WorldWideScience

Sample records for activated carbon surface

  1. Microstructure and surface properties of lignocellulosic-based activated carbons

    Gonzalez-Garcia, P., E-mail: pegonzal@quim.ucm.es [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain); Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, E-33080 Oviedo (Spain); Urones-Garrote, E. [Centro Nacional de Microscopia Electronica, Universidad Complutense, E-28040, Madrid (Spain); Avila-Brande, D.; Otero-Diaz, L.C. [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Activated carbons were produced by KOH activation at 700 Degree-Sign C. Black-Right-Pointing-Pointer The observed nanostructure consists of highly disordered graphene-like layers with sp{sup 2} bond content Almost-Equal-To 95%. Black-Right-Pointing-Pointer Textural parameters show high surface area ( Almost-Equal-To 1000 m{sup 2}/g) and pore width of 1.3-1.8 nm. Black-Right-Pointing-Pointer Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 Degree-Sign C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp{sup 2} content Almost-Equal-To 95% and average mass density of 1.65 g/cm{sup 3} (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m{sup 2}/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm{sup 2}) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  2. Adsorption of naphthenic acids on high surface area activated carbons.

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  3. High Surface Area of Nano Pores Activated Carbon Derived From Agriculture Waste

    In this study, the high surface area of nano pores activated carbon rice husk originated from local biomass was investigated. The comparison in terms of surface area, porosity and behavior in electrochemical analysis with commercial activated carbon was studied in details. The nano pores activated carbon rice husk was synthesis using consecutive of carbonization and activation under purified nitrogen and carbon dioxide purge. Interestingly, the surface area and capacity of the nano pores activated carbon rice indicated higher in comparison to commercial activated carbon. This indicated that the nano pores activated carbon has potential to be developed further as an alternative material in reducing suspension on commercial activated carbon. (author)

  4. A REVIEW OF OXYGEN-CONTAINING SURFACE GROUPS AND SURFACE MODIFICATION OF ACTIVATED CARBON

    WU Yongwen; LI Zhong; XI Hongxia; XIA Qibin

    2004-01-01

    This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.

  5. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive. PMID:25531980

  6. Molecular simulation of multi-component adsorption processes related to carbon capture in a high surface area, disordered activated carbon

    Di Biase, Emanuela; Sarkisov, Lev

    2015-01-01

    We employ a previously developed model of a high surface area activated carbon, based on a random packing of small fragments of a carbon sheet, functionalized with hydroxyl surface groups, to explore adsorption of water and multicomponent mixtures under conditions representing typical carbon capture processes. Adsorption of water is initialized and proceeds through the growth of clusters around the surface groups, in a process predominantly governed by hydrogen bond interactions. In contrast,...

  7. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  8. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  9. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Izquierdo Pantoja, María Teresa; Yuso, A. M. de; Valenciano, Raquel; Rubio Villa, Begoña; Pino, María Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation...

  10. Effects of Surface Area and Flow Rate on Marine Bacterial Growth in Activated Carbon Columns

    Shimp, Robert J.; Pfaender, Frederic K.

    1982-01-01

    The colonization of granular activated carbon columns by bacteria can have both beneficial and potentially detrimental consequences. Bacterial growth on the carbon surface can remove adsorbed organics and thus partially regenerate the carbon bed. However, growth can also increase the levels of bacteria in the column effluents, which can adversely affect downstream uses of the treated water. This study of a sand column and several activated carbon columns demonstrated that considerable marine ...

  11. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  12. Comparison of various sources of high surface area carbon prepared by different types of activation

    Activated carbon has been known as an excellent adsorbent and is widely used due to its large adsorption capacity. Activation condition and types of activation influence the surface area and porosity of the activated carbon produced. In this study, palm kernel shells and commercially activated carbon were used. To convert palm kernel shells into coal, two methods were employed, namely chemical activation and physical activation. For chemical activation, two activating agents, zinc chloride and potassium carbonate, were used. The activated carbons were analyzed using Fourier Transform Infrared (FTIR) spectroscopy, single point BET and free emission scanning electron microscopy (FESEM). The commercial activated carbon was also characterized. FTIR results indicate that all the palm kernel shells were successfully converted to carbon. Single point BET surface area of all the carbons prepared were obtained. From FESEM micrograph, the chemically activated palm kernel shells shows well highly defined cavities and pores. This study also shows that palm kernel shells can be used to be a better source of high surface area carbon. (author)

  13. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  14. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass

    The preparation of activated carbon from date stone treated with phosphoric acid was optimized using rotatable central composite design of response surface methodology (RSM). The chemical activating agent concentration and temperature of activation plays a crucial role in preparation of large surface area activated carbons. The optimized activated carbon was characterized using thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the larger surface area of activated carbon from date stone can be achieved under optimum activating agent (phosphoric acid) concentration, 50.0% (8.674 mol L−1) and activation temperature, 900 °C. The Brunauer–Emmett–Teller (BET) surface area of optimized activated carbon was found to be 1225 m2 g−1, and thermogravimetric analysis revealed that 55.2% mass of optimized activated carbon was found thermally stable till 900 °C. The leading chemical functional groups found in the date stone activated carbon were aliphatic carboxylic acid salt ν(C=O) 1561.22 cm−1 and 1384.52 cm−1, aliphatic hydrocarbons ν(C–H) 2922.99 cm−1 (C–H sym./asym. stretch frequency), aliphatic phosphates ν(P–O–C) 1054.09 cm−1, and secondary aliphatic alcohols ν(O–H) 3419.81 cm−1 and 1159.83 cm−1. - Highlights: • RSM optimization was done for the production of large surface area activated carbon. • Two independent variables with two responses were selected for optimization. • Characterization was done for surface area, morphology and chemical constituents. • Optimized date stone activated carbon achieved surface area 1225 m2 g−1

  15. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Xie, Xinping; Hu, Yiming

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  16. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  17. A simple and highly effective process for the preparation of activated carbons with high surface area

    Li Ying, E-mail: liyingjlu@163.com [College of Chemistry, Jilin University, Changchun 130012 (China); Ding Xuefeng; Guo Yupeng; Wang Lili; Rong Chunguang; Qu Yuning; Ma Xiaoyu [College of Chemistry, Jilin University, Changchun 130012 (China); Wang Zichen, E-mail: wangzc@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2011-06-15

    Highlights: {yields} High surface area activated carbon can be prepared by rice husk H{sub 3}PO{sub 4} without pretreatment. {yields} The characteristics of the activated carbon were greatly influenced by post-processing method. {yields} The lower SiO{sub 2} content of the activated carbons, the higher pore volume the carbons had. {yields} Some silica in rice husk reacted with H{sub 3}PO{sub 4} to form SiP{sub 2}O{sub 7} which could be removed by post-process. - Abstract: Activated carbons with high surface area were prepared by phosphoric acid as activation agent and rice husks as precursors. It was found that the characteristics of the activated carbons were influenced not only by the preparation but also by the post-processing method. The high surface area of the activated carbons was prepared under the optimum condition (50% H{sub 3}PO{sub 4} with impregnation ratio of 5:1, activation temperature of 500 deg. C, activation time of 0.5 h, wash water temperature of 100 deg. C). SiO{sub 2} content could affect the surface area of activated carbons, either. The lower SiO{sub 2} content of the activated carbons, the higher pore volume the carbons had. The SiO{sub 2} content was 11.2% when used the optimum condition. The explanation was that silicon element in rice husks reacted with H{sub 3}PO{sub 4} to form silicon phosphate (SiP{sub 2}O{sub 7}), and it could be proved further by X-ray diffraction analysis, SiP{sub 2}O{sub 7} could be removed by post-process.

  18. A simple and highly effective process for the preparation of activated carbons with high surface area

    Highlights: → High surface area activated carbon can be prepared by rice husk H3PO4 without pretreatment. → The characteristics of the activated carbon were greatly influenced by post-processing method. → The lower SiO2 content of the activated carbons, the higher pore volume the carbons had. → Some silica in rice husk reacted with H3PO4 to form SiP2O7 which could be removed by post-process. - Abstract: Activated carbons with high surface area were prepared by phosphoric acid as activation agent and rice husks as precursors. It was found that the characteristics of the activated carbons were influenced not only by the preparation but also by the post-processing method. The high surface area of the activated carbons was prepared under the optimum condition (50% H3PO4 with impregnation ratio of 5:1, activation temperature of 500 deg. C, activation time of 0.5 h, wash water temperature of 100 deg. C). SiO2 content could affect the surface area of activated carbons, either. The lower SiO2 content of the activated carbons, the higher pore volume the carbons had. The SiO2 content was 11.2% when used the optimum condition. The explanation was that silicon element in rice husks reacted with H3PO4 to form silicon phosphate (SiP2O7), and it could be proved further by X-ray diffraction analysis, SiP2O7 could be removed by post-process.

  19. An investigation of the functional groups on the surface of activated carbons

    MARYTE DERVINYTE; JURGIS BARKAUSKAS

    2004-01-01

    Activated carbons were produced in the laboratory from wood using a 20-run PlackettBurman experimental design for 19 factors. The obtained batches of activated carbon were analysed by potentiometric titration and FTIR spectroscopy to determine the surface functional groups. The results obtained by potentiometric titration displayed the distribution of individual acidity constants of those groups in the pK range. Considering this parameter, the surface functional groups were divided into carbo...

  20. Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions

    Gonçalves, Maraisa; Sánchez García, Laura; Jardim, Erika de Oliveira; Silvestre Albero, Joaquín; Rodríguez Reinoso, Francisco

    2011-01-01

    The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic ...

  1. Carbon activation process for increased surface accessibility in electrochemical capacitors

    Doughty, Daniel H.; Eisenmann, Erhard T.

    2001-01-01

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  2. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry

    Lupul, Iwona; Yperman, Jan; Carleer, Robert; Gryglewicz, Grazyna

    2015-01-01

    Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were exa...

  3. Effect of surface modification of activated carbon on its adsorption capacity for NH3

    SHAN Xiao-mei; ZHU Shu-quan; ZHANG Wen-hui

    2008-01-01

    To investigate the effects of carbon surface characteristics on NH3 adsorption, coal-based and coconut shell activated carbons were modified by treatment with oxidants. The surface properties of the carbons were characterized by low temperature nitrogen sorption, by Boehm's titrations and by XPS techniques. NH3 adsorption isotherms of the original and the modified carbons were determined. The results show that the carbons were oxidized by HNO3 and (NH4)2S2O8, and that there was an increase in oxygen containing functional groups on the surface. However, the pore-size distribution of the coal-based carbons was changed after KMnO4 treatment. It was found that the NH3 adsorption capacity of the modified carbons was enhanced and that the most pronounced enhancement results from (NH4)2S2O8 oxidation. Under our experimental conditions, the capacity is positively corrected to the number of surface functional groups containing oxygen, and to the number of micro-pores. Furthermore, an empirical model of the relationship between NH3 adsorption and multiple factors on the carbon surface was fit using a complex regression method.

  4. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  5. Large-Area, Highly Ordered Array of Graphitic Carbon Materials Using Surface Active Chitosan Prepatterns.

    Baek, Youn-Kyoung; Kim, Dae Woo; Yang, Seung Bo; Lee, Jung-Goo; Kim, Young Kuk; Jung, Hee-Tae

    2015-02-01

    We demonstrate that chitosan prepatterns can generate not only highly periodic DNA pattern but also various types of graphitic carbon materials such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO) and reduced graphene oxide (RGO). Scanning electron microscopy (SEM), fluorescence imaging and Raman spectroscopic results revealed that the graphitic carbon materials were selectively deposited on the surface of the periodic chitosan patterns by the electrostatic interaction between protonated amine groups of chitosan and the negative charged carbon materials. One proof-of-concept application of the system to the fabrication of electrical devices based on the micropatterns of SWNTs and RGO was also demonstrated. The strategy to use highly surface active chitosan pattern that can easily fabricate highly periodic pattern via a variety of lithographic tools may pave the way for the production of periodic arrays of graphitic carbon materials for large area device integration. PMID:26353637

  6. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.

    Nabais, J M Valente; Gomes, J A; Suhas; Carrott, P J M; Laginhas, C; Roman, S

    2009-08-15

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m(2)g(-1) and pore volume 0.5 cm(3)g(-1). The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 degrees C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g(-1) for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the pi-pi dispersion interaction between the phenol aromatic ring and the delocalised pi electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism. PMID:19233559

  7. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream. PMID:21683520

  8. Surface area and pore size distribution of activated carbon produced from low cost precursors

    Fast growing wood (Paulownia tomentos-PT, Ailanthus altissima-AA. Salvadara oleoides-SO) and animal bones were utilized for the preparation of activated carbon. The carbon samples were activated by thermal means (400-1000 degree C). The samples were characterized by surface area (Langmuir and BJH) with micropore and meso pores volume (BJH). The surface area of other carbon samples activated at 800 degree C was found in the sequence: 654.9 for Salvadora oleoides > 615.8 for Ailanthus altissima > 346.3 for Paulownia tomentosa > 300.0 for animal bones. BJH surface area (m/sup 2/g/sup -l/) analysis of the carbon samples activated at 800 degree C was found in the sequence: 274.6 for Salvadora oleoides > 261.76 for animal bones> 224.8 for Paulownia tomentosa > 200.2 for Ailanthus altissima. The micropore volume (BJH method) of 800 degree C activated carbon samples were in the sequence: 0.15 for Ailanthus altissima > 0.13 for Salvadora oleoides > 0.08 for animal bones. (author)

  9. O2 activation on the outer surface of carbon nanotubes modified by encapsulated iron clusters

    Graphical abstract: Based on first-principle calculations, this study shows that the confined small Fe cluster inside the SWCNT can significantly modify the electronic structure of the carbon surface. This drastically facilitates the activation of the adsorbed O2 molecule. The calculated energy barrier (less than 0.8 eV) of the rate-determining step for the O2 dissociation indicates that the process can proceed readily at room temperature. - Highlights: • The confined Fe cluster inside the carbon nanotube can significantly modify the electronic structure of the carbon surface. • The confined Fe cluster makes the adsorption of the O2 molecule much more energetically favorable. • The calculated energies suggest that the dissociation of the O2 on the modified carbon surface can proceed readily at room temperature. - Abstract: Using first-principles calculations, the structural, magnetic, and electronic properties of the (6, 6) single-walled carbon nanotubes (SWCNT) with the confined small Fe cluster are systematically studied. We find that Fe–C interactions can induce the transfer of the electrons from the confined Fe to the carbon surface of the SWCNT considerably, and consequently the reduction of the local work function of the region in contact with the Fe. The charging of the carbon surface and the reduction of the work function make the adsorption of the O2 molecule much more energetically favorable on the outer surface of the SWCNT. Furthermore, the energy barrier of the rate-determining step, i.e., the approaching of the O2 towards the modified carbon surface, for the O2 dissociation is less than 0.8 eV, indicating that the process can proceed readily at room temperature

  10. Magnetic susceptibility of oxygen adsorbed on the surface of spherical and fibrous activated carbon.

    Kiyoshi Kawamura

    2009-02-01

    Full Text Available The magnetic susceptibilities of oxygen adsorbed on the surface of bead-shaped activated carbon and activated carbon fibers were evaluated as a function of temperature between 4.2 K and 300 K, and found to exhibit a sharp peak at around 50 K. This implies that the adsorbed oxygen molecules form an antiferromagnetic state. The relation between the susceptibility and the adsorbed mass suggest that the thickness of the adsorbed oxygen is thin enough to consider a two-dimensional structure for bead–shaped activated carbon and carbon fibers across the fiber axis but thick enough to regard it as three-dimensional along the fiber axis. The result is discussed with reference to the study on one-dimensional oxygen array.

