WorldWideScience

Sample records for activated egfr determines

  1. Whacking a mole-cule: clinical activity and mechanisms of resistance to third generation EGFR inhibitors in EGFR mutated lung cancers with EGFR-T790M

    Costa, Daniel B.; Kobayashi, Susumu S.

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutations, especially EGFR-exon 19 deletions and EGFR-L858R, are the most frequent actionable genomic events in lung adenocarcinomas. Tumors arise due to constitutively activated EGFR signaling and are susceptible to EGFR tyrosine kinase inhibitors (TKIs). First generation EGFR TKIs (gefitinib and erlotinib) and the second generation EGFR TKI afatinib are approved worldwide. Although targeted therapies against EGFR mutants induce dramatic initial respon...

  2. Response to the Dorsal Anterior Gradient of EGFR Signaling in Drosophila Oogenesis Is Prepatterned by Earlier Posterior EGFR Activation

    Mariana Fregoso Lomas

    2013-08-01

    Full Text Available Spatially restricted epidermal growth factor receptor (EGFR activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.

  3. Whacking a mole-cule: clinical activity and mechanisms of resistance to third generation EGFR inhibitors in EGFR mutated lung cancers with EGFR-T790M.

    Costa, Daniel B; Kobayashi, Susumu S

    2015-12-01

    Epidermal growth factor receptor (EGFR) mutations, especially EGFR-exon 19 deletions and EGFR-L858R, are the most frequent actionable genomic events in lung adenocarcinomas. Tumors arise due to constitutively activated EGFR signaling and are susceptible to EGFR tyrosine kinase inhibitors (TKIs). First generation EGFR TKIs (gefitinib and erlotinib) and the second generation EGFR TKI afatinib are approved worldwide. Although targeted therapies against EGFR mutants induce dramatic initial responses, acquired resistance (through multiple biological mechanisms) to erlotinib, gefitinib and afatinib emerges within the first 1-2 years of continued monotherapy. EGFR-T790M accounts for more than half of acquired resistance to first or second generation EGFR TKIs by modifying ATP affinity and drug binding kinetics. Two new studies have shown that two covalent pyrimidine inhibitors-AZD9291 and rociletinib of EGFR-T790M (i.e., third generation EGFR TKIs) shown remarkable clinical activity in patients with acquired resistance to erlotinib, gefitinib and afatinib when the tumor carries EGFR-T790M in conjunction with an activating mutation. However, and regrettably, acquired resistance to these third generation EGFR TKIs has already been reported in preclinical models and clinical specimens; such as a tertiary mutation at EGFR-C797S that prevents covalent binding of EGFR TKIs. The experience with sequential EGFR TKI monotherapy highlights tumor heterogeneity and adaptability (i.e., relentless game of whack-a-mole played between TKIs and cancer), and will help shape future clinical development of novel combinatory approaches to manage EGFR mutated lung adenocarcinomas. PMID:26798593

  4. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma

    Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits 125I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFR in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using 125I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited 125I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation

  5. Quantitative Analysis of [11C]-Erlotinib PET Demonstrates Specific Binding for Activating Mutations of the EGFR Kinase Domain

    J. Ryan Petrulli

    2013-12-01

    Full Text Available Activating mutations of the epidermal growth factor receptor (EGFR occur in multiple tumor types, including non-small cell lung cancer (NSCLC and malignant glioma, and have become targets for therapeutic intervention. The determination of EGFR mutation status using a noninvasive, molecular imaging approach has the potential for clinical utility. In this study, we investigated [11C]-erlotinib positron emission tomography (PET imaging as a tool to identify activating mutations of EGFR in both glioma and NSCLC xenografts. Radiotracer specific binding was determined for high and low specific activity (SA [11C]-erlotinib PET scans in mice bearing synchronous human cancer xenografts with different EGFR expression profiles (PC9, HCC827, U87, U87 ΔEGFR, and SW620. Although xenograft immunohistochemistry demonstrated constitutive EGFR phosphorylation, PET scan analysis using the Simplified Reference Tissue Model showed that only kinase domain mutant NSCLC (HCC827 and PC9 had significantly greater binding potentials in high versus low SA scans. Xenografts with undetectable EGFR expression (SW620, possessing wild-type EGFR (U87, and expressing an activating extracellular domain mutation (U87 ΔEGFR were indistinguishable under both high and low SA scan conditions. The results suggest that [11C]-erlotinib is a promising radiotracer that could provide a novel clinical methodology for assessing EGFR and erlotinib interactions in patients with tumors that harbor EGFR-activating kinase domain mutations.

  6. HPV infection and EGFR activation/alteration in HIV-infected East African patients with conjunctival carcinoma.

    Jing Jie Yu

    Full Text Available BACKGROUND: There has been substantial growth in the numbers of patients with conjunctival squamous cell carcinoma infected with HIV in East Africa. The natural history of the conjunctival squamous cell carcinoma appears to be unique in this region of the world, but the etiologic mechanism unclear and therapeutic options limited. This research was carried out to determine if conjunctival squamous cell carcinoma harbors human papillomavirus DNA and is associated with activation of the EGFR signaling pathway. Positive findings would identify etiologic causes and provide clinical guidance to improve treatment. METHODS/FINDINGS: Expression of p-MAPK/MAPK, p-Akt/Akt and p-EGFR/EGFR in cell nuclei and cytoplasm of 38 FFPE specimens were assessed by immunohistochemistry; HPV genotype was detected by qPCR assay; EGFR mutation was assessed by DNA sequencing analysis; and EGFR mRNA expression was measured using relative qPCR. Statistical analyses included two-sided Fisher exact test or chi-square test, Spearman correlation coefficient and ANOVA. HPV 18 was found in 61% of samples, with HPV 16 double-genotype in 6 patients (16%. Immunohistochemistry and qPCR data suggest that activation and expression of the EGFR signaling pathway is related to disease progression of conjunctival cancer. The associations between cytoplasmic p-MAPK, cytoplasmic p-Akt and tumor invasiveness were significant (p = 0.05 or 0.028. Nuclear p-EGFR appeared only in invasive tumors. A significant positive association between EGFR expression and disease invasiveness was observed (p = 0.01. A SNP in 10 patients and one missense mutation were found within EGFR tyrosine kinase domain. Statistical analysis indicates that patients with measurable EGFR expression more likely harbor EGFR mutations, compared to those with negative EGFR expression (35.3% vs. 0%. CONCLUSIONS/SIGNIFICANCE: We conclude that HPV types 16/18 infection is frequent in East African patients with AIDS

  7. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients

    Papadopoulou, Eirini; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; Apessos, Angela; AGIANNITOPOULOS, KONSTANTINOS; Metaxa-Mariatou, Vasiliki; Zarogoulidis, Konstantinos; Zarogoulidis, Pavlos; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; Dahabreh, Jubrail; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; Rapti, Aggeliki; PAPAGEORGIOU, NIKI GEORGATOU

    2015-01-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopat...

  8. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity

    Background and purpose: Inhibition of EGFR-function can induce radiosensitization in tumor cells. Purpose of our investigation was to identify the possible molecular mechanism of radiosensitization following treatment with anti-EGFR-antibody C225 (Cetuximab). Materials and methods: The effect of C225 on radiation response was determined in human cell lines of bronchial carcinoma (A549) and breast adenoma cells (MDA MB 231). The molecular effects of C225 on EGFR-function after irradiation were analyzed applying western blotting, immune-precipitation and kinase assays. Effects on DNA-repair were detected by quantification of γ-H2AX positive foci 24 h after irradiation. Results: The EGFR specific antibody C225 induced radiosensitization in A549 and also in MDA MB 231 cells. Radiosensitization in A549 was associated with blockage of radiation-induced EGFR transport into the nucleus, and immobilized the complex of EGFR with DNA-dependent protein kinase (DNA-PK) in the cytoplasm. As a consequence radiation-induced DNA-PK activation was abolished, a process that is essential for DNA-repair after radiation exposure. Likewise C225 treatment increased the residual amount of γ-H2AX-positive foci 24 h after irradiation in A549 and in MDA MB 231 cells. Conclusions: Our results suggest that irradiation induced DNA-PK activation-essential for DNA repair-may be hampered specifically by use of the anti-EGFR-antibody C225. This process is associated with radiosensitization

  9. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of

  10. Selective Antitumor Activity of Ibrutinib in EGFR-Mutant Non–Small Cell Lung Cancer Cells

    Gao, Wen; Wang, Michael; Wang, Li; Lu, Haibo; Wu, Shuhong; Dai, Bingbing; Ou, Zhishuo; Zhang, Liang; Heymach, John V.; Gold, Kathryn A.; Minna, John ,; Roth, Jack A.; Hofstetter, Wayne L.; Swisher, Stephen G.; Fang, Bingliang

    2014-01-01

    Ibrutinib, which irreversibly inhibits Bruton tyrosine kinase, was evaluated for antitumor activity in a panel of non–small cell lung cancer (NSCLC) cell lines and found to selectively inhibit growth of NSCLC cells carrying mutations in the epidermal growth factor receptor (EGFR) gene, including T790M mutant and erlotinib-resistant H1975 cells. Ibrutinib induced dose-dependent inhibition of phosphor-EGFR at both Y1068 and Y1173 sites, suggesting ibrutinib functions as an EGFR inhibitor. Survi...

  11. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT.

    Ashish Misra

    Full Text Available Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT. EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor. Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.

  12. EGFR-activating mutations, DNA copy number abundance of ErbB family, and prognosis in lung adenocarcinoma

    Chen, Hsuan-Yu; Liu, Chia-Hsin; Chang, Ya-Hsuan; Yu, Sung-Liang; Ho, Bing-Ching; Hsu, Chung-Ping; Yang, Tsung-Ying; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tseng, Jeng-Sen; Hsia, Jiun-Yi; Chuang, Cheng-Yen; Chang, Chi-Sheng; Li, Yu-Cheng; Li, Ker-Chau; Chang, Gee-Chen; Yang, Pan-Chyr

    2016-01-01

    In this study, EGFR-activating mutation status and DNA copy number abundances of members of ErbB family were measured in 261 lung adenocarcinomas. The associations between DNA copy number abundances of ErbB family, EGFR-activating mutation status, and prognosis were explored. Results showed that DNA copy number abundances of EGFR, ERBB2, ERBB3, and ERBB4 had associations with overall survival in lung adenocarcinoma with EGFR-activating mutations. In the stratification analysis, only ERBB2 showed significant discrepancy in patients carrying wild type EGFR and other members of ErbB family in patients carrying EGFR-activating mutation. This indicated that CNAs of ErbB family had effect modifications of EGFR-activating mutation status. Findings of this study demonstrate potential molecular guidance of patient management of lung adenocarcinoma with or without EGFR-activating mutations. PMID:26824984

  13. TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Research highlights: → TGFβ induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. → TGFβ induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. → TGFβ enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. → Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGFβ. → ADAM17 may play a crucial role in this TGFβ-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF

  14. Akt kinase-interacting protein1, a novel therapeutic target for lung cancer with EGFR-activating and gatekeeper mutations.

    Yamada, T; Takeuchi, S; Fujita, N; Nakamura, A; Wang, W; Li, Q; Oda, M; Mitsudomi, T; Yatabe, Y; Sekido, Y; Yoshida, J; Higashiyama, M; Noguchi, M; Uehara, H; Nishioka, Y; Sone, S; Yano, S

    2013-09-12

    Despite initial dramatic response, epidermal growth factor receptor (EGFR) mutant lung cancer patients always acquire resistance to EGFR-tyrosine kinase inhibitors (TKIs). Gatekeeper T790M mutation in EGFR is the most prevalent genetic alteration underlying acquired resistance to EGFR-TKI, and EGFR mutant lung cancer cells are reported to be addictive to EGFR/Akt signaling even after acquired T790M mutation. Here, we focused on Akt kinase-interacting protein1 (Aki1), a scaffold protein of PI3K (phosphoinositide 3-kinase)/PDK1 (3-phosphoinositide-dependent protein kinase)/Akt that determines receptor signal selectivity for non-mutated EGFR, and assessed its role in EGFR mutant lung cancer with or without gatekeeper T790M mutation. Cell line-based assays showed that Aki1 constitutively associates with mutant EGFR in lung cancer cells with (H1975) or without (PC-9 and HCC827) T790M gatekeeper mutation. Silencing of Aki1 induced apoptosis of EGFR mutant lung cancer cells. Treatment with Aki1 siRNA dramatically inhibited growth of H1975 cells in a xenograft model. Moreover, silencing of Aki1 further potentiated growth inhibitory effect of new generation EGFR-TKIs against H1975 cells in vitro. Aki1 was frequently expressed in tumor cells of EGFR mutant lung cancer patients (53/56 cases), including those with acquired resistance to EGFR-TKI treatment (7/7 cases). Our data suggest that Aki1 may be a critical mediator of survival signaling from mutant EGFR to Akt, and may therefore be an ideal target for EGFR mutant lung cancer patients, especially those with acquired EGFR-TKI resistance due to EGFR T790M gatekeeper mutation. PMID:23045273

  15. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCMTGF, FCMPDGF) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCMB). FCMTGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCMTGF≫FCMPDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCMTGF>FCMPDGF) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify CAF as

  16. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1...

  17. Antagonistic regulation of swelling-activated Cl− current in rabbit ventricle by Src and EGFR protein tyrosine kinases

    Ren, Zuojun; Baumgarten, Clive M.

    2005-01-01

    Regulation of swelling-activated Cl− current (ICl,swell) is complex, and multiple signaling cascades are implicated. To determine whether protein tyrosine kinase (PTK) modulates ICl,swell and to identify the PTK involved, we studied the effects of a broad-spectrum PTK inhibitor (genistein), selective inhibitors of Src (PP2, a pyrazolopyrimidine) and epidermal growth factor receptor (EGFR) kinase (PD-153035), and a protein tyrosine phosphatase (PTP) inhibitor (orthovanadate). ICl,swell evoked ...

  18. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation.

    Patel, Dipa; Bassi, Rajiv; Hooper, Andrea; Prewett, Marie; Hicklin, Daniel J; Kang, Xiaoqiang

    2009-01-01

    Human carcinomas frequently express one or more members of the epidermal growth factor receptor family. Two family members, epidermal growth factor receptor (EGFR) and c-erbB2/neu (HER2), homodimerize or heterodimerize upon activation with ligand and trigger potent mechanisms of cellular proliferation, differentiation and migration. In this study, we examined the effect of the anti-EGFR monoclonal antibody Erbitux (cetuximab) on human tumor cells expressing both EGFR and HER2. Investigation of the effect of cetuximab on the activation of EGFR-EGFR, EGFR-HER2 and HER2-HER2 homodimers and heterodimers was conducted using the NCI-N87 human gastric carcinoma cell line. Treatment of NCI-N87 cells with cetuximab completely inhibited formation of EGFR-EGFR homodimers and EGFR-HER2 heterodimers. Activation of HER2-HER2 homodimers was not appreciably stimulated by exogenous ligand and was not inhibited by cetuximab treatment. Furthermore, cetuximab inhibited EGF-induced EGFR and HER2 phosphorylation in CAL27, NCI-H226 and NCI-N87 cells. The activation of downstream signaling molecules such as AKT, MAPK and STAT-3 were also inhibited by cetuximab in these cells. To examine the effect of cetuximab on the growth of tumors in vivo, athymic mice bearing established NCI-N87 or CAL27 xenografts were treated with cetuximab (1 mg, i.p., q3d). The growth of NCI-N87 and CAL27 tumors was significantly inhibited with cetuximab therapy compared to the control groups (p<0.0001 in both cases). In the CAL27 xenograft model, tumor growth inhibition by cetuximab treatment was similar to that by cetuximab and trastuzumab combination treatment. Immunohistological analysis of cetuximab-treated tumors showed a decrease in EGFR-HER2 signaling and reduced tumor cell proliferation. These results suggest that cetuximab may be useful in the treatment of carcinomas co-expressing EGFR and HER2. PMID:19082474

  19. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)–transfected cells enhanced activation of the phosphatidylinositol-3-kinase–Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)–neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor α was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR–phosphatidylinositol-3-kinase–Akt cascade.

  20. Mechanisms of silica-induced IL-8 release from A549 cells: Initial kinase-activation does not require EGFR activation or particle uptake

    Understanding how mineral particles trigger cellular responses is crucial in order to elucidate what characteristics determine their harmful effects. It is not clear whether cellular effects are triggered through the cell membrane or require particle uptake. However, studies with asbestos suggest that activation of the epidermal growth factor receptor (EGFR) may be important. We have previously reported that crystalline silica-induced interleukin (IL)-8 release from human lung epithelial cells (A549) was regulated through Src family kinases (SFKs) and the mitogen-activated protein kinases (MAPKs) p38 and extracellular signal-regulated kinase (ERK)-1 and -2. The present study shows that SFK and p38 phosphorylation increased almost immediately upon crystalline silica exposure, whereas ERK1/2 phosphorylation increased after 10 min of exposure. The p38 inhibitor SB202190 increased the silica-induced ERK1/2 phosphorylation suggesting that p38 activity may attenuate activation of ERK1/2. Scanning electron microscopy showed that some silica particles were phagocytosed between 1 and 4 h of exposure, but that the majority remained bound by microvilli on the cell surface. The EGFR inhibitor AG1478 attenuated both silica-induced IL-8 release and phosphorylation of SFKs and ERK1/2. However, AG1478 also inhibited the respective background levels, and the EGFR was not phosphorylated at the onset of silica exposure. The results suggest that crystalline silica triggers p38 and SFK-ERK1/2 signaling through interactions with membrane components as both pathways were rapidly activated prior to particle internalization. However, the silica-induced up-regulation of IL-8 release through the SFK-ERK1/2 pathway does not appear to be initiated through activation of the EGFR, although basal EGFR activity may affect the magnitude of the responses

  1. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway.

    Bergin, David A

    2008-11-14

    Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE\\/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR\\/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

  2. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  3. Activation of Multiple ERBB Family Receptors Mediates Glioblastoma Cancer Stem-like Cell Resistance to EGFR-Targeted Inhibition

    Paul A. Clark

    2012-05-01

    Full Text Available Epidermal growth factor receptor (EGFR signaling is strongly implicated in glioblastoma (GBM tumorigenesis. However, molecular agents targeting EGFR have demonstrated minimal efficacy in clinical trials, suggesting the existence of GBM resistance mechanisms. GBM cells with stem-like properties (CSCs are highly efficient at tumor initiation and exhibit therapeutic resistance. In this study, GBMCSC lines showed sphere-forming and tumor initiation capacity after EGF withdrawal from cell culture media, compared with normal neural stem cells that rapidly perished after EGF withdrawal. Compensatory activation of related ERBB family receptors (ERBB2 and ERBB3 was observed in GBM CSCs deprived of EGFR signal (EGF deprivation or cetuximab inhibition, suggesting an intrinsic GBM resistance mechanism for EGFR-targeted therapy. Dual inhibition of EGFR and ERBB2 with lapatinib significantly reduced GBM proliferation in colony formation assays compared to cetuximab-mediated EGFR-specific inhibition. Phosphorylation of downstream ERBB signaling components (AKT, ERK1/2 and GBM CSC proliferation were inhibited by lapatinib. Collectively, these findings show that GBM therapeutic resistance to EGFR inhibitors may be explained by compensatory activation of EGFR-related family members (ERBB2, ERBB3 enabling GBM CSC proliferation, and therefore simultaneous blockade of multiple ERBB family members may be required for more efficacious GBM therapy.

  4. Model-based Analysis of HER Activation in Cells Co-Expressing EGFR, HER2 and HER3.

    Shankaran, Harish; Zhang, Yi; Tan, Yunbing; Resat, Haluk

    2013-08-22

    The HER/ErbB family of receptor tyrosine kinases drive critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of epithelial cells lines with known HER expression levels. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1/1 and HER1/2 dimers, and not HER1/3 dimers, ii) HER1/2 and HER2/3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2/3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.

  5. Model-based analysis of HER activation in cells co-expressing EGFR, HER2 and HER3.

    Shankaran, Harish; Zhang, Yi; Tan, Yunbing; Resat, Haluk

    2013-01-01

    The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches. PMID:23990774

  6. Model-based analysis of HER activation in cells co-expressing EGFR, HER2 and HER3.

    Harish Shankaran

    Full Text Available The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.

  7. Alpha6beta4 integrin crosslinking induces EGFR clustering and promotes EGF-mediated Rho activation in breast cancer

    Woodward Wendy A

    2009-05-01

    Full Text Available Abstract Background The α6β4 integrin is overexpressed in the basal subtype of breast cancer and plays an important role in tumor cell motility and invasion. EGFR is also overexpressed in the basal subtype of breast cancer, and crosstalk between α6β4 integrin and EGFR appears to be important in tumor progression. Methods We evaluated the effects of α6β4 crosslinking on the distribution and function of EGFR in breast carcinoma cell line MDA-MB-231. Receptor distribution was evaluated by fluorescence microscopy and multispectral imaging flow cytometry, and ligand-mediated EGFR signaling was evaluated using Western blots and a Rho pull-down assay. Results Antibody-mediated crosslinking of α6β4 integrin was sufficient to induce cell-surface clustering of not only α6β4 but also EGFR in nonadherent cells. The induced clustering of EGFR was observed minimally after 5 min of integrin crosslinking but was more prominent after 15 min. EGFR clustering had minimal effect on the phosphorylation of Akt or Erk1,2 in response to EGF in suspended cells or in response to HB-EGF in adherent cells. However, EGFR clustering induced by crosslinking α6β4 had a marked effect on Rho activation in response to EGF. Conclusion Crosslinking α6β4 integrin in breast carcinoma cells induces EGFR clustering and preferentially promotes Rho activation in response to EGF. We hypothesize that this integrin-EGFR crosstalk may facilitate tumor cell cytoskeletal rearrangements important for tumor progression.

  8. Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers

    The status of the EGFR and HER2-neu genes has not been fully defined in ovarian cancer. An integrated analysis of both genes could help define the proportion of patients that would potentially benefit from targeted therapies. We determined the tumour mutation status of the entire tyrosine kinase (TK) domain of the EGFR and HER2-neu genes in a cohort of 52 patients with invasive epithelial ovarian cancer as well as the gene copy number and protein expression of both genes in 31 of these patients by DGGE and direct sequecing, immunohistochemistry and Fluorescent in Situ Hybridisation (FISH). The EGFR was expressed in 59% of the cases, with a 2+/3+ staining intensity in 38%. HER2-neu expression was found in 35%, with a 2/3+ staining in 18%. No mutations were found in exons 18–24 of the TK domains of EGFR and HER2-neu. High polysomy of the EGFR gene was observed in 13% of the invasive epthelial cancers and amplification of the HER2-neu gene was found in 10% and correlated with a high expression level by immunohistochemistry. Mutations within the tyrosine kinase domain were not found in the entire TK domain of both genes, but have been found in very rare cases by others. Genomic alteration of the HER2-neu and EGFR genes is frequent (25%) in ovarian cancer. EGFR/HER2-neu targeted therapies should be investigated prospectively and specifically in that subset of patients

  9. NF-κB signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    Highlights: ► EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. ► Degradation of IκB and activation of NF-κB are observed in 3D-cultured cells. ► Inhibiting NF-κB enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of IκBα, the inhibitor of nuclear factor (NF)-κB, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-κB. Moreover, the inhibition of NF-κB with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-κB signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  10. HDAC6-mediated EGFR stabilization and activation restrict cell response to sorafenib in non-small cell lung cancer cells.

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Xie, Conghua

    2016-05-01

    Sorafenib is a multi-targeted kinase inhibitor and has been the subject of extensive clinical research in advanced non-small cell lung cancer (NSCLC). However, sorafenib fails to improve overall survival of patients with advanced NSCLC. The molecular mechanisms that account for this phenomenon are unclear. Here we show that sorafenib treatment stabilizes epidermal growth factor receptor (EGFR) and activates EGFR pathway. Moreover, this is partly mediated by stabilization of histone deacetylase 6 (HDAC6), which has been shown to regulate EGFR endocytic trafficking and degradation. Overexpression of HDAC6 confers resistance to sorafenib in NSCLC cells. Inhibition of HDAC6 with selective inhibitors synergizes with sorafenib to kill NSCLC cells via inhibition of sorafenib-mediated EGFR pathway activation. Taken together, our findings might partly explain the failure of Phase III trial of sorafenib in improving overall survival of advanced NSCLC patients and bear possible implications for the improvement on the efficacy of sorafenib in treatment of NSCLC. PMID:27090797

  11. ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy

    Radiation enhances both epithelial growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) expression, which are a part of key pathways for tumor progression. Some tumors may not respond well to EGFR inhibitors alone or may develop resistance to EGFR inhibitors. Therefore, drug therapy targeted to VEGF receptors and EGFRs, when combined with radiotherapy (RT), may improve tumor control and provide wider applicability. This article focuses on ZD6474, an inhibitor of EGFR and VEGF receptor signaling in combination with RT. We discuss preclinical and clinical studies with RT and inhibitors of VEGF or EGFR signaling first. We then address issues associated with ZD6474 pharmacokinetic dosing, and scheduling when combined with RT. We also discuss ZD6474 in the context of anti-EGFR therapy resistance. Dual inhibition of EGFR and VEGF receptor signaling pathways shows promise in enhancing RT efficacy

  12. Increased concentrations of growth factors and activation of the EGFR system in breast cancer

    Aalund Olsen, Dorte; Bechmann, Troels; Østergaard, Birthe;

    2012-01-01

    In this study the total and phosphorylated amount of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) were measured together with EGFR ligands in tissue samples of breast cancer patients in order to investigate interrelations and possible prognostic values.......In this study the total and phosphorylated amount of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) were measured together with EGFR ligands in tissue samples of breast cancer patients in order to investigate interrelations and possible prognostic values....

  13. Synthesis, Characterization, and in Vitro Antitumor Activity of Ruthenium(II) Polypyridyl Complexes Tethering EGFR-Inhibiting 4-Anilinoquinazolines.

    Du, Jun; Kang, Yan; Zhao, Yao; Zheng, Wei; Zhang, Yang; Lin, Yu; Wang, Zhaoying; Wang, Yuanyuan; Luo, Qun; Wu, Kui; Wang, Fuyi

    2016-05-01

    Ruthenium-based anticancer complexes are promising antitumor agents for their low system toxicity and versatile chemical structures. Epidermal growth factor receptor (EGFR) has been found to be overexpressed in a broad range of tumor cells and is regarded as a drug target in developing novel antitumor drugs. In this work, five ruthenium(II) polypyridyl complexes containing EGFR-inhibiting 4-anilinoquinazoline pharmacophores were synthesized and characterized. These complexes showed both high EGFR-inhibiting activity and strong DNA minor groove-binding activity. In vitro antiproliferation screening demonstrated that the prepared ruthenium complexes are highly cytotoxic against a series of cancer cell lines, in particular non-small-cell lung A549 and human epidermoid carcinoma A431. Fluorescence-activated cell sorting analysis and fluorescence microscopy revealed that the most active complex, K4, induced much more late-stage cell apoptosis and necrosis than gefitinib, the first EGFR-targeting antitumor drug in clinical use. These results indicate that the ruthenium(II) polypyridyl complexes bearing EGFR-inhibiting 4-anilinoquinazolines possess highly active dual-targeting anticancer activity and are promising in developing new anticancer agents. PMID:27093574

  14. Antibacterial and EGFR-Tyrosine Kinase Inhibitory Activities of Polyhydroxylated Xanthones from Garcinia succifolia

    Susawat Duangsrisai

    2014-11-01

    Full Text Available Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae led to the isolation of 1,5-dihydroxyxanthone (1, 1,7-dihydroxyxanthone (2, 1,3,7-trihydroxyxanthone (3, 1,5,6-trihydroxyxanthone (4, 1,6,7-trihydroxyxanthone (5, and 1,3,6,7-tetrahydroxyxanthone (6. All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633 and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1, as well as for their epidermal growth factor receptor (EGFR of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4, 1,6,7-trihydroxy-(5, and 1,3,6,7-tetrahydroxyxanthones (6 exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2 showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1 and 1,7-dihydroxyxanthone (2 were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  15. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance

    Park, Kang-Seo; Raffeld, Mark; Moon, Yong Wha; Xi, Liqiang; Bianco, Caterina; Van Pham, Trung; Lee, Liam C.; Mitsudomi, Tetsuya; Yatabe, Yasushi; Okamoto, Isamu; Subramaniam, Deepa; Mok, Tony; Rosell, Rafael; Luo, Ji; Salomon, David S.

    2014-01-01

    The majority of non–small cell lung cancer (NSCLC) patients harbor EGFR-activating mutations that can be therapeutically targeted by EGFR tyrosine kinase inhibitors (EGFR-TKI), such as erlotinib and gefitinib. Unfortunately, a subset of patients with EGFR mutations are refractory to EGFR-TKIs. Resistance to EGFR inhibitors reportedly involves SRC activation and induction of epithelial-to-mesenchymal transition (EMT). Here, we have demonstrated that overexpression of CRIPTO1, an EGF-CFC protei...

  16. Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers

    Ghislain Vanessa

    2008-01-01

    Full Text Available Abstract Background The status of the EGFR and HER2-neu genes has not been fully defined in ovarian cancer. An integrated analysis of both genes could help define the proportion of patients that would potentially benefit from targeted therapies. Methods We determined the tumour mutation status of the entire tyrosine kinase (TK domain of the EGFR and HER2-neu genes in a cohort of 52 patients with invasive epithelial ovarian cancer as well as the gene copy number and protein expression of both genes in 31 of these patients by DGGE and direct sequecing, immunohistochemistry and Fluorescent in Situ Hybridisation (FISH. Results The EGFR was expressed in 59% of the cases, with a 2+/3+ staining intensity in 38%. HER2-neu expression was found in 35%, with a 2/3+ staining in 18%. No mutations were found in exons 18–24 of the TK domains of EGFR and HER2-neu. High polysomy of the EGFR gene was observed in 13% of the invasive epthelial cancers and amplification of the HER2-neu gene was found in 10% and correlated with a high expression level by immunohistochemistry. Mutations within the tyrosine kinase domain were not found in the entire TK domain of both genes, but have been found in very rare cases by others. Conclusion Genomic alteration of the HER2-neu and EGFR genes is frequent (25% in ovarian cancer. EGFR/HER2-neu targeted therapies should be investigated prospectively and specifically in that subset of patients.

