2 and Stat3 was also detected in LX2 cocultured Huh7 cells. The Jak inhibitor tofacitinib reversed sorafenib resistance by blocking Jak2 and Stat3 activation. The combined administration of sorafenib and p-Stat3 inhibitor S3I-201 augmented induced apoptosis even in the presence of sorafenib resistance. Conclusions. HSC-LX2 coculture induced sorafenib resistance in Huh7 through multiple pathways: HGF/c-Met/Akt pathway and Jak2/Stat3 pathway. A combined administration of sorafenib and S3I-201 was able to augment sorafenib-induced apoptosis even in the presence of LX2 coculture.

  18. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.

    Tilman Kispersky

    Full Text Available Recent studies have shown that stellate cells (SCs of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis, we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. 'In vitro' experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current.

  19. Targeted TFO Delivery to Hepatic Stellate Cells

    Yang, Ningning; Singh, Saurabh; Mahato, Ram I.

    2011-01-01

    Triplex-forming oligonucleotides (TFOs) represent an antigene approach for gene regulation through direct interaction with genomic DNA. While this strategy holds great promise owing to the fact that only two alleles need silencing to impact gene regulation, delivering TFOs to target cells in vivo is still a challenge. Our recent efforts have focused on conjugating TFOs to carrier molecules like cholesterol to enhance their cellular uptake and mannose-6-phosphate-bovine serum albumin (M6P-BSA)...

  20. Colchicine Inhibited the Expression of Tissue Inhibitor of Metalloprotenase-1 and Interleukin-6 in Cultured Activated Hepatic Stellate Cells

    LI Zesong; CAI Shaoxi; JIANG Yuan; GUO RuiJun; ZHANG Wen

    2006-01-01

    Cultured HSCs were treated colchicine with different concentrations for 12 h, respectively. The effects of colchicine on HSCs growth were measured by MTT assay. Effects of colchicine on gene expression of HSCs were analysed by using a self-made oligonucleotide microarray. Colchicine inhibited HSCs growth in a dose-dependent manner. After 12 h of treatment with 6.25 mg/L of colchicine, the expression of tissue inhibitor of metalloprotenase1 (TIMP-1) and the expression of interleukin-6 (IL-6) in HSCs were downregulated by 2.3 folds and 2.1 folds, respectively. These results suggest that colchicine's beneficial effects may, at least in part, owe to the inhibitory to the proliferation of HSCs and down-regulation of the expression of both TIMP1 and IL-6 in HSCs.

  1. The Mechanism of Abrupt Transition between Theta and Hyper-Excitable Spiking Activity in Medial Entorhinal Cortex Layer II Stellate Cells

    Kispersky, Tilman; White, John A.; Rotstein, Horacio G.

    2010-01-01

    Recent studies have shown that stellate cells (SCs) of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fa...

  2. [Gallbladder motor activity in patients with virus hepatitis B].

    Mamos, Arkadiusz; Wichan, Paweł; Chojnacki, Jan; Grzegorczyk, Krzysztof

    2003-12-01

    In acute stage of virus hepatitis B patients often complain of dyspeptic discomfort. They may be a consequence of alimentary tract motor activity disorders including these of gallbladder. Routine ultrasonography in an early phase of virus hepatitis often reveals gallbladder wall thickening what may confirm the above thesis. Thus, a group of 15 patients in an acute phase of virus hepatitis B was subjected to examinations. Gallbladder motor activity was assessed by ultrasonographic method determining its total volume and ejection fraction and volume after test meal stimulus. First examination was performed in the first week since the appearance of yellowing of the walls, successive in 4 and 8 week of the disease. Obtained results were compared to the values obtained in the group of 25 healthy volunteers. It was found out that gallbladder volume was significantly decreased and ejection fraction increased in the acute phase of virus hepatitis B than in the controls. This may speak for gallbladder hyperreactivity in patients in the course of virus hepatitis B. These disorders decreased during two-month observation but even in the 8 week the investigated parameters differed from those found in the control group. PMID:15058248

  3. Hepatitis

    1993-01-01

    930140 Hepatocyte stimulator peptide and itsclinical significance in viral hepatitis.ZHOUWeiping(周卫平),et al.Instit Viral Hepatitis,Chongqing Med Univ,630010.Chin J InternMed 1992;31(10):626-628.Hepatocyte stimulator peptide(HSP)is anewly developed hepatic stimulator substance.Its monoclonal antibodies have been obtained inour laboratory.In this study,HSP was deter-mined in the sera of 315 subjects including pa-

  4. Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis.

    Fu, Na; Niu, Xuemin; Wang, Yang; Du, Huijuan; Wang, Baoyu; Du, Jinghua; Li, Ya; Wang, Rongqi; Zhang, Yuguo; Zhao, Suxian; Sun, Dianxing; Qiao, Liang; Nan, Yuemin

    2016-08-01

    Long non-coding RNA (LncRNA)-activated by transforming growth factor-beta (LncRNA-ATB) is a key regulator of transforming growth factor-beta (TGF-β) signaling pathway, and is positively correlated with the development of liver cirrhosis and vascular invasion of hepatocellular carcinoma (HCC). However, the role of LncRNA-ATB in hepatitis C virus (HCV)-related liver fibrosis remains largely unknown. In the present study, we confirmed a high expression level of LncRNA-ATB in the liver tissues and plasma samples of patients with HCV-related hepatic fibrosis, and the plasma level of LncRNA-ATB was significantly correlated with liver fibrosis stages. Furthermore, increased expression level of LncRNA-ATB was also present in activated hepatic stellate cells (HSCs), and knockdown of LncRNA-ATB inhibited the expression of alpha-smooth muscle actin (α-SMA) and alpha-1 type I collagen (Col1A1). LncRNA-ATB was found to share the common miRNA responsive element of miR-425-5p with TGF-β type II receptor (TGF-βRII) and SMAD2. Ectopic expression of LncRNA-ATB in HSCs could upregulate the protein expression of TGF-βRII and SMAD2 by inhibiting the endogenous miR-425-5p. Moreover, overexpression of miR-425-5p could partly abrogate the expression of TGF-βRII and SMAD2 induced by LncRNA-ATB. Hence, we conclude that LncRNA-ATB promotes HCV-induced liver fibrogenesis by activating HSCs and increasing collagen I production through competitively binding to miR-425-5p. LncRNA-ATB may be a novel diagnostic biomarker and a potential therapeutic target for HCV-related hepatic fibrosis. PMID:27585228

  5. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

    Javier Ampuero

    Full Text Available AIM: To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. METHODS: Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment. Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. RESULTS: Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82: 4.9% (2/41 in patients receiving metformin and 41.5% (17/41 in patients without metformin treatment (logRank 9.81; p=0.002. In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2-108.8; p=0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04-1.2; p=0.002], female sex [H.R.10.4 (95% CI: 1.5-71.6; p=0.017] and HE risk [H.R.21.3 (95% CI: 2.8-163.4; p=0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05. CONCLUSIONS: Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin inhibits glutaminase

  6. Hepatitis

    2009-01-01

    2009209 Effects of chronic hepatitis B virus infection on human hepatic cytochrome P450 2C9.ZHO Fuping(周福平),et al.Dept Infect Dis,Shanghai Changzheng Hosp,Shanghai 200003.Chin J Infect Dis,2009;27(2):94-98.

  7. Hepatitis

    1997-01-01

    970349 Primary structure and variability of partialsequences in nonstructural gene 5 region of hepatitis Gvirus, CHANG Jinhong(常锦红), et al. Hepatol Instis,People’s Hosp, Beijing Med Univ, Beijing, 100044. NatlMed J China 1997; 77(3): 178-182. Objective: To sequence partial genome of hepatitis G

  8. Hepatitis

    1992-01-01

    920691 The determination of serum hepa-titis B virus DNA by polymerase chain rea-ction in hepatitis B patients treated withalpha-interferon. XU. Jianye(徐建业), et al.Centr Lab, Chongqing Cancer Instit, 630030.Chin J Intern Med, 1992; 31(5): 278-280. To clarify the status of HBV in serum of

  9. Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis.

    Raj Vuppalanchi

    Full Text Available BACKGROUND AND AIM: Liver cirrhosis is associated with decreased hepatic cytochrome P4503A (CYP3A activity but the pathogenesis of this phenomenon is not well elucidated. In this study, we examined if certain microRNAs (miRNA are associated with decreased hepatic CYP3A activity in cirrhosis. METHODS: Hepatic CYP3A activity and miRNA microarray expression profiles were measured in cirrhotic (n=28 and normal (n=12 liver tissue. Hepatic CYP3A activity was measured via midazolam hydroxylation in human liver microsomes. Additionally, hepatic CYP3A4 protein concentration and the expression of CYP3A4 mRNA were measured. Analyses were conducted to identify miRNAs which were differentially expressed between two groups but also were significantly associated with lower hepatic CYP3A activity. RESULTS: Hepatic CYP3A activity in cirrhotic livers was 1.7-fold lower than in the normal livers (0.28 ± 0.06 vs. 0.47 ± 0.07mL* min(-1*mg protein(-1 (mean ± SEM, P=0.02. Six microRNAs (miR-155, miR-454, miR-582-5p, let-7f-1*, miR-181d, and miR-500 had >1.2-fold increase in cirrhotic livers and also had significant negative correlation with hepatic CYP3A activity (range of r = -0.44 to -0.52, P <0.05. Notably, miR-155, a known regulator of liver inflammation, had the highest fold increase in cirrhotic livers (2.2-fold, P=4.16E-08 and significantly correlated with hepatic CYP3A activity (r=-0.50, P=0.017. The relative expression (2(-ΔΔCt mean ± SEM of hepatic CYP3A4 mRNA was significantly higher in cirrhotic livers (21.76 ± 2.65 vs. 5.91 ± 1.29, P=2.04E-07 but their levels did not significantly correlate with hepatic CYP3A activity (r=-0.43, P=0.08. CONCLUSION: The strong association between certain miRNAs, notably miR-155, and lower hepatic CYP3A activity suggest that altered miRNA expression may regulate hepatic CYP3A activity.

  10. Role of pancreatic stellate cells in chemoresistance in pancreatic cancer

    McCarroll, Joshua A.; Naim, Stephanie; Sharbeen, George; Russia, Nelson; Lee, Julia; Kavallaris, Maria; Goldstein, David; Phillips, Phoebe A.

    2014-01-01

    Pancreatic cancer is highly chemoresistant. A major contributing factor is the characteristic extensive stromal or fibrotic reaction, which comprises up to 90% of the tumor volume. Over the last decade there has been intensive research into the role of the pro-fibrogenic pancreatic stellate cells (PSCs) and their interaction with pancreatic cancer cells. As a result of the significant alterations in the tumor microenvironment following activation of PSCs, tumor progression, and chemoresistanc...

  11. Hepatic ERK activity plays a role in energy metabolism.

    Jiao, Ping; Feng, Bin; Li, Yujie; He, Qin; Xu, Haiyan

    2013-08-15

    Mitogen activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK) and P38, have been reported to play important roles in energy homeostasis. In this study, we show that the activity of extracellular signal-regulated kinase (ERK) is increased in the livers of diet induced and genetically obese mice. Activation of ERK in the livers of lean mice by over-expressing the constitutively active MAPK kinase 1 (MEK CA) results in decreased energy expenditure, lowered expression of genes involved in fatty acid oxidation, increases fasting hyperglycemia and causes systemic insulin resistance. Interestingly, hepatic glycogen content is markedly increased and expression of G6Pase gene is decreased in mice over-expressing MEK CA compared to control mice expressing green fluorescent protein (GFP), therefore hepatic glucose output is not likely the major contributor of hyperglycemia. One potential mechanism of decreased expression of G6Pase gene by MEK CA is likely due to ERK mediated phosphorylation and cytosolic retention of FOXO1. Adipocytes isolated from MEK CA mice display increased lipolysis. Circulating levels of free fatty acids (FFAs) in these mice are also increased, which possibly contribute to systemic insulin resistance and subsequent hyperglycemia. Consistent with these results, knocking down ERK expression in the liver of diet induced obese (DIO) mice improves systemic insulin and glucose tolerance. These results indicate that increased hepatic ERK activity in DIO mice may contribute to increased liver glycogen content and decreased energy expenditure in obesity. PMID:23732116

  12. Hepatitis

    ... Contact Us Home About GLMA Membership Resources Advocacy Lesbian Health Fund Conference Newsroom Support GLMA About GLMA Membership Resources Advocacy Lesbian Health Fund Conference Newsroom Support GLMA Site Search Hepatitis ...

  13. Effect of antihypertensive agents on stellate cells during liver regeneration in rats Efeito de agentes anti-hipertensivos sobre as células estreladas durante a regeneração hepática em ratos

    Leandra N. Z. Ramalho

    2003-03-01

    Full Text Available BACKGROUND: Although most studies have focused on the hepatocytes, all the hepatic cells participate in the regenerative process, among them the stellate cells. The stellate cells are mesenchymal cells involved in local neurotransmission and paracrine regulation of several liver functions. Acute hepatic tissue loss promotes the proliferation and activation of stellate cells from a quiescent state to myofibroblast-like cells. AIM: Investigate the effects of antihypertensive agents on the stellate cell population during the liver regenerative phenomenon in rats. METHODS: Adult male Wistar rats received lisinopril, losartan, bradykinin, or saline solution in a proportional volume, intraperitoneally, before and after 70% partial hepatectomy. Animals from the experimental and saline groups were sacrificed at 36 hours after partial hepatectomy. The alpha-smooth muscle actin labelled stellate cells population was counted in the periportal and pericentral zones of the liver specimen. RESULTS: The labelled stellate cells were more numerous in the control group both in the periportal and pericentral zones at 36 hours after partial hepatectomy than at the other times. The population of stellate cells was significantly lower in the losartan group and higher in the bradykinin and lisinopril groups than in the control group. CONCLUSIONS: These results suggest that losartan can inhibit and bradykinin and lisinopril can stimulate the stellate cell population during liver regeneration in rats. These cells synthesize several substances to stimulate liver regeneration.RACIONAL: Embora a maioria dos estudos focalize os hepatócitos, todas as células hepáticas participam do processo regenerativo, entre elas as células estreladas, que são células mesenquimais envolvidas na regulação de uma série de funções hepáticas. A perda aguda de parênquima hepático induz proliferação e ativação destas células, a partir de estado de quiescência para fen

  14. Serum arylesterase and paraoxonase activity in patients with chronic hepatitis

    Suleyman Sirri Kilic; Suleyman Aydin; Nermin Kilic; Fazilet Erman; Suna Aydin; (I)lhami Celik

    2005-01-01

    AIM: To investigate the relationship between serum paraoxonase (PON1), AST, ALT, GGT, and arylesterase (AE) activity alterations and the degree of liver damage in patients with chronic hepatitis.METHODS: We studied 34 chronic hepatitis patients and 32 control subjects, aged between 35 and 65 years,in the Department of Infection and Clinical Microbiology at the Firat University School of Medicine. Blood samples were collected from subjects between 8:00 and 10:00 a.m. following a 12-h fast. Baseline and salt-stimulated PON1 activities were measured by the hydrolysis of paraoxon. Phenyl acetate was used as the substrate and formed phenol was measured spectrophotometrically at 270 nm after the addition of a 10-fold diluted serum sample in AE activity measurements.RESULTS: The results of this investigation revealed that the levels of AE activity decreased from 132±52 to 94±36 (29%), baseline PON1 activity from 452±112 to 164±67 (64%), salt-stimulated PON1 activity from 746±394 to 294±220 (61%), HDL from 58.4±5.1 to 47.2±5.6(20%), triglyceride from 133±51.2 to 86±34.0 (35%),while a slight increase in the level of LDL (from 163±54.1 to 177.3±56.0; 9%) and significant increases in the levels of AST (from 29±9.3 to 98±44), ALP (from 57.2±13.1 to 91±38.1), ALT (from 27.9±3.32 to 89±19.1), GGT (from 24.3±2.10 to 94±48.2), total bilirubin (from 0.74±0.02 to 1.36±0.06; 84%) and direct bilirubin (from 0.18±0.01 to 0.42±0.04; 133%) were detected.However, the levels of albumin, total protein, cholesterol,and uric acid were almost the same in chronic hepatitis and the control subjects.CONCLUSION: Low PON1 and AE activity may contribute to the increased liver dysfunction in chronic hepatitis patients by reducing the ability of HDL to retard LDL oxidation and might be clinically useful for monitoring the disease of chronic hepatitis.

  15. HCV virological response during treatment of chronic hepatitis C is associated with liver histological Improvement in patients with HCV/HIV co-infection

    Gleusa Castro

    2008-06-01

    Full Text Available Liver histological improvement after treatment for chronic hepatitis C in patients co-infected with human immunodeficiency virus-1 (HIV-1 has been described. Paired liver biopsies in twenty six HCV/HIV co-infected patients were compared to determine factors possibly associated with histological improvement. The patients were submitted to a liver biopsy before treatment for hepatitis C and 25 months after the end of treatment. Fragments of the liver biopsy obtained before and after treatment were compared regarding the following parameters: histological activity index (HAI and degree of fibrosis (Knodell; intensity of collagen deposits (Sirius Red staining and degree of stellate cell activation (alpha-smooth muscle actin labeling. The ratios of the post and pre-treatment variables were related through logistic regression to body mass index (BMI, alcohol ingestion, HCV genotype, HCV viremia, presence of hepatic iron and pre-treatment hepatic steatosis. A negative RNA test in the 24th week of treatment was associated with improvement in fibrosis, collagen deposits and stellate cell numbers. The other variables analyzed did not correlate to an improvement in hepatic histology after hepatitis C treatment. Reduction in HCV viremia during treatment may result in reduced hepatic fibrosis even in patients without a sustained virological response.

  16. Inhibition of SIRT2 suppresses hepatic fibrosis.

    Arteaga, Maribel; Shang, Na; Ding, Xianzhong; Yong, Sherri; Cotler, Scott J; Denning, Mitchell F; Shimamura, Takashi; Breslin, Peter; Lüscher, Bernhard; Qiu, Wei

    2016-06-01

    Liver fibrosis can progress to cirrhosis and result in serious complications of liver disease. The pathogenesis of liver fibrosis involves the activation of hepatic stellate cells (HSCs), the underlying mechanisms of which are not fully known. Emerging evidence suggests that the classic histone deacetylases play a role in liver fibrosis, but the role of another subfamily of histone deacetylases, the sirtuins, in the development of hepatic fibrosis remains unknown. In this study, we found that blocking the activity of sirtuin 2 (SIRT2) by using inhibitors or shRNAs significantly suppressed fibrogenic gene expression in HSCs. We further demonstrated that inhibition of SIRT2 results in the degradation of c-MYC, which is important for HSC activation. In addition, we discovered that inhibition of SIRT2 suppresses the phosphorylation of ERK, which is critical for the stabilization of c-MYC. Moreover, we found that Sirt2 deficiency attenuates the hepatic fibrosis induced by carbon tetrachloride (CCl4) and thioacetamide (TAA). Furthermore, we showed that SIRT2, p-ERK, and c-MYC proteins are all overexpressed in human hepatic fibrotic tissues. These data suggest a critical role for the SIRT2/ERK/c-MYC axis in promoting hepatic fibrogenesis. Inhibition of the SIRT2/ERK/c-MYC axis represents a novel strategy to prevent and to potentially treat liver fibrosis and cirrhosis. PMID:27125275

  17. Hepatitis

    2008-01-01

    2008449 A cross-sectional survey of occult hepatitis B virus infection in HIV-infected patients. MA Jianxin(马建新), et al.Dept Infect Dis, Shanghai Public Health Clin Center, Shanghai 201508. Chin J Intern Med 2008;47(7):574-577. Objective To assess the prevalence of occult HBV infection in HIV-infected patients.

  18. Steatosis recovery after treatment with a balanced sunflower or olive oil-based diet: Involvement of perisinusoidal stellate cells

    Raquel Hernández; Esther Martínez-Lara; Ana Ca(n)uelo; Ma Luisa del Moral; Santos Blanco; Eva Siles; Ana Jiménez; Juan (A)ngel Pedrosa; Ma (A)ngeles Peinado

    2005-01-01

    AIM: To analyze the relationship between perisinusoidal stellate cell (PSC) activation and the dietary fat quantity and composition in the treatment of hepatic steatosis.METHODS: Using an experimental rat model of steatosis based on the intake of a hyperlipidic diet (14% fat as olive oil or sunflower oil, HL-O and HL-S, respectively), we analyzed the liver's capability of recovery after the treatment with a normal-lipidic diet (5% fat as olive oil or sunflower oil, NL-O and NL-S, respectively) by immunocytochemical and Western blot analysis of glial fibrillary acidic protein (GFAP) expression in PSCs, collagen quantification and serum aminotransferase determination.RESULTS: The fatty infiltration in the steatotic livers decreased after the treatment with both NL diets, indicating liver recovery. This decrease was accompanied with a lower collagen deposition and aminotransferase level as well as changes in the PSC population that increased the GFAP expression. The above-mentioned effects were more pronounced in animals fed on NL-O based diet. CONCLUSION: Treatment with a balanced dietenriched in olive oil contributes to the liver recovery from a stea totic process. The PSC phenotype is a marker of this hepatic-recovery model.

  19. Computer detection of stellate lesions in mammograms

    Kegelmeyer, W. Philip, Jr.

    1992-06-01

    The three primary signs for which radiologists search when screening mammograms for breast cancer are stellate lesions, microcalcifications, and circumscribed lesions. Stellate lesions are of particular importance, as they are almost always associated with a malignancy. Further, they are often indicated only by subtle architectural distortions and so are in general easier to miss than the other signs. We have developed a method for the automatic detection of stellate lesions in digitized mammograms, and have tested them on image data where the presence or absence of malignancies is known. We extract image features from the known images, use them to grow binary decision trees, and use those trees to label each pixel of new mammograms with its probability of being located on an abnormality. The primary feature for the detection of stellate lesions is ALOE, analysis of local oriented edges, which is derived from an analysis of the histogram of edge orientations in local windows. Other features, based on the Laws texture energy measures, have been developed to respond to normal tissue, and so improve the false alarm performance of the entire system.

  20. Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats.

    Alsheblak, Mehyar Mohammad; Elsherbiny, Nehal M; El-Karef, Amro; El-Shishtawy, Mamdouh M

    2016-03-01

    The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combatted oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities. PMID:27094155

  1. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro.

    Yoshihiro Matsumoto

    Full Text Available Glycyrrhizin (GL has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc. To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp, replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD, respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2. We found that group 1B PLA2 (PLA2G1B inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release.

  2. Overexpression of hepatic plasminogen activator inhibitor type 1 mRNA in rabbits with fatty liver

    Jian-Gao Fan; Liang-Hua Chen; Zheng-Jie Xu; Min-De Zeng

    2001-01-01

    @@ INTRODUCTION Plasminogen activator inhibitor type 1 ( PAI-I ), an approximately Mr 50000 glycoprotein, is the major physiological inhibitor of plasminogen activators. It is not only the priming factor for atherosclerosis and coronary thrombosis[1-3] , but also participates in the genesis of chronic hepatitis and liver fibrosis[4-11] . However, there has been no available report yet about the research of hepatic PAl-1 gene expression in hyperlipidemia and fatty liver. The present study aimed to explore the change of hepatic PAl-1 mRNA and its plasma activity by means of animal model.

  3. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis.

    Morvaridi, Susan; Dhall, Deepti; Greene, Mark I; Pandol, Stephen J; Wang, Qiang

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic and inflammatory microenvironment that is formed primarily by activated, myofibroblast-like, stellate cells. Although the stellate cells are thought to contribute to tumorigenesis, metastasis and drug resistance of PDAC, the signaling events involved in activation of the stellate cells are not well defined. Functioning as transcription co-factors, Yes-associated protein (YAP) and its homolog transcriptional co-activator with PDZ-binding motif (TAZ) modulate the expression of genes involved in various aspects of cellular functions, such as proliferation and mobility. Using human tissues we show that YAP and TAZ expression is restricted to the centroacinar and ductal cells of normal pancreas, but is elevated in cancer cells. In particular, YAP and TAZ are expressed at high levels in the activated stellate cells of both chronic pancreatitis and PDAC patients as well as in the islets of Langerhans in chronic pancreatitis tissues. Of note, YAP is up regulated in both acinar and ductal cells following induction of acute and chronic pancreatitis in mice. These findings indicate that YAP and TAZ may play a critical role in modulating pancreatic tissue regeneration, neoplastic transformation, and stellate cell functions in both PDAC and pancreatitis. PMID:26567630

  4. Bone marrow-derived pancreatic stellate cells in rats.

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  5. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia.

    Hilliard, Kristie L; Allen, Eri; Traber, Katrina E; Kim, Yuri; Wasserman, Gregory A; Jones, Matthew R; Mizgerd, Joseph P; Quinton, Lee J

    2015-10-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis and pneumonia. We employed a two-hit endotoxemia/pneumonia model, whereby administration of 18 h of intraperitoneal lipopolysaccharide (LPS; 5 mg/kg of body weight) was followed by intratracheal Escherichia coli (10(6) CFU) in wild-type mice or those lacking hepatocyte STAT3 (hepSTAT3(-/-)). Pneumonia alone (without endotoxemia) was effectively controlled in the absence of liver STAT3. Following endotoxemia and pneumonia, however, hepSTAT3(-/-) mice, with significantly reduced levels of circulating and airspace acute-phase proteins, exhibited significantly elevated lung and blood bacterial burdens and mortality. These data suggested that STAT3-dependent liver responses are necessary to promote host defense. While neither recruited airspace neutrophils nor lung injury was altered in endotoxemic hepSTAT3(-/-) mice, alveolar macrophage reactive oxygen species generation was significantly decreased. Additionally, bronchoalveolar lavage fluid from this group of hepSTAT3(-/-) mice allowed greater bacterial growth ex vivo. These results suggest that hepatic STAT3 activation promotes both cellular and humoral lung defenses. Taken together, induction of liver STAT3-dependent gene expression programs is essential to countering the deleterious consequences of sepsis on pneumonia susceptibility. PMID:26216424

  6. Impact of artesunate on the expression and secretion of transforming growth factor-β1 of primary rat hepatic stellate cells%青蒿琥酯对大鼠原代肝星状细胞产生与分泌转化生长因子β1的影响

    王媛; 方步武; 彭龙希

    2012-01-01

    目的 探讨青蒿琥酯对大鼠原代肝星状细胞(HSC)增殖的影响,从抑制HSC表达、生成和分泌转化生长因子β1 (TGF β1)这一环节探讨其抗肝纤维化的机制. 方法 分离大鼠HSC于培养瓶中原代培养10d,已处于培养活化状态,将HSC分为实验组和对照组,实验组以青蒿琥酯(终浓度分别为125、150、175、200、225μmol/L)作用24、48、72 h.以四甲基偶氮唑盐(MTT)法检测细胞增殖率,RT-PCR法检测HSC中TGFβ1 mRNA的表达水平,Western blot法分析TGFβ1蛋白水平的变化,酶联免疫吸附法测定培养上清液中TGFβ1含量.样本均数比较采用单因素方差分析,两样本均数比较采用独立样本t检验. 结果 不同浓度青蒿琥酯对培养活化的HSC均有明显抑制作用,且呈剂量-效应关系和时间-效应关系,作用24h时,125、150、175、200、225μmol/L青蒿琥酯对HSC的抑制率分别为6.06%±1.44%、21.47%±5.57%、42.00%±7.36%、67.12%±4.55%、79.83%±3.67%(P值均<0.01).青蒿琥酯作用HSC 24h能明显抑制、下调HSC表达TGFβ1mRNA,呈剂量-效应关系(P<0.01);并且明显降低细胞内TGFβ1蛋白及细胞上清液中TGFβ1水平,0、150、175、200μmol/L青蒿琥酯处理组TGFβ 1分别为(164.24±6.88) pg/ml、(102.68±4.45)pg/ml、(86.54±5.56)pg/ml、(56.55±5.66) pg/ml(P值均<0.01).结论 青蒿琥酯呈剂量和时间依赖性地抑制原代分离培养活化的HSC,青蒿琥酯在体外具有抗肝纤维化的作用,与其下调TGFβ1基因及蛋白的表达、翻译与TGFβ1分泌至细胞外等环节有关.%Objective To investigate the impact of the Artemisia annua plant-derived drug,artesunate,on proliferation of primary rat hepatic stellate cells (HSCs),and to analyze the underlying molecular mechanisms of its anti-fibrogenic effects involving the inhibition of transforming growth factor-beta 1 (TGF-β1) expression and secretion in liver.Method Isolated,cultured,and activated primary rat

  7. Virocidal activity of Egyptian scorpion venoms against hepatitis C virus

    El-Bitar, Alaa MH; Sarhan, Moustafa MH; Aoki, Chie; Takahara, Yusuke; Komoto, Mari; Deng, Lin; Moustafa, Mohsen A; Hotta, Hak

    2015-01-01

    Background Hepatitis C virus (HCV) is a major global health problem, causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Development of well-tolerated regimens with high cure rates and fewer side effects is still much needed. Recently, natural antimicrobial peptides (AMPs) are attracting more attention as biological compounds and can be a good template to develop therapeutic agents, including antiviral agents against a variety of viruses. Various AMPs have been characteri...

  8. Proteolytic activity of hepatitis A virus 3C protein.

    Jia, X Y; Ehrenfeld, E; Summers, D F

    1991-01-01

    Although the genome organization and overall structure of hepatitis A virus are similar to those of other picornaviruses, nothing is known about the protein-processing pathways used by this virus to generate its capsid and nonstructural proteins from the polyprotein precursor. RNA transcripts of cloned hepatitis A virus cDNAs representing parts of the P2 and P3 regions of the genome were translated in rabbit reticulocyte lysates in vitro, and the translation products were analyzed by sodium d...

  9. Ultrastructure of oval cells in children with chronic hepatitis B, with special emphasis on the stage of liver fibrosis: The first pediatric study

    Maria Elzbieta Sobaniec-Lotowska; Joanna Maria Lotowska; Dariusz Marek Lebensztejn

    2007-01-01

    AIM: To investigate the ultrastructure of oval ceils in children with chronic hepatitis B, with special emphasis on their location in areas of collagen fibroplasia.METHODS: Morphological investigations were conducted on biopsy material obtained from 40 children,aged 3-16 years with chronic hepatitis B. The stage of fibrosis was assessed histologically using the arbitrary semiquantitative numerical scoring system proposed by Ishak et al. The material for ultrastructural investigation was fixed in glutaraldehyde and paraformaldehyde and processed for transmission-electron microscopic analysis.RESULTS: Ultrastructural examination of biopsy specimens obtained from children with chronic hepatitis B showed the presence of two types of oval cells, the hepatic progenitor cells and intermediate hepatic-like cells. These cells were present in the parenchyma and were seen most commonly in areas of intense periportal fibrosis (at least stage 2 according to Ishak et al) and in the vicinity of the limiting plate of the lobule. The activated nonparenchymal hepatic cells, i.e. transformed hepatic stellate cells and Kupffer cells were seen in close proximity to the intermediate hepatic-like cells.CONCLUSION: We found a distinct relationship between the prevalence of oval cells (hepatic progenitor cells and intermediate hepatocyte-like cells) and fibrosis stage in pediatric patients with chronic hepatitis B.

  10. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist.

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists. PMID:24025677

  11. P0525 : N-Acetylated alpha smooth muscle actin levels are increased in hepatic fibrosis but decreased in hepatocellular carcinoma

    Nielsen, M.J.; Nielsen, S.H.; Hansen, N.U.B.; Kristensen, Jacob Hull; Karsdal, M.A.; Leeming, D. J.

    2015-01-01

    Alpha Smooth Muscle Actin (a-SMA) is upregulated together with extracellular matrix (ECM) during activation of Hepatic Stellate Cells (HSCs) in fibrosis. Histone deacetylase (HDAC) remove acetylations and regulate the expression of genes, which is associated with cancers. There is a close...... relationship between cirrhosis and hepatocellular carcinoma (HCC), and markers enabling identification of patients in risk of developing HCC with cirrhosis is a major unmet clinical need. We developed an ELISA for the assessment of acetylated a-SMA (Aca- SMA) in serum. The objective was to investigate the...

  12. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  13. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu;

    2015-01-01

    and dephosphorylation of the cAMP regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where...... accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis....... increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite...

  14. On $k$-stellated and $k$-stacked spheres

    Bagchi, Bhaskar; Datta, Basudeb

    2012-01-01

    We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...

  15. Stellate ganglion blockade for analgesia following upper limb surgery.

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  16. Eastern region represents a worrying cluster of active hepatitis C in Algeria in 2012.