  11. Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions.

    Gonçalves, Maraisa; Sánchez-García, Laura; Oliveira Jardim, Erika de; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco

    2011-12-15

    The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH(3) breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH(4)(+) species interacting with the Brønsted acid sites, together with the presence of NH(3) species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers. PMID:22049916

  12. Role of the surface chemistry of activated carbons in dye removal from aqueous solution

    Zhou, Hua-lei; Zhen, Wen-juan; Zhu, Qian; Wu, Xiao-bin; Chang, Zhi-dong; Li, Wen-jun

    2015-07-01

    Commercial activated carbons were modified by a series of chemical or physical treatments using H2O2, NH3, and heating under N2 flow without notably changing their pore structures. The resultant carbons were characterized by N2 adsorption and Bohem titration and then used to remove Ponceau 4R, methyl orange and brilliant blue from aqueous solutions. Surface chemistry was found to play a significantly different role in removing these three compounds. The removal of anionic Ponceau 4R increases with increasing carbon surface basicity due to the predominant dispersive interaction mechanism. In contrast, surface chemistry has little effect on the removal of anionic methyl orange, which can be explained by two parallel mechanisms involving electrostatic and dispersive interactions due to the basic amine group in a dye molecule. The influence of surface chemistry on the removal of amphoteric brilliant blue dye can also be ignored due to a weak interaction between the carbons and dye molecules, which is resulted from strong cohesive energy from electrostatic forces inside amphoteric dye molecules.

  13. Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions.

    Song, Xianghua; Gunawan, Poernomo; Jiang, Rongrong; Leong, Susanna Su Jan; Wang, Kean; Xu, Rong

    2011-10-30

    We report the synthesis and activation of colloidal carbon nanospheres (CNS) for adsorption of Ag(I) ions from aqueous solutions. CNS (400-500 nm in diameter) was synthesized via simple hydrothermal treatment of glucose solution. The surface of nonporous CNS after being activated by NaOH was enriched with -OH and -COO(-) functional groups. Despite the low surface area (nanoparticles on the external surface of CNS. The kinetic data can be well fitted to the pseudo-second-order kinetics model. The adsorbed silver can be easily recovered by dilute acid solutions and the CNS can be reactivated by the same treatment with NaOH solution. The excellent adsorption performance and reusability have also been demonstrated in a continuous mode. The NaOH activated CNS reported here could represent a new type of low-cost and efficient adsorbent nanomaterials for removal of trace Ag(I) ions for drinking water production. PMID:21862215

  14. Activated carbons and gold

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  15. Characterization and use of high surface area activated carbons prepared from cane pith for liquid-phase adsorption

    Carbonaceous adsorbents with controllable surface areas were chemically activated with KOH at 780 deg. C from char that had been carbonized from cane pith at 450 deg. C. The pore properties including the BET surface area, pore volume, pore size distribution, and mean pore diameter of these activated carbons were characterized and derived using the t-plot method based on N2 adsorption isotherms. The activated cane pith carbons, with KOH/char ratios of 2-6, exhibited BET surface areas ranging from 912 to 2299 m2 g-1. The scanning electron microscopic (SEM) observations revealed that the surface morphology of honeycombed holes on all activated cane pith carbons was significantly influenced by the KOH/char ratio. The adsorption kinetics and equilibrium isotherms of acid blue 74, methylene blue, basic brown 1, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water at 30 deg. C on the activated carbons were studied. The adsorption kinetics were suitably described by a simplified kinetic model, the Elovich equation. All adsorption equilibrium isotherms were in agreement with the Langmuir equation, and were used to compare the covered area (S c/S p) of the activated carbons at different KOH/char ratios. The high-surface-area activated carbons were proven to be promising adsorbents for pollution control and for other applications

  16. Mechano-activated surface modification of calcium carbonate in wet stirred mill and its properties

    2007-01-01

    Surface modification of calcium carbonate particles using sodium stearate(SDS) as a modification agent incorporated with the simultaneous wet ultra-fine grinding in the laboratory stirred mill was investigated. The physical properties and application properties of modified calcium carbonate were measured and evaluated. The action mechanism between SDS and calcium carbonate in the modification was studied by infrared spectrometry(IR) and X-ray photoelectron energy spectroscopy(XPS). The results indicate that the crushing mechanic force intensity can obviously influence the modification effect of calcium carbonate because of mechano-chemical effect. The hydrophilic surface of calcium carbonate is turned into hydrophobic after modification. The properties of polyethylene(PE) filled by modified calcium carbonate powder is markedly improved. And the adsorption of SDS could occur by chemical reaction with calcium carbonate surface.

  17. Contrast structure and EDLC performances of activated spherical carbons with medium and large surface areas

    Two spherical carbons of 500 and 3000 m2/g, respectively, activated with NaOH (M500) and KOH (M3000), were examined in relation to their carbon structure and electrochemical behavior to explain their contrast capacitances as EDLC electrode. M500 and M3000 showed capacitances per weight (F/g) and volume (F/ml) of 35 and 35 (M500), 40 and 25 (M3000), respectively. The charge profile of M500 by galvanostat charge indicated that the charge took place rapidly below 1.5 V and then very gradually increased up to the final voltage of 2.7 V in the first charge. Such electrochemical behavior suggests electric field activation of this particular activated carbon at the charge. The charge profile of M3000 was conventional. The structure of M500 suffered a certain marked expansion at the charge, however the 0 0 2 diffractions profile shifted very slightly to a lower angle at the change. Such charge appears reversible while the structure of expansion was more or less irreversible. No expansion was observed with M3000 at the charge to the same voltage. Such a structure allows high efficiency of EDLC due to small pores and electric field activation to induce small pores among the graphitic units. In contrast, M3000 with its larger surface areas of relatively large pores in the graphitic structure showed a larger capacitance per weight. However many useless pores cause lower the capacitance per volume. In addition, large pores lose the efficiency for the formation of an electric double layer per unit surface area of the pore, while the non-graphitic wall of M3000 fails to introduce small pores with a higher capacitance

  18. Control of Surface Functional Groups on Pertechnetate Sorption on Activated Carbon

    99Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO4-). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (Kd) varying from 9.5 x 105 to 3.2 x 103 mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with Kd remaining more or less constant (1.1 x 103 - 1.8 x 103 mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO4- can be improved by enhancing the formation of carboxylic subgroups A and B during material processing

  19. Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-07-05

    {sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

  20. Removal of reactive blue 19 from aqueous solution by pomegranate residual-based activated carbon: optimization by response surface methodology

    Radaei, Elham; Alavi Moghaddam, Mohammad Reza; Arami, Mokhtar

    2014-01-01

    Background In this research, response surface methodology (RSM) was applied to optimize Reactive Blue 19 removal by activated carbon from pomegranate residual. A 24 full factorial central composite design (CCD) was applied to evaluate the effects of initial pH, adsorbent dose, initial dye concentration, and contact time on the dye removal efficiency. Methodology The activated carbon prepared by 50 wt.% phosphoric acid activation under air condition at 500°C. The range of pH and initial dye co...

  1. Evaluation of activated carbon processes for removing trihalomethane precursors from a surface water impoundment

    Lavinder, Steven Robert

    1987-01-01

    A pilot plant study was conducted in Newport News, Virginia to investigate the effectiveness of powdered activated carbon [PAC] and granular activated carbon [GAC], with and without preoxidation, for reducing trihalomethane [THM] precursor concentrations in Harwood's Mill Reservoir water. Preoxidation with ozone followed by GAC is referred to as the "biological activated carbonâ [BAC] process. This study showed that the GAC and BAC processes obtained the same level of organic...

  2. Optimization of activated carbon from sewage sludge using response surface methodology

    Wastewater sludge cake was used to prepare activated carbon using physical activation method. The effects of three preparation variables; the activation temperature, activation time and carbon dioxide gas flow rate on chemical oxygen demand (COD) and ammonia removal from leachate solutions were investigated. Based on the central composite design (CCD), two quadratic models were developed to correlate the preparation variables to the COD and ammonia removal. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from wastewater sludge cake was obtained by using activation temperature of 510 degree Celsius, activation time of 30 min and carbon dioxide flow rate of 500 ml/ min. The optimum activated carbon showed COD and ammonia removal of 26 and 13 %, respectively. (author)

  3. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi [Kanagawa Industrial Technology Research Inst., Ebina, Kanagawa (Japan)

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  4. Effect of temperature and time on microstructure and surface functional groups of activated carbon fibers prepared from liquefied wood

    Wenjing Liu

    2012-11-01

    Full Text Available Activated carbon fibers were prepared from liquefied wood through stream activation. The effects of activation temperature and time on the microstructure and surface functional groups of the liquefied wood activated carbon fibers (LWACFs were studied using analysis of burning behavior, X-ray diffraction, nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and SEM. The results showed that the burn-off value of the LWACFs increased gradually with the increase in temperature or time. All the LWACFs were far from being structurally graphitized, and in general, as temperature or time increased, the degree of graphitization and thickness of crystal structure increased. In addition, the LWACFs possessed rich micropores, and their specific surface area, pore volume, micropore size, and mesopore quantity were directly related to the activation temperature or time. The maximum specific surface area was found to be 2641 m2/g. The fractal dimension values of all samples were close to 3, indicating that their surfaces were very rough. Furthermore, with an increase in temperature or time, the elemental content of carbon increased, while that of oxygen decreased. Meanwhile, as the temperature or time increased, the relative content of graphitic carbon decreased, whereas that of carbon bonded to oxygen-containing functions increased. The surface of samples prepared at higher temperature or with longer time formed a considerable amount of holes.

  5. The role of beaded activated carbon's surface oxygen groups on irreversible adsorption of organic vapors.

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-11-01

    The objective of this study is to determine the contribution of surface oxygen groups to irreversible adsorption (aka heel formation) during cyclic adsorption/regeneration of organic vapors commonly found in industrial systems, including vehicle-painting operations. For this purpose, three chemically modified activated carbon samples, including two oxygen-deficient (hydrogen-treated and heat-treated) and one oxygen-rich sample (nitric acid-treated) were prepared. The samples were tested for 5 adsorption/regeneration cycles using a mixture of nine organic compounds. For the different samples, mass balance cumulative heel was 14 and 20% higher for oxygen functionalized and hydrogen-treated samples, respectively, relative to heat-treated sample. Thermal analysis results showed heel formation due to physisorption for the oxygen-deficient samples, and weakened physisorption combined with chemisorption for the oxygen-rich sample. Chemisorption was attributed to consumption of surface oxygen groups by adsorbed species, resulting in formation of high boiling point oxidation byproducts or bonding between the adsorbates and the surface groups. Pore size distributions indicated that different pore sizes contributed to heel formation - narrow micropores (<7Å) in the oxygen-deficient samples and midsize micropores (7-12Å) in the oxygen-rich sample. The results from this study help explain the heel formation mechanism and how it relates to chemically tailored adsorbent materials. PMID:27295065

  6. Modification of Activated Carbon by Means of Microwave Heating and Its Effects on the Pore Texture and Surface Chemistry

    Bing Li

    2013-02-01

    Full Text Available Two kinds of typical Activated Carbons (coal based AC and coconut shell based AC were modified in a flow of N0 gas has been carried out using a microwave device operating at 2450 MHz and different input power, instead of a conventional furnace. The samples were analyzed by means of low temperatureN0 adsorption, elemental analysis and Boehm titration. The results show that microwave heating is an effective means of activated carbon modification. The temperature of activated carbon increases rapidly under microwave heating and then gradual increase to a quasi-stationary temperature. The pore texture of activated carbon changes slightly after microwave treatment and the two activated carbons still keep rich pore structure. The oxygen functional groups decompose and evolve with the form of CO and CO2. This in turn gives rise to a significant decrease in oxygen content. These changes of oxygen contents increase as the microwave input power increases. During microwave treatment, a gradual decrease in the surface acidic functional groups is observed. More important, with the removal of the surface acidic groups, the number of the basic group increased gradually, the activated carbon with oxygen functional groups become basic properties material.

  7. Effect of clay on the surface morphology and field emission properties of screen-printed activated carbon

    Surface morphology of the screen-printed activated carbon paste with organophobic montmorillonite clay and electron field emission properties was studied. X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to evaluate the distribution of filler in the carbon paste and the structure of carbon film. The addition of clay particles improved homogeneous dispersion of carbon in paste, which contributed to the formation of uniform carbon film during screen-printing. The current density J increased significantly, while the threshold electric field Eth decreased when the filler particles were added to the carbon paste. The enhancement of field emission properties is believed to be due to the improvement of the dispersivity and adhesiveness of the paste. The organoclay loading also showed better thermal stability.

  8. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO3 0.1 mol.L-1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10-2 and 2.83 X 10-1 cm2, respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm-2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'-2). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of Cd, 3.0 x 10-5 μF.cm'-2 and 11 x 103 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm2 and 4.72 cm2. To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface areas of carbon

  9. Energetic changes in the surface of activated carbons and relationship with Ni(II) adsorption from aqueous solution

    Rodríguez-Estupiñan, Paola; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2013-12-01

    This study investigated Ni(II) ion adsorption from aqueous solution on activated carbons obtained by chemically modifying the surface with the oxidizing agents nitric acid and hydrogen peroxide (CAGoxP and CAGoxN, respectively). The activated carbons were characterized by total acidity and basicity, pH at the point of charge zero determination and IR spectroscopy. Textural parameters such as the BET area and pore volumes were evaluated by gas adsorption. The BET area of the materials was between 816 and 876 m2 g-1. Additionally, the immersion enthalpies of the activated carbons in water and benzene were determined. The experimental results on adsorption in solution were adjusted to the Langmuir and Freundlich models, obtaining values for the monolayer capacity between 29.68 and 50.97 mg g-1, which indicates that the adsorption capacity depends largely on solid surface chemistry.

  10. Single-Walled Carbon Nanotube Surface Control of Complement Recognition and Activation

    Andersen, Alina Joukainen; Robinson, Joshua T.; Dai, Hongjie;

    2013-01-01

    Carbon nanotubes (CNTs) are receiving considerable attention in site-specific drug and nucleic acid delivery, photodynamic therapy, and photoacoustic molecular imaging. Despite these advances, nanotubes may activate the complement system (an integral part of innate immunity), which can induce cli...

  11. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface.