  17. Synthesis of new 4-anilinoquinazoline analogues and evaluation of their EGFR inhibitor activity.

    Wang, Zheng; WANG, Cui-Ling; Li, Jun-lin; Zhang, Ning; Sun, Yan-ni; Liu, Zhu-lan; Tang, Zhi-shu; Liu, Jian-li

    2015-12-01

    Thirteen of 4-anilinoquinazoline derivatives with imine groups at position 6 of quinazoline ring were synthesized and their antitumor activities were evaluated by MTT assay and Western blotting analysis. Among these compounds, 13a-131 were reported first time. The MTT assay was carried out on three human cancer cell lines (A549, HepG2 and SMMC7721) with EGFR highly expressed. Among the tested compounds, 13i and 13j exhibited notable inhibition potency and their IC50 values on three cell lines were equivalent to or less than those of gefitinib. Compound 14, without imine group substituted, displayed excellent inhibitor potency only on A549 cell line. Compounds 14 and 13j were chosen to perform Western blotting analysis on A549. The results showed that both of the compounds could inhibit the expression level of phosphorylated EGFR remarkably. It was concluded that the inhibitor potency of compound 14 was almost equivalent to that of gefitinib and the inhibitor potency of 13j was better than that of gefitinib. PMID:27169285

  18. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects. PMID:27086143

  19. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients with EGFR inhibitor—resistant non-small cell lung cancer

    Tao JIANG; Caicun ZHOU

    2014-01-01

    The first generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in advanced non-small cell lung cancer (NSCLC) with EGFR mutations. Unfortunately, disease progression generally occurs after 9 to 14 months of targeted therapy. The substitution of threonine with methionine at amino acid position 790 (T790M), as the second mutation in EGFR, is the most common resistance mechanism and is detected in tumor cells from more than 50-60% of patients after dis...

  20. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients with EGFR inhibitor-resistant non-small cell lung cancer.

    Jiang, Tao; Zhou, Caicun

    2014-12-01

    The first generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in advanced non-small cell lung cancer (NSCLC) with EGFR mutations. Unfortunately, disease progression generally occurs after 9 to 14 months of targeted therapy. The substitution of threonine with methionine at amino acid position 790 (T790M), as the second mutation in EGFR, is the most common resistance mechanism and is detected in tumor cells from more than 50-60% of patients after disease progression. However, current targeted therapeutic strategies for patients with acquired resistance are limited. This has led to the development of "third generation" EGFR-TKIs that are designed to target T790M and EGFR-TKI sensitizing mutations more selectively than wild-type. AZD9291, as a mono-anilino-pyrimidine compound, is a novel, irreversible EGFR-TKI, has proved to be more effective against both EGFR-TKI sensitizing and resistance T790M mutations in preclinical models. This phase I clinical study showed that AZD9291 has robust efficacy and is well tolerated in EGFR mutant NSCLC patients with acquired resistance to EGFR-TKIs. PMID:25806323

  1. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  2. Antitumor activity of sorafenib in human cancer cell lines with acquired resistance to EGFR and VEGFR tyrosine kinase inhibitors.

    Floriana Morgillo

    Full Text Available Treatment of non small cell lung cancer (NSCLC and colorectal cancer (CRC have substantially changed in the last years with the introduction of epidermal growth factor receptor (EGFR inhibitors in the clinical practice. The understanding of mechanisms which regulate cells sensitivity to these drugs is necessary for their optimal use.An in vitro model of acquired resistance to two tyrosine kinase inhibitors (TKI targeting the EGFR, erlotinib and gefitinib, and to a TKI targeting EGFR and VEGFR, vandetanib, was developed by continuously treating the human NSCLC cell line CALU-3 and the human CRC cell line HCT116 with escalating doses of each drug. MTT, western blot analysis, migration, invasion and anchorage-independent colony forming assays were conducted in vitro and experiments with established xenografts in athymic nude mice were performed in vivo in sensitive, wild type (WT and TKI-resistant CALU-3 and HCT116 cell lines.As compared to WT CALU-3 and HCT116 human cancer cells, TKI-resistant cell lines showed a significant increase in the levels of activated, phosphorylated AKT, MAPK, and of survivin. Considering the role of RAS and RAF as downstream signals of both the EGFR and VEGFR pathways, we treated resistant cells with sorafenib, an inhibitor of C-RAF, B-RAF, c-KIT, FLT-3, RET, VEGFR-2, VEGFR-3, and PDGFR-β. Sorafenib reduced the activation of MEK and MAPK and caused an inhibition of cell proliferation, invasion, migration, anchorage-independent growth in vitro and of tumor growth in vivo of all TKI-resistant CALU-3 and HCT116 cell lines.These data suggest that resistance to EGFR inhibitors is predominantly driven by the RAS/RAF/MAPK pathway and can be overcame by treatment with sorafenib.

  3. Conversion from the "oncogene addiction" to "drug addiction" by intensive inhibition of the EGFR and MET in lung cancer with activating EGFR mutation.

    Suda, Kenichi; Tomizawa, Kenji; Osada, Hirotaka; Maehara, Yoshihiko; Yatabe, Yasushi; Sekido, Yoshitaka; Mitsudomi, Tetsuya

    2012-06-01

    Emergence of acquired resistance is virtually inevitable in patients with a mutation in the epidermal growth factor receptor gene (EGFR) treated with EGFR tyrosine kinase inhibitors (TKIs). Several novel TKIs that may prevent or overcome the resistance mechanisms are now under clinical development. However, it is unknown how tumor cells will respond to intensive treatment using these novel TKIs. We previously established HCC827EPR cells, which are T790M positive, through combined treatment with erlotinib and a MET-TKI from erlotinib-hypersensitive HCC827 cells. In this study, we treated HCC827EPR cells sequentially with an irreversible EGFR-TKI, CL-387,785, to establish resistant cells (HCC827CLR), and we analyzed the mechanisms responsible for resistance. In HCC827CLR cells, PTEN expression was downregulated and Akt phosphorylation persisted in the presence of CL-387,785. Akt inhibition restored CL-387,785 sensitivity. In addition, withdrawal of CL-387,785 reduced cell viability in HCC827CLR cells, indicating that these cells were "addicted" to CL-387,785. HCC827CLR cells overexpressed the EGFR, and inhibition of the EGFR or MEK-ERK was needed to maintain cell proliferation. Increased senescence was observed in HCC827CLR cells in the drug-free condition. Through long-term culture of HCC827CLR cells without CL-387,785, we established HCC827-CL-387,785-independent cells, which exhibited decreased EGFR expression and a mesenchymal phenotype. In conclusion, PTEN downregulation is a newly identified mechanism underlying the acquired resistance to irreversible EGFR-TKIs after acquisition of T790M against erlotinib. This series of experiments highlights the flexibility of cancer cells that have adapted to environmental stresses induced by intensive treatment with TKIs. PMID:22133747

  4. The use of EGFR exon 19 and 21 unlabeled DNA probes to screen for activating mutations in non-small cell lung cancer.

    Willmore-Payne, Carlynn; Holden, Joseph A; Wittwer, Carl T; Layfield, Lester J

    2008-07-01

    Activating mutations in epidermal growth factor receptor-1 (EGFR) are found in 10-15% of Caucasian patients with non-small cell lung carcinoma (NSCLC). Approximately 90% of the mutations are deletions of several amino acids in exon 19 or point mutations in exon 21. Some studies suggest that these mutations identify patients that might benefit from targeted EGFR inhibitor therapy. DNA melting analysis of polymerase chain reaction products can screen for these mutations to identify this patient population. However, amplicon DNA melting analysis, although easily capable of detecting heterozygous mutations by heterodimer formation, becomes more difficult if mutations are homozygous or if the mutant allele is selectively amplified over wild type. Amplification of EGFR is common in NSCLC and this could compromise mutation detection by amplicon melting analysis. To overcome this potential limitation, we developed unlabeled, single-stranded DNA probes, complimentary to EGFR exon 19 and exon 21 where the common activating mutations occur. The unlabeled probes are incorporated into a standard polymerase chain reaction during the amplification of EGFR exons 19 and 21. The probe melting peak is easily distinguished from the amplicon melting peak, and probe melting is altered if mutations are present. This allows for easy identification of activating mutations even in homozygous or amplified states and is useful in the screening of NSCLC for the common EGFR activating mutations. PMID:19137110

  5. Elevated Expression of Fn14 in Non-Small Cell Lung Cancer Correlates with Activated EGFR and Promotes Tumor Cell Migration and Invasion

    Whitsett, Timothy G.; Cheng, Emily; Inge, Landon; Asrani, Kaushal; Jameson, Nathan M.; Hostetter, Galen; Weiss, Glen J.; Kingsley, Christopher B.; Loftus, Joseph C.; Bremner, Ross; Tran, Nhan L.; Winkles, Jeffrey A.

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide; approximately 85% of these cancers are non-small cell lung cancer (NSCLC). Patients with NSCLC frequently have tumors harboring somatic mutations in the epidermal growth factor receptor (EGFR) gene that cause constitutive receptor activation. These patients have the best clinical response to EGFR tyrosine kinase inhibitors (TKIs). Herein, we show that fibroblast growth factor–inducible 14 (Fn14; TNFRSF12A) is frequently overexpresse...

  6. The Use of EGFR Exon 19 and 21 Unlabeled DNA Probes to Screen for Activating Mutations in Non–Small Cell Lung Cancer

    Willmore-Payne, Carlynn; Holden, Joseph A.; Wittwer, Carl T.; Layfield, Lester J.

    2008-01-01

    Activating mutations in epidermal growth factor receptor-1 (EGFR) are found in 10–15% of Caucasian patients with non–small cell lung carcinoma (NSCLC). Approximately 90% of the mutations are deletions of several amino acids in exon 19 or point mutations in exon 21. Some studies suggest that these mutations identify patients that might benefit from targeted EGFR inhibitor therapy. DNA melting analysis of polymerase chain reaction products can screen for these mutations to identify this patient...

  7. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression

  8. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  9. Akt kinase-interacting protein1, a novel therapeutic target for lung cancer with EGFR-activating and gatekeeper mutations

    Yamada, Tadaaki; Takeuchi, Shinji; Fujita, Naoya; Nakamura, Akito; Wang, Wei; Li, Qi; Oda, Makoto; Mitsudomi, Tetsuya; Yatabe, Yasushi; Sekido, Yoshitaka; Yoshida, Junji; Higashiyama, Masahiko; Noguchi, Masayuki; Uehara, Hisanori; Nishioka, Yasuhiko

    2013-01-01

    Despite initial dramatic response, epidermal growth factor receptor (EGFR) mutant lung cancer patients always acquire resistance to EGFR-tyrosine kinase inhibitors (TKIs). Gatekeeper T790M mutation in EGFR is the most prevalent genetic alteration underlying acquired resistance to EGFR-TKI, and EGFR mutant lung cancer cells are reported to be addictive to EGFR/Akt signaling even after acquired T790M mutation. Here, we focused on Akt kinase-interacting protein1 (Aki1), a scaffold protein of PI3...

  10. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant

    Frogne, Thomas; Benjaminsen, Rikke V; Sonne-Hansen, Katrine; Sorensen, Boe S; Nexo, Ebba; Laenkholm, Anne-Vibeke; Rasmussen, Louise M; Riese, David J; de Cremoux, Patricia; Stenvang, Jan; Lykkesfeldt, Anne

    2008-01-01

    Seven fulvestrant resistant cell lines derived from the estrogen receptor alpha positive MCF-7 human breast cancer cell line were used to investigate the importance of epidermal growth factor receptor (ErbB1-4) signaling. We found an increase in mRNA expression of EGFR and the ErbB3/ErbB4 ligand...... growth inhibition of two resistant cell lines. These data indicate that ligand activated ErbB3 and EGFR, and Erk signaling play important roles in fulvestrant resistant cell growth. Furthermore, the decreased level of ErbB4 in resistant cells may facilitate heterodimerization of ErbB3 with EGFR and ErbB2....... Our data support that a concerted action against EGFR, ErbB2 and ErbB3 may be required to obtain complete growth suppression of fulvestrant resistant cells....

  11. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  12. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer

  13. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance.

    Park, Kang-Seo; Raffeld, Mark; Moon, Yong Wha; Xi, Liqiang; Bianco, Caterina; Pham, Trung; Lee, Liam C; Mitsudomi, Tetsuya; Yatabe, Yasushi; Okamoto, Isamu; Subramaniam, Deepa; Mok, Tony; Rosell, Rafael; Luo, Ji; Salomon, David S; Wang, Yisong; Giaccone, Giuseppe

    2014-07-01

    The majority of non-small cell lung cancer (NSCLC) patients harbor EGFR-activating mutations that can be therapeutically targeted by EGFR tyrosine kinase inhibitors (EGFR-TKI), such as erlotinib and gefitinib. Unfortunately, a subset of patients with EGFR mutations are refractory to EGFR-TKIs. Resistance to EGFR inhibitors reportedly involves SRC activation and induction of epithelial-to-mesenchymal transition (EMT). Here, we have demonstrated that overexpression of CRIPTO1, an EGF-CFC protein family member, renders EGFR-TKI-sensitive and EGFR-mutated NSCLC cells resistant to erlotinib in culture and in murine xenograft models. Furthermore, tumors from NSCLC patients with EGFR-activating mutations that were intrinsically resistant to EGFR-TKIs expressed higher levels of CRIPTO1 compared with tumors from patients that were sensitive to EGFR-TKIs. Primary NSCLC cells derived from a patient with EGFR-mutated NSCLC that was intrinsically erlotinib resistant were CRIPTO1 positive, but gained erlotinib sensitivity upon loss of CRIPTO1 expression during culture. CRIPTO1 activated SRC and ZEB1 to promote EMT via microRNA-205 (miR-205) downregulation. While miR-205 depletion induced erlotinib resistance, miR-205 overexpression inhibited CRIPTO1-dependent ZEB1 and SRC activation, restoring erlotinib sensitivity. CRIPTO1-induced erlotinib resistance was directly mediated through SRC but not ZEB1; therefore, cotargeting EGFR and SRC synergistically attenuated growth of erlotinib-resistant, CRIPTO1-positive, EGFR-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome intrinsic EGFR-inhibitor resistance in patients with CRIPTO1-positive, EGFR-mutated NSCLC. PMID:24911146

  14. Helicobacter pylori Activates Matrix Metalloproteinase 10 in Gastric Epithelial Cells via EGFR and ERK-mediated Pathways.

    Costa, Angela M; Ferreira, Rui M; Pinto-Ribeiro, Ines; Sougleri, Ioanna S; Oliveira, Maria J; Carreto, Laura; Santos, Manuel A; Sgouras, Dionyssios N; Carneiro, Fatima; Leite, Marina; Figueiredo, Ceu

    2016-06-01

    Helicobacter pylori colonizes the human stomach and increases the risk for peptic ulcer disease and gastric carcinoma. H. pylori upregulates the expression and activity of several matrix metalloproteinases (MMPs) in cell lines and in the gastric mucosa. The aim of this study was to explore the mechanisms leading to upregulation of MMP10 in gastric epithelial cells induced by H. pylori Infection of gastric cells with H. pylori led to an increase in levels of MMP-10 messenger RNA, protein secretion, and activity. cagA knockout mutants or CagA phosphorylation-defective mutants failed to increase MMP10 expression. These results were confirmed in infection experiments with clinical isolates with known cagA status and in human gastric biopsy specimens. Treatment of cells with chemical inhibitors of the receptor tyrosine kinase EGFR and the kinase Src abrogated H. pylori-induced MMP10 expression. Inhibitors of ERK1/2 and JNK kinases abolished and significantly decreased H. pylori-induced MMP10 expression, respectively, whereas inhibition of the kinase p38 had no effect. Finally, inhibition of MMP10 expression by small interfering RNA led to a decrease in the gastric cell-invasive phenotype mediated by the infection. In conclusion, CagA-positive H. pylori strains stimulate MMP10 expression. MMP-10 modulation occurs via EGFR activation in a process that involves Src, ERK, and JNK pathways. MMP-10 may be implicated in H. pylori-mediated extracellular matrix remodeling. PMID:26802142

  15. ADAM17-siRNA inhibits MCF-7 breast cancer through EGFR-PI3K-AKT activation.

    Meng, Xiangchao; Hu, Baoshan; Hossain, Mohammad Monir; Chen, Guofu; Sun, Ying; Zhang, Xuepeng

    2016-08-01

    A disintegrin and metalloproteinase-17 (ADAM17) can cut and release a wide variety of epidermal growth factor receptor (EGFR) ligands to promote survival, invasion and proliferation of cancer cell, and therefore, is considered to be a potential therapeutic target for cancer. The main goal of the present study was to observe the effects of ADAM17 small interfering RNA (ADAM17-siRNA) on human MCF-7 breast cancer and investigate its activation pathway. In vitro, MCF-7 cells were divided into ADAM17-siRNA groups, nonsense siRNA groups, AG1478 (selective EGFR blocker) groups, LY294002 [phosphatidylinositol 3-kinase (PI3K) phosphorylation inhibitor] groups, PD0325901 [mitogen extracellular kinase (MEK) inhibitor] groups and control groups. In vivo, MCF-7 cells were implanted subcutaneously into nude mice and then these mice were randomly divided into ADAM17-siRNA groups, vector groups and control groups. Our data showed that compared with the control groups, ADAM17-siRNA, AG1478 and LY294002 could inhibit the migration and proliferation of MCF-7 cells, but PD0325901 and nonsense siRNA did not show this effect. Except that specific ADAM17-siRNA could inhibit the expression of ADAM17 mRNA, others did not change it. Western blot analysis further confirmed that EGFR-PI3K-AKT signaling pathway is involved in ADAM17-siRNA inhibiting migration and proliferation of MCF-7 cells. Similarly to the former, the growth of MCF-7 breast cancer in nude mice was significantly inhibited by ADAM17-siRNA. Compared with the control group and the vector group, the tumor volume was smaller in the ADAM17-siRNA group, the tissues developed large areas of necrosis, immunohistochemistry showed low expressions of ADAM17 and Ki-67 and western blot analysis proved that the expression of ADAM17 protein in the tissue was also reduced. The present study suggests that ADAM17-siRNA inhibits MCF-7 breast cancer and is activated through the EGFR-PI3K-AKT signaling pathway. PMID:27221510

  16. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression

    Hung, Liang-Yi; Tseng, Joseph T.; Lee, Yi-Chao; Xia, Weiya; Wang, Ying-Nai; Wu, Min-Li; Chuang, Yu-Hsuan; Lai, Chein-Hsien; Chang, Wen-Chang

    2008-01-01

    Loss of the maintenance of genetic material is a critical step leading to tumorigenesis. It was reported that overexpression of Aurora-A and the constitutive activation of the epidermal growth factor (EGF) receptor (EGFR) are implicated in chromosome instability. In this study, we examined that when cells treated with EGF result in centrosome amplification and microtubule disorder, which are critical for genetic instability. Interestingly, the expression of Aurora-A was also increased by EGF ...

  17. INHIBITION OF PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden particulate matter inhibits protein tyrosine phosphatase activity in HAEC and leads to Src-dependent activation of EGFR sign...

  18. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    Gu, Da-min [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Lu, Pei-Hua, E-mail: lphty1_1@163.com [Department of Medical Oncology, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Zhang, Ke; Wang, Xiang [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Sun, Min [Department of General Surgery, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Chen, Guo-Qian [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Wang, Qiong, E-mail: WangQiongprof1@126.com [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China)

    2015-02-13

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.

  19. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models.

    Kim, Hee Suk; Lim, Jang Mi; Kim, Joo Young; Kim, Yongjin; Park, Serkin; Sohn, Jeongwon

    2016-03-15

    We reported previously that panaxydol, a component of Panax ginseng roots, induced mitochondria-mediated apoptosis preferentially in transformed cells. This study demonstrates that EGFR activation and the resulting ER stress mediate panaxydol-induced apoptosis, and that panaxydol suppresses in vivo tumor growth in syngeneic and xenogeneic mouse tumor models. In addition, we elucidated that CaMKII and TGF-β-activated kinase (TAK1) participate in p38/JNK activation by elevated cytoplasmic Ca(2+) concentration ([Ca(2+)]c). In MCF-7 cells, EGFR was activated immediately after exposure to panaxydol, and this activation was necessary for induction of apoptosis, suggesting that panaxydol might be a promising anticancer candidate, especially for EGFR-addicted cancer. Activation of PLCγ followed EGFR activation, resulting in Ca(2+) release from the endoplasmic reticulum (ER) via inositol triphosphate and ryanodine receptors. ER Ca(2+) release triggered mitochondrial Ca(2+) uptake indirectly through oxidative stress and ensuing ER stress. Elevated [Ca(2+)]c triggered sequential activation of calmodulin/CaMKII, TAK1 and p38/JNK. As shown previously, p38 and JNK activate NADPH oxidase. Here, it was shown that the resulting oxidative stress triggered ER stress. Among the three signaling branches of the unfolded protein response, protein kinase R-like ER kinase (PERK), but not inositol-requiring enzyme 1 or activating transcription factor 6, played a role in transmitting the apoptosis signal. PERK induced C/EBP homologous protein (CHOP), and CHOP elevated Bim expression, initiating mitochondrial Ca(2+) uptake and apoptosis. In summary, we identified roles of EGFR, the CAMKII-TAK1-p38/JNK pathway, and ER stress in panaxydol-induced apoptosis and demonstrated the in vivo anticancer effect of panaxydol. PMID:26421996

  20. Squamosamide derivative FLZ protects retinal pigment epithelium cells from oxidative stress through activation of epidermal growth factor receptor (EGFR)-AKT signaling.

    Cheng, Li-Bo; Chen, Chun-Ming; Zhong, Hong; Zhu, Li-Juan

    2014-01-01

    Reactive oxygen species (ROS)-mediated retinal pigment epithelium (RPE) cell apoptosis is attributed to age-related macular degeneration (AMD) pathogenesis. FLZ, a novel synthetic squamosamide derivative from a Chinese herb, Annona glabra, has displayed significant cyto-protective activity. In the current study, we explored the pro-survival effect of FLZ in oxidative stressed-RPE cells and studied the underlying signaling mechanisms. Our results showed that FLZ attenuated hydrogen peroxide (H2O2)-induced viability decrease and apoptosis in the RPE cell line (ARPE-19 cells) and in primary mouse RPE cells. Western blotting results showed that FLZ activated AKT signaling in RPE cells. The AKT-specific inhibitor, MK-2206, the phosphoinositide 3-kinase (PI3K)/AKT pan inhibitor, wortmannin, and AKT1-shRNA (short hairpin RNA) depletion almost abolished FLZ-mediated pro-survival/anti-apoptosis activity. We discovered that epidermal growth factor receptor (EGFR) trans-activation mediated FLZ-induced AKT activation and the pro-survival effect in RPE cells, and the anti-apoptosis effect of FLZ against H2O2 was inhibited by the EGFR inhibitor, PD153035, or by EGFR shRNA-knockdown. In conclusion, FLZ protects RPE cells from oxidative stress through activation of EGFR-AKT signaling, and our results suggest that FLZ might have therapeutic values for AMD. PMID:25329617

  1. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs

  2. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (United States); Turchi, John J. [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (United States); Department of Medicine, Indiana University School of Medicine, Indianapolis (United States); Zhang, Zhong-Yin, E-mail: zyzhang@iu.edu [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (United States)

    2013-10-04

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.

  3. ROLE OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN THE ACTIVATION OF MEK INDUCED BY ZN EXPOSURE

    Zn is a ubiquitous ambient air pollutant typically found associated with particulate matter. Divalent Zn inhibits tyrosine phosphatases and induces EGFR- and MAPK- dependent signaling in human airway epithelial cells. To further characterize Zn-induced intracellular signaling, ...

  4. EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal cancer cells.

    Yvonne Möller

    Full Text Available TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed Db(αEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of Db(αEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward Db(αEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of Db(αEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing Db(αEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects Db(αEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-Ras(G12V. In the presence of doxycycline, these cells showed increased resistance to Db(αEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the Db(αEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between Db(αEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that Db(αEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.

  5. Activation of Multiple ERBB Family Receptors Mediates Glioblastoma Cancer Stem-like Cell Resistance to EGFR-Targeted Inhibition12

    Clark, Paul A.; Iida, Mari; Daniel M. Treisman; Kalluri, Haviryaji; Ezhilan, Sathyapriya; Zorniak, Michael; Deric L. Wheeler; Kuo, John S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) signaling is strongly implicated in glioblastoma (GBM) tumorigenesis. However, molecular agents targeting EGFR have demonstrated minimal efficacy in clinical trials, suggesting the existence of GBM resistance mechanisms. GBM cells with stem-like properties (CSCs) are highly efficient at tumor initiation and exhibit therapeutic resistance. In this study, GBMCSC lines showed sphere-forming and tumor initiation capacity after EGF withdrawal from cell cultu...

  6. Synergistic antitumor effect between gefitinib and fractionated irradiation in anaplastic oligodendrogliomas cannot be predicted by the Egfr signaling activity.

    Sophie Pinel; Jihane Mriouah; Marc Vandamme; Alicia Chateau; François Plénat; Eric Guérin; Luc Taillandier; Valérie Bernier-Chastagner; Jean-Louis Merlin; Pascal Chastagner

    2013-01-01

    International audience In high-grade gliomas, the identification of patients that could benefit from EGFR inhibitors remains a challenge, hindering the use of these agents. Using xenografts models, we evaluated the antitumor effect of the combined treatment "gefitinib + radiotherapy" and aimed to identify the profile of responsive tumors. Expression of phosphorylated proteins involved in the EGFR-dependent signaling pathways was analyzed in 10 glioma models. We focused on three models of a...

  7. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  8. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G1 arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G1 arrest. This G1 arrest was associated with up-regulation of p27kip1, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G1 arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 ΔEGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  9. Discovery of a series of novel phenylpiperazine derivatives as EGFR TK inhibitors

    Sun, Juan; Wang, Xin-Yi; Lv, Peng-Cheng; Zhu, Hai-Liang

    2015-09-01

    Human epidermal growth factor receptor (EGFR) is an important drug target that plays a fundamental role in signal transduction pathways in oncology. We report herein the discovery of a novel class of phenylpiperazine derivatives with improved potency toward EGFR. The biological activity of compound 3p as inhibitor of EGFR was further investigated both in vitro and in vivo. Notably, compound 3p exhibited an IC50 in the nanomolar range in A549 cell cultures and induced a cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice. Compoutational docking studies also showed that compound 3p has interaction with EGFR key residues in the active site.

  10. EGFR and Bcl-2 in gastric mucosa of children infected with Helicobacter pylori

    Ewa Ryszczuk

    2016-03-01

    Full Text Available Aim: The aim of the study was to evaluate the expression of EGFR and Bcl-2 proteins as inhibitory markers of apoptosis in surface epithelial cells and gland cells of antral gastric mucosa in children infected with Helicobacter pylori according to the severity and activity of antral gastritis and to assess the correlation between the number of cells expressing EGFR and the number of cells expressing Bcl-2 in H. pylori infected children. Materials and methods: The study included 44 children: 68.2% with chronic gastritis and positive IgG against H. pylori, and 31.8% with functional disorders of the gastrointestinal tract and with normal IgG against H. pylori. The evaluation of EGFR expression in gastric mucosa was performed immunohistochemically using monoclonal mouse anti-EGFR antibody. The polyclonal antibody was used to determine the expression of anti-Bcl-2. Results: A significant increase in the number of cells expressing EGFR and Bcl-2 protein was found in the epithelial cells in severe as well as mild and moderate gastritis in the group of children infected with H. pylori. An increase in the number of cells expressing EGFR and Bcl-2 protein was also found in the epithelial cells in group I according to the activity of gastritis. There was a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children. Conclusion: Increased expression of EGFR and Bcl-2 proteins in the epithelial cells and a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children could suggest increased regeneration abilities of gastric mucosa.

  11. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator

    Tumor-associated macrophages (TAM) promote malignant progression, yet the repertoire of oncogenic factors secreted by TAM has not been clearly defined. We sought to analyze which EGFR- and STAT3-activating factors are secreted by monocytes/macrophages exposed to tumor cell-secreted factors. Following exposure of primary human monocytes and macrophages to supernatants of a variety of tumor cell lines, we have analyzed transcript and secreted protein levels of EGFR family ligands and of STAT3 activators. To validate our findings, we have analyzed TAM infiltration levels, systemic and local protein levels as well as clinical data of primary breast cancer patients. Primary human monocytes and macrophages respond to tumor cell-derived factors by secreting EGFR- and STAT3-activating ligands, thus inducing two important oncogenic pathways in carcinoma cells. Tumor cell-secreted factors trigger two stereotype secretory profiles in peripheral blood monocytes and differentiated macrophages: monocytes secrete epiregulin (EREG) and oncostatin-M (OSM), while macrophages secrete heparin-binding EGF-like growth factor (HB-EGF) and OSM. HB-EGF and OSM cooperatively induce tumor cell chemotaxis. HB-EGF and OSM are co-expressed by TAM in breast carcinoma patients, and plasma levels of both ligands correlate strongly. Elevated HB-EGF levels accompany TAM infiltration, tumor growth and dissemination in patients with invasive disease. Our work identifies systemic markers for TAM involvement in cancer progression, with the potential to be developed into molecular targets in cancer therapy

  12. Protein phosphorylation profiling using an in situ proximity ligation assay: phosphorylation of AURKA-elicited EGFR-Thr654 and EGFR-Ser1046 in lung cancer cells.

    Tzu-Chi Chen

    Full Text Available The epidermal growth factor receptor (EGFR, which is up-regulated in lung cancer, involves the activation of mitogenic signals and triggers multiple signaling cascades. To dissect these EGFR cascades, we used 14 different phospho-EGFR antibodies to quantify protein phosphorylation using an in situ proximity ligation assay (in situ PLA. Phosphorylation at EGFR-Thr654 and -Ser1046 was EGF-dependent in the wild-type (WT receptor but EGF-independent in a cell line carrying the EGFR-L858R mutation. Using a ProtoAarray™ containing ∼5000 recombinant proteins on the protein chip, we found that AURKA interacted with the EGFR-L861Q mutant. Moreover, overexpression of EGFR could form a complex with AURKA, and the inhibitors of AURKA and EGFR decreased EGFR-Thr654 and -Ser1046 phosphorylation. Immunohistochemical staining of stage I lung adenocarcinoma tissues demonstrated a positive correlation between AURKA expression and phosphorylation of EGFR at Thr654 and Ser1046 in EGFR-mutant specimens, but not in EGFR-WT specimens. The interplay between EGFR and AURKA provides an explanation for the difference in EGF dependency between EGFR-WT and EGFR-mutant cells and may provide a new therapeutic strategy for lung cancer patients carrying EGFR mutations.

  13. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  14. EGFR-mediated carcinoma cell metastasis mediated by integrin αvβ5 depends on activation of c-Src and cleavage of MUC1.

    Steven K M Lau

    Full Text Available Receptor tyrosine kinases and integrins play an essential role in tumor cell invasion and metastasis. We previously showed that EGF and other growth factors induce human carcinoma cell invasion and metastasis mediated by integrin αvβ5 that is prevented by Src blockade. MUC1, a transmembrane glycoprotein, is expressed in most epithelial tumors as a heterodimer consisting of an extracellular and a transmembrane subunit. The MUC1 cytoplasmic domain of the transmembrane subunit (MUC1.CD translocates to the nucleus where it promotes the transcription of a metastatic gene signature associated with epithelial to mesenchymal transition. Here, we demonstrate a requirement for MUC1 in carcinoma cell metastasis dependent on EGFR and Src without affecting primary tumor growth. EGF stimulates Src-dependent MUC1 cleavage and nuclear localization leading to the expression of genes linked to metastasis. Moreover, expression of MUC1.CD results in its nuclear localization and is sufficient for transcription of the metastatic gene signature and tumor cell metastasis. These results demonstrate that EGFR and Src activity contribute to carcinoma cell invasion and metastasis mediated by integrin αvβ5 in part by promoting proteolytic cleavage of MUC1 and highlight the ability of MUC1.CD to promote metastasis in a context-dependent manner. Our findings may have implications for the use and future design of targeted therapies in cancers known to express EGFR, Src, or MUC1.