    Bensalem, Aïcha; Selmani, Karima; Hihi, Narjes; Bencherifa, Nesrine; Mostefaoui, Fatma; Kerioui, Cherif; Pineau, Pascal; Debzi, Nabil; Berkane, Saadi

    2016-08-01

    Algeria is the largest country of Africa, peopled with populations living a range of traditional/rural and modern/urban lifestyles. The variations of prevalence of chronic active hepatitis care poorly known on the Algerian territory. We conducted a retrospective survey on all patients (n = 998) referred to our institution in 2012 and confirmed by us for an active hepatitis C. Half of the hepatitis C virus (HCV) isolates were genotyped. Forty Algerian regions out of the 48 were represented in our study. Three geographical clusters (Aïn-Temouchent/SidiBelAbbes, Algiers, and a large Eastern region) with an excess of active hepatitis C were observed. Patients coming from the Eastern cluster (Batna, Khenchela, Oum el Bouaghi, and Tebessa) were strongly over-represented (49% of cases, OR = 14.5, P hepatitis C epidemics are currently affecting Algerian population. The most worrying situation is observed in rural regions located east of Algeria. J. Med. Virol. 88:1394-1403, 2016. © 2016 Wiley Periodicals, Inc. PMID:26856380

  17. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats.

    Tripathi, Dinesh M; Erice, Eva; Lafoz, Erica; García-Calderó, Héctor; Sarin, Shiv K; Bosch, Jaime; Gracia-Sancho, Jordi; García-Pagán, Juan Carlos

    2015-09-01

    Increased hepatic vascular resistance is the primary factor in the development of portal hypertension. Metformin ameliorates vascular cells function in several vascular beds. Our study was aimed at evaluating the effects, and the underlying mechanisms, of metformin on hepatic and systemic hemodynamics in cirrhotic rats and its possible interaction with the effects of propranolol (Prop), the current standard treatment for portal hypertension. CCl4-cirrhotic rats received by gavage metformin 300 mg/kg or its vehicle once a day for 1 wk, before mean arterial pressure (MAP), portal pressure (PP), portal blood flow (PBF), hepatic vascular resistance, and putative molecular/cellular mechanisms were measured. In a subgroup of cirrhotic rats, the hemodynamic response to acute Prop (5 mg/kg iv) was assessed. Effects of metformin ± Prop on PP and MAP were validated in common bile duct ligated-cirrhotic rats. Metformin-treated CCl4-cirrhotic rats had lower PP and hepatic vascular resistance than vehicle-treated rats, without significant changes in MAP or PBF. Metformin caused a significant reduction in liver fibrosis (Sirius red), hepatic stellate cell activation (α-smooth muscle actin, platelet-derived growth factor receptor β polypeptide, transforming growth factor-βR1, and Rho kinase), hepatic inflammation (CD68 and CD163), superoxide (dihydroethidium staining), and nitric oxide scavenging (protein nitrotyrosination). Prop, by decreasing PBF, further reduced PP. Similar findings were observed in common bile duct ligated-cirrhotic rats. Metformin administration reduces PP by decreasing the structural and functional components of the elevated hepatic resistance of cirrhosis. This effect is additive to that of Prop. The potential impact of this pharmacological combination, otherwise commonly used in patients with cirrhosis and diabetes, needs clinical evaluation. PMID:26138461

  18. Pancreatic stellate cells as a morphological basis for the development of pancreatic fibrosis

    Sirenko O.Yu.

    2010-01-01

    Full Text Available Last decade in Ukraine and many countries there is a clear tendency to increase the number of cases of pancreatic diseases. For more than century study of the pathogenesis of chronic pancreatitis it has been proposed many hypotheses. Some of them were eventually dismissed, partially confirmed by other clinical and experimental research. Significant progress in understanding the process of fibrosis in the pancreas is associated with the identification, isolation and description of pancreatic stellate cells. They present in periacinar space and have long cytoplasmic processes covered the basis of acinus. This cells can be changed from stable fat-storing to miofibroblastic phenotype. Pancreatic stellate cells perform a wide range of functions, they have the ability to contraction, proliferation, they can synthesize extracellular matrix components and influence on the surrounding cellular environment. These cells can be regarded as a morphological basis for the development of pancreatic fibrosis. Currently, for the treatment of chronic pancreatitis, the main therapy is directed on depression of secretory activity of pancreas and inactivation biogenic amines in blood. Treatment of chronic pancreatitis should aim to influence the key mechanisms of pancreatic stellate cells activation and proliferation. Understanding the biology of this cells can open potential therapeutic targets for treatment and prevention of chronic pancreatitis and other diseases accompanied by pancreatic fibrosis.

  19. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: ibuprofen restores its motor activity.

    Cauli, Omar; Rodrigo, Regina; Piedrafita, Blanca; Llansola, Marta; Mansouri, Mohammad T; Felipo, Vicente

    2009-05-01

    Patients with hepatic encephalopathy show altered motor function, psychomotor slowing, and hypokinesia, which are reproduced in rats with portacaval shunts (PCS). Increased extracellular glutamate in substantia nigra pars reticulata (SNr) is responsible for hypokinesia in PCS rats. The mechanisms by which liver failure leads to increased extracellular glutamate in SNr remain unclear. Inflammation seems to act synergistically with hyperammonemia to induce neurological alterations in hepatic encephalopathy. It is therefore possible that inflammation-associated alterations may contribute to motor alterations in hepatic encephalopathy. The aim of this work was to assess whether treatment with an antiinflammatory, ibuprofen, is able to normalize extracellular glutamate in SNr and/or to improve hypokinesia in PCS rats. The amounts of the glutamate transporters GLT-1 and EAAC-1 are reduced by 26% and 32%, respectively, in SNr of PCS rats. This reduction is associated with a tenfold increase in extracellular glutamate in SNr and a reduction in motor activity. Chronic treatment with 30 mg/kg ibuprofen completely normalizes the amount of GLT-1 and EAAC-1 and significantly reduces (by 53%) extracellular glutamate in SNr of PCS rats. Moreover, ibuprofen, at 15 or 30 (but not at 5) mg/kg/day, completely eliminates hypokinesia, restoring normal motor activity. This supports the idea that inflammation is a main contributor to the induction of hypokinesia in hepatic encephalopathy. Moreover, these data point to the possible therapeutic utility of decreasing inflammation, by safe procedures, in the treatment of the motor deficits in patients with hepatic encephalopathy. PMID:19025766

  20. Interplay of Matrix Stiffness and c-SRC in Hepatic Fibrosis.

    Jan eGörtzen

    2015-12-01

    Full Text Available Introduction:In liver fibrosis activation of hepatic stellate cells (HSC comprises phenotypical change into profibrotic and myofibroplastic cells with increased contraction and secretion of extracellular matrix (ECM proteins. The small GTPase RhoA orchestrates cytoskeleton formation, migration and mobility via non-receptor tyrosine-protein kinase c-SRC (cellular sarcoma in different cells. Furthermore, RhoA and its downstream effector Rho-kinase also play a crucial role in hepatic stellate cells and hepatic fibrogenesis. Matrix stiffness promotes HSC activation via cytoskeleton modulation. This study investigated the interaction of c-SRC and RhoA under different matrix stiffness conditions.Methods:Liver fibrosis was induced in rats using bile duct ligation (BDL, thioacetamide (TAA or carbon tetrachloride (CCl4 models. mRNA levels of albumin, PDGF-R, RHOA, COL1A1 and αSMA were analyzed via qRT-PCR. Western Blots using phospho-specific antibodies against p-c-SRC418 and p-c-SRC530 analyzed the levels of activating and inactivating c-SRC respectively. LX2 cells and hepatocytes were cultured on acrylamide gels of 1kPa and 12kPa or on plastic to mimic non-fibrotic, fibrotic or cirrhotic environments, then exposed to SRC-inhibitor PP2. Overexpression of RhoA was performed by transfection using RhoA-plasmids. Additionally, samples from cirrhotic patients and controls were collected at liver transplantations and tumor resections were analyzed for RhoA and c-SRC protein expression by Western Blot.Results:Transcription of albumin and RhoA was decreased, whereas transcription and activation of c-SRC was increased in hepatocytes cultured on 12kPa compared to 1kPa gels. LX2 cells cultured on 12kPa gels showed upregulation of RHOA, COL1A1 and αSMA mRNA levels. Inhibition of c-SRC by PP2 in LX2 cells led to an increase in COL1A1 and αSMA most prominently in 12kPa gels. In LX2 cells with RhoA overexpression, c-SRC inhibition by PP2 failed to improve fibrosis

  1. Controversial issues regarding the roles of IL-10 and IFN-γ in active/inactive chronic hepatitis B

    Khorramdelazad, Hossein; Hassanshahi, Gholamhossein; Arababadi, Mohammad Kazemi

    2014-01-01

    According to the important roles played by cytokines in induction of appropriate immune responses against hepatitis B virus (HBV), Dimitropoulou et al have examined the important cytokines in their patients. They showed that the serum levels of interleukin 10 (IL-10) and interferon-γ (IFN-γ) were decreased in patients with HBeAg-negative chronic active hepatitis B compared with the inactive hepatitis B virus carriers (Dimitropoulou et al 2013). The controversy can be considered regarding the ...

  2. Temporal expression of chemokines dictates the hepatic inflammatory infiltrate in a murine model of schistosomiasis.

    Melissa L Burke

    Full Text Available Schistosomiasis continues to be an important cause of parasitic morbidity and mortality world-wide. Determining the molecular mechanisms regulating the development of granulomas and fibrosis will be essential for understanding how schistosome antigens interact with the host environment. We report here the first whole genome microarray analysis of the murine liver during the progression of Schistosoma japonicum egg-induced granuloma formation and hepatic fibrosis. Our results reveal a distinct temporal relationship between the expression of chemokine subsets and the recruitment of cells to the infected liver. Genes up-regulated earlier in the response included T- and B-cell chemoattractants, reflecting the early recruitment of these cells illustrated by flow cytometry. The later phases of the response corresponded with peak recruitment of eosinophils, neutrophils, macrophages and myofibroblasts/hepatic stellate cells (HSCs and the expression of chemokines with activity for these cells including CCL11 (eotaxin 1, members of the Monocyte-chemoattractant protein family (CCL7, CCL8, CCL12 and the Hepatic Stellate Cell/Fibrocyte chemoattractant CXCL1. Peak expression of macrophage chemoattractants (CCL6, CXCL14 and markers of alternatively activated macrophages (e.g. Retnla during this later phase provides further evidence of a role for these cells in schistosome-induced pathology. Additionally, we demonstrate that CCL7 immunolocalises to the fibrotic zone of granulomas. Furthermore, striking up-regulation of neutrophil markers and the localisation of neutrophils and the neutrophil chemokine S100A8 to fibrotic areas suggest the involvement of neutrophils in S. japonicum-induced hepatic fibrosis. These results further our understanding of the immunopathogenic and, especially, chemokine signalling pathways that regulate the development of S. japonicum-induced granulomas and fibrosis and may provide correlative insight into the pathogenesis of other

  3. Displaced avulsion fractures of the posterior cruciate ligament: Treated by stellate steel plate fixation

    Lijun Li

    2015-01-01

    Full Text Available Background: The open reduction with internal fixation is an effective approach for treatment of avulsion fracture of posterior cruciate ligament. The previously used internal fixation materials including hollow screws, absorbable screw, tension bands and sutures have great defects such as insufficient fixation strength, susceptibility to re-fracture, etc. Stellate steel plate is novel material for internal fixation which has unique gear-like structure design. We used stellate steel plate for treatment of displaced avulsion fractures of posterior cruciate ligament in this study. Materials and Methods: 14 patients (9 men, 5 women; aged, 19-35 years; mean age, 28 years with displaced avulsion fractures of the tibial insertion of the posterior cruciate ligament were retrospectively analyzed between June 2009 and June 2011. The mean duration from injury to the operation was 8.3 days (range 6-15 days. All the patients were treated with open reduction and internal fixation of a stellate steel plate (DePuy, Raynham, MA 02767, USA. The Lysholm-Tegner knee function score criteria were used to analyze results. Results: The mean followup was 24.6 months (range 18-32 months. After 6 months, all the fractures healed and knee joint activity was normal, with no knee stiffness or instability. The Lysholm-Tegner scores were 97.1 ± 1.7 points at the final followup. Conclusion: Owing to its unique gear structure, the stellate steel plate design can effectively fix an avulsion fracture block and it is a simple operation with short postoperative rehabilitation time and firm fixation.

  4. Mapping Metabolic Brain Activity in Three Models of Hepatic Encephalopathy

    Natalia Arias

    2013-01-01

    Full Text Available Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE. In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx. We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups.

  5. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  6. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights.

    Greuter, Thomas; Shah, Vijay H

    2016-06-01

    Changes of hepatic sinusoids are crucial in the pathogenesis of liver cirrhosis and portal hypertension. Liver injury leads to distinct morphological abnormalities such as loss of sinusoidal fenestration, vasoconstriction, and angiogenesis as well as molecular changes. Communication between the two key cells in this hepatic microenvironment-hepatic stellate cells (HSC) and sinusoidal endothelial cells (SEC)-has been studied for many years and several canonical pathways have been elucidated, such as decreased eNOS activity or increased PDGF and TGF-β production leading to activation and migration of HSC. In recent studies, alternative pathways of intercellular communication in liver diseases have been described such as cell-derived extracellular vesicles called exosomes, which deliver cell compounds to their target cells. Moreover, such extracellular vesicles may link injury to inflammation in alcoholic hepatitis. While inflammation leading to liver fibrosis has been studied in detail, in some circumstances pathways other than the known canonical inflammatory pathways may contribute to hepatic fibrogenesis. For example, in congestive hepatopathy, sinusoidal dilatation and fibrosis have been shown to be mediated by non-inflammatory mechanisms and associated with sinusoidal thrombi. A recently developed murine model further enables experimental studies of this disease entity. Increasing knowledge about these alternative disease pathways in liver injury, inflammation, and fibrosis may reveal possible target molecules for future therapies. This article builds upon a seminar given at the recent 3rd JSGE International Topic Conference in Sendai, Japan, and reviews the areas outlined above. PMID:26939970

  7. Functional activity of sphingomyelin cycle in rat liver in chronic toxic hepatitis.

    Serebrov, V Yu; Kuzmenko, D I; Burov, P G; Novitsky, S V

    2008-12-01

    Activities of sphingomyelinase and ceramidase decreased in the liver in chronic toxic hepatitis and the balance between the levels of proapoptotic ceramide and antiapoptotic sphyngosine-1-phosphate shifts towards the latter substance. Pronounced changes in the qualitative and quantitative composition of fatty acids in the sphingomyelin cycle effector molecules were revealed. PMID:19513367

  8. An application of multilayer neural network on hepatitis disease diagnosis using approximations of sigmoid activation function

    Onursal Çetin; Feyzullah Temurtaş; Şenol Gülgönül

    2015-01-01

    Objective: Implementation of multilayer neural network (MLNN) with sigmoid activation function for the diagnosis of hepatitis disease.Methods: Artificial neural networks (ANNs) are efficient tools currently in common use for medical diagnosis. In hardware based architectures activation functions play an important role in ANN behavior. Sigmoid function is the most frequently used activation function because of its smooth response. Thus, sigmoid function and its close approximations were implem...

  9. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  10. Monocytes infiltrate the pancreas via the MCP-1/CCR2 pathway and differentiate into stellate cells.

    Kazuko Ino

    Full Text Available Recent studies have shown that monocytes possess pluripotent plasticity. We previously reported that monocytes could differentiate into hepatic stellate cells. Although stellate cells are also present in the pancreas, their origin remains unclear. An accumulation of enhanced green fluorescent protein (EGFP(+CD45(- cells was observed in the pancreases and livers of chimeric mice, which were transplanted with a single hematopoietic stem cell isolated from EGFP-transgenic mice and treated with carbon tetrachloride (CCl4. Because the vast majority of EGFP(+CD45(- cells in the pancreas expressed stellate cell-associated antigens such as vimentin, desmin, glial fibrillary acidic protein, procollagen-I, and α-smooth muscle actin, they were characterized as pancreatic stellate cells (PaSCs. EGFP(+ PaSCs were also observed in CCl4-treated mice adoptively transferred with monocytes but not with other cell lineages isolated from EGFP-transgenic mice. The expression of monocyte chemoattractant protein-1 (MCP-1 and angiotensin II (Ang II increased in the pancreas of CCl4-treated mice and their respective receptors, C-C chemokine receptor 2 (CCR2 and Ang II type 1 receptor (AT1R, were expressed on Ly6C(high monocytes isolated from EGFP-transgenic mice. We examined the effect of an AT1R antagonist, irbesartan, which is also a CCR2 antagonist, on the migration of monocytes into the pancreas. Monocytes migrated toward MCP-1 but not Ang II in vitro. Irbesartan inhibited not only their in vitro chemotaxis but also in vivo migration of adoptively transferred monocytes from peripheral blood into the pancreas. Irbesartan treatment significantly reduced the numbers of EGFP(+F4/80(+CCR2(+ monocytic cells and EGFP(+ PaSCs in the pancreas of CCl4-treated chimeric mice receiving EGFP(+ bone marrow cells. A specific CCR2 antagonist RS504393 inhibited the occurrence of EGFP(+ PaSCs in injured mice. We propose that CCR2(+ monocytes migrate into the pancreas possibly via the

  11. The canine hepatic progenitor cell niche: molecular characterisation in health and disease.

    Kruitwagen, H S; Spee, B; Viebahn, C S; Venema, H B; Penning, L C; Grinwis, G C M; Favier, R P; van den Ingh, T S G A M; Rothuizen, J; Schotanus, B A

    2014-09-01

    Hepatic progenitor cells (HPCs) are an adult stem cell compartment in the liver that contributes to liver regeneration when replication of mature hepatocytes is insufficient. In this study, laser microdissection was used to isolate HPC niches from the livers of healthy dogs and dogs with lobular dissecting hepatitis (LDH), in which HPCs are massively activated. Gene expression of HPC, hepatocyte and biliary markers was determined by quantitative reverse transcriptase PCR. Expression and localisation of selected markers were further studied at the protein level by immunohistochemistry and immunofluorescent double staining in samples of normal liver and liver from dogs with LDH, acute and chronic hepatitis, and extrahepatic cholestasis. Activated HPC niches had higher gene expression of the hepatic progenitor markers OPN, FN14, CD29, CD44, CD133, LIF, LIFR and BMI1 compared to HPCs from normal liver. There was lower expression of albumin, but activated HPC niches were positive for the biliary markers SOX9, HNF1β and keratin 19 by immunohistochemistry and immunofluorescence. Laminin, activated stellate cells and macrophages are abundant extracellular matrix and cellular components of the canine HPC niche. This study demonstrates that the molecular and cellular characteristics of canine HPCs are similar to rodent and human HPCs, and that canine HPCs are distinctively activated in different types of liver disease. PMID:24923752

  12. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685

  13. Atorvastatin dose-dependently decreases hepatic lipase activity in type 2 diabetes - Effect of sex and the LIPC promoter variant

    Berk-Planken, IIL; Hoogerbrugge, N; Stolk, RP; Bootsma, AH; Jansen, H

    2003-01-01

    OBJECTIVE - Hepatic lipase (HL) is involved in the metabolism of several lipoproteins and may contribute to the atherogenic lipid profile in type 2 diabetes. Little is known about the effect of cholesterol synthesis inhibitors on HL activity in relation to sex and the hepatic lipase gene, the LIPC p

  14. Hepatoprotective activity of Vitex trifolia against carbon tetrachloride-induced hepatic damage

    Manjunatha B

    2008-01-01

    Full Text Available Aqueous and ethanol extracts of leaf of Vitex trifolia was investigated for hepatoprotective activity against carbon tetrachloride induced liver damage. To assess the hepatoprotective activity of the extracts, various biochemical parameters viz., total bilirubin, total protein, alanine transaminase, aspartate transaminase and alkaline phosphatase activities were determined. Results of the serum biochemical estimations revealed significant reduction in total bilirubin and serum marker enzymes and increase in total protein in the animals treated with ethanol and aqueous extracts. However significant rise in these serum enzymes and decrease in total protein level was noticed in CCl4 treated group indicating the hepatic damage. The hepatoprotective activity is also supported by histological studies of liver tissue. Histology of the liver tissue treated with ethanol and aqueous extracts showed normal hepatic architecture with few fatty lobules. Hence the present study revealed that Vitex trifolia could afford significant protection against CCl 4 induced hepatocellular injury.

  15. Antioxidant and Anti-Hepatitis C Viral Activities of Commercial Milk Thistle Food Supplements

    Kevin Anthony; Gitanjali Subramanya; Susan Uprichard; Faiza Hammouda; Mahmoud Saleh

    2013-01-01

    Milk thistle dietary supplements that contain silymarin are widely marketed and used in the USA and other countries for liver enhancement and recovery. More recently, silymarin has also been identified as a possible antiviral for the treatment of hepatitis C virus (HCV) infection. To assess different brands of commercially sold silymarin, 45 products were collected from local stores and analyzed for their silymarin content, antioxidant activities, and antiviral activity against HCV. Antioxida...

  16. Prevalence of active hepatitis C virus infections among general public of Lahore, Pakistan

    Anwar, Muhammad Ikram; Rahman, Moazur; Hassan, Mahmood Ul; Iqbal, Mazhar

    2013-01-01

    Background To find out the prevalence of active hepatitis C virus (HCV) infections among general public in Lahore city, since data concerning the prevalence of active HCV in this city is currently unavailable. Methods Blood samples were collected randomly from individuals visiting different clinical laboratories in Lahore. Serum was separated and processed by nested PCR qualitative assay for the detection of HCV RNA. The samples were categorized into different age groups on the basis of pre-t...

  17. Hepatitis D in Chronic Active Hepatitis B: Prevalence, Liver Enzyme Levels and Histopathology- an Epidemiological Study in Shiraz, Southern Iran, 2003-2004

    Farnaz Khademolhosseini

    2008-12-01

    Full Text Available Background and Aims: At least 5% of hepatitis B carriers worldwide are infected with Hepatitis D virus (HDV. This study aims to determine the prevalence, transaminase levels and histopathological findings of HDV among patients with chronic active hepatitis B in southern Iran.Methods: During 2003-2004, 93 patients >15 years with chronic active hepatitis B were enrolled from referrals to Shiraz University of Medical Sciences in southern Iran.Results: Nine (9.7% patients were seropositive for the anti HDV antibody. 76.3% of patients were male and among the HDV positive group, all subjects were male too. A significantly higher AST and more advanced grade and stage of liver disease were observed in the HDV positive group. The most common mode of transmission in the positive group was intravenous drug use.Conclusions: The risk of liver disease progression in chronic hepatitis B appears to be higher in HDV infected patients. Intravenous drug abuse is an important risk factor for acquiring HDV infection. Checking anti-HDV is suggested in any patient with positive HBsAg, especially in males or those with history of intravenous drug abuse.

  18. A virus-like particle-based connective tissue growth factor vaccine suppresses carbon tetrachloride-induced hepatic fibrosis in mice.

    Li, Shuang; Lv, Yi-Fei; Su, Hou-Qiang; Zhang, Qian-Nan; Wang, Li-Rong; Hao, Zhi-Ming

    2016-01-01

    Connective tissue growth factor (CTGF) has been recognized as a central mediator and promising therapeutic target in hepatic fibrosis. In this study, we generated a novel virus-like particle (VLP) CTGF vaccine by inserting the 138-159 amino acid (aa) fragment of CTGF into the central c/e1 epitope of C-terminus truncated hepatitis B virus core antigen (HBc, aa 1-149) using a prokaryotic expression system. Immunization of BALB/c mice with the VLP vaccine efficiently elicited the production of anti-CTGF neutralizing antibodies. Vaccination with this CTGF vaccine significantly protected BALB/c mice from carbon tetrachloride (CCl4)-induced hepatic fibrosis, as indicated by decreased hepatic hydroxyproline content and lower fibrotic score. CCl4 intoxication-induced hepatic stellate cell activation was inhibited by the vaccination, as indicated by decreased α-smooth muscle actin expression and Smad2 phosphorylation. Vaccination against CTGF also attenuated the over-expression of some profibrogenic factors, such as CTGF, transforming growth factor-β1, platelet-derived growth factor-B and tissue inhibitor of metalloproteinase-1 in the fibrotic mouse livers, decreased hepatocyte apoptosis and accelerated hepatocyte proliferation in the fibrotic mouse livers. Our results clearly indicate that vaccination against CTGF inhibits fibrogenesis, alleviates hepatocyte apoptosis and facilitate hepatic regeneration. We suggest that the vaccine should be developed into an effective therapeutic measure for hepatic fibrosis. PMID:27562139

  19. Hepatitis A vaccine associated with autoimmune hepatitis

    PA Berry; G Smith-Laing

    2007-01-01

    To describe a case of probable relapsing autoimmune hepatitis associated with vaccination against hepatitis A virus (HAV). A case report and review of literature were written concerning autoimmune hepatitis in association with hepatitis A and other hepatotropic viruses. Soon after the administration of formalin-inactivated hepatitis A vaccine, a man who had recently recovered from an uncharacterized but self-limiting hepatitic illness,experienced a severe deterioration (AST 1687 U/L, INR 1.4). Anti-nuclear antibodies were detectable, and liver biopsy was compatible with autoimmune hepatitis. The observation supports the role of HAV as a trigger of autoimmune hepatitis. Studies in helper T-cell activity and antibody expression against hepatic proteins in the context of hepatitis A infection are summarized, and the concept of molecular mimicry with regard to other forms of viral hepatitis and autoimmunity is briefly explored.

  20. 外源性转化生长因子β3对HSC-T6细胞内源性转化生长因子β3表达的影响%Effects of exogenous TGF-β3 on the expression of endogenous TGF-β3 in hepatic stellate cell-T6 (HSC-T6)

    李莹; 邓亮; 钱伟; 周建宁; 徐可树

    2011-01-01

    Objective To investigate the effects of exogenous TGF-β3 on the expression of endogenous TGF-β3 in hepatic stellate cell (HSC).Methods HSCs were cultured and divided into two groups:TGF-β3group and blank control group,the cells of TGF-β3 group were exposed to TGF-β3 (10 ng/ml),whereas the blank control group was not treated.The cells were incubated in the presence of exogenous TGF-β3 and then (1)were harvested at 0h,lh,2h,4h,12h,24h,and real time PCR was performed to detect the mRNA expression of endogenous TGF-β3.(2) The cells were collected at 0h,lh,6h,12h,and western-blot was used to detect the protein synthesis of endogenous TGF-β3 in HSC; (3) The cell culture supematant was harvested at 0h,lh,2h,4h,8h,14h,24h,and ELISA was performed to measure the total protein of extracellular TGF-β3; HSCs were treated with TGF-β3 (10ng/ml) for 2h.The cells were then incubated in serum-free medium and the cell culture supernatant was harvested at 2.25h,2.5h,3h,4h,6h,10h and 14h.ELISA was used to detect the extracellular secret ion of endogenous TGF-β3 by HSCs.Results (1) Exogenous TGF-β3 treatment induced a marked increase in TGF-β3 mRNA expression.By 2h of exogenous TGF-β3 treatment,maximal TGF-β3 mRNA expression levels (2.796 ± 0.518) of 2.74 fold above control values (1.022 ± 0.038) was reached (P <0.05).Thereafter,TGF-β3 mRNA expression level declined,and the expression level was maintained at level of 1.45-fold for at least 10h and was 1.18-fold above control values by 24h TGF-β3 treatment (P < 0.05); (2)No significant difference about the intracellular protein expression level of endogenous TGF-β3 was found between two groups.(P > 0.05); (3) The total expression level of TGF-β3 reached a peak [(18.931 ± 2.904)ng/ml] at 4h after TGF-β3 treatment (1.89-fold higher than basic TGF-β3 (10ng/ml).After that,it slowly declined.The expression peak [(0.835 ± 0.027) ng/ml] induction of extracellular secreted TGF-β3 was at 3h (32.12-fold higher than

  1. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis.

    Lian, Fan; Wang, Yu; Xiao, Youjun; Wu, Xiwen; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-10-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T‑cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. a mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA‑induced liver injury and a normal control. Blood samples were obtained to detect the levels of aminotransferases and inflammatory cytokines. Liver specimens were collected, and hematoxylin‑eosin staining was used for histopathological examination and detection. Apoptosis was evaluated using the terminal deoxynucleotidyl-transferase‑mediated dUTP nick end labeling (TUNEL) method. The expression levels of apoptosis‑associated genes and proteins were determined by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that FXR was downregulated at the mRNA and protein level in the liver specimens of mice induced with ConA‑induced hepatitis. Increased levels of aminotransferases and inflammatory cytokines, including interferon‑γ, tumor necrosis factor‑α, interleukin (IL)‑4 and IL‑2, were detected in ConA‑treated mice. The mice pretreated with the FXR agonist, CDCA, were more resistant to ConA hepatitis, as indicated by reduced levels of alanine transaminase/aspartate aminotransferase and aminotransferases. The activation of FXR ameliorated hepatocyte apoptosis, as demonstrated by TUNEL analysis and downregulation of the Fas/Fas ligand, tumor necrosis factor‑related apoptosis‑inducing ligand and caspase‑3. Taken together, FXR activation ameliorated liver injury and suppressed inflammatory cytokines in ConA‑induced hepatitis. FXR, therefore, exerts a protective role against ConA-induced apoptosis. PMID

  2. Salvianolic Acid B Attenuates Rat Hepatic Fibrosis via Downregulating Angiotensin II Signaling

    Shu Li

    2012-01-01

    Full Text Available The renin-angiotensin system (RAS plays an important role in hepatic fibrosis. Salvianolic acid B (Sal B, one of the water-soluble components from Radix Salviae miltiorrhizae, has been used to treat hepatic fibrosis, but it is still not clear whether the effect of Sal B is related to angiotensin II (Ang II signaling pathway. In the present study, we studied Sal B effect on rat liver fibrosis and Ang-II related signaling mediators in dimethylnitrosamine-(DMN- induced rat fibrotic model in vivo and Ang-II stimulated hepatic stellate cells (HSCs in vitro, with perindopril or losartan as control drug, respectively. The results showed that Sal B and perindopril inhibited rat hepatic fibrosis and reduced expression of Ang II receptor type 1 (AT1R and ERK activation in fibrotic liver. Sal B and losartan also inhibited Ang II-stimulated HSC activation including cell proliferation and expression of type I collagen I (Col-I and α-smooth muscle actin (α-SMA production in vitro, reduced the gene expression of transforming growth factor beta (TGF-β, and downregulated AT1R expression and ERK and c-Jun phosphorylation. In conclusion, our results indicate that Sal B may exert an antihepatic fibrosis effect via downregulating Ang II signaling in HSC activation.

  3. Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation.

    Lord, Caleb C; Ferguson, Daniel; Thomas, Gwynneth; Brown, Amanda L; Schugar, Rebecca C; Burrows, Amy; Gromovsky, Anthony D; Betters, Jenna; Neumann, Chase; Sacks, Jessica; Marshall, Stephanie; Watts, Russell; Schweiger, Martina; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Lathia, Justin D; Sakaguchi, Takuya F; Lehner, Richard; Haemmerle, Guenter; Zechner, Rudolf; Brown, J Mark

    2016-07-26

    Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes. PMID:27396333

  4. Attenuated viral hepatitis in Trem1-/- mice is associated with reduced inflammatory activity of neutrophils.

    Kozik, Jan-Hendrik; Trautmann, Tanja; Carambia, Antonella; Preti, Max; Lütgehetmann, Marc; Krech, Till; Wiegard, Christiane; Heeren, Joerg; Herkel, Johannes

    2016-01-01

    TREM1 (Triggering Receptor Expressed on Myeloid Cells 1) is a pro-inflammatory receptor expressed by phagocytes, which can also be released as a soluble molecule (sTREM1). The roles of TREM1 and sTREM1 in liver infection and inflammation are not clear. Here we show that patients with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection manifest elevated serum levels of sTREM1. In mice, experimental viral hepatitis induced by infection with Lymphocytic Choriomeningitis Virus (LCMV)-WE was likewise associated with increased sTREM1 in serum and urine, and with increased TREM1 and its associated adapter molecule DAP12 in the liver. Trem1-/- mice showed accelerated clearance of LCMV-WE and manifested attenuated liver inflammation and injury. TREM1 expression in the liver of wild-type mice was mostly confined to infiltrating neutrophils, which responded to LCMV by secretion of CCL2 and TNF-α, and release of sTREM1. Accordingly, the production of CCL2 and TNF-α was decreased in the livers of LCMV-infected Trem1-/- mice, as compared to LCMV-infected wildtype mice. These findings indicate that TREM1 plays a role in viral hepatitis, in which it seems to aggravate the immunopathology associated with viral clearance, mainly by increasing the inflammatory activity of neutrophils. PMID:27328755

  5. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    Qin Feng

    2013-01-01

    Full Text Available Qushi Huayu Decoction (QHD, a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK in vivo and in vitro. Nonalcoholic fatty liver (NAFL model was duplicated with high-fat diet in rats and with free fatty acid (FFA in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c, alanine aminotransferase (ALT, and aspartate aminotransferase (AST levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1 and carbohydrate-responsive element-binding protein (ChREBP in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro.