    Mosch, Heike L K S; Akintola, Oluseun; Plass, Winfried; Höppener, Stephanie; Schubert, Ulrich S; Ignaszak, Anna

    2016-05-10

    Carbon/polypyrrole (PPy) composites are promising electrode materials for energy storage applications such as lightweight capacitors. Although these materials are composed of relatively inexpensive components, there is a gap of knowledge regarding the correlation between surface, porosity, ion exchange dynamics, and the interplay of the double layer capacitance and pseudocapacitance. In this work we evaluate the specific surface area analyzed by the BET method and the area accessible for ions using electrochemical quartz-crystal microbalance (EQCM) for SWCNT/PPy and carbon black Vulcan XC72-R/PPy composites. The study revealed that the polymer has significant influence on the pore size of the composites. Although the BET surface is low for the polypyrrole, the electrode mass change and thus the electrochemical area are large for the polymer-containing electrodes. This indicates that multiple redox active centers in the charged polymer chain are good ion scavengers. Also, for the composite electrodes, the effective charge storage occurs at the polypyrrole-carbon junctions, which are easy to design/multiply by a proper carbon-to-polymer weight ratio. The specific BET surface and electrochemically accessible surface area are both important parameters in calculation of the electrode capacitance. SWCNTs/PPy showed the highest capacitances normalized to the BET and electrochemical surface as compared to the polymer-carbon black. TEM imaging revealed very homogeneous distribution of the nanosized polymer particles onto the CNTs, which facilitates the synergistic effect of the double layer capacitance (CNTs) and pseudocapacitance (polymer). The trend in the electrode mass change in correlation with the capacitance suggest additional effects such as a solvent co-insertion into the polymer and the contribution of the charge associated with the redox activity of oxygen-containing functional groups on the carbon surface. PMID:27082127

  12. Effects of Temperature and Pore Structure on High Surface Area-Activated Carbon Obtained from Peanut Shells.

    Kalpana, D; Lee, Y S

    2016-03-01

    Activated carbon was synthesized from peanut shells by treating with H3PO4 with an intention to enhance the surface area and to find its electrochemical performance in EDLC as electrode material. The powdered peanut shells were pyrolyzed at three different temperatures namely 300 degrees C, 600 degrees C and 800 degrees C respectively. The structural and surface properties of the pyrolyzed carbon materials were studied using N2 adsorption/desorption, Raman, TEM and SEM analysis. There has been remarkable increase in the surface area of the carbon pyrolyzed at 600 degrees C due to the effect of pore generations. The surface area of the 600 degrees C pyrolyzed sample was found to be 1629 m2/g. The electrochemical properties of all the samples were evaluated by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge tests. The system showed excellent cycleability and a maximum specific capacitance of 291 Fg(-1) was obtained in a 0.1 M H2SO4 electrolyte solution. The effects of the various properties of the activated carbon on the EDLC performance are discussed. PMID:27455740

  13. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions

    Highlights: • Activated carbons with different pore structure and surface chemical properties were prepared by modification process. • HgCl2 as a pollution target to evaluate the adsorption performance. • Influence of pore structure and surface chemical properties of activated carbon on adsorption of mercury was investigated. -- Abstract: Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption–desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg2+ adsorption ability of samples was investigated. The results show that the Hg2+ adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction

  14. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m2 g-1, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  15. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution. PMID:26496841

  16. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures

    The objective of this study is to relate textural and surface characteristics of selected microporous activated carbons to their methane storage capacity. In this work, a magnetic suspension balance (Rubotherm, Germany) was used to measure methane adsorption isotherms of several activated carbon samples. Textural characteristics were assessed by nitrogen adsorption on a regular surface area analyzer (Autosorb-MP, by Quantachrome, USA). N2 adsorption was analysed by conventional models (BET, DR, HK) and by Monte Carlo molecular simulations. Elemental and surface analyses were performed by X-ray photoelectronic spectroscopy (XPS) for the selected samples. A comparative analysis was then carried out with the purpose of defining some correlation among the variables under study. For the system under study, pore size distribution and micropore volume seem to be a determining factor as long as the solid surface is perfectly hydrophobic. It was concluded that the textural parameters per se do not unequivocally determine natural gas storage capacities. Surface chemistry and methane adsorption equilibria must be taken into account in the decision-making process of choosing an adsorbent for gas storage

  17. Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: Optimization using response surface methodology

    The effects of three preparation variables: CO2 activation temperature, CO2 activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO2 activation temperature of 814 deg. C, CO2 activation time of 1.9 h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m2/g, total pore volume of 0.6 cm3/g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.

  18. Microcrystalline dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes

    Carbon pellets (CP) were prepared from the green pellets (GP) containing mixtures of pre-carbonized oil palm empty fruit bunches (SACG) and Green Petroleum Cokes (GPC), with the weight percentages (x) of SACG in the samples at 10 %, 30 %, 50 %, 70 % and 90 %. Carbonization process to produce the CP was conducted up to 900 degree Celsius using a multi steps heating profile. The interlayer spacing (d200 and d100), stack height (Lc), stack width (La,) and effective dimension L of the turbostratic crystallites (microcrystalline) in the CPs were estimated from X-ray diffraction data; d200, d100, La, L increased and Lc decreased with increasing weight percentage of SACG. The total surface area of active material of the CP (Atot) with thickness, t, estimated from Lc was found to follow the equation, Atot = [4.8086 - 0.0083x]1010 t, indicating a significant influence of the SACG content in the mixture of the green body. (author)

  19. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  20. Powder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water

    Yali Song

    2015-09-01

    Full Text Available This study focused on the effect of powder activated carbon (PAC adsorption on microfiltration (MF membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC and ultraviolet absorbance at 254 nm (UV254 during 10–200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decreased with the increase of organic matter removal rate by PAC adsorption. PAC mainly removed organic matter of about 3 kDa molecular weight (MW. MF membrane maintained more than 5 kDa MW organic matter on the membrane after PAC adsorption. The results of membrane filtration indicated that PAC pretreatment slightly promoted membrane flux, regardless of PAC dosage. It seems that the organic matter fouling membrane was concentrated in more than 3 kDa MW. PAC removed markedly less than 3 kDa MW organic matter and had less effect on more than 3 kDa organic matter. Thus, PAC cannot reduce membrane fouling.

  1. Powder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Ma, Xiaoyan

    2015-01-01

    This study focused on the effect of powder activated carbon (PAC) adsorption on microfiltration (MF) membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) during 10–200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decreased with the increase of organic matter removal rate by PAC adsorption. PAC mainly removed organic matter of about 3 kDa molecular weight (MW). MF membrane maintained more than 5 kDa MW organic matter on the membrane after PAC adsorption. The results of membrane filtration indicated that PAC pretreatment slightly promoted membrane flux, regardless of PAC dosage. It seems that the organic matter fouling membrane was concentrated in more than 3 kDa MW. PAC removed markedly less than 3 kDa MW organic matter and had less effect on more than 3 kDa organic matter. Thus, PAC cannot reduce membrane fouling. PMID:26378552

  2. Interaction of paracetamol and 125I-paracetamol with surface groups of activated carbon. Theoretical and experimental study

    The selection of activated carbon (AC) filters for water decontamination is currently carried out empirically. The low concentrations of drugs in the environment make the radioisotope labeling a valuable tool for physical and chemical studies of the adsorption process. A theoretical study of paracetamol and 125I-paracetamol adsorption onto AC was performed to evaluate the interactions between pollutants and surface groups (SG) of AC. Paracetamol was labeled with 125I and adsorption isotherms were obtained using radioanalytical and spectrophotometric techniques. The radioanalytical method overestimates the paracetamol adsorption. The validity of the chosen approach for qualitative assessment of SG influence over the adsorption process was demonstrated. (author)

  3. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. PMID:25956790

  4. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  5. New Carbon Activation Process for Increased Surface Accessibility in Electrochemical Capacitors

    Doughty, Daniel H.; Eisenmann, Erhard T.

    1999-03-16

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm{sup 3} is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350 C for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  6. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    Chen, Jiajun; Zhai, Yunbo; Chen, Hongmei; Li, Caiting; Zeng, Guangming; Pang, Daoxiong; Lu, Pei

    2012-12-01

    In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO3, H2O2 and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO3 were 723.88 m2/g and 0.229 cm3/g, respectively, while virgin GAC were 742.34 m2/g and 0.276 cm3/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Nsbnd CH3 group and Cdbnd N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H2O2 was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  7. Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology.

    Hameed, B H; Tan, I A W; Ahmad, A L

    2008-10-30

    Oil palm fibre was used to prepare activated carbon using physiochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables: the activation temperature, activation time and chemical impregnation (KOH:char) ratio on methylene blue (MB) uptake from aqueous solutions and activated carbon yield were investigated. Based on the central composite design (CCD), a quadratic model and a two factor interaction (2FI) model were respectively developed to correlate the preparation variables to the MB uptake and carbon yield. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from oil palm fibre was obtained by using activation temperature of 862 degrees C, activation time of 1h and chemical impregnation ratio of 3.1. The optimum activated carbon showed MB uptake of 203.83 mg/g and activated carbon yield of 16.50%. The equilibrium data for adsorption of MB on the optimum activated carbon were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 400mg/g at 30 degrees C. PMID:18329169

  8. Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-Containing activated carbon with high surface area

    Hasegawa, George; Aoki, Mami; Kanamori, Kazuyoshi; Nakanishi, Kazuki; Hanada, Teiichi; Tadanaga, Kiyoharu

    2011-01-01

    Macro/meso/microporous carbon monoliths doped with sulfur have been prepared from sulfonated poly(divinylbenzene) networks followed by the activation with CO_2 resulted in the activated carbon monoliths with high surface area of 2400 m^2 g^[−1]. The monolithic electrode of the activated carbon shows remarkably high specific capacitance (175 F g^[−1] at 5 mV_s^[−1] and 206F_g^[−1] at 0.5 Ag^[−1]).

  9. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology

    Aziz, Shuokr Qarani [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia); Aziz, Hamidi Abdul, E-mail: cehamidi@eng.usm.my [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia); Yusoff, Mohd Suffian; Bashir, Mohammed J.K. [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia)

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH{sub 3}-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1 L/min and contact time of 5.5 h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH{sub 3}-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.

  10. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology.

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions. PMID:21420786

  11. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH3-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1 L/min and contact time of 5.5 h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH3-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.

  12. A Study on the Surface Structures of Viscose-based Activated Carbon Fiber by FT-IR Spectroscopy and XPS

    黄强; 黄永秋; 潘鼎

    2004-01-01

    Using viscose fiber (VF) as starting material and common steam as activating agent, formation of oxygen structures in activated carbon fiber is investigated. In the preparation of samples, VF was first heated at temperatures between 450℃ and 900℃ in N2 artmosphere. Then, in a successive activation stage, the product carbonized at 600℃ was activated in steam at 450 - 900℃ for 30 min, and at 600℃for 5- 30 min. The other carbonization products were activated at 600 and 900℃ for 30 min respectively. The products activated at 900℃ were then activated at 450℃ for 30 min again. The starting material, carbonized products and all activation products were examined by FT-IR spectroscopy and some products were examined by X-ray photoelectron spectroscope (XPS). And the yields of the carbonized and activated products were calculated. By analysing these spectra, the amount of oxygen-containing functional groups of the activated products attained under various activation time, various activation temperature and various previous carbonization temperature was determined.

  13. Amphoteric surface active agents

    Eissa, A.M. F.

    1995-10-01

    Full Text Available 2-[trimethyl ammonium, triethyl ammonium, pyridinium and 2-amino pyridinium] alkanoates, four series of surface active agents containing carbon chain C12, C14, C16 and C18carbon atoms, were prepared. Their structures were characterized by microanalysis, infrared (IR and nuclear magnetic resonance (NMR. Surface and interfacial tension, Krafft point, wetting time, emulsification power, foaming height and critical micelle concentration (cmc were determined and a comparative study was made between their chemical structure and surface active properties. Antimicrobial activity of these surfactants was also determined.

    Se prepararon cuatro series de agentes tensioactivos del tipo 2-[trimetil amonio, trietil amonio, piridinio y 2-amino piridinio] alcanoatos, que contienen cadenas carbonadas con C12, C14, C16 y C18 átomos de carbono.
    Se determinaron la tensión superficial e interfacial, el punto de Krafft, el tiempo humectante, el poder de emulsionamiento, la altura espumante y la concentración critica de miscela (cmc y se hizo un estudio comparativo entre la estructura química y sus propiedades tensioactivas. Se determinó también la actividad antimicrobiana de estos tensioactivos. Estas estructuras se caracterizaron por microanálisis, infrarrojo (IR y resonancia magnética nuclear (RMN.

  14. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    Chen Jiajun [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhai Yunbo, E-mail: ybzhai@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen Hongmei; Li Caiting; Zeng Guangming; Pang Daoxiong; Lu Pei [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The effects of pretreatment on the surface chemistry and pore sizes were studied. Black-Right-Pointing-Pointer Treated GAC was nitrogen functionalized and alkylated GAC also called modified GAC. Black-Right-Pointing-Pointer HNO{sub 3} pretreatment caused a slight decrease in surface area and microporosity. Black-Right-Pointing-Pointer The nitrogen percentage of modified GAC which pretreated by H{sub 2}O{sub 2} was 4.07%. Black-Right-Pointing-Pointer The pyridine of modified GAC which pretreated by urea-formaldehyde resin was 45.88%. - Abstract: In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO{sub 3}, H{sub 2}O{sub 2} and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO{sub 3} were 723.88 m{sup 2}/g and 0.229 cm{sup 3}/g, respectively, while virgin GAC were 742.34 m{sup 2}/g and 0.276 cm{sup 3}/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). N-CH{sub 3} group and C=N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H{sub 2}O{sub 2} was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  15. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts

    Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.

    2016-06-01

    Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained ~ 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was ~ 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.

  16. Production of activated carbon with high specific surface area from bean-curd refuse by chemical activation; Okara wo genryo toshita yakuhin fukatsuho ni yoru kohihyomenseki kasseitan no seizo

    Muroyama, K.; Hayashi, J.; Sato, A.; Takemoto, S. [Kansai Univ., Osaka (Japan). Faculty of Engineering

    1996-05-15

    A large amount of bean-curd refuse is exhausted as-product of tofu in Japan. On the other hand, activated carbon is used widely from old times in chemicals, medicines and food industry. Recently, since environmental contamination has come to head, the demand of activated carbon is more increased. The authors tried to produce activated carbons with high specific surface area from bean-curd refuse by chemical activation using several alkali metal compounds. The effects of carbonization temperature, holding time and impregnation ratio of reagent to dried bean-curd refuse on pore structure of activated carbons produced were investigated. Among the chemicals tested K2CO3 is found to be the most effective as the impregnation reagent. In a range of carbonization temperature above 700{degree}C, the specific surface area of the activated carbon produced increases rapidly, takes a maximum at a carbonization temperature of about 800{degree}C and decreases with further increase in temperature above 800{degree}C. The specific surface area attains a maximum at a holding time of about 60 min. The specific surface area increases with increasing impregnation ratio up to an impregnation ratio of 1.00. 7 refs., 7 figs., 1 tab.

  17. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions. PMID:26945637

  18. Luminescent Surface Quaternized Carbon Dots

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  19. Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density

    Andersen, Alina Joukainen; Windschiegl, Barbara; Ilbasmis-Tamer, Sibel;

    2013-01-01

    Carboxylated (4%) multi-walled carbon nanotubes were covalently functionalized with poly(ethylene glycol)1000 (PEG1000), PEG1500 and PEG4000 with a PEG loading of approximately 11% in all cases. PEG loading generated non-uniform and heterogeneous higher surface structures and increased nanotube w...

  20. Studies of activated carbon and carbon black for supercapacitor applications

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  1. Methane storage in a commercial activated carbon.

    K. Wang

    2008-06-01

    Full Text Available A commercial activated carbon was examined for possible methane storage application. The structural and surface propertiesof the carbon were characterized by Nitrogen adsorption isotherm at 77 oK. It was found that the carbon is largelymicroporous with a surface area of approximately 860 m2/g. Adsorption test shows the carbon is able to achieve a methanestorage capacity of approximately 70/cc.

  2. Amorphous carbon and its surfaces

    Graphical abstract: Some examples of 2.0 g/cm3 surfaces. The cell contained 64 atoms. The top figure shows some tube-like formation, the central figure is an example of a wave-like surface, and the bottom figure is an example of the bending over of the carbons at the surface to form a surface sheet when the sheets in the bulk are not parallel to the surface. - Abstract: We have investigated bulk amorphous carbon at three densities (3.2, 2.6, and 2.0 g/cm3) using density functional theory (DFT). The variation in the structure with density is discussed. The bulk structures are used to create surface structures. If the surfaces are relaxed at 700 K, the surface structures, as a function of density, are more similar than the analogous bulk structures. The relaxed surfaces appear to be graphene sheets with defects, sizable distortions, and have covalently bonded carbon chains holding the sheets together.