  15. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFκB and AhR and EGFR-ERK pathway

    Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure, the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 μM resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights:

  16. Activation of EGFR/ERBB2 via Pathways Involving ERK1/2, P38 MAPK, AKT and FOXO Enhances Recovery of Diabetic Hearts from Ischemia-Reperfusion Injury

    Akhtar, Saghir; Yousif, Mariam H. M.; Chandrasekhar, Bindu; Benter, Ibrahim F.

    2012-01-01

    This study characterized the effects of diabetes and/or ischemia on epidermal growth factor receptor, EGFR, and/or erbB2 signaling pathways on cardiac function. Isolated heart perfusion model of global ischemia was used to study the effect of chronic inhibition or acute activation of EGFR/erbB2 signaling on cardiac function in a rat model of type-1 diabetes. Induction of diabetes with streptozotocin impaired recovery of cardiac function (cardiac contractility and hemodynamics) following 40 minutes of global ischemia in isolated hearts. Chronic treatment with AG825 or AG1478, selective inhibitors of erbB2 and EGFR respectively, did not affect hyperglycemia but led to an exacerbation whereas acute administration of the EGFR ligand, epidermal growth factor (EGF), led to an improvement in cardiac recovery in diabetic hearts. Diabetes led to attenuated dimerization and phosphorylation of cardiac erbB2 and EGFR receptors that was associated with reduced signaling via extracellular-signal-regulated kinase 1/2 (ERK1/2), p38 mitogen activated protein (MAP) kinase and AKT (protein kinase B). Ischemia was also associated with reduced cardiac signaling via these molecules whereas EGF-treatment opposed diabetes and/or ischemia induced changes in ERK1/2, p38 MAP kinase, and AKT-FOXO signaling. Losartan treatment improved cardiac function in diabetes but also impaired EGFR phosphorylation in diabetic heart. Co-administration of EGF rescued Losartan-mediated reduction in EGFR phosphorylation and significantly improved cardiac recovery more than with either agent alone. EGFR/erbB2 signaling is an important cardiac survival pathway whose activation, particularly in diabetes, ischemia or following treatment with drugs that inhibit this cascade, significantly improves cardiac function. These findings may have clinical relevance particularly in the treatment of diabetes-induced cardiac dysfunction. PMID:22720029

  17. Activation of EGFR/ERBB2 via pathways involving ERK1/2, P38 MAPK, AKT and FOXO enhances recovery of diabetic hearts from ischemia-reperfusion injury.

    Saghir Akhtar

    Full Text Available This study characterized the effects of diabetes and/or ischemia on epidermal growth factor receptor, EGFR, and/or erbB2 signaling pathways on cardiac function. Isolated heart perfusion model of global ischemia was used to study the effect of chronic inhibition or acute activation of EGFR/erbB2 signaling on cardiac function in a rat model of type-1 diabetes. Induction of diabetes with streptozotocin impaired recovery of cardiac function (cardiac contractility and hemodynamics following 40 minutes of global ischemia in isolated hearts. Chronic treatment with AG825 or AG1478, selective inhibitors of erbB2 and EGFR respectively, did not affect hyperglycemia but led to an exacerbation whereas acute administration of the EGFR ligand, epidermal growth factor (EGF, led to an improvement in cardiac recovery in diabetic hearts. Diabetes led to attenuated dimerization and phosphorylation of cardiac erbB2 and EGFR receptors that was associated with reduced signaling via extracellular-signal-regulated kinase 1/2 (ERK1/2, p38 mitogen activated protein (MAP kinase and AKT (protein kinase B. Ischemia was also associated with reduced cardiac signaling via these molecules whereas EGF-treatment opposed diabetes and/or ischemia induced changes in ERK1/2, p38 MAP kinase, and AKT-FOXO signaling. Losartan treatment improved cardiac function in diabetes but also impaired EGFR phosphorylation in diabetic heart. Co-administration of EGF rescued Losartan-mediated reduction in EGFR phosphorylation and significantly improved cardiac recovery more than with either agent alone. EGFR/erbB2 signaling is an important cardiac survival pathway whose activation, particularly in diabetes, ischemia or following treatment with drugs that inhibit this cascade, significantly improves cardiac function. These findings may have clinical relevance particularly in the treatment of diabetes-induced cardiac dysfunction.

  18. Biological activity determination

    Madronová, L.; Novák, J.; Kubíček, J.; Antošová, B.; Kozler, J.; Novák, František

    New York: Nova Science Publisher, 2011 - (Madronová, L.), s. 85-103. (Chemistry Research and Applications). ISBN 978-1-61668-965-0 Institutional research plan: CEZ:AV0Z60660521 Keywords : biological activity * determination * potassium humate samples Subject RIV: CB - Analytical Chemistry, Separation

  19. Sym004, a novel EGFR antibody mixture, can overcome acquired resistance to cetuximab.

    Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L

    2013-10-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (Ctx(R)) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for Ctx(R) tumor cells. Sym004 treatment of Ctx(R) clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo Ctx(R) NCI-H226 mouse xenografts and subsequently treated Ctx(R) tumors with Sym004. Sym004 treatment of mice harboring Ctx(R) tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in Ctx(R) tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for Ctx(R) tumors. PMID:24204198

  20. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab

    Mari Iida

    2013-10-01

    Full Text Available The epidermal growth factor receptor (EGFR is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors.

  1. Targeted treatment of mutated EGFR-expressing non-small-cell lung cancer: focus on erlotinib with companion diagnostics

    Karachaliou N

    2014-11-01

    Full Text Available Niki Karachaliou,1 Rafael Rosell21Translational Research Unit, Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, 2Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, SpainAbstract: Deeper understanding of the pathobiology of non-small-cell lung cancer (NSCLC has led to the development of small molecules that target genetic mutations known to play critical roles in the progression to metastatic disease. The discovery of epidermal growth factor receptor (EGFR mutations in 15%–20% of lung adenocarcinomas and the associated response to EGFR tyrosine kinase inhibitors have provided a successful avenue of attack in late-stage adenocarcinomas. Use of the EGFR tyrosine kinase inhibitors gefitinib, erlotinib, and afatinib is limited to patients who have adenocarcinomas with known activating EGFR mutations. However, the EGFR mutation testing landscape is varied and includes many screening and targeted methods, each with its own benefits and limitations. These tests can simplify the drug discovery process, make clinical trials more efficient and informative, and individualize cancer therapy. In practice, the choice of method should be determined by the nature of the sample to be tested, the testing laboratory's expertise and access to equipment, and whether the detection of only known activating EGFR mutations, or of all possible mutations, is required. Development of companion diagnostic tests for this identification is advancing; nevertheless, the use of such tests merits greater attention.Keywords: lung adenocarcinoma, EGFR mutations, companion diagnostics

  2. Interaction between EGFR and EphA2

    Larsen, Alice Bjerregaard

    2010-01-01

    including those originating from the brain, breast, cervix, colon, head and neck, kidney, lung, esophagus, ovary, prostate, skin and stomach. Moreover, high EphA2 expression has been correlated with increased tumor volume, short overall survival and increasing evidence also suggest that EphA2 is involved in......Enhanced or altered epidermal growth factor receptor (EGFR) activity has been reported in many human cancers and several molecular targeting therapies has been developed. However, despite intense research, therapies targeting EGFR have shown conflicting results in clinical studies, indicating the...... involvement of other important molecular players. Several different EGFR mutations have been reported in cancer, one of which is the cancer specific type III EGFR deletion mutant (EGFRvIII, de2-7EGFR, ¿EGFR). In a global search for EGFR and EGFRvIII regulated genes we identified the receptor tyrosine kinase...

  3. Intratumoral distribution of EGFR-amplified and EGFR-mutated cells in pulmonary adenocarcinoma.

    Soma, Shingo; Tsuta, Koji; Takano, Toshimi; Hatanaka, Yutaka; Yoshida, Akihiko; Suzuki, Kenji; Asamura, Hisao; Tsuda, Hitoshi

    2014-03-01

    Alterations in the epidermal growth factor receptor (EGFR) gene are associated with carcinogenesis in non-small cell lung cancer. However, the intratumoral distribution of these abnormalities has not been elucidated. This study included patients with surgically resected lung adenocarcinoma. The predominant histological growth pattern was determined. Chromogenic in situ hybridization (CISH) and EGFR-mutation specific-antibodies were used for analysis of changes in gene copy number and EGFR mutations, respectively. EGFR mutation detected immunohistochemistry (IHC) and amplification were identified in 31 (53%) and 30 (52%) cases, respectively. The predominant growth patterns in the 58 tumors evaluated were papillary (28, 48%), lepidic (8, 14%), acinar (15, 26%), and solid (7, 12%). EGFR mutations were the least common in cases with a solid predominant pattern. The incidence of EGFR amplification did not differ among predominant patterns. Analyzing each histological subtype, no differences were noted between the prevalence of EGFR-IHC positive and CISH-positive rates. In the analysis of EGFR amplification, CISH-positive status was more prevalent in IHC-positive cases than in IHC-negative cases. All 19 cases that were both IHC and CISH positive were analyzed. In 17 cases (90%), the IHC-positive area was equal to or larger than the CISH-positive area. Among the histological subtypes of lung adenocarcinoma, the solid predominant subtype was distinguishable by its infrequent EGFR mutations. EGFR gene mutations preceded changes in oncogenic drive, more so than did EGFR gene number alterations during the developmental process of lung adenocarcinoma. PMID:24355440

  4. Epidermal growth factor receptor (EGFR mutation status and Rad51 determine the response of glioblastoma (GBM to multimodality therapy with cetuximab, temozolomide and radiation

    PhyllisRachelleWachsberger

    2013-02-01

    Full Text Available Purpose: EGFR amplification and mutation (i.e., EGFRvIII are found in 40% of primary GBM tumors and are believed to contribute to tumor development and therapeutic resistance. This study was designed to investigate how EGFR mutational status modulates response to multimodality treatment with cetuximab, an anti-EGFR inhibitor, the chemotherapeutic agent, temozolamide (TMZ and radiation therapy (RT Methods and Materials: In vitro and in vivo experiments were performed on two isogenic U87 GBM cell lines: one overexpressing wildtype EGFR (U87wtEGFR and the other overexpressing EGFRvIII (U87EGFRvIII. Results: Xenografts harboring EGFRvIII were more sensitive to TMZ alone and TMZ in combination with RT and/or cetuximab than xenografts expressing wtEGFR. In vitro experiments demonstrated that U87EGFRvIII-expressing tumors appear to harbor defective DNA homologous recombination repair in the form of Rad51 processing, Conclusions: The difference in sensitivity between EGFR-expressing and EGFRvIII-expressing tumors to combined modality treatment may help in the future tailoring of GBM therapy to subsets of patients expressing more or less of the EGFR mutant.

  5. Monitoring of Circulating Tumor Cells and Their Expression of EGFR/Phospho-EGFR During Combined Radiotherapy Regimens in Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    Tinhofer, Ingeborg, E-mail: ingeborg.tinhofer@charite.de [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); Hristozova, Tsvetana; Stromberger, Carmen [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); KeilhoIz, Ulrich [Department of Hematology and Oncology, Campus Benjamin Franklin, Charite Universitaetsmedizin Berlin, Berlin (Germany); Budach, Volker [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany)

    2012-08-01

    Purpose: The numbers of circulating tumor cells (CTCs) and their expression/activation of epidermal growth factor receptor (EGFR) during the course of combined chemo- or bioradiotherapy regimens as potential biomarkers of treatment efficacy in squamous cell carcinoma of the head and neck (SCCHN) were determined. Methods and Materials: Peripheral blood samples from SCCHN patients with locally advanced stage IVA/B disease who were treated with concurrent radiochemotherapy or induction chemotherapy followed by bioradiation with cetuximab were included in this study. Using flow cytometry, the absolute number of CTCs per defined blood volume as well as their expression of EGFR and its phosphorylated form (pEGFR) during the course of treatment were assessed. Results: Before treatment, we detected {>=}1 CTC per 3.75 mL blood in 9 of 31 patients (29%). Basal expression of EGFR was detected in 100% and pEGFR in 55% of the CTC+ cases. The frequency of CTC detection was not influenced by induction chemotherapy. However, the number of CTC+ samples significantly increased after radiotherapy. This radiation-induced increase in CTC numbers was less pronounced when radiotherapy was combined with cetuximab compared to its combination with cisplatin/5-fluorouracil. The former treatment regimen was also more effective in reducing pEGFR expression in CTCs. Conclusions: Definitive radiotherapy regimens of locally advanced SCCHN can increase the number of CTCs and might thus contribute to a systemic spread of tumor cells. Further studies are needed to evaluate the predictive value of the radiation-induced increase in CTC numbers and the persistent activation of the EGFR signalling pathway in individual CTC+ cases.

  6. Bufalin Reverses HGF-Induced Resistance to EGFR-TKIs in EGFR Mutant Lung Cancer Cells via Blockage of Met/PI3k/Akt Pathway and Induction of Apoptosis

    Xiao-Hong Kang

    2013-01-01

    Full Text Available The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib and erlotinib, have shown promising therapeutic efficacy in nonsmall cell lung cancer (NSCLC patients harboring epidermal growth factor receptor- (EGFR- activating mutation. However, the inevitable recurrence resulting from acquired resistance has limited the clinical improvement in therapy outcomes. Many studies demonstrate that hepatocyte growth factor- (HGF- Met axis plays an important role in tumor progression and drug sensitivity. HGF may induce resistance to EGFR-TKIs in EGFR mutant lung cancer cells by Met/PI3K/Akt signaling. The purpose of this study was to determine whether bufalin, a major bioactive component of Venenum Bufonis, could reverse HGF-induced resistance to reversible and irreversible EGFR-TKIs in mutant lung cancer cells PC-9, HCC827, and H1975. Our studies showed that bufalin could reverse resistance to reversible and irreversible EGFR-TKIs induced by exogenous HGF in EGFR mutant lung cancer cells by inhibiting the Met/PI3K/Akt pathway and inducing death signaling. These results suggested that bufalin might have a potential to overcome HGF-induced resistance to molecular-targeted drugs for lung cancer.

  7. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo.

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-03-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O(6) -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy. PMID:26778701

  8. Truncation, modification, and optimization of MIG6(segment 2) peptide to target lung cancer-related EGFR.

    Yu, Xiao-Dong; Yang, Rui; Leng, Chang-Jun

    2016-04-01

    Human epidermal growth factor receptor (EGFR) plays a central role in the pathological progression and metastasis of lung cancer; the development and clinical application of therapeutic agents that target the receptor provide important insights for new lung cancer therapies. The tumor-suppressor protein MIG6 is a negative regulator of EGFR, which can bind at the activation interface of asymmetric dimer of EGFR kinase domains to disrupt dimerization and then inactivate the kinase (Zhang X. et al. Nature 2007, 450: 741-744). The protein adopts two separated segments, i.e. MIG6(segment 1) and MIG6(segment 2), to directly interact with EGFR. Here, computational modeling and analysis of the intermolecular interaction between EGFR kinase domain and MIG6(segment 2) peptide revealed that the peptide is folded into a two-stranded β-sheet composed of β-strand 1 and β-strand 2; only the β-strand 2 can directly interact with EGFR activation loop, while leaving β-strand 1 apart from the kinase. A C-terminal island within the β-strand 2 is primarily responsible for peptide binding, which was truncated from the MIG6(segment 2) and exhibited weak affinity to EGFR kinase domain. Structural and energetic analysis suggested that phosphorylation at residues Tyr394 and Tyr395 of truncated peptide can considerably improve EGFR affinity, and mutation of other residues can further optimize the peptide binding capability. Subsequently, three derivative versions of the truncated peptide, including phosphorylated and dephosphorylated peptides as well as a double-point mutant were synthesized and purified, and their affinities to the recombinant protein of human EGFR kinase domain were determined by fluorescence anisotropy titration. As expected theoretically, the dephosphorylated peptide has no observable binding to the kinase, and phosphorylation and mutation can confer low and moderate affinities to the peptide, respectively, suggesting a good consistence between the computational

  9. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2.

    Huawang Sun

    Full Text Available Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.

  10. A CLONALLY DERIVED CELL LINE,9L-EGFR IS USEFUL FOR THE STUDIES OF CANCER CELLS BEARING EGF RECEPTOR

    Lin Qi; Rajesh Agarwal; Rana Singh; Gail S. Harrisona; L.Michael Glodea

    2003-01-01

    Since the epidermal growth factor receptor (EGFR) is a key regulator in cell signaling pathways of cancer cell. To investigate the mechanism between cancer cells survival and its EGFR expression, drug selection of cancer cells target therapy, we generated a cell line, 9L-EGFR, which stably expressed human EGFR; the parental rat glioma cell line, 9L, does not contain endogenous EGFR message or protein. Our results show that 9L-EGFR cells had high levels of EGFR on their cell surface by using RT-PCR, Western analysis and Flow cytometry analysis. The EGFR transfected into 9L cells was capable of being activated by EGF, in which either phosphorylated (p-EGFR) or total (EGFR) was showed by Western blot. This investigation may contribute to the further studies of cancer cells bearing EGFR.

  11. Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr

    Radiation therapy is routinely prescribed for high-grade malignant gliomas. However, the efficacy of this therapeutic modality is often limited by the occurrence of radioresistance, reflected as a diminished susceptibility of the irradiated cells to undergo cell death. Thus, cells have evolved an elegant system in response to ionizing radiation induced DNA damage, where p53, Hsp70 and/or EGFr may play an important role in the process. In the present study, we investigated whether the content of p53, Hsp70 and EGFr are associated to glioblastoma (GBM) cell radioresistance. Spheroids from U-87MG and MO59J cell lines as well as spheroids derived from primary culture of tumor tissue of one GBM patient (UGBM1) were irradiated (5, 10 and 20 Gy), their relative radioresistance were established and the p53, Hsp70 and EGFr contents were immunohistochemically determined. Moreover, we investigated whether EGFr-phospho-Akt and EGFr-MEK-ERK pathways can induce GBM radioresistance using inhibitors of activation of ERK (PD098059) and Akt (wortmannin). At 5 Gy irradiation UGBM1 and U-87MG spheroids showed growth inhibition whereas the MO59J spheroid was relatively radioresistant. Overall, no significant changes in p53 and Hsp70 expression were found following 5 Gy irradiation treatment in all spheroids studied. The only difference observed in Hsp70 content was the periphery distribution in MO59J spheroids. However, 5 Gy treatment induced a significant increase on the EGFr levels in MO59J spheroids. Furthermore, treatment with inhibitors of activation of ERK (PD098059) and Akt (wortmannin) leads to radiosensitization of MO59J spheroids. These results indicate that the PI3K-Akt and MEK-ERK pathways triggered by EGFr confer GBM radioresistance

  12. EGFR/cell membrane chromatography-online-high performance liquid chromatography/mass spectrometry method for screening EGFR antagonists from Radix Angelicae Pubescentis

    2010-01-01

    The intracellular kinase domains of the epidermal growth factor receptor(EGFR) in some tumor cells are significant targets for drug discovery.We have developed a new EGFR cell membrane chromatography(EGFR/CMC)-online-high performance liquid chromatography/mass spectrometry(HPLC/MS) method for screening anti-EGFR antagonists from medicinal herbs such as Radix Angelicae Pubescentis.In this study,the HEK293 EGFR cells with high expression of EGFR were used to prepare cell membrane stationary phase(CMSP) in the EGFR/CMC model.The retention fractions on the EGFR/CMC model were directly analyzed by combining a 10 port columns switcher with a HPLC/MS system online.As a result,osthole from Radix Angelicae Pubescentis was found to be the active component acting on EGFR like dasatinib as the control drug.There was a good relationship between their inhibiting effects on EGFR secretion and HEK293 EGFR cell growth in vitro.This new EGFR/CMC-online-HPLC/MS method can be applied for screening anti-EGFR antagonists from TCMs,for instance,Radix Angelicae Pubescentis.It will be a useful method for drug discovery with natural medicinal herbs as a leading compound resource.

  13. Ibrutinib selectively and irreversibly targets EGFR (L858R, Del19) mutant but is moderately resistant to EGFR (T790M) mutant NSCLC Cells

    Wu, Hong; Wang, Aoli; Zhang, Wei; Wang, Beilei; Chen, Cheng; Wang, Wenchao; Hu, Chen; Ye, Zi; Zhao, Zheng; Wang, Li; Li, Xixiang; Yu, Kailin; Liu, Juan; Wu, Jiaxin; Yan, Xiao-E

    2015-01-01

    Through comprehensive comparison study, we found that ibrutinib, a clinically approved covalent BTK kinase inhibitor, was highly active against EGFR (L858R, del19) mutant driven NSCLC cells, but moderately active to the T790M ‘gatekeeper’ mutant cells and not active to wild-type EGFR NSCLC cells. Ibrutinib strongly affected EGFR mediated signaling pathways and induced apoptosis and cell cycle arrest (G0/G1) in mutant EGFR but not wt EGFR cells. However, ibrutinib only slowed down tumor progre...

  14. Optimizing the sequence of anti-EGFR-targeted therapy in EGFR-mutant lung cancer.

    Meador, Catherine B; Jin, Hailing; de Stanchina, Elisa; Nebhan, Caroline A; Pirazzoli, Valentina; Wang, Lu; Lu, Pengcheng; Vuong, Huy; Hutchinson, Katherine E; Jia, Peilin; Chen, Xi; Eisenberg, Rosana; Ladanyi, Marc; Politi, Katerina; Zhao, Zhongming; Lovly, Christine M; Cross, Darren A E; Pao, William

    2015-02-01

    Metastatic EGFR-mutant lung cancers are sensitive to the first- and second-generation EGFR tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib, and afatinib, but resistance develops. Acquired resistance to gefitinib or erlotinib occurs most commonly (>50%) via the emergence of a second-site EGFR mutation, T790M. Two strategies to overcome T790M-mediated resistance are dual inhibition of EGFR with afatinib plus the anti-EGFR antibody cetuximab (A+C), or mutant-specific EGFR inhibition with AZD9291. A+C and AZD9291 are now also being tested as first-line therapies, but whether these therapies will extend progression-free survival or induce more aggressive forms of resistance in this setting remains unknown. We modeled resistance to multiple generations of anti-EGFR therapies preclinically to understand the effects of sequential treatment with anti-EGFR agents on drug resistance and determine the optimal order of treatment. Using a panel of erlotinib/afatinib-resistant cells, including a novel patient-derived cell line (VP-2), we found that AZD9291 was more potent than A+C at inhibiting cell growth and EGFR signaling in this setting. Four of four xenograft-derived A+C-resistant cell lines displayed in vitro and in vivo sensitivity to AZD9291, but four of four AZD9291-resistant cell lines demonstrated cross-resistance to A+C. Addition of cetuximab to AZD9291 did not confer additive benefit in any preclinical disease setting. This work, emphasizing a mechanistic understanding of the effects of therapies on tumor evolution, provides a framework for future clinical trials testing different treatment sequences. This paradigm is applicable to other tumor types in which multiple generations of inhibitors are now available. PMID:25477325

  15. MITF Modulates Therapeutic Resistance through EGFR Signaling.

    Ji, Zhenyu; Erin Chen, Yiyin; Kumar, Raj; Taylor, Michael; Jenny Njauw, Ching-Ni; Miao, Benchun; Frederick, Dennie T; Wargo, Jennifer A; Flaherty, Keith T; Jönsson, Göran; Tsao, Hensin

    2015-07-01

    Response to targeted therapies varies significantly despite shared oncogenic mutations. Nowhere is this more apparent than in BRAF (V600E)-mutated melanomas where initial drug response can be striking and yet relapse is commonplace. Resistance to BRAF inhibitors have been attributed to the activation of various receptor tyrosine kinases (RTKs), although the underlying mechanisms have been largely uncharacterized. Here, we found that EGFR-induced vemurafenib resistance is ligand dependent. We employed whole-genome expression analysis and discovered that vemurafenib resistance correlated with the loss of microphthalmia-associated transcription factor (MITF), along with its melanocyte lineage program, and with the activation of EGFR signaling. An inverse relationship between MITF, vemurafenib resistance, and EGFR was then observed in patient samples of recurrent melanoma and was conserved across melanoma cell lines and patients' tumor specimens. Functional studies revealed that MITF depletion activated EGFR signaling and consequently recapitulated the resistance phenotype. In contrast, forced expression of MITF in melanoma and colon cancer cells inhibited EGFR and conferred sensitivity to BRAF/MEK inhibitors. These findings indicate that an "autocrine drug resistance loop" is suppressed by melanocyte lineage signal(s), such as MITF. This resistance loop modulates drug response and could explain the unique sensitivity of melanomas to BRAF inhibition. PMID:25789707

  16. EGFR kinase domain duplication (EGFR-KDD) is a novel oncogenic driver in lung cancer that is clinically responsive to afatinib

    Gallant, Jean-Nicolas; Sheehan, Jonathan H.; Shaver, Timothy M.; Bailey, Mark; Lipson, Doron; Chandramohan, Raghu; Brewer, Monica Red; York, Sally J.; Kris, Mark G.; Pietenpol, Jennifer A.; Ladanyi, Marc; Miller, Vincent A.; Ali, Siraj M.; Meiler, Jens; Lovly, Christine M.

    2015-01-01

    Oncogenic EGFR mutations are found in 10-35% of lung adenocarcinomas. Such mutations, which present most commonly as small in-frame deletions in exon 19 or point mutations in exon 21 (L858R), confer sensitivity to EGFR tyrosine kinase inhibitors (TKIs). In analyzing the tumor from a 33-year-old male never smoker, we identified a novel EGFR alteration in lung cancer: EGFR exon 18-25 kinase domain duplication (EGFR-KDD). Through analysis of a larger cohort of tumor samples, we detected additional cases of EGFR-KDD in lung, brain, and other cancers. In vitro, EGFR-KDD is constitutively active, and computational modeling provides potential mechanistic support for its auto-activation. EGFR-KDD-transformed cells are sensitive to EGFR TKIs and, consistent with these in vitro findings, the index patient had a partial response to the EGFR TKI, afatinib. The patient eventually progressed, at which time, re-sequencing revealed an EGFR-dependent mechanism of acquired resistance to afatinib, thereby validating EGFR-KDD as a driver alteration and therapeutic target. PMID:26286086

  17. Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling

    Amorphous silica nanoparticles (SiNPs) have previously been shown to induce marked cytokine (interleukin-6; IL-6 and interleukin-8; CXCL8/IL-8) responses independently of particle uptake in human bronchial epithelial BEAS-2B cells. In this study the involvement of the mitogen-activated protein kinases (MAP-kinases), nuclear factor-kappa Β (NF-κΒ) and in particular tumour necrosis factor-α converting enzyme (TACE) and—epidermal growth factor receptor (EGFR) signalling pathways were examined in triggering of IL-6 and CXCL8 release after exposure to a 50 nm silica nanoparticle (Si50). Exposure to Si50 increased phosphorylation of NF-κΒ p65 and MAP-kinases p38 and JUN-N-terminal protein kinase pathways (JNK), but not extracellular signal regulated kinases (ERK). Inhibition of NF-κΒ and p38 reduced the cytokine responses to Si50, whereas neither JNK- nor ERK-inhibition exerted any significant effect on the responses to Si50. Increases in membrane-bound transforming growth factor-α (TGF-α) release and EGFR phosphorylation were also observed after Si50 exposure, and pre-treatment with inhibitors of these pathways reduced the release of IL-6 and CXCL8, but did not affect the Si50-induced phosphorylation of p38 and p65. In contrast, p38-inhibition partially reduced Si50-induced TGF-α release, while the p65-inhibition was without effect. Overall, our results indicate that Si50-induced IL-6 and CXCL8 responses in BEAS-2B cells were regulated through combined activation of several pathways, including NF-κΒ and p38/TACE/TGF-α/EGFR signalling. The study identifies critical, initial events in the triggering of pro-inflammatory responses by nanoparticles. - Highlights: • Silica nanoparticles induce IL-6 and CXCL8 via NFκB and MAPKinase p38 in BEAS-2B • Silica nanoparticles induce release of the EGF-receptor ligand TGF-α • TGF-α release contributes to the IL-6 and CXCL8 release • Phosphorylation of p38 is involved in release of TGF-α

  18. Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling

    Skuland, Tonje, E-mail: tonje.skuland@fhi.no; Øvrevik, Johan; Låg, Marit; Schwarze, Per; Refsnes, Magne

    2014-08-15

    Amorphous silica nanoparticles (SiNPs) have previously been shown to induce marked cytokine (interleukin-6; IL-6 and interleukin-8; CXCL8/IL-8) responses independently of particle uptake in human bronchial epithelial BEAS-2B cells. In this study the involvement of the mitogen-activated protein kinases (MAP-kinases), nuclear factor-kappa Β (NF-κΒ) and in particular tumour necrosis factor-α converting enzyme (TACE) and—epidermal growth factor receptor (EGFR) signalling pathways were examined in triggering of IL-6 and CXCL8 release after exposure to a 50 nm silica nanoparticle (Si50). Exposure to Si50 increased phosphorylation of NF-κΒ p65 and MAP-kinases p38 and JUN-N-terminal protein kinase pathways (JNK), but not extracellular signal regulated kinases (ERK). Inhibition of NF-κΒ and p38 reduced the cytokine responses to Si50, whereas neither JNK- nor ERK-inhibition exerted any significant effect on the responses to Si50. Increases in membrane-bound transforming growth factor-α (TGF-α) release and EGFR phosphorylation were also observed after Si50 exposure, and pre-treatment with inhibitors of these pathways reduced the release of IL-6 and CXCL8, but did not affect the Si50-induced phosphorylation of p38 and p65. In contrast, p38-inhibition partially reduced Si50-induced TGF-α release, while the p65-inhibition was without effect. Overall, our results indicate that Si50-induced IL-6 and CXCL8 responses in BEAS-2B cells were regulated through combined activation of several pathways, including NF-κΒ and p38/TACE/TGF-α/EGFR signalling. The study identifies critical, initial events in the triggering of pro-inflammatory responses by nanoparticles. - Highlights: • Silica nanoparticles induce IL-6 and CXCL8 via NFκB and MAPKinase p38 in BEAS-2B • Silica nanoparticles induce release of the EGF-receptor ligand TGF-α • TGF-α release contributes to the IL-6 and CXCL8 release • Phosphorylation of p38 is involved in release of TGF-α.