  6. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia

    Hilliard, Kristie L.; Allen, Eri; Traber, Katrina E.; Kim, Yuri; Wasserman, Gregory A.; Jones, Matthew R.; Mizgerd, Joseph P.; Quinton, Lee J.

    2015-01-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis a...

  7. Stellate nonhereditary idiopathic foveomacular retinoschisis concomitant to exudative maculopathies.

    Casalino, G; Upendran, M; Bandello, F; Chakravarthy, U

    2016-05-01

    PurposeTo report the clinical course of patients presenting with stellate nonhereditary idiopathic foveomacular retinoschisis (SNIFR) concomitant with exudative maculopathies.MethodsRetrospective case series. Multimodal imaging findings, including spectral-domain optical coherence tomography (SD-OCT) were reviewed. Genetic testing for the RS1 gene was performed in one patient.ResultsWe identified two female patients who fit the definition of SNIFR and presented with concomitant neovascular age-related macular degeneration (n-AMD). In both the patients, SD-OCT showed exudative macular features and splitting (bilateral in patient 1, unilateral in patient 2) of the outer plexiform layer (OPL) in the macula with no other evidence of hereditary or an acquired predisposing condition. Genetic testing excluded mutation of RS1 gene in patient 1. The fundi of both the patients showed characteristic signs of active choroidal neovascularization (CNV) and following anti-VEGF treatment, visual acuity improved and CNV-related exudative changes resolved. However, the split along the OPL remained unaltered.ConclusionsSNIFR may be associated with n-AMD. It is important to recognise the presence of retinoschisis when there is other exudative pathology as the former may be misinterpreted as intraretinal fluid, prompting unnecessary treatment. PMID:26915743

  8. Comparative analysis of disease activity in patients of chronic hepatitis B virus, with and without super infection with hepatitis D virus; an experience at tertiary care centre

    The hepatitis D virus super-infection contributes significantly to the morbidity and mortality of hepatitis B virus infection. The objectives were to describe the incidence of Hepatitis D virus and comparative analysis of disease activity in patients of chronic hepatitis B virus, with and without super-infection of hepatitis D virus. This Cross-sectional comparative study was conducted at Department of Medicine and Gastroenterology Clinic Jinnah Postgraduate Medical Centre, Karachi, Pakistan from February 2007 to July 2007. HBsAg positive patients who attended our Gastroenterology clinic were selected for the study. After screening for Anti-HDV these patients were segregated in to Anti-HDV positive and negative groups. Data was analyzed on SPSS 12. Eighty-four patients were selected. Seventy-three patients who fulfilled the inclusion criteria were enrolled in to the study. Anti-HDV was positive in 23 (31.5%) patients. Among these 23 anti-HDV positive, HDV-RNA was detected in 15 (75%) patients. The differences of age, gender, marital status and area of residence whether rural or urban were not significant between the two groups. HBV-DNA was significantly suppressed in majority of anti- HDV positive patients (p=0.019). Mean serum ALT levels were significantly higher in patients who had HDV infection (p=0.014). HDV infection was common in this series of patients with a frequency of 31.5%. All patients of chronic HBV should be screened for HDV whether they are asymptomatic HBV carriers or have chronic active hepatitis particularly when they have raised serum ALT. (author)

  9. Hormonal Regulation of Hepatic Drug Metabolizing Enzyme Activity During Adolescence

    Kennedy, M J

    2008-01-01

    Activities of drug metabolizing enzymes (DME) are known to change throughout the course of physical and sexual maturation with the greatest variability noted during infancy and adolescence. The mechanisms responsible for developmental regulation of DME are currently unknown. However, the hormonal changes of puberty/adolescence provide a theoretical framework for understanding biochemical regulation of DME activity during growth and maturation. Important information regarding potential influen...

  10. Seric and hepatic NTPDase and 5' nucleotidase activities of rats experimentally infected by Fasciola hepatica.

    Doleski, Pedro H; Mendes, Ricardo E; Leal, Daniela B R; Bottari, Nathieli B; Piva, Manoela M; DA Silva, Ester S; Gabriel, Mateus E; Lucca, Neuber J; Schwertz, Claiton I; Giacomim, Patrícia; Morsch, Vera M; Schetinger, Maria R C; Baldissera, Matheus D; DA Silva, Aleksandro S

    2016-04-01

    The enzymatic activities of NTPDase and 5'nucleotidase are important to regulate the concentration of adenine nucleotides, known molecules involved in many physiological functions. Therefore, the objective of this study was to evaluate the activity of NTPDase and 5'nucleotidase in serum and liver tissue of rats infected by Fasciola hepatica. Rats were divided into two groups: uninfected control and infected. NTPDase activity for adenosine triphosphate (ATP) and ADP substrates in the liver was higher compared with the control group at 15 days post-infection (PI), while seric activity was lower. In addition, seric and hepatic samples did not show changes for 5'nucleotidase activity at this time. On the other hand, either NTPDase or 5'nucleotidase activities in liver homogenate and serum were higher at 87 days PI. Early in the infection, low NTPDase activity maintains an increase of ATP in the bloodstream in order to activate host immune response, while in hepatic tissue it decreases extracellular ATP to maintain a low inflammatory response in the tissue. As stated, higher NTPDase and 5'nucleotidase activities 87 days after infection in serum and tissue, probably results on an increased concentration of adenosine molecule which stimulates a Th2 immune response. Thus, it is possible to conclude that F. hepatica infections lead to different levels of nucleotide degradation when considering the two stages of infection studied, which influences the inflammatory and pathological processes developed by the purinergic system. PMID:26928238

  11. Bloqueo de ganglio estrellado Stellate ganglion block

    C. E. Restrepo-Garcés

    2012-04-01

    Full Text Available El bloqueo de ganglio estrellado es una de las técnicas intervencionistas más frecuentemente empleadas en medicina del dolor. Sus indicaciones incluyen patologías dolorosas y no-dolorosas. Aunque las descripciones originales se fundamentan en límites anatómicos, el uso de guía fluoroscópica o el empleo de el ultrasonido, deben ser considerados el enfoque estándar. En el presente manuscrito se realiza una descripción detallada de las indicaciones y de las técnicas (fluoroscópica y ultrasonido guiadas por imagen. Se destaca que el empleo del ultrasonido tiene la ventaja específica de visualizar las estructuras viscerales relacionadas (esófago, las vasculares (vasos tiroideos inferiores, carótida y finalmente evalúa la dispersión del inyectado en tiempo real en el músculo longus colli.Stellate ganglion block is a frequent interventional technique on the field of pain medicine. The indications included painful and non-painful pathologies. The original descriptions were based on anatomical landmarks, but the use of fluoroscopy or ultrasound as a guidance, should be the standard approach. In the present article there is a detailed description of the indications and the image guided techniques (fluoroscopy and ultrasound. The manuscript highlight the advantage of the ultrasound visualizing the visceral structures (esophagus, the vascular bed (inferior thyroid vessels, carotid artery and finally on real time detect the dispersion of the injectate.

  12. Acute effects of oral and intravenous ethanol on rat hepatic enzyme activities.

    Stifel, F B; Greene, H L; Lufkin, E G; Wrensch, M R; Hagler, L; Herman, R H

    1976-05-28

    1. Oral administration of ethanol (3 ml) of 95% in 12 ml total volume over a two day period) significantly decrease plasma glucose and insulin levels and the activities of two key gluconeogenic enzymes, pyruvate carboxylase (pyruvate: CO2 ligase (ADP), EC 6.4.1.1) and fructose diphosphatase, (D-Fru-1,6-P2 1-phosphohydrolase, EC 3.1.3.11), and one glycolytic enzyme, fructose-1,6-P2 aldolase (Fru-1,6-P2 D-glyceraldehyde-3-P lyase, EC 4.1.2.13). In each instance, the administration of 2400 mug daily of oral folate in conjuction with the ethanol prevented these alterations in carbohydrate metabolism. 2. Intravenous injection of ethanol produced a rapid decrease (within 10--15 min) in the activities of hepatic phosphofructokinase, (ATP:D-fructose-6-phosphate 6-phosphotransferase, EC 2.7.1.11), pyruvate kinase, (ATP:pyruvate phosphotransferase, EC 2.7.1.40), fructose diphosphatase and fructose-1,6-P2 aldolase. 3. Intravenous ethanol significantly increased hepatic cyclic AMP concentration approximately 60% within 10 min, while oral ethanol did not alter hepatic cyclic AMP concentrations. 4. These data confirm the known antagonism ethanol and folate and suggest that oral folate might offer a protective effect against hypoglycemia in rats receiving ethanol. PMID:179581

  13. Serological markers of hepatitis B and C in patients with HIV/AIDS and active tuberculosis.

    Araújo-Mariz, Carolline; Lopes, Edmundo Pessoa; Ximenes, Ricardo A A; Lacerda, Heloísa R; Miranda-Filho, Demócrito B; Montarroyos, Ulisses R; Barreto, Silvana; Salustiano, Daniela Medeiros; Albuquerque, Maria Fátima Pessoa Militão

    2016-06-01

    Infection with hepatitis B virus (HBV) and C virus (HCV) are common in patients with HIV/AIDS and tuberculosis (TB). This is a cross-sectional study with patients infected with HIV/AIDS and active TB in Recife, Brazil, aiming to verify the prevalence of markers for HBV: antibody to hepatitis B core antigen (anti-HBc); and HCV: antibody to hepatitis C virus (anti-HCV) by chemiluminescence, and to identify the frequency of associated factors. Data were collected through questionnaires, and blood was drawn from patients for analysis. We used the chi-square test and the Fisher exact test when necessary. We conducted a bivariate logistic regression analysis and the magnitude of the associations was expressed as odds ratio (OR) with a confidence interval of 95%. Among 166 patients studied with HIV/AIDS and active TB, anti-HBc was positive in 61 patients [36.7%; 95%CI (29.4-44.6%)] and anti-HCV in 11[6.6%; 95%CI (3.4-11.5%)]. In the logistic regression analysis, male sex, and age ≥40 years were independent factors associated with the occurrence of anti-HBc. In conclusion, we verified a high frequency of HBV contact marker and a low frequency of HCV markers in patients with HIV/AIDS and TB in Recife. J. Med. Virol. 88:996-1002, 2016. © 2015 Wiley Periodicals, Inc. PMID:26580855

  14. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    Srilatha Badaboina

    2015-07-01

    Full Text Available Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK and p38 slightly up regulated and intracellular reactive oxygen species (ROS increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.

  15. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    Marc Le Vee

    Full Text Available Diesel exhaust particles (DEPs are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC uptake transporters organic anion-transporting polypeptides (OATP 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP, whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP. Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a reference activator of the aryl hydrocarbon receptor (AhR pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute

  16. Antioxidant and Anti-Hepatitis C Viral Activities of Commercial Milk Thistle Food Supplements

    Kevin Anthony

    2013-02-01

    Full Text Available Milk thistle dietary supplements that contain silymarin are widely marketed and used in the USA and other countries for liver enhancement and recovery. More recently, silymarin has also been identified as a possible antiviral for the treatment of hepatitis C virus (HCV infection. To assess different brands of commercially sold silymarin, 45 products were collected from local stores and analyzed for their silymarin content, antioxidant activities, and antiviral activity against HCV. Antioxidant activity was measured as radical scavenging activity using DPPH and by estimating their antioxidant capacity as trolox equivalent. Anti-HCV activity was measured in an HCV genotype 1b replication inhibition assay. Samples were found to vary widely in their silymarin content, with some samples having none or very low concentrations while silymarin represented higher than 80% of other samples. Both antioxidant and anti-HCV activity correlated with the overall level of silymarin.

  17. Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems.

    Wu, S-F; Lin, C-K; Chuang, Y-S; Chang, F-R; Tseng, C-K; Wu, Y-C; Lee, J-C

    2012-05-01

    Chronic hepatitis C virus (HCV) infection ultimately leads to chronic hepatitis, hepatic cirrhosis and hepatocellular carcinoma (HCC). As the standard treatment is not completely efficacious, a safer and more effective agent against HCV infection needs to be developed. In this report, we demonstrated that 3-hydroxy caruilignan C (3-HCL-C) isolated from Swietenia macrophylla stems exhibited high anti-HCV activity at both protein and RNA levels at nontoxic concentrations, with an EC(50) value of 10.5 ± 1.2 μm. Combinations of 3-HCL-C and interferon-α (IFN-α), an HCV NS5B polymerase inhibitor (2'-C-methylcytidine; NM-107) or an HCV NS3/4A protease inhibitor (Telaprevir; VX-950) increased the suppression of HCV RNA replication. The results suggested that 3-HCL-C may be a potential anti-viral agent. We then demonstrated that 3-HCL-C interfered with HCV replication by inducing IFN-stimulated response element transcription and IFN-dependent anti-viral gene expression. PMID:22497816

  18. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    Hwa-Young Lee; Geum-Hwa Lee; Mi-Rin Lee; Hye-Kyung Kim; Nan-young Kim; Seung-Hyun Kim; Yong-Chul Lee; Hyung-Ryong Kim; Han-Jung Chae

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated tri...

  19. Endothelial activation markers (VCAM-1, vWF in patients with chronic hepatitis C and insulin resistance

    T. V. Antonova

    2012-01-01

    Full Text Available Blood markers of endothelial activation (sVCAM-1, vWF: Ag in patients with chronic hepatitis C in the presence of insulin resistance, metabolic syndrome and its components had been evaluated. The study included 69 patients with chronic hepatitis C with oligosymptomatic the disease. In one third of cases of chronic hepatitis C (33.3% showed improvement in the blood content of sVCAM-1 and / or vWF: Ag. In patients with chronic hepatitis C with insulin resistance, metabolic syndrome significantly more often found signs adhesion of endothelial dysfunction (increased blood concentrations of sVCAM-1 than in patients without these disorders. Found that in patients with severe hepatic fibrosis in patients with chronic hepatitis C blood concentration sVCAM-1 is significantly higher compared to patients with early stages of fibrosis (F0-F2, including those in patients without insulin resistance. These data suggest the multivariate development of endothelial dysfunction in chronic hepatitis C.

  20. Khat (Catha edulis) generates reactive oxygen species and promotes hepatic cell apoptosis via MAPK activation.

    Abid, Morad Dirhem Naji; Chen, Juan; Xiang, Min; Zhou, Jie; Chen, Xiaoping; Gong, Feili

    2013-08-01

    A number of studies have suggested an association between khat (Catha edulis) chewing and acute liver lesions or chronic liver disease. However, little is known about the effects of khat on hepatic cells. In the current study, we investigated the mechanism behind khat-induced apoptosis in the L02 human hepatic cell line. We used cell growth inhibition assay, flow cytometry and Hoechst 33258 staining to measure hepatocyte apoptosis induced by khat. Western blot analysis was used to detect the expression levels of caspase-8 and -9, as well as those of Bax and Bcl-2. We also measured reactive oxygen species production. The results indicated that khat induced significant hepatocyte apoptosis in L02 cells. We found that khat activated caspase-8 and -9, upregulated Bax protein expression and downregulated Bcl-2 expression levels, which resulted in the coordination of apoptotic signals. Khat-induced hepatocyte apoptosis is primarily regulated through the sustained activation of the c-Jun NH2-terminal kinase (JNK) pathway and only partially via the extracellular signal-regulated kinase (ERK) cascade. Furthermore, the khat-induced reactive oxygen species (ROS) production and the activation of the ROS scavenger, N-acetyl-L-cysteine (NAC), attenuated the khat-induced activation of JNK and ERK. Our results demonstrate that khat triggers the generation of intracellular ROS and sequentially induces the sustainable activation of JNK, which in turn results in a decrease in cell viability and an increase in cell apoptosis. PMID:23708648

  1. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  2. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling

  3. Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation.

    Hwa-Young Lee

    Full Text Available Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia.

  4. Inhibitory effects of idoxifene on hepatic fibrosis in rats

    Ya-jun ZHOU; Dong-mei YIN; Hong-shan CHEN; Jian-hua SHI; Bao-xi SHA; Xing WANG

    2005-01-01

    Aim: To investigate the effects of a tissue-specific selective estrogen receptor modulator, idoxifene, on hepatic fibrosis in rats. Methods: Hepatic fibrosis was induced by dimethylnitrosamine (DMN) in male rats. The DMN model of hepatic fibrosis and the hepatocytes undergoing oxidative stress were treated with idoxifene respectively. The effect of idoxifene on hepatic fibrosis in the DMN model was examined by immunohistochemistry. Effects of idoxifene on antioxidant enzyme levels of copper, zinc-dependent superoxide dismutase (CuZn-SOD),and cellular glutathione peroxidase (GSHPx) were measured by ELISA. Effects of idoxifene on activation, proliferation, and apoptosis of culture-activated hepatic stellate cells (HSC) were analysed by immunohistochemistry, bromodeoxyuridine (BrdU) uptake, and flow cytometry, respectively. Results: Idoxifene could mark edly suppress DMN-induced hepatic fibrosis in male rats. A treatment of 0.4mg.kg-1.d-1 of idoxifene reduced the protein levels of collagen in the DMN model by 41.19% (P<0.05). Protein level of CuZn-SOD and activitiy of GSHPx in liver treated with DMN plus 0.4 mg.kg-1.d-1 of idoxifene were 2.65 times (P<0.05) and 2.08 times greater (P<0.05) than that of liver treated with DMN alone respectively.The protein level of CuZn-SOD and activity of GSHPx in cultured rat hepatocytes treated with ferric nitrilotriacetate (FeNTA) plus 1 × 10-7 mol/L of idoxifene were 3.43 times (P<0.05) and 2.52 times (P<0.05) greater than that treated with FeNTA alone. Idoxifene could inhibit HSC activation. Compared with the control, the uptake of BrdU in HSC cultured with 1× 10-7 mol/L of idoxifene was reduced by 51.87 % (P<0.05), and the number of apoptotic HSCs cultured with 1 × 10-7 mol/L of idoxifene increased by 94.52% (P<0.05). Conclusion: Idoxifene showed inhibitory action on hepatic fibrosis in male rats.

  5. Effects of special blue fluorescent light on hepatic mixed-function oxidase activity in the rat

    Davis, D.R.; Yeary, R.A.; Randall, G.

    1981-01-01

    Phototherapy has been widely used in the treatment of neonatal hyperbilirubinemia. Recent reports, however, have indicated that fluorescent light may be toxic and mutagenic to mammalian cells. these findings suggest possible long-term side effects with the use of phototherapy. This study was undertaken to determine the effects of phototherapy on hepatic microsomal enzyme activity. The exposure of Sprague-Dawley and Gunn rats to special blue fluorescent light at an average irradiance of 1,200 microW/cm2 resulted in no significant changes in liver microsomal enzyme activity for aniline hydroxylase, p-nitroanisole-O-demethylase, ethylmorphine-N-demethylase, cytochrome c reductase or the quantity of cytochrome P-450. A significant decrease in aniline hydroxylase and p-nitroanisole-O-demethylase activity was observed when liver microsomes were exposed in vitro to special blue fluorescent light. Photoactivated bilirubin did not effect the activity of the mixed-function oxidase enzymes measured under the conditions of this study.

  6. Demethyleneberberine Protects against Hepatic Fibrosis in Mice by Modulating NF-κB Signaling

    Yongchen Wang

    2016-06-01

    Full Text Available Demethyleneberberine (DMB is an essential metabolite of Berberine (BBR in vivo. Recent reports have revealed multiple novel therapeutic applications of BBR. However, the pharmacological activities of DMB remain to be elucidated. This study aimed to demonstrate the hepatoprotective and anti-fibrotic effects of DMB both in vitro and in vivo. Here we showed that DMB protects against thioacetamide (TAA-induced hepatic fibrosis in mice and exhibits a higher safety profile as compared to BBR. Flow cytometry and Western blotting analysis showed that DMB is able to suppress the activation of hepatic stellate cells (HSCs and induce cell apoptosis through the nuclear factor-κB (NF-κB cascade. Immunohistochemical (IHC and quantitative polymerase chain reaction (qPCR analysis indicated that DMB also has inhibitory effects on collagen synthesis and is able to increase collagen degradation by blocking the transforming growth factor β 1 (TGF-β1-Smad signaling and reducing the expression of matrix metalloproteinases (MMPs and tissue inhibitors of MMP (TIMPs. These findings indicate that DMB has the potential to attenuate hepatic fibrosis via suppressing HSC activation.

  7. Demethyleneberberine Protects against Hepatic Fibrosis in Mice by Modulating NF-κB Signaling.

    Wang, Yongchen; Zhao, Zheng; Yan, Yan; Qiang, Xiaoyan; Zhou, Cuisong; Li, Ruiyan; Chen, Huan; Zhang, Yubin

    2016-01-01

    Demethyleneberberine (DMB) is an essential metabolite of Berberine (BBR) in vivo. Recent reports have revealed multiple novel therapeutic applications of BBR. However, the pharmacological activities of DMB remain to be elucidated. This study aimed to demonstrate the hepatoprotective and anti-fibrotic effects of DMB both in vitro and in vivo. Here we showed that DMB protects against thioacetamide (TAA)-induced hepatic fibrosis in mice and exhibits a higher safety profile as compared to BBR. Flow cytometry and Western blotting analysis showed that DMB is able to suppress the activation of hepatic stellate cells (HSCs) and induce cell apoptosis through the nuclear factor-κB (NF-κB) cascade. Immunohistochemical (IHC) and quantitative polymerase chain reaction (qPCR) analysis indicated that DMB also has inhibitory effects on collagen synthesis and is able to increase collagen degradation by blocking the transforming growth factor β 1 (TGF-β1)-Smad signaling and reducing the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs). These findings indicate that DMB has the potential to attenuate hepatic fibrosis via suppressing HSC activation. PMID:27376272

  8. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    Fungjou Lu; Youngshin Chen (National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Biochemistry); Tienshang Huang (National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  9. Clinical significance of activity of ALT enzyme in patients with hepatitis C virus

    2007-01-01

    AIM: To investigate serum alanine aminotransferase (ALT) levels in relation to the clinical, biochemical,ultrasonographic and histological characteristics of patients with hepatitis C virus.METHODS: Duration of disease, HCV-RNA, liver steatosis, and the hepatitis activity index (HAI) were correlated with serum ALT in 36 patients with HCV. ALT values were also investigated in 16 control subjects without any liver diseases.RESULTS: In bivariate analyses, ALT levels correlated with duration of HCV infection (P< 0.01), HCV-RNA (P<0.05), and the HAI(P<0.01). Among the components of the HAI, ALT concentrations were significantly associated with pedportal bridging/necrosis (P<0.01) and fibrosis (P<0.05). In multivariate analysis, periportal bridging/necrosis (β = 0.508; P < 0.01), duration of HCV infection (β = 0.413; P < 0.01), and HCV-RNA (β= 0.253; P < 0.05)were independently associated with ALT activity. The normal ALT activity for men and women was < 23 IU/L and < 22 IU/L, respectively.CONCLUSION: In patients with HCV, alterations in the liver tissue as reflected by ALT elevation are mainly associated with periportal bridging/necrosis, viral load and duration of disease. A cut-off value < 23 IU/L distinguished with high diagnostic accuracy healthy controls from patients with HCV.

  10. Relationship between entero-hepatic bile acid circulation and interdigestive migrating myoelectrical activity in rats

    Ping Fang; Lei Dong; Wei-Jin Zhang; Jin-Yan Luo

    2005-01-01

    AIM: To investigate the effects of entero-hepatic bile acid circulation on the inter-digestive migrating myoelectrical complex (MMC) in rats.METHODS: Thirty-two rats were divided into four groups.Three pairs of bipolar silver electrodes were chronically implanted in the antrum, duodenum and jejunum. Three groups of them were ligated around the upper part of common bile duct (CBD). The experiments were performed in conscious and fasting state. The gastrointestinal myoelectrical activity was recorded. Ursodeoxycholic acid (UDCA) and saline were then perfused into stomachs of two groups with CBD obstruction and the effects of them on the MMC were observed.RESULTS: A typical pattern of MMC was observed in normal fasting rats. MMC of antral and duodenal origin disappeared temporarily in earlier stage of CBD obstruction. While MMC of jejunum origin appeared.increased MMC cycle duration was seen after 4 d in rats with CBD obstruction. The MMC after CBD obstruction was characterized by an increased duration of phase Ⅱ-like activity and decreased duration of phase Ⅰ & Ⅲ activity.Perfusion into stomachs with UDCA resulted in a shorter MMC cycle duration and a longer duration of phase Ⅲ of duodenal origin compared to the normal group.CONCLUSION: Entero-hepatic bile acid circulation initiates inter-digestive MMC of duodenal origin.

  11. MicroRNA-17-5p-activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis

    Yu, Fujun; Lu, Zhongqiu; HUANG, KATE; Wang, Xiaodong; Xu, Ziqiang; Chen, Bicheng; Dong, Peihong; Zheng, Jianjian

    2015-01-01

    Aberrant Wnt/β-catenin pathway contributes to the development of liver fibrosis. MicroRNAs (MiRNAs) are found to act as regulators of the activation of hepatic stellate cell (HSC) in liver fibrosis. However, whether miRNAs activate Wnt/β-catenin pathway in activated HSCs during liver fibrosis is largely unknown. In this study, we found that Salvianolic acid B (Sal B) treatment significantly inhibited liver fibrosis in CCl4-treated rats, HSC-T6 cells and rat primary HSCs, resulting in the supp...

  12. Hepatic intestinal uptake and release of catecholamines in alcoholic cirrhosis. Evidence of enhanced hepatic intestinal sympathetic nervous activity

    Henriksen, Jens Henrik Sahl; Ring-Larsen, H; Christensen, N J

    1987-01-01

    Hepatic intestinal and whole body plasma clearance and appearance of noradrenaline (NA) was quantified in patients with alcoholic cirrhosis (n = 12) and in controls (n = 6). As NA may be released as well as removed in the same vascular bed, infusion of tritium labelled NA (3H-NA) was carried out...... during hepatic vein catheterisation in order to determine both flux rates. In alcoholic cirrhosis plasma concentrations of endogenous NA and adrenaline (A) were significantly above control values (NA: median 2.4 v 1.7 nmol/l, p less than 0.02; A: 0.38 v 0.19 nmol/l, p less than 0.01). Whole body...

  13. "Liverscore" is predictive of both liver fibrosis and activity in chronic hepatitis C

    Shoukat Ali Arain; Qamar Jamal; Amir Omair

    2011-01-01

    AIM: To formulate a noninvasive index predictive of severity of liver fibrosis and activity in chronic hepatitis C.METHODS: This cross sectional study was conducted on polymerase chain reaction positive, treatment na(i)ve patients. Fibrosis was staged on a five point scale from F0-F4 and activity was graded on a four point scale from A0-A3, according to the METAVIR system. Patients were divided into two overall severity groups, minimal disease (< F2 and < A2) and significant disease (≥ F2 or ≥ A2). Eleven markers were measured in blood. Statistically, the primary outcome variable was identification of minimal and significant overall disease. Indices were formulated using β regression values of different combinations of nine statistically significant factors.Diagnostic performance of these indices was assessed through receiver-operating characteristic curve analysis.RESULTS: A total of 98 patients were included and of these 46 had an overall clinically significant disease. Our final six marker index, Liverscore for Hepatitis C, consisted of age, alanine transaminase, gamma-glutamyl transpeptidase, apolipoprotein A-1, alpha-2 macroglobulin and hyaluronic acid. The area under the curve was found to be 0.813. On a 0-1 scale, negative predictive value at a cutoff level of ≤ 0.40 was 83%, while positive predictive value at ≥ 0.80 remained 89%. Altogether,61% of the patients had these discriminative scores.CONCLUSION: This index is discriminative of minimal and significant overall liver disease in a majority of chronic hepatitis C patients and can help in clinical decision making.

  14. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC5) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 ± 21 μM. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 μM) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin

  15. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    Letcher, R.J.; Norstrom, R.J. [Carleton Univ., Ottawa, Ontario (Canada). Centre for Analytical and Environmental Chemistry]|[Environment Canada, Ottawa, Ontario (Canada). Canadian Wildlife Service

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  16. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-01

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. PMID:27233607

  17. T cell immune response is correlated with fibrosis and inflammatory activity in hepatitis B cirrhotics

    Jie-Ting Tang; Jing-Yuan Fang; Wei-Qi Gu; En-Lin Li

    2006-01-01

    AIM: To explore the relationship among interferon-γ (IFN-γ) activity, fibrogenesis, T cell immune responses and hepatic inflammatory activity.METHODS: Peripheral blood samples from a total of 43 hepatitis B cirrhotic patients (LC) and 19 healthy controls (NC) were collected to measure their serum levels of IFN-γ, interleukin-2 (IL-2), soluble interleukin-2 receptor (sIL-2R), interleukin-10 (IL-10) and three serological markers of fibrosis including hyaluronic acid (HA), procollagen type Ⅲ peptide (PⅢP), and type Ⅳ collagen were measured using a double antibody sandwich ELISA. Also,serum total bilirubin (TB) and alanine aminotransferase (ALT) were measured by routine measures.RESULTS: The concentrations of serological markers of fibrosis in patients with active cirrhosis (ALC) were significantly higher than those in stationary liver cirrhosis (SLC) or NC groups. The levels of serological markers in HBeAg-positive patients were significantly higher than those in HBeAg-negative patients. In SLC and ALC patients, a negative linear correlation was found between IFN-γ levels and the serological markers of fibrosis. IFN-γ and IL-2 levels in the ALC group were significantly higher than those in the SLC and NC groups, but the statistical difference was not significant between the latter two. In contrast, IL-10 levels in the SLC group were significantly higher than that in the NC group, but no significant difference was found between SLC and ALC groups. The sIL-2R level was elevated gradually in all these groups,and the differences were significant. Positive linear correlations were seen between IFN-γ activity and ALT levels (r = 0.339, P < 0.05), and IL-2 activity and TB levels (r = 0.517, P < 0.05). sIL-2R expression was positively correlated with both ALT and TB levels (r = 0.324, 0.455,P < 0.05), whereas there was no statistically significant correlation between IL-10 expression and serum ALT and TB levels (r = -0.102, -0.093, P > 0.05). Finally

  18. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko [Alliance for Research on North Africa (ARENA), University of Tsukuba, Ibaraki 305-8572 (Japan); Faculty of Life and Environment, University of Tsukuba, Ibaraki 305-8572 (Japan); Neffati, Mohamed [Arid Zone Research Institute (IRA), Médenine 4119 (Tunisia); Akita, Toru; Maejima, Kazuhiro [Nippon Shinyaku CO., LTD., Kyoto 601-8550 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Mori, Naoki; Irie, Kazuhiro [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)

    2013-10-18

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPARγ agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  19. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPARγ agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists

  20. The role of Kupffer cells in complement activation in D-Galactosamine/lipopolysaccharide-induced hepatic injury of rats.

    Matsuo, Ryuichi; Ukida, Minoru; Nishikawa, Yoshiyuki; Omori, Nobuhiko; Tsuji, Takao

    1992-01-01

    To investigate the role of Kupffer cells in complement activation, we used a rat model of acute hepatic injury induced by D-Galactosamine (GalN) and lipopolysaccharide (LPS). In in vivo study, minimal histological changes were observed after i.p. GalN (200 mg/kg) single administration. Complement hemolytic activity (CH 50) decreased to 70% of its initial value 2-3 h after i.p. LPS (1.5 mg/kg) single administration. Massive hepatic necrosis was induced by simultaneous administration of GalN an...

  1. Controversial issues regarding the roles of IL-10 and IFN-γ in active/inactive chronic hepatitis B

    Hossein; Khorramdelazad; Gholamhossein; Hassanshahi; Mohammad; Kazemi; Arababadi

    2014-01-01

    According to the important roles played by cytokines in induction of appropriate immune responses against hepatitis B virus(HBV),Dimitropoulou et al have examined the important cytokines in their patients.They showed that the serum levels of interleukin 10(IL-10)and interferon-γ(IFN-γ)were decreased in patients with HBeAg-negative chronic active hepatitis B compared with the inactive hepatitis B virus carriers(Dimitropoulou et al 2013).The controversy can be considered regarding the decreased serum levels of IFN-γin the HBeAg-negative chronic active hepatitis B patients.They concluded that subsequent to decreased expression of IFN-γ,the process of HBV proliferation led to liver diseases.Previous studies stated that HBV is not directly cytopathic for the infected hepatocytes and immune responses are the main reason for destruction of hepatocytes(Chisari et al,2010).Scientists believe that immune responses against HBV are stronger in active forms of chronic HBV infected patients than inactive forms(Zhang et al,2012).Therefore,the findings from Dimitropoulou et al may deserve further attention and discussion.Additionally,downregulation of IL-10 inchronically active hepatitis B infected patients has also confirmed our claim.IL-10 is an anti-inflammatory cytokine and its expression is increased in inactive forms in order to downregulate immune responses(Arababadi et al,2012).Thus,based on the results from Dimitropoulou et al,it can be concluded that increased immune responses in chronically active hepatitis B infected patients are related to declined expression of IL-10 and interestingly IFN-γis not involved in induction of immune responses in these patients.