  3. PROGRESS ON ACTIVATED CARBON FIBERS

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  4. Volumetric and superficial characterization of carbon activated

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  5. Nanostructural activated carbons for hydrogen storage

    Li, Suoding

    A series of nanostructured activated carbons have been synthesized from poly(ether ether ketone) (PEEK), and its derivatives. These carbons, with surface area exceeding 3000 m2/g and with average pore diameters of ≤ 20 A, are proven to be superior hydrogen storage materials, with hydrogen storage capacities up to 5.5 wt% at 77 K and 45 atm. The porous texture of these carbons was controlled via optimizing three synthetic steps: thermo-oxidation of PEEK in air, pyrolysis or carbonization of the oxidized PEEK in an inert atmosphere, and activation of the pre-carbonized PEEK with metal hydroxide. Thermo-oxidation of PEEK and carbonization process were thoroughly studied. These processes have been investigated by MDSC, FTIR, TGA and Py-MS. The pyrolysis or carbonization of PEEK involves the degradation of PEEK chains in three stages. Carbon morphology, including crystallinity and porous texture, is readily controlled by adjusting carbonization temperature. Activation of PEEK carbons, using inorganic bases and other activation agents, produces microporous carbons having a very narrow pore size distribution and an average pore diameter of ≤ 20 A. The activation control parameters including activation agent, activation temperature, time and carbon morphology have been investigated extensively. High surface area activated carbon is obtained by activating a highly amorphous carbon with a high activation agent/carbon ratio at 800°C. Theoretical calculations show that the pores with smaller diameter, especially smaller than 7 A, favor hydrogen adsorption. The experimental results confirm this fact and show that: (1) the hydrogen adsorption capacity per unit surface area at 77 K and 1 bar is larger in the smaller pores, (2) gravimetric hydrogen storage capacity (W(H2)) is directly proportional to the ultramicropore (< 7 A) volume; and (3) the volumetric hydrogen storage capacity is directly proportional to the volume fraction of ultramicropores in carbon. Hydrogen

  6. Measurement of carbon thermodynamic activity in sodium

    The report presents the brief outline on system of carbon activity detecting system in sodium (SCD), operating on the carbon-permeable membrane, of the methods and the results of testing it under the experimental circulating loop conditions. The results of carbon activity sensor calibration with the use of equilibrium samples of XI8H9, Fe -8Ni, Fe -12Mn materials are listed. The behaviour of carbon activity sensor signals in sodium under various transitional conditions and hydrodynamic perturbation in the circulating loop, containing carbon bearing impurities in the sodium flow and their deposits on the surfaces flushed by sodium, are described. (author)

  7. Depth Distribution Studies of Carbon in Steel Surfaces by Means of Charged Particle Activation Analysis with an Account of Heat and Diffusion Effects in the Sample

    Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: 12C(p,γ)13N and 12C(d,n)13N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, 13N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described

  8. Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture

    Lee, Min-Sang; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-03-01

    In this study, N-containing pitch-based activated carbons (NPCs) were prepared using petroleum pitch with a low softening point and melamine with a high nitrogen content. The major advantage of the preparation method is that it enables variations in chemical structures and textural properties by steam activation at high temperatures. The adequate micropore structures, appropriate chemical modifications, and high adsorption enthalpies of NPCs are favorable for CO2 adsorption onto carbon surfaces. Furthermore, the structure generates a considerable gas/N-containing carbon interfacial area, and provides selective access to CO2 molecules over N2 molecules by offering an increased number of active sites on the carbon surfaces. The highest CO2/N2 selectivity, i.e., 47.5, and CO2 adsorption capacity for a CO2/N2 (0.15:0.85) binary gas mixture, i.e., 5.30 wt%, were attained at 298 K. The NPCs also gave reversible and durable CO2-capturing performances. All the results suggest that NPCs are promising CO2 sorbents, which can meet the challenges of current CO2 capture and separation techniques.

  9. Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture

    Lee, Min-Sang; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-01-01

    In this study, N-containing pitch-based activated carbons (NPCs) were prepared using petroleum pitch with a low softening point and melamine with a high nitrogen content. The major advantage of the preparation method is that it enables variations in chemical structures and textural properties by steam activation at high temperatures. The adequate micropore structures, appropriate chemical modifications, and high adsorption enthalpies of NPCs are favorable for CO2 adsorption onto carbon surfaces. Furthermore, the structure generates a considerable gas/N-containing carbon interfacial area, and provides selective access to CO2 molecules over N2 molecules by offering an increased number of active sites on the carbon surfaces. The highest CO2/N2 selectivity, i.e., 47.5, and CO2 adsorption capacity for a CO2/N2 (0.15:0.85) binary gas mixture, i.e., 5.30 wt%, were attained at 298 K. The NPCs also gave reversible and durable CO2-capturing performances. All the results suggest that NPCs are promising CO2 sorbents, which can meet the challenges of current CO2 capture and separation techniques. PMID:26987683

  10. Surface Active Components: Review

    Z. Shafiei

    2014-03-01

    Full Text Available Biosurfactant or surface active components are produced by many different microorganisms. Biosurfactants are amphiphilic molecules with both hydrophilic and hydrophobic (generally hydrocarbon moieties that partition preferentially a within the interface between fluid phases with some other degrees of polarity and hydrogen bonding including oil/water or air/water interfaces. These properties render surfactants able to reducing surface and interfacial tension and forming microemulsion where hydrocarbons can solubilize in water or where water can solubilize in hydrocarbons, the majority of surfactants have gained importance in the fields of enhanced oil recovery, environmental bioremediation, food processing and pharmaceuticals. However, large-scale production of these molecules has not been realized as a result of low yields in production processes and high recovery and purification costs. This review article represents a classification of biosurfactant in addition to their microbial origin and effect of some nutrition and environmental factor for high production of biosurfactant. The nitrogen, carbon sources and environmental factors can make a difference key to the regulating biosurfactants synthesis Fascination with microbial surfactants have been steadily increasing recently because of advantages over the chemical surfactants for example environmentally friendly nature, lower toxicity, higher biodegradability, higher selectivity and specific gravity at extreme temperature, pH and salinity. For this reason the demand of biosurfactant are increasing day by day.

  11. Preparation of activated carbon by chemical activation under vacuum.

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  12. Photoconductivity of Activated Carbon Fibers

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  13. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 oC) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (ΔHo), standard entropy (ΔSo) and standard free energy (ΔGo) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions

  14. High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature.

    Ma, Cong; Yu, Shuili; Shi, Wenxin; Tian, Wende; Heijman, S G J; Rietveld, L C

    2012-06-01

    In this study, different concentrations of PAC combined with MBR were carried out to treat slightly polluted surface water (SPSW) at low temperature (10°C). Effects of PAC on the efficiencies of operation, treatment, and the performance of the process were investigated. It was found that the effluent quality, performance efficiency, resistance of shock load were all enhanced and chemical irreversible membrane fouling was reduced with increasing dosage of PAC in MBR. Only when the concentration of PAC which acted as biological carriers was high enough (i.g., 50 g/L), nitrification without initial inoculation in the filtration tank could start within 19 days and be completed within 35 days at 10°C. Fifty grams per liter PAC was the optimal dosage in MBR for stable and extended operation. Under this condition, mean removal efficiencies of ammonia nitrogen (NH(3)-N), dissolved organic carbon (DOC) and UV(254) were 93%, 75%, and 85%, respectively. PMID:22386626

  15. Mobile ions on carbonate surfaces

    Kendall, Treavor A.; Martin, Scot T.

    2005-07-01

    Surface ions move during the dissolution and growth of minerals. The present study investigates the density and the mobility of surface ions and the structure of the adsorbed water layer with changes in relative humidity (RH). The time evolution of the polarization force, which is induced by an electrically biased tip of an atomic force microscope, shows that the density and the mobility of surface ions increase with rising humidity, a finding which is consistent with increasing surface hydration. A marked change in the observations above 55% RH indicates a transition from a water layer formed by heteroepitaxial two-dimensional growth at low RH to one formed by multilayer three-dimensional growth at high RH. A comparison of the results of several rhombohedral carbonates ( viz. CaCO 3, FeCO 3, ZnCO 3, MgCO 3, and MnCO 3) shows that a long relaxation time of the polarization force at high RH is predictive of a rapid dissolution rate. This finding is rationalized by long lifetimes in terrace positions and hence greater opportunities for detachment of the ion to aqueous solution (i.e., dissolution). Our findings on the density and the mobility of surface ions therefore help to better constrain mechanistic models of hydration, ion exchange, and dissolution/growth.

  16. Impacto del tratamiento con ozono sobre las propiedades superficiales del carbón activado Impact of ozone treatment on activated carbon surface properties

    Héctor Valdés

    2011-08-01

    Full Text Available El uso conjunto de ozono y carbón activado para tratar efluentes tóxicos ha sido demostrado recientemente. Sin embargo, existen dudas acerca del efecto del ozono sobre las propiedades del carbón activado. En este artículo se presentan resultados sobre la modificación de las propiedades superficiales de un carbón activado comercial por la acción del ozono durante diferentes tiempos de exposición. Las propiedades químicas superficiales del carbón activado fueron evaluadas utilizando las técnicas de neutralización selectiva, desorción térmica programada (DTP y el pH del punto de carga cero. Las características texturales fueron evaluadas mediante microscopía electrónica de barrido. El área superficial aparente, el volumen de microporos y mesoporos fueron obtenidos a partir de las isotermas de adsorción de nitrógeno a 77 K. Las propiedades adsortivas fueron caracterizadas por el índice de adsorción de azul de metileno. Los resultados demuestran que los grupos superficiales oxigenados presentes en el carbón activado se modifican producto del tratamiento con el ozono. A mayores dosis de ozono, el carbón sufre mayor oxidación y se incrementan los grupos ácidos en especial los grupos carboxílicos, mientras que el pH de punto de carga cero disminuye. El área BET, así como el volumen de microporos disminuyen al igual que el poder de adsorción de azul de metileno.The combined use of ozone and activated carbon has recently started to be developed for the treatment of toxic effluents. However, the effect of ozone on the properties of activated carbon is not fully elucidated. A study was undertaken of modifications of the surface properties of a commercial activated carbon produced by its ozonation during different time periods. Surface chemistry of the activated carbon samples was characterized by of selective neutralization, temperature-programmed desorption, and pH of the point of zero charge. Surface area and volume of

  17. Surface free energy ( γsd) of active carbons determined by inverse gas chromatography: influences of the origin of precursors, the burn off level and the chemical modification

    Cossarutto, L.; Vagner, C.; Finqueneisel, G.; Weber, J. V.; Zimny, T.

    2001-06-01

    The dispersive component of the surface free energies ( γsd) of commercial active carbons (AC) from various origins were determined by inverse gas chromatography at infinite dilution (IGC-ID). This method discriminates clearly the AC produced from wood (and activated/carbonised with phosphoric acid) and those from coconut-shell (carbonised and steam activated at 850°C). The values for the last AC (from coconut) are twice higher than the values for AC of wood origin. The structure and shape of the pores have to be considered to explain these values. It seems that for AC, IGC-ID globally characterises the most energetic micropores. This can be observed, in this work, by two ways: (i) washing of commercial AC (chemically activated) allows to liberate a part of the micropores blocked by soluble phosphate and consequently increases the γsd value; (ii) modifying coconuts AC by chemical treatment (formamide) results in a strong decrease of both microporosity and γsd value. On the contrary, thermal activation of the modified AC increases at the same time the microporosity and the surface free energy. Finally, we demonstrate that the IGC method is also an useful tool to monitor in situ the evolutions of the surface properties of carbonaceous materials.

  18. Removal of nitrate ions from water by activated carbons (ACs)—Influence of surface chemistry of ACs and coexisting chloride and sulfate ions

    Ota, Kazunari; Amano, Yoshimasa; Aikawa, Masami; Machida, Motoi

    2013-07-01

    Adsorptive removal of nitrate ions in aqueous solution using activated carbons (ACs) was examined. After ash was removed from Filtrasorb 400 AC, oxidation and outgassing and several heat treatments were carried out to modify the textural and surface properties of ACs. AC oxidized with 8 M nitric acid followed by outgassing at 900 °C (Ox-9OG) exhibited the greatest Langmuir adsorption capacity and affinity for nitrate removal among the total 7 ACs examined. Influence of coexisting chloride and sulfate ions was investigated as well to inspect the nitrate adsorption sites. The highest amount of sites which adsorbed nitrate ions exclusively could be observed for Ox-9OG adsorbent even though as great as 250 times greater number of chloride or sulfate ions over nitrate ions were present in the same aqueous system. Some basic oxygen species on carbon were estimated to work as selective adsorption sites for nitrate ions.

  19. Dewatering Peat With Activated Carbon

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  20. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide

    Okman, Irem; Karagöz, Selhan; Tay, Turgay; Erdem, Murat

    2014-02-01

    Activated carbons were produced from grape seed using either potassium carbonate (K2CO3) or potassium hydroxide (KOH). The carbonization experiments were accomplished at 600 and 800 °C. The effects of the experimental conditions (i.e., type of activation reagents, reagent concentrations, and carbonization temperatures) on the yields and the properties of these activated carbons were analyzed under identical conditions. An increase in the temperature at the same concentrations for both K2CO3 and KOH led to a decrease in the yields of the activated carbons. The lowest activated carbon yields were obtained at 800 °C at the highest reagent concentration (100 wt%) for both K2CO3 and KOH. The activated carbon with the highest surface area of 1238 m2g-1 was obtained at 800 °C in K2CO3 concentration of 50 wt% while KOH produced the activated carbon with the highest surface area of 1222 m2g-1 in a concentration of 25wt% at 800 °C. The obtained activated carbons were mainly microporous.

  1. Surface analysis of plasma grafted carbon fiber

    The surface characteristics of carbon fibers were studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and wetting measurements. The surface of carbon fiber was modified by means of plasma graft silsesquioxane. The oxygen/carbon and silicon/carbon ratio increased rapidly after treatments. Fitting the C 1s, O 1s, and Si 2p spectra demonstrated that new photopeaks were emerged, which were indicated C-Si, Si-O groups, respectively. The degree of surface roughness and the wettability of carbon fiber surface were both increased by plasma graft silsesquioxane. The results may shed some light on the design of the appropriate surface structure, which could react with resin, and the manufacture of the carbon fiber reinforced composites

  2. Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation.

    Liu, Huimin; Meng, Xianguang; Dao, Thang Duy; Zhang, Huabin; Li, Peng; Chang, Kun; Wang, Tao; Li, Mu; Nagao, Tadaaki; Ye, Jinhua

    2015-09-21

    A novel CO2 photoreduction method, CO2 conversion through methane reforming into syngas (DRM) was adopted as an efficient approach to not only reduce the environmental concentration of the greenhouse gas CO2 but also realize the net energy storage from solar energy to chemical energy. For the first time it is reported that gold, which was generally regarded to be inactive in improving the performance of a catalyst in DRM under thermal conditions, enhanced the catalytic performance of Rh/SBA-15 in DRM under visible-light irradiation (1.7 times, CO2 conversion increased from 2100 to 3600 μmol g(-1) s(-1)). UV/Vis spectra and electromagnetic field simulation results revealed that the highly energetic electrons excited by local surface plasmon resonances of Au facilitated the polarization and activation of CO2 and CH4 with thermal assistance. This work provides a new route for CO2 photoreduction and offers a distinctive method to photocatalytically activate nonpolar molecules. PMID:26271348

  3. Surface State of Carbon Fibers Modified by Electrochemical Oxidation

    Yunxia GUO; Jie LIU; Jieying LIANG

    2005-01-01

    Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5%which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.