  19. Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study

    Several different gene expression signatures have been proposed to predict response to therapy and clinical outcome in lung adenocarcinoma. Herein, we investigate if elements of published gene sets can be reproduced in a small dataset, and how gene expression profiles based on limited sample size relate to clinical parameters including histopathological grade and EGFR protein expression. Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry. Using unsupervised clustering algorithms, the predominant gene expression signatures correlated with the histopathological grade but not with EGFR protein expression as detected by immunohistochemistry. In a supervised analysis, the signature of high grade tumors but not of EGFR overexpressing cases showed significant enrichment of gene sets reflecting MAPK activation and other potential signaling cascades downstream of EGFR. Out of four different previously published gene sets that had been linked to prognosis, three showed enrichment in the gene expression signature associated with favorable prognosis. In this dataset, histopathological tumor grades but not EGFR status were associated with dominant gene expression signatures and gene set enrichment reflecting oncogenic pathway activation, suggesting that high immunohistochemistry EGFR scores may not necessarily be linked to downstream effects that cause major changes in gene expression patterns. Published gene sets showed association with patient survival; however, the small sample size of this study limited the options for a comprehensive validation of previously reported prognostic gene expression signatures

  20. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling

    Britschgi, Adrian; Bill, Anke; Brinkhaus, Heike; Rothwell, Christopher; Clay, Ieuan; Duss, Stephan; Rebhan, Michael; Raman, Pichai; Guy, Chantale T.; Wetzel, Kristie; George, Elizabeth; Popa, M. Oana; Lilley, Sarah; Choudhury, Hedaythul; Gosling, Martin

    2013-01-01

    The calcium-activated chloride channel anoctamin 1 (ANO1) is located within the 11q13 amplicon, one of the most frequently amplified chromosomal regions in human cancer, but its functional role in tumorigenesis has remained unclear. The 11q13 region is amplified in ∼15% of breast cancers. Whether ANO1 is amplified in breast tumors, the extent to which gene amplification contributes to ANO1 overexpression, and whether overexpression of ANO1 is important for tumor maintenance have remained unkn...

  1. Nuclear EGFR as a molecular target in cancer

    The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell’s nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future

  2. Nuclear trafficking of EGFR by Vps34 represses Arf expression to promote lung tumor cell survival.

    Dayde, D; Guerard, M; Perron, P; Hatat, A-S; Barrial, C; Eymin, B; Gazzeri, S

    2016-07-28

    Epidermal growth factor receptor (EGFR) is a cell surface receptor that has an essential role in cell proliferation and survival, and overexpression of EGFR is a common feature of human cancers. In Non-small-cell lung cancer (NSCLC), activating mutations of EGFR have also been described. We recently showed that mutant EGFR-L858R inhibits the expression of the p14ARF tumor-suppressor protein to promote cell survival. In this study, we defined the molecular bases by which EGFR controls Arf expression. Using various lung tumor models, we showed that EGF stimulation inhibits Arf transcription by a mechanism involving the nuclear transport and recruitment of EGFR to the Arf promoter. We unraveled the vesicular trafficking protein Vps34 as a mediator of EGFR nuclear trafficking and showed that its neutralization prevents the accumulation of EGFR to the Arf promoter in response to ligand activation. Finally, in lung tumor cells that carry mutant EGFR-L858R, we demonstrated that inhibition of Vps34 using small interfering RNA restrains nuclear EGFR location and restores Arf expression leading to apoptosis. These findings identify the Arf tumor suppressor as a new transcriptional target of nuclear EGFR and highlight Vps34 as an important regulator of the nuclear EGFR/Arf survival pathway. As a whole, they provide a mechanistic explanation to the inverse correlation between nuclear expression of EGFR and overall survival in NSCLC patients. PMID:26686095

  3. DNA methylation down-regulates EGFR expression in chicken

    The epidermal growth factor receptor (EGFR), a growth-factor-receptor tyrosine kinase, was found up-regulated in numerous tumors, which provides a good target for cancer therapy. Although it was documented that oncoviruses are responsible for the activation of EGFR in tumors, the impact of Marek’s d...

  4. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  5. Dermatologic Toxicities from Monoclonal Antibodies and Tyrosine Kinase Inhibitors against EGFR: Pathophysiology and Management

    Shaad E. Abdullah; Missak Haigentz; Bilal Piperdi

    2012-01-01

    Epidermal growth factor receptor (EGFR) inhibition has now been well established as an effective treatment for various cancers. The EGFR belongs to the ErbB family of tyrosine kinase receptors which regulate tumor cell differentiation, survival and proliferation. Activation of EGFR drives tumorigenesis in lung, head and neck, colorectal and pancreatic cancers. Irrespective of the type of cancer being treated and the mechanism by which tumor EGFR drives tumorigenesis, the major side effect of ...

  6. Relationship between EGFR expression, copy number and mutation in lung adenocarcinomas

    This study was designed to investigate EGFR protein expression, EGFR copy number and EGFR mutations in lung adenocarcinomas, to explore the relationship of the three markers. EGFR status was analyzed in surgically resected lung adenocarcinoma samples from 133 Chinese patients by three methods: protein expression (n = 133) by standardized immunohistochemistry (IHC), gene copy number (n = 133) by fluorescence in situ hybridization (FISH), and mutation analysis using the Scorpion amplification refractory mutation system (ARMS) (n = 133). The results showed that 68.4% of the samples were positive by IHC, 42.1% were positive by FISH, and 63.9% contained activating kinase domain mutations. EGFR mutations were more frequent in non-smoking patients (p = 0.008), and EGFR mutations were associated with EGFR FISH positivity (p < 0.0001). When using 10% positivity and 2+ as cutoffs, EGFR protein expression was significantly correlated with EGFR FISH positivity (p = 0.012) and EGFR mutations (p = 0.008) after Bonferroni correction. EGFR protein expression, EGFR copy number and EGFR mutations were closely related to each other. Standard methods and interpretation criteria need to be established

  7. High EGFR_1 Inside-Out Activated Inflammation-Induced Motility through SLC2A1-CCNB2-HMMR-KIF11-NUSAP1-PRC1-UBE2C.

    Zhou, Huilei; Wang, Lin; Huang, Juxiang; Jiang, Minghu; Zhang, Xiaoyu; Zhang, Liyuan; Wang, Yangming; Jiang, Zhenfu; Zhang, Zhongjie

    2015-01-01

    48 different Pearson mutual-positive-correlation epidermal growth factor receptor (EGFR_1)-activatory molecular feedback, up- and down-stream network was constructed from 171 overlapping of 366 GRNInfer and 223 Pearson under EGFR_1 CC ≥0.25 in high lung adenocarcinoma compared with low human normal adjacent tissues. Our identified EGFR_1 inside-out upstream activated molecular network showed SLC2A1 (solute carrier family 2 (facilitated glucose transporter) member 1), CCNB2 (cyclin B2), HMMR (hyaluronan-mediated motility receptor (RHAMM)), KIF11 (kinesin family member 11), NUSAP1 (nucleolar and spindle associated protein 1), PRC1 (protein regulator of cytokinesis 1), UBE2C (ubiquitin-conjugating enzyme E2C) in high lung adenocarcinoma. EGFR_1 inside-out upstream activated terms network includes intracellular, membrane fraction, cytoplasm, plasma membrane, integral to membrane, basolateral plasma membrane, transmembrane transport, nucleus, cytosol, cell surface; T cell homeostasis, inflammation; microtubule cytoskeleton, embryonic development (sensu Mammalia), cell cycle, mitosis, thymus development, cell division, regulation of cell cycle, Contributed--cellular process--Hs cell cycle KEGG, cytokinesis, M phase, M phase of mitotic cell cycle, estrogen-responsive protein Efp controls cell cycle and breast tumors growth, cell motility, locomotion, locomotory behavior, neoplasm metastasis, spindle pole, spindle microtubule, microtubule motor activity, microtubule-based movement, mitotic spindle organization and biogenesis, mitotic centrosome separation, spindle pole body organization and biogenesis, microtubule-based process, microtubule, cytokinesis after mitosis, mitotic chromosome condensation, establishment of mitotic spindle localization, positive regulation of mitosis, mitotic spindle elongation, spindle organization and biogenesis, positive regulation of exit from mitosis, regulation of cell proliferation, positive regulation of cell proliferation based on

  8. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    Backer, Joseph M.

    2009-07-12

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need for information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for 1) rational patient stratification, 2) rapid monitoring of responses to therapy, and 3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg’s group at Stanford

  9. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need for information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for (1) rational patient stratification, (2) rapid monitoring of responses to therapy, and (3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg's group at Stanford

  10. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer.

    Schanzer, Juergen M; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  11. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors.

    Gao, Sizhi P; Chang, Qing; Mao, Ninghui; Daly, Laura A; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Red Brewer, Monica; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells' dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  12. A Novel Technique to Detect EGFR Mutations in Lung Cancer.

    Liu, Yuanbin; Lei, Ting; Liu, Zhiyu; Kuang, Yanbin; Lyu, Jianxin; Wang, Qi

    2016-01-01

    Epidermal growth factor receptor (EGFR) gene mutations occur in multiple human cancers; therefore, the detection of EGFR mutations could lead to early cancer diagnosis. This study describes a novel EGFR mutation detection technique. Compared to direct DNA sequencing detection methods, this method is based on allele-specific amplification (ASA), recombinase polymerase amplification (RPA), peptide nucleic acid (PNA), and SYBR Green I (SYBR), referred to as the AS-RPA-PNA-SYBR (ARPS) system. The principle of this technique is based on three continuous steps: ASA or ASA combined with PNA to prevent non-target sequence amplification (even single nucleotide polymorphisms, SNPs), the rapid amplification advantage of RPA, and appropriate SYBR Green I detection (the samples harboring EGFR mutations show a green signal). Using this method, the EGFR 19Del(2) mutation was detected in 5 min, while the EGFR L858R mutation was detected in 10 min. In this study, the detection of EGFR mutations in clinical samples using the ARPS system was compatible with that determined by polymerase chain reaction (PCR) and DNA sequencing methods. Thus, this newly developed methodology that uses the ARPS system with appropriate primer sets is a rapid, reliable, and practical way to assess EGFR mutations in clinical samples. PMID:27223277

  13. A Novel Technique to Detect EGFR Mutations in Lung Cancer

    Liu, Yuanbin; Lei, Ting; Liu, Zhiyu; Kuang, Yanbin; Lyu, Jianxin; Wang, Qi

    2016-01-01

    Epidermal growth factor receptor (EGFR) gene mutations occur in multiple human cancers; therefore, the detection of EGFR mutations could lead to early cancer diagnosis. This study describes a novel EGFR mutation detection technique. Compared to direct DNA sequencing detection methods, this method is based on allele-specific amplification (ASA), recombinase polymerase amplification (RPA), peptide nucleic acid (PNA), and SYBR Green I (SYBR), referred to as the AS-RPA-PNA-SYBR (ARPS) system. The principle of this technique is based on three continuous steps: ASA or ASA combined with PNA to prevent non-target sequence amplification (even single nucleotide polymorphisms, SNPs), the rapid amplification advantage of RPA, and appropriate SYBR Green I detection (the samples harboring EGFR mutations show a green signal). Using this method, the EGFR 19Del(2) mutation was detected in 5 min, while the EGFR L858R mutation was detected in 10 min. In this study, the detection of EGFR mutations in clinical samples using the ARPS system was compatible with that determined by polymerase chain reaction (PCR) and DNA sequencing methods. Thus, this newly developed methodology that uses the ARPS system with appropriate primer sets is a rapid, reliable, and practical way to assess EGFR mutations in clinical samples. PMID:27223277

  14. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop

    Pirker, Robert; Herth, Felix J F; Kerr, Keith M; Filipits, Martin; Taron, Miquel; Gandara, David; Hirsch, Fred R; Grunenwald, Dominique; Popper, Helmut; Smit, Egbert; Dietel, Manfred; Marchetti, Antonio; Manegold, Christian; Schirmacher, Peter; Thomas, Michael; Rosell, Rafael; Cappuzzo, Federico; Stahel, Rolf; de Stricker, Karin

    2010-01-01

    Activating somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have recently been characterized in a subset of patients with advanced non-small cell lung cancer (NSCLC). Patients harboring these mutations in their tumors show excellent response to EGFR...... tyrosine kinase inhibitors (EGFR-TKIs). The EGFR-TKI gefitinib has been approved in Europe for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of the EGFR TK. Because EGFR mutation testing is not yet well established across Europe, biomarker...

  15. A fully automated two-step synthesis of an {sup 18}F-labelled tyrosine kinase inhibitor for EGFR kinase activity imaging in tumors

    Kobus, D.; Giesen, Y.; Ullrich, R.; Backes, H. [Max Planck Institute for Neurological Research with Klaus-Joachim-Zuelch Laboratories of the Max Planck Society and the Faculty of Medicine of the University of Cologne, Cologne (Germany); Neumaier, B. [Max Planck Institute for Neurological Research with Klaus-Joachim-Zuelch Laboratories of the Max Planck Society and the Faculty of Medicine of the University of Cologne, Cologne (Germany)], E-mail: bernd.neumaier@nf.mpg.de

    2009-11-15

    Radiolabelled epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors potentially facilitate the assessment of EGFR overexpression in tumors. Since elaborate multi-step radiosyntheses are required for {sup 18}F-labelling of EGFR-specific anilinoquinazolines we report on the development of a two-step click labelling approach that was adapted to a fully automated synthesis module. 6-(4-N,N-Dimethylaminocrotonyl)amido-4-(3-chloro-4-fluoro)phenylamino-7-{l_brace}3- [4-(2-[{sup 18}F]fluoroethyl)-2,3,4-triazol-1-yl]propoxy{r_brace}quinazoline ([{sup 18}F]6) was synthesized via Huisgen 1,3-dipolar cycloaddition between 2-[{sup 18}F]fluoroethylazide ([{sup 18}F]4) and the alkyne modified anilinoquinazoline precursor 5. PET images of PC9 tumor xenograft using the novel biomarker showed promising results to visualize EGFR overexpression.

  16. A fully automated two-step synthesis of an 18F-labelled tyrosine kinase inhibitor for EGFR kinase activity imaging in tumors

    Radiolabelled epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors potentially facilitate the assessment of EGFR overexpression in tumors. Since elaborate multi-step radiosyntheses are required for 18F-labelling of EGFR-specific anilinoquinazolines we report on the development of a two-step click labelling approach that was adapted to a fully automated synthesis module. 6-(4-N,N-Dimethylaminocrotonyl)amido-4-(3-chloro-4-fluoro)phenylamino-7-{3- [4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]propoxy}quinazoline ([18F]6) was synthesized via Huisgen 1,3-dipolar cycloaddition between 2-[18F]fluoroethylazide ([18F]4) and the alkyne modified anilinoquinazoline precursor 5. PET images of PC9 tumor xenograft using the novel biomarker showed promising results to visualize EGFR overexpression.

  17. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks

    Receptor tyrosine kinases (RTKs) such as the epidermal growth factor receptor (EGFR) regulate cellular homeostatic processes. EGFR activates downstream signaling cascades that promote tumor cell survival, proliferation and migration. Dysregulation of EGFR signaling as a consequence of overexpression, amplification and mutation of the EGFR gene occurs frequently in several types of cancers and many become dependent on EGFR signaling to maintain their malignant phenotypes. Consequently, concerted efforts have been mounted to develop therapeutic agents and strategies to effectively inhibit EGFR. However, limited therapeutic benefits to cancer patients have been derived from EGFR-targeted therapies. A well-documented obstacle to improved patient survival is the presence of EGFR-inhibitor resistant tumor cell variants within heterogeneous tumor cell masses. Here, we summarize the mechanisms by which tumors resist EGFR-targeted therapies and highlight the emerging role of microRNAs (miRs) as downstream effector molecules utilized by EGFR to promote tumor initiation, progression and that play a role in resistance to EGFR inhibitors. We also examine evidence supporting the utility of miRs as predictors of response to targeted therapies and novel therapeutic agents to circumvent EGFR-inhibitor resistance mechanisms

  18. EGFR Expression in Gallbladder Carcinoma in North America

    Matthew Kaufman, Bhoomi Mehrotra, Sewanti Limaye, Sherrie White, Alexander Fuchs, Yehuda Lebowicz, Sandy Nissel-Horowitz, Adrienne Thomas

    2008-01-01

    Full Text Available BACKGROUND: Increased epidermal growth factor receptor (EGF receptor expression has been noted in various cancers and has become a useful target for therapeutic interventions. Small studies from Asia and Australia have demonstrated EGFR over-expression in gallbladder cancer. We sought to evaluate the expression of EGFR in a series of 16 gallbladder cancer patients from North America. METHODS: Using tumor registry data, we identified 16 patients diagnosed with gall bladder carcinoma at our medical center between the years of 1998 and 2005. We performed a retrospective review of these patients' charts, obtained cell blocks from pathology archives and stained for EGFR and Her2/neu. RESULTS: Fifteen of sixteen patients were noted to over-express EGFR. Three were determined 1+, nine were 2+ and three were 3+. Eight patients had poorly differentiated adenocarcinoma, six had moderately differentiated and two had well-differentiated tumors. In this small series, there was a trend toward shorter survival and more poorly differentiated tumors in patients with greater intensity of EGFR expression. One patient was EGFR negative but 3+ for erb-2/Her 2-neu expression. No patient co-expressed EGFR and Her-2-neu. Median survival of patients in this series was 17 months. CONCLUSION: In view of our observations confirming the over-expression of EGFR in our patient population in North America, and the recent success of EGFR targeted therapies in other solid tumors that over-express EGFR, it may now be appropriate to evaluate agents targeting this pathway either as single agents or in combination with standard chemotherapy.

  19. A high expression EGFR/cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening EGFR antagonists from Rhizoma Polygoni Cuspidati

    Meng Sun; Yan-min Zhang; Jie Zhang; Si-cen Wang; Lang-chong He

    2011-01-01

    The epidermal growth factor receptors (EGFRs) in some tumor cells are significant targets for drug discovery. In this work, we have developed an EGFR cell membrane chromatography and online high performance liquid chromatography/mass spectrometry system for screening active component from Rhizoma Polygoni Cuspidati. As a result, resveratrol from Rhizoma Polygoni Cuspidati was found to be the active component acting on EGFR like gefitinib. There was a good relationship between their inhibiting...

  20. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series

  1. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Guillaudeau, Angélique; Durand, Karine; Bessette, Barbara; Chaunavel, Alain; Pommepuy, Isabelle; Projetti, Fabrice; Robert, Sandrine; Caire, François; Rabinovitch-Chable, Hélène; Labrousse, François

    2012-01-01

    The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types. PMID:22623992

  2. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Angélique Guillaudeau

    Full Text Available The EGFR (epidermal growth factor receptor is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a, normal and tumor cells produce soluble EGFR isoforms (sEGFR that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2, 3 (v3 and 4 (v4 mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab and intracellular domain targeted antibody (ICD-Ab. EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade, histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS. PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.

  3. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  4. Nuclear EGFR contributes to acquired resistance to cetuximab.

    Li, C; Iida, M; Dunn, E F; Ghia, A J; Wheeler, D L

    2009-10-29

    Epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase involved in the etiology of several human cancers. Cetuximab is an EGFR-blocking antibody that has been approved for the treatment of patients with head and neck squamous cell carcinoma and metastatic colorectal cancer. Previous reports have shown that EGFR translocation to the nucleus is associated with cell proliferation. Here we investigated mechanisms of acquired resistance to cetuximab using a model derived from the non-small cell lung cancer line H226. We demonstrated that cetuximab-resistant cells overexpress HER family ligands including epidermal growth factor (EGF), amphiregulin, heparin-binding EGF and beta-cellulin. Overexpression of these ligands is associated with the nuclear translocation of the EGFR and this process was mediated by the Src family kinases (SFK). Treatment of cetuximab-resistant cells with the SFK inhibitor, dasatinib, resulted in loss of nuclear EGFR, increased membrane expression of the EGFR and resensitization to cetuximab. In addition, expression of a nuclear localization sequence-tagged EGFR in cetuximab-sensitive cells increased resistance to cetuximab both in vitro and in mouse xenografts. Collectively, these data suggest that nuclear expression of EGFR may be an important molecular determinant of resistance to cetuximab therapy and provides a rationale for investigating nuclear EGFR as a biomarker for cetuximab response. Further, these data suggest a rationale for the design of clinical trials that examine the value of treating patients with cetuximab-resistant tumors with inhibitors of SFKs in combination with cetuximab. PMID:19684613

  5. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    Highlights: ► APPL1 regulates the protein level of EGFR in response to EGF stimulation. ► Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. ► Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  6. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment

  7. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer

    Wang, Shuhang; Cang, Shundong; Liu, Delong

    2016-01-01

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are widely used in patients with non-small cell lung cancer (NSCLC). However, EGFR T790M mutation leads to resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation have been in active clinical development. These agents include osimertinib, rociletinib, HM61713, ASP8273, EGF816, and PF-06747775. Osimertinib and rociletinib have shown clinical efficacy in phase I/...

  8. EGFR: The Paradigm of an Oncogene-Driven Lung Cancer

    Riely, Gregory J.; Yu, Helena A.

    2015-01-01

    Somatic, activating mutations in Epidermal Growth Factor Receptor (EGFR) identify a significant minority of patients with non-small cell lung cancer (NSCLC). While these mutations are associated with an ~70% response rate to some EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, and afatinib), patients develop resistance (i.e. “acquired resistance”) after a median of 9–12 months. In patients with clinical acquired resistance, repeat biopsy of tumors has identified a number of relevant me...

  9. EGFR Tyrosine kinase regulates small conductance Ca2+-activated K+ (hSKCa1) channels expressed in HEK 293 cells

    Wu, W.; H. Sun; Deng, XL; Li, GR

    2013-01-01

    SKCa (small-conductance Ca(2+)-activated K(+)) channels are widely distributed in different tissues, including the brain, pancreatic islets and myocardium and play an important role in controlling electrical activity and cellular functions. However, intracellular signal modulation of SKCa channels is not fully understood. The present study was designed to investigate the potential regulation of hSKCa1 (human SKCa1) channels by PTKs (protein tyrosine kinases) in HEK (human embryonic kidney)-29...

  10. Ezrin Enhances EGFR Signaling and Modulates Erlotinib Sensitivity in Non–Small Cell Lung Cancer Cells

    Yasemin Saygideğer-Kont

    2016-02-01

    Full Text Available Ezrin is a scaffolding protein that is involved in oncogenesis by linking cytoskeletal and membrane proteins. Ezrin interacts with epidermal growth factor receptor (EGFR in the cell membrane, but little is known about the effects of this interaction on EGFR signaling pathway. In this study, we established the biological and functional significance of ezrin-EGFR interaction in non–small cell lung cancer (NSCLC cells. Endogenous ezrin and EGRF interaction was confirmed by co-immunoprecipitation and immunofluorescent staining. When expression of ezrin was inhibited, EGFR activity and phosphorylation levels of downstream signaling pathway proteins ERK and STAT3 were decreased. Cell fractionation experiments revealed that nuclear EGFR was significantly diminished in ezrin-knockdown cells. Consequently, mRNA levels of EGFR target genes AURKA, COX-2, cyclin D1, and iNOS were decreased in ezrin-depleted cells. A small molecule inhibitor of ezrin, NSC305787, reduced EGF-induced phosphorylation of EGFR and downstream target proteins, EGFR nuclear translocation, and mRNA levels of nuclear EGFR target genes similar to ezrin suppression. NSC305787 showed synergism with erlotinib in wild-type EGFR-expressing NSCLC cells, whereas no synergy was observed in EGFR-null cells. Phosphorylation of ezrin on Y146 was found as an enhancer of ezrin-EGFR interaction and required for increased proliferation, colony formation, and drug resistance to erlotinib. These findings suggest that ezrin-EGFR interaction augments oncogenic functions of EGFR and that targeting ezrin may provide a potential novel approach to overcome erlotinib resistance in NSCLC cells.

  11. Impact of EGFR mutation detection methods on the efficacy of erlotinib in patients with advanced EGFR-wild type lung adenocarcinoma.

    Jeng-Sen Tseng

    Full Text Available INTRODUCTION: Methods used for epidermal growth factor receptor (EGFR mutation testing vary widely. The impact of detection methods on the rates of response to EGFR-tyrosine kinase inhibitors (TKIs in EGFR-wild type (wt lung adenocarcinoma patients is unknown. METHODS: We recruited the Group-I patients to evaluate the efficacy of erlotinib in patients with EGFR-wt lung adenocarcinoma by either direct sequencing (DS or mutant type-specific sensitive (MtS methods in six medical centers in Taiwan. Cross recheck of EGFR mutations was performed in patients who achieved objective response to erlotinib and had adequate specimens. The independent Group-II lung adenocarcinoma patients whose EGFR mutation status determined by DS were recruited to evaluate the potential limitations of three MtS methods. RESULTS: In Group-I analysis, 38 of 261 EGFR-wt patients (14.6% achieved partial response to erlotinib treatment. Nineteen patients (50.0% had adequate specimens for cross recheck of EGFR mutations and 10 of them (52.6% had changes in EGFR mutation status, 5 in 10 by DS and 5 in 9 by MtS methods originally. In Group-II analysis, 598 of 996 lung adenocarcinoma patients (60.0% had detectable EGFR mutations. The accuracy rates of the three MtS methods, MALDI-TOF MS, Scorpions ARMS and Cobas, were 87.8%, 86.8% and 85.8%, respectively. CONCLUSIONS: A significant portion of the erlotinib responses in EGFR-wt lung adenocarcinoma patients were related to the limitations of detection methods, not only DS but also MtS methods with similar percentages. Prospective studies are needed to define the proper strategy for EGFR mutation testing.

  12. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  13. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data.

    Jorge, S E D C; Kobayashi, S S; Costa, D B

    2014-11-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC. PMID:25296354

  14. Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer.

    Tan, Chee-Seng; Gilligan, David; Pacey, Simon

    2015-09-01

    Discovery of activating mutations in EGFR and their use as predictive biomarkers to tailor patient therapy with EGFR tyrosine kinase inhibitors (TKIs) has revolutionised treatment of patients with advanced EGFR-mutant non-small-cell lung cancer (NSCLC). At present, first-line treatment with EGFR TKIs (gefitinib, erlotinib, and afatinib) has been approved for patients harbouring exon 19 deletions or exon 21 (Leu858Arg) substitution EGFR mutations. These agents improve response rates, time to progression, and overall survival. Unfortunately, patients develop resistance, limiting patient benefit and posing a challenge to oncologists. Optimum treatment after progression is not clearly defined. A more detailed understanding of the biology of EGFR-mutant NSCLC and the mechanisms of resistance to targeted therapy mean that an era of treatment approaches based on rationally developed drugs or therapeutic strategies has begun. Combination approaches-eg, dual EGFR blockade-to overcome resistance have been trialled and seem to be promising but are potentially limited by toxicity. Third-generation EGFR-mutant-selective TKIs, such as AZD9291 or rociletininb, which target Thr790Met-mutant tumours, the most common mechanism of EGFR TKI resistance, have entered clinical trials, and exciting, albeit preliminary, efficacy data have been reported. In this Review, we summarise the scientific literature and evidence on therapy options after EGFR TKI treatment for patients with NSCLC, aiming to provide a guide to oncologists, and consider how to maximise therapeutic advances in outcomes in this rapidly advancing area. PMID:26370354

  15. Epidermal growth factor receptor (EGFR mutations in lung cancer: preclinical and clinical data

    S.E.D.C. Jorge

    2014-11-01

    Full Text Available Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC, the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs. Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686 and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  16. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  17. Targeting EGFR for Treatment of Glioblastoma: Molecular Basis to Overcome Resistance

    Taylor, Tiffany E.; Furnari, Frank B.; Cavenee, Webster K.

    2012-01-01

    Glioblastoma (glioblastoma multiforme; GBM; WHO Grade IV) accounts for the majority of primary malignant brain tumors in adults. Amplification and mutation of the epidermal growth factor receptor (EGFR) gene represent signature genetic abnormalities encountered in GBM. A range of potential therapies that target EGFR or its mutant constitutively active form, ΔEGFR, including tyrosine kinase inhibitors (TKIs), monoclonal antibodies, vaccines, and RNA-based agents, are currently in development o...

  18. Optimizing the sequence of anti-EGFR targeted therapy in EGFR-mutant lung cancer

    Meador, Catherine B.; Jin, Hailing; de Stanchina, Elisa; Nebhan, Caroline A.; Pirazzoli, Valentina; Wang, Lu; Lu, Pengcheng; Vuong, Huy; Hutchinson, Katherine E.; Jia, Peilin; Chen, Xi; Eisenberg, Rosana; Ladanyi, Marc; Politi, Katerina; Zhao, Zhongming

    2014-01-01

    Metastatic EGFR-mutant lung cancers are sensitive to the first- and second- generation EGFR tyrosine kinase inhibitors (TKIs), gefitinib, erlotinib, and afatinib, but resistance develops. Acquired resistance (AR) to gefitinib or erlotinib occurs most commonly (>50%) via the emergence of a second-site EGFR mutation, T790M. Two strategies to overcome T790M-mediated resistance are dual inhibition of EGFR with afatinib plus the anti-EGFR antibody, cetuximab (A+C), or mutant-specific EGFR inhibiti...

  19. Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study

    Passlick Bernward

    2010-03-01

    Full Text Available Abstract Background Several different gene expression signatures have been proposed to predict response to therapy and clinical outcome in lung adenocarcinoma. Herein, we investigate if elements of published gene sets can be reproduced in a small dataset, and how gene expression profiles based on limited sample size relate to clinical parameters including histopathological grade and EGFR protein expression. Methods Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry. Results Using unsupervised clustering algorithms, the predominant gene expression signatures correlated with the histopathological grade but not with EGFR protein expression as detected by immunohistochemistry. In a supervised analysis, the signature of high grade tumors but not of EGFR overexpressing cases showed significant enrichment of gene sets reflecting MAPK activation and other potential signaling cascades downstream of EGFR. Out of four different previously published gene sets that had been linked to prognosis, three showed enrichment in the gene expression signature associated with favorable prognosis. Conclusions In this dataset, histopathological tumor grades but not EGFR status were associated with dominant gene expression signatures and gene set enrichment reflecting oncogenic pathway activation, suggesting that high immunohistochemistry EGFR scores may not necessarily be linked to downstream effects that cause major changes in gene expression patterns. Published gene sets showed association with patient survival; however, the small sample size of this study limited the options for a comprehensive validation of previously reported prognostic gene expression signatures.