  2. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR

  3. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    Ngo, HT; Pham, Long; Kim, JW;

    2013-01-01

    , approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA and......Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...

  4. Activation of IFN-γ/STAT/IRF-1 in hepatic responses to Klebsiella pneumoniae infection.

    Yi-Chun Lin

    Full Text Available BACKGROUND: Klebsiella pneumoniae-caused liver abscess (KLA has become a health problem in Taiwan and is continually reported in other countries. Diabetes mellitus, the most common metabolic disorder, underlies half of the KLA patients in Taiwan. The clinical impact of KLA has been well-documented. Nevertheless, the molecular basis regarding how K. pneumoniae causes liver infection, particularly in diabetic individuals, remains unclear. METHODOLOGY/PRINCIPLE FINDINGS: Auto-bioluminescence-expressing K. pneumoniae was inoculated into diabetic mice and age-match naïve control. With the use of in vivo imaging system, translocation of the bioluminescence-expressing K. pneumoniae from intestine to extraintestinal organs, mainly the liver, was noted in 80% of the diabetic mice, whereas the same bacteria causes extraintestinal infections in only 31% of naïve mice. Besides increased morbidity, the severity of hepatic tissue injury was also enhanced in the K. pneumoniae-infected diabetic mice. Upon K. pneumoniae infection, IFN-γ production was significantly evoked in the liver. To mediate IFN-γ signal, STAT (signal transducers and activators of transcription 1 and 3 were activated in hepatocytes, and so was the expression of IRF (interferon regulatory factor-1. Moreover, accumulation of neutrophils which was triggered by prolonged production of IL-1β and MIP-2, and significant increases in the level of active caspase 3 and phospho-eIF2α, were exclusively revealed in the K. pneumoniae-infected diabetic mice. CONCLUSION: The activation of IFN-γ/STAT/IRF-1 signaling demonstrated by this work emphasizes the role of IFN-γ for mediating the hepatic response to K. pneumoniae infection.

  5. [A Case of Severe Chronic Active Epstein-Barr Virus Infection with Aplastic Anemia and Hepatitis].

    Lee, Ja In; Lee, Sung Won; Han, Nam Ik; Ro, Sang Mi; Noh, Yong Sun; Jang, Jeong Won; Bae, Si Hyun; Choi, Jong Young; Yoon, Seung Kew

    2016-01-25

    Epstein-Barr virus (EBV) causes various acute and chronic diseases. Chronic active EBV infection (CAEBV) is characterized by infectious mononucleosis-like symptoms that persist for more than 6 months with high viral loads in peripheral blood and/or an unusual pattern of anti-EBV antibodies. Severe CAEBV is associated with poor prognosis with severe symptoms, an extremely high EBV-related antibody titer, and hematologic complications that often include hemophagocytic lymphohistiocytosis. However, CAEBV which led to the development of aplastic anemia (AA) has not been reported yet. A 73-year-old woman was admitted to our hospital with intermittent fever, general weakness and elevated liver enzymes. In the serologic test, EBV-related antibody titer was elevated, and real-time quantitative-PCR in peripheral blood showed viral loads exceeding 10(4) copies/μg DNA. Liver biopsy showed characteristic histopathological changes of EBV hepatitis and in situ hybridization with EBV-encoded RNA-1 was positive for EBV. Pancytopenia was detected in peripheral blood, and the bone marrow aspiration biopsy showed hypocellularity with replacement by adipocytes. AA progressed and the patient was treated with prednisolone but deceased 8 months after the diagnosis due to multiple organ failure and opportunistic infection. Herein, we report a rare case of severe CAEBV in an adult patient accompanied by AA and persistent hepatitis. PMID:26809631

  6. Hepatic 5'-monodeiodinase activity in teleosts in vitro: A survey of thirty-three species.

    Leatherland, J F; Reddy, P K; Yong, A N; Leatherland, A; Lam, T J

    1990-01-01

    The in vitro hepatic 5'-monodeiodination of thyroxine (T4) to triiodothyronine (T3) in Oreochromis mossambicus, Channa striata, Clarias batrachus, Cyprinus carpio and Oxyeleotris marmorata was found to be time, pH and temperature dependent, and related to the amount of substrate (T4) and homogenate introduced into the reaction vessel, in a manner which was consistent with Menton-Michaelis kinetics, and thus indicative of an enzyme-regulated process. Dithiothreitol introduced into the reaction vessel stimulated T3 production in a dose-related manner.Hepatic 5'-monodeiodinase activity was also detected in a further 28 species of teleosts suggesting that the peripheral monodeiodination of T4, which is well-documented in salmonids, is also widespread amongst other teleost fishes. All species examined exhibited evidence of enzymatic deiodination, but there were marked differences in Km and Vmax values between the species. There was no apparent phylogenetic or environmental relationships to explain the widely divergent Km and/or Vmax values, nor was there a correlation between Km and Vmax when the species were considered together. PMID:24221892

  7. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  8. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  9. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    Adrie J. M. Verhoeven

    2009-10-01

    Full Text Available Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs and sterol regulatory element binding proteins (SREBPs, but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL. We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp. Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells.

  10. Hepatoprotective and anti-hepatitis C viral activity of Platycodon grandiflorum extract on carbon tetrachloride-induced acute hepatic injury in mice.

    Kim, Tae-Won; Lim, Jong-Hwan; Song, In-Bae; Park, Sang-Jin; Yang, Jae-Won; Shin, Jung Cheul; Suh, Joo-Won; Son, Hwa-Young; Cho, Eun-Sang; Kim, Myoung-Seok; Lee, Sang-Wook; Kim, Jong-Woo; Yun, Hyo-In

    2012-01-01

    The present study aims to evaluate the anti-HCV activity of hotwater extract from Platycodon grandiflorum (BC703) with HCV genotype 1b subgenomic replicon system and investigate its hepatoprotective activity on carbon tetrachloride (CCl(4))-induced acute liver damage in mice. BC703 produced significant hepatoprotective effects against CCl(4)-induced acute hepatic injury by decreasing the activities of serum enzymes, nitric oxide and lipid peroxidation. Histopathological studies further substantiated the protective effect of BC703. Furthermore, BC703 inhibited the HCV RNA replication with an EC(50) value and selective index (CC(50)/EC(50)) of 2.82 µg/mL and above 35.46, respectively. However, digested BC703 using a simulated gastric juice showed poor protective effect against CCl(4)-induced hepatotoxicity in mice and decreased anti-HCV activity as compared to the intact BC703. Although further studies are necessary, BC703 may be a beneficial agent for the management of acute hepatic injury and chronic HCV infection. PMID:22878389

  11. Specific activation of 2'-5'oligoadenylate synthetase gene promoter by hepatitis C virus-core protein: A potential for developing hepatitis C virus targeting gene therapy

    Ying Wang; Shan-Shan Mao; Qiong-Qiong He; Yuan Zi; Ji-Fang Wen; De-Yun Feng

    2009-01-01

    AIM: To examine whether 2'-5'oligoadenylate synthetase (OAS) gene promoter can be specifically activated by hepatitis C virus (HCV)-core protein.METHODS: Human embryo hepatic cell line L02 was transfected with pcDNA3.1-core plasmid and selected by G418. Expression of HCV-core was detected by reverse transcription polymerase chain reaction and Western blotting. The OAS promoter sequence was amplified from the genomic DNA and inserted into pGL3-basic vector. The resultant pGL3-OAS-Luci plasmid was transiently transfected into L02/core cells and luciferase activity was assayed.RESULTS: L02/core cell line stably expressing HCV-core protein was established. The pGL3-OAS-Luci construct exhibited significant transcriptional activity in the L02/core cells but not in the L02 cells.CONCLUSION: HCV-core protein activates the OAS gene promoter specifically and effectively. Utilization of OAS gene promoter would be an ideal strategy for developing HCV-specific gene therapy.

  12. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet

    Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor γ activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions by down-regulating TGFβ1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis

  13. Selenium and/or iodine deficiency alters hepatic xenobiotic metabolizing enzyme activities in rats.

    Erkekoglu, Pinar; Giray, Belma Kocer; Caglayan, Aydan; Hincal, Filiz

    2012-01-01

    The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status. PMID:22366236

  14. Absence of osteoporosis in an adult population undergoing combined immunosuppressive therapy for chronic active hepatitis

    Thirty adult patients who had received 1-20 years of combined immunosuppressive therapy (CIT) for chronic active hepatitis (CAH) underwent dual-photon absorptiometry (DPA) of L-2 through L-4 CIT consisted of azathioprine and prednisone supplemented and calcium and vitamin D. Osteoporosis is known to occur in patients with CAH, and in other clinical settings prednisone therapy has been shown to induce osteoporosis. For these 30 adult CAH patients undergoing CIT, absorptiometric measurements did not differ significantly from those in age- and sex-matched normal controls. CIT therapy for CAH may have arrested the long-term loss of bone mineral often produced by CAH. The authors' hypothesize that a combined azathioprine and prednisone regimen with reduced corticosteroid requirements was responsible for this favorable outcome

  15. Epistatic interaction between two nonstructural loci on chromosomes 7 and 3 influences hepatic lipase activity in BSB mice.

    Yi, Nengjun; Chiu, Sally; Allison, David B; Fisler, Janis S; Warden, Craig H

    2004-11-01

    BSB mice exhibit a wide range of obesity despite being produced by a backcross of lean C57BL/6J (B) x lean Mus spretus (SPRET/Pt) F1 animals x B. Previous linkage studies identified a quantitative trait locus (QTL) on mouse chromosome 7 with coincident peaks for hepatic lipase activity, obesity, and plasma cholesterol. However, these mice were not analyzed for gene x gene epistasis. Hepatic lipase activity is correlated with obesity and plasma cholesterol levels. In this study, we identified QTLs for plasma hepatic lipase activity with three statistical mapping methods: maximum likelihood interval mapping, Bayesian nonepistatic mapping, and Bayesian epistatic mapping. Bayesian epistatic mapping detected not only the QTL on chromosome 7 but also an additional QTL on chromosome 3, which has a weak main effect but a strong interaction with chromosome 7. SPRET/Pt alleles of the QTL on each chromosome promote hepatic lipase activity. The proportion of phenotypic variance explained by the epistatic effect is higher than that explained by the main effect of the QTL on chromosome 7. PMID:15314098

  16. Myricetin Increases Hepatic Peroxisome Proliferator-Activated Receptor α Protein Expression and Decreases Plasma Lipids and Adiposity in Rats

    Chia Ju Chang

    2012-01-01

    Full Text Available The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of myricetin. Myricetin exhibited a significant concentration-dependent decrease in the intracellular accumulation of triglyceride in 3T3-L1 adipocytes. The high-fat diet (HFD-fed rats were dosed orally with myricetin or fenofibrate, once daily for eight weeks. Myricetin (300 mg kg−1 per day displayed similar characteristics to fenofibrate (100 mg kg−1 per day in reducing lowered body weight (BW gain, visceral fat-pad weights and plasma lipid levels of HFD-fed rats. Myricetin also reduced the hepatic triglyceride and cholesterol contents, as well as lowered hepatic lipid droplets accumulation and epididymal adipocyte size in HFD-fed rats. Myricetin and fenofibrate reversed the HFD-induced down-regulation of the hepatic peroxisome proliferator activated receptor (PPARα. HFD-induced decreases of the hepatic protein level of acyl-CoA oxidase and cytochrome P450 isoform 4A1 were up-regulated by myricetin and fenofibrate. The elevated expressions of hepatic sterol regulatory element binding proteins (SREBPs of HFD-fed rats were lowered by myricetin and fenofibrate. These results suggest that myricetin suppressed BW gain and body fat accumulation by increasing the fatty acid oxidation, which was likely mediated via up-regulation of PPARα and down-regulation of SREBP expressions in the liver of HFD-fed rats.

  17. Hepatoprotective and antioxidant activity of pentagamavunon-0 against carbon tetrachloride-induced hepatic injury in rats

    Arief Nurrochmad; Supardjan Amir Margono; Sardjiman; Arief Rahman Hakim; Ernawati; Erna Kurniawati; Erva Fatmawati

    2013-01-01

    Objective: To investigate the hepatoprotective and antioxidant activity of pentagamavunon-0(PGV-0) against CCl4-induced hepatic injury in rats. Methods: The groups of animals were administered with PGV-0 at the doses 2.5, 5, 10, and 20 mg/kg b.w., p.o. once in a day for 6 days and at day 7 the animals were administrated with carbon tetrachloride (CCl4) (20%, 2 mL/kg b.w. in liquid paraffin (i.p.). The effect of PGV-0 on serum transaminase (SGPT), alkaline phosphates (ALP) and total bilirubin were determined in CCl4-induced hepatotoxicity in rats. Further, the effects of PGV-0 on glutathione (GSH) content, catalase (CAT) and NO free radical scavenging activity also were investigated. Results: The results demonstrated that PGV-0 significantly reduced the activity of SGPT, serum ALP and total bilirubin in CCl4 induced rat hepatotoxicity. PGV-0 has effect on the antioxidant and free radical defense system. It prevented the depletion level of GSH and decrease activity of CAT in CCl4-induced liver injury in rats. PGV-0 also demonstrated the free radical scavenger effects on NO free radical scavenging activity with ES value of 32.32 μM. Conculsion: All of our findings suggests that PGV-0 could protect the liver cells from CCl4-induced liver damages and the mechanism may through the antioxidative effect of PGV-0 to prevent the accumulation of free radicals and protect the liver damage.

  18. Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles

    Recent studies suggest that hepatitis B virus (HBV), despite being a DNA virus, replicates via an RNA intermediate. The HBV life cycle is therefore a permuted version of the RNA retroviral life cycle. Sequence homology between retroviral reverse transcriptase and the putative HBV polymerase gene product suggests the presence of an HBV reverse transcriptase. As yet, there has been no direct evidence that reverse transcriptase activity is present in the viral particle. The authors used activity gel analysis to detect the in situ catalytic activities of DNA polymerases after sodium dodecyl sulfate-polyacrylamide gel electrophorsis. These studies demonstrated that HBV-like particles secreted by a differentiated human hepatoma cell line tranfected with genomic HBV DNA contain two major polymerase activities which migrate as ∼90- and ∼70-kilodalton (kDa) proteins. This demonstrated, for the first time, that HBV-like particles contain a novel DNA polymerase-reverse transcriptase activity. Furthermore, they propose that the 70-kDa reverse transcriptase may be produced by proteolytic self-cleavage of the 90-kDa precursor protein

  19. [Viral hepatitis in travellers].

    Abreu, Cândida

    2007-01-01

    Considering the geographical asymmetric distribution of viral hepatitis A, B and E, having a much higher prevalence in the less developed world, travellers from developed countries are exposed to a considerable and often underestimated risk of hepatitis infection. In fact a significant percentage of viral hepatitis occurring in developed countries is travel related. This results from globalization and increased mobility from tourism, international work, humanitarian and religious missions or other travel related activities. Several studies published in Europe and North America shown that more than 50% of reported cases of hepatitis A are travel related. On the other hand frequent outbreaks of hepatitis A and E in specific geographic areas raise the risk of infection in these restricted zones and that should be clearly identified. Selected aspects related with the distribution of hepatitis A, B and E are reviewed, particularly the situation in Portugal according to the published studies, as well as relevant clinical manifestations and differential diagnosis of viral hepatitis. Basic prevention rules considering enteric transmitted hepatitis (hepatitis A and hepatitis E) and parenteral transmitted (hepatitis B) are reviewed as well as hepatitis A and B immunoprophylaxis. Common clinical situations and daily practice "pre travel" advice issues are discussed according to WHO/CDC recommendations and the Portuguese National Vaccination Program. Implications from near future availability of a hepatitis E vaccine, a currently in phase 2 trial, are highlighted. Potential indications for travellers to endemic countries like India, Nepal and some regions of China, where up to 30% of sporadic cases of acute viral hepatitis are caused by hepatitis E virus, are considered. Continued epidemiological surveillance for viral hepatitis is essential to recognize and control possible outbreaks, but also to identify new viral hepatitis agents that may emerge as important global health

  20. Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis

    Ursula Manuelpillai; Dinushka Lourensz; Vijesh Vaghjiani; Jorge Tchongue; Derek Lacey; Jing-Yang Tee; Padma Murthi; James Chan; Alexander Hodge; William Sievert

    2012-01-01

    Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon t...

  1. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  2. Characterization of the endogenous protein kinase activity of the hepatitis B virus.

    Kann, M; Thomssen, R; Köchel, H G; Gerlich, W H

    1993-01-01

    During the assembly of the nucleocapsid of the hepatitis B virus a protein kinase, probably of cellular origin, is encapsidated. This enzyme phosphorylates serine residue(s) localized within the lumen of the particle. By using purified, liver-derived core particles, we characterized the protein kinase activity in the presence of different ions and inhibitors. Controls were performed with cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) and recombinant core particles. We showed that the endogenous protein kinase of the core particles was not inhibited by H89, a specific inhibitor of PKA. Staurosporine, a selective inhibitor of PKC inhibited the endogenous kinase activity only within the first minutes of the reaction. In contrast, quercetine, a selective inhibitor of the protein kinase M (PKM) did not inhibit during the first minutes but inhibited efficiently during later phases of incubation. PKM represents an enzymatically active proteolytic fragment of PKC. These results suggest that PKC is encapsidated into human core particles and is converted to PKM during the in vitro reaction. This conclusion implies the association of a protease activity localized with the HBV nucleocapsid inside liver-derived core particles. PMID:8260877

  3. Baicalein selectively induces apoptosis in activated lymphocytes and ameliorates concanavalin a-induced hepatitis in mice.

    Yan Zhang

    Full Text Available BACKGROUND: Insufficient apoptosis in activated lymphocytes contributes to the development of autoimmune hepatitis (AIH. Baicalein (BE, a flavonoid originally isolated from the root of Scutellaria baicalensis Georgi, possesses anti-inflammatory properties. However, whether BE can selectively induce apoptosis in activated lymphocytes and exert therapeutic effect on AIH has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: The pro-apoptotic properties of BE were evaluated in vitro on different types of immune cells, and in vivo effects of BE were examined in a murine model of Concanavalin A (Con A-induced hepatitis. In vitro treatment with BE resulted in a higher increase in the level of apoptosis in Con A-stimulated murine splenocytes, Con A-stimulated CD3(+ splenocytes, lipopolysaccharide (LPS-stimulated CD19(+ splenocytes, and phorbol 12-myristate 13-acetate/ionomycin-stimulated Jurkat T cells, compared with that in unstimulated naïve ones. Murine bone marrow-derived dentritic cells, peritoneal macrophages, and RAW264.7 cells, either stimulated with LPS or unstimulated, were all insensitive to the BE-induced apoptosis. BE treatment also led to a loss of mitochondrial membrane potential, an increase of cytochrome c release from mitochondria to the cytosol, a decrease in the ratio of Bcl-2/Bax, and activation of caspase-9,-3 in Con A-stimulated CD3(+ splenocytes and LPS-stimulated CD19(+ splenocytes, while showing no impact on Fas/FasL expressions and caspase-8 activation. In vivo administration of BE alleviated Con A-induced liver injury, suppressed serum level of TNF-α and IFN-γ, and reduced liver infiltration of mononuclear cells (MNCs. Furthermore, BE treatment increased the incidences of apoptosis in liver-infiltrating MNCs and splenocytes, as well as in CD3(+ and CD19(+ splenocytes. When liver MNCs and splenocytes from BE-treated mice were cultured in vitro for 24 h, they exhibited marked increase in apoptosis compared to vehicle

  4. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance.

    Christopher J Lelliott

    2006-11-01

    Full Text Available The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta has been implicated in important metabolic processes. A mouse lacking PGC-1beta (PGC1betaKO was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1betaKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT. Under ambient temperature conditions, PGC-1beta ablation was partially compensated by up-regulation of PGC-1alpha in BAT and white adipose tissue (WAT that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1betaKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1beta was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1betaKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1betaKO mice have impaired mitochondrial function. Lack of PGC-1beta also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1beta plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.

  5. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  6. Effect of leptin on hepatic stellate cells in liver fibrosis rats and its relation to ERK signal transduction pathway%瘦素对大鼠肝纤维化星状细胞的作用及相关ERK信号转导机制

    周光耀; 金玲湘; 林巍; 潘陈为; 诸葛璐; 方佩佩

    2014-01-01

    目的:探讨瘦素(leptin)对大鼠肝纤维化星状细胞(HSC)的作用及相关信号转导机制。方法采用改良原位灌注、Optiprep密度梯度离心法分离纯化大鼠HSC。通过台盼蓝拒染试验评估细胞存活率,α-平滑肌肌动蛋白(α- SMA)免疫组化鉴定,光镜观察形态学变化。将40只SD大鼠分为4个处理组:对照组、血管紧张素Ⅱ(AngⅡ)组(加入10-7mol/L AngⅡ)、Leptin组(加入100ng/ml Leptin)、Leptin+AngⅡ组(加入100ng/ml Leptin+10-7mol/L AngⅡ)。分别采用3H- TdR和3H- Pro掺入法进行HSC增殖和胶原合成的测定。Western blot检测各处理组p- ERK1/ERK1、p- ERK2/ERK2、AngⅡ蛋白表达情况。结果大鼠HSC存活率>90%,传代1次后HSC纯度>95%。与对照组相比,AngⅡ组、Leptin组、Leptin+AngⅡ组的HSC增殖和胶原合成均明显增加(均P<0.05);与AngⅡ组、Leptin组相比,Leptin+AngⅡ组HSC增殖和胶原合成明显增加(均P<0.05)。Western blot显示,AngⅡ组、Leptin组、Leptin+AngⅡ组的p- ERK1/ERK1、p- ERK2/ERK2、AngⅡ蛋白水平均较对照组明显升高(均P<0.05);与AngⅡ组、Lep-tin组相比,Leptin+AngⅡ组p- ERK1/ERK1、p- ERK2/ERK2、AngⅡ蛋白水平明显升高(均P<0.05)。结论瘦素可通过上调AngⅡ水平,激活ERK信号转导通路,刺激HSC增殖和胶原合成,导致肝纤维化。%Objective To investigate the effect of leptin on hepatic stel ate cells(HSC) in liver fibrosis rats and its relation to ERK signal transduction pathway. Methods The purified HSCs were obtained by the modified in situ perfusion and Optiprep density gradient centrifugation. The survival rate of HSCs was evaluated by trypan blue exclusion test, the identification of HSCs was tested by α- SMA immunocytochemical staining, and the morphological changes were observed by light microscope. The cultured HSCs were divided into four groups: the control group, the

  7. Active hepatitis C infection and HCV genotypes prevalent among the IDUs of Khyber Pakhtunkhwa

    Uz Zaman Khaleeq

    2011-06-01

    Full Text Available Abstract Injection drug users (IDUs are considered as a high risk group to develop hepatitis C due to needle sharing. In this study we have examined 200 injection drug users from various regions of the Khyber Pakhtunkhwa province for the prevalence of active HCV infection and HCV genotypes by Immunochromatographic assays, RT-PCR and Type-specific PCR. Our results indicated that 24% of the IDUs were actively infected with HCV while anti HCV was detected among 31.5% cases. Prevalent HCV genotypes were HCV 2a, 3a, 4 and 1a. Majority of the IDUs were married and had attained primary or middle school education. 95% of the IDUs had a previous history of needle sharing. Our study indicates that the rate of active HCV infection among the IDUs is higher with comparatively more prevalence of the rarely found HCV types in KPK. The predominant mode of HCV transmission turned out to be needle sharing among the IDUs.

  8. Trans-activation function of a 3' truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3' end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product

  9. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration

    Wei Zhang; Xiao-Ping Chen; Wan-Guang Zhang; Feng Zhang; Shuai Xiang; Han-Hua Dong; Lei Zhang

    2009-01-01

    AIM: To elucidate the interaction between nonparenchymal cells, extracellular matrix and oval cells during the restituting process of liver injury induced by partial hepatectomy (PH). METHODS: We examined the localization of oval cells, non-parenchymal cells, and the extracellular matrix components using immunohistochemical and double immunofluorescent analysis during the proliferation and differentiation of oval cells in N-2-acetylaminofluorene (2-AAF)/PH rat model. RESULTS: By day 2 after PH, small oval cells began to proliferate around the portal area. Most of stellate cells and laminin were present along the hepatic sinusoids in the periportal area. Kupffer cells and fibronectin markedly increased in the whole hepatic lobule. From day 4 to 9, oval cells spread further into hepatic parenchyma, closely associated with stellate cells, fibronectin and laminin. Kupffer cells admixed with oval cells by day 6 and then decreased in the periportal zone. From day 12 to 15, most of hepatic stellate cells (HSCs), laminin and fibronectin located around the small hepatocyte nodus, and minority of them appeared in the nodus. Kupffer cells were mainly limited in the pericentral sinusoids. After day 18, the normal liver lobule structures began to recover.CONCLUSION: Local hepatic microenvironment may participate in the oval cell-mediated liver regeneration through the cell-cell and cell-matrix interactions.

  10. Seborrheic dermatitis treatment with stellate ganglion block: a case report.

    Kim, Gun Woo; Mun, Ki Ho; Song, Jeong Yun; Kim, Byung Gun; Jung, Jong Kwon; Lee, Choon Soo; Cha, Young Deog; Song, Jang Ho

    2016-04-01

    Seborrheic dermatitis is a chronic recurrent inflammatory disorder presumed to be caused by increased sebaceous gland secretion, metabolic changes in the cutaneous microflora, and changes in the host immune function. Stellate ganglion block (SGB) is known to increase the blood flow rate without altering the blood pressure, heart rate, or cardiac output, to stabilize hypertonic conditions of the sympathetic nerves, and to affect the endocrine and immune systems. It is used in the differential diagnosis and treatment of autonomic nervous system disorders of the head, neck, and upper limbs. The authors report the first case of successful treatment of a patient with seborrheic dermatitis through repeated SGB trials. PMID:27064785

  11. Ethanol-induced hepatic autophagy: Friend or foe?

    2015-01-01

    Excessive alcohol intake may induce hepatic apoptosis,steatosis, fibrosis, cirrhosis and even cancer. Ethanolinducedactivation of general or selective autophagyas mitophagy or lipophagy in hepatocytes is generallyconsidered a prosurvival mechanism. On the otherside of the coin, upregulation of autophagy in nonhepatocytesas stellate cells may stimulate fibrogenesisand subsequently induce detrimental effects on the liver.The autophagic response of other non-hepatocytes asmacrophages and endothelial cells is unknown yet andneeds to be investigated as these cells play importantroles in ethanol-induced hepatic steatosis and damage.Selective pharmacological stimulation of autophagyin hepatocytes may be of therapeutic importance inalcoholic liver disease.

  12. Total triterpenoid from Prunella vulgaris L prevents fibrosis in CC14 induced hepatic fibrosis in the rat and its mechanism research on PDGF-induced rat hepatic steilate cell

    Xu Tao; Li Jun

    2012-01-01

    Aims: Total triterpenoid from Prunella vulgaris L. (TTP), known as medicinehad, had a preventive effect against hepatic steatosis in our previous was to evaluate whether TTP could improve liver fibrosis nism of action of TTP on hepatic stellate growth factor (PDGF). a traditional Chinese study. Our objective in rats and to investigate the mecha- cell (HSC) proliferation induced by platelet-derivedgrowth factor (PDGF).

  13. 银杏叶提取物对AGEs诱导的大鼠HSC增殖的抑制作用%The effect of ginko biloba extract on proliferation of hepatic stellate cell activating by advanced glycation end products

    史美娜; 栗华

    2013-01-01

    目的:探讨不同浓度晚期糖基化终产物(AGEs)对体外培养的大鼠肝星状细胞(HSC)增殖的影响,并观察不同浓度银杏叶提取物(EGb)对其增殖有无抑制作用。方法体外合成AGEs,MTT法观察不同浓度的AGEs对HSC增殖的影响及不同浓度EGb对AGEs促HSC增殖的抑制作用。结果当培养液中AGEs浓度≥50mg/L时,12~48h内检测发现HSC较正常对照组增殖明显并呈时间及剂量依赖性(P<0.05),而6h内及低浓度AGEs组未观察到其对HSC增殖有明显影响。EGb在培养48h时对AGEs刺激的HSC的增殖有显著抑制作用(P<0.05),且呈明显的剂量依赖性。结论 AGEs可以促进HSC增殖,呈时间、剂量依赖性;在作用时间充分的前提下,EGb可抑制AGEs诱导的HSC增殖,呈剂量依赖性。%Objective To investigate the effect of ginko biloba extract (EGb) on the cell proliferation in HSC stimulated by advanced glycation end products(AGEs). Methods AGEs was synthesized by incubating glucose with BSA in vitro. MTT colorimetric assay was used to observe the effect of AGEs at different dosages on the proliferation of HSC,and to measure the effect of EGb at different dosages on the proliferation of HSC.Results The proliferation of HSC was enhanced after incubating with ≥50mg/L AGEs for 12-48 hour with a dose and time dependent manner but within 6 hour(P<0.05). The low concentration of AGEs group which was not observed a significant effect on the proliferation of HSC. The proliferation of HSC was slow and exhibited a dose dependent manner with 48 hour treatment of EGb. Conclusion EGb depressed the proliferation of HSC which is induced by AGEs with a dose and time dependant manner.

  14. Hepatoprotective activity of Clerodendron Inerme against Paracetamol induced Hepatic injury in Rats for Pharmaceutical Product

    Haque Rabiul

    2011-03-01

    Full Text Available Hepatitis is one of the major health problems in human which sometimes may lead to even death. Natural products may be the best source of remedies for the treatment of liver diseases. Thus identification of a potential therapeutic agent for the protection of liver from the hepatotoxins will provide a useful way for the prevention of these liver related illnesses. Our studies identified a plant with potential hepatoprotective activity. The etanolic extract of Clerodendron inerme leaves were screened for its hepatoprotective activity in paracetamol induced liver damage in Swiss albino rats at a dose of 200 mg/kg bw. The etanolic extract exhibited a significant protective effect by lowering serum levels of glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, alkaline phosphatase and total bilirubin. Liv.52 was used as positive control. The effects of the drug was judged by changes in serum marker ALT, AST, ALP, Protein and bilirubin levels. The extract did not show any mortality up to a dose of 2000g/kg bw.

  15. Hepatitis C Virus Infection Downregulates the Ligands of the Activating Receptor NKG2D

    Chaoyang Wen; Hui Zhong; Xiang He; Hongfang Ma; Ningbo Hou; Congwen Wei; Ting Song; Yanhong Zhang; Liping Sun; Qingjun Ma

    2008-01-01

    Natural killer (NK) cells are a major component of the host innate immune defense against various pathogens.Several viruses, including hepatitis C virus (HCV), have developed strategies to evade the NK-cell response. In our study, we found HCV infection could trigger DNA damage response by both ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) pathways. Recent reports had revealed that NKG2D ligands (NK cellactivating iigands) were upregulated when a major DNA damage checkpoint pathway was activated. However,here we found that DNA damage response was activated but NKG2D ligands were downregulated upon HCV infection. Further studies showed that the protease NS3/4A of HCV which had been shown relation with immune invasion contributed to the reduced expression of NKG2D ligands. These findings provide a novel insight into the mechanisms evolved by HCV to escape from the NK cell response. Cellular & Molecular Immunology. 2008;5(6):475-478.

  16. Effects of perfluorodecanoic(PFDA) and perfluorooctanoic (PFOA) acids on hepatic carnitine palmitoyltransferase (CPT) activity in rats

    PFDA has been hypothesized to cause a diversion of fatty acids from oxidation toward esterification in rat liver. Normal regulation of this partitioning is exerted by CPT, an enzyme inhibited by several peroxisome proliferators. Effects of the peroxisome proliferators PFDA and PFOA on hepatic mitochondrial fatty acid oxidation and CPT activity were examined. PFDA or PFOA added to isolated rat liver mitochondria in concentrations of 0.2, 2, 20 and 200 μg per mg mitochondrial protein had no effect on CPT activity nor on mitochondrial oxidation of [1-14C] palmitoyl-CoA or [1-14C] palmitoyl-carnitine (quantitated by 14CO2 plus acid soluble 14C production). Three days after rats were treated with PFDA or PFOA (37.5 or 150 μmol/kg, ip) or vehicle, liver mitochondria were isolated. Mitochondrial oxidation of [1-14C] palmitoyl-CoA or [1-14C]palmitoyl-carnitine was unaffected by PFDA and PFOA. CPT activity and inhibition of CPT activity by malonyl-CoA was also unaffected by PFDA and PFOA. Therefore, PFDA and PFOA did not have a major inhibitory effect on hepatic mitochondrial oxidation of palmitoyl-CoA or palmitoyl-carnitine, nor did they interfere with hepatic CPT activity either in vitro or in vivo

  17. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice

    Chow, Leola N.; Schreiner, Petra; Ng, Betina Y. Y.; Lo, Bernard; Hughes, Michael R.; Scott, R. Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M.; Crawford, Jason; Webb, Murray; Underhill, T. Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  18. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway.