  4. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  5. Carbon speciation and surface tension of fog

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.

    1990-01-01

    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  6. Microwave-assisted regeneration of activated carbon.

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons. PMID:22728787

  7. Activated carbon for incinerator uses

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  8. The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface

    Das, Atanu K.; Engelhard, Mark H.; Liu, Fei; Bullock, R. Morris; Roberts, John A.

    2013-12-02

    Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at an aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  9. Production of activated carbons from almond shell

    Nabais, Joao M. Valente; Laginhas, Carlos Eduardo C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    The production of activated carbons from almond shell, using physical activation by CO{sub 2} is reported in this work. The used method has produced activated carbons with apparent BET surface areas and micropore volume as high as 1138 m{sup 2} g{sup -1} and 0.49 cm{sup 3} g{sup -1}, respectively. The activated carbons produced have essentially primary micropores and only a small volume of wider micropores. By FTIR analysis it was possible to identify, in the surface of the activated carbons, several functional groups, namely hydroxyls (free and phenol), ethers, esters, lactones, pyrones and Si-H bonds. By the analysis of the XRD patterns it was possible to calculate the microcrystallites dimensions with height between 1.178 and 1.881 nm and width between 3.106 and 5.917 nm. From the XRD it was also possible to identify the presence of traces of inorganic heteroatoms such as Si, Pb, K, Fe and P. All activated carbons showed basic characteristics with point of zero charge between 9.42 and 10.43. (author)

  10. Activated coconut shell charcoal carbon using chemical-physical activation

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  11. Microcystin-LR Adsorption by Activated Carbon.

    Pendleton, Phillip; Schumann, Russell; Wong, Shiaw Hui

    2001-08-01

    We use a selection of wood-based and coconut-based activated carbons to investigate the factors controlling the removal of the hepatotoxin microcystin-LR (m-LR) from aqueous solutions. The wood carbons contain both micropores and mesopores. The coconut carbons contain micropores only. Confirming previously published observations, we also find that the wood-based carbons adsorb more microcystin than the coconut-based carbons. From a combination of a judicious modification of a wood-based carbon's surface chemistry and of the solution chemistry, we demonstrate that both surface and solution chemistry play minor roles in the adsorption process, with the adsorbent surface chemistry exhibiting less influence than the solution chemistry. Conformational changes at low solution pH probably contribute to the observed increase in adsorption by both classes of adsorbent. At the solution pH of 2.5, the coconut-based carbons exhibit a 400% increased affinity for m-LR compared with 100% increases for the wood-based carbons. In an analysis of the thermodynamics of adsorption, using multiple temperature adsorption chromatography methods, we indicate that m-LR adsorption is an entropy-driven process for each of the carbons, except the most hydrophilic and mesoporous carbon, B1. In this case, exothermic enthalpy contributions to adsorption also exist. From our overall observations, since m-LR contains molecular dimensions in the secondary micropore width range, we demonstrate that it is important to consider both the secondary micropore and the mesopore volumes for the adsorption of m-LR from aqueous solutions. Copyright 2001 Academic Press. PMID:11446779

  12. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  13. PREPARATION OF ACTIVATED CARBON FROM PEAT

    Yasumitsu Uraki

    2009-02-01

    Full Text Available Peat with an approximate 60% carbon content collected in the suburbs of Palangka Raya, Indonesia, was carbonized, followed by activation with steam in an electric furnace. The resultant activated carbon (AC had ca. 900 m2/g of BET surface area and 1000 mg/g of iodine adsorption. This performance implies that this AC can be used as an adsorbent for environmental purification. We had a carbonizing furnace manufactured in Palangka Raya, which did not require electric power. Some AC having 350 mg/g of iodine adsorption was obtained by using this furnace. Although the adsorption ability was much lower than that of commercially available AC, the AC achieved significant decoloration and decrease in chemical oxygen demand of polluted river water. Thus, this article demonstrated the potential of tropical peat soil as a source of AC.

  14. Antimicrobial Activity of Carbon-Based Nanoparticles

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  15. Effect of Surface Oxygen Containing Groups on the Catalytic Activity of Multi-walled Carbon Nanotube Supported Pt Catalyst

    X Wang; N Li; J Webb; L Pfefferle; G Haller

    2011-12-31

    Multi-walled carbon nanotubes (MWNT) supported platinum catalysts were employed to study the support functionalization on their catalytic performances. The MWNT were subjected to HNO{sub 3} functionalization, in which oxygen-containing-groups (OCGs) were introduced to improve Pt dispersion. The MWNT supports were characterized by nitrogen physisorption and NEXAFS, and the Pt supported on differently functionalized MWNT characterized by X-ray absorption, TEM and both hydrogen and CO chemisorption. Compared to the as received MWNT supports, Pt dispersion is improved on the HNO3 treated MWNT supports, but the turnover frequency (TOF) of aqueous phase reforming decreases by half. The TOF can be recovered by removing the OCGs via high temperature annealing. To further investigate the OCGs effect, different probe reactions, including both steam reforming and liquid phase reforming of hydrocarbon oxygenates and dehydrogenation of alkanes in the liquid and gas phases, have been performed on the MWNT supported catalysts with different OCGs. A comparison of these reaction results suggests that OCGs are only detrimental to reactions in a binary mixture with two components of different hydrophilicity due to their competitive adsorption on the catalyst supports.

  16. Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction.

    Pereira, L; Pereira, R; Pereira, M F R; van der Zee, F P; Cervantes, F J; Alves, M M

    2010-11-15

    The surface chemistry of a commercial AC (AC(0)) was selectively modified, without changing significantly its textural properties, by chemical oxidation with HNO(3) (AC(HNO3)) and O(2) (AC(O2)), and thermal treatments under H(2) (AC(H2)) or N(2) (AC(N2)) flow. The effect of modified AC on anaerobic chemical dye reduction was assayed with sulphide at different pH values 5, 7 and 9. Four dyes were tested: Acid Orange 7, Reactive Red 2, Mordant Yellow 10 and Direct Blue 71. Batch experiments with low amounts of AC (0.1 g L(-1)) demonstrated an increase of the first-order reduction rate constants, up to 9-fold, as compared with assays without AC. Optimum rates were obtained at pH 5 except for MY10, higher at pH 7. In general, rates increased with increasing the pH of point zero charge (pH(pzc)), following the trend AC(HNO3) < AC(O2) < AC(0) < AC(N2) < AC(H2). The highest reduction rate was obtained for MY10 with AC(H2) at pH 7, which corresponded to the double, as compared with non-modified AC. In a biological system using granular biomass, AC(H2) also duplicated and increase 4.5-fold the decolourisation rates of MY10 and RR2, respectively. In this last experiment, reaction rate was independent of AC concentration in the tested range 0.1-0.6 g L(-1). PMID:20800966

  17. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  18. Dynamic adsorption of radon on activated carbon

    The adsorption of 222Rn from air onto activated carbon was studied over the range 0 to 550C. A sharp pulse of radon was injected into an air stream that flowed through a bed of activated carbon. The radon concentration in the exit from the column was continuously monitored using a zinc sulfide α-scintillation flow cell. Elution curves were analyzed to determine the dynamic adsorption coefficient and the number of theoretical stages. Five types of activated carbon were tested and the dynamic adsorption coefficient was found to increase linearly with surface area in the range 1000 to 1300 m2g-1. The adsorptive capacity of activated carbon was reduced by up to 30% if the entering gas was saturated with water vapor and the bed was initially dry. If the bed was allowed to equilibrate with saturated air, the adsorptive capacity was too low to be of practical use. The minimum height equivalent to a theoretical stage (HETS) was about four times the particle diameter and occurred at superficial velocities within the range 0.002 to 0.02 m s-1. For superficial velocities above 0.05 m s-1, the HETS was determined by the rate of mass transfer. The application of these results to the design of activated carbon systems for radon retention is discussed

  19. Method for in-situ cleaning of carbon contaminated surfaces

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2006-12-12

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.

  20. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N2 and O2 plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O2 plasma treatment of CNW leads to a more activated macrophage phenotype

  1. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  2. Removal of Cr(VI) from low-temperature micro-polluted surface water by tannic acid immobilized powdered activated carbon.

    Li, Weiguang; Gong, Xujin; Li, Xin; Zhang, Duoying; Gong, Hainan

    2012-06-01

    In this study, food-grade tannic acid-immobilized powdered activated carbon (TA-PAC) was prepared, and adsorption of Cr(VI) (0.500 mg/L) onto TA-PAC as a function of pH, contact time, adsorption capacities and adsorption isotherms at 280 K was investigated. The results indicated that the immobilization process introduced abundant acid functional groups. The adsorption capacity of TA-PAC was found to be pH-dependent, and the optimal pH value was found to be 4.0. The equilibrium time was 240 min for TA-PAC. Adsorption data for total chromium were modeled using both two-parameter and three-parameter isotherm models. Freundlich and linear forms of three-parameter models yielded the best results for all of the data. Desorption studies of immobilized material suggested that the immobilization of food-grade tannic acid is steady. The adsorption mechanism of Cr(VI) on TA-PAC was assumed to be a comprehensive process consisting of surface reduction of Cr(VI), esterification between catechol and chromate, and ion exchange. PMID:22243926

  3. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  4. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  5. 石油焦基高比表面积活性炭电吸附脱盐性能的研究%Study on capacitive deionization of activated carbon with high specific surface from petroleum coke by electrosorption

    刘玲; 庞自钊; 孟庆函

    2011-01-01

    采用石油焦为原料,以KOH为活化剂,制得高比表面积活性炭,比表面和孔容远高于常规活性炭,孔径分布和常规活性炭相似.以高比表面积活性炭作为电吸附电极,考察其在NaCl溶液中的电吸附性能,并对话性炭电极电吸附的影响因素进行研究.结果表明,活性炭电极的电吸附性能主要受比表面积和孔容的影响,高比表面积和大孔容的活性炭单位电吸附量高.由于电场重叠效应,部分孔没有起到电吸附作用,降低了微孔的电吸附容量.而当孔径超过一定值后,主要是微孔对电吸附起作用.随着流速的增加,电吸附量降低,物理吸附对电吸附影响不大.%Activated carbons with high surface areas were made from petroleum coke using KOH activation. Hie specific surface and pore volume of high specific surface activated carbon were higher than those of common activated carbons. The pore diameter of high specific surface activated carbon was similar to that of common activated carbon. The electrosorption performance of high specific surface activated carbon as electrode in NaCl solution was investigated and effecting factors to electrosorption were studied. The results showed that electrosorption performance was affected by specific surface and pore volume, and the higher surface area and the larger pore volume led to the higher absorption capacity. Partial pore didn't contribute to electrosorption due to the overlapping field, which decreased microporous absorption capacity. When pore diameter was more than specific value, effective contribution to electrosorption was mainly from micropores. With increasing flow rate, absorption capacity decreased. Moreover the physical absorption didn't affect absorption capacity.

  6. Preparation of very pure active carbon

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  7. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  8. Carbon Sequestration on Surface Mine Lands

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-10-02

    During this quarter a general forest monitoring program was conducted to measure treatment effects on above ground and below ground carbon C and Nitrogen (N) pools for the tree planting areas. Detailed studies to address specific questions pertaining to Carbon cycling was initiated with the development of plots to examine the influence of mycorrhizae, spoil chemical and mineralogical properties, and use of amendment on forest establishment and carbon sequestration. Efforts continued during this period to examine decomposition and heterotrophic respiration on C cycling in the reforestation plots. Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies to sequester carbon in various terrestrial ecosystems. Reclaimed surface mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. New plantings required the modification and design and installation on monitoring equipment. Maintenance and data monitoring on past and present installations are a continuing operation. The Department of Mining Engineering continued the collection of penetration resistance, penetration depth, and bulk density on both old and new treatment areas. Data processing and analysis is in process for these variables. Project scientists and graduate students continue to present results at scientific meetings, tours and field days presentations of the research areas are being conducted on a request basis.

  9. Active carbon production from modified asphalt

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  10. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution

    Oh, Han-Jun [Department of Materials Science, Hanseo University, Seosan, 352-820 (Korea, Republic of); Lee, Jong-Ho [Department of Chemistry, Hanseo University, Seosan, 352-820 (Korea, Republic of); Ahn, Hong-Joo [Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of); Jeong, Yongsoo [Korea Institute of Machinery and Materials, Changwon, 641-010 (Korea, Republic of); Kim, Young-Jig [Department of Metallurgical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Chi, Choong-Soo [School of Advanced Materials Engineering, Kookmin University, Seoul, 136-702 (Korea, Republic of)]. E-mail: cschi@kookmin.ac.kr

    2006-09-25

    Activated nanostructured-carbon cloths with a high ratio of surface area to volume are used as electrode for capacitive deionization. The electrochemical properties on capacitive deionization for NaCl solution have been investigated to improve efficiency of capacitive deionization properties from aqueous solution, employing chemical surface-modification by etching in alkaline and acidic solution. The removal efficiency of inorganic salts of activated carbon cloths by chemical modification significantly increased. Specially the carbon cloth surface modified in HNO{sub 3} showed an effect of improvement in the CDI efficiency due to not only ion adsorption by an electric double layer, but also electron transfer by Faradaic reaction.

  11. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  12. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  13. Liquid surface model for carbon nanotube energetics

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are...... an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  14. Interaction forces between waterborne bacteria and activated carbon particles.

    Busscher, Henk J; Dijkstra, Rene J B; Langworthy, Don E; Collias, Dimitris I; Bjorkquist, David W; Mitchell, Michael D; Van der Mei, Henny C

    2008-06-01

    Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positively charged, mesoporous wood-based carbons, as well as with a microporous coconut carbon. To this end, we glued carbon particles to the cantilever of an atomic force microscope and measured the interaction forces upon approach and retraction of thus made tips. Waterborne Raoultella terrigena and Escherichia coli adhered weakly (1-2 nN) to different activated carbon particles, and the main difference between the activated carbons was the percentage of curves with attractive sites revealed upon traversing of a carbon particle through the bacterial EPS layer. The percentage of curves showing adhesion forces upon retraction varied between 21% and 69%, and was highest for R. terrigena with positively charged carbon (66%) and a coconut carbon (69%). Macroscopic bacterial removal by the mesoporous carbon particles increased with increasing percentages of attractive sites revealed upon traversing a carbon particle through the outer bacterial surface layer. PMID:18405910

  15. Adsorption of ciprofloxacin on surface-modified carbon materials.

    Carabineiro, S A C; Thavorn-Amornsri, T; Pereira, M F R; Figueiredo, J L

    2011-10-01

    The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings. PMID:21733541

  16. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  17. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  18. Active carbons from low temperature conversion chars

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm3 to 0.52 g.cm3. Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g-1), while O. martiana contained the highest lignin content (40.7 g.100g-1). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (Vmicro) was between 0.33cm3.g-1 - 0.40cm3.g-1, while the mesopore volume(Vmeso) was between 0.05 cm3.g-1 - 0.07 cm3.g-1. The BET specific surface exceeds 1000 m2.g-1. All these values compared favourably with high grade commercial active carbons. (author)

  19. Preparation of Activated Carbon from Waste Tires and its application in Gasoline Removal from Water

    Mohammad Ali Baghapour

    2014-03-01

    Conclusion: Produced activated carbon has desired surface area and adsorptive capacity for gasoline adsorption in aquatic environments and it seems preparation activated carbon from waste tiers is cheap, effective and environment friendly.