  20. p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of EGFR in human lung cancer cells

    Park, Shin-Hyung; Seong, Myeong-A; Lee, Ho-Young

    2016-01-01

    Paclitaxel (PTX) is a chemotherapeutic agent that is used to treat a variety of cancers, including non-small cell lung cancer (NSCLC). However, the emergence of drug resistance limits the utility of PTX. This study determined the signaling pathway that contributes to PTX resistance. We first established PTX resistant cell lines (H460/R and 226B/R) using a dose-escalating maintenance of PTX. We found that p38 MAPK and epidermal growth factor receptor (EGFR) were constitutively activated in these cell lines. The inhibition of p38 MAPK activity by SB203580 treatment or the transfection of dominant-negative p38 MAPK sensitized both cell lines to PTX treatment. Erlotinib, an EGFR inhibitor, also increased PTX-induced apoptosis in PTX resistant cells, which suggests a role for p38 MAPK and EGFR in the development of PTX resistance. We demonstrated that p38 MAPK enhanced EGFR expression via the induction of the rapid degradation of mouse double-minute 2 homolog (MDM2) and the consequent stabilization of p53, a transcription factor of EGFR. These results suggest for the first time that the p38 MAPK/p53/EGFR axis is crucial for the facilitation of PTX resistance in NSCLCs. We also propose a mechanism for the role of the tumor-suppressor p53 in drug resistance. These results provide a foundation for the future development of potential therapeutic strategies to regulate the p38 MAPK/p53/EGFR pathway for the treatment of lung cancer patients with PTX resistance. PMID:26799187

  1. The Potential Value of EGFR and P53 Immunostaining in Tumors of the Urinary Bladder

    Ibrahim N

    2009-01-01

    Full Text Available The expression of EGFR and p53 has not been adequately studied as a prognostic tool in urinary bladder tumors. We analyzed 74 bladder cancer samples from Egypt for EGFR and p53 expression using immunohistochemistry. The tumors were of different histological types, grades and clinical stages, and with established lymph node status. Almost 61% of the tumors showed positive membranous EGFR expression and 74.3% had positive nuclear staining of p53. Analysis of correlation of the IHC staining with clinical variables showed a significant correlation only between EGFR expression and histological type (p=0.002, ANOVA, in that the expression was higher in squamous cell carcinomas than in other histological types. There were no significant correlations between p53 or EGFR with the other clinicopathological variables, including age, sex, staging, grading, and lymph node status. Further studies are needed to determine if EGFR and p53 might be used as prognostic tools in bladder cancer.

  2. The Next Wave of EGFR Tyrosine Kinase Inhibitors Enter the Clinic.

    Politi, Katerina; Ayeni, Deborah; Lynch, Thomas

    2015-06-01

    The T790M mutation in EGFR accounts for approximately half of all lung cancer cases with acquired resistance to the current clinical EGFR tyrosine kinase inhibitors. In tyrosine kinase inhibitor-resistant lung tumors, rociletinib and AZD9291 are highly active when T790M is present and modestly active when T790M is absent. PMID:26058074

  3. Advances in the management of acquired resistance to EGFR-TKI in non-small cell lung cancer

    Fei Zhou; Caicun Zhou

    2015-01-01

    Drugs that specifical y target the tyrosine kinase domain of epidermal growth factor receptor (EGFR), such as erlotinib or gefitinib, have exhibited striking ef icacy in non-smal cel lung cancer (NSCLC) patients har-boring activating EGFR mutations. However, acquired resistance inevitably develops and remains a serious barrier for the successful management of patients with this disease. Multiple mechanisms are reportedly involved in the process of acquired resistance, which provide new insights into the management of EGFR-tyrosine kinase inhibitor (EGFR-TKI) resistance. Here, we provide an overview of the emerging treatment approaches for patients with EGFR-TKI resistance.

  4. Maintenance of EGFR and EGFRvIII expressions in an in vivo and in vitro model of human glioblastoma multiforme

    Stockhausen, Marie-Thérése; Broholm, Helle; Villingshøj, Mette; Kirchhoff, Maria; Gerdes, Tommy; Kristoffersen, Karina; Kosteljanetz, Michael; Spang-Thomsen, Mogens; Poulsen, Hans Skovgaard

    2011-01-01

    Glioblastoma multiforme (GBM) is the most common, and most aggressive primary brain tumor among adults. A vast majority of the tumors express high levels of the epidermal growth factor receptor (EGFR) as a consequence of gene amplification. Furthermore, gene amplification is often associated with...... mutation of EGFR, and the constitutive activated deletion variant EGFRvIII is the most common EGFR mutation found in GBM. Activated EGFR signaling, through overexpression and/or mutation, is involved in increased tumorigenic potential. As such, EGFR is an attractive target for GBM therapy. However......, clinical studies with EGFR inhibitors have shown inconsistent results, and as such, further knowledge regarding the role of EGFR and EGFRvIII in GBM is needed. For this, an appropriate in vivo/in vitro tumor model is required. Here, we report the establishment of an experimental GBM model in which the...

  5. Changes in sebum levels and the development of acneiform rash in patients with non–small cell lung cancer after treatment with EGFR inhibitors

    Nakahara T

    2015-01-01

    Full Text Available Takeshi Nakahara,1,2 Yoichi Moroi,2 Koichi Takayama,3 Eriko Itoh,1,2 Makiko Kido-Nakahara,2 Yoichi Nakanishi,3 Masutaka Furue2 1Division of Skin Surface Sensing, 2Department of Dermatology, 3Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan Background: It has recently been shown that patients treated with epidermal growth factor receptor (EGFR inhibitors often develop various cutaneous adverse events. While the pathogenesis underlying these events remains unclear, the relationship between skin toxicity induced by EGFR inhibitors and the sebaceous glands that express EGFR has been previously reported. Objectives: The primary aim of this study was to determine the relationship between cutaneous sebum levels and acneiform rash, a typical skin toxicity of EGFR inhibitors, by measuring the sebum levels before and after EGFR inhibitor treatment. Methods: Eight patients diagnosed with non–small cell lung cancer (NSCLC (three men and five women with an average age of 69.3 years who were initiated on treatment with EGFR inhibitors (either gefitinib [Iressa®] or erlotinib [Tarceva®] were enrolled. Using a Sebumeter®, sebum levels in the face, chest, and back of each patient were measured before and after EGFR inhibitor treatment. The development of acneiform rash in each skin region was also assessed. Results: Changes in sebum level along with the development of an acneiform rash were observed after patients were started on EGFR inhibitor treatment. Patients who developed an EGFR inhibitor–induced acneiform rash tended to have higher pretreatment sebum levels (baseline than did patients who did not experience an acneiform rash. At each time point measurement, sebum levels were found to be significantly higher in patients who had developed an acneiform rash at that time. Patients who developed rash during treatment showed greater differences in sebum level compared with

  6. EGFR tyrosine kinase inhibitors versus cranial radiation therapy for EGFR mutant non-small cell lung cancer with brain metastases: A systematic review and meta-analysis

    Background and purpose: EGFR TKIs alone have demonstrated activity against intracranial disease in EGFR mutant non-small cell lung cancer (NSCLC). This study aimed to determine if upfront cranial radiotherapy improves intracranial disease control and survival outcomes in EGFR mutant NSCLC with brain metastases relative to TKIs alone. Materials and methods: We searched MEDLINE and various conference proceedings from 2008 to July 2014 for eligible studies where patients received upfront cranial radiotherapy or TKIs alone. Outcomes of interest were overall intracranial disease response rate (ORR), four-month intracranial disease progression-free survival (PFS), two-year overall survival (OS) and neurological adverse events (AE). We used random effects models to pool outcomes across studies and compared them using interaction tests. Results: We found 12 non-comparative observational studies (n = 363) with severe methodological limitations. Upfront cranial radiotherapy results in similar intracranial disease ORR (relative risk (RR) 0.93, 95% confidence interval (CI) 0.82–1.06; interaction p value (p) = 0.53), improved four-month intracranial disease PFS (RR 1.06, 95% CI 1.00–1.12; p = 0.03), improved two-year OS (RR 1.33, 95% CI 1.00–1.77; p = 0.05) but caused more neurological AEs than TKIs alone. Conclusion: There is evidence, albeit of low quality, that upfront cranial radiotherapy may improve intracranial disease control and survival outcomes compared with TKI alone

  7. Activity determination of 59Fe

    Iron-59 was measured in three commercial and two custom-built liquid scintillation counters. The counting efficiencies were determined using CIEMAT/NIST efficiency tracing and the triple-to-double coincidence ratio (TDCR) method, respectively. The efficiency computation for the TDCR method was realized by means of the MICELLE2 program, applying a stochastic model for the computation of electron emission spectra. The program was extended to make calculations of spectra originating from complex decay schemes possible. In addition, a new parameterization of electron stopping powers for 10 commercial liquid scintillation cocktails was included in the software. The activities determined with the two methods were in very good agreement; the relative standard uncertainty of the combined result was found to be 0.16%. It was used to calibrate a 4π ionization chamber at PTB for future calibrations of this isotope which is used for investigations of iron metabolism. A standardized solution was submitted to the Bureau International des Poids et Mesures (BIPM) to be measured in the ionization chambers of the International Reference System (SIR) for comparison purposes. The liquid scintillation samples were also measured in a new portable TDCR system with three channel photomultipliers. Although this system has a much lower counting efficiency, the activity was in satisfactory agreement with the conventional TDCR system. The usage of the portable TDCR system, thus, provides an important test of the free parameter model. - Highlights: • Iron-59 was measured by means of liquid scintillation counters. • CIEMAT/NIST efficiency tracing and the TDCR method were applied. • The models were extended for complex decay schemes. • The relative standard uncertainty was found to be 0.16%

  8. Effect of the BRCA1-SIRT1-EGFR axis on cisplatin sensitivity in ovarian cancer

    Li, Da; Wu, Qi-Jun; Bi, Fang-Fang; Chen, Si-Lei; Zhou, Yi-Ming; Zhao, Yue; Yang, Qing

    2016-01-01

    There is accumulating evidence that breast cancer 1 (BRCA1), sirtuin 1 (SIRT1), and epidermal growth factor receptor (EGFR) help to modulate cisplatin cytotoxicity. The role of dynamic crosstalk among BRCA1, SIRT1, and EGFR in cisplatin sensitivity remains largely unknown. We found that BRCA1, SIRT1, and EGFR levels were increased in cisplatin-resistant ovarian cancers compared with those in cisplatin-sensitive ovarian cancers. Hypomethylation in the BRCA1 promoter was associated with BRCA1 activation, significantly elevated SIRT1 levels, decreased nicotinamide adenine dinucleotide (NAD)-mediated SIRT1 activity, and decreased EGFR levels. Treatment with 5 and 10 μg/ml cisplatin induced a gradual increase in BRCA1 and SIRT1 levels and a gradual decrease in NAD levels and NAD-mediated SIRT1 activity, whereas EGFR levels were increased or decreased by treatment with 5 or 10 μg/ml cisplatin, respectively. The overexpression of SIRT1 or the enhancement of SIRT1 activity synergistically enhanced the BRCA1-mediated effects on EGFR transcription. In contrast, the knockdown of SIRT1 or the inhibition of SIRT1 activity inhibited the BRCA1-mediated effects on EGFR transcription. BRCA1 regulates EGFR through a BRCA1-mediated balance between SIRT1 expression and activity. Those results improve our understanding of the basic molecular mechanism underlying BRCA1-related cisplatin resistance in ovarian cancer.

  9. Prolyl isomerase Pin1 promotes survival in EGFR-mutant lung adenocarcinoma cells with an epithelial-mesenchymal transition phenotype.

    Sakuma, Yuji; Nishikiori, Hirotaka; Hirai, Sachie; Yamaguchi, Miki; Yamada, Gen; Watanabe, Atsushi; Hasegawa, Tadashi; Kojima, Takashi; Niki, Toshiro; Takahashi, Hiroki

    2016-04-01

    The secondary epidermal growth factor receptor (EGFR) T790M mutation is the most prominent mechanism that confers resistance to first- or second-generation EGFR tyrosine kinase inhibitors (TKIs) in lung cancer treatment. Although third-generation EGFR TKIs can suppress the kinase activity of T790M-positive EGFR, they still cannot eradicate EGFR-mutated cancer cells. We previously reported that a subpopulation of EGFR-mutant lung adenocarcinomas depends on enhanced autophagy, instead of EGFR, for survival, and in this study we explore another mechanism that contributes to TKI resistance. We demonstrate here that an EGFR-mutant lung adenocarcinoma cell line, H1975 (L858R+T790M), has a subset of cells that exhibits an epithelial-mesenchymal transition (EMT) phenotype and can thrive in the presence of third-generation EGFR TKIs. These cells depend on not only autophagy but also on the isomerase Pin1 for survival in vitro, unlike their parental cells. The Pin1 protein was expressed in an EGFR-mutant lung cancer tissue that has undergone partial EMT and acquired resistance to EGFR TKIs, but not its primary tumor. These findings suggest that inhibition of Pin1 activity can be a novel strategy in lung cancer treatment. PMID:26752745

  10. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  11. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  12. Combination of afatinib with cetuximab in patients with EGFR-mutant non-small-cell lung cancer resistant to EGFR inhibitors.

    Ribeiro Gomes, Jéssica; Cruz, Marcelo Rocha S

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) have shown effectiveness for advanced non-small-cell lung cancer (NSCLC) with activating mutations in the EGFR gene. However, resistance to the EGFR TKIs develops mostly secondary to T790M mutation in exon 20. The use of afatinib associated with cetuximab represents a new possibility of therapy following progression on gefitinib or erlotinib. We present two patients who acquired resistance to first-generation TKI and who underwent combination treatment with afatinib plus cetuximab as third-line therapy. Both patients presented partial response, and the time duration of disease control was 8 months and 10 months. The combined use of afatinib plus cetuximab emerges as a new possibility for the treatment of patients with advanced NSCLC harboring mutated EGFR after progression on first-generation EGFR TKIs with consequently acquired resistance to TKIs. Further studies are necessary to consolidate the data. PMID:26056478

  13. EGFR: The Paradigm of an Oncogene-Driven Lung Cancer.

    Riely, Gregory J; Yu, Helena A

    2015-05-15

    Somatic, activating mutations in EGFR identify a significant minority of patients with non-small cell lung cancer (NSCLC). Although these mutations are associated with an approximately 70% response rate to some EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, and afatinib), patients develop resistance (i.e., "acquired resistance") after a median of 9 to 12 months. In patients with clinical acquired resistance, repeat biopsy of tumors has identified a number of relevant mechanisms of resistance, but by far the most frequent event is the acquisition of EGFR T790M, a mutation in the "gatekeeper" residue that confers resistance to gefitinib, erlotinib, and afatinib. This emphasizes the critical dependence upon EGFR signaling for some tumors, a property that has been exploited therapeutically. Dual EGFR blockade using afatinib and cetuximab led to a 29% radiographic response rate. More recently, drugs that target EGFR T790M (e.g., rociletinib, AZD9291, and others) have entered clinical trials, with impressive results observed in phase I clinical trials. The development of these newer drugs, with efficacy after resistance to first-line EGFR tyrosine kinase inhibitor, has led to exploration of these strategies in multiple disease settings: at resistance, in the first line, and in adjuvant treatment of those with completely resected early-stage disease who would otherwise die of recurrent/metastatic disease. This example of translational research that identifies mechanisms of resistance to first-generation drugs, and then targets those mechanisms yielding clinical benefit, is a paradigm for how targeted therapies can be developed. PMID:25979928

  14. Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid [4-(phenylamino)-quinazoline-6-yl]-amides: potential PET bioprobes for molecular imaging of EGFR-positive tumors

    We have previously reported of labeled reversible and irreversible EGFR inhibitors, such as 4-(3,4-dichloro-6-fluoroanilino)-6,7-dimethoxyquinazoline (ML01) and 6-acrylamido-4-(3,4-dichloro-6-fluoroanilino)quinazoline (ML03), to be suboptimal as imaging agents. On the basis of these studies, a new generation of novel, more chemically stable irreversible inhibitors was labeled with carbon-11 as potential positron emission tomography (PET) biomarkers for molecular imaging of epidermal growth factor receptor (EGFR)-positive tumors. In these new labeled, irreversible inhibitors the acryl-amide group at the 6-position of the quinazoline ring was replaced with a 4-dimethylamino-but-2-enoic amide. The nonlabeled compounds were evaluated in vitro to determine their EGFR autophosphorylation IC50 values. The IC50 values indicated that these new irreversible compounds possess similar potencies towards the EGFR, as the parent compound, ML03. These compounds were labeled with carbon-11 at the dimethylamine moiety, using the well known labeling reagent C-11 MeI. The labeling procedure was automated using a commercial module. The final products were obtained with 10% decay corrected radiochemical yield, 99% radiochemical purity, 96% chemical purity, and a high specific activity of 2.7 Ci/μmol EOB. The high potency of these new labeled bioprobes towards the EGFR establishes their potential to serve as PET agents for molecular imaging of EGFR-positive tumors

  15. Radiation Response Modulation of GW572016 (EGFR/HER2 Dual Tyrosine Kinase Inhibitor) in Human Breast Cancer Xenografts

    Kim, Yeon Sil; Roh, Kwang Won; Chae, Soo Min; Yoon, Sei Chul; Jang, Hong Seok; Chung, Su Mi [The Catholic University of Korea, College of Medicine, Seoul (Korea, Republic of); Mun, Seong Kwon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2007-12-15

    Purpose: We examined the effect of the dual EGFR/HER2 tyrosine kinase inhibitor, GW572016, on EGFR/HER2 receptor phosphorylation, inhibition of downstream signaling and radiosensitization in either an EGFR or HER2 overexpressing human breast cancer xenograft. Materials and Methods: We established SCID mice xenografts from 4 human breast cancer cell line that overexpressed EGFR or HER 2 (SUM 102, SUM 149, SUM 185, SUM 225). Two series of xenografts were established. One series was established for determining inhibition of the EGFR/HER2 receptor and downstream signaling activities by GW572016. The other series was established for determining the radiosensitization effect of GW572016. Inhibition of the receptor and downstream signaling proteins were measured by the use of immunoprecipitation and Western blotting. For determining the in vivo radiosensitization effect of GW572016, we compared tumor growth delay curves in the following four treatment arms: a) control; b) GW572016 alone; c) radiotherapy (RT) alone; d) GW572016 and RT. Results: GW572016 inhibited EGFR, HER2 receptor phosphorylation in SUM 149 and SUM 185 xenografts. In addition, the p44/42 MAPK (ERK 1/2) downstream signaling pathway was inactivated by GW572016 in the SUM 185 xenograft. In the SUM 225 xenograft, we could not observe inhibition of HER2 receptor phosphorylation by GW572016; both p44/42 MAPK (Erk1/2) and Akt downstream signal protein phosphorylation were inhibited by GW572016. GW572016 inhibited growth of the tumor xenograft of SUM 149 and SUM 185. The combination of GW572016 and RT enhanced growth inhibition greater than that with GW572016 alone or with RT alone in the SUM 149 xenograft. GW572016 appears to act as an in vivo radiosensitizer. Conclusion: GW572016 inhibited EGFR/HER2 receptor phosphorylation and downstream signaling pathway proteins. GW572016 modestly inhibited the growth of tumor in the SUM 185 xenograft and showed radiosensitization in the SUM 149 xenograft. Our results

  16. Effect of EGFR-TKI retreatment following chemotherapy for advanced non-small cell lung cancer patients who underwent EGFR-TKI

    Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR)-activating mutations have higher response rate and more prolonged survival following treatment with single-agent EGFR tyrosine kinase inhibitor (EGFR-TKI) compared with patients with wild-type EGFR. However, all patients treated with reversible inhibitors develop acquired resistance over time. The mechanisms of resistance are complicated. The lack of established therapeutic options for patients after a failed EGFR-TKI treatment poses a great challenge to physicians in managing this group of lung cancer patients. This study evaluates the influence of EGFR-TKI retreatment following chemotherapy after failure of initial EGFR-TKI within at least 6 months on NSCLC patients. The data of 27 patients who experienced treatment failure from their initial use of EGFR-TKI within at least 6 months were analyzed. After chemotherapy, the patients were retreated with EGFR-TKI (gefitinib 250 mg qd or erlotinib 150 mg qd), and the tumor progression was observed. The patients were assessed for adverse events and response to therapy. Targeted tumor lesions were assessed with CT scan. Of the 27 patients who received EGFR-TKI retreatment, 1 (3.7%) patient was observed in complete response (CR), 8 (29.6%) patients in partial response (PR), 14 (51.9%) patients in stable disease (SD), and 4 (14.8%) patients in progressive disease (PD). The disease control rate (DCR) was 85.2% (95% CI: 62%-94%). The median progression-free survival (mPFS) was 6 months (95% CI: 1-29). Of the 13 patients who received the same EGFR-TKI, 1 patient in CR, 3 patients in PR, 8 patients in SD, and 2 patients in PD were observed. The DCR was 84.6%, and the mPFS was 5 months. Of the 14 patients who received another EGFR-TKI, no patient in CR, 6 patients in PR, 6 patients in SD, and 2 patients in PD were observed. The DCR was 85.7%, and the mPFS was 9.5 months. Significant difference was found between the two groups in PFS but not

  17. EGFR Inhibition Blocks Palmitic Acid-induced inflammation in cardiomyocytes and Prevents Hyperlipidemia-induced Cardiac Injury in Mice.

    Li, Weixin; Fang, Qilu; Zhong, Peng; Chen, Lingfeng; Wang, Lintao; Zhang, Yali; Wang, Jun; Li, Xiaokun; Wang, Yi; Wang, Jingying; Liang, Guang

    2016-01-01

    Obesity is often associated with increased risk of cardiovascular diseases. Previous studies suggest that epidermal growth factor receptor (EGFR) antagonism may be effective for the treatment of angiotensin II-induced cardiac hypertrophy and diabetic cardiomyopathy. This study was performed to demonstrate if EGFR plays a role in the pathogenesis of hyperlipidemia/obesity-related cardiac injuries. The in vivo studies using both wild type (WT) and apolipoprotein E (ApoE) knockout mice fed with high fat diet (HFD) showed the beneficial effects of small-molecule EGFR inhibitors, AG1478 and 542, against obesity-induced myocardial injury. Administration of AG1478 and 542 significantly reduced myocardial inflammation, fibrosis, apoptosis, and dysfunction in both two obese mouse models. In vitro, EGFR signaling was blocked by either siRNA silencing or small-molecule EGFR inhibitors in palmitic acid (PA)-stimulated cardiomyocytes. EGFR inhibition attenuated PA-induced inflammatory response and apoptosis in H9C2 cells. Furthermore, we found that PA-induced EGFR activation was mediated by the upstream TLR4 and c-Src. This study has confirmed the detrimental effect of EGFR activation in the pathogenesis of obesity-induced cardiac inflammatory injuries in experimental mice, and has demonstrated the TLR4/c-Src-mediated mechanisms for PA-induced EGFR activation. Our data suggest that EGFR may be a therapeutic target for obesity-related cardiovascular diseases. PMID:27087279

  18. EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression

    Stobart, Christopher C.; Hotard, Anne L.; Villenave, Remi; Meng, Jia; Pretto, Carla D.; Shields, Michael D.; Nguyen, Minh Trang; Todd, Sean O.; Chi, Michael H.; Hammonds, Jason; Krumm, Stefanie A.; Spearman, Paul; Plemper, Richard K.; Sakamoto, Kaori; Peebles, R. Stokes; Power, Ultan F.; Moore, Martin L.

    2016-01-01

    Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2–20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2–20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2–20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2–20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2–20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease. PMID:27152417

  19. Synthesis of p-O-Alkyl Salicylanilide Derivatives as Novel EGFR Inhibitors.

    Zhang, Li; Hou, Lin; Sun, Wenyan; Yu, Zidong; Wang, Jibo; Gao, Hua; Yang, Guiming

    2016-02-01

    Preclinical Research Epidermal growth factor receptor (EGFR), a validated target for anticancer drugs, plays a critical role in tumorigenesis and tumor development. A series of p-O-alkyl salicylanilide derivatives were designed and synthesized as novel EGFR inhibitors using a salicylic acid scaffold. A simulated six-membered ring strategy formed through intramolecular hydrogen bonds was employed to mimic the planar quinazoline of the EGFR antagonist, gefitinib. The derived compounds with hydroxyl at the ortho position were more potent than ones with methoxyl group. In particular, compounds 5d and 5b displayed significant EGFR inhibitory (IC50 values = 0.30 and 0.45 μM, respectively) activity as well as potent antiproliferative activity in A431 and HCT-116 tumor cells. These salicylanilides could be considered as promising lead compounds for developing novel EGFR inhibitors. PMID:26763193

  20. AZD9291 in EGFR-mutant advanced non-small-cell lung cancer patients.

    Remon, Jordi; Planchard, David

    2015-11-01

    Non-small-cell lung cancer (NSCLC) patients whose tumors have an EGFR-activating mutation develop acquired resistance after a median of 9-11 months from the beginning of treatment with erlotinib, gefitinib and afatinib. T790M mutation is the cause of this resistance in approximately 60% of cases. AZD9291 is an oral, irreversible, mutant-selective EGF receptor (EGFR) tyrosine kinase inhibitor (TKI) developed to have potency against EGFR mutations, including T790M mutation, while sparing wild-type EGFR. A Phase I trial of AZD9291 in EGFR-mutant NSCLC patients, demonstrated high activity, essentially among T790M-mutant tumors, with a manageable tolerability profile. Ongoing Phase III trials are evaluating AZD9291 in EGFR-mutant patients as first-line treatment compared with erlotinib and gefitinib; and as second-line treatment compared with chemotherapy after progression on EGFR TKI in T790M-mutant tumors. Better identification of T790M-mutant tumors post EGFR TKI relapse and mechanisms of resistance to AZD9291 are the future challenges. This article reviews the emerging data regarding AZD9291 in the treatment of patients with advanced NSCLC. PMID:26450446

  1. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito [Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030 (United States); Lee, Hong-Jen; Lee, Heng-Huan [Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030 (United States); Hung, Mien-Chie, E-mail: mhung@mdanderson.org [Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030 (United States); Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung 404, Taiwan (China); Asia University, Taichung 413, Taiwan (China)

    2010-09-03

    Research highlights: {yields} ARF1 activation is involved in the EGFR transport to the ER and the nucleus. {yields} Assembly of {gamma}-COP coatomer mediates EGFR transport to the ER and the nucleus. {yields} Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH{sub 2}-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with {gamma}-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.

  2. Epidermal Growth Factor Receptor (EGFR) gene copy number (GCN) correlates with clinical activity of irinotecan-cetuximab in K-RAS wild-type colorectal cancer: a fluorescence in situ (FISH) and chromogenic in situ hybridization (CISH) analysis

    K-RAS wild type colorectal tumors show an improved response rate to anti-EGFR monoclonal antibodies. Nevertheless 70% to 40% of these patients still does not seem to benefit from this therapeutic approach. FISH EGFR GCN has been previously demonstrated to correlate with clinical outcome of colorectal cancer treated with anti-EGFR monoclonal antibodies. CISH also seemed able to provide accurate EGFR GCN information with the advantage of a simpler and reproducible technique involving immunohistochemistry and light microscopy. Based on these findings we investigated the correlation between both FISH and CISH EGFR GCN and clinical outcome in K-RAS wild-type colorectal cancer treated with irinotecan-cetuximab. Patients with advanced K-RAS wild-type, colorectal cancer receiving irinotecan-cetuximab after failure of irinotecan-based chemotherapy were eligible. A cut-off value for EGFR GCN of 2.6 and 2.12 for FISH and CISH respectively was derived from ROC curve analysis. Forty-four patients were available for analysis. We observed a partial remission in 9 (60%) and 2 (9%) cases with a FISH EGFR GCN ≥ 2.6 and < 2.6 respectively (p = 0.002) and in 10 (36%) and 1 (6%) cases with a CISH EGFR GCN ≥ 2.12 and < 2.12 respectively (p = 0.03). Median TTP was 7.7 and 6.4 months in patients showing increased FISH and CISH EGFR GCN whereas it was 2.9 and 3.1 months in those with low FISH and CISH EGFR GCN (p = 0.04 and 0.02 respectively). FISH and CISH EGFR GCN may both represent effective tools for a further patients selection in K-RAS wild-type colorectal cancer treated with cetuximab

  3. Lung Adenocarcinoma with Pulmonary Miliary Metastases and Complex Somatic Heterozygous EGFR Mutation

    Alexandre Schaller

    2014-11-01

    Full Text Available The pretreatment detection of an activating mutation of EGFR is now routinely performed in metastatic nonsquamous non-small cell lung cancer (NSCLC. The therapeutic impact of such a detection is major, as patients with advanced NSCLC exhibiting a mutation of exon 19 or 21 will benefit from EGFR-tyrosine kinase inhibitors (TKI. The presence of an EGFR resistance mutation, such as T790M in EGFR-TKI-naïve patients, is seldom looked for and is related either to a germinal mutation or to somatically mutated subclones. It has a negative predictive impact. We present the case of a patient with a lung papillary adenocarcinoma and miliary intrapulmonary metastases whose tumor displays a somatic complex heterozygous EGFR mutation, combining L858R (exon 21 and a primary resistance mutation T790M (exon 20, both detected by direct sequencing.

  4. EGFR Transactivation by Peptide G Protein-Coupled Receptors in Cancer.

    Moody, Terry W; Nuche-Berenguer, Bernardo; Nakamura, Taichi; Jensen, Robert T

    2016-01-01

    Lung cancer kills approximately 1.3 million citizens in the world annually. The tyrosine kinase inhibitors (TKI) erlotinib and gefitinib are effective anti-tumor agents especially in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. The goal is to increase the potency of TKI in lung cancer patients with wild type EGFR. G protein-coupled receptors (GPCR) transactivate the wild type EGFR in lung cancer cells. The GPCR can be activated by peptide agonists causing phosphatidylinositol turnover or stimulation of adenylylcyclase. Recently, nonpeptide antagonists were found to inhibit the EGFR transactivation caused by peptides. Nonpeptide antagonists for bombesin (BB), neurotensin (NTS) and cholecystokinin (CCK) inhibit lung cancer growth and increase the cytotoxicity of gefitinib. The results suggest that GPCR transactivation of the EGFR may play an important role in cancer cell proliferation. PMID:25563590

  5. EGFR cooperates with glucose transporter SGLT1 to enable chromatin remodeling in response to ionizing radiation

    Background and purpose: EGFR and the sodium-dependent glucose transporter, SGLT1, are found in complex after radiation treatment. The aim of this study was to elucidate the role of EGFR in glucose uptake and chromatin remodeling. Material and methods: Glucose accumulation was quantified with help of 3H-glucose. Involvement of SGLT was detected by a specific inhibitor. Role of EGFR was proved by EGFR overexpression and siRNA driven knockdown. Functional endpoints were intracellular ATP levels, protein expression, residual DNA-damage and colony formation. Results: EGFR/SGLT1 interactions in response to ionizing radiation were associated with increased glucose uptake. Nevertheless, tumor cells exhibit ATP depletion following irradiation. Recovery from radiation-induced ATP crisis was EGFR/SGLT-dependent and associated with increased cell survival and improved DNA-repair. The blockage of either EGFR or SGLT inhibited ATP level recovery and histone H3 modifications crucial for both chromatin remodeling and DNA repair in response to irradiation. Inhibition of the acetyltransferase TIP60, which is essential for histone H3-K9 acetylation and ATM activation, prevented energy crisis and chromatin remodeling. Conclusions: Radiation-associated interactions between SGLT1 and EGFR resulted in increased glucose uptake, which counteracts the ATP crisis in tumor cells due to chromatin remodeling. The blockage of recovery from ATP crisis led to radio-sensitization in tumor cells

  6. Routine implementation of EGFR mutation testing in clinical practice in Flanders: 'HERMES' project.

    Janssens, A; De Droogh, E; Lefebure, A; Kockx, M; Pauwels, P; Germonpre, P; van Meerbeeck, J P

    2014-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) is the recommended first-line treatment in metastatic EGFR-mutation-positive non-small cell lung cancer (NSCLC) patients. Such a personalized treatment requires fast EGFR mutation testing. This study was performed to determine the turn around time (TAT) for EGFR mutation testing on tumour samples of NSCLC in the clinical care in the region of Antwerp (Belgium). The secondary aim was to determine the frequency of EGFR mutations in this Flemish population. Tumour tissue was prospectively obtained from lung cancer patients in participating hospitals and sent from the local pathology laboratory (lab) to two central laboratories (labs) where EGFR-mutation analysis was performed. Results were returned from the central labs to the clinicians and the local pathology lab. TAT was defined as the interval between the request from the oncologist and the result obtained by the oncologist. One hundred and seven specimens were analysed. The clinician got the result from the local lab in a median time of 10 days (3-37 days) and from the central lab in 9 days (3-29 days). We detected seven mutations (7%) in this study population, all occurring in tumours with an adenocarcinoma histology, four (57%) in men and five (71%) in (ex-)smokers. There were six exon 19 deletions and one L858R mutation. It is possible to implement EGFR-mutation testing with timely reporting of the EGFR-mutation status. EGFR-mutation occurs in 7% of Flemish patients with NSCLC. Patients with advanced non-squamous NSCLC should be tested for EGFR mutation regardless of their gender and smoking history. PMID:24724747

  7. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Sanders, Jeffrey M; Wampole, Matthew E; Thakur, Mathew L; Wickstrom, Eric

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF

  8. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Jeffrey M Sanders

    Full Text Available The epidermal growth factor receptor (EGFR is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of

  9. RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.

    Olga Skorobogata

    Full Text Available The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs is sufficient to rescue the rab-7(- VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.