    Chuan Wang

    Full Text Available Inflammatory stress is an independent risk factor for the development of non-alcoholic fatty liver disease (NAFLD. Although CD36 is known to facilitate long-chain fatty acid uptake and contributes to NAFLD progression, the mechanisms that link inflammatory stress to hepatic CD36 expression and steatosis remain unclear. As the mammalian target of rapamycin (mTOR signalling pathway is involved in CD36 translational activation, this study was undertaken to investigate whether inflammatory stress enhances hepatic CD36 expression via mTOR signalling pathway and the underlying mechanisms. To induce inflammatory stress, we used tumour necrosis factor alpha (TNF-α and interleukin-6 (IL-6 stimulation of the human hepatoblastoma HepG2 cells in vitro and casein injection in C57BL/6J mice in vivo. The data showed that inflammatory stress increased hepatic CD36 protein levels but had no effect on mRNA expression. A protein degradation assay revealed that CD36 protein stability was not different between HepG2 cells treated with or without TNF-α or IL-6. A polysomal analysis indicated that CD36 translational efficiency was significantly increased by inflammatory stress. Additionally, inflammatory stress enhanced the phosphorylation of mTOR and its downstream translational regulators including p70S6K, 4E-BP1 and eIF4E. Rapamycin, an mTOR-specific inhibitor, reduced the phosphorylation of mTOR signalling pathway and decreased the CD36 translational efficiency and protein level even under inflammatory stress resulting in the alleviation of inflammatory stress-induced hepatic lipid accumulation. This study demonstrates that the activation of the mTOR signalling pathway increases hepatic CD36 translational efficiency, resulting in increased CD36 protein expression under inflammatory stress.

  19. Stellate cells from rat pancreas are stem cells and can contribute to liver regeneration.

    Claus Kordes

    Full Text Available The identity of pancreatic stem/progenitor cells is still under discussion. They were suggested to derive from the pancreatic ductal epithelium and/or islets. Here we report that rat pancreatic stellate cells (PSC, which are thought to contribute to pancreatic fibrosis, have stem cell characteristics. PSC reside in islets and between acini and display a gene expression pattern similar to umbilical cord blood stem cells and mesenchymal stem cells. Cytokine treatment of isolated PSC induced the expression of typical hepatocyte markers. The PSC-derived hepatocyte-like cells expressed endodermal proteins such as bile salt export pump along with the mesodermal protein vimentin. The transplantation of culture-activated PSC from enhanced green fluorescent protein-expressing rats into wild type rats after partial hepatectomy in the presence of 2-acetylaminofluorene revealed that PSC were able to reconstitute large areas of the host liver through differentiation into hepatocytes and cholangiocytes. This developmental fate of transplanted PSC was confirmed by fluorescence in situ hybridization of chromosome Y after gender-mismatched transplantation of male PSC into female rats. Transplanted PSC displayed long-lasting survival, whereas muscle fibroblasts were unable to integrate into the host liver. The differentiation potential of PSC was further verified by the transplantation of clonally expanded PSC. PSC clones maintained the expression of stellate cell and stem cell markers and preserved their differentiation potential, which indicated self-renewal potential of PSC. These findings demonstrate that PSC have stem cell characteristics and can contribute to the regeneration of injured organs through differentiation across tissue boundaries.

  20. Phosphorylated heat shock protein 27 promotes lipid clearance in hepatic cells through interacting with STAT3 and activating autophagy.

    Shen, Lei; Qi, Zhilin; Zhu, Yanyan; Song, Xiaomeng; Xuan, Chunxia; Ben, Peiling; Lan, Lei; Luo, Lan; Yin, Zhimin

    2016-08-01

    Nonalcoholic fatty liver disease (NAFLD) has become the major liver disease worldwide. Recently, several studies have identified that the activation of autophagy attenuates hepatic steatosis. Heat shock protein 27 (Hsp27) is involved in autophagy in response to various stimuli. In this study, we demonstrate that phosphorylated Hsp27 stimulates autophagy and lipid droplet clearance and interacts with STAT3. In vivo study showed that high fat diet (HFD) feeding increased Hsp25 (mouse orthology of Hsp27) phosphorylation and autophagy in mouse livers. Inhibition of Hsp25 phosphorylation exacerbated HFD-induced hepatic steatosis in mice. In vitro study showed that palmitate-induced lipid overload in hepatic cells was enhanced by Hsp27 knockdown, KRIBB3 treatment and Hsp27-3A (non-phosphorylatable) overexpression but was prevented by Hsp27-WT (wild type) and Hsp27-3D (phosphomimetic) overexpression. Mechanism analysis demonstrated that palmitate could induce Hsp27 phosphorylation which promoted palmitate-induced autophagy. Phosphorylated Hsp27 interacted with STAT3 in response to palmitate treatment, and disrupted the STAT3/PKR complexes, facilitated PKR-dependent eIF2α phosphorylation, and thus stimulated autophagy. To conclude, our study provides a novel mechanism by which the phosphorylated Hsp27 promotes hepatic lipid clearance and suggests a new insight for therapy of steatotic diseases such as nonalcoholic fatty liver disease (NAFLD). PMID:27185187

  1. Chronic hepatitis C and fibrosis: evidences for possible estrogen benefits

    Liana Codes

    2007-06-01

    Full Text Available The main injury caused by hepatitis C virus is the hepatic fibrosis, as a result of a chronic inflammatory process in the liver characterized by the deposit of components from the extracellular matrix. The fibrosis development leads to the modification of the hepatic architecture, of the hepatocellular function and to irregularities in the microcirculation. The tissue remodeling process observed in fibrosis has stellate cells, located at the space of Disse, as main acting agents. These cells, in response to a harmful stimulus, undergo phenotypic changes from non-proliferating cells to proliferating cells that express a- smooth-muscle actin (a-SMA, a process called as transdifferentiation. There are evidences that the oxidative stress is involved in the chronic liver disease and serves as bond between the injury and the hepatic fibrosis. A number of studies suggest that the estrogen, at physiological levels, presents an antifibrogenic action probably through an antioxidant effect, decreasing the levels of lipid peroxidation products in the liver and blood, thus inhibiting the myofibroblastic transformation of stellate cells and contributing for gender-associated differences in relation to the fibrosis development. The aim of this paper was to describe data from literature concerning the interaction between chronic hepatitis C and estrogens, pregnancy, use of oral contraceptives, menopause and hormone reposition therapy.

  2. Historical reflections on autoimmune hepatitis

    Mackay, Ian R.

    2008-01-01

    Autoimmune hepatitis (AIH), initially known as chronic active or active chronic hepatitis (and by various other names), first came under clinical notice in the late 1940s. However, quite likely, chronic active hepatitis (CAH) had been observed prior to this and was attributed to a persistently destructive virus infection of the liver. An earlier (and controversial) designation in 1956 as lupoid hepatitis was derived from associated L.E. cell test positivity and emphasized accompanying multisy...

  3. PPAR-pan activation induces hepatic oxidative stress and lipidomic remodelling.

    Ament, Zsuzsanna; West, James A; Stanley, Elizabeth; Ashmore, Tom; Roberts, Lee D; Wright, Jayne; Nicholls, Andrew W; Griffin, Julian L

    2016-06-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand activated nuclear receptors that regulate cellular homoeostasis and metabolism. PPARs control the expression of genes involved in fatty-acid and lipid metabolism. Despite evidence showing beneficial effects of their activation in the treatment of metabolic diseases, particularly dyslipidaemias and type 2 diabetes, PPAR agonists have also been associated with a variety of side effects and adverse pathological changes. Agonists have been developed that simultaneously activate the three PPAR receptors (PPARα, γ and δ) in the hope that the beneficial effects can be harnessed while avoiding some of the negative side effects. In this study, the hepatic effects of a discontinued PPAR-pan agonist (a triple agonist of PPAR-α, -γ, and -δ), was investigated after dietary treatment of male Sprague-Dawley (SD) rats. The agonist induced liver enlargement in conjunction with metabolomic and lipidomic remodelling. Increased concentrations of several metabolites related to processes of oxidation, such as oxo-methionine, methyl-cytosine and adenosyl-methionine indicated increased stress and immune status. These changes are reflected in lipidomic changes, and increased energy demands as determined by free fatty acid (decreased 18:3 n-3, 20:5 n-3 and increased ratios of n-6/n-3 fatty acids) triacylglycerol, phospholipid (decreased and increased bulk changes respectively) and eicosanoid content (increases in PGB2 and 15-deoxy PGJ2). We conclude that the investigated PPAR agonist, GW625019, induces liver enlargement, accompanied by lipidomic remodelling, oxidative stress and increases in several pro-inflammatory eicosanoids. This suggests that such pathways should be monitored in the drug development process and also outline how PPAR agonists induce liver proliferation. PMID:26654758

  4. Mechanisms of adaptation of the hepatic vasculature to the deteriorating conditions of blood circulation in liver cirrhosis.

    Garbuzenko, Dmitry Victorovich; Arefyev, Nikolay Olegovich; Belov, Dmitry Vladimirovich

    2016-06-01

    PubMed, EMBASE, Orphanet, MIDLINE, Google Scholar and Cochrane Library were searched for articles published between 1983 and 2015. Relevant articles were selected by using the following terms: "Liver cirrhosis", "Endothelial dysfunction", "Sinusoidal remodeling", "Intrahepatic angiogenesis" and "Pathogenesis of portal hypertension". Then the reference lists of identified articles were searched for other relevant publications as well. Besides gross hepatic structural disorders related to diffuse fibrosis and formation of regenerative nodules, the complex morphofunctional rearrangement of the hepatic microvascular bed and intrahepatic angiogenesis also play important roles in hemodynamic disturbances in liver cirrhosis. It is characterized by endothelial dysfunction and impaired paracrine interaction between activated stellate hepatocytes and sinusoidal endotheliocytes, sinusoidal remodeling and capillarization, as well as development of the collateral microcirculation. In spite of the fact that complex morphofunctional rearrangement of the hepatic microvascular bed and intrahepatic angiogenesis in liver cirrhosis are the compensatory-adaptive reaction to the deteriorating conditions of blood circulation, they contribute to progression of disease and development of serious complications, in particular, related to portal hypertension. PMID:27326313

  5. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I

    Rosendahl, Ann H., E-mail: ann.rosendahl@med.lu.se [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Lund University and Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund (Sweden); Gundewar, Chinmay; Said Hilmersson, Katarzyna [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Ni, Lan; Saleem, Moin A. [University of Bristol, School of Clinical Sciences, Children' s Renal Unit and Academic Renal Unit, Bristol (United Kingdom); Andersson, Roland [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden)

    2015-01-15

    Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer. - Highlights: • Generation of human conditionally immortalized human pancreatic stellate cell lines. • Temperature-sensitive SV40LT allows switch to primary PSC phenotype characteristics. • Proteome profiling revealed distinct expression patterns between TPSC and NPSC. • Enhanced IGF-I-stimulated proliferation and motility by TPSC compared to NPSC.

  6. Hepatitis C virus NS5A mediated STAT3 activation requires co-operation of Jak1 kinase

    Hepatitis C virus (HCV) is a major etiologic agent for chronic hepatitis worldwide and often leads to cirrhosis and hepatocellular carcinoma. However, the mechanism for development of chronic hepatitis or hepatocarcinogenesis by HCV remains unclear. Signal transducers and activators of transcription (STATs) family proteins function as the downstream effectors of cytokine signaling and play a critical role in cell growth regulation. In many cancers including liver, STAT3 is often constitutively activated, although the mechanism of persistent activation of STAT3 is unknown. The nonstructural protein 5A (NS5A) encoded from the HCV genome has shown cell growth regulatory properties. In this study, we have observed that HCV NS5A activates STAT3 phosphorylation, which in turn translocates into the nucleus. In vivo activation of STAT3 was also observed in the liver of transgenic mice expressing HCV NS5A. Introduction of NS5A in hepatoma cells modulated STAT3 downstream molecules Bcl-xL and p21 expression. To determine if STAT3 activation by NS5A could induce STAT3 mediated gene expression, a luciferase reporter construct based on a synthetic promoter was used to transfect hepatoma cells. Activation of endogenous cellular STAT3 by HCV NS5A induced luciferase gene expression through STAT3 specific binding elements. Our subsequent studies suggested that NS5A forms a complex with Jak1 and recruits STAT3 for activation. Taken together, our results suggested that NS5A activates STAT3 through co-operation of Jak1 kinase and activated STAT3 may contribute to HCV-mediated pathogenesis

  7. Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication

    Todt, Daniel; François, Catherine; Anggakusuma, [Ukendt; Behrendt, Patrick; Engelmann, Michael; Knegendorf, Leonard; Vieyres, Gabrielle; Wedemeyer, Heiner; Hartmann, Rune; Pietschmann, Thomas; Duverlie, Gilles; Steinmann, Eike

    2016-01-01

    Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I...... interferon (IFN) has been evaluated in a few infected transplant patientsin vivo In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV......) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication...

  8. Hepatoprotective Activity of Cassia fistula root against Carbon tetrachloride-Induced Hepatic Injury in rats (Wistar

    SAGAR DAWADA

    2012-04-01

    Full Text Available The protective effects of the alcoholic extract of Cassia fistula root; against CCl4 induced hepatic failure in male albino rats (wistar strain was investigated. For acute and massive invasion of hepatopathy, CCl4 (s.c injection of CCl4+Olive Oil in 1:1 ratio; 2ml/kg was used and the insidious intoxication was evidenced bysignificant turmoil of various biochemical parameters followed by significant (p<0.001 weight loss in toxic control group. The administration of alcoholic root extract (200mg/kg and 100mg/kg of body weight for 7 days, elicited protective action since the elevated levels of marker enzymes (SGOT, SGPT, ALP of liver functionswere found to be decreasing progressively in a dose dependent manner. The final body weight was also significantly (p<0.001 increased when compared with the toxic control group. The serum total protein and theserum albumin were also approaching normal values. The results found in alcoholic extract 200mg/kg treated rat were quite promising and were comparable with a standard drug Silymarin. In the alcoholic extract 200mg/kg treated rat group all the marker enzymes were analyzed to be decreasing significantly. The statistically processed results support the conclusion, that the alcoholic root extract of Cassia fistula root (200mg/kg and 100mg/kg possesses dose dependent, significant protective activity against CCl4 induced hepatotoxicity.

  9. A sexual dimorphism influences bicyclol-induced hepatic heat shock factor 1 activation and hepatoprotection.

    Chen, Xiaosong; Zhang, Jianjian; Han, Conghui; Dai, Huijuan; Kong, Xianming; Xu, Longmei; Xia, Qiang; Zhang, Ming; Zhang, Jianjun

    2015-07-01

    Bicyclol [4,4'-dimethoxy-5,6,5',6'-bis(methylenedioxy)-2-hydroxy-methyl-2'-methoxycarbonyl biphenyl] is a synthetic hepatoprotectant widely used in clinical practice, but resistance to this treatment is often observed. We found that the hepatoprotective effect of bicyclol was greatly compromised in female and castrated male mice. This study was to dissect the molecular basis behind the sex difference, which might underlie the clinical uncertainty. We compared bicyclol-induced hepatoprotection between male and female mice using acute liver damage models. Inducible knockout by the Cre/loxp system was used to decipher the role of heat shock transcription factor 1 (HSF1). Functional experiments, western blot, and histopathological analysis were used to determine the key causative factors which might antagonize bicyclol in female livers. HSF1 activation and heat shock protein 70 (Hsp70) expression, which were responsible for bicyclol-induced hepatoprotection, were compromised in female and castrated male livers. Compromised HSF1 activation was a result of HSF1 phosphorylation at serine 303, which was catalyzed by glycogen synthase kinase 3β (GSK3β). Testosterone was necessary for bicyclol to inhibit hepatic GSK3β activity. Administration of testosterone or GSK3β inhibitors restored bicyclol-induced protection in females. Bicyclol induces sex-specific hepatoprotection based on a sex-specific HSF1/Hsp70 response, in which testosterone and GSK3β play key roles. Because a lot of patients suffering from liver diseases have very low testosterone levels, our results give a possible explanation for the clinical variation in bicyclol-induced hepatoprotection, as well as practicable solutions to improve the effect of bicyclol. PMID:25901028

  10. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  11. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Weber, Nicholas D; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S; Roychoudhury, Pavitra; Schiffer, Joshua T; Aubert, Martine; Jerome, Keith R

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy. PMID:24827459

  12. Hydroxylated tropolones inhibit hepatitis B virus replication by blocking viral ribonuclease H activity.

    Lu, Gaofeng; Lomonosova, Elena; Cheng, Xiaohong; Moran, Eileen A; Meyers, Marvin J; Le Grice, Stuart F J; Thomas, Craig J; Jiang, Jian-kang; Meck, Christine; Hirsch, Danielle R; D'Erasmo, Michael P; Suyabatmaz, Duygu M; Murelli, Ryan P; Tavis, John E

    2015-02-01

    Hepatitis B virus (HBV) remains a major human pathogen despite the development of both antiviral drugs and a vaccine, in part because the current therapies do not suppress HBV replication far enough to eradicate the virus. Here, we screened 51 troponoid compounds for their ability to suppress HBV RNaseH activity and HBV replication based on the activities of α-hydroxytropolones against HIV RNaseH, with the goal of determining whether the tropolone pharmacophore may be a promising scaffold for anti-HBV drug development. Thirteen compounds inhibited HBV RNaseH, with the best 50% inhibitory concentration (IC50) being 2.3 μM. Similar inhibition patterns were observed against HBV genotype D and C RNaseHs, implying limited genotype specificity. Six of 10 compounds tested against HBV replication in culture suppressed replication via blocking of viral RNaseH activity, with the best 50% effective concentration (EC50) being 0.34 μM. Eighteen compounds inhibited recombinant human RNaseH1, and moderate cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50]=25 to 79 μM). Therapeutic indexes ranged from 3.8 to 94. Efficient inhibition required an intact α-hydroxytropolone moiety plus one or more short appendages on the tropolone ring, but a wide variety of constituents were permissible. These data indicate that troponoids and specifically α-hydroxytropolones are promising lead candidates for development as anti-HBV drugs, providing that toxicity can be minimized. Potential anti-RNaseH drugs are envisioned to be employed in combination with the existing nucleos(t)ide analogs to suppress HBV replication far enough to block genomic maintenance, with the goal of eradicating infection. PMID:25451058

  13. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis

    LIAN, FAN; Wang, Yu; Xiao, Youjun; WU, XIWEN; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-01-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T-cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. A mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA-induced liver injury ...

  14. Decreased activity of hepatic P-glycoprotein in the isolated perfused liver of the adjuvant arthritis rat.

    Achira, M; Totsuka, R; Kume, T

    2002-11-01

    1. We investigated the hepatobiliary transport of doxorubicin in the isolated perfused liver prepared from the adjuvant arthritis rat, an animal model for rheumatoid arthritis, to examine the hepatic P-glycoprotein activity in the adjuvant arthritis rat. 2. Liver was isolated from the normal and the adjuvant arthritis rat and perfused for 60 min with recirculating buffer and the perfusate and bile samples were collected at timed interval. 3. The elimination of doxorubicin in the adjuvant arthritis rat tended to be reduced, but it was not significantly different from the normal rat. Biliary clearance (CL(bile)) in the normal rat was 1.93 +/- 0.48 ml min(-1), whereas, CL(bile) in the adjuvant arthritis rat was significantly decreased to 0.40 +/- 0.13 ml min(-1). 4. CL(bile) was markedly decreased to about 0.15 ml min(-1) in the presence of 100 microM verapamil in both types of rat. Methotrexate treatment had no effect on CL(bile) in both the normal and adjuvant arthritis rat (2.18 +/- 0.22 and 0.47 +/- 0.22 ml min(-1), respectively). 5. The results suggest that the hepatic P-glycoprotein activity was markedly decreased in the adjuvant arthritis rat and the effect of methotrexate on the hepatic P-glycoprotein activity did not corresponded to its anti-inflammatory effect. PMID:12487726

  15. RPB5-Mediating Protein Suppresses Hepatitis B Virus (HBV Transcription and Replication by Counteracting the Transcriptional Activation of Hepatitis B virus X Protein in HBV Replication Mouse Model

    Zhou

    2015-09-01

    Full Text Available Background RPB5-Mediating protein (RMP is associated with the RNA polymerase II subunit RPB5. This protein functionally counteracts the transcriptional activation of Hepatitis B Virus X protein (HBx by competitively binding to the RPB5; however, the effects of RMP on Hepatitis B virus (HBV transcription and replication remain unknown. Objectives The purpose of this study was to investigate the effect of RMP on viral transcription and replication in vivo by using the hydrodynamic-based HBV replication mouse model. Materials and Methods Male balb/c mice were transfected with wild type (1.2 wt or the HBx minus HBV plasmids (1.2x (- with or without HBx and RMP, to establish an HBV replication mouse model by hydrodynamic injection through the tail vein. The HBV RNA and HBV DNA replication intermediates (RI were analyzed in the liver. Results RPB5-Mediating protein could inhibit HBV transcription and replication in groups transfected with the 1.2 wt and HBx. The inhibitory effect disappeared in the 1.2x (- groups, yet it reappeared in the groups co-transfected with 1.2x (- and HBx. An inhibitory effect was indicated at a low dose of RMP (0.3 ug, 0.5 ug and 0.7 ug compared to the control group and groups that had received high doses of RMP. Conclusions Our study demonstrated that a low dose of RMP could inhibit HBV transcription and replication, which is dependent on the appearance of HBx in vivo.

  16. Effect of Antiviral Therapy on Serum Activity of Angiotensin Converting Enzyme in Patients with Chronic Hepatitis C

    Husic-Selimovic, Azra; Sofic, Amela; Huskic, Jasminko; Bulja, Deniz

    2016-01-01

    Introduction: Renin-angiotenzin system (RAS) is frequently activated in patients with chronic liver disease. Angiotenzin - II (AT-II), produced by angiotenzin converting enzyme (ACE), has many physiological effects, including an important role in liver fibrogenesis. Combined antiviral therapy with PEG-IFN and ribavirin besides its antiviral effect also leads to a reduction in liver parenchyma fibrosis. Aim of the study: Determining the value of ACE in serum of patients with chronic hepatitis C before and after combined antiviral therapy, as well as the value of ACE activities in sera of the control group. Materials and methods: We studied 50 patients treated at Gastroenterohepatology Department, in the time-period of four years. Value of ACE in serum was determined by Olympus AU 400 device, with application of kit “Infinity TN ACE Liquid Stable Reagent”. HCV RNA levels in sera were measured by real time PCR. HCV RNA test was performed with modular analysis of AMPLICOR and COBAS AMPLICOR HCV MONITOR test v2.0, which has proved infection and was used for quantification of the viruses and monitoring of the patients’ response to therapy. Liver histology was evaluated in accordance with the level of necroinflammation activity and stage of fibrosis. Results: Serum activities of ACE in chronic hepatitis C patients is statistically higher than the values in the control group (p=0.02). Antiviral therapy in chronic hepatitis C patients statistically decreases serum activities of ACE (p= 0.02) and indirectly affects fibrogenesis of the liver parenchyma. Correlation between ACE and ALT activity after the therapy was proved (0.3934). Conclusion: Our findings suggest that the activity of ACE in serum is a good indirect parameter of the liver damage, and could be used as an indirect prognostic factor of the level of liver parenchyma damage. Serum activity of ACE can be used as a parameter for non-invasive assessment of intensity of liver damage. PMID:27147779

  17. Hepatitis Vaccines

    Ogholikhan, Sina; Schwarz, Kathleen B

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  18. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions

  19. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Wang, Ke [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Pei, Hao [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Huang, Biao; Yang, Run-Lin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Wu, Hang-Yuan [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Zhu, Xue; Zhu, Lan [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China)

    2012-08-17

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  20. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-κB

    PengYao; YiqunZhan; WangxiangXu; ChangyanLi; PeibinYue; ChengwangXu; DarongHU; ChengkuiQu; XiaomingYang

    2005-01-01

    Background/Aims: Hepatocyte growth factor (HGF) regulates proliferation of hepatic stem cells. Transcription factor nuclear factor kappa B (NF-κB) has been demonstrated as a key mediator for cell growth regulation. We investigated the role of NF-κB in HGF-mediated cellular proliferation responses in a rat liver.derived hepatic stem-like cell line WB.F344. Methods: Cell proliferation was determined by incorporation of [3H]thymidine. Phosphorylation of ERK1/2, p38 MAPK, Akt and IκBα by HGF stimulation was detected by Western blotting. NF-κB activation was determined by electrophoretic mobility shift assay and NF-κB.mediated SEAP reporter assay. NF-κB activation was inhibited by treatment with an IκBα dominant-negative vector or inhibitor BAY-11-7082. Results: We found that stimulation of WB-F344 cells with HGF promoted cell proliferation and effectively protected WB-F344 cells from apoptosis induced by TNF-α. We also observed activation of ERK1/2, p38 MAPK, Akt and NF-κB signaling pathways by HGF in WB-F344 cells. HGF-induced cell proliferation was partly blocked by pre-treatment of the cells with inhibitors against MEK1 or p38 MAPK, and completely blocked using an inhibitor for NF-κB activity.Furthermore, it was demonstrated that IκB mutant that suppressed NF-κB activity completely blocked HGF-induced cell proliferation. Conclusions: NF-κB activity is required for HGF-induced proliferation in hepatic stem-like cell line WB-F344, and this activity requires ERK1/2 and p38 MAPK pathways.

  1. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    Highlights: ► siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. ► siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. ► Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (−325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  2. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-{gamma} ligand, rosiglitazone

    Wakui, Yuta; Inoue, Jun [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Ueno, Yoshiyuki, E-mail: yueno@mail.tains.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan)

    2010-05-28

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.

  3. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    Ness, Gene C., E-mail: gness@hsc.usf.edu [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States); Edelman, Jeffrey L.; Brooks, Patricia A. [Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. Black-Right-Pointing-Pointer siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. Black-Right-Pointing-Pointer Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  4. Solanum nigrum Protects against Hepatic Fibrosis via Suppression of Hyperglycemia in High-Fat/Ethanol Diet-Induced Rats

    Cheng-Jeng Tai

    2016-02-01

    Full Text Available Background: Advanced glycation end products (AGEs signal through the receptor for AGE (RAGE, which can lead to hepatic fibrosis in hyperglycemia and hyperlipidemia. We investigated the inhibitory effect of aqueous extracts from Solanum nigrum (AESN on AGEs-induced RAGE signaling and activation of hepatic stellate cells (HSCs and hyperglycemia induced by high-fat diet with ethanol. Methods: An animal model was used to evaluate the anti-hepatic fibrosis activity of AESN in rats fed a high-fat diet (HFD; 30% with ethanol (10%. Male Wistar rats (4 weeks of age were randomly divided into four groups (n = 6: (1 control (basal diet; (2 HFD (30% + ethanol (10% (HFD/ethanol; (3 HFD/ethanol + AESN (100 mg/kg, oral administration; and (4 HFD/ethanol + pioglitazone (10 mg/kg, oral administration and treated with HFD for 6 months in the presence or absence of 10% ethanol in dietary water. Results: We found that AESN improved insulin resistance and hyperinsulinemia, and downregulated lipogenesis via regulation of the peroxisome proliferator-activated receptor α (PPARα, PPARγ co-activator (PGC-1α, carbohydrate response element-binding protein (ChREBP, acetyl-CoA carboxylase (ACC, and fatty acid synthase (FAS mRNA levels in the liver of HFD/ethanol-treated rats. In turn, AESN may delay and inhibit the progression of hepatic fibrosis, including α-smooth muscle actin (α-SMA inhibition and MMP-2 production. Conclusions: These results suggest that AESN may be further explored as a novel anti-fibrotic strategy for the prevention of liver disease.

  5. Hepatic parenchymal changes following transcatheter embolization and chemoembolization in a rabbit tumor model.

    Yong Wang

    Full Text Available OBJECTIVE: To compare the effects of transcatheter arterial chemoembolization (TACE with transcatheter arterial embolization (TAE on liver function, hepatic damage, and hepatic fibrogenesis in a rabbit tumor model. MATERIALS AND METHODS: Thirty-nine New Zealand white rabbits implanted with VX2 tumors in the left liver lobes were randomly divided into three groups: TAE, TACE, and control group. In the TAE group (n = 15, polyvinyl alcohol particles (PVAs were used for left hepatic artery embolization. In the TACE group (n = 15, the tumors were treated with left hepatic arterial infusions of a suspension of 10-hydroxycamptothecin and lipiodol, followed by embolization with PVAs. In the control group (n = 9, the animals received sham treatment with distilled water. Serum and liver samples were collected at 6 hours, 3 days and 7 days after treatment. Liver damage was measured using a liver function test and histological analyses. Liver fibrogenesis and hepatic stellate cell (HSC activation were evaluated using Sirius Red and anti-alpha-smooth muscle actin (α-SMA immunohistochemical stains. RESULTS: TACE caused liver injury with greater increases in serum alanine aminotransferase and aspartate aminotransferase levels on day 3 (P<0.05. Histological analyses revealed increased hepatic necrosis in adjacent non-tumorous liver tissue from day 3 compared to the TAE group (Suzuki score of 2.33±1.29 versus 1.13±1.18, P = 0.001. HSC activation and proliferation were significantly increased in the TACE group compared to the control group at 3 and 7 days after treatment (0.074±0.014 vs. 0.010±0.006, and 0.088±0.023 vs. 0.017±0.009, P<0.05. Sirius Red staining demonstrated a statistically significant increase in collagen deposition in the livers in the TACE group 7 days after embolization compared to the control group (0.118±0.012 vs. 0.060±0.017, P = 0.05. CONCLUSION: The results of this animal study revealed that TACE induced

  6. The Study of ABO Groups and Rh Factor in Active and Non-active Carriers of Hepatitis B Virus

    Haydeh Alaoddolehei et al.

    2007-01-01

    Full Text Available During past eight decades, many studies have been performed to determine relationship between infectious diseases and blood groups. Interaction of microorganisms and RBC membrane is probably because of antigenic similarity, adherence through specific receptors or demodulation of antibody response (1. The first known relationship between blood groups and infectious diseases was seen in Plasmodium vivax. It is believed that sensitivity to HIV infection is related to blood groups and Rh factor (2. Hepatitis is a general word which caused by many factors such as DNA virus named HBV (hepatitis B virus. Several serologic determinants [eg. Glycoprotein surface antigen (HBsAg, viral peptide antigen (HBeAg, antibody against viral nucleoprotein (HBcAb] and PCR lead to recognition of HBV (3. A number of individuals with chronic infection (presence of HBsAg are divided to active and onactive groups. All cases are positive in HBcAb and negative in HBsAb. Active cases are recognized by detection of HBeAg and HBV-DNA, some clinical symptoms and elevated laboratory tests (ALT and AST (4. This study was performed based on presence of ABO and Rh antigens on other cells (5 which could be used as receptors for viruses. All individuals infected with HBV in the past or present time who were referred to a clinic were enrolled to this study. Fifty-five patients (10 female and 45 male were active and 182 (64 female and118 male were non-active out of 237 person with HBsAg. The blood samples were collected and ABO and Rh typing was done by Blood Filtration and Investigation Co (Palayesh and Pajohesh of blood company. Lot. No: MAbA09 antiserum. Data were analyzed by SPSS software using ||2 test. This study showed that active individuals have A (18.2%, B (18.2%, O (58.2%, AB (5.4%, Rh positive (96.4% and Rh negative (3.6% and nonactive individuals have A (26.9%, B (25.3%, O (41.2%, AB (6.6%, Rh positive (98.4% and Rh negative (1.6% (Table 1. These findings revealed that

  7. The Multiple Functions of T Stellate/Multipolar/Chopper Cells in the Ventral Cochlear Nucleus

    Oertel, Donata; Wright, Samantha; Cao, Xiao-Jie; Ferragamo, Michael; Bal, Ramazan

    2010-01-01

    Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brain stem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons...

  8. Activity of hepatic but not skeletal muscle carnitine palmitoyltransferase enzyme is depressed by intravenous glucose infusions in lactating dairy cows.