  20. Al current collector surface treatment and carbon nano tubes influences on Carbon / Carbon super-capacitors performances

    Portet, C.; Taberna, P.L.; Simon, P. [Universite Paul Sabatier, CIRIMAT-LCMIE, 31 - Toulouse (France)

    2004-07-01

    Performances of 4 cm{sup 2} carbon/carbon super-capacitors cells using Al current collectors foils in organic electrolyte are presented; the improvement of electrode material has been investigated. In a first part, a surface treatment of the Al current collector is proposed in order to improve contact surface between the current collector and the active material leading to an internal resistance decrease. The process consists in an etching of the Al foil and is followed by a carbonaceous sol-gel deposit. Galvano-static cycling and Electrochemical Impedance Spectroscopy measurements of super-capacitors all assembled with treated Al foil were tested over 10,000 cycles: an ESR of 0.5 {omega} cm{sup 2} and a capacitance of 95 F g{sup -1} of activated carbon are obtained and performances remain stable during cycling. The second part is devoted to the study of Carbon Nano Tubes (CNTs) adding into the active material on the performances of super-capacitors. A content of 15% of CNTs appears to be the best composition; the ESR is 0.4 {omega} cm{sup 2} (20% lowered as compared to a cell using activated carbon based electrode) and the capacitance remain high 93 F g{sup -1} of carbonaceous active material. (authors)

  1. Grafting of activated carbon cloths for selective adsorption

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  2. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. PMID:20382474

  3. High surface area silicon carbide-coated carbon aerogel

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  4. The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics

    Jafarov, Elchin; Schaefer, Kevin

    2016-03-01

    Permafrost-affected soils contain twice as much carbon as currently exists in the atmosphere. Studies show that warming of the perennially frozen ground could initiate significant release of the frozen soil carbon into the atmosphere. Initializing the frozen permafrost carbon with the observed soil carbon distribution from the Northern Circumpolar Soil Carbon Database reduces the uncertainty associated with the modeling of the permafrost carbon feedback. To improve permafrost thermal and carbon dynamics we implemented a dynamic surface organic layer with vertical carbon redistribution, and introduced dynamic root growth controlled by active layer thickness, which improved soil carbon exchange between frozen and thawed pools. These changes increased the initial amount of simulated frozen carbon from 313 to 560 Gt C, consistent with observed frozen carbon stocks, and increased the spatial correlation of the simulated and observed distribution of frozen carbon from 0.12 to 0.63.

  5. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  6. Direct Electrochemistry of Glucose Oxidase Immobilized on Surface of Activated Carbon%葡萄糖氧化酶在活性炭上的固定及直接电化学

    孙冬梅; 蔡称心; 邢巍; 陆天虹

    2005-01-01

    The glucose oxidase (GOD) immobilized onto the surface of activated carbon powders at the glassy carbon electrode (GOD-C/GC) could undergo the quasi-reversible, direct electrochemical reaction. Its formal redox potential, E0', is almost independent on the scan rates. The average value of E0' is (-0.467±0.002) V (vs SCE) in the pH 6.8 phosphate buffer solution. Its apparent heterogeneous electron transfer rate constant (ks) is (1.18±0.59) s-1, which is much higher than that reported previously. The dependence of E0' on the pH of the buffer solution indicated that the direct electrochemical reaction of the immobilized GOD is a two-electron transfer reaction process coupled with twoproton transfer. The further experimental results demonstrated that the immobilized GOD retained its bioelectrocatalytic activity to the oxidation of β-D(+) glucose.

  7. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    Loring, John S.; Chen, Jeffrey; Benezeth Ep Gisquet, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-07-14

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  8. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  9. Effects of CO 2 activation on porous structures of coconut shell-based activated carbons

    Guo, Shenghui; Peng, Jinhui; Li, Wei; Yang, Kunbin; Zhang, Libo; Zhang, Shimin; Xia, Hongying

    2009-07-01

    In this paper, textural characterization of an activated carbon derived from carbonized coconut shell char obtained at carbonization temperature of 600 °C for 2 h by CO 2 activation was investigated. The effects of activation temperature, activation time and flow rate of CO 2 on the BET surface area, total volume, micropore volume and yield of activated carbons prepared were evaluated systematically. The results showed that: (i) enhancing activation temperature was favorable to the formation of pores, widening of pores and an increase in mesopores; (ii) increasing activation time was favorable to the formation of micropores and mesopores, and longer activation time would result in collapsing of pores; (iii) increasing flow rate of CO 2 was favorable to the reactions of all active sites and formation of pores, further increasing flow rate of CO 2 would lead carbon to burn out and was unfavorable to the formation of pores. The degree of surface roughness of activated carbon prepared was measured by the fractal dimension which was calculated by FHH (Frenkel-Halsey-Hill) theory. The fractal dimensions of activated carbons prepared were greater than 2.6, indicating the activated carbon samples prepared had very irregular structures, and agreed well with those of average micropore size.

  10. Creation of surface defects on carbon nanofibers by steam treatment

    Zhengfeng; Shao; Min; Pang; Wei; Xia; Martin; Muhler; Changhai; Liang

    2013-01-01

    A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.

  11. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    Ewecharoen, A. [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Thiravetyan, P., E-mail: paitip@hotmail.com [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Wendel, E.; Bertagnolli, H. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g{sup -1}. X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  12. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption. PMID:19576692

  13. Carbon Sequestration on Surface Mine Lands

    Donald H. Graves; Christopher Barton; Bon Jun Koo; Richard Sweigard; Richard Warner

    2004-11-30

    The first quarter of 2004 was dedicated to tree planting activities in two locations in Kentucky. During the first year of this project there was not available mine land to plant in the Hazard area, so 107 acres were planted in the Martin County mine location. This year 120 acres were planted in the Hazard area to compensate for the prior year and an additional 57 acres were planted on Peabody properties in western Kentucky. Additional sets of special plots were established on each of these areas that contained 4800 seedlings each for carbon sequestration demonstrations. Plantings were also conducted to continue compaction and water quality studies on the newly established areas as well as continual measurements of the first year's plantings. Total plantings on this project now amount to 357 acres containing 245,960 seedlings. During the second quarter of this year monitoring systems were established for all the new research areas. Weather data pertinent to the research as well as hydrology and water quality monitoring continues to be conducted on all areas. Studies established to assess specific questions pertaining to carbon flux and the invasion of the vegetation by small mammals are being quantified. Experimental practices initiated with this research project will eventually allow for the planting on long steep slopes with loose grading systems and allow mountain top removal areas to be constructed with loose spoil with no grading of the final layers of rooting material when establishing trees for the final land use designation. Monitoring systems have been installed to measure treatment effects on both above and below ground carbon and nitrogen pools in the planting areas. Soil and tissue samples were collected from both years planting and analyses were conducted in the laboratory. Examination of decomposition and heterotropic respiration on carbon cycling in the reforestation plots continued during the reporting period. Entire planted trees were

  14. Potential for carbon adsorption on concrete: surface XPS analyses.

    Haselbach, Liv M; Ma, Shuguo

    2008-07-15

    The concrete industry is a contributor to the global carbon cycle particularly with respect to the contribution of carbon dioxide in the manufacturing of cement (calcination). The reverse reaction of carbonation is known to occur in concrete, but is usually limited to exterior surfaces exposed to carbon dioxide and humidity in the air. As alternate concrete uses expand which have more surface area, such as crushed concrete for recycling, it is important to understand surface adsorption of carbon dioxide and the positive impacts it might have on the carbon cycle. X-ray photoelectron spectroscopy (XPS) is used in this study to evaluate carbon species on hydrated cement mortar surfaces. Initial estimates for carbon absorption in concrete using othertechniques predictthe potential for carbonate species to be a fraction of the calcination stoichiometric equivalent The XPS results indicate that there is a rapid and substantial uptake of carbon dioxide on the surfaces of these mortars, sometimes exceeding the calcination stoichiometric equivalents, indicative of carbon dioxide surface complexation species. On pure calcite, the excess is on the order of 30%. This accelerated carbon dioxide surface adsorption phenomenon may be importantfor determining novel and effective carbon sequestration processes using recycled concrete. PMID:18754389

  15. Apparatus and process for the surface treatment of carbon fibers

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    2016-05-17

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  16. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  17. Production of activated carbons from coffee endocarp by CO2 and steam activation

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  18. Production of activated carbons from coffee endocarp by CO{sub 2} and steam activation

    Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J.M.; Ribeiro Carrott, M. Manuela L. [Centro de Quimica de Evora and Departamento de Quimica, Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal); Garcia, A. Macias; Diaz-Diez, M.A. [Universidad de Extremadura, Avda. de Elvas, s/n 06071 Badajoz (Spain)

    2008-03-15

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO{sub 2} was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO{sub 2} activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  19. Liquid-phase adsorption of phenol onto activated carbons prepared with different activation levels

    Hsieh, C.T.; Teng, H.S.

    2000-07-01

    The paper investigates the influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons were found to vary with the burn-off level. The paper demonstrates that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores.

  20. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  1. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    Loring, John S.; Chen, Jeffrey; Benezeth, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-06-16

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, the implication of these results is that mineral trapping in scCO2 dominated fluids will be insignificant and limited to surface complexation unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  2. Osteoblast cell response to surface-modified carbon nanotubes

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  3. High capacity mercury adsorption on freshly ozone-treated carbon surfaces

    Manchester, Shawn; Wang, Xuelei; Kulaots, Indrek; Gao, Yuming; Hurt, Robert H.

    2008-01-01

    A set of carbon materials was treated by a choice of common oxidizers to investigate the mercury capture capacities at varying temperature conditions. It was found that ozone treatment dramatically increases the mercury capture capacity of carbon surfaces by factors up to 134, but the activity is easily destroyed by exposure to the atmosphere, to water vapor, or by mild heating. Freshly ozone-treated carbon surfaces are shown to oxidize iodide to iodine in solution and this ability fades with...

  4. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate

    Mamun, A. A.; Y.M. Ahmed; S.A. Muyibi; M.F.R. Al-Khatib; A.T. Jameel; M.A. AlSaadi

    2016-01-01

    The catalysis and characterization of carbon nanofibers (CNFs) composite are reported in this work. Carbon nanofibers were produced on oil palm shell powdered activated carbon (PAC), which was impregnated with nickel. Chemical Vapor Deposition (CVD) of C2H2 was used in the presence of hydrogen at ∼650 °C. The flow rates of carbon source and hydrogen were fixed. The CNFs formed directly on the surface of the impregnated PAC. Variable weight percentages (1%, 3%, 5%, 7% and 9%) of the catalyst s...

  5. Green Bank Telescope active surface system

    Lacasse, Richard J.

    1998-05-01

    During the design phase of the Green Bank Telescope (GBT), various means of providing an accurate surface on a large aperture paraboloid, were considered. Automated jacks supporting the primary reflector were selected as the appropriate technology since they promised greater performance and potentially lower costs than a homologous or carbon fiber design, and had certain advantages over an active secondary. The design of the active surface has presented many challenges. Since the actuators are mounted on a tipping structure, it was required that they support a significant side-load. Such devices were not readily available commercially so they had to be developed. Additional actuator requirements include low backlash, repeatable positioning, and an operational life of at least 230 years. Similarly, no control system capable of controlling the 2209 actuators was commercially available. Again a prime requirement was reliability. Maintaining was also a very important consideration. The system architecture is tree-like. An active surface 'master-computer' controls interaction with the telescope control system, and controls ancillary equipment such as power supplies and temperature monitors. Two slave computers interface with the master- computer, and each closes approximately 1100 position loops. For simplicity, the servo is an 'on/off' type, yet achieves a positioning resolution of 25 microns. Each slave computer interfaces with 4 VME I/O cards, which in turn communicate with 140 control modules. The control modules read out the positions of the actuators every 0.1 sec and control the actuators' DC motors. Initial control of the active surface will be based on an elevation dependant structural model. Later, the model will be improved by holographic observations.Surface accuracy will be improved further by using laser ranging system which will actively measure the surface figure. Several tests have been conducted to assure that the system will perform as desired when

  6. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-08-02

    The April-June 2004 quarter was dedicated to the establishment of monitoring systems for all the new research areas. Hydrology and water quality monitoring continues to be conducted on all areas as does weather data pertinent to the research. Studies assessing specific questions pertaining to carbon flux has been established and the invasion of the vegetation by small mammals is being quantified. The approval of two experimental practices associated with this research by the United States Office of Surface Mining was a major accomplishment during this period of time. These experimental practices will eventually allow for tree planting on long steep slopes with loose grading systems and for the use of loose dumped spoil on mountain top removal areas with no grading in the final layer of rooting material for tree establishment.

  7. Adsorption of dissolved natural organic matter by modified activated carbons.

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  8. Superior capacitive performance of active carbons derived from Enteromorpha prolifera

    Highlights: • An ocean biomass, Entromorphra prolifera, has been processed into supercapacitor electrodes. • KOH activation can prepare hierarchical porous carbon. • The as-prepared carbons have high capacitance with good rate capability. • This work provided an approach to value-added products from an ocean biomass. - Abstract: Enteromorpha prolifera (E.prolifera), an ocean biomass, was used as raw materials to prepare active carbons by a two-step strategy (pre-carbonization followed by chemical activation). The as-prepared active carbons have been characterized by a variety of means such as N2 adsorption, field emission scanning electron microscope, transmission electron microscope, Raman spectroscopy. The results showed that the carbons have large surface area and developed porosity with micro-meso hierarchical pore texture. As evidenced by electrochemical measurements, the specific capacitance of the carbons can reach up to 296 F g−1. More importantly, the carbons can maintain a high capacitance of up to 152 F g−1 at a very high current density of 30 A g−1, highlighting the promise of the carbons for high power applications

  9. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H2SO4, KClO3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  10. Spherical carbons: Synthesis, characterization and activation processes

    Romero Anaya, Aroldo José; Ouzzine, Mohammed; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2014-01-01

    Spherical carbons have been prepared through hydrothermal treatment of three carbohydrates (glucose, saccharose and cellulose). Preparation variables such as treatment time, treatment temperature and concentration of carbohydrate have been analyzed to obtain spherical carbons. These spherical carbons can be prepared with particle sizes larger than 10 μm, especially from saccharose, and have subsequently been activated using different activation processes (H3PO4, NaOH, KOH or physical activati...

  11. Preparation and characterisation of activated carbon

    Activated carbon was prepared from Agricultural wastes, such as coconut shell, Palm oil Shell and mangrove trunk by destructive distillation under vakuum. Chemical and Physical properties of the activated carbon were studied and some potentially useful application in the fields of chemistry was also carried out

  12. Adsorption of organic substances to activated carbon

    Adsorption systems using activated carbon as an almost universal adsorbent for organic substances are widely applied for purifying exhaust air. The possibilities, limits and measures for an optimum design of activated carbon processes are given from the point of view of the plant designed and under the aspects of the present laws for environmental control. (orig.)