  10. Missense Mutations in Exons 18–24 of EGFR in Hepatocellular Carcinoma Tissues

    Ravat Panvichian

    2015-01-01

    Full Text Available Epidermal growth factor receptor (EGFR, a transmembrane tyrosine kinase receptor, plays important roles in various cancers. In nonsmall cell lung cancer (NSCLC, EGFR mutations cluster around the ATP-binding pocket (exons 18–21 and some of these mutations activate the kinase and induce an increased sensitivity to EGFR-tyrosine kinase inhibitors. Nevertheless, data of EGFR mutations in HCC are limited. In this study, we investigated EGFR expression by immunohistochemistry and EGFR mutations (exons 18–24 by PCR cloning and sequencing. EGFR overexpression in HCC and matched nontumor tissues were detected in 13/40 (32.5% and 10/35 (28.6%, respectively. Moreover, missense and silent mutations were detected in 13/33 (39.4% and 11/33 (33.3% of HCC tissues, respectively. The thirteen different missense mutations were p.L730P, p.V742I, p.K757E, p.I780T, p.N808S, p.R831C, p.V851A, p.V897A, p.S912P, p.P937L, p.T940A, p.M947V, and p.M947T. We also found already known SNP, p.Q787Q (CAG>CAA, in 13/33 (39.4% of HCC tissues. However, no significant association was detected between EGFR mutations and EGFR overexpression, tissue, age, sex, tumor size, AFP, HBsAg, TP53, and Ki-67. Further investigation is warranted to validate the frequency and activity of these missense mutations, as well as their roles in HCC tumorigenesis and in EGFR-targeted therapy.

  11. Epidermal Growth Factor Receptor (EGFR gene copy number (GCN correlates with clinical activity of irinotecan-cetuximab in K-RAS wild-type colorectal cancer: a fluorescence in situ (FISH and chromogenic in situ hybridization (CISH analysis

    Scartozzi Mario

    2009-08-01

    Full Text Available Abstract Background K-RAS wild type colorectal tumors show an improved response rate to anti-EGFR monoclonal antibodies. Nevertheless 70% to 40% of these patients still does not seem to benefit from this therapeutic approach. FISH EGFR GCN has been previously demonstrated to correlate with clinical outcome of colorectal cancer treated with anti-EGFR monoclonal antibodies. CISH also seemed able to provide accurate EGFR GCN information with the advantage of a simpler and reproducible technique involving immunohistochemistry and light microscopy. Based on these findings we investigated the correlation between both FISH and CISH EGFR GCN and clinical outcome in K-RAS wild-type colorectal cancer treated with irinotecan-cetuximab. Methods Patients with advanced K-RAS wild-type, colorectal cancer receiving irinotecan-cetuximab after failure of irinotecan-based chemotherapy were eligible. A cut-off value for EGFR GCN of 2.6 and 2.12 for FISH and CISH respectively was derived from ROC curve analysis. Results Forty-four patients were available for analysis. We observed a partial remission in 9 (60% and 2 (9% cases with a FISH EGFR GCN ≥ 2.6 and Conclusion FISH and CISH EGFR GCN may both represent effective tools for a further patients selection in K-RAS wild-type colorectal cancer treated with cetuximab.

  12. Src inhibitors act through different mechanisms in Non-Small Cell Lung Cancer models depending on EGFR and RAS mutational status

    Formisano, Luigi; D'Amato, Valentina; Servetto, Alberto; Brillante, Simona; Raimondo, Lucia; Di Mauro, Concetta; Marciano, Roberta; Orsini, Roberta Clara; Cosconati, Sandro; Randazzo, Antonio; Parsons, Sarah J.; Montuori, Nunzia; Veneziani, Bianca Maria; De Placido, Sabino

    2015-01-01

    Resistance to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, often related to Ras or secondary EGFR mutations, is a relevant clinical issue in Non-Small Cell Lung Cancer (NSCLC). Although Src TK has been involved in such resistance, clinical development of its inhibitors has been so far limited. To better define the molecular targets of the Src TKIs saracatinib, dasatinib and bosutinib, we used a variety of in vitro/in vivo studies. Kinase assays supported by docking analysis demonstrated that all the compounds directly inhibit EGFR TK variants. However, in live cells only saracatinib efficiently reduced EGFR activation, while dasatinib was the most effective agent in inhibiting Src TK. Consistently, a pronounced anti-proliferative effect was achieved with saracatinib, in EGFR mutant cells, or with dasatinib, in wt EGFR/Ras mutant cells, poorly dependent on EGFR and erlotinib-resistant. We then identified the most effective drug combinations to overcome resistance to EGFR inhibitors, both in vitro and in nude mice: in T790M EGFR erlotinib-resistant cells, saracatinib with the anti-EGFR mAb cetuximab; in Ras mutant erlotinib-resistant models, dasatinib with the MEK inhibitor selumetinib. Src inhibitors may act with different mechanisms in NSCLCs, depending on EGFR/Ras mutational profile, and may be integrated with EGFR or MEK inhibitors for different cohorts of NSCLCs. PMID:26325669

  13. A case of EGFR mutant lung adenocarcinoma that acquired resistance to EGFR-tyrosine kinase inhibitors with MET amplification and epithelial-to-mesenchymal transition

    Miyoshi S

    2015-04-01

    Full Text Available Seigo Miyoshi,1 Takahide Kato,1 Hitoshi Katayama,1 Ryoji Ito,1 Yosuke Mizuno,2 Takafumi Okura,1 Jitsuo Higaki1 1Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan; 2Department of Molecular Pathology, Ehime University Graduate School of Medicine, Ehime, Japan Abstract: EGFR mutant lung cancer responds to EGFR tyrosine kinase inhibitors (TKIs, but all patients eventually develop resistance to EGFR-TKIs. Herein we report a case of EGFR mutant lung adenocarcinoma that acquired resistance to EGFR-TKI with MET amplification and epithelial-to-mesenchymal transition (EMT. A 73-year-old woman was diagnosed with adenocarcinoma harboring an EGFR exon 19 deletion. She received gefitinib as second-line therapy. Tumors were reduced 1 month after gefitinib therapy. However, only a few months later, chest computed tomography results indicated cancer progression. Gefitinib therapy was stopped and docetaxel therapy started. However, she died 13 days after admission. Microscopic examination of postmortem specimens revealed a diffuse proliferation of atypical giant cells in primary and metastatic lesions, but no adenocarcinomatous components as in the antemortem specimens. Immunohistochemical analyses showed that antemortem tumor specimens were positive for CDH1 but negative for VIM. In contrast, postmortem tumor specimens were positive for VIM but negative for CDH1. Genetic analyses revealed MET amplification. We concluded that resistance to EGFR-TKI might be caused by MET amplification and EMT. To our knowledge, no clinical studies have reported that MET amplification and EMT together may be associated with acquired resistance to EGFR-TKI. Second biopsy after the development of EGFR-TKI resistance may be recommended to determine the best therapeutic strategy. Keywords: epidermal growth factor receptor tyrosine kinase inhibitor, MET amplification, epithelial-to-mesenchymal transition

  14. Quantitative PET of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody

    Cai, Weibo; Chen, Kai; He, Lina; Cao, Qizhen; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Koong, Albert [Stanford University School of Medicine, Department of Radiation Oncology, Stanford, CA (United States)

    2007-06-15

    Cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR) on the surface of cancer cells, was approved by the FDA to treat patients with metastatic colorectal cancer. It is currently also in advanced-stage development for the treatment of several other solid tumors. Here we report for the first time the quantitative positron emission tomography (PET) imaging of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab. We conjugated cetuximab with macrocyclic chelating agent 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA), labeled with {sup 64}Cu, and tested the resulting {sup 64}Cu-DOTA-cetuximab in seven xenograft tumor models. The tracer uptake measured by PET was correlated with the EGFR expression quantified by western blotting. The estimated human dosimetry based on the PET data in Sprague-Dawley rats was also calculated. MicroPET imaging showed that {sup 64}Cu-DOTA-cetuximab had increasing tumor activity accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-negative tumors at all times examined (<5%ID/g). There was a good correlation (R {sup 2} = 0.80) between the tracer uptake (measured by PET) and the EGFR expression level (measured by western blotting). Human dosimetry estimation indicated that the tracer may be safely administered to human patients for tumor diagnosis, with the dose-limiting organ being the liver. The success of EGFR-positive tumor imaging using {sup 64}Cu-DOTA-cetuximab can be translated into the clinic to characterize the pharmacokinetics, to select the right population of patients for EGFR-targeted therapy, to monitor the therapeutic efficacy of anti-EGFR treatment, and to optimize the dosage of either cetuximab alone or cetuximab in combination with other therapeutic agents. (orig.)

  15. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer.

    Wang, Shuhang; Cang, Shundong; Liu, Delong

    2016-01-01

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are widely used in patients with non-small cell lung cancer (NSCLC). However, EGFR T790M mutation leads to resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation have been in active clinical development. These agents include osimertinib, rociletinib, HM61713, ASP8273, EGF816, and PF-06747775. Osimertinib and rociletinib have shown clinical efficacy in phase I/II trials in patients who had acquired resistance to first- or second-generation TKIs. Osimertinib (AZD9291, TAGRISSO) was recently approved by FDA for metastatic EGFR T790M mutation-positive NSCLC. HM61713, ASP8237, EGF816, and PF-06747775 are still in early clinical development. This article reviews the emerging data regarding third-generation agents against EGFR T790M mutation in the treatment of patients with advanced NSCLC. PMID:27071706

  16. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy

  17. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    Sobhakumari, Arya [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Schickling, Brandon M. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Love-Homan, Laurie; Raeburn, Ayanna [Department of Pathology, The University of Iowa, Iowa City, IA (United States); Fletcher, Elise V.M. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Case, Adam J. [Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Domann, Frederick E. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); Miller, Francis J. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); and others

    2013-11-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy.

  18. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas

    Gömöri Éva

    2012-01-01

    Full Text Available Abstract Background Gliomas are the most common neoplasm of the brain. High-grade gliomas often resist treatment even with aggressive surgical resection and adjuvant radiation and chemotherapy. Despite the combined treatment, they frequently recur with the same or higher-grade histology. Genetic instability is commonly associated with inactivation of the normal DNA repair function and tumour suppressor genes as well as activation of oncogenes resulting from alterations of promoter hypermethylation, but the molecular mechanisms of the histological and clinical progression of gliomas are still poorly understood. Methods This study involved longitudinal analysis samples of primary and recurrent gliomas to determine whether the progression of low- and high-grade gliomas is associated with the promoter methylation of the DNMT1, MGMT and EGFR genes by PCR-based restriction enzyme assay. Epigenetic inactivation of these three important glioma-associated genes was analyzed in paired biopsy samples from 18 patients with tumour recurrence. Results The methylation analysis of the CpG sites in the DNA methyltransferase (DNMT1 promoter revealed a total of 6 hypermethylations (6/18, the methylguanine-DNA methyltransferase (MGMT promoter revealed a total of 10 hypermethylations (10/18 and the epithelial grow factor receptor (EGFR promoter revealed a total of 12 (12/18 hypermethylations respectively in recurrent gliomas. The results demonstrated that DNMT1 promoter hypermethylation does not occur in low-grade gliomas, it was mainly observed in secondary glioblastomas. Additionally, the MGMT and EGFR promoter was hypermethylated in both low-and high-grade GLs and their corresponding histological transformed GLs. Conclusion This study has provided further evidence that the histological transformation and progression of gliomas may be associated with the inactivation of the EGFR and MGMT genes. It seems that EGFR and MGMT promoter hypermethylations are early

  19. Targeting the EGFR/PCNA signaling suppresses tumor growth of triple-negative breast cancer cells with cell-penetrating PCNA peptides.

    Yung-Luen Yu

    Full Text Available Tyrosine 211 (Y211 phosphorylation of proliferation cell nuclear antigen (PCNA coincides with pronounced cancer cell proliferation and correlates with poor survival of breast cancer patients. In epidermal growth factor receptor (EGFR tyrosine kinase inhibitor (TKI-resistant cells, both nuclear EGFR (nEGFR expression and PCNA Y211 phosphorylation are increased. Moreover, the resistance to EGFR TKI is a major clinical problem in treating EGFR-overexpressing triple-negative breast cancer (TNBC. Thus, effective treatment to combat resistance is urgently needed. Here, we show that treatment of cell-penetrating PCNA peptide (CPPP inhibits growth and induces apoptosis of human TNBC cells. The Y211F CPPP specifically targets EGFR and competes directly for PCNA tyrosine Y211 phosphorylation and prevents nEGFR from binding PCNA in vivo; it also suppresses tumor growth by sensitizing EGFR TKI resistant cells, which have enhanced nEGFR function and abrogated classical EGFR membrane signaling. Furthermore, we identify an active motif of CPPP, RFLNFF (RF6 CPPP, which is necessary and sufficient to inhibit TKI-resistant TNBC cell growth of orthotopic implanted tumor in mice. Finally, the activity of its synthetic retro-inverted derivative, D-RF6 CPPP, on an equimolar basis, is more potent than RF6 CPPP. Our study reveals a drug candidate with translational potential for the future development of safe and effective therapeutic for EGFR TKI resistance in TNBC.

  20. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients

    Azzouz, Manal; Rømsing, Janne; Thomsen, Henrik S

    2014-01-01

    OBJECTIVE: To study fluctuations in estimated glomerular filtration rate (eGFR) in relation to contrast medium (CM) enhanced magnetic resonance imaging (MRI) and computed tomography (CT) compared to control groups in outpatients. MATERIALS AND METHODS: eGFR was determined right before the imaging......-induced nephropathy (CIN) requirement when the definition s-creatinine ≥44μmol/l (0.5mg/dl) was used. CONCLUSIONS: eGFR in outpatients undergoing MRI or CT did vary independently of whether the patient received contrast or not. The findings probably reflect the natural variations in s-creatinine levels. This should...

  1. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib.

    Darrell C Bessette

    Full Text Available Basal-like and triple negative breast cancer (TNBC share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown.Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed.Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer.Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non

  2. 5-Fluorocytosine combined with Fcy-hEGF fusion protein targets EGFR-expressing cancer cells

    Lan, Keng-Hsueh [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan (China); Shih, Yi-Sheng [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Chang, Cheng Allen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan (China); Yen, Sang-Hue [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Lan, Keng-Li, E-mail: kllan@vghtpe.gov.tw [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer EGFR-expressing epithelial cancers account for significant portion of cancer deaths. Black-Right-Pointing-Pointer EGF-EGFR signaling pathway is validated as an important anticancer drug target. Black-Right-Pointing-Pointer EGF and Fcy fusion protein (Fcy-hEGF) can bind to EGFR and convert 5-FC to 5-FU. Black-Right-Pointing-Pointer Fcy-hEGF combined with 5-FC preferentially inhibits EGFR-expressing cells viability. -- Abstract: Human epithelial cancers account for approximately 50% of all cancer deaths. This type of cancer is characterized by excessive activation and expression of the epidermal growth factor receptor (EGFR). The EGFR pathway is critical for cancer cell proliferation, survival, metastasis and angiogenesis. The EGF-EGFR signaling pathway has been validated as an important anticancer drug target. Increasing numbers of targeted therapies against this pathway have been either approved or are currently under development. Here, we adopted a prodrug system that uses 5-fluorocytosine (5-FC) and human EGF (hEGF) fused with yeast cytosine deaminase (Fcy) to target EGFR-overexpressing cancer cells and to convert 5-FC to a significantly more toxic chemotherapeutic, 5-fluorouracil (5-FU). We cloned and purified the Fcy-hEGF fusion protein from Pichia pastoris yeast. This fusion protein specifically binds to EGFR with a similar affinity as hEGF, approximately 10 nM. Fcy-hEGF binds tightly to A431 and MDA-MB-468 cells, which overexpress EGFR, but it binds with a lower affinity to MDA-MB-231 and MCF-7, which express lower levels of EGFR. Similarly, the viability of EGFR-expressing cells was suppressed by Fcy-hEGF in the presence of increasing concentrations of 5-FC, and the IC{sub 50} values for A431 and MDA-MB-468 were approximately 10-fold lower than those of MDA-MB-231 and MCF-7. This novel prodrug system, Fcy-hEGF/5-FC, might represent a promising addition to the available class of inhibitors that specifically target EGFR

  3. 5-Fluorocytosine combined with Fcy–hEGF fusion protein targets EGFR-expressing cancer cells

    Highlights: ► EGFR-expressing epithelial cancers account for significant portion of cancer deaths. ► EGF–EGFR signaling pathway is validated as an important anticancer drug target. ► EGF and Fcy fusion protein (Fcy–hEGF) can bind to EGFR and convert 5-FC to 5-FU. ► Fcy–hEGF combined with 5-FC preferentially inhibits EGFR-expressing cells viability. -- Abstract: Human epithelial cancers account for approximately 50% of all cancer deaths. This type of cancer is characterized by excessive activation and expression of the epidermal growth factor receptor (EGFR). The EGFR pathway is critical for cancer cell proliferation, survival, metastasis and angiogenesis. The EGF–EGFR signaling pathway has been validated as an important anticancer drug target. Increasing numbers of targeted therapies against this pathway have been either approved or are currently under development. Here, we adopted a prodrug system that uses 5-fluorocytosine (5-FC) and human EGF (hEGF) fused with yeast cytosine deaminase (Fcy) to target EGFR-overexpressing cancer cells and to convert 5-FC to a significantly more toxic chemotherapeutic, 5-fluorouracil (5-FU). We cloned and purified the Fcy–hEGF fusion protein from Pichia pastoris yeast. This fusion protein specifically binds to EGFR with a similar affinity as hEGF, approximately 10 nM. Fcy–hEGF binds tightly to A431 and MDA-MB-468 cells, which overexpress EGFR, but it binds with a lower affinity to MDA-MB-231 and MCF-7, which express lower levels of EGFR. Similarly, the viability of EGFR-expressing cells was suppressed by Fcy–hEGF in the presence of increasing concentrations of 5-FC, and the IC50 values for A431 and MDA-MB-468 were approximately 10-fold lower than those of MDA-MB-231 and MCF-7. This novel prodrug system, Fcy–hEGF/5-FC, might represent a promising addition to the available class of inhibitors that specifically target EGFR-expressing cancers.

  4. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    Purpose: Exposure of human carcinoma and malignant glioma cells to ionizing radiation (IR)activates EGFR,which as a consequence mediates a cytoprotective response. We have demonstrated that expression of a dominant negative mutant, EGFR-CD533 disrupts this cytoprotective response, resulting in significant radiosensitization. During studies of in vivo radiosensitization with intratumoral delivery of the Adenovirus (Ad) vector, Ad-EGFR-CD533, it became apparent that xenografts from human carcinoma and malignant glioma cells invariably expressed the constitutively active EGFR mutant, EGFRvIII. This mutant EGFRvIII is frequently found in vivo in glioblastoma, breast, prostate, lung and ovarian carcinoma, but does not appear to be expressed in tumor cells under in vitro conditions. The functional consequences of EGFRvIII expression on tumor cell radiation responses are currently unknown. We have therefore investigated in a transient transfection cell system the responses of EGFRvIII and downstream signal transduction pathways to IR. In addition, the capacity of EGFR-CD533 to disrupt the function of EGFRvIII was tested. Materials and Methods: The MDA-MB-231, U-87 MG and U-373 MG cell lines were established as tumors and then intratumorally transduced with Ad-EGFR-CD533 or Ad-LacZ (control vector). The transduction efficiency was > 40% in MDA-MB-231 tumors and reached > 70% in the glioma xenografts. Radiosensitivity was measured by ex vivo colony formation and growth delay assays. The functional consequences of EGFRvIII expression on cellular IR responses were studied in transiently transfected Chinese hamster ovary (CHO) cells because tumor cells do not express EGFRvIII in vitro. Transfection with null vectors and vectors encoding either EGFRvIII or EGFR were performed and similar protein expression levels were verified by Western blot analyses. Results: The radiosensitivity of Ad-EGFR-CD533 transduced tumors was significantly increased compared with Ad-LacZ transduced

  5. Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane.

    Bocharov, Eduard V; Lesovoy, Dmitry M; Pavlov, Konstantin V; Pustovalova, Yulia E; Bocharova, Olga V; Arseniev, Alexander S

    2016-06-01

    The human epidermal growth factor receptor (EGFR) of HER/ErbB receptor tyrosine kinase family mediates a broad spectrum of cellular responses transducing biochemical signals via lateral dimerization in plasma membrane, while inactive receptors can exist in both monomeric and dimeric forms. Recently, the dimeric conformation of the helical single-span transmembrane domains of HER/ErbB employing the relatively polar N-terminal motifs in a fashion permitting proper kinase activation was experimentally determined. Here we describe the EGFR transmembrane domain dimerization via an alternative weakly polar C-terminal motif A(661)xxxG(665) presumably corresponding to the inactive receptor state. During association, the EGFR transmembrane helices undergo a structural adjustment with adaptation of inter-molecular polar and hydrophobic interactions depending upon the surrounding membrane properties that directly affect the transmembrane helix packing. This might imply that signal transduction through membrane and allosteric regulation are inclusively mediated by coupled protein-protein and protein-lipid interactions, elucidating paradoxically loose linkage between ligand binding and kinase activation. PMID:26903218

  6. Germ-line mutations in epidermal growth factor receptor (EGFR) are rare but may contribute to oncogenesis: A novel germ-line mutation in EGFR detected in a patient with lung adenocarcinoma

    A subset of lung cancer patients harbour EGFR somatic mutations in their tumours and are candidates for treatment with EGFR tyrosine kinase inhibitors. In a few cases EGFR mutations have also been found in the germ line, suggesting a role in lung carcinogenesis. Objetives of this study were: 1) To analyze the EGFR gene mutations in a population diagnosed with lung adenocarcinoma from Northern Spain. 2) To determine the frequency of a new germ-line mutation found in our laboratory as well as the frequency in our population of three other EGFR germ-line mutations detected by other authors. 3) To determine whether the novel mutation detected may have a functional effect on the EGFR protein. Tumour DNA samples were obtained from frozen or paraffin embedded tumour tissues. Samples of DNA from peripheral blood cells were obtained from 912 individuals with lung cancer recruited from the CAPUA study [1,2], 477 unrelated healthy donor individuals and 32 individuals with other types of cancer. EGFR gene exons 18 to 21 were studied by direct standard dideoxy sequencing. Specific mutations were determined either by direct sequencing or by specific RFLP analysis. Cell lines were transfected with EGFR-mutant plasmids and analysed by western blot with antibodies specific for total or phosphorylated-EGFR. We found EGFR mutation in 12 of the 71 tumour samples (17%). One tumour contained two mutations. One mutation (p.R776G) was present as a germ line. Using an RFLP analysis, this mutation was not found in 954 alleles from healthy individuals studied, concluding that it is not a polymorphism. The mutation was not found either in genomic DNA from 912 lung cancer patients. Three additional EGFR germ-line mutations that were already described were not found in any of the studied samples. These observations show that EGFR mutated alleles are rare in the population. In vitro studies revealed that tyrosine autophosphorylation is enhanced in p.R776G-mutant EGFR when compared with wild

  7. Heterogeneous EGFR gene copy number increase is common in colorectal cancer and defines response to anti-EGFR therapy.

    Ålgars, Annika; Avoranta, Tuulia; Österlund, Pia; Lintunen, Minnamaija; Sundström, Jari; Jokilehto, Terhi; Ristimäki, Ari; Ristamäki, Raija; Carpén, Olli

    2014-01-01

    Anti-EGFR therapy is commonly used to treat colorectal cancer (CRC), although only a subset of patients benefit from the treatment. While KRAS mutation predicts non-responsiveness, positive predictive markers are not in clinical practice. We previously showed that immunohistochemistry (IHC)-guided EGFR gene copy number (GCN) analysis may identify CRC patients benefiting from anti-EGFR treatment. Here we tested the predictive value of such analysis in chemorefractory metastatic CRC, elucidated EGFR GCN heterogeneity within the tumors, and evaluated the association between EGFR GCN, KRAS status, and anti-EGFR antibody response in CRC cell lines. The chemorefractory patient cohort consisted of 54 KRAS wild-type (WT) metastatic CRC patients. EGFR GCN status was analyzed by silver in situ hybridization using a cut-off value of 4.0 EGFR gene copies/cell. KRAS-WT and KRAS mutant CRC cell lines with different EGFR GCN were used in in vitro studies. The chemorefractory CRC tumors with EGFR GCN increase (≥4.0) responded better to anti-EGFR therapy than EGFR GCN (<4.0) tumors (clinical benefit, P = 0.0004; PFS, HR = 0.23, 95% CI 0.12-0.46). EGFR GCN counted using EGFR IHC guidance was significantly higher than the value from randomly selected areas verifying intratumoral EGFR GCN heterogeneity. In CRC cell lines, EGFR GCN correlated with EGFR expression. Best anti-EGFR response was seen with KRAS-WT, EGFR GCN = 4 cells and poorest response with KRAS-WT, EGFR GCN = 2 cells. Anti-EGFR response was associated with AKT and ERK1/2 phosphorylation, which was effectively inhibited only in cells with KRAS-WT and increased EGFR GCN. In conclusion, IHC-guided EGFR GCN is a promising predictor of anti-EGFR treatment efficacy in chemorefractory CRC. PMID:24940619

  8. Heterogeneous EGFR Gene Copy Number Increase Is Common in Colorectal Cancer and Defines Response to Anti-EGFR Therapy

    Ålgars, Annika; Lintunen, Minnamaija; Sundström, Jari; Jokilehto, Terhi; Ristimäki, Ari; Ristamäki, Raija; Carpén, Olli

    2014-01-01

    Anti-EGFR therapy is commonly used to treat colorectal cancer (CRC), although only a subset of patients benefit from the treatment. While KRAS mutation predicts non-responsiveness, positive predictive markers are not in clinical practice. We previously showed that immunohistochemistry (IHC)-guided EGFR gene copy number (GCN) analysis may identify CRC patients benefiting from anti-EGFR treatment. Here we tested the predictive value of such analysis in chemorefractory metastatic CRC, elucidated EGFR GCN heterogeneity within the tumors, and evaluated the association between EGFR GCN, KRAS status, and anti-EGFR antibody response in CRC cell lines. The chemorefractory patient cohort consisted of 54 KRAS wild-type (WT) metastatic CRC patients. EGFR GCN status was analyzed by silver in situ hybridization using a cut-off value of 4.0 EGFR gene copies/cell. KRAS-WT and KRAS mutant CRC cell lines with different EGFR GCN were used in in vitro studies. The chemorefractory CRC tumors with EGFR GCN increase (≥4.0) responded better to anti-EGFR therapy than EGFR GCN (<4.0) tumors (clinical benefit, P = 0.0004; PFS, HR = 0.23, 95% CI 0.12–0.46). EGFR GCN counted using EGFR IHC guidance was significantly higher than the value from randomly selected areas verifying intratumoral EGFR GCN heterogeneity. In CRC cell lines, EGFR GCN correlated with EGFR expression. Best anti-EGFR response was seen with KRAS-WT, EGFR GCN = 4 cells and poorest response with KRAS-WT, EGFR GCN = 2 cells. Anti-EGFR response was associated with AKT and ERK1/2 phosphorylation, which was effectively inhibited only in cells with KRAS-WT and increased EGFR GCN. In conclusion, IHC-guided EGFR GCN is a promising predictor of anti-EGFR treatment efficacy in chemorefractory CRC. PMID:24940619

  9. Dermatologic Toxicities from Monoclonal Antibodies and Tyrosine Kinase Inhibitors against EGFR: Pathophysiology and Management

    Shaad E. Abdullah

    2012-01-01

    Full Text Available Epidermal growth factor receptor (EGFR inhibition has now been well established as an effective treatment for various cancers. The EGFR belongs to the ErbB family of tyrosine kinase receptors which regulate tumor cell differentiation, survival and proliferation. Activation of EGFR drives tumorigenesis in lung, head and neck, colorectal and pancreatic cancers. Irrespective of the type of cancer being treated and the mechanism by which tumor EGFR drives tumorigenesis, the major side effect of EGFR inhibition is a papulopustular (also described as maculopapular or acneiform rash which occurs in about two thirds of treated patients. Interestingly, this rash has been commonly correlated with better clinical outcomes (objective tumor response and patient survival. The pathophysiology of dermatological toxicity from EGFR inhibitors is an important area of clinical research, and the proper management of the rash is essential to increase the therapeutic index from this class of drugs. In this paper, we review the dermatologic toxicities associated with EGFR inhibitors with an emphasis on its pathophysiology and clinical management.

  10. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors

    Overexpression of epidermal growth factor receptor (EGFR) has been implicated in tumor development and malignancy. Evaluating the degree of EGFR expression in tumors could aid in identifying patients for EGFR-targeted therapies and in monitoring treatment. Nevertheless, no currently available assay can reliably quantify receptor content in tumors. Radiolabeled inhibitors of EGFR-TK could be developed as bioprobes for positron emission tomography imaging. Such imaging agents would not only provide a noninvasive quantitative measurement of EGFR content in tumors but also serve as radionuclide carriers for targeted radiotherapy. The potency, reversibility, selectivity and specific binding characteristics of ML04, an alleged irreversible inhibitor of EGFR, were established in vitro. The distribution of the F-18-labeled compound and the extent of EGFR-specific tumor uptake were evaluated in tumor-bearing mice. ML04 demonstrated potent, irreversible and selective inhibition of EGFR, combined with specific binding to the receptor in intact cells. In vivo distribution of the radiolabeled compound revealed tumor/blood and tumor/muscle activity uptake ratios of about 7 and 5, respectively, 3 h following administration of a radiotracer. Nevertheless, only minor EGFR-specific uptake of the compound was detected in these studies, using either EGFR-negative tumors or blocking studies as controls. To improve the in vivo performance of ML04, administration via prolonged intravenous infusion is proposed. Detailed pharmacokinetic characterization of this bioprobe could assist in the development of a kinetic model that would afford accurate measurement of EGFR content in tumors

  11. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor (EGFR), HER2, and HER3: preclinical activity in HER2 non-amplified inflammatory breast cancer models

    Mu, Zhaomei; Klinowska, Teresa; Dong, Xiaoshen; Foster, Emily; Womack, Chris; Fernandez, Sandra V.; Cristofanilli, Massimo

    2014-01-01

    Introduction Epidermal growth factor receptor (EGFR) overexpression has been associated with prognostic and predictive value in inflammatory breast cancer (IBC). Epidermal growth factor receptor 2 (HER2) overexpression is observed at a higher rate in IBC compared with noninflammatory breast cancer. Current clinically available anti-HER2 therapies are effective only in patients with HER2 amplified breast cancer, including IBC. AZD8931 is a novel small-molecule equipotent inhibitor of EGFR, HER...