    Al-Trad, B; Wittek, T; Gäbel, G; Fürll, M; Reisberg, K; Aschenbach, J R

    2010-12-01

    A positive energy balance in dairy cows pre-partum may decrease hepatic carnitine palmitoyltransferase (CPT) enzyme activity, which might contribute to disturbances of lipid metabolism post-partum. The purpose of this study was to investigate whether skeletal muscle CPT activity can also be downregulated during positive energy balance. Mid-lactating dairy cows were maintained on intravenous infusion of either saline (control) or glucose solutions that increased linearly over 24 days, remained at the 24-day level until day 28 and were suspended thereafter. Liver and skeletal muscle biopsies, as well as four diurnal blood samples, were taken on days 0, 8, 16, 24, and 32, representing infusion levels equivalent to 0%, 10%, 20%, 30% and 0% of the net energy for lactation (NE(L)) requirement respectively. Glucose infusion increased serum insulin concentrations on day 16 and 24 while plasma glucose levels were increased at only a single time point on day 24. Serum beta-hydroxybutyric acid concentrations decreased between day 8 and 24; whereas changes in non-esterified fatty acids were mostly insignificant. Total lipid contents of liver and skeletal muscle were not affected by treatment. Hepatic CPT activity decreased with glucose infusion (by 35% on day 24) and remained decreased on day 32. Hepatic expression levels of CPT-1A and CPT-2 mRNA were not significantly altered but tended to reflect the changes in enzyme activity. In contrast to the liver, no effect of glucose infusion was observed on skeletal muscle CPT activity. We conclude that suppression of CPT activity by positive energy balance appears to be specific for the liver in mid-lactating dairy cows. PMID:20546068

  9. Stellate ganglion neurolysis under CT-guidance: ethanol versus radiofrequency

    Neurolysis of the stellate ganglion (SG) is an efficient method in the management of pain in patients suffering from local malignancies invading the SG. To perform neurolysis one must first have a good understanding of the anatomical relation ship of the SG and the surrounding structures which determine the possible safe percutaneous pathways. In this paper we will first depict the anatomy of SG with CT cross sectional imaging. Secondly we will demonstrate step by step (patient positioning, gantry tilting, saline injection, needle steering ect.) our routinely used technique of SG neurolysis under CT-guidance with either alcohol or radiofrequency thermal ablation. We will discuss advantages and drawbacks of each approach. CT guidance in contrary to fluoroscopic guidance allows safe needle progression and precise positioning at target which reduces complications and optimizes procedure results. (authors)

  10. Branched chain amino acid transaminase and branched chain alpha-ketoacid dehydrogenase activity in the brain, liver and skele­tal muscle of acute hepatic failure rats

    Takei,Nobuyuki

    1985-02-01

    Full Text Available Branched chain amino acid (BCAA transaminase activity increased in both the mitochondrial and supernatant fractions of brain from hepatic failure rats, in which a partial hepatectomy was performed 24h following carbon tetrachloride (CCl4 administration, although the activity of liver and skeletal muscle was the same as in control rats. The elevation of mitochondrial BCAA transaminase activity in liver-injured rats was partly due to increased activity of brain specific Type III isozyme. Branched chain alpha-ketoacid (BCKA dehydrogenase in the brain homogenates was not significantly altered in acute hepatic failure rats, while the liver enzyme activity was markedly diminished. BCKA dehydrogenase activity in the brain homogenates was inhibited by adding ATP to the assay system, and was activated in vitro by preincubating the brain homogenate at 37 degrees C for 15 min. These findings suggest that brain BCAA catabolism is accelerated in acute hepatic failure rats.

  11. Ultrasound-guided stellate ganglion block: safety and efficacy.

    Narouze, Samer

    2014-06-01

    Cervical sympathetic and stellate ganglion blocks (SGB) provide a valuable diagnostic and therapeutic benefit to sympathetically maintained pain syndromes in the head, neck, and upper extremity. With the ongoing efforts to improve the safety of the procedure, the techniques for SGB have evolved over time, from the use of the standard blind technique, to fluoroscopy, and recently to the ultrasound (US)-guided approach. Over the past few years, there has been a growing interest in the ultrasound-guided technique and the many advantages that it might offer. Fluoroscopy is a reliable method for identifying bony surfaces, which facilitates identifying the C6 and C7 transverse processes. However, this is only a surrogate marker for the cervical sympathetic trunk. The ideal placement of the needle tip should be anterolateral to the longus colli muscle, deep to the prevertebral fascia (to avoid spread along the carotid sheath) but superficial to the fascia investing the longus colli muscle (to avoid injecting into the muscle substance). Identifying the correct fascial plane can be achieved with ultrasound guidance, thus facilitating the caudal spread of the injectate to reach the stellate ganglion at C7-T1 level, even if the needle is placed at C6 level. This allows for a more effective and precise sympathetic block with the use of a small injectate volume. Ultrasound-guided SGB may also improve the safety of the procedure by direct visualization of vascular structures (inferior thyroidal, cervical, vertebral, and carotid arteries) and soft tissue structures (thyroid, esophagus, and nerve roots). Accordingly, the risk of vascular and soft tissue injury may be minimized. PMID:24760493

  12. Hepatic enzymes activity in the fish Prochilodus lineatus (Valenciennes, 1836) after sublethal cypermethrin exposure.

    Loteste, A; Scagnetti, J; Simoniello, M F; Campana, M; Parma, M J

    2013-05-01

    Prochilodus lineatus, a fish, was exposed to sublethal concentrations of cypermethrin: 0.075, 0.150, and 0.300 μg L(-1) and a control group (without cypermethrin) for 96 h. Five specimens were exposed in each concentration for triplicate (n = 60). Hepatic biochemical values and behavioral changes were studied. The results revealed a significantly higher level of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase in hepatic tissue at different concentrations of cypermethrin tested compared to control (p  0.05). This study provides information to know toxic mechanisms of cypermethrin on hepatic enzymes of P. lineatus that are poorly understood. PMID:23417111

  13. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  14. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-α

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-α, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-α mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-α luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-α antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-α activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity

  15. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti).

    Ye, Man-Hong; Nan, Yan-Lei; Ding, Meng-Meng; Hu, Jun-Bang; Liu, Qian; Wei, Wan-Hong; Yang, Sheng-Mei

    2016-01-01

    This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles. PMID:26850644

  16. Comparison of the Histological and Serological Parameters of Patients with Hepatitis Delta Virus in Active and Inactive Hepatitis B Virus Carriers

    Objective: To assess the histological and serological parameters of patients with hepatitis delta virus (HDV) in active HBV versus inactive HBV carriers. Study Design: An observational study. Place and Duration of Study: Medical Unit IV at Liaquat University Hospital, Jamshoro, Sindh, from June 2008 to September 2011. Methodology: This study included 49 consecutive inactive HBV carriers who were HBsAg-positive, HBV DNA-negative, anti-D antibody-positive, and HDV RNA-positive, as well as 277 patients with active HBV who were HBsAg-positive, anti- HDV antibody-positive, HDV RNA-positive, and demonstrated > 20,000 IU/mL HBV DNA and > 2 (ULN) serum glutamic pyruvic transaminase (SGPT). Informed consent was obtained from each patient. Liver biopsies were obtained and the staging of fibrosis was performed according to the METAVIR scoring system. Continuous variables such as age, SGPT, platelet count, and the HBV DNA level were computed as the mean A +- standard deviation. Categorical variables such as gender and stage of fibrosis are expressed as percentages. All data were processed using SPSS version 16. Results: This study included 49 patients in an inactive HBV group. Fibrosis stage 0 was observed in 37 (75.5%) patients and 12 (24.5%) were stage 1. Among the 277 patients with active disease, fibrosis stage 0 was present in 7 (2.5%) patients, stage 1 in 31 (11.2%) patients, stage 2 in 172 (62.1%) patients, stage 3 in 44 (15.9%) patients and stage 4 in 23 (8.3%) patients. Conclusion: HDV in active HBV carriers is severe on its initial presentation and requires prompt treatment whereas in inactive HBV carriers demonstrates an indolent course. (author)

  17. Pancreatic cancer stimulates pancreatic stellate cell proliferation and TIMP-1 production through the MAP kinase pathway

    Pancreatic adenocarcinoma is characterized by an intense desmoplastic reaction that surrounds the tumor. Pancreatic stellate cells (PSCs) are thought to be responsible for production of this extracellular matrix. When activated, PSCs have a myofibroblast phenotype and produce not only components of the extracellular matrix including collagen, fibronectin, and laminin, but also matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). Since PSCs are found in the stroma surrounding human pancreatic adenocarcinoma, we postulate that pancreatic cancer could impact PSC proliferation and TIMP-1 production. Rat PSCs were isolated and cultured. Isolated PSCs were exposed to PANC-1 conditioned medium (CM) and proliferation, activation of the mitogen-activated protein (MAP) kinase pathway, and TIMP-1 gene induction were determined. Exposure to PANC-1 CM increased PSC DNA synthesis, cell number, and TIMP-1 mRNA (real-time PCR) as well as activating the extracellular-regulated kinase (ERK) 1/2. Inhibition of ERK 1/2 phosphorylation (U0126) prevented the increases in growth and TIMP-1 expression. PANC-1 CM stimulates PSC proliferation and TIMP-1 through the MAP kinase (ERK 1/2) pathway

  18. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis.

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2(-/y)) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2(-/y) mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1-7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what's more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1-7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1-7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  19. Effects of percutaneous midband pulse current stimulation in hepatic region on the activity of hepatic mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase in exercise-induced fatigued rats

    Yi-zong ZHAI; Chang-lin HUANG; Chang, Qi; Wang, Jiu-Qing; Zhang, Jia; Guo, Yan-Ling

    2015-01-01

    Objective To explore the effects of percutaneous impulsive current stimulation in hepatic region on the activity of hepatic mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase in exercise-induced fatigued rats, in order to investigate the effect of exercise-induced fatigue. Methods Seventy-two 8-week old male Wistar rats were randomly divided into 4 groups (18 each): control group (group A), fatigue group (group B), stimulation before fatigue group (group C) and stimulation after fatigue group (...

  20. Appearance of an inhibitory cell nuclear antigen in rat and human serum during variable degrees of hepatic regenerative activity

    1999-01-01

    AIM To determine whether proliferating cell nuclear antigen (PCNA) is present in the peripheral circulation and whether PCNA levels correlate with enhanced regenerative activity.METHODS In animal studies, adult male Sprague-Dawley rats (n=3-4/ group) were sacrificed at 0, 12, 24, 36, 48, 72 and 96 hours following 70% partial hepatectomy. At each interval, sera were analyzed by Western blot for PCNA by two monoclonal antibodies (PC-10 and 19F-4). In human studies, sera from 4 patients with liver cirrhosis and 4 healthy controls were tested in a similar manner.RESULTS The PC-10 monoclonal antibody identified a protein with a molecular mass of 120 KD which remained stable in rat sera for 24 hours following partial hepatectomy, then increased 1.5-fold at 48 hours prior to returning to baseline at 96 hours after partial hepatectomy. However, it was not detected in the sera of patients with or without liver disease. In the 19F-4 monoclonal antibody, a protein with a molecular mass of approximately 46 KD was found. which was present in rat sera prior to partial hepatectomy and for 12 hours after surgery. Thereafter, levels fell by approximately 50% at 24 hours, 65% at 36 hours and 75% at 48 hours where they remained until 96 hours after partial hepatectomy. The decrease in levels correlated with the extent of partial hepatectomy. In human sera, the appearance of this inhibitory cell nuclear antigen (ICNA) was higher in the sera of patients with cirrhosis than in healthy controls.CONCLUSION The PC-10 monoclonal antibody can detect a protein in the circulation when active hepatic regenerative activity is taking place. The 19F-4 monoclonal antibody, however, identifies a protein in both rat and human sera that inversely correlates with hepatic regenerative activity. This protein which is tentatively referred to as inhibitory cell nuclear antigen (ICNA) may be used in documenting the extent of suppression of hepatic regeneration.

  1. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies.

    JunXu

    2014-07-01

    Full Text Available Liver fibrosis results from dysregulation of normal wound healing, inflammation, activation of myofibroblasts and deposition of extracellular matrix (ECM. Chronic liver injury causes death of hepatocytes and formation of apoptotic bodies, which in turn, release factors that recruit inflammatory cells (neutrophils, monocytes, macrophages, and lymphocytes to the injured liver. Hepatic macrophages (Kupffer cells produce TGF1 and other inflammatory cytokines that activate Collagen Type I producing myofibroblasts, which are not present in the normal liver. Secretion of TGF1 and activation of myofibroblasts play a critical role in the pathogenesis of liver fibrosis of different etiologies. Although the composition of fibrogenic myofibroblasts varies dependent on etiology of liver injury, liver resident Hepatic Stellate Cells (HSCs and Portal Fibroblasts (PFs are the major source of myofibroblasts in fibrotic liver in both experimental models of liver fibrosis and in patients with liver disease. Several studies have demonstrated that hepatic fibrosis can reverse upon cessation of liver injury. Regression of liver fibrosis is accompanied by the disappearance of fibrogenic myofibroblasts followed by resorption of the fibrous scar. Myofibroblasts either apoptose or inactivate into a quiescent-like state (e.g. stop collagen production and partially restore expression of lypogenic genes. Resolution of liver fibrosis is associated with recruitment of macrophages that secrete matrix-degrading enzymes (matrix metalloproteinase, collagenases and are responsible for fibrosis resolution. However, prolonged/repeated liver injury may cause irreversible crosslinking of ECM and formation of uncleavable collagen fibers. Advanced fibrosis progresses to cirrhosis and hepatocellular carcinoma (HCC. The current review will summarize the role and contribution of different cell types to populations of fibrogenic myofibroblasts in fibrotic liver.

  2. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    Koizumi, Yoshiki [School of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan; Nakajim, Syo [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Ohash, Hirofumi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya, Japan; Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Perelson, Alan S. [Los Alamos National Laboratory; Iwami, Shingo [Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan: PRESTO, JST, Saitama, Japan: CREST, JST, Saitama, Japan; Watashi, Koichi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  3. Novel acyclic nucleoside phosphonate analogues with potent anti-hepatitis B virus activities

    Ying, C.; Holý, Antonín; Hocková, Dana; Havlas, Zdeněk; De Clercq, E.; Neyts, J.

    2005-01-01

    Roč. 49, č. 3 (2005), 1177-1180. ISSN 0066-4804 R&D Projects: GA AV ČR(CZ) IBS4055109 Grant ostatní: FWO(BE) G.0267.04 Institutional research plan: CEZ:AV0Z4055905 Keywords : antivirals * hepatitis B * ANP Subject RIV: CC - Organic Chemistry Impact factor: 4.379, year: 2005

  4. Thyroid dysfunction induced by recombinant interferon-alpha therapy for chronic active type C hepatitis

    The aim of this study was to assess the frequency and types of thyroid therapy in patients of Chronic dysfunction that develops during IFN- Hepatitis C. The study was carried out on a total of 50 patients of chronic therapy. In addition 50 patients with hepatitis C on recombinant IFN- chronic hepatitis C, not on any antiviral treatment, were included as controls. After informed consent, clinical history was obtained, physical examination was done and findings recorded on a pre-designed proforma. Blood sampling was done for thyroid profile at the beginning of interferon therapy, at 12 weeks and finally at 24 weeks. Thyroid dysfunction (TD) was observed in 14% (n=7) of the patients on antiviral therapy for CHC (n=50). Amongst these seven patients with TD, hypothyroidism was observed in 5 and hyperthyroidism in 2 patients. In contrast the frequency of thyroid dysfunction observed in control group (n=50) was 2%. The frequency of thyroid dysfunction in patients of chronic hepatitis C treated with interferon approaches 14%, with hypothyroidism being the more commonly observed pattern. (author)

  5. Hepatitis A virus antibody

    A description is presented of a radioimmunoassay designed to prove the presence of the antibody against the hepatitis A virus (HA Ab, anti-Ha) using an Abbott HAVAB set. This proof as well as the proof of the antibody against the nucleus of the hepatitis B virus is based on competition between a normal antibody against hepatitis A virus and a 125I-labelled antibody for the binding sites of a specific antigen spread all over the surface of a tiny ball; this is then indirect proof of the antibody under investigation. The method is described of reading the results from the number of impulses per 60 seconds: the higher the titre of the antibody against the hepatitis A virus in the serum examined, the lower the activity of the specimen concerned. The rate is reported of incidence of the antibody against the hepatitis A virus in a total of 68 convalescents after hepatitis A; the antibody was found in 94.1%. The immunoglobulin made from the convalescents' plasma showed the presence of antibodies in dilutions as high as 1:250 000 while the comparable ratio for normal immunoglobulin Norga was only 1:2500. Differences are discussed in the time incidence of the antibodies against the hepatitis A virus, the antibodies against the surface antigen of hepatitis B, and the antibody against the nucleus of the hepatitis V virus. (author)

  6. Low transformation growth factor-β1 production and collagen synthesis correlate with the lack of hepatic periportal fibrosis development in undernourished mice infected with Schistosoma mansoni

    Andreia Ferreira Barros

    2014-04-01

    Full Text Available Undernourished mice infected (UI submitted to low and long-lasting infections by Schistosoma mansoni are unable to develop the hepatic periportal fibrosis that is equivalent to Symmers’ fibrosis in humans. In this report, the effects of the host’s nutritional status on parasite (worm load, egg viability and maturation and host (growth curves, biology, collagen synthesis and characteristics of the immunological response were studied and these are considered as interdependent factors influencing the amount and distribution of fibrous tissue in hepatic periovular granulomas and portal spaces. The nutritional status of the host influenced the low body weight and low parasite burden detected in UI mice as well as the number, viability and maturation of released eggs. The reduced oviposition and increased number of degenerated or dead eggs were associated with low protein synthesis detected in deficient hosts, which likely induced the observed decrease in transformation growth factor (TGF-β1 and liver collagen. Despite the reduced number of mature eggs in UI mice, the activation of TGF-β1 and hepatic stellate cells occurred regardless of the unviability of most miracidia, due to stimulation by fibrogenic proteins and eggshell glycoproteins. However, changes in the repair mechanisms influenced by the nutritional status in deficient animals may account for the decreased liver collagen detected in the present study.

  7. Association of γ-glutamyl transferase (GGT) activity with treatment and clinical outcomes in chronic hepatitis C (HCV)

    Everhart, James E.; Wright, Elizabeth C

    2013-01-01

    Increased GGT activity is associated with liver injury and with mortality in the general population. Less is known about its association with HCV outcomes. We examined the GGT as a predictor of both virological response to treatment and long-term clinical outcomes in the Hepatitis C Anti-viral Treatment Against Cirrhosis Trial (HALT-C). Methods: HALT-C enrolled patients with advanced liver disease (Ishak fibrosis score >=3) in 2 phases: a lead-in to establish lack of sustained viral response ...

  8. Role of Hepatic Progenitor Cells in Nonalcoholic Fatty Liver Disease Development: Cellular Cross-Talks and Molecular Networks

    Eugenio Gaudio

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD includes a spectrum of diseases ranging from simple fatty liver to nonalcoholic steatohepatitis, (NASH which may progress to cirrhosis and hepatocellular carcinoma. NASH has been independently correlated with atherosclerosis progression and cardiovascular risk. NASH development is characterized by intricate interactions between resident and recruited cells that enable liver damage progression. The increasing general agreement is that the cross-talk between hepatocytes, hepatic stellate cells (HSCs and macrophages in NAFLD has a main role in the derangement of lipid homeostasis, insulin resistance, danger recognition, immune tolerance response and fibrogenesis. Moreover, several evidences have suggested that hepatic stem/progenitor cell (HPCs activation is a component of the adaptive response of the liver to oxidative stress in NAFLD. HPC activation determines the appearance of a ductular reaction. In NASH, ductular reaction is independently correlated with progressive portal fibrosis raising the possibility of a periportal fibrogenetic pathway for fibrogenesis that is parallel to the deposition of subsinusoidal collagen in zone 3 by HSCs. Recent evidences indicated that adipokines, a class of circulating factors, have a key role in the cross-talk among HSCs, HPCs and liver macrophages. This review will be focused on cellular cross-talk and the relative molecular networks which are at the base of NASH progression and fibrosis.

  9. Erythropoietin decreases carbon tetrachloride-induced hepatic fibrosis by inhibiting transforming growth factor-beta

    Soo Young Park; Joo Young Lee; Won Young Tak; Young Oh Kweon; Mi Suk Lee

    2012-01-01

    Background In addition to hematopoietic effect,the erythropoietin is known as a multifunctional cytokine with anti-fibrosis and organ-protective activities.The purpose of this study was to evaluate the effect of recombinant human erythropoietin (rhEPO) on hepatic fibrosis and hepatic stellate cells (HSCs).Methods Carbon tetrachloride (CCl4) induced hepatic fibrosis mice models were used for in vivo study and HSCs line for in vitro study.CCl4 and rhEPO (0,200 or 1000 U/kg) was injected intraperitoneally in BALB/c mice three times a week for 4 weeks.Immunohistochemistry and immunoblotting were performed to evaluate expressions of transforming growth factor-β31 (TGF-β1),α-smooth muscle actin (α-SMA),and fibronectin in explanted liver.Immunoblotting of α-SMA,phophorylated Smad-2 and Smad-2/3 was performed in HSCs treated with TGF-β1 and/or rhEPO.Results Expressions of TGF-β1,α-SMA,and fibronectin were increased in CCl4 injected mice livers,but significantly attenuated by co-treatment with CCl4 and rhEPO.Co-treatment of rhEPO markedly suppressed fibrosis in Masson's trichrome compared with treatment of only CCl4.TGF-β1 increased phosphorylated α-SMA,Smad-2 expressions in HSCs,which were decreased by rhEPO co-treatment.Conclusions Treatment of rhEPO effectively suppressed fibrosis in CCl4-induced liver fibrosis mice models.Anti-fibrosis effect of rhEPO could be related to inhibition of TGF-β1 induced activation of HSCs.

  10. Negative regulation of the hepatic fibrogenic response by suppressor of cytokine signaling 1.

    Kandhi, Rajani; Bobbala, Diwakar; Yeganeh, Mehdi; Mayhue, Marian; Menendez, Alfredo; Ilangumaran, Subburaj

    2016-06-01

    Suppressor of cytokine signaling 1 (SOCS1) is an indispensable regulator of IFNγ signaling and has been implicated in the regulation of liver fibrosis. However, it is not known whether SOCS1 mediates its anti-fibrotic functions in the liver directly, or via modulating IFNγ, which has been implicated in attenuating hepatic fibrosis. Additionally, it is possible that SOCS1 controls liver fibrosis by regulating hepatic stellate cells (HSC), a key player in fibrogenic response. While the activation pathways of HSCs have been well characterized, the regulatory mechanisms are not yet clear. The goals of this study were to dissociate IFNγ-dependent and SOCS1-mediated regulation of hepatic fibrogenic response, and to elucidate the regulatory functions of SOCS1 in HSC activation. Liver fibrosis was induced in Socs1(-/-)Ifng(-/-) mice with dimethylnitrosamine or carbon tetrachloride. Ifng(-/-) and C57BL/6 mice served as controls. Following fibrogenic treatments, Socs1(-/-)Ifng(-/-) mice showed elevated serum ALT levels and increased liver fibrosis compared to Ifng(-/-) mice. The latter group showed higher ALT levels and fibrosis than C57BL/6 controls. The livers of SOCS1-deficient mice showed bridging fibrosis, which was associated with increased accumulation of myofibroblasts and abundant collagen deposition. SOCS1-deficient livers showed increased expression of genes coding for smooth muscle actin, collagen, and enzymes involved in remodeling the extracellular matrix, namely matrix metalloproteinases and tissue inhibitor of metalloproteinases. Primary HSCs from SOCS1-deficient mice showed increased proliferation in response to growth factors such as HGF, EGF and PDGF, and the fibrotic livers of SOCS1-deficient mice showed increased expression of the Pdgfb gene. Taken together, these data indicate that SOCS1 controls liver fibrosis independently of IFNγ and that part of this regulation may occur via regulating HSC proliferation and limiting growth factor availability

  11. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish.

    Lin, Chun-Hung; Chou, Pei-Hsin; Chen, Pei-Jen

    2014-07-30

    Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish populations in the aquatic environment. PMID:24962053

  12. Antiviral Activity of Marine Actinobacteria against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Juliana Cristina Santiago Bastos

    2015-12-01

    Full Text Available The Hepatitis C virus (Flaviviridae family, Hepacivirus genus represents a major public health problem worldwide and it is responsible for chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. As this virus does not replicate efficiently in cell culture and in animals, bovine viral diarrhea virus (BVDV is used as a surrogate model for screening assays of antiviral activity, and mechanism of action assays. From marine invertebrates and their microorganisms isolated, we prepared extracts and fractions, and we isolated substances for assessment of their possible antiviral activity. Of the 71 tested, seven were considered promising presenting protection percentage of more than 80%. The best inhibition results were obtained from the extracts produced by the Gordonia bacteria samples with 99.9% inhibition and by Micrococcus with 99% inhibition. Furthermore, most of the extracts selected by the protection percentage showed selectivity index values considered promising, especially the extracts of the bacteria Williansia (SI=27 and Brachybacterium (SI=39. On the action mechanism, most of the promising extracts showed activity in the inhibition of intracellular replication steps, although it has been observed action of different extracts in several stages of viral replicative cycle. Thus, various extracts stood out and may lead to the development of drugs that ensure an alternative therapy for the treatment of hepatitis C.

  13. Evaluation on Anti-hepatitis Viral Activity of Vitis vinifer L

    Long Ma; Haibo Li; Jun Zhao; Tao Liu

    2010-01-01

    Suosuo grape (Vitis vinifer L) is traditionally used as a therapeutic agent for measles and hepatitis by the ethnic Uighurs. This work aimed to investigate the anti-HBV effect of total triterpene (VTT), total flavonoids (VTF) and total polysaccharides (VTP) from Suosuo grape, and their synergistic effects were also tested. The viral antigens of cellular secretion, HBsAg and HBeAg, were determined by enzyme linked immunosorbent assay (ELISA).The quantity of HBV-DNA released in the supernatant ...

  14. Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor

    Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin; Lee, Gang Gu; Lee, Ki-Up; Kim, Seung-Whan

    2014-01-01

    Inflammation in response to excess low-density lipoproteins in the blood is an important driver of atherosclerosis development. Due to its ability to enhance ATP–binding cassette A1–dependent (ABCA1-dependent) reverse cholesterol transport (RCT), liver X receptor (LXR) is an attractive target for the treatment of atherosclerosis. However, LXR also upregulates the expression of sterol regulatory element–binding protein 1c (SREBP-1c), leading to increased hepatic triglyceride synthesis, an inde...

  15. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells

    Zhuhong Zhang; Si Chen; Hu Mei; Jiekun Xuan; Xiaoqing Guo; Letha Couch; Dobrovolsky, Vasily N.; Lei Guo; Nan Mei

    2015-01-01

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase ...

  16. AAV-Mediated Delivery of Zinc Finger Nucleases Targeting Hepatitis B Virus Inhibits Active Replication

    Weber, Nicholas D.; Daniel Stone; Ruth Hall Sedlak; De Silva Feelixge, Harshana S.; Pavitra Roychoudhury; Schiffer, Joshua T.; Martine Aubert; Jerome, Keith R.

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatme...

  17. Hepatitis B virus X stimulates redox signaling through activation of ataxia telangiectasia mutated kinase

    Matsuda, Yasunobu; Sanpei, Ayumi; Wakai, Toshifumi; Kubota, Masayuki; Osawa, Mami; Hirose, Yuki; Sakata, Jun; Kobayashi, Takashi; Fujimaki, Shun; Takamura, Masaaki; Yamagiwa, Satoshi; Yano, Masahiko; Ohkoshi, Shogo; Aoyagi, Yutaka

    2014-01-01

    Hepatitis B virus X (HBX) protein plays a crucial role in carcinogenesis, but its mechanism is unclear. The involvement of ataxia telangiectasia mutated (ATM) kinase in the enhanced redox system was investigated by examining the phosphorylation level of ATM in HBX gene-transfected cells and in transgenic mice following redox system manipulation by treatment with hydrogen peroxide (H2O2) or antioxidant. Western blotting and immunostaining showed that phospho-ATM was significantly increased by ...

  18. APPL1-mediated activation of STAT3 contributes to inhibitory effect of adiponectin on hepatic gluconeogenesis.

    Ding, Youming; Zhang, Deling; Wang, Bin; Zhang, Yemin; Wang, Lei; Chen, Xiaoyan; Li, Mingxin; Tang, Zhao; Wang, Changhua

    2016-09-15

    Adiponectin has been shown to suppress hepatic gluconeogenesis. However, the signaling pathways underlying its action remain ill-defined. The purpose of this study was to examine the potential role of APPL1 in mediating anti-gluconeogenic ability of adiponectin. Primary hepatocytes were isolated from male C57BL/6 mice. Western blot and RT-PCR were performed to detect protein expression and mRNA level, respectively. The protein-protein association was determined by immunoprecipitation and GST pull-down assay. We found that APPL1 protein levels were negatively associated with expressions of proteins and mRNAs of gluconeogenesis enzymes under stimulation with adiponectin. In addition, adiponectin-stimulated STAT3 phosphorylation and acetylation were positively regulated by APPL1 and negative regulated by SirT1. Pharmacological and genetic inhibition of STAT3 mitigated impact of adiponectin on hepatic gluconeogenesis. Furthermore, adiponectin administration facilitated the binding of APPL1 to SirT1 and suppressed the association of SirT1 with STAT3. Taken together, our study showed that APPL1-SirT1-STAT3 pathway mediated adiponectin signaling in primary hepatocytes. This new finding provides a novel mechanism by which adiponectin suppresses hepatic gluconeogenesis. PMID:27246173

  19. Time dependency and topography of hepatic nuclear factor κB activation after hemorrhagic shock and resuscitation in mice.

    Korff, Sebastian; Falsafi, Reza; Czerny, Christoph; Jobin, Christian; Nau, Christoph; Jakob, Heike; Marzi, Ingo; Lehnert, Mark

    2012-11-01

    The leading causes of death in people aged 1 to 44 years are unintentional injuries with associated hemorrhagic shock. Hemorrhagic shock followed by resuscitation (H/R) activates the nuclear factor κB (NF-κB) pathway. To further address the association between liver damage and NF-κB activation, we analyzed the H/R-induced activation of NF-κB using cis-NF-κB reporter gene mice. In these mice, the expression of green fluorescent protein (GFP) is linked to the activation of NF-κB, and therefore tracing of GFP colocalizes NF-κB activation. Mice were hemorrhaged to a mean arterial blood pressure of 30mmHg for 90 min, followed by resuscitation. Six, 14, or 24 h after resuscitation, mice were killed. Compared with sham-operated mice, H/R led to a profound hepatic and cellular damage as measured by aspartate aminotransferase, creatine kinase, and lactate dehydrogenase levels, which was accompanied by an elevation in interleukin 6 levels and hepatic leukocyte infiltration. Interleukin 10 levels in plasma were elevated 6 h after H/R. Using serial liver sections, we found an association between necrotic areas, oxidative stress, and enhanced GFP-positive cells. Furthermore, enhanced GFP-positive cells surrounded areas of necrotic liver tissue, predominantly in a penumbra-like-shape pericentrally. These results elucidate spatial relationship between oxidative stress, liver necrosis, and NF-κB activation, using an in vivo approach and therefore might help to further analyze mechanisms of NF-κB activation after resuscitated blood loss. PMID:22814290

  20. GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice.

    Edwin T Parlevliet

    Full Text Available OBJECTIVE: In addition to improve glucose intolerance, recent studies suggest that glucagon-like peptide-1 (GLP-1 receptor agonism also decreases triglyceride (TG levels. The aim of this study was to evaluate the effect of GLP-1 receptor agonism on very-low-density lipoprotein (VLDL-TG production and liver TG metabolism. EXPERIMENTAL APPROACH: The GLP-1 peptide analogues CNTO3649 and exendin-4 were continuously administered subcutaneously to high fat diet-fed APOE*3-Leiden transgenic mice. After 4 weeks, hepatic VLDL production, lipid content, and expression profiles of selected genes involved in lipid metabolism were determined. RESULTS: CNTO3649 and exendin-4 reduced fasting plasma glucose (up to -30% and -28% respectively and insulin (-43% and -65% respectively. In addition, these agents reduced VLDL-TG production (-36% and -54% respectively and VLDL-apoB production (-36% and -43% respectively, indicating reduced production of VLDL particles rather than reduced lipidation of apoB. Moreover, they markedly decreased hepatic content of TG (-39% and -55% respectively, cholesterol (-30% and -55% respectively, and phospholipids (-23% and -36% respectively, accompanied by down-regulation of expression of genes involved in hepatic lipogenesis (Srebp-1c, Fasn, Dgat1 and apoB synthesis (Apob. CONCLUSION: GLP-1 receptor agonism reduces VLDL production and hepatic steatosis in addition to an improvement of glycemic control. These data suggest that GLP-receptor agonists could reduce hepatic steatosis and ameliorate dyslipidemia in patients with type 2 diabetes mellitus.

  1. PPARα (Peroxisome Proliferator-activated Receptor α) Activation Reduces Hepatic CEACAM1 Protein Expression to Regulate Fatty Acid Oxidation during Fasting-refeeding Transition.