  13. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry

    Adsorption by carbonaceous sorbents is among the most feasible processes to remove perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) from drinking and ground waters. However, carbon surface chemistry, which has long been recognized essential for dictating performance of such sorbents, has never been considered for PFOS and PFOA adsorption. Thus, the role of surface chemistry was systematically investigated using sorbents with a wide range in precursor material, pore structure, and surface chemistry. Sorbent surface chemistry overwhelmed physical properties in controlling the extent of uptake. The adsorption affinity was positively correlated carbon surface basicity, suggesting that high acid neutralizing or anion exchange capacity was critical for substantial uptake of PFOS and PFOA. Carbon polarity or hydrophobicity had insignificant impact on the extent of adsorption. Synthetic polymer-based Ambersorb and activated carbon fibers were more effective than activated carbon made of natural materials in removing PFOS and PFOA from aqueous solutions. - Highlights: • Adsorption of PFOS and PFOA by ten carbonaceous adsorbents were compared. • Surface chemistry of the adsorbents controlled adsorption affinity. • Carbon surface basicity was positively correlated with the extent of PFOS and PFOA uptake. • Carbon polarity or hydrophobicity was not correlated with adsorption affinity. • Synthetic polymer-based adsorbents were more effective in removing PFOS and PFOA. - Carbon surface basicity is the primary factor that influences adsorption affinity of the carbonaceous sorbents for perfluorooctane sulfonic and carboxylic acids

  14. Production of activated carbon from TCR char

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  15. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Donnaperna Lucio; Duclaux Laurent; Gadiou Roger

    2008-01-01

    The adsorption of Remazol Black B (anionic dye) on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explai...

  16. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber

    Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.

  17. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber

    Li, J., E-mail: lijian2006d@sina.com [School of Mechanical and Electronic Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2009-07-30

    Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 {mu}m are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.

  18. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon

    De Ridder, David J.

    2013-03-01

    The adsorption efficacy of 16 pharmaceuticals on six different activated carbons is correlated to the thermodynamic work of adhesion, which was derived following the surface tension component approach. Immersion calorimetry was used to determine the surface tension components of activated carbon, while contact angle measurements on compressed plates were used to determine these for solutes. We found that the acid-base surface tension components of activated carbon correlated to the activated carbon oxygen content. Solute-water interaction correlated well to their solubility, although four solutes deviated from the trend. In the interaction between solute and activated carbon, van der Waals interactions were dominant and explained 65-94% of the total interaction energy, depending on the hydrophobicity of the activated carbon and solute. A reasonable relationship (r2 > 70) was found between the calculated work of adhesion and the experimentally determined activated carbon loading. © 2012 Elsevier Ltd. All rights reserved.

  19. Removal of E. coli from water using surface-modified activated carbon filter media and its performance over an extended use.

    Pal, Sukdeb; Joardar, J; Song, Joon Myong

    2006-10-01

    Modification of activated carbon (AC) by aluminum hydroxychloride (AHC), and diatomaceous earth by zinc hydroxide changed the zeta potentials of these filter media from negative to positive. The modification method is amenable to room temperature, and eliminates the essential requirement of strong base treatment for making metal hydroxide coated filter media. Solid-state MAS 27Al NMR spectra suggested the presence of Al13-mer in the AHC-treated AC. AHC-modified AC samples were further treated with silver halide, and two antibacterial compounds to prevent microbial growth on filter media. In situ precipitation of silver bromide on AC resulted in formation of nanosized AgBr crystals. Bacteria removal performances of the modified media were tested in columns. For the first time, we demonstrated that only 30 g of either AHC-treated AC (60 x 200 mesh) or nano AgBr supported AC could provide >6 log E. coli removal over approximately 1000 L when the input water had a bacterial load of 10(7) CFU/mL. The filter media were robust enough to perform even when water was passed at superficial velocities 3-10 times the typical velocity (6 cm/min) of water treatment processes. Metal leaching from the modified media was found to be less than the USEPA specified Maximum Contaminant Level. PMID:17051805

  20. Enhanced Capacitive Characteristics of Activated Carbon by Secondary Activation

    YANG Hui; LU Tian-hong; Yoshio Masaki

    2004-01-01

    The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carried out via a secondary activation under steam in the presence of catalyst NiCl2, and the suitable condition was found to be a heat treatment at about 875 ℃ for 1 h. Under those conditions, the discharge specific capacitance of the improved AC increases up to 53.67 F/g, showing an increase of about 25% as compared with that of as-received AC. The good rectangular-shaped voltammograms and A.C. impedance spectra prove that the high rate capability of the capacitor made of the improved AC is enhanced significantly. The capacitance resistance(RC) time constant of the capacitor containing the improved AC is 1.74 s, which is much lower than that of the one containing as-received AC(an RC value of 4. 73 s). It is noted that both kinds of AC samples show a similar specific surface area and pore size distribution, but some changes have taken place in the carbon surface groups, especially a decrease in the concentration of surface carbonyl groups after the improvement, which have been verified by means of X-photoelectron spectroscopy. Accordingly, it is suggested that the decrease in the concentration of surface carbonyl groups for the improved AC is beneficial to the organic electrolyte ion penetrating into the pores, thus leading to the increase in both the specific capacitance and high rate capability of the supercapacitor.

  1. Adsorption of uranium from crude phosphoric acid using activated carbon

    The adsorption of uranium from crude phosphoric acid has been investigated using conventional activated carbons. It was found that treatment with nitric acid oxidized the surface of activated carbon and significantly increased the adsorption capacity for uranium in acidic solutions. The parameters that affect the uranium(VI) adsorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated. Equilibrium data were fitted to a simplified Langmuir and Freundlich isotherms for the oxidized samples which indicate that the uranium adsorption onto the activated carbon fitted well with Langmuir isotherm than Freundlich isotherm. Equilibrium studies evaluate the theoretical capacity of activated carbon to be 45.24 g kg-1. (author)

  2. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γSd increases and the polar surface energy γSsp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  3. Characterization of Microporous Activated Carbon Electrodes for Electric Double-layer Capacitors

    MENG Qing-han; LIU Ling; SONG Huai-he

    2004-01-01

    Activated carbons (ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polariz able electrodes of electric double-layer capacitors (EDLCs) in an aqueous electrolytic solution. The porous structures and electrochemical double-layer capacitance of the activated carbons were investigated by virtue of nitrogen gas adsorption and constant current cycling(CCC) methods. The relationship among the surface area, pore volume of the activated carbons and specific double-layer capacitance was discussed. It was found that the specific capacitance of ACs increased linearly with the increase of surface area. The presence of mesopores in the activated carbons with very high surface area(>2000 m2/g) was not very effective for them to be used as EDLCs. The influence of chemical characteristics of the activated carbons on the double layer formation could be considered to be negligible.

  4. Preparation and characterization of activated carbon from marine macro-algal biomass

    Activated carbons prepared from two macro-algal biomass Sargassum longifolium (SL) and Hypnea valentiae (HV) have been examined for the removal of phenol from aqueous solution. The activated carbon has been prepared by zinc chloride activation. Experiments have been carried out at different activating agent/precursor ratio and carbonization temperature, which had significant effect on the pore structure of carbon. Developed activated carbon has been characterized by BET surface area (SBET) analysis and iodine number. The carbons, ZSLC-800 and ZHVC-800, showed surface area around 802 and 783 m2 g-1, respectively. The activated carbon developed showed substantial capability to adsorb phenol from aqueous solutions. The kinetic data were fitted to the models of pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Column studies have also been carried out with ZSLC-800 activated carbon

  5. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry.

    Bautista-Toledo, I; Ferro-García, M A; Rivera-Utrilla, J; Moreno-Castilla, C; Vegas Fernández, F J

    2005-08-15

    The present study aimed to analyze the behavior of different activated carbons in the adsorption and removal of bisphenol A (2-2-bis-4-hydroxypheniyl propane) from aqueous solutions in order to identify the parameters that determine this process. Two commercial activated carbons and one prepared in our laboratory from almond shells were used; they were texturally and chemically characterized, obtaining the surface area, pore size distribution, mineral matter content, elemental analysis, oxygen surface groups, and pH of the point of zero charge (pH(PZC)), among other parameters. Adsorption isotherms of bisphenol A and adsorption capacities were obtained. The capacity of the carbons to remove bisphenol A was related to their characteristics. Thus, the adsorption of bisphenol A on activated carbon fundamentally depends on the chemical nature of the carbon surface and the pH of the solution. The most favorable experimental conditions for this process are those in which the net charge density of the carbon is zero and the bisphenol A is in molecular form. Under these conditions, the adsorbent-adsorbate interactions that govern the adsorption mechanism are enhanced. Influences of the mineral matter present in the carbon samples and the solution chemistry (pH and ionic strength) were also analyzed. The presence of mineral matter in carbons reduces their adsorption capacity because of the hydrophilic nature of the matter. The presence of electrolytes in the solution favor the adsorption process because of the screening effect produced between the positively charged carbon surface and the bisphenol A molecules, with a resulting increase in adsorbent-adsorbate interactions. PMID:16173588

  6. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  7. Characterization of activated carbon produced from urban organic waste

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  8. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. PMID:26257348

  9. Separation of Th from aqueous solutions using activated carbon

    Since the last century, thorium has been extensively used in a variety of applications. These applications produce various gaseous, liquid and solid wastes containing isotopes of thorium. Liquid wastes are freed into the surface or the underground waters of mines. Solid and liquid wastes are also produced during nuclear fuel production. Direct toxicity of thorium is low due to its stability at ambient temperatures; however thorium fine powder is self-ignitable to thorium oxide. When thorium nitrate enters living organisms it is mainly localized in liver, spleen and marrow and it precipitates in a hydroxide form. Investigations concerning the removal or minimization of the thorium concentration in the waste waters are of considerable importance environmental point of view. Adsorption is an important technique in separation and purification processes. Among many types of adsorbent materials, activated carbons are the most widely used, because of their large adsorptive capacity and low cost. Activated carbons are unique adsorbents because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. Separation and purification processes based on adsorption technique are also important in nuclear industry where activated carbon is often used for the separation of metal ions from solutions, due to its selective adsorption, high radiation stability and high purity. The activated carbons used in this study were prepared by the chemical activation of acrylic fiber. The chemical composition of acrylic fiber is a copolymer of acrylonitrile-vinyl acetate is called also poliacrylonitryl fiber. The effects of carbonization conditions resulting activated carbon were examined. Precursor/activating agent (KOH and ZnCl2) ratio and carbonization temperature were investigated for the preparation of adsorbent. Adsorption experiments were carried out by a batch technique. The adsorption of thorium was studied as a function of

  10. CHARACTERIZATION OF ACACIA MANGIUM WOOD BASED ACTIVATED CARBONS PREPARED IN THE PRESENCE OF BASIC ACTIVATING AGENTS

    Mohammed Danish

    2011-06-01

    Full Text Available The aim of this study was to observe the effects of alkaline activating agents on the characteristics, composition, and surface morphology of the designed activated carbons. Activated carbons were prepared by pyrolysis of Acacia mangium wood in the presence of two basic activating agents (calcium oxide and potassium hydroxide. The extent of impregnation ratio of precursor to activating agents was fixed at 2:1(w/w. Prior to pyrolysis, 24 hours soaking was conducted at 348 K. Activation was carried out in a stainless steel capped graphite crucible at 773 K for 2 hours in the absence of purge gas. The burn-off percentage was found to be 70.27±0.93% for CaO activated carbon (COAC and 73.30±0.20% for KOH activated carbon (PHAC. The activating agents had a strong influence on the surface functional groups as well as elemental composition of these activated carbons. Characterization of the activated carbon obtained was performed with field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and nitrogen adsorption as Brunauer, Emmett and Teller (BET and Dubinin-Radushkevich (DR isotherms.

  11. Surface-functionalized mesoporous carbon materials

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  12. Improvement of carbon fiber surface properties using electron beam irradiation

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  13. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei;

    2014-01-01

    feature, instability, and subtle response of the components upon application of an external field. Herein, we use insitu TEM, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy techniques to record the interaction in palladium on carbon nanotubes (CNTs) from room temperature to 600...... degrees C. We focus on probing the effects of oxygen and nitrogen-containing functional groups on supported palladium nanoparticles (NPs) in the model catalytic system. The stability of palladium NPs supported on CNTs depends strongly on the surface properties of CNTs. Moreover, the oxygen......-containing functional groups on the CNT surfaces, such as carboxylic acids and anhydrides, have an even stronger interaction with palladium NPs than the nitrogen-containing counterparts. Our work contributes to elucidation of the complex metal-carbon interaction and unlocks potential in activity and selectivity control...

  14. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow

    van der Mei, Henny C.; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E.; Collias, Dimitris I.; Mitchell, Michael D.; Busscher, Henk J.

    2008-01-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not

  15. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  16. Carbon Sequestration on Surface Mine Lands

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and

  17. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  18. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  19. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  20. PREPARATION OF MICROWAVE ABSORBING NICKEL-BASED ACTIVATED CARBON BY ELECTROLESS PLATING WITH PALLADIUM-FREE ACTIVATION

    Boyang Jia; Lijuan Wang

    2010-01-01

    Nickel-based activated carbon was prepared from coconut shell activated carbon by electroless plating with palladium-free activation. The materials were characterized by scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), vibrating sample magnetometry (VSM), and vector network analyzer, respectively. The results show that the surface of the activated carbon was covered by a Ni-P coating, which was uniform, compact, and continuous and had an obvious metallic sheen. ...

  1. Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation

    Sliced activated carbons were prepared from palm tree fronds, a biomass material, using a single step physical method. Effect of the synthetic parameters on the surface area, pore size and pore volume of the activated carbon were studied, pursuing by the optimization of studied parameters. The activation temperature, heating ramp rate, reaction vessel pressure and the CO2 flowrate were found to be the influential parameters for the synthesis of sliced activated carbon with larger porosity and surface area. The optimum conditions to synthesize the porous activated carbon bearing high pore volume and surface area were studied and identified. Highest surface area of 1094 m2 g−1 was achieved under the optimum conditions. Scanning electron microscopy (SEM) for the porosity and Fourier transform infrared spectroscopy (FTIR) for surface functional groups and transmission electron microscopy (TEM) confirms the presence of uniform nanoparticles of 2.1385 nm. - Highlights: • Used local waste material from Saudi Arabia. • Convenient single step physical activation procedure. • Achievement of 1094 m2 g−1 Surface Area, particle size 2.1385 nm and 0.4382 cm3 g−1 Pore volume

  2. Factors governing the adsorption of ethanol on spherical activated carbons

    Romero Anaya, Aroldo José; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2015-01-01

    Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close t...

  3. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization.

    Ismadji, S; Sudaryanto, Y; Hartono, S B; Setiawan, L E K; Ayucitra, A

    2005-08-01

    The preparation of activated carbon from vacuum pyrolysis char of teak sawdust was studied and the results are presented in this paper. The effects of process variables such as temperature and activation time on the pore structure of activated carbons were studied. The activated carbon prepared from char obtained by vacuum pyrolysis has higher surface area and pore volume than that from atmospheric pyrolysis char. The BET surface area and pore volume of activated carbon prepared from vacuum pyrolysis char were 1150 m2/g and 0.43 cm3/g, respectively. PMID:15792584

  4. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  5. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  6. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  7. Effect of EB irradiation on the structures of carbon fiber surface

    The object of this work is to investigate the effect of EB irradiation on carbon fiber surface. The laser Raman spectroscopy, X ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X ray diffraction were used to observe the surface changes including an enhancement in oxygen and nitrogen containing groups, smooth degree of carbon fiber surface and in size of graphite crystal layers. It showed that polar groups on carbon-fiber surface were influenced by the active species created in the media during EB irradiation. The self-quenching reaction or disengage reaction took place in activated groups. The group C=O was increased in the former reaction, on the other hand, the group C-O in the latter reaction. The crystal structure of the bulk carbon fiber was not effected by EB irradiation

  8. Carbon Activation Diagnostic for Tertiary Neutron Measurements

    Glebov, V.Yu.; Stoeckl, C.; Sangster, T.C.; Meyerhofer, D.D.; Radha, P.B.; Padalino, S.; Baumgart, L.; Fuschino, J.