  12. Combination of afatinib with cetuximab in patients with EGFR-mutant non-small-cell lung cancer resistant to EGFR inhibitors

    Ribeiro Gomes J

    2015-05-01

    Full Text Available Jéssica Ribeiro Gomes, Marcelo Rocha S Cruz Antonio Ermirio de Moraes Oncology Center, São Paulo-Brazil Abstract: Tyrosine kinase inhibitors (TKIs targeting the epidermal growth factor receptor (EGFR have shown effectiveness for advanced non-small-cell lung cancer (NSCLC with activating mutations in the EGFR gene. However, resistance to the EGFR TKIs develops mostly secondary to T790M mutation in exon 20. The use of afatinib associated with cetuximab represents a new possibility of therapy following progression on gefitinib or erlotinib. We present two patients who acquired resistance to first-generation TKI and who underwent combination treatment with afatinib plus cetuximab as third-line therapy. Both patients presented partial response, and the time duration of disease control was 8 months and 10 months. The combined use of afatinibplus cetuximab emerges as a new possibility for the treatment of patients with advanced NSCLC harboring mutated EGFR after progression on first-generation EGFR TKIs with consequently acquired resistance to TKIs. Further studies are necessary to consolidate the data. Keywords: lung cancer, non-small-cell lung cancer, EGFR, afatinib, cetuximab, case report 

  13. Radiohalogenated 4-anilinoquinazoline-based EGFR-TK inhibitors as potential cancer imaging agents

    Introduction: The overexpression of epidermal growth factor receptor (EGFR) in tumors underlines the recent interest in EGFR as attractive target for the development of new cancer imaging agents. EGFR-tyrosine kinase inhibitors (EGFR-TKIs) based on the anilinoquinazoline scaffold have been explored as potential probes for EGFR imaging. However, up to now, no optimal radiotracer is available. Herein, we report the synthesis and biological evaluation of three novel halogenated 6-substituted 4-anilinoquinazoline based EGFR-TKIs. Radiosynthesis (125I and 18F) of the corresponding analogues was also performed. Methods: 6a, 6b and 8 were obtained by reaction of 6-amino-4-anilinoquinazoline (5) with 3-/4-iodobenzoyl and 4-fluorobenzoyl chlorides. Inhibition of EGFR autophosphorylation and A431 cellular proliferation were assessed by Western blot and MTT assays. 125I-anilinoquinazolines [125I]6a/b were prepared via destannylation of the corresponding tributylstannyl precursors with [125I]NaI. Cellular uptake studies were conducted in A431 cells. Optimization of the radiosynthesis of the 18F-anilinoquinazoline [18F]8 was attempted by nucleophilic substitution of the trimethylammonium- and nitro-6-substituted 4-anilinoquinazoline precursors. Results: 6a, 6b and 8 were synthesized in high chemical yield. All of them are inhibitors of EGFR autophosphorylation (0.15050125I]6a/b, obtained in high radiochemical purity and specific activity, were highly taken up by A431 cells. Biodistribution profile in mice indicated fast blood clearance and hepatobiliary excretion. Despite all attempts, [18F]8 was only formed in 4% yield, hampering further biological evaluation. Conclusions: This study suggests that these quinazoline derivatives can act as EGFR-TKI, warranting further modifications in the chemical structure in order to be explored as potential molecular imaging agents for single photon emission computerized tomography and positron emission tomography.

  14. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1

    Iida, Mari; Brand, Toni M; Starr, Megan M.; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D.; Kragh, Michael; Wheeler, Deric L

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. ...

  15. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab

    Mari Iida; Brand, Toni M; Starr, Megan M.; Chunrong Li; Huppert, Evan J; Neha Luthar; Pedersen, Mikkel W; Horak, Ivan D.; Michael Kragh; Wheeler, Deric L

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. ...

  16. Determination of proteolytic activity in cereals

    D. Wojciechowska

    2015-05-01

    Full Text Available Results have been presented indicating that native proteolytic enzymes and bromelain acted variously ion wheat proteins differentiated in quality, they also act nonspecifically ton haemoglobin. It was thought useful to elaborate a new method of proteolytic activity determination based on the application of a standard natural substrate. The latter consists of gluten extract in acetic acid from a definite flour sample. The method of substrate selection and the determination procedure are described and some examples of wheat proteolytic activity determination are given.

  17. AZD9291 overcomes T790 M-mediated resistance through degradation of EGFR(L858R/T790M) in non-small cell lung cancer cells.

    Ku, Bo Mi; Bae, Yeon-Hee; Koh, Jiae; Sun, Jong-Mu; Lee, Se-Hoon; Ahn, Jin Seok; Park, Keunchil; Ahn, Myung-Ju

    2016-08-01

    The discovery of activating mutations of epidermal growth factor receptor (EGFR) has resulted in the development of more effective treatments for non-small cell lung cancer (NSCLC). Although first-generation EGFR tyrosine kinase inhibitors (EGFR TKIs) provide significant clinical benefit, acquired resistance often occurs, most commonly (>50 %) via a T790 M resistance mutation. Although AZD9291 is selective for both T790 M and activating EGFR mutations over wild-type EGFR, it is highly active when T790 M is present, especially EGFR(L858R/T790M), and modestly active when T790 M is absent. The aim of this study was to elucidate the underlying mechanism of the high sensitivity of NSCLC cells harboring EGFR(L858R/T790M) to AZD9291. In H1975 cells harboring EGFR(L858R/T790M), AZD9291 potently inhibited cellular growth and EGFR signaling pathways together with depletion of mutant EGFR protein. AZD9291-induced depletion of EGFR(L858R/T790M) protein was abrogated through inhibition of the proteasome with MG132. However, AZD9291 had no effect on protein levels of EGFR(WT) and EGFR(L858R). In addition, AZD9291 induced apoptosis and caused expression changes in cell cycle-related genes. Moreover, oral administration of AZD9291 as a single agent induced tumor regression in vivo in a H1975 tumor xenograft model and reduced EGFR(L858R/T790M) protein levels in xenograft tumors. Taken together, our results provide a potential mechanism for the sensitivity of EGFR(L858R/T790M) cells to AZD9291 and suggest that AZD9291 may be effective in cases of T790 M-positive EGFR resistance. PMID:27044261

  18. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization.

    Ryan, Marnie A; Nattamai, Kalpana J; Xing, Ellen; Schleimer, David; Daria, Deidre; Sengupta, Amitava; Köhler, Anja; Liu, Wei; Gunzer, Matthias; Jansen, Michael; Ratner, Nancy; Le Cras, Timothy D; Waterstrat, Amanda; Van Zant, Gary; Cancelas, Jose A; Zheng, Yi; Geiger, Hartmut

    2010-10-01

    Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice, we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF, implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment, genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42), and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes. PMID:20871610

  19. Epidermal growth factor receptor (EGFR) mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    Esophageal squamous cell carcinoma (ESCC) shows geographic variations in incidence, with high incidences (>50/105 person-years) in central Asia, including North Eastern Iran (Golestan) and Northern India (Kashmir). In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR) are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province) and North India (Kashmir Valley) have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. A total of 14 (9.2%) EGFR variations were detected, including seven variations in exons. Among those, four (2.6%) were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65%) of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs

  20. IGFBP2 potentiates nuclear EGFR-STAT3 signaling

    Chua, Corrine Yingxuan; Liu, Yuexin; Granberg, Kirsi J.; Hu, Limei; Haapasalo, Hannu; Annala, Matti J.; Cogdell, David E.; Verploegen, Maartje; Moore, Lynette M.; Fuller, Gregory N.; Nykter, Matti; Cavenee, Webster K.; Zhang, Wei

    2015-01-01

    Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which...

  1. The epidermal growth factor receptor (EGFR in head and neck cancer: its role and treatment implications

    Azria David

    2006-05-01

    Full Text Available Abstract Epidermal growth factor receptor (EGFR is a member of the ErbB family of receptors. Its stimulation by endogenous ligands, EGF or transforming growth factor-alpha (TGF-α results in activation of intracellular tyrosine kinase, therefore, cell cycle progression. High levels of EGFR expression are correlated with poor prognosis and resistance to radiation therapy in a variety of cancers, mostly in squamous-cell carcinoma of the head and neck (SCCHN. Blocking the EGFR by a monoclonal antibody results in inhibition of the stimulation of the receptor, therefore, in inhibition of cell proliferation, enhanced apoptosis, and reduced angiogenesis, invasiveness and metastases. The EGFR is a prime target for new anticancer therapy in SCCHN, and other agents in development include small molecular tyrosine kinase inhibitors and antisense therapies.

  2. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications

    Epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptors. Its stimulation by endogenous ligands, EGF or transforming growth factor-alpha (TGF-α) results in activation of intracellular tyrosine kinase, therefore, cell cycle progression. High levels of EGFR expression are correlated with poor prognosis and resistance to radiation therapy in a variety of cancers, mostly in squamous-cell carcinoma of the head and neck (SCCHN). Blocking the EGFR by a monoclonal antibody results in inhibition of the stimulation of the receptor, therefore, in inhibition of cell proliferation, enhanced apoptosis, and reduced angiogenesis, invasiveness and metastases. The EGFR is a prime target for new anticancer therapy in SCCHN, and other agents in development include small molecular tyrosine kinase inhibitors and antisense therapies

  3. Targeting of Both the c-Met and EGFR Pathways Results in Additive Inhibition of Lung Tumorigenesis in Transgenic Mice

    EGFR and c-Met are both overexpressed in lung cancer and initiate similar downstream signaling, which may be redundant. To determine how frequently ligands that initiate signaling of both pathways are found in lung cancer, we analyzed serum for hepatocyte growth factor (HGF), transforming growth factor-alpha, and amphiregulin (AREG) in lung cancer cases and tobacco-exposed controls. HGF and AREG were both significantly elevated in cases compared to controls, suggesting that both HGF/c-Met and AREG/EGFR pathways are frequently active. When both HGF and AREG are present in vitro, downstream signaling to MAPK and Akt in non-small cell lung cancer (NSCLC) cells can only be completely inhibited by targeting both pathways. To test if dual blockade of the pathways could better suppress lung tumorigenesis in an animal model than single blockade, mice transgenic for airway expression of human HGF were treated with inhibitors of both pathways alone and in combination after exposure to a tobacco carcinogen. Mean tumor number in the group using both the HGF neutralizing antibody L2G7 and the EGFR inhibitor gefitinib was significantly lower than with single agents. A higher tumor K-ras mutation rate was observed with L2G7 alone compared to controls, suggesting that agents targeting HGF may be less effective against mutated K-ras lung tumors. This was not observed with combination treatment. A small molecule c-Met inhibitor decreased formation of both K-ras wild-type and mutant tumors and showed additive anti-tumor effects when combined with gefitinib. Dual targeting of c-Met/EGFR may have clinical benefit for lung cancer

  4. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. PMID:27087131

  5. Identification of potent EGFR inhibitors from TCM Database@Taiwan.

    Shun-Chieh Yang

    2011-10-01

    Full Text Available Overexpression of epidermal growth factor receptor (EGFR has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM Database@Taiwan (http://tcm.cmu.edu.tw to identify potential EGFR inhibitor. Multiple Linear Regression (MLR, Support Vector Machine (SVM, Comparative Molecular Field Analysis (CoMFA, and Comparative Molecular Similarities Indices Analysis (CoMSIA models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressa®. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r² = 0.7858 and SVM (r² = 0.8754 models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR map derived from the CoMFA (q² = 0.721, r² = 0.986 and CoMSIA (q² = 0.662, r² = 0.988 models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.

  6. Assessment of Epidermal Growth Factor Receptor (EGFR) expression in human meningioma

    This study explores whether meningioma expresses epidermal growth factor receptor (EGFR) and determines if there is a correlation between the WHO grade of this tumor and the degree of EGFR expression. Following institutional review board approval, 113 meningioma specimens from 89 patients were chosen. Of these, 85 were used for final analysis. After a blinded review, immunohistochemical stains for EGFR were performed. Staining intensity (SI) was scored on a scale 0-3 (from no staining to strong staining). Staining percentage of immunoreactive cells (SP) was scored 1-5 (from the least to the maximum percent of the specimen staining). Immunohistochemical score (IHS) was calculated as the product of SI and SP. Eighty-five samples of meningioma were classified in accordance with World Health Organization (WHO) criteria: benign 57/85 (67%), atypical 23/85 (27%), and malignant 5/85 (6%). The majority of samples demonstrated a moderate SI for EGFR. IHS for EGFR demonstrated a significant association between SI and histopathologic subtype. Also, there was a correlation between the SP and histopathologic subtype (p = 0.029). A significant association was determined when the benign and the atypical samples were compared to the malignant with respect to the SP (p = 0.009). While there was a range of the IHS for the benign and the atypical histologic subtypes, malignant tumors exhibited the lowest score and were statistically different from the benign and the atypical specimens (p < 0.001). To our knowledge, this represents the largest series of meningioma samples analyzed for EGFR expression reported in the literature. EGFR expression is greatest in benign meningiomas and may serve a potential target for therapeutic intervention with selective EGFR inhibitors

  7. Determination of proteolytic activity in cereals

    D. Wojciechowska; J. Kączkowski

    2015-01-01

    Results have been presented indicating that native proteolytic enzymes and bromelain acted variously ion wheat proteins differentiated in quality, they also act nonspecifically ton haemoglobin. It was thought useful to elaborate a new method of proteolytic activity determination based on the application of a standard natural substrate. The latter consists of gluten extract in acetic acid from a definite flour sample. The method of substrate selection and the determination procedure are descri...

  8. Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors.

    Juchum, Michael; Günther, Marcel; Laufer, Stefan A

    2015-05-01

    Multiple mutations in the EGFR gene are a major cause for the failure of Erlotinib and Gefitinib in the treatment of patients harboring non-small-cell lung cancer (NSCLC) who initially responded to this therapy. The development of these tyrosine kinase inhibitors (TKIs) is going back to the early 90s, where cancer was widely considered and fully treated as a disease of an organ. Fundamental gain of knowledge in cell biology in general and cancer genetics in particular led us to where we currently stand: cancer is a disease that originates in the genome. Fast and affordable gene sequencing paved the way and opened our eyes for the genetic instability of many cancers, particularly EGFR driven NSCLC. This might allow highly rational and personal therapies by aiming at a very particular wild type and mutant kinase pattern. However, the paradigm "one disease - one target - one drug" is currently challenged. Both activating and deactivating EGFR mutations are known to render the development of novel targeted drugs difficult. Among all lung adenocarcinomas, only 20% are driven by EGFR and only a subpopulation has an activating mutation (e.g. L858R), making them sensitive to first generation EGFR inhibitors. Unfortunately, most of them acquire second deactivating mutations (e.g. T790M) during treatment, leading to a complete loss of response. Are specific inhibitors of the double EGFR mutant L858R/T790M the magic bullet? Much scientific evidence but also high expectations justify this approach. Structural biology of EGFR mutants constitutes the basis for highly rational approaches. Second generation pan EGFR inhibitors inhibiting wild type (WT) and mutant EGFR like Afatinib suffer from dose-limiting adverse effects. Inhibition of WT EGFR is considered to be the culprit. Third generation EGFR inhibitors follow two strategies. Mutant selectivity and improved target residential time. These inhibitors display high mutant selectivity and irreversible binding patterns while

  9. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Masayuki Nitta

    Full Text Available Despite the critical role of Epidermal Growth Factor Receptor (EGFR in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER genes required for the repair of Reactive Oxygen Species (ROS-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1. Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  10. egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians.

    Fraguas, Susanna; Barberán, Sara; Iglesias, Marta; Rodríguez-Esteban, Gustavo; Cebrià, Francesc

    2014-05-01

    During the regeneration of freshwater planarians, polarity and patterning programs play essential roles in determining whether a head or a tail regenerates at anterior or posterior-facing wounds. This decision is made very soon after amputation. The pivotal role of the Wnt/β-catenin and Hh signaling pathways in re-establishing anterior-posterior (AP) polarity has been well documented. However, the mechanisms that control the growth and differentiation of the blastema in accordance with its AP identity are less well understood. Previous studies have described a role of Smed-egfr-3, a planarian epidermal growth factor receptor, in blastema growth and differentiation. Here, we identify Smed-egr-4, a zinc-finger transcription factor belonging to the early growth response gene family, as a putative downstream target of Smed-egfr-3. Smed-egr-4 is mainly expressed in the central nervous system and its silencing inhibits anterior regeneration without affecting the regeneration of posterior regions. Single and combinatorial RNA interference to target different elements of the Wnt/β-catenin pathway, together with expression analysis of brain- and anterior-specific markers, revealed that Smed-egr-4: (1) is expressed in two phases - an early Smed-egfr-3-independent phase and a late Smed-egfr-3-dependent phase; (2) is necessary for the differentiation of the brain primordia in the early stages of regeneration; and (3) that it appears to antagonize the activity of the Wnt/β-catenin pathway to allow head regeneration. These results suggest that a conserved EGFR/egr pathway plays an important role in cell differentiation during planarian regeneration and indicate an association between early brain differentiation and the proper progression of head regeneration. PMID:24700819

  11. 18F-FDG uptake for prediction EGFR mutation status in non-small cell lung cancer.

    Guan, Jian; Xiao, Nan J; Chen, Min; Zhou, Wen L; Zhang, Yao W; Wang, Shuang; Dai, Yong M; Li, Lu; Zhang, Yue; Li, Qin Y; Li, Xiang Z; Yang, Mi; Wu, Hu B; Chen, Long H; Liu, Lai Y

    2016-07-01

    Epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) are a response to EGFR-tyrosine kinase inhibitor. However, a lack of sufficient tumor tissue has been a limitation for determining EGFR mutation status in clinical practice. The objective of this study was to predict EGFR mutation status in NSCLC patients based on a model including maximum standardized uptake value (SUVmax) and clinical features.We retrospectively reviewed NSCLC patients undergoing EGFR mutation testing and pretreatment positron emission tomography/computed tomography between March 2009 and December 2013. The relationships of EGFR mutations with both SUVmax and patient characteristics were evaluated, and a multivariate logistic regression analysis was performed. The model was assessed by area under the receiver-operating characteristic curve (AUC) and was prospectively validated during January to June 2014.Three hundred and sixteen patients meeting the criteria were enrolled for model construction. The SUVmax values were significantly lower for EGFR mutations (mean, 9.5 ± 5.74) than for EGFR wild-type (mean, 12.7 ± 6.43; P tests are not available. PMID:27472739

  12. EGFR-Mutant Lung Adenocarcinoma Mimicking a Pneumonia

    Álvaro Taus

    2012-01-01

    Full Text Available PET-CT scan has demonstrated to be very effective in lung cancer diagnosis and staging, but lung cancer has multiple ways of presentation, which can lead to an error in diagnosis imaging and a delay on the beginning of specific treatment. We present a case of a 77-year-old man with an initial PET-CT scan showing high 18F-FDG intake, suggesting a bilateral pneumonia, who was finally diagnosed of an EGFR-mutant lung adenocarcinoma. EGFR-activating mutation allowed us to start treatment with the oral tyrosin kinase inhibitor Gefitinib, obtaining a rapid and sustained response. Histological confirmation of imaging findings is always necessary to avoid diagnostic errors.

  13. Genetic variations of the A13/A14 repeat located within the EGFR 3′ untranslated region have no oncogenic effect in patients with colorectal cancer

    The EGFR 3′ untranslated region (UTR) harbors a polyadenine repeat which is polymorphic (A13/A14) and undergoes somatic deletions in microsatellite instability (MSI) colorectal cancer (CRC). These mutations could be oncogenic in colorectal tissue since they were shown to result into increased EGFR mRNA stability in CRC cell lines. First, we determined in a case control study including 429 CRC patients corresponding to different groups selected or not on age of tumor onset and/or familial history and/or MSI, whether or not, the germline EGFR A13/A14 polymorphism constitutes a genetic risk factor for CRC; second, we investigated the frequency of somatic mutations of this repeat in 179 CRC and their impact on EGFR expression. No statistically significant difference in allelic frequencies of the EGFR polyA repeat polymorphism was observed between CRC patients and controls. Somatic mutations affecting the EGFR 3′UTR polyA tract were detected in 47/80 (58.8%) MSI CRC versus 0/99 microsatellite stable (MSS) tumors. Comparative analysis in 21 CRC samples of EGFR expression, between tumor and non malignant tissues, using two independent methods showed that somatic mutations of the EGFR polyA repeat did not result into an EGFR mRNA increase. Germline and somatic genetic variations occurring within the EGFR 3′ UTR polyA tract have no impact on CRC genetic risk and EGFR expression, respectively. Genotyping of the EGFR polyA tract has no clinical utility to identify patients with a high risk for CRC or patients who could benefit from anti-EGFR antibodies

  14. Discovery of 5-(methylthio)pyrimidine derivatives as L858R/T790M mutant selective epidermal growth factor receptor (EGFR) inhibitors.

    Xiao, Qiang; Qu, Rong; Gao, Dingding; Yan, Qi; Tong, Linjiang; Zhang, Wei; Ding, Jian; Xie, Hua; Li, Yingxia

    2016-06-15

    To overcome the drug-resistance of first generation EGFR inhibitors and the nonselective toxicities of second generation inhibitors among NSCLC patients, a series of 5-(methylthio)pyrimidine derivatives were discovered as novel EGFR inhibitors, which harbored not only potent enzymatic and antiproliferative activities against EGFR(L858R/T790M) mutants, but good selectivity over wide-type form of the receptor. This goal was achieved by employing structure-based drug design and traditional optimization strategies, based on WZ4002 and CO1686. These derivatives inhibited the enzymatic activity of EGFR(L858R/T790M) mutants with IC50 values in subnanomolar ranges, while exhibiting hundreds of fold less potency on EGFR(WT). These compounds also strongly inhibited the proliferation of H1975 non-small cell lung cancer cells bearing EGFR(L858R/T790M), while being significantly less toxic to A431 human epithelial carcinoma cells with overexpressed EGFR(WT). The EGFR kinase inhibitory and antiproliferative activities were further validated by Western blot analysis for activation of EGFR and the downstream signaling in cancer cells. PMID:27131639

  15. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients

    Objective: To study fluctuations in estimated glomerular filtration rate (eGFR) in relation to contrast medium (CM) enhanced magnetic resonance imaging (MRI) and computed tomography (CT) compared to control groups in outpatients. Materials and methods: eGFR was determined right before the imaging procedure and three days later at the department or at the patient's home. The iodine-based and gadolinium-based contrast media were the same as used for all other examinations at the department. Results: A total of 716 patients completed the study. There was a statistically significant, but not clinically relevant rise in eGFR after three days in all four groups. The average eGFR variation was 4.8 ml/min/1.73 m2. There were large variations in eGFR between the two measurements in 45.8% of the patients as they had a change greater than ±10 ml/min/1.73 m2. Only three patients fulfilled the contrast-induced nephropathy (CIN) requirement when the definition s-creatinine ≥44 μmol/l (0.5 mg/dl) was used. Conclusions: eGFR in outpatients undergoing MRI or CT did vary independently of whether the patient received contrast or not. The findings probably reflect the natural variations in s-creatinine levels. This should be taken into consideration when CIN is studied

  16. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or EGFR mutations

    Zhou, J.Y.; Zheng, J.; Chen, X.; Zhou, J.Y. [Zhejiang University, Department of Respiratory Disease, Thoracic Disease Center, First Affiliated Hospital, College of Medicine, Hangzhou (China); Yu, Z.F.; Xiao, W.B.; Jiang, L.N. [Zhejiang University, Department of Radiology, First Affiliated Hospital, College of Medicine, Hangzhou (China); Zhao, J.; Sun, K.; Wang, B.; Ding, W. [Zhejiang University, Department of Pathology, First Affiliated Hospital, College of Medicine, Hangzhou (China)

    2015-05-01

    To compare the clinicoradiologic features of tumours with echinoderm anaplastic lymphoma kinase (ALK) rearrangements, epidermal growth factor receptor (EGFR) mutations, or wild type (WT) for both genes in a cohort of patients with lung adenocarcinoma to identify useful characteristics of different gene statuses. In 346 lung adenocarcinoma patients, ALK rearrangements were confirmed with fluorescence in situ hybridisation, and EGFR mutations were determined by pyrosequencing assay. Patients were divided into three groups: ALK rearrangement (ALK+ group, n = 48), EGFR mutation (EGFR+ group, n = 166), and WT for both genes (WT group, n = 132). Chest computed tomography (CT) examinations were performed in all patients. The percentages of ground-glass opacity volume (pGGO) and tumour shadow disappearance rate (TDR) were measured using semi-automated nodule assessment software. The pGGO was significantly lower in the ALK+ group (25.1 % ± 24.3) than in the EGFR+ group (37.2 % ± 25.7, p < 0.001) and the WT group (36.1 % ± 24.6, p = 0.001). The TDR in the ALK+ group (17.3 % ± 25.1) was significantly lower than in the EGFR+ group (26.8 % ± 24.9, p = 0.002) and the WT group (25.7 % ± 24.6, p = 0.003). Solid pattern with lower incidence of lobulated border, finely spiculated margins, pleural retraction, and bubble-like lucency on CT imaging are the main characteristics of ALK rearrangement tumours. (orig.)

  17. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients

    Azzouz, Manal, E-mail: manalazzouz@gmail.com [Department of Diagnostic Radiology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK 2730 Herlev (Denmark); Rømsing, Janne [Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø (Denmark); Thomsen, Henrik S. [Department of Diagnostic Radiology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK 2730 Herlev (Denmark)

    2014-06-15

    Objective: To study fluctuations in estimated glomerular filtration rate (eGFR) in relation to contrast medium (CM) enhanced magnetic resonance imaging (MRI) and computed tomography (CT) compared to control groups in outpatients. Materials and methods: eGFR was determined right before the imaging procedure and three days later at the department or at the patient's home. The iodine-based and gadolinium-based contrast media were the same as used for all other examinations at the department. Results: A total of 716 patients completed the study. There was a statistically significant, but not clinically relevant rise in eGFR after three days in all four groups. The average eGFR variation was 4.8 ml/min/1.73 m{sup 2}. There were large variations in eGFR between the two measurements in 45.8% of the patients as they had a change greater than ±10 ml/min/1.73 m{sup 2}. Only three patients fulfilled the contrast-induced nephropathy (CIN) requirement when the definition s-creatinine ≥44 μmol/l (0.5 mg/dl) was used. Conclusions: eGFR in outpatients undergoing MRI or CT did vary independently of whether the patient received contrast or not. The findings probably reflect the natural variations in s-creatinine levels. This should be taken into consideration when CIN is studied.

  18. Anti-EGFR-Targeted Therapy for Esophageal and Gastric Cancers: An Evolving Concept

    Tomislav Dragovich

    2009-01-01

    Full Text Available Cancers of the esophagus and stomach present a major health burden worldwide. In the past 30 years we have witnessed some interesting shifts in terms of epidemiology of esophago gastric cancers. Regardless of a world region, the majority of patients diagnosed with esophageal or gastric cancers die from progression or recurrence of their disease. While there are many active cytotoxic agents for esophageal and stomach cancers, their impact on the disease course has been modest at best. Median survival for patients with advanced gastroesophageal cancer is still less than a year. Therefore, novel strategies, based on our understanding of biology and genetics, are desperately needed. Epidermal growth factor receptor (EGFR pathway has been implicated in pathophysiology of many epithelial malignancies, including esophageal and stomach cancers. EGFR inhibitors, small molecule tyrosine kinase inhibitors and monoclonal antibodies, have been explored in patients with esophageal and gastric cancers. It appears that tumors of the distal esophagus and gastroesophageal junction (GEJ may be more sensitive to EGFR blockade than distal gastric adenocarcinomas. Investigations looking into potential molecular predictors of sensitivity to EGFR inhibitors for patients with esophageal and GEJ cancers are ongoing. While we are still searching for those predictors, it is clear that they will be different from ones identified in lung and colorectal cancers. Further development of EGFR inhibitors for esophageal and GEJ cancers should be driven by better understanding of EGFR pathway disregulation that drives cancer progression in a sensitive patient population.

  19. FDG-PET/CT response evaluation during EGFR-TKI treatment in patients with NSCLC

    Matthijs; H; van; Gool; Tjeerd; S; Aukema; Koen; J; Hartemink; Renato; A; Valdés; Olmos; Houke; M; Klomp; Harm; van; Tinteren

    2014-01-01

    Over recent years,[18F]-fluorodeoxyglucose positron emission tomography acquired together with low dose computed tomography(FDG-PET/CT)has proven its role as a staging modality in patients with non-small cell lung cancer(NSCLC).The purpose of this review was to present the evidence to use FDG-PET/CT for response evaluation in patients with NSCLC,treated with epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitors(TKI).All published articles from 1November 2003 to 1 November 2013 reporting on 18FFDG-PET response evaluation during EGFR-TKI treatment in patients with NSCLC were collected.In total 7studies,including data of 210 patients were eligible for analyses.Our report shows that FDG-PET/CT responseduring EGFR-TKI therapy has potential in targeted treatment for NSCLC.FDG-PET/CT response is associated with clinical and radiologic response and with survival.Furthermore FDG-PET/CT response monitoring can be performed as early as 1-2 wk after initiation of EGFR-TKI treatment.Patients with substantial decrease of metabolic activity during EGFR-TKI treatment will probably benefit from continued treatment.If metabolic response does not occur within the first weeks of EGFR-TKI treatment,patients may be spared(further)unnecessary toxicity of ineffective treatment.Refining FDG-PET response criteria may help the clinician to decide on continuation or discontinuation of targeted treatment.

  20. Phosphoproteomics-based modeling defines the regulatory mechanism underlying aberrant EGFR signaling.

    Shinya Tasaki

    Full Text Available BACKGROUND: Mutation of the epidermal growth factor receptor (EGFR results in a discordant cell signaling, leading to the development of various diseases. However, the mechanism underlying the alteration of downstream signaling due to such mutation has not yet been completely understood at the system level. Here, we report a phosphoproteomics-based methodology for characterizing the regulatory mechanism underlying aberrant EGFR signaling using computational network modeling. METHODOLOGY/PRINCIPAL FINDINGS: Our phosphoproteomic analysis of the mutation at tyrosine 992 (Y992, one of the multifunctional docking sites of EGFR, revealed network-wide effects of the mutation on EGF signaling in a time-resolved manner. Computational modeling based on the temporal activation profiles enabled us to not only rediscover already-known protein interactions with Y992 and internalization property of mutated EGFR but also further gain model-driven insights into the effect of cellular content and the regulation of EGFR degradation. Our kinetic model also suggested critical reactions facilitating the reconstruction of the diverse effects of the mutation on phosphoproteome dynamics. CONCLUSIONS/SIGNIFICANCE: Our integrative approach provided a mechanistic description of the disorders of mutated EGFR signaling networks, which could facilitate the development of a systematic strategy toward controlling disease-related cell signaling.