    Ramakrishnan, Sadeesh K; Khuder, Saja S; Al-Share, Qusai Y; Russo, Lucia; Abdallah, Simon L; Patel, Payal R; Heinrich, Garrett; Muturi, Harrison T; Mopidevi, Brahma R; Oyarce, Ana Maria; Shah, Yatrik M; Sanchez, Edwin R; Najjar, Sonia M

    2016-04-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed at high levels in the hepatocyte, consistent with its role in promoting insulin clearance in liver. CEACAM1 also mediates a negative acute effect of insulin on fatty acid synthase activity. Western blot analysis reveals lower hepatic CEACAM1 expression during fasting. Treating of rat hepatoma FAO cells with Wy14,643, an agonist of peroxisome proliferator-activated receptor α (PPARα), rapidly reduces Ceacam1 mRNA and CEACAM1 protein levels within 1 and 2 h, respectively. Luciferase reporter assay shows a decrease in the promoter activity of both rat and mouse genes by Pparα activation, and 5'-deletion and block substitution analyses reveal that the Pparα response element between nucleotides -557 and -543 is required for regulation of the mouse promoter activity. Chromatin immunoprecipitation analysis demonstrates binding of liganded Pparα toCeacam1promoter in liver lysates ofPparα(+/+), but notPparα(-/-)mice fed a Wy14,643-supplemented chow diet. Consequently, Wy14,643 feeding reduces hepatic Ceacam1 mRNA and CEACAM1 protein levels, thus decreasing insulin clearance to compensate for compromised insulin secretion and maintain glucose homeostasis and insulin sensitivity in wild-type mice. Together, the data show that the low hepatic CEACAM1 expression at fasting is mediated by Pparα-dependent mechanisms. Changes in CEACAM1 expression contribute to the coordination of fatty acid oxidation and insulin action in the fasting-refeeding transition. PMID:26846848

  2. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  3. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  4. Migration of hepatic stellate cells in ifbrotic microenvironment of diseased liver model

    Yi-Zhong Chang; Li Yang and Chang-Qing Yang

    2008-01-01

    BACKGROUND: In liver ifbrosis, alterations within the space of Disse microenvironment facilitate the progression of chronic liver disease. The normal basement membrane-like matrix in the space of Disse converts to a matrix rich in ifbril-forming collagens during the ifbrosis. This study aimed to investigate the impact of alterations in the space of Disse microenvironment on the migration of hepatic stellate cells (HSCs) in the process of liver ifbrosis, and to explore the novel mechanism of liver ifbrosis from the viewpoint of cell migration. METHODS:A modiifed in vitro Boyden chamber system was employed to partially mimic the in vitro microenvironment of the Disse space in normal liver and in ifbrosis. The effects of ifbrogenetic growth factors on the migration of HSCs in simulated liver ifbrosis were assessed by cell migration and cell proliferation experiments. RESULTS:Enhanced  platelet-derived  growth  factor (PDGF)-BB, transforming growth factor-β1 (TGF-β1) and/or epithelial growth factor (EGF) in liver ifbrosis resulted in an increase in migratory capacity of activated HSCs. The enhanced migration of HSCs induced by PDGF-BB was  proliferation-independent.  The  elevation  of  basic ifbroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) during liver ifbrosis had no effect on the migration of HSCs. CONCLUSIONS:The  study  provides  valuable  insights into the role of the space of Disse microenvironment in regulating the migratory behavior of HSCs. TGF-β1, PDGF-BB and EGF, which increase in liver ifbrosis, induce the migration of activated HSCs. However, bFGF and VEGF have no effect although they also increase during liver ifbrosis.

  5. Pigment Epithelium-Derived Factor Is an Intrinsic Antifibrosis Factor Targeting Hepatic Stellate Cells

    Ho, Tsung-Chuan; Chen, Show-Li; Shih, Shou-Chuan; Wu, Ju-Yun; Han, Wen-Hua; Cheng, Huey-Chuan; Yang, Su-Lin; Tsao, Yeou-Ping

    2010-01-01

    The liver is the major site of pigment epithelium-derived factor (PEDF) synthesis. Recent evidence suggests a protective role of PEDF in liver cirrhosis. In the present study, immunohistochemical analyses revealed lower PEDF levels in liver tissues of patients with cirrhosis and in animals with chemically induced liver fibrosis. Delivery of the PEDF gene into liver cells produced local PEDF synthesis and ameliorated liver fibrosis in animals treated with either carbon tetrachloride or thioace...

  6. Thyroid hormone levels and hepatic enzyme activity in lactating dams after gestational exposure to low dose PBDE 47

    Kuriyama, S.N.; Grande, S.W.; Akkoc, Z.; Souza, C.A.M. de; Chahoud, I. [Charite Univ. Medical School Berlin (Germany). Inst. of Clinical Pharmacology and Toxicology, Dept. Toxicology, Campus Benjamin Franklin; Fidalgo-Neto, A.A. [Oswaldo Cruz Foundation, Rio de Janeiro (Brazil). Lab. of Environmental Toxicology

    2004-09-15

    Polybrominated diphenyl ethers (PBDEs), a class of widely used flame retardants, are found extensively in the environment (shown by several studies on sentinel animal species), as well as in humans. In rodents, technical commercial PBDE mixtures and individual congeners have shown to interfere with thyroid hormone homeostasis, produce a mix-type induction of hepatic microsomal enzymes, disrupt spontaneous behaviour, impair learning and memory and alter the cholinergic transmitter system. In rat and mice, some technical PBDE commercial mixtures such as DE-71 and Bromkal 70 and the congener PBDE 47 have shown to decrease circulating thyroid hormone levels. PBDEs are also able to induce both hepatic phase I and phase II detoxification enzymes, demonstrated by several investigations in laboratory animals. For example, induction of ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-Odespenthylase (PROD) and uridinediphospho-glucuronosyltransferase (UDPGT) has been shown in rodents and cell lines after exposure to technical mixtures or individual congeners. However, these studies deal with doses much higher than that found in human tissues, highlighting the importance of assessing the adverse effects of doses close to human exposure levels. PBDE 47 is the most predominant congener found in environmental and human samples (including human milk) and, therefore, hazard identification is extremely important for human risk assessment. We administered a single dose to gravid dams on gestation day 6 of either 140 {mu}g/kg BW or 700 {mu}g/kg BW of the congener, 2,2'4,4'-tetrabromo diphenyl ether (PBDE 47). These doses are pertinent to human exposure levels because a study by She et al. found a mean level of 33.3 {mu}g PBDE 47 /kg fat in human breast adipose tissue with a range from 7.01 to 196 {mu}g PBDE 47 /kg fat. In this study, thyroid hormone levels and hepatic enzyme activity were evaluated in lactating dams after in utero administration of low dose PBDE 47.

  7. Up-Regulation of Hepatic Alpha-2-HS-Glycoprotein Transcription by Testosterone via Androgen Receptor Activation

    Jakob Voelkl

    2014-06-01

    Full Text Available Background/Aims: Fetuin-A (alpha-2-HS-glycoprotein, AHSG, a liver borne plasma protein, contributes to the prevention of soft tissue calcification, modulates inflammation, reduces insulin sensitivity and fosters weight gain following high fat diet or ageing. In polycystic ovary syndrome, fetuin-A levels correlate with free androgen levels, an observation pointing to androgen sensitivity of fetuin-A expression. The present study thus explored whether the expression of hepatic fetuin-A is modified by testosterone. Methods: HepG2 cells were treated with testosterone and androgen receptor antagonist flutamide, and were silenced with androgen receptor siRNA. To test the in vivo relevance, male mice were subjected to androgen deprivation therapy (ADT for 7 weeks. AHSG mRNA levels were determined by quantitative RT-PCR and fetuin-A protein abundance by Western blotting. Results: In HepG2 cells, AHSG mRNA expression and fetuin-A protein abundance were both up-regulated following testosterone treatment. The human alpha-2-HS-glycoprotein gene harbors putative androgen receptor response elements in the proximal 5 kb promoter sequence relative to TSS. The effect of testosterone on AHSG mRNA levels was abrogated by silencing of the androgen receptor in HepG2 cells. Moreover, treatment of HepG2 cells with the androgen receptor antagonist flutamide in presence of endogenous ligands in the medium significantly down-regulated AHSG mRNA expression and fetuin-A protein abundance. In addition, ADT of male mice was followed by a significant decrease of hepatic Ahsg mRNA expression and fetuin-A protein levels. Conclusions: Testosterone participates in the regulation of hepatic fetuin-A expression, an effect mediated, at least partially, by androgen receptor activation.

  8. Effects of percutaneous midband pulse current stimulation in hepatic region on the activity of hepatic mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase in exercise-induced fatigued rats

    Yi-zong ZHAI

    2015-06-01

    Full Text Available Objective To explore the effects of percutaneous impulsive current stimulation in hepatic region on the activity of hepatic mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase in exercise-induced fatigued rats, in order to investigate the effect of exercise-induced fatigue. Methods Seventy-two 8-week old male Wistar rats were randomly divided into 4 groups (18 each: control group (group A, fatigue group (group B, stimulation before fatigue group (group C and stimulation after fatigue group (group D. Exhaustion of animals in B, C and D groups were reproduced by prolonged swimming. Current stimulation (1024Hz, 10mA, current cycle 1sec for 20 minutes was given to the rats of group C before swimming, and to those in group D after exhaustion. At the weekend of 1st, 3rd and 5th week after modeling, the rats were sacrificed in batches from each group (6 each. The activities of hepatic mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase were determined by spectrophotometry, and Bradfood protein quantification was employed to quantitate the protein in rats' hepatic mitochondria. Results No significant difference was found in swimming-exhaustion time among 3 groups at the first weekend (P>0.05, while the swimming-exhaustion time was significantly prolonged at the 3rd and 5th weekends in group D than in group B and C (P0.05, while the enzyme activities were obviously lower at the 3rd and 5th weekend in group B than that in groups A, C and D (P<0.05, and they were also lower in group C than that in group D (P<0.05. Conclusions Exercise-induced fatigue can lower the activity of hepatic mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase. Percutaneous pulsive current stimulating hepatic region of exercise-induced fatigued rats may improve the enzyme activity, reduce the concentration of free calcium and calcium overload in mitochondria, stimulate the oxidative phosphorylation, accelerate the rate of respiratory chain, promote exercise endurance and score, and

  9. Hepatic Glycogen Supercompensation Activates AMP-Activated Protein Kinase, Impairs Insulin Signaling, and Reduces Glycogen Deposition in the Liver

    Winnick, Jason J.; An, Zhibo; Ramnanan, Christopher J.; Smith, Marta; Irimia, Jose M.; Neal, Doss W.; Moore, Mary Courtney; Peter J Roach; Cherrington, Alan D.

    2011-01-01

    OBJECTIVE The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver’s ability to take up and metabolize glucose. RESEARCH DESIGN AND METHODS During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experiment...

  10. Autoimmune Hepatitis

    ... diagnosed? A health care provider will make a diagnosis of autoimmune hepatitis based on symptoms, a physical exam, blood tests, ... 2. A health care provider will make a diagnosis of autoimmune hepatitis based on symptoms, a physical exam, blood tests, ...

  11. Hepatic ischemia

    Hepatic ischemia is a condition in which the liver does not get enough blood or oxygen, causing injury to ... pressure from any condition can lead to hepatic ischemia. Such conditions may include: Abnormal heart rhythms Dehydration ...

  12. Viral Hepatitis

    ... Hepatitis viruses B and C can cause both acute and chronic infections. Chronic hepatitis B and C are serious health problems. They can lead to: Cirrhosis (suh-ROH-suhs) Liver failure Liver cancer Return to top How is viral ...

  13. Hepatitis A

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  14. Terpenoids from Flueggea virosa and their anti-hepatitis C virus activity.

    Chao, Chih-Hua; Cheng, Ju-Chien; Shen, De-Yang; Huang, Hui-Chi; Wu, Yang-Chang; Wu, Tian-Shung

    2016-08-01

    Phytochemical study of the methanolic root extract of Flueggea virosa allowed for the characterization of 18 non-alkaloid terpenoids. Their structures have skeletons composed of six rearranged ent-podocarpanes, 11 ent-podocarpanes, and a 3,4-seco-30-nor-friedelane. These were characterized based on 2D NMR, IR, UV, and MS spectroscopic analysis and their absolute configurations were determined by single-crystal X-ray studies, as well as by (1)H NMR spectroscopic analysis for the corresponding chiral derivatives. The isolates were evaluated for therapeutic potential against hepatitis C virus (HCV) infection to human hepatoma Huh7.5 cells. PMID:27112277

  15. Natural epitope variants of the hepatitis C virus impair cytotoxic T lymphocyte activity

    Shuping; Wang; Rico; Buchli; Jennifer; Schiller; Jianen; Gao; Rodney; S; VanGundy; William; H; Hildebrand; David; D; Eckels

    2010-01-01

    AIM:To understand how interactions between hepatitis C virus(HCV) and the host's immune system might lead to viral persistence or effective elimination of HCV.METHODS:Nucleotides 3519-3935 of the non-structural 3(NS3) region were amplified by using reverse transcription polymerase chain reaction(PCR).PCR products of the HCV NS3 regions were integrated into a PCR T7TOPO TA vector and then sequenced in both directions using an automated DNA sequencer.Relative major histocompatibility complex binding levels ...

  16. Liver MicroRNA-291b-3p Promotes Hepatic Lipogenesis through Negative Regulation of Adenosine 5'-Monophosphate (AMP)-activated Protein Kinase α1.

    Meng, Xiangyu; Guo, Jun; Fang, Weiwei; Dou, Lin; Li, Meng; Huang, Xiuqing; Zhou, Shutong; Man, Yong; Tang, Weiqing; Yu, Liqing; Li, Jian

    2016-05-13

    In a microarray study, we found that hepatic miR-291b-3p was significantly increased in leptin-receptor-deficient type 2 mice (db/db), a mouse model of diabetes. The function of miR-291b-3p is unknown. The potential role of miR-291b-3p in regulating hepatic lipid metabolism was explored in this study. High-fat diet (HFD)- and chow-fed mice were injected with an adenovirus expressing a miR-291b-3p inhibitor and a miR-291b-3p mimic through the tail vein. Hepatic lipids and lipogenic gene expression were analyzed. Additionally, gain- and loss-of-function studies were performed in vitro to identify direct targets of miR-291b-3p. MiR-291b-3p expression and the protein levels of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) were increased in the steatotic liver of db/db mice and HFD-fed mice versus their respective controls. Inhibition of hepatic miR-291b-3p expression prevented increases in hepatic lipogenesis and steatosis in HFD-fed mice. The opposite was observed when miR-291b-3p was overexpressed in the livers of chow-fed C57BL/6J wild-type mice. In vitro studies revealed that silencing of miR-291b-3p in NCTC1469 hepatic cells ameliorated oleic acid/palmitic acid mixture-induced elevation of cellular triglycerides. Importantly, we identified AMP-activated protein kinase (AMPK)-α1 as a direct target of miR-291b-3p. Using metformin, an activator of AMPK, we showed that AMPK activation-induced inhibition of hepatic lipid accumulation was accompanied by reduced expression of miR-291b-3p in the liver. Liver miR-291b-3p promoted hepatic lipogenesis and lipid accumulation in mice. AMPKα1 is a direct target of miR-291b-3p. In conclusion, our findings indicate that miR-291b-3p promotes hepatic lipogenesis by suppressing AMPKα1 expression and activity, indicating the therapeutic potential of miR-291b-3p inhibitors in fatty liver disease. PMID:27013659

  17. Hepatitis C

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  18. Hepatitis C-seroconversion within three to six months after having contracted clinical syphilis and/or lymphogranuloma venereum rectitis in five homosexually active, HIV seropositive men.

    Pelgrom, J M; Vogelaers, D; Colle, I

    2008-01-01

    Five Human Immunodeficiency Virus (HIV) seropositive homosexually active men experienced hepatitis C-seroconversion in the period between September 2004 and January 2007 at a single HIV Reference Center (University Hospital Ghent, Belgium). There was no history of intravenous drug use. All had unprotected anal sex with multiple other HIV seropositive men in the recent past. All of them had clinical syphilis and/or lymphogranuloma venereum rectitis within three to six months before the hepatitis C-seroconversion was detected. This confirms the observations in other case reports and studies originating from the Netherlands, France, the United Kingdom and Germany, illustrating sexual transmission of hepatitis C virus (HCV) infection in this high-risk group. Physicians should be aware of the persistent high-risk behaviour in a subgroup of HIV seropositive homosexually active men and perform intensive sexual counselling and screening for other sexually transmitted diseases, including HCV, during medical follow-up. PMID:19186567

  19. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish

    Lin, Chun-Hung [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China); Chou, Pei-Hsin [Department of Environmental Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Chen, Pei-Jen, E-mail: chenpj@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China)

    2014-07-30

    Highlights: • We assess ecotoxicological impact of azole fungicides in the aquatic environment. • Carcinogenic and non-carcinogenic azoles show different CYP activities in medaka. • We compare azole-induced CYP expression and carcinogenesis between fish and rodents. • Liver CYP-enzyme induction is a key event in conazole-induced tumorigenesis. • We suggest toxicity evaluation methods for azole fungicides using medaka fish. - Abstract: Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish

  20. Hepatitis E virus ORF2 protein activates the pro-apoptotic gene CHOP and anti-apoptotic heat shock proteins.

    Lijo John

    Full Text Available BACKGROUND: Hepatitis E virus (HEV is a non-enveloped plus-strand RNA virus that causes acute hepatitis. The capsid protein open reading frame 2 (ORF2 is known to induce endoplasmic reticulum stress in ORF2 expressing cells. METHODOLOGY/PRINCIPAL FINDINGS: In this study we found that HEV ORF2 activates the expression of the pro-apoptotic gene C/EBP homologous protein (CHOP. ORF2 stimulates the CHOP promoter mainly through AARE (amino acid response elements and to a minor extent the ERSE (endoplasmic reticulum stress response elements. Activating transcription factor 4 (ATF4 protein binds and activates the AARE regulatory sites of the CHOP promoter. ORF2 expression also leads to increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α that in turn initiates the translation of ATF4 mRNA. The pro-apoptotic gene CHOP is an important trigger to initiate endoplasmic reticulum stress induced apoptosis. However, the activation of CHOP by ORF2 in this study did not induce apoptosis, nor did BCL2-associated X protein (Bax translocate to mitochondria. Microarray analysis revealed an ORF2 specific increased expression of chaperones Hsp72, Hsp70B', and co-chaperone Hsp40. Co-immunoprecipitation (Co-IP and in silico molecular docking analysis suggests that HEV ORF2 interacts with Hsp72. In addition, Hsp72 shows nuclear accumulation in ORF2 expressing cells. CONCLUSIONS/SIGNIFICANCE: These data provide new insight into simultaneously occurring counter-acting effects of HEV ORF2 that may be part of a strategy to prevent host suicide before completion of the viral replication cycle.

  1. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish

    Highlights: • We assess ecotoxicological impact of azole fungicides in the aquatic environment. • Carcinogenic and non-carcinogenic azoles show different CYP activities in medaka. • We compare azole-induced CYP expression and carcinogenesis between fish and rodents. • Liver CYP-enzyme induction is a key event in conazole-induced tumorigenesis. • We suggest toxicity evaluation methods for azole fungicides using medaka fish. - Abstract: Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish

  2. Hepatocyte growth factor and chronic hepatitis C Factor de crecimiento hepatocitario y hepatitis crónica C

    E. Marín-Serrano

    2010-06-01

    Full Text Available Objective: the hepatocyte growth factor (HGF is a pleiotropic cytokine produced by hepatic stellate cells and implicated in liver regeneration and fibrosis. Serum levels of HGF vary in liver diseases, reflecting hepatic damage and hepatocellular dysfunction. In this study, serum levels of HGF and the relationship between HGF and biochemical, histological and virological data, have been analysed in patients suffering from chronic hepatitis C (CHC. Patients and methods: serum HGF concentration was measured by ELISA in sandwich in 45 patients with CHC. Correlation between HGF levels and histological (necroinflammatory activity and fibrosis score and biochemical (transaminases, prothrombin activity, albumin, bilirubin, or virological (hepatitis C virus load parameters was analyzed. Serum HGF concentration was also studied in a subgroup of the original sample treated with interferon and ribavirin. Results: serum HGF concentrations of patients with CHC were significantly higher than those detected in healthy controls. Patients with significant fibrosis (F ≥ 2 had a significantly older age, lower count of platelets and higher values of AST, GGT and HGF, than those patients with a fibrosis score F Objetivo: el factor de crecimiento hepatocitario (HGF es una citocina pleiotrópica producida por las células estrelladas hepáticas, que está implicada en la regeneración y la fibrosis hepática. La concentración sérica del HGF en las enfermedades hepáticas es variable, reflejando daño hepático y disfunción hepatocelular. En este estudio se ha analizado la concentración sérica del HGF en pacientes con hepatitis crónica por virus de la hepatitis C (VHC y su relación con los datos bioquímicos, histológicos y virológicos. Pacientes y métodos: se determinó la concentración sérica de HGF mediante ELISA en sándwich y se analizó la correlación entre los niveles del HGF y los datos histológicos (actividad necroinflamatoria, estadio de

  3. Effects of xenon irradiation of the stellate ganglion region on fibromyalgia

    Nakajima, Fukami; Komoda, Akihiro; Aratani, Satoko; Fujita, Hidetoshi; Kawate, Mariko; Nakatani, Kou; Akiyama, Masako; Makita, Koshi; Nakajima, Toshihiro

    2015-01-01

    [Purpose] The aim of the study was to determine the effect of xenon irradiation of the stellate ganglion region on fibromyalgia. [Subjects] The study included 5 men and 22 women (age, 56.4 ± 16.3 years [range, 25–84 years]) who were diagnosed with fibromyalgia according to the modified 2010 criteria of the American College of Rheumatology between July and August 2013. [Methods] Bilateral xenon light irradiation (0.38–1.1 μm) around the stellate ganglion was performed in the supine position by...

  4. Chemical ablation of stellate ganglion for head and neck cancer pain.

    Ghai, A; Kaushik, T; Kumar, R; Wadhera, S

    2016-01-01

    We present a case of patient with orofacial cancer having pain on one side of face affecting her ability to speak, chew, swallow and sleep leading to emotional and behavioral deterioration. A diagnostic stellate ganglion block was performed followed by chemical neurolysis using phenol under ultrasound guidance, to prevent complications due to inadvertent spread of drug. Her pain scores decreased drastically, she was able to chew and swallow. Weighing the risk of permanent Horner's syndrome or motor paralysis with benefit of improvement in basic functioning of debilitated patients chemical neurolysis of stellate ganglion can be performed with advanced imaging modalities. PMID:27363209

  5. Molecular determinants of the profibrogenic effects of endothelin-1 in pancreatic stellate cells

    Anika Jonitz; Brit Fitzner; Robert Jaster

    2009-01-01

    AIM:To gain molecular insights into the expression and functions of endothelin-1 (ET-1) in pancreatic stellate cells (PSC).METHODS: PSCs were isolated from rat pancreas tissue,cultured, and stimulated with ET-1 or other extracellular mediators. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine into DNA and cell migration was studied in a transwell chamber assay. Gene expression at the level of Mrna was quantified by real-time Polymerase chain reaction.Expression and phosphorylation of proteins were monitored by immunoblotting, applying an infrared imaging technology. ET-1 levels in cell culture supernatants were determined by an enzyme immunometric assay.To study DNA binding of individual transcription factors,electrophoretic mobility shift assays were performed.RESULTS: Among several mediators tested, transforming growth factor-β1 and tumour necrosis factor-α displayed the strongest stimulatory effects on ET-1 secretion. The cytokines induced binding of Smad3 and NF-κB, respectively, to oligonucleotides derived from the ET-1 promoter, implicating both transcription factors in the induction of ET-1 gene expression. In accordance with previous studies, ET-1 was found to stimulate migration but not proliferation of PSC. Stimulation of ET-1 receptors led to the activation of two distinct mitogen-activated protein kinases, p38 and extracellular signal-regulated kinases (ERK)1/2, as well as the transcription factor activator protein-1. At the mRNA level, enhanced expression of the PSC activation marker, α-smooth muscle actin and two proinflammatory cytokines, interleukin (IL)-1β and IL-6, was observed.CONCLUSION:This study provides novel lines of evi-dence for profibrgenic and proinflammatory actions of ET-1 in the pancreas,encouraging further studies with ET-1 inhibitors in chronic pancreatitis.

  6. Hypoksisk hepatitis

    Amadid, Hanan; Schiødt, Frank Vinholt

    2014-01-01

    Hypoxic hepatitis (HH), also known as ischaemic hepatitis or shock liver, is an acute liver injury caused by hepatic hypoxia. Cardiac failure, respiratory failure and septic shock are the main underlying conditions. In each of these conditions, several haemodynamic mechanisms lead to hepatic...... hypoxia. A shock state is observed in only 50% of cases. Thus, shock liver and ischaemic hepatitis are misnomers. HH can be a diagnostic pitfall but the diagnosis can be established when three criteria are met. Prognosis is poor and prompt identification and treatment of the underlying conditions...

  7. Activity of the Respiratory Chain Enzymes of Blood Leucocytes’ Mitochondria Under the Conditions of Toxic Hepatitis Induced Against the Background Alimentary Deprivation of Protein

    O.N. Voloshchuk

    2015-12-01

    Full Text Available Full functioning of the leucocytes’ energy supply system is one of the essential factors for the immune surveillance system effective work. The pivotal enzymes of the leucocytes’ energy biotransformation system are NADH-ubiquitin reductase, a marker of the Complex I of respiratory chain activity, and succinate dehydrogenase, key enzyme of the Complex II of respiratory chain. The aim of research – to study the NADH-ubiquitin reductase and succinate dehydrogenase activity of the blood leucocytes’ mitochondria under the conditions of toxic hepatitis induced against the background alimentary deprivation of protein. It is shown, that under the conditions of acetaminophen-induced hepatitis a reduction of the NADH-ubiquitin reductase enzymatic activity is observed on the background activation of the succinate-dependent way of the mitochondrial oxidation. Conclusion was made that alimentary deprivation or protein is a factor, aggravating the misbalance of the energy biotransformation system in the leucocytes of rats with toxic hepatitis. Established activity changes of the leucocytes’ mitochondria respiratory chain key enzymes may be considered as one of the mechanisms, directed on the maintenance of leucocytes energy supply on a level, sufficient for their functioning. Research results may be used for the biochemical rationale of the therapeutic approaches to the elimination and correction of the leucocytes’ energy metabolism disturbances consequences under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  8. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1α (HIF-1α) and induced the nuclear translocation of C/EBPβ. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1α siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1α activation, and suggest HIF-1α for the therapeutic target of HBV-mediated chemoresistance

  9. Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells.

    Karger, Anna; Fitzner, Brit; Brock, Peter; Sparmann, Gisela; Emmrich, Jörg; Liebe, Stefan; Jaster, Robert

    2008-10-01

    Pancreatic fibrosis, a key feature of chronic pancreatitis and pancreatic cancer, is mediated by activated pancreatic stellate cells (PSC). Connective tissue growth factor (CTGF) has been suggested to play a major role in fibrogenesis by enhancing PSC activation after binding to alpha5beta1 integrin. Here, we have focussed on molecular determinants of CTGF action. Inhibition of CTGF expression in PSC by siRNA was associated with decreased proliferation, while application of exogenous CTGF stimulated both cell growth and collagen synthesis. Real-time PCR studies revealed that CTGF target genes in PSC not only include mediators of matrix remodelling but also the proinflammatory cytokines interleukin (IL)-1beta and IL-6. CTGF stimulated binding of NF-kappaB to the IL-6 promoter, and siRNA targeting the NF-kappaB subunit RelA interfered with CTGF-induced IL-6 expression, implicating the NF-kappaB pathway in the mediation of the CTGF effect. In further studies, we have analyzed regulation of CTGF expression in PSC. Transforming growth factor-beta1, activin A and tumor necrosis factor-alpha enhanced expression of the CTGF gene, while interferon-gamma displayed the opposite effect. The region from -74 to -125 of the CTGF promoter was revealed to be critical for its activity in PSC as well as for the inhibitory effect of interferon-gamma. Taken together, our results indicate a tight control of CTGF expression in PSC at the transcriptional level. CTGF promotes fibrogenesis both directly by enhancing PSC proliferation and matrix protein synthesis, and indirectly through the release of proinflammatory cytokines that may accelerate the process of chronic inflammation. PMID:18639630

  10. Pancreatic Stellate Cells : A Starring Role in Normal and Diseased Pancreas

    Minoti eApte

    2012-08-01

    Full Text Available While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC, had remained undiscovered until as recently as twenty years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas - chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM proteins. Recent studies have also implied other additional functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans.During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumour growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.

  11. Synthesis and Structure-Activity Relationships of Imidazole-Coumarin Conjugates against Hepatitis C Virus

    Shwu-Chen Tsay

    2016-02-01

    Full Text Available A series of new conjugated compounds with a –SCH2– linkage were synthesized by chemical methods from imidazole and coumarin derivatives. The experimental results indicate that of the twenty newly synthesized imidazole–coumarin conjugates, three of them exhibited appealing EC50 values (5.1–8.4 μM and selective indices >20 against hepatitis C virus. Their potency and selectivity were increased substantially by modification of their structure with two factors: imidazole nucleus with a hydrogen atom at the N(1 position and coumarin nucleus with a substituent, such as Cl, F, Br, Me, and OMe. These guidelines provide valuable information for further development of conjugated compounds as anti-viral agents.

  12. Post-heparin plasma lipoprotein lipase, but not hepatic lipase activity, is related to plasma adiponectin in type 2 diabetic patients and healthy subjects

    De Vries, R; Wolffenbuttel, BHR; Sluiter, WJ; Van Tol, A; Dullaart, RPF

    2005-01-01

    The aim of this study was to determine the relationships of plasma adiponectin with post-heparin plasma lipoprotein lipase (LPL) and hepatic lipase (HL) activities, and to evaluate whether plasma adiponectin contributes to diabetes-associated dyslipidaemia. Plasma adiponectin, post-heparin plasma li

  13. Activity of sphingomyelinase in rat liver in acute and chronic toxic hepatitis: proportion between peroxidative and phospholipase pathways of lipid bilayer modification.

    Serebrov, V Yu; Kuzmenko, D I; Burov, P G; Novitsky, S V

    2009-01-01

    We showed that sphingomyelinase activity in the liver increased only during the acute phase of toxic hepatitis. Peroxidative modification of hepatocyte membrane bilayer prevailed during the acute phase, while after transformation of the process to the chronic phase phospholipase pathway predominated. PMID:19526125

  14. Role of activation-induced cell death in pathogenesis of patients with chronic hepatitis B

    Chun-Sheng Hou; Gui-Qiang Wang; Shu-Lan Lu; Bei Yue; Ming-Rong Li; Xiao-Yan Wang; Jian-Wu Yu

    2003-01-01

    AIM: To study and compare the difference of activationinduced cell death (AICD) in peripheral blood T-lymphocytes (PBL-Ts) from patients with chronic hepatitis B (CHB) and the normal people in vitro, and to explore the role of AICD in chronic hepatitis B virus (HBV) infection and the pathogenesis of CHB.METHODS: Twenty-five patients and fourteen healthy people were selected for isolation of PBL-Ts. During cultivation, antiCD3 mAb, PMA and ionomycin were used for AICD of PBL-Ts.AICD ratio of PBL-Ts was detected with TdT-mediated dUTP nick end labeling and assessed by flow cytometry.RESULTS: When induced with anti-CD3, PMA and ionomycin in vitro, AICD ratio of PBL-Ts from CHB patients was significantly higher than that from healthy control (17.24±1.21VS. 6.63±1.00, P<0.01) and that from CHB patients without induction (17.24±1.21 VS. 9.88±1.36, P<0.0L). There was a similar AICD ratio of PBL-Ts between induction group and without induction group, but no difference was found before and after induction in healthy control. The density of INF-γ in culture media of induction groups of CHB was lower than that of other groups (P<0.01). There was no difference between these groups in density of IL-10 (P>0.05).CONCLUSION: When induced during cultivation in vitro,PBL-Ts from CHB have AICD very commonly. This phenomenon has a potentially important relation with pathogenesis of CHB and chronicity of HBV infection.

  15. Oxymatrine attenuates CCl4-induced hepatic fibrosis via modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways.

    Zhao, Hong-Wei; Zhang, Zhen-Fang; Chai, Xuan; Li, Guang-Quan; Cui, He-Rong; Wang, Hong-Bo; Meng, Ya-Kun; Liu, Hui-Min; Wang, Jia-Bo; Li, Rui-Sheng; Bai, Zhao-Fang; Xiao, Xiao-He

    2016-07-01

    Oxymatrine (OMT) is able to effectively protect against hepatic fibrosis because of its anti-inflammatory property, while the underlying mechanism remains incompletely understood. In this study, forty rats were randomly divided into five groups: control group, model group (carbon tetrachloride, CCl4) and three OMT treatment groups (30, 60, 120mg/kg). After CCl4 alone, the fibrosis score was 20.2±0.8, and the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline content, and collagen I expression was elevated, but OMT blunted these parameters. Treatment with OMT prevented CCl4-induced increases in expression of pro-inflammatory and pro-fibrotic cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α, meanwhile OMT promoted the expression of anti-inflammatory and anti-fibrotic factors such as interleukin (IL)-10 and bone morphogenetic protein and activin membrane-bound inhibitor (Bambi). Moreover, lipopolysaccharides (LPS) and high mobility group box-1 (HMGB1), which activates Toll-like receptor 4 (TLR4) and modulate hepatic fibrogenesis through hepatic stellate cells (HSCs) or Kupffer cells, were significantly decreased by OMT treatment. These results were further supported by in vitro data. First, OMT suppressed the expression of TLR4 and its downstream pro-inflammatory cytokines, lowered the level of HMGB1, TGF-β1 in macrophages. Then, OMT promoted Bambi expression and thereby inhibited activation of HSCs mediated by transforming growth factor (TGF)-β1. In conclusion, this study showed that OMT could effectively attenuate the CCl4-induced hepatic fibrosis, and this effect may be due to modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways. PMID:27179304

  16. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B1 to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B1 to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B1 to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cells expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B1 as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B1 activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B1 in human liver involves the contribution of multiple forms of P450

  17. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt.