  1. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors

    Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties

  2. Research progress on criteria for discontinuation of EGFR inhibitor therapy

    Zhuang HQ

    2012-10-01

    Full Text Available Hong-qing Zhuang, Zhi-yong Yuan, Jun Wang, Ping Wang, Lu-jun Zhao, Bai-lin ZhangDepartment of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, People's Republic of ChinaAbstract: The clinical success of the epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKI as therapeutic agents has prompted great interest in their further development and clinical testing for a wide variety of malignancies. However, most studies have focused on the efficacy of TKI, and few studies have been done on the criteria for their discontinuation. The current standard for drug discontinuation is “until progression”, based on change in tumor size. However, tumor size is not related to the gene expression which determines the efficacy of TKI in the final analysis, and it is also difficult to make a thorough and correct prediction based on tumor size when the TKI is discontinued. Nevertheless, clinical evaluation of the criteria for TKI discontinuation is still in its early days. Some promising findings have started to emerge. With the improving knowledge of EGFR and its inhibitors, it is expected that the criteria for discontinuation of EGFR inhibitor therapy will become clearer.Keywords: epidermal growth factor receptor, drug discontinuation, acquired drug-resistance

  3. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    Kristoffersen, Karina

    2013-01-01

    treatment. The overall aim of the present PhD project has been to study the functional role of EGFR and Notch activity in bCSCs stem cell-like features and tumorigenic potential with the purpose of deepen our knowledge about the significance of these pathways in the bCSC population in GBM. By establishing...... expression of the mutant receptor EGFRvIII, an expression that was maintained from patient material to the xenograft tumors and cell cultures. In a culture expressing EGFR and EGFRvIII we found that EGFR inhibition induced differentiation, while forced differentiation led to down-regulation of EGFR and EGFRv......III. In addition, we showed that EGFR/EGFRvIII down regulation either as a result of induced differentiation or EGFR inhibition led to decreased in vitro tumorigenic and stem cell-like potential. In cultures expressing high levels of the Notch-1 receptor we found that Notch inhibition decreased the in...

  4. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays

    Weber, Britta; Meldgaard, Peter; Hager, Henrik; Wu, Lin; Wei, Wen; Tsai, Julie; Khalil, Azza; Nexo, Ebba; Sorensen, Boe S

    2014-01-01

    mutations in exons 18-21 of the EGFR gene, employing the cobas(®) EGFR Tissue Test and cobas(®) EGFR Blood Test (in development, Roche Molecular Systems, Inc., CA, USA). RESULTS: Test results were obtained in all 199 (100%) plasma samples and 196/199 (98%) of the biopsies. EGFR-activating mutations were......BACKGROUND: Lung cancer patients with mutations in the epidermal growth factor receptor (EGFR) are primary candidates for EGFR-targeted therapy. Reliable analyses of such mutations have previously been possible only in tumour tissue. Here, we demonstrate that mutations can be detected in plasma...... samples with allele-specific PCR assays. METHODS: Pairs of the diagnostic biopsy and plasma obtained just prior to start of erlotinib treatment were collected from 199 patients with adenocarcinoma of non-small-cell lung cancer. DNA from both sample types was isolated and examined for the presence of...

  5. Activation determination of copper in food

    Neutron activation analysis was used for determining copper content in food. Analyzed were dried milk, flour, coffee, tea, husked rice, and liver. Bowen's kale powder with a guaranteed copper content of 3.6 to 6.5 ppm was used as a reference biological material. The instruments, chemicals and solutions used are reported. The method is described of copper separation with α-benzoinoxime and pyridine as is the procedure for the destructive activation analysis of samples. The copper concentrations in the foods under analysis were found to range within usual limits. The copper concentration determined in the reference material agreed with the measured value. The analysis confirms that the method yields reliable results. (J.B.)

  6. A proposed EGFR inhibitor dermatologic adverse event-specific grading scale from the MASCC skin toxicity study group

    Lacouture, Mario E.; Maitland, Michael L.; Segaert, Siegfried; Setser, Ann; Baran, Robert; Fox, Lindy P.; Epstein, Joel B.; Barasch, Andrei; Einhorn, Lawrence; Wagner, Lynne; West, Dennis P.; Rapoport, Bernardo L.; Kris, Mark G.; Basch, Ethan; Eaby, Beth; Kurtin, Sandra; Olsen, Elise A.; Chen, Alice; Dancey, Janet E.; Trotti, Andy

    2010-01-01

    Accurate grading of dermatologic adverse events (AE) due to epidermal growth factor receptor (EGFR) inhibitors (EGFRIs) is necessary for drug toxicity determinations, interagent comparisons, and supportive care trials. The most widely used severity grading scale, the National Cancer Institute's Comm

  7. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M.

    Thress, Kenneth S; Paweletz, Cloud P; Felip, Enriqueta; Cho, Byoung Chul; Stetson, Daniel; Dougherty, Brian; Lai, Zhongwu; Markovets, Aleksandra; Vivancos, Ana; Kuang, Yanan; Ercan, Dalia; Matthews, Sarah E; Cantarini, Mireille; Barrett, J Carl; Jänne, Pasi A; Oxnard, Geoffrey R

    2015-06-01

    Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation. PMID:25939061

  8. Acquired EGFR C797S mediates resistance to AZD9291 in advanced non-small cell lung cancer harboring EGFR T790M

    Thress, Kenneth S.; Paweletz, Cloud P.; Felip, Enriqueta; Cho, Byoung Chul; Stetson, Daniel; Dougherty, Brian; Lai, Zhongwu; Markovets, Aleksandra; Vivancos, Ana; Kuang, Yanan; Ercan, Dalia; Matthews, Sarah; Cantarini, Mireille; Barrett, J. Carl; Jänne, Pasi A.; Oxnard, Geoffrey R.

    2015-01-01

    Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for T790M prior to treatment, but at resistance three molecular subtypes emerged: 6 cases acquired the C797S mutation, 5 cases maintained the T790M mutation but did not acquire the C797S mutation, and 4 cases lost the T790M mutation despite detecting of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies able to overcome resistance mediated by EGFR C797S. PMID:25939061

  9. Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis

    Zalypsis® is a marine compound in phase II clinical trials for multiple myeloma, cervical and endometrial cancer, and Ewing’s sarcoma. However, the determinants of the response to Zalypsis are not well known. The identification of biomarkers for Zalypsis activity would also contribute to broaden the spectrum of tumors by selecting those patients more likely to respond to this therapy. Using in vitro drug sensitivity data coupled with a set of molecular data from a panel of sarcoma cell lines, we developed molecular signatures that predict sensitivity to Zalypsis. We verified these results in culture and in vivo xenograft studies. Zalypsis resistance was dependent on the expression levels of PDGFRα or constitutive phosphorylation of c-Kit, indicating that the activation of tyrosine kinase receptors (TKRs) may determine resistance to Zalypsis. To validate our observation, we measured the levels of total and active (phosphorylated) forms of the RTKs PDGFRα/β, c-Kit, and EGFR in a new panel of diverse solid tumor cell lines and found that the IC50 to the drug correlated with RTK activation in this new panel. We further tested our predictions about Zalypsis determinants for response in vivo in xenograft models. All cells lines expressing low levels of RTK signaling were sensitive to Zalypsis in vivo, whereas all cell lines except two with high levels of RTK signaling were resistant to the drug. RTK activation might provide important signals to overcome the cytotoxicity of Zalypsis and should be taken into consideration in current and future clinical trials

  10. Determinants of Physical Activity in Active and Low-Active, Sixth Grade African-American Youth.

    Trost, Stewart G.; Pate, Russell R.; Ward, Dianne S.; Saunders, Ruth; Riner, William

    1999-01-01

    Compared determinants of physical activity in active and low-active African-American sixth graders, surveying students and making objective assessments of physical activity over seven days. Results indicated that physical activity self-efficacy, beliefs about physical activity outcomes, involvement in community-based physical activity, perception…

  11. C/EBPα Short-Activating RNA Suppresses Metastasis of Hepatocellular Carcinoma through Inhibiting EGFR/β-Catenin Signaling Mediated EMT

    Huan, Hongbo; Wen, Xudong; Chen, Xuejiao; Wu, Lili; Liu, Weihui; Habib, Nagy A.; Bie, Ping; Xia, Feng

    2016-01-01

    Hepatocellular carcinoma is associated with high mortality, and tumor metastasis is an important reason for poor prognosis. However, metastasis has not been effectively prevented in clinical therapy and the mechanisms underlying metastasis have not been fully characterized. CCAAT/enhancer-binding protein-α (C/EBPα) is a transcriptional regulator with an essential role in tumor metastasis. We used short-activating RNAs (saRNA) to enhance expression of C/EBPα. Intravenous injection of C/EBPα-sa...

  12. Meta-Analysis of First-Line Therapies in Advanced Non–Small-Cell Lung Cancer Harboring EGFR-Activating Mutations

    Haaland, Benjamin; Tan, Pui San; Castro, Gilberto de; Lopes, Gilberto

    2014-01-01

    Introduction: Tyrosine kinase inhibitors gefitinib, erlotinib, and afatinib have been compared with chemotherapy as first-line therapies for patients with advanced non–small-cell lung cancer harboring epidermal growth factor receptor–activating mutations. This meta-analysis compares gefitinib, erlotinib, afatinib, and chemotherapy. Methods: Literature search was performed using relevant keywords. Direct and indirect meta-estimates were generated using log-linear mixed-effects models, with ran...

  13. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used to investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMFSF2) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMFSF2 at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may have important

  14. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes

    Jin, Yinhua; Ha, Nati; Forés, Marta; Xiang, Jinyi; Gläßer, Christine; Maldera, Julieta; Jiménez, Gerardo; Edgar, Bruce A.

    2015-01-01

    Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs). Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR) in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic), mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic’s nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25), Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt). pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs. PMID:26683696

  15. Gefitinib: a pharmacoeconomic profile of its use in patients with Non Small Cell Lung Cancer EGFR+

    Viola Sacchi

    2011-06-01

    Full Text Available Lung cancer is the most common form of cancer with the highest incidence worldwide. The mortality rates are highest in males and second highest in females, after breast cancer. The genetic predisposition to Non Small Cell Lung Cancer (NSCLC is still under investigation, however, studies have shown that the Epidermal Growth Factor Receptor (EGFR, a receptor tyrosine kinase is frequently over-expressed and activated to a phosphorylated state in NSCLC. The activity of EGFR in cancer cells results in the phosphorylation of downstream proteins that promote cell proliferation, invasion, metastasis, and inhibition of apoptosis. Targeting the EGFR pathway therefore constitutes a relevant strategy for cancer therapy. Gefitinib is a selective inhibitor of the EGFR tyrosine kinase and is indicated for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of EGFR-TK. From the pharmacoeconomic point of view gefitinib is dominant (more effective and less expensive compared to the alternatives. In conclusion, gefitinib is a treatment option for NSCLC tumors with a high clinical and economic value in the Italian setting.

  16. Clinical Characteristics and Outcomes of Lung Cancer Patients 
with EGFR Mutations in Exons 19 and 21

    Renwang LIU

    2014-11-01

    Full Text Available Background and objective Studies on the epidermal growth factor receptor (EGFR signaling pathways and the therapeutic effects of EGFR-tyrosine kinase inhibitors (EGFR-TKIs have recently proven that targeted therapy has a major role in the treatment of lung cancer. However, the therapeutic effects of EGFR-TKIs on lung cancers with different EGFR mutation subtypes remain unclear. And if there is a significant difference in the effects of EGFR-TKIs, the mechanisms for the difference remain unclear. The aim of this study was to investigate the clinical importance of EGFR mutations in exons 19 and 21 of lung cancer patients and to compare the outcomes of these patients. Methods The study recruited 113 patients who had non-small cell lung cancer (NSCLC with EGFR mutations. EGFR mutations were detected for 47 patients using Real-time PCR or DNA sequencinag. The mutations of the remaining patients were determined using xTag-EGFR liquid chip technology. All stages I-III patients underwent radical resection followed by 4 cycles of postoperative chemotherapy. Patients with pleural metastases underwent pleural biopsy, pleurodesis, and chemotherapy only. Patients with distant metastases underwent biopsy and chemotherapy only. Collected clinical data were analyzed using SPSS 19.0 software. Results EGFR exon mutations 19 and 21 were found in 56 and 57 patients, respectively. The mean age of patients with exon 19 mutations was lower than the age of the patients with exon 21 mutations (57.02±11.31 years vs 62.25±7.76 years, respectively; P0.05 between the patients with exon 19 and 21 mutations; and survival analysis of 91 (80.5% patients with complete clinical data found no differences in overall survival. Stratification analysis found out that patients with exon 19 mutations had longer overall survival associated with age>61 years, male gender, ever smoking, and stage IV disease; although the differences were not significant. Conclusion Compared to the lung

  17. Expressions of c-Cbl, Cbl-b and EGFR and Its Role of Prognosis in NSCLC

    Jiao, Xin; JIN, BO; Qu, Xiujuan; Shunchao YAN; Hou, Kezuo; Liu, Yunpeng; Hu, Xuejun

    2011-01-01

    Background and objective Epidermal growth factor receptor (EGFR) is closely correlated with the progression of lung cancer. Its activity is modulated by Casitas B-lineage lymphoma (Cbl) family. The aim of this study is to investigate the expression and clinical relevance of c-Cbl, Cbl-b and EGFR in non-small cell lung cancer (NSCLC). Methods Expressions of c-Cbl, Cbl-b and EGFR protein were detected with tissue microarrays and immunohistochemistry technique in 94 cases of NSCLC. The correlati...

  18. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations.

    Sequist, Lecia V

    2013-09-20

    The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR\\/ErbB1), human epidermal growth factor receptor 2 (HER2\\/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS).

  19. [Determination of riboflavin kinase activity in yeast].

    Shavlovsky, G M; Kashchenko, V E

    1975-01-01

    It is established that the main reason of the riboflavin kinase (RFK, EC 2.7.1.26) low specific activity in the cell-free extracts of the yeast Pichia guillermondii Wickerham ATCC 9058 is the presence of alkaline phosphatase (EC 3.1.3.1), effectively destructing flaven mononucleotide. By chromatography of the cell-free extracts of P. guillermondii on DEAE-Sephadex A-50, CM-Sphadex C-50, CM-cellulose, Sephadexes G-75 and G-100 RFK and alkaline phosphatase may be separated completely. Any of these procedures results in a several times increase of the RFK activity as compared with the initial preparation. One failed to obtain a similar effect by fractionation of the extracts with amminium sulphate and by hydroxylapatite chromatography. A simple method is developed for determining the activity of RFK in the cell-free extracts of yeast on the basis of negative adsorption of this enzyme on DEAE-Sephadex A-50. A selective inhibition of alkaline phosphatase by ions Be2+ and F- yields a less satisfactory result. The data are presented on the PFK activity of certain species of flavinogenic (Pichia guillermondii, Torulopsis camdida) and non-flavinogenic (Pichia ohmeri, Candida utilis, Saccharomyces cervisiae) yeast. PMID:174262

  20. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy

    Sha, Huizi; Zou, Zhengyun; Xin, Kai; Bian, Xinyu; Cai, Xueting; Lu, Wuguang; Chen, Jiao; Chen, Gang; Huang, Leaf; Blair, Andrew M.; Cao, Peng; Liu, Baorui

    2016-01-01

    Human tumors, including gastric cancer, frequently express high levels of epidermal growth factor receptors (EGFRs), which are associated with a poor prognosis. Targeted delivery of anticancer drugs to cancerous tissues shows potential in sparing unaffected tissues. However, it has been a major challenge for drug penetration in solid tumor tissues due to the complicated tumor microenvironment. We have constructed a recombinant protein named anti-EGFR-iRGD consisting of an anti-EGFR VHH (the variable domain from the heavy chain of the antibody) fused to iRGD, a tumor-specific binding peptide with high permeability. Anti-EGFR-iRGD, which targets EGFR and αvβ3, spreads extensively throughout both the multicellular spheroids and the tumor mass. The recombinant protein anti-EGFR-iRGD also exhibited antitumor activity in tumor cell lines, multicellular spheroids, and mice. Moreover, anti-EGFR-iRGD could improve anticancer drugs, such as doxorubicin (DOX), bevacizumab, nanoparticle permeability and efficacy in multicellular spheroids. This study draws attention to the importance of iRGD peptide in the therapeutic approach of anti-EGFR-iRGD. As a consequence, anti-EGFR-iRGD could be a drug candidate for cancer treatment and a useful adjunct of other anticancer drugs. PMID:25553823

  1. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent

    Liu W

    2015-07-01

    Full Text Available Wei Liu,1,* Jin-Feng Ning,2,* Qing-Wei Meng,1 Jing Hu,1 Yan-Bin Zhao,1 Chao Liu,3 Li Cai11The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 2The Thoracic Surgery Department, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China; 3General Surgery Department, Mudanjiang Guanliju Central Hospital, Mishan, Heilongjiang Province, People’s Republic of China*These authors contributed equally to this workAbstract: The epidermal growth factor receptor (EGFR family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC, particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB. Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10 against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB.Keywords: EGFR, kinase

  2. A synonymous EGFR polymorphism predicting responsiveness to anti-EGFR therapy in metastatic colorectal cancer patients.

    Bonin, Serena; Donada, Marisa; Bussolati, Gianni; Nardon, Ermanno; Annaratone, Laura; Pichler, Martin; Chiaravalli, Anna Maria; Capella, Carlo; Hoefler, Gerald; Stanta, Giorgio

    2016-06-01

    Genetic factors are known to affect the efficiency of therapy with monoclonal antibodies (mAbs) targeting the epidermal growth factor receptor (EGFR) in patients with metastatic colorectal cancer (mCRC). At present, the only accepted molecular marker predictive of the response to anti-EGFR mAbs is the somatic mutation of KRAS and NRAS as a marker of resistance to anti-EGFR. However, only a fraction of KRAS wild-type patients benefit from that treatment. In this study, we show that the EGFR gene polymorphism rs1050171 defines, independently of RAS mutational status, a sub-population of 11 % of patients with a better clinical outcome after anti-EGFR treatment. Median PFS for patients with the GG genotype was 10.17 months compared to 5.37 of those with AG + AA genotypes. Taken together, our findings could be used to better define CRC populations responding to anti-EGFR therapy. Further studies in larger independent cohorts are necessary to validate the present observation that a synonymous polymorphism in EGFR gene impacts on clinical responsiveness. PMID:26666825

  3. Expressions of c-Cbl, Cbl-b and EGFR and Its Role of Prognosis in NSCLC

    Xin JIAO

    2011-06-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR is closely correlated with the progression of lung cancer. Its activity is modulated by Casitas B-lineage lymphoma (Cbl family. The aim of this study is to investigate the expression and clinical relevance of c-Cbl, Cbl-b and EGFR in non-small cell lung cancer (NSCLC. Methods Expressions of c-Cbl, Cbl-b and EGFR protein were detected with tissue microarrays and immunohistochemistry technique in 94 cases of NSCLC. The correlations between the expression of the three proteins and clinicopathological parameters were analyzed. Results The positive expression rates of EGFR, c-Cbl and Cbl-b were 60.6% (57/94, 30.9% (29/94 and 84.0% (79/94, respectively. The expression of EGFR, c-Cbl and Cbl-b was not associated with age, pathological type, TNM stage, lymph node metastasis, and smoking history. c-Cbl and Cbl-b status was not significantly correlated with overall survival. Subgroup analyses showed that c-Cbl-positive patients had longer survival than c-Cbl-negative patients in EGFR-positive group (P=0.014. Conclusion Detection of c-Cbl protein levels might contribute to the prognosis evaluation of EGFR-positive NSCLC.

  4. Pharmacogenomics of EGFR-targeted therapies in non-small cell lung cancer:EGFR and beyond

    Christopher Delaney; Samuel Frank; R Stephanie Huang

    2015-01-01

    Commonly observed aberrations in epidermal growth factor receptor (EGFR) signaling have led to the development of EGFR-targeted therapies for various cancers, including non–small cell lung cancer (NSCLC). EGFR mutations and overexpression have further been shown to modulate sensitivity to these EGFR-targeted therapies in NSCLC and several other types of cancers. However, it is clear that mutations and/or genetic variations in EGFR alone cannot explain all of the variability in the responses of patients with NSCLC to EGFR-targeted therapies. For instance, in addition to EGFR genotype, genetic variations in other members of the signaling pathway downstream of EGFR or variations in paral el receptor tyrosine kinase (RTK) pathways are now recognized to have a significant impact on the efficacy of certain EGFR-targeted therapies. In this review, we highlight the mutations and genetic variations in such genes downstream of EGFR and in parallel RTK pathways. Specifically, the directional effects of these pharmacogenetic factors are discussed with a focus on two commonly prescribed EGFR inhibitors:cetuximab and erlotinib. The results of this comprehensive review can be used to optimize the treatment of NSCLC with EGFR inhibitors. Furthermore, they may provide the rationale for the design of subsequent combination therapies that involve the inhibition of EGFR.

  5. Nimotuzumab promotes radiosensitivity of EGFR-overexpression esophageal squamous cell carcinoma cells by upregulating IGFBP-3

    Zhao Lei

    2012-12-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR is suggested to predict the radiosensitivity and/or prognosis of human esophageal squamous cell carcinoma (ESCC. The objective of this study was to investigate the efficacy of Nimotuzumab (an anti-EGFR monoclonal antibody on ESCC radiotherapy (RT and underlying mechanisms. Methods Nimotuzumab was administrated to 2 ESCC cell lines KYSE30 and TE-1 treated with RT. Cell growth, colony formation and apoptosis were used to measure anti-proliferation effects. The method of RNA interference was used to investigate the role of insulin-like growth factor binding protein-3 (IGFBP-3 in ESCC cells radiosensitivity treated with Nimotuzumab. In vivo effect of Nimotuzumab on ESCC radiotherapy was done using a mouse xenograft model. Results Nimotuzumab enhanced radiation response of KYSE30 cells (with high EGFR expression in vitro, as evidenced by increased radiation-inhibited cell growth and colony formation and radiation-mediated apoptosis. Mechanism study revealed that Nimotuzumab inhibited phosphorylated EGFR (p-EGFR induced by EGF in KYSE30 cells. In addition, knockdown of IGFBP-3 by short hairpin RNA significantly reduced KYSE30 cells radiosensitivity (PP>0.05. In KYSE30 cell xenografts, Nimotuzumab combined with radiation led to significant tumor growth delay, compared with that of radiation alone (P=0.029, and also with IGFBP-3 up-regulation in tumor tissue. Conclusions Nimotuzumab could enhance the RT effect of ESCC cells with a functional active EGFR pathway. In particular, the increased ESCC radiosensitivity by Nimotuzumab might be dependent on the up-regulation of IGFBP-3 through EGFR-dependent pathway.

  6. Simultaneous molecular imaging of EGFR and HER2 using hyperspectral darkfield microscopy and immunotargeted nanoparticles

    Crow, Matthew J.; Marinakos, Stella; Chilkoti, Ashutosh; Wax, Adam P.

    2009-02-01

    Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER2) contribute to the regulation of cell proliferation, and when jointly over-expressed are associated with several types of cancer. The ability to monitor both receptors simultaneously results in a more accurate indicator of degree of cancerous activity than either receptor alone. Plasmonic nanoparticles (NPs) show promise as a potential EGFR and HER2 biomarker over alternatives such as fluorophores and quantum dots, which are limited by their cytotoxicity and photobleaching. To observe immunolabeled NPs bound to receptor-expressing cells, our past experiments were conducted using a novel optical darkfield microspectroscopy system. We implemented an epi-illumination darkfield broadband light train, which allows for darkfield analysis of live cells in culture with enhanced NP contrast. Under this setup, molecularly specific binding of NPs immunolabeled with anti-EGFR was confirmed. We have since adapted our darkfield setup, which previously only obtained spectral information from a line imaging spectrometer, to incorporate hyperspectral imaging capabilities, allowing widefield data acquisition within seconds. The new system has been validated through observation of shifts in the peak wavelength of scattering by gold NPs on silanated cover glasses using several immersion media. Peak resonant scattering wavelengths match well with that predicted by Mie theory. We will further demonstrate the potential of the system with simultaneous molecular imaging of multiple receptors in vitro using labeled EGFR+/HER2+ SK-BR-3 human breast cancer cells with anti-EGFR immunolabeled gold nanospheres and anti-HER2 immunolabeled gold nanorods, with each scattering in different spectral windows. Additional trials will be performed to demonstrate molecularly specific binding using EGFR+/HER2- MDA-MB-468 and HER2+/EGFR- MDA-MB-453 breast cancer cells.

  7. Sensing of p53 and EGFR Biomarkers Using High Efficiency SERS Substrates

    Peter Owens

    2015-10-01

    Full Text Available In this paper we describe a method for the determination of protein concentration using Surface Enhanced Raman Resonance Scattering (SERRS immunoassays. We use two different Raman active linkers, 4-aminothiophenol and 6-mercaptopurine, to bind to a high sensitivity SERS substrate and investigate the influence of varying concentrations of p53 and EGFR on the Raman spectra. Perturbations in the spectra are due to the influence of protein–antibody binding on Raman linker molecules and are attributed to small changes in localised mechanical stress, which are enhanced by SERRS. These influences are greatest for peaks due to the C-S functional group and the Full Width Half Maximum (FWHM was found to be inversely proportional to protein concentration.

  8. Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways.

    Harish Chandra Pal

    Full Text Available Epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor 2 (VEGFR2 have emerged as two effective clinical targets for non-small-cell lung cancer (NSCLC. In the present study, we found that delphinidin, an anthocyanidin, present in pigmented fruits and vegetables, is a potent inhibitor of both EGFR and VEGFR2 in NSCLC cells that overexpress EGFR/VEGFR2. Using these cells, we next determined the effects of delphinidin on cell growth and apoptosis in vitro and on tumor growth and angiogenesis in vivo. Delphinidin (5-60 µM treatment of NSCLC cells inhibited the activation of PI3K, and phosphorylation of AKT and MAPKs. Additionally, treatment of NSCLC cells with delphinidin resulted in inhibition of cell growth without having significant toxic effects on normal human bronchial epithelial cells. Specifically, treatment of NCI-H441 and SK-MES-1 cells with delphindin (5-60 µM resulted in (i cleavage of PARP protein, (ii activation of caspase-3 and -9, (iii downregulation of anti-apoptotic proteins (Bcl2, Bcl-xL and Mcl-1, (iv upregulation of pro-apoptotic proteins (Bax and Bak, and (v decreased expression of PCNA and cyclin D1. Furthermore, in athymic nude mice subcutaneously implanted with human NSCLC cells, delphinidin treatment caused a (i significant inhibition of tumor growth, (ii decrease in the expression of markers for cell proliferation (Ki67 and PCNA and angiogenesis (CD31 and VEGF, and (iii induction of apoptosis, when compared with control mice. Based on these observations, we suggest that delphinidin, alone or as an adjuvant to current therapies, could be used for the management of NSCLC, especially those that overexpress EGFR and VEGFR2.

  9. NF-κB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance.

    Chiu, Ching-Feng; Chang, Yi-Wen; Kuo, Kuang-Tai; Shen, Yu-Shiuan; Liu, Chien-Ying; Yu, Yang-Hao; Cheng, Ching-Chia; Lee, Kang-Yun; Chen, Feng-Chi; Hsu, Min-Kung; Kuo, Tsang-Chih; Ma, Jui-Ti; Su, Jen-Liang

    2016-05-01

    Therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib or erlotinib) significantly prolongs survival time for patients with tumors harboring an activated mutation on EGFR; however, up to 40% of lung cancer patients exhibit acquired resistance to EGFR-TKIs with an unknown mechanism. FOXO3a, a transcription factor of the forkhead family, triggers apoptosis, but the mechanistic details involved in EGFR-TKI resistance and cancer stemness remain largely unclear. Here, we observed that a high level of FOXO3a was correlated with EGFR mutation-independent EGFR-TKI sensitivity, the suppression of cancer stemness, and better progression-free survival in lung cancer patients. The suppression of FOXO3a obviously increased gefitinib resistance and enhanced the stem-like properties of lung cancer cells; consistent overexpression of FOXO3a in gefitinib-resistant lung cancer cells reduced these effects. Moreover, we identified that miR-155 targeted the 3'UTR of FOXO3a and was transcriptionally regulated by NF-κB, leading to repressed FOXO3a expression and increased gefitinib resistance, as well as enhanced cancer stemness of lung cancer in vitro and in vivo. Our findings indicate that FOXO3a is a significant factor in EGFR mutation-independent gefitinib resistance and the stemness of lung cancer, and suggest that targeting the NF-κB/miR-155/FOXO3a pathway has potential therapeutic value in lung cancer with the acquisition of resistance to EGFR-TKIs. PMID:27091996

  10. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury

    Qu Wen-sheng

    2012-07-01

    Full Text Available Abstract Background Emerging evidence indicates that reactive microglia-initiated inflammatory responses are responsible for secondary damage after primary traumatic spinal cord injury (SCI; epidermal growth factor receptor (EGFR signaling may be involved in cell activation. In this report, we investigate the influence of EGFR signaling inhibition on microglia activation, proinflammatory cytokine production, and the neuronal microenvironment after SCI. Methods Lipopolysaccharide-treated primary microglia/BV2 line cells and SCI rats were used as model systems. Both C225 and AG1478 were used to inhibit EGFR signaling activation. Cell activation and EGFR phosphorylation were observed after fluorescent staining and western blot. Production of interleukin-1beta (IL-1β and tumor necrosis factor alpha (TNFα was tested by reverse transcription PCR and ELISA. Western blot was performed to semi-quantify the expression of EGFR/phospho-EGFR, and phosphorylation of Erk, JNK and p38 mitogen-activated protein kinases (MAPK. Wet-dry weight was compared to show tissue edema. Finally, axonal tracing and functional scoring were performed to show recovery of rats. Results EGFR phosphorylation was found to parallel microglia activation, while EGFR blockade inhibited activation-associated cell morphological changes and production of IL-1β and TNFα. EGFR blockade significantly downregulated the elevated MAPK activation after cell activation; selective MAPK inhibitors depressed production of cytokines to a certain degree, suggesting that MAPK mediates the depression of microglia activation brought about by EGFR inhibitors. Subsequently, seven-day continual infusion of C225 or AG1478 in rats: reduced the expression of phospho-EGFR, phosphorylation of Erk and p38 MAPK, and production of IL-1β and TNFα; lessened neuroinflammation-associated secondary damage, like microglia/astrocyte activation, tissue edema and glial scar/cavity formation; and enhanced axonal