    Jia, Yaoyao; Wu, Chunyan; Kim, Jiyoung; Kim, Bobae; Lee, Sung-Joon

    2016-02-01

    We have previously reported that astaxanthin (AX), a dietary carotenoid, directly interacts with peroxisome proliferator-activated receptors PPARα and PPARγ, activating PPARα while inhibiting PPARγ, and thus reduces lipid accumulation in hepatocytes in vitro. To investigate the effects of AX in vivo, high-fat diet (HFD)-fed C57BL/6J mice were orally administered AX (6 or 30mg/kg body weight) or vehicle for 8weeks. AX significantly reduced the levels of triglyceride both in plasma and in liver compared with the control HFD mice. AX significantly improved liver histology and thus reduced both steatosis and inflammation scores of livers with hematoxylin and eosin staining. The number of inflammatory macrophages and Kupffer cells were reduced in livers by AX administration assessed with F4/80 staining. Hepatic PPARα-responsive genes involved in fatty acid uptake and β-oxidation were upregulated, whereas inflammatory genes were downregulated by AX administration. In vitro radiolabeled assays revealed that hepatic fatty acid oxidation was induced by AX administration, whereas fatty acid synthesis was not changed in hepatocytes. In mechanism studies, AX inhibited Akt activity and thus decreased SREBP1 phosphorylation and induced Insig-2a expression, both of which delayed nuclear translocation of SREBP1 and subsequent hepatic lipogenesis. Additionally, inhibition of the Akt-mTORC1 signaling axis by AX stimulated hepatic autophagy that could promote degradation of lipid droplets. These suggest that AX lowers hepatic lipid accumulation in HFD-fed mice via multiple mechanisms. In addition to the previously reported differential regulation of PPARα and PPARγ, inhibition of Akt activity and activation of hepatic autophagy reduced hepatic steatosis in mouse livers. PMID:26878778

  18. Hepatitis Vaccines.

    Ogholikhan, Sina; Schwarz, Kathleen B

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  19. Hepatitis Vaccines

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  20. A trans-activator function is generated by integration of hepatitis B virus preS/S sequences in human hepatocellular carcinoma DNA

    The X gene of wild-type hepatitis B virus or integrated DNA has recently been shown to stimulate transcription of a variety of enhancers and promoters. To further delineate the viral sequences responsible for trans-activation in hepatomas, the authors cloned the single hepatitis B virus insert from human hepatocellular carcinoma DNA M1. The plasmid pM1 contains 2004 base of hepatitis B virus DNA subtype adr, including truncated preS/S sequences and the enhancer element. The X promoter and 422 nucleotides of the X coding region are present. The entire preC/C gene is deleted. In transient cotransfection assays using Chang liver cells (CCL 13), pM1 DNA exerts a 6- to 10-fold trans-activating effect on the expression of the pSV2CAT reporter plasmid. The transactivation occurs by stimulation of transcription and is dependent on the simian virus 40 enhancer in the reporter plasmid. Deletion analysis of pM1 subclones reveals that the transactivator is encoded by preS/S and not by X sequences. A frameshift mutation within the preS2 open reading frame shows that this portion is indispensable for the trans-activating function. Initiation of transcription has been mapped to the S1 promoter. A comparable trans-activating effect is also observed with cloned wild-type hepatitis B virus sequences similarly truncated. These results show that a transcriptional trans-activator function not present in the intact gene is generated by 3' truncation of integrated hepatitis B virus DNA preS/S sequences

  1. Regional intravenous guanethidine vs. stellate ganglion block in reflex sympathetic dystrophies: a randomized trial.

    Bonelli, S; Conoscente, F; Movilia, P G; Restelli, L; Francucci, B; Grossi, E

    1983-07-01

    Regional intravenous guanethidine blocks and stellate ganglion blocks have been compared in a randomized trial. Nineteen patients, randomly allocated to two groups of therapy and exhibiting severe reflex sympathetic dystrophy following peripheral nerve lesions, have been treated. The performance of the intravenous guanethidine block is of longer duration and superior to stellate ganglion block, as regards some early pharmacological effects (skin temperatures and amplitude of plethysmographic waves recorded before blockade and 15 min, 60 min, 24 h, 48 h after institution of the block). In fact the intravenous guanethidine group shows a persistent and significant increase of the skin temperature and of the plethysmographic traces in the blocked side 24 h and 48 h after blockade in comparison with the patients treated with stellate ganglion block. Concerning the therapeutic effects (changes in pain scores and clinical signs--hyperpathia, allodynia, vasomotor disturbances, trophic changes, oedema and limited motion), recorded at the end of treatment and 1 month and 3 months follow-up, an intravenous guanethidine block carried out every 4 days up to a total of 4 blocks is comparable with a stellate ganglion block every day up to a total of 8 blocks. The results of this study show that regional sympathetic block with guanethidine is a good therapeutic tool in the treatment of reflex dystrophies, especially on account of its negligible risks and contraindications. PMID:6350994

  2. Influence of taurine and vitaiodurol on the development frequency of experimental stellate cataracts

    Comparative investigations of medical efficiency of 4% solutions of taurine and vita-iodurol have been carried out using the model of experimental stellate cataract in mice. 140 male mice of CBAxC57BL6 line with 14-16g mass were investigated. Animals of 3 groups (35 mice in each) were exposed to 300 rad dose gamma-radiation with Co60. Radiation intensity was 10 rad/s. The animals were examined before irradiation and each 4 weeks after irradiation. In 25 weeks after irradiation, when lenticular opacity was observed in more than half the mice, the animals of the first group were dropped in two eyes by 1 drop of 4% distilled water taurine solution during a month. Animals of the second group got instillations of vita-iodurol by the same method. The third group of animals was the irradiated control group. The fourth group of mice was used as the intact control group. Lenticular opacities developed were classified by the Christenberry and Furth method, suggested for evaluating stellate lenticular opacities in small laboratory animals. It was shown, that instillations of 4% taurine solution into animals with initial stellate cataract during a month result in reducing the frequency of lenticular opacities by 30%. Taurine in used concentration results in pronounced medical effect. Vita-iodurol hadn't any therapentic effect on the course of initial stellate catarat in mice

  3. The P2X7 Receptor Supports Both Life and Death in Fibrogenic Pancreatic Stellate Cells

    Haanes, Kristian; Schwab, Albrecht; Novak, Ivana

    2012-01-01

    The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7...... fibrosis and cancer....

  4. Hepatitis C virus non-structural protein 3 interacts with cytosolic 5'(3'-deoxyribonucleotidase and partially inhibits its activity.

    Chiu-Ping Fang

    Full Text Available Infection with hepatitis C virus (HCV is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3 is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5'(3'-deoxyribonucleotidase (cdN, dNT-1 was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.

  5. Role of biotransformation in the activation of rat hepatic phospholipase C by carbon tetrachloride and related haloalkanes

    CCl4 exerts its hepatotoxicity through a reactive metabolite. Phospholipid degradation has been proposed as a mechanism by which CCl4-induced alterations at the endoplasmic reticulum result in damage to organelles distant from it. Activation of the hepatic phospholipid degradative enzyme phospholipase C (PLC) occurs rapidly after CCl4 exposure, yet the role of CCl4 metabolites in this activation has been uncertain. 1000 g rat hepatocellular fractions exposed to CCl4 exhibited time- and concentration-dependent increases in the conversion of membrane bound 14C-phosphatic acid into 14C-neutral lipid when 14C-glycerol-3-phosphate was incubated with the fraction in the presence of Ca2+, CoA, ATP, and palmitate. CCl4-induced PLC activation in the presence of NADPH (when CCl4 metabolism occurred) was 2-3 fold greater than in its absence at CCl4 concentrations below 1 mM. The metabolism-dependent activation occurred subsequent to the plateau of CCl4 metabolism, and was inhibited by metyrapone,whereas the metabolism-independent component was not

  6. The antifibrotic effects of TGF-β1 siRNA on hepatic fibrosis in rats

    Highlights: → We constructed CCL4 induced liver fibrosis model successfully. → We proofed that the TGF-β1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. → The therapy effect of TGF-β1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-β1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-β1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-β1 siRNA 0.125 mg/kg treatment group, TGF-β1 siRNA 0.25 mg/kg treatment group and TGF-β1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-β1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-β1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-β1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-β1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-β1 siRNA negative control group and the TGF-β1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-β1, type I collagen and type III collagen (P < 0

  7. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    Lang, Qing; Liu, Qi [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Xu, Ning [The Second Hospital of YuLin, Shanxi Province (China); Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China); Shi, Xiao-Feng, E-mail: sxff2003@yahoo.com.cn [Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Instituted for Virus Hepatitis and Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing (China)

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the m

  8. Feature Hepatitis: Hepatitis Can Strike Anyone

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis Can Strike Anyone Past Issues / Spring 2009 Table ... from all walks of life are affected by hepatitis, especially hepatitis C, the most common form of ...

  9. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Clarice Weis Arns

    2013-04-01

    Full Text Available The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18 and 584 (150 µg/mL, SI 27 showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C.

  10. Hepatitis (For Parents)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth Hepatitis KidsHealth > For Parents > Hepatitis Print A A A ... to Call the Doctor en español Hepatitis About Hepatitis The word hepatitis simply means an inflammation of ...

  11. Hepatitis B Vaccine

    Engerix-B® ... a combination product containing Hepatitis A Vaccine, Hepatitis B Vaccine) ... What is hepatitis B?Hepatitis B is a serious infection that affects the liver. It is caused by the hepatitis B virus.In ...

  12. Evaluation on Anti-hepatitis Viral Activity of Vitis vinifer L

    Long Ma

    2010-10-01

    Full Text Available Suosuo grape (Vitis vinifer L is traditionally used as a therapeutic agent for measles and hepatitis by the ethnic Uighurs. This work aimed to investigate the anti-HBV effect of total triterpene (VTT, total flavonoids (VTF and total polysaccharides (VTP from Suosuo grape, and their synergistic effects were also tested. The viral antigens of cellular secretion, HBsAg and HBeAg, were determined by enzyme linked immunosorbent assay (ELISA.The quantity of HBV-DNA released in the supernatant was assayed by real-time PCR. It was found that it effectively suppressed the secretion of HBsAg and HBeAg from HepG2.2.15 cells in a dose-dependent manner, as well as the HBV DNA. The results of orthogonal design experiment showed that the combination of VTT 20 μg/mL, VTF 50 μg/mL and VTP 50 μg/mL had the best optimistic inhibitory effects on HBeAg secretion.

  13. Simultaneously Targeting the NS3 Protease and Helicase Activities for More Effective Hepatitis C Virus Therapy.

    Ndjomou, Jean; Corby, M Josie; Sweeney, Noreena L; Hanson, Alicia M; Aydin, Cihan; Ali, Akbar; Schiffer, Celia A; Li, Kelin; Frankowski, Kevin J; Schoenen, Frank J; Frick, David N

    2015-08-21

    This study examines the specificity and mechanism of action of a recently reported hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase-protease inhibitor (HPI), and the interaction of HPI with the NS3 protease inhibitors telaprevir, boceprevir, danoprevir, and grazoprevir. HPI most effectively reduced cellular levels of subgenomic genotype 4a replicons, followed by genotypes 3a and 1b replicons. HPI had no effect on HCV genotype 2a or dengue virus replicon levels. Resistance evolved more slowly to HPI than telaprevir, and HPI inhibited telaprevir-resistant replicons. Molecular modeling and analysis of the ability of HPI to inhibit peptide hydrolysis catalyzed by a variety of wildtype and mutant NS3 proteins suggested that HPI forms a bridge between the NS3 RNA-binding cleft and an allosteric site previously shown to bind other protease inhibitors. In most combinations, the antiviral effect of HPI was additive with telaprevir and boceprevir, minor synergy was observed with danoprevir, and modest synergy was observed with grazoprevir. PMID:25961497

  14. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-01-01

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945

  15. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    HOSOMI, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding...

  16. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Clarice Weis Arns; Cláudia Beatriz Afonso de Menezes; Bárbara Pereira da Silva; Eduardo Furtado Flores; Fabiana Fantinatti-Garboggini; Marina Aiello Padilla; Juliana Cristina Santiago Bastos; Luciana Konecny Kohn

    2013-01-01

    The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced fro...

  17. Comparison among Different Gilthead Sea Bream (Sparus aurata) Farming Systems: Activity of Intestinal and Hepatic Enzymes and 13C-NMR Analysis of Lipids

    Vincenzo Zonno; Francesco Paolo Fanizzi; Carlo Storelli; Giorgia Bressani; Pascali, Sandra A. De; Laura Del Coco; Paride Papadia

    2009-01-01

    In order to evaluate differences in general health and nutritional values of gilthead sea bream (Sparus aurata), the effects of semi-intensive, land-based tanks and sea-cages intensive rearing systems were investigated, and results compared with captured wild fish. The physiological state was determined by measuring the activity of three different intestinal digestive enzymes: alkaline phosphatase (ALP), leucine aminopeptidase (LAP) and maltase; and the activity of the hepatic ALP. Also, the ...

  18. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  19. HEPATOPROTECTIVE AND ANTIOXIDANT ACTIVITY OF COCCINIA GRANDIS ROOT EXTRACT AGAINST PARACETAMOL INDUCED HEPATIC OXIDATIVE STRESS IN WISTAR ALBINO RATS

    Moideen K

    2011-03-01

    Full Text Available The present study was conducted to evaluate the hepatoprotective and antioxidant activity of Coccinia grandis root extract against paracetamol induced hepatic oxidative stress in wistar albino rats. The ethanolic extracts of Coccinia grandis (200mg/kg and 400mg/kg were administered orally to the animals and hepatotoxicity induced by paracetamol (750mg/kg. The extracts were administered orally by suspending in 0.5% Carboxy methyl cellulose solution. Silymarin (25mg/kg was given as reference standard. The ethanolic extract of Coccinia grandis roots produced a significant (P<0.01 decrease in SGOT, SGPT, SALP, Total bilirubin and Direct bilirubin and it also produced a significant (P<0.01 increase in Total protein when compared to paracetamol treated group indicating hepatoprotective action. The ethanolic extract of Coccinia grandis root produced a significant (P<0.01 increase in SOD, CAT and GSH activity when compared to paracetamol treated group and it also produced significant (P<0.01 increase in activity of Px and GPx at 400mg/kg dose, indicating antioxidant activity. But it produced less significant in Px at 200mg/kg dose and it showed no significant activity in GPx at 200mg/kg dose. The histopathological study of liver section of rat treated with ethanolic extract of Coccinia grandis (200 and 400 mg/kg showed mild hepatocyte degeneration. It was concluded from the result that ethanolic extract of Coccinia grandis possesses hepatoprotective and antioxidant activity against paracetamol induced hepatotoxicity in wistar albino rats.

  20. Propofol but not sevoflurane prevents mitochondrial dysfunction and oxidative stress by limiting HIF-1α activation in hepatic ischemia/reperfusion injury.

    Bellanti, Francesco; Mirabella, Lucia; Mitarotonda, Domenica; Blonda, Maria; Tamborra, Rosanna; Cinnella, Gilda; Fersini, Alberto; Ambrosi, Antonio; Dambrosio, Michele; Vendemiale, Gianluigi; Serviddio, Gaetano

    2016-07-01

    Mitochondrial dysfunction, reactive oxygen species (ROS) production and oxidative stress during reperfusion are determinant in hepatic ischemia/reperfusion (I/R) injury but may be impacted by different anesthetic agents. Thus, we aimed at comparing the effects of inhaled sevoflurane or intravenous propofol anesthesia on liver mitochondria in a rodent model of hepatic I/R injury. To this, male Wistar rats underwent I/R surgery using sevoflurane or propofol. In the I/R model, propofol limited the raise in serum aminotransferase levels as compared to sevoflurane. Mitochondrial oxygen uptake, respiratory activity, membrane potential and proton leak were altered in I/R; however, this impairment was significantly prevented by propofol but not sevoflurane. In addition, differently from sevoflurane, propofol limited hepatic I/R-induced mitochondria H2O2 production rate, free radical leak and hydroxynonenal-protein adducts levels. The I/R group anesthetized with propofol also showed a better recovery of hepatic ATP homeostasis and conserved integrity of mitochondrial PTP. Moreover, hypoxia-inducible factor 1 alpha (HIF-1α) expression was limited in such group. By using a cell model of desferoxamine-dependent HIF activation, we demonstrated that propofol was able to inhibit apoptosis and mitochondrial depolarization associated to HIF-1α action. In conclusion, hepatic I/R injury induces mitochondrial dysfunction that is not prevented by inhaled sevoflurane. On the contrary, propofol reduces liver damage and mitochondrial dysfunction by preserving respiratory activity, membrane potential and energy homeostasis, and limiting free radicals production as well as PTP opening. These hepatoprotective effects may involve the inhibition of HIF-1α. PMID:27154980

  1. Paeoniflorin prevents hepatic fibrosis of Schistosomiasis japonica by inhibiting TGF-β1 production from macrophages in mice

    2008-01-01

    In order to investigate the effect of paeoniflorin (PAE)on hepatic fibrosis of mice with Schistosomiasis japonica in vivo and in vitro,a model of hepatic fibrosis caused by schistosomiasis was established in mice infected with cercariae of Schistosomajaponicum.Then,PAE was orally administered before and after praziquantel treatment and both therapeutics were given simultaneously at different time points after the infection.The concentration of serum hyaluronic acid(HA)was determined by radioimmunoassay(RIA).Hepatic granuloma and fibrosis were evaluated via HE and Masson staining.The expression of s-smooth muscle actin(α-SMA),transforming growth factor 131(TGF-β1)and collagen I(Col Ⅰ)protein was detected by immunohistochemistry.The effect of soluble egg antigen(SEA)and PAE on the production of TGF-131 from mouse peritoneal macrophages (PMφs)was investigated by RT-PCR,Western blotting and ELISA.The effect of TGF-β1 in optimum macrophage-conditioned medium(OPMCM)on the proliferation of hepatic stellate cells(HSCs)and collagen secretion from HSCs with anti-TGF-β1 antibody was explored by MTT assay and ELISA.The results show that PAE could significantly reduce the concentration of serum HA,the size of egg granuloma,the severity of hepatic fibrosis and the expression of α-SMA,TGF-β1 and Col I protein in the pre-treatment group.However,in sim-or post-treatment group,PAE did not have any significant therapeutic effect.TGF-β1 could be secreted from PMφs stimulated by SEA.Meanwhile,the production of TGF-β1 from PMφs could be depressed significantly by PAE in a concentration-dependent manner.TGF-β1 could promote the proliferation of HSCs and the secretion of collagens.In a word,PAE can prevent hepatic granuloma and fibrosis caused by schistosomiasis japonica through the inhibition of the secretion of TGF-β1 from PMφs,the proliferation and activation of HSCs and the secretion of collagens from HSCs.

  2. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH2-terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  3. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  4. The effect of dietary glycine on the hepatic tumor promoting activity of polychlorinated biphenyls (PCBs) in rats

    Polychlorinated biphenyls (PCBs) are ubiquitious lipophilic environmental pollutants. Some of the PCB congeners and mixtures of congeners have tumor promoting activity in rat liver. The mechanism of their activity is not fully understood and is likely to be multifactorial. The aim of this study was to investigate if the resident liver macrophages, Kupffer cells, are important in the promoting activity of PCBs. The hypothesis of this study was that the inhibition of Kupffer cell activity would inhibit hepatic tumor promotion by PCBs in rats. To test our hypothesis, we studied the effects of Kupffer cell inhibition by dietary glycine (an inhibitor of Kupffer cell secretory activity) in a rat two-stage hepatocarcinogenesis model using 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153, a non-dioxin-like PCB) or 3,3',4,4'-tetrachlorobiphenyl (PCB-77, a dioxin-like PCB) as promoters. Diethylnitrosamine (DEN, 150 mg/kg) was administered to female Sprague-Dawley rats, which were then placed on an unrefined diet containing 5% glycine (or casein as nitrogen control) starting two weeks after DEN administration. On the third day after starting the diets, rats received PCB-77 (300 μmol/kg), PCB-153 (300 μmol/kg), or corn oil by i.p. injection. The rats received a total of 4 PCB injections, administered every 14 days. The rats were euthanized on the 10th day after the last PCB injection, and the formation of altered hepatic foci expressing placental glutathione S-transferase (PGST) and the rate of DNA synthesis in these foci and in the normal liver tissue were determined. Glycine did not significantly affect foci number or volume. PCB-153 did not significantly increase the focal volume, but increased the number of foci per liver, but only in the rats not fed glycine; PCB-77 increased both the foci number and their volume in both glycine-fed and control rats. Glycine did not alter the PCB content of the liver, but did increase the activity of 7-benzyloxyresorufin O-dealkylase (BROD

  5. Inhibition of hepatic phosphatidylcholine synthesis by 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside is independent of AMP-activated protein kinase activation.

    Jacobs, René L; Lingrell, Susanne; Dyck, Jason R B; Vance, Dennis E

    2007-02-16

    5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAr), a commonly used indirect activator of AMP-activated protein kinase (AMPK), inhibits phosphatidylcholine (PC) biosynthesis in freshly isolated hepatocytes. In all nucleated mammalian cells, PC is synthesized from choline via the Kennedy (CDP-choline) pathway. The purpose of our study was to provide direct evidence that AMPK regulates phospholipid biosynthesis and to elucidate the mechanism(s) by which AMPK inhibits hepatic PC synthesis. Incubations of hepatocytes with AICAr resulted in a dose-dependent activation of AMPK and inhibition of PC biosynthesis. Surprisingly, adenoviral delivery of constitutively active AMPK did not alter PC biosynthesis. In addition, expression of dominant negative mutants of AMPK was unable to block the AICAr-dependent inhibition of PC biosynthesis, indicating that AICAr was acting independently of AMPK activation. Determination of aqueous intermediates of the CDP-choline pathway indicated that choline kinase, the first enzyme in the pathway, was inhibited by AICAr administration. Flux through the CDP-choline pathway was directly correlated to the level of intracellular ATP concentrations. Therefore, it is possible that inhibition of PC biosynthesis is another process by which the cell can reduce ATP consumption in times of energetic stress. However, unlike cholesterol and triacylglycerol biosynthesis, PC production is not regulated by AMPK. PMID:17179149

  6. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  7. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.; Wright, Aaron T.

    2016-07-01

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomic analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.

  8. Studies on Hepatitis B vaccination in neonates

    R. del Canho (Riwka)

    1993-01-01

    textabstractFrom 1982-1989, 705 infants born to HBsAg positive mothers entered the Dutch neonatal hepatitis B vaccination program and received passive-active hepatitis B immunization, according to 6 schedules, varying in time of onset vaccination, dose of hepatitis B immunoglobulin (HBlg) and type a

  9. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism.

    McRae, Steven; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Lane, Samantha; Nagaraj, Abhiram; Ali, Naushad; Waris, Gulam

    2016-02-12

    Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with

  10. Insulin Protects against Hepatic Damage Postburn

    Jeschke, Marc G.; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G.; Cox, Robert A.; Brooks, Natasha C; Finnerty, Celeste C.; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subs...

  11. Effect of dietary supplementation of fructooligosaccharide (FOS) on growth performance, survival, lactobacillus bacterial population and hemato-immunological parameters of stellate sturgeon (Acipenser stellatus) juvenile.

    Akrami, Reza; Iri, Yousef; Rostami, Hosseinali Khoshbavar; Razeghi Mansour, Majid

    2013-10-01

    The dietary supplementation of fructooligosaccharide (FOS) in stellate sturgeon juvenile, Acipenser stellatus (with mean initial body weight of 30.16 ± 0.14 g) was evaluated for the effect on growth, autochthonous intestinal microbiata and hemato-immunological parameters for 11 weeks. FOS was added at a level of 0, 1% and 2% to the commercial pellet diet (BioMar). At the end of the experiment, growth parameters, survival rate, lactobacillus bacterial population, hematological and immunological parameters were determined. The fish fed on 1% FOS significantly showed higher final weight, WG%, SGR and PER and lower FCR compared to those of the control group (P  0.05). However, FOS administration resulted in lower survival. The serum lysozyme activity was significantly affected by dietary 1% FOS (P  0.05). In fish fed on the diet with 1% FOS showed a significant increase of total heterotrophic autochthonous bacterial and presumptive LAB levels (P prebiotics. In addition to increase in WBC, RBC, MCV, hematocrit, hemoglobin and lymphocyte levels were observed in this group. These results indicated that dietary supplementation of FOS at a dose of 1% improved growth performance, beneficial intestinal microbiata and stimulate immune response of stellate sturgeon juvenile. PMID:23973846

  12. Effects of Fluvastatin on Characteristics of Stellate Ganglion Neurons in a Rabbit Model of Myocardial Ischemia

    Cheng, Li-Jun; Li, Guang-Ping; Li, Jian; Chen, Yan; Wang, Xing-Hua

    2016-01-01

    Background: Stellate ganglion (SG) plays an important role in cardiovascular diseases. The electrical activity of SG neurons is involved in the regulation of the autonomic nervous system. The aim of this research was to evaluate the effects of fluvastatin on the electrophysiological characteristics of SG neurons in a rabbit model of myocardial ischemia (MI). Methods: The MI model was induced by abdominal subcutaneous injections of isoproterenol in rabbits. Using whole-cell patch clamp technique, we studied the characteristic changes of ion channels and action potentials (APs) in isolated SG neurons in control group (n = 20), MI group (n = 20) and fluvastatin pretreated group (fluvastatin group, n = 20), respectively. The protein expression of sodium channel in SG was determined by immunohistochemical analysis. Results: MI and the intervention of fluvastatin did not have significantly influence on the characteristics of delayed rectifier potassium channel currents. The maximal peak current density of sodium channel currents in SG neurons along with the characteristics of activation curves, inactivation curves, and recovery curves after inactivation were changed in the MI group. The peak current densities of control group, MI group, and fluvastatin group (n = 10 in each group) were −71.77 ± 23.22 pA/pF, −126.75 ± 18.90 pA/pF, and −86.42 ± 28.30 pA/pF, respectively (F = 4.862, P = 0.008). Fluvastatin can decrease the current amplitude which has been increased by MI. Moreover, fluvastatin induced the inactivation curves and post-inactive recovery curves moving to the position of the control group. But the expression of sodium channel-associated protein (Nav1.7) had no significantly statistical difference among the three groups. The percentages of Nav1.7 protein in control group, MI group, and fluvastatin group (n = 5 in each group) were 21.49 ± 7.33%, 28.53 ± 8.26%, and 21.64 ± 2.78%, respectively (F = 1.495, P = 0.275). Moreover, MI reduced the electrical

  13. Comparison among Different Gilthead Sea Bream (Sparus aurata Farming Systems: Activity of Intestinal and Hepatic Enzymes and 13C-NMR Analysis of Lipids

    Vincenzo Zonno

    2009-12-01

    Full Text Available In order to evaluate differences in general health and nutritional values of gilthead sea bream (Sparus aurata, the effects of semi-intensive, land-based tanks and sea-cages intensive rearing systems were investigated, and results compared with captured wild fish. The physiological state was determined by measuring the activity of three different intestinal digestive enzymes: alkaline phosphatase (ALP, leucine aminopeptidase (LAP and maltase; and the activity of the hepatic ALP. Also, the hepatic content in protein, cholesterol, and lipid were assessed. 13C-NMR analysis for qualitative and quantitative characterization of the lipid fraction extracted from fish muscles for semiintensive and land based tanks intensive systems was performed. The lipid fraction composition showed small but significant differences in the monounsaturated/saturated fatty acid ratio, with the semi-intensive characterized by higher monounsaturated and lower saturated fatty acid content with respect to land based tanks intensive rearing system.

  14. An Experiment on Standardized Cell Culture Assay in Assessing the Activities of Composite Artemisia Capillaris Tablets against Hepatitis B Virus Replication in vitro

    HAN Jin; ZHAO Yan-ling; SHAN Li-mei; HUANG Feng-jiao; XIAO Xiao-he

    2005-01-01

    Objective:To explore the activities of Composite Artemisia Capillaris Tablet (复方茵陈片,CACT) against hepatitis B virus replication in vitro. Methods: By means of radioimmunoassay (RIA), Dot blot and Southern blot, the surface and e antigen production of 2.2.15 cells, HBV DNA in 2.2.15 cell culture medium and that in 2.2.15 cells were examined respectively. Results: HBsAg, HBeAg values of 2.2.15 cells treated by CACT were lower than those of the control, the HBV DNA quantities in culture medium and in 2.2.15 cells decreased as compared with those cells with no treatment by CACT given to them. Conclusion:CACT could inhibit HBV DNA replication, showing its potential antiviral activity in hepatitis B treatment.

  15. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats.

    Bhasker, T Vijay; Gowda, N K S; Mondal, S; Krishnamoorthy, P; Pal, D T; Mor, A; Bhat, S Karthik; Pattanaik, A K

    2016-07-01

    The influence of Boron (B) supplementation on immune and antioxidant status of rats with or without abiotic stress induced by dietary calcium (Ca) restriction was studied in a feeding trial of 90 days. Wistar strain rats (3-4 wk age, n=84) were divided into 7 dietary groups (4 replicates of 3 each) viz., normal-calcium (100%) basal diet alone (NC, control) or supplemented with B at 5 (NCB-5), 10 (NCB-10), 20 (NCB-20) and 40ppm (NCB-40) levels; low-calcium (50%) basal diet alone (LC) or supplemented with 40ppm B (LCB-40). After 75 days of experimental feeding, rats were challenged with intraperitoneal injection of sheep RBCs to assess their humoral immunity. At the end of the trial, cell-mediated immunity was assessed as foot pad reaction to sheep RBCs injected into the hind leg paws. Eight rats from each group were sacrificed to collect blood for estimation of minerals and total antioxidant activity, and liver for superoxide dismutase gene expression analysis. Supplementation of graded levels of B (5, 10, 20 and 40ppm) as borax in NC diets significantly increased (Pcopper (Cu) and zinc (Zn) remained similar among the dietary groups, while the manganese (Mn) content was significantly decreased (P<0.01) with increased levels of dietary B. In conclusion, B supplementation increased the hepatic mRNA expression levels of both SOD isoenzymes, thereby improving the immune and antioxidant status. PMID:27259355

  16. Proteomic Profiling of Iron Overload-Induced Human Hepatic Cells Reveals Activation of TLR2-Mediated Inflammatory Response

    Xiang Li

    2016-03-01

    Full Text Available Background: Hepatic iron overload is common in patients who have undergone hematopoietic cell transplantation (HCT and may predispose to peri- and post-HCT toxicity. To better reveal more molecules that might be involved in iron overload-induced liver injury, we utilized proteomics to investigate differentially expressed proteins in iron overload-induced hepatocytes vs. untreated hepatocytes. Methods and Results: HH4 hepatocytes were exposed to ferric ammonium citrate (FAC to establish an in vitro iron overload model. Differentially expressed proteins initiated by the iron overload were studied by two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS analysis. We identified 93 proteins whose quantity statistically significantly changes under excess hepatocyte iron conditions. Gene Ontology (GO analysis showed that these differentially expressed proteins in HH4 cells are involved in various biological process including endocytosis, response to wounding, di-, trivalent inorganic cation homeostasis, inflammatory response, positive regulation of cytokine production, and etc. Meanwhile, proteomics data revealed protein level of TLR2 and IL6ST significantly increased 7 times and 2.9 times, respectively, in iron overloaded HH4 cells. Our subsequent experiments detected that FAC-treated HH4 cells can activate IL6 expression through TLR2-mediated inflammatory responses via the NF-κB pathway. Conclusions: In this study, we demonstrated that iron overload induced hepatocytes triggering TLR2-mediated inflammatory response via NF-κB signaling pathway in HH4 cells.

  17. Upregulation of peroxisome proliferator-activated receptors and liver fatty acid binding protein in hepatic cells of broiler chicken supplemented with conjugated linoleic acids

    Suriya Kumari Ramiah; Goh Y. Meng; Mahdi Ebrahimi

    2015-01-01

    Since conjugated linoleic acid (CLA) has structural and physiological characteristics similar to peroxisome proliferators, it is hypothesized that CLA would upregulate peroxisome proliferator-activated receptor (PPAR) and liver fatty acid binding protein (LFABP) in the liver of broiler chicken. The aim of the present study w