    2003-03-28

    OAK B202 The yield of tertiary neutrons with energies greater than 20 MeV has been proposed to determine the high rho R of inertial confinement fusion targets. The activation of carbon is a valuable measurement technique because of its high reaction threshold, the availability of high-purity samples, and relatively low cost. The 12C(n,2n)11C reaction has a Q value of 18.7 MeV, well above the 14.1 MeV primary DT neutron energy. The isotope 11C decays with a half-life of 20.3 min and emits a positron, resulting in the production of two back-to-back, 511 keV gamma rays upon annihilation. The positron decay of 11C is nearly identical to the copper decay used in the activation measurements of 14.1 MeV primary DT yields; therefore, the present copper activation gamma-detection system can be used to detect the tertiary-produced carbon activation. Because the tertiary neutron yield is more than six orders of magnitude lower than primary neutron yield, the carbon activation diagnostic requires ultrapure carbon samples, free from any positron-emitting contamination. In recent years we have developed carbon purification, packaging, and handling procedures that minimize the contamination signal to a level low enough to use carbon activation for tertiary neutron measurements in direct-drive implosion experiments with DT cryogenic targets on OMEGA. Experimental results of contamination measurements in carbon samples performed on high-neutron-yield shots on OMEGA in 2001-2002 will be presented. A concept for implementing a carbon activation system on the National Ignition Facility (NIF)will be discussed.

  9. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  10. The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes

    Sutrisno, Bachrun; Hidayat, Arif

    2015-12-01

    This research focused on investigating in the effect of activation temperature on the physico-chemical properties of palm empty fruit bunch (PEFB) based activated carbon prepared by physical activation with carbon dioxide. The activation temperature was studied in the range of 400-800°C by keeping the activation temperature at 800°C for 120 min. It was found that the porous properties of activated carbon decreased with an increase in carbonization temperature. The activated carbons prepared at the highest activation temperature at 800°C and activation time of 120 min gave the activated carbon with the highest of BET surface area and pore volume of 938 m2/g and 0.4502 cm3/g, respectively

  11. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  12. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  13. Organic solvent regeneration of granular activated carbon

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  14. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  15. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  16. Inhibition of surface bound carbonate stabilization of tetragonal zirconia

    Nielsen, Mette Skovgaard; Almdal, Kristoffer; Lelieveld, A. van

    2011-01-01

    Water is known to initiate a tetragonal to monoclinic phase transformation in zirconia particles. Carbonates on the zirconia surface react with water molecules and hence reduce the transformation rate. This study investigates the possibility of inhibition of the reaction between surface carbonates...... and water in order to increase the transformation rate in the zirconia crystals. It was found possible to limit the reaction by reacting the surface carbonates with alcohols, a thiol and a primary amide prior to reaction with water. It was also concluded that di- and trialcohols are able to stabilize...

  17. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  18. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L-1 initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  19. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    Beker, Ulker, E-mail: ubeker@gmail.co [Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus, 34210 Esenler, Istanbul (Turkey); Ganbold, Batchimeg [National University of Mongolia, Faculty of Organic Chemistry, Ikh Surguuliin Gudamj 1, P.O. Box 46a/523, 210646 Ulaanbaatar (Mongolia); Dertli, Halil [Istanbul Technical University, Chemical Engineering Department, Maslak, Istanbul (Turkey); Guelbayir, Dilek Duranoglu [Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus, 34210 Esenler, Istanbul (Turkey)

    2010-02-15

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L{sup -1} initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  20. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  1. Activated carbons from African oil palm waste shells and fibre for hydrogen storage

    Liliana Giraldo; Maria Fernanda González-Navarro; Juan Carlos Moreno-Piraján

    2013-01-01

    We prepared a series of activated carbons by chemical activation with two strong bases in-group that few use, and I with waste from shell and fibers and oil-palm African. Activated carbons are obtained with relatively high surface areas (1605 m2/g). We study the textural and chemical properties and its effect on hydrogen storage. The activated carbons obtained from fibrous wastes exhibit a high hydrogen storage capacity of 6.0 wt % at 77 K and 12 bar.

  2. Refining of hydrochars/ hydrothermally carbonized biomass into activated carbons and their applications

    Hao, Wenming

    2014-01-01

    Hydrothermally treated biomass could not only be used as a fuel or a fertilizer but it can also be refined into high-value products. Activated carbons are one of those. In the studies of this thesis, four different hydrothermally carbonized (HTC) biomasses, including horse manure, grass cuttings, beer waste and biosludge, have been successfully made into activated carbons. The activated carbon materials were in the forms of powdered activated carbons, powdered composites of activated carbon a...

  3. Preparation and Characterization of Sisal Fiber-based Activated Carbon by Chemical Activation with Zinc Chloride

    Sisal fiber, an agricultural resource abundantly available in China, has been used as raw material to prepare activated carbon with high surface area and huge pore volume by chemical activation with zinc chloride. The orthogonal test was designed to investigate the influence of zinc chloride concentration, impregnation ratio, activation temperature and activation time on preparation of activated carbon. Scanning electron micrograph, Thermo-gravimetric, N2-adsorption isotherm, mathematical models such as t-plot, H-K equation, D-R equation and BJH methods were used to characterize the properties of the prepared carbons and the activation mechanism was discussed. The results showed that ZnCl2 changed the pyrolysis process of sisal fiber. Characteristics of activated carbon are: BET surface area was 1628 m2/g, total pore volume was 1.316 m3/g and ratio of mesopore volume to total pore volume up to 94.3%. These results suggest that sisal fiber is an attractive source to prepare mesoporous high-capacity activated carbon by chemical activation with zinc chloride

  4. Cathodic carbon peroxidation process. Surface modifications through oxygen bonding

    Simonet, Jacques

    2013-01-01

    The reduction of oxygen of the air at carbon electrodes in organic aprotic polar solvents in the presence of organic electrophiles such as alkyl iodides may reveal the formation of films of surface-attached alkyl peroxides. Electrochemical charge of carbons (glassy carbon, graphite, industrial coke) in the presence of tetraalkylammonium salt TAAX permits the building of poly-nucleophilic materials that may spontaneously react with air during the work up. This way, a TAA+ hydroperoxydate layer...

  5. Ignition properties of nuclear grade activated carbons

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH3131I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  6. Depleted soil carbon and nitrogen pools beneath impervious surfaces

    Urban soils and vegetation contain large pools of carbon (C) and nitrogen (N) and may sequester these elements at considerable rates; however, there have been no systematic studies of the composition of soils beneath the impervious surfaces that dominate urban areas. This has made it impossible to reliably estimate the net impact of urbanization on terrestrial C and N pools. In this study, we compared open area and impervious-covered soils in New York City and found that the C and N content of the soil (0–15 cm) under impervious surfaces was 66% and 95% lower, respectively. Analysis of extracellular enzyme activities in the soils suggests that recalcitrant compounds dominate the organic matter pool under impervious surfaces. If the differences between impervious-covered and open area soils represent a loss of C and N from urban ecosystems, the magnitude of these losses could offset sequestration in other parts of the urban landscape. - The soils beneath impervious surfaces are depleted in C and N, which may have implications for the energy and nutrient balance of urban ecosystems.

  7. Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions.

    Suryanto, Bryan H R; Zhao, Chuan

    2016-05-11

    Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols. PMID:27097802

  8. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate

    A.A. Mamun

    2016-07-01

    Full Text Available The catalysis and characterization of carbon nanofibers (CNFs composite are reported in this work. Carbon nanofibers were produced on oil palm shell powdered activated carbon (PAC, which was impregnated with nickel. Chemical Vapor Deposition (CVD of C2H2 was used in the presence of hydrogen at ∼650 °C. The flow rates of carbon source and hydrogen were fixed. The CNFs formed directly on the surface of the impregnated PAC. Variable weight percentages (1%, 3%, 5%, 7% and 9% of the catalyst salt (Ni+2 were used for the impregnation. However, the best catalysis was observed on the substrate with 3% Ni+2. The product displayed a relatively high surface area, essentially constituted by the external surface. New functional groups also appeared compared to those in the PAC. Field Emission Scanning Microscopy (FESEM, Transmission Electron Microscopy (TEM, Fourier Transform Infrared (FTIR, BET surface area analysis and energy dispersive X-ray (EDX were used for the characterization of the new carbon nano product, which was produced through a clean novel process.

  9. Activation and Micropore Structure Determination of Activated Carbon-Fiber Composites

    Jagtoyen, M.; Derbyshire, F.

    1999-04-23

    Previous work focused on the production of carbon fiber composites and subsequently activating them to induce adsorbent properties. One problem related to this approach is the difficulty of uniformly activating large composites. In order to overcome this problem, composites have been made from pre-activated fibers. The loss of surface area upon forming the composites after activation of the fibers was investigated. The electrical resistivity and strength of these composites were compared to those made by activation after forming. It was found that the surface area is reduced by about 35% by forming the composite from pre-activated fibers. However, the properties of the activated sample are very uniform: the variation in surface area is less than {+-}0.5%. So, although the surface area is somewhat reduced, it is believed that making composites from pre-activated fibers could be useful in applications where the BET surface area is not required to be very high. The strength of the composites produced from pre-activated fibers is lower than for composites activated after forming when the carbon burnoff is below 45%. For higher burnoffs, the strength of composites made with pre-activated fibers is as good or better. In both cases, there is a dramatic decrease in strength when the fiber:binder ratio is reduced below 4:1. The electrical resistivity is slightly higher for composites made from pre-activated fibers than for composites that are activated after forming, other parameters being constant (P-200 fibers, similar carbon burnoffs). For both types of composite the resistivity was also found to increase with carbon burnoff. This is attributed to breakage of the fiber causing shorter conductive paths. The electrical resistivity also increases when the binder content is lowered, which suggests that there are fewer solid contact points between the fibers.

  10. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam

    The use of rubber-seed shell as a raw material for the production of activated carbon with physical activation was investigated. The produced activated carbons were characterized by Nitrogen adsorption isotherms, Scanning electron microscope, Thermo-gravimetric and Differential scanning calorimetric in order to understand the rubber-seed shell activated carbon. The results showed that rubber-seed shell is a good precursor for activated carbon. The optimal activation condition is: temperature 880 oC, steam flow 6 kg h-1, residence time 60 min. Characteristics of activated carbon with a high yield (30.5%) are: specific surface area (SBET) 948 m2 g-1, total volume 0.988 m3 kg-1, iodine number of adsorbent (qiodine) 1.326 g g-1, amount of methylene blue adsorption of adsorbent (qmb) 265 mg g-1, hardness 94.7%. It is demonstrated that rubber-seed shell is an attractive source of raw material for producing high capacity activated carbon by physical activation with steam.

  11. Integrating carbon nanotube into activated carbon matrix for improving the performance of supercapacitor

    Highlights: ► Hydrothermal carbonization method to prepare “tube-in-activated carbon” composite. ► Due to high specific surface area, suitable pore size and low electrical resistance. ► It exhibited high capacitance value and excellent cyclibility for supercapacitor. - Abstract: A method of in situ integrating carbon nanotubes (CNTs) into activated carbon (AC) matrix was developed to improve the performance of AC as a supercapacitor electrode. Glucose solution containing pre-dispersed CNTs was hydrothermally carbonized to be a char-like intermediate product, and finally converted into a “tube-in-AC” structure by the chemical activation using KOH. The “tube-in-AC” composite had oxygen content of 12.98 wt%, specific surface area of 1626 m2/g and 90% of 1–2 nm micropores. It exhibited capacitance of 378 F/g in the aqueous KOH electrolyte and excellent cyclibility under high current, that is, the capacitance only decreased 4.6% after 2000 cycles at scanning rate of 100 mV/s. These performances of “tube-in-AC” electrode are better than those of commercial AC electrodes, post-mixed with CNTs or carbon black.

  12. Irreversible adsorption of phenolic compounds by activated carbons

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  13. Studies on adsorptive desulfurization by activated carbon

    Rakesh Kumar, D.; Srivastava, Vimal Chandra [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand (India)

    2012-05-15

    Sulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso-octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C{sub 0}: 100-900 mg/L), adsorbent dosage (m: 2-22 g/L), time of adsorption (t: 15-735 min), and temperature (T: 10-50 C). Regression analysis showed good fit of the experimental data to the second-order polynomial model with coefficient of determination R{sup 2}-value of 0.9390 and Fisher F-value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    Leitner, K.; Lerf, A.; Winter, M.; Besenhard, J. O.; Villar-Rodil, S.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J. M. D.

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300-2800 m 2 g -1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g -1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.

  15. Enhanced photocatalytic activity of titanium dioxide by nut shell carbon

    Shi Xiaoliang, E-mail: sxl@whut.edu.cn [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Wang Sheng; Dong Xuebin [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Zhang Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2009-08-15

    Nut shell carbon (NSC)-nanotitanium dioxide (TiO{sub 2}) composites were prepared by sol-gel method. Photocatalytic activity on degradation of dye Rhodamine B was studied. X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller surface area, pore size distribution, ultraviolet-vis light absorption spectrum, and photoluminescence spectrum were carried out to characterize the composite catalyst. The results indicated that the photocatalytic activity of NSC-nano-TiO{sub 2} composites was much higher than P25 (Degussa). NSC could greatly absorb the organic substance and oxygen of solution because of its large surface area.

  16. The comparison of two activation techniques to prepare activated carbon from corn cob

    We report on the preparation of biomass-based activated carbons by the steam physical activation and KOH chemical activation methods. In addition, we also investigate their adsorption performance. By adjusting the reaction parameters, different carbon materials are prepared from corn residues and characterized using instrumental analyses such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauer–Emmett–Teller (BET). It is found that the synthesized activated carbons exhibit high surface area (1600 m2 g−1) and large pore volume (2.01 cm3 g−1). Furthermore, the high methylene blue and iodine adsorption value and a considerable CO2 uptake (exceeding 1.5 mmol g−1) are attained with the activated carbons, showing their potential usage for the CO2 adsorbent. -- Highlights: ► We research the reaction parameters effect of two different activation methods. ► The effect of reaction parameters and activation methods on carbon were observed. ► The adsorption capabilities are comparable with the commercial activated carbon

  17. Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment

    In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XP S, Sem, and single-filament tensile test. The interlaminar shear strength (Ilks) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the Ilks of the plasma-treated specimen increased with the treatment time. The Ilks of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen

  18. Structural and surface features of multiwall carbon nanotube

    Hembram, K.P.S.S., E-mail: hembram@isu.iisc.ernet.in [Department of Instrumentation, Indian Institute of Science, Bangalore, 560012 (India); Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 (India); Rao, G. Mohan [Department of Instrumentation, Indian Institute of Science, Bangalore, 560012 (India)

    2011-04-15

    We present the direct evidence of defective and disorder places on the surface of multiwall carbon nanotube (MWCNT), visualizing the presence of amorphous carbon at those sites. These defective surfaces being higher in energy are the key features of functionalization with different materials. The interaction of the {pi} orbital electrons of different carbon atoms of adjacent layers is more at the bent portion, than that of regular portion of the CNT. Hence the tubular structure of the bent portion of nanotubes is spaced more than that of regular portion of the nanotubes, minimizing the stress.

  19. Structural and surface features of multiwall carbon nanotube

    Hembram, K. P. S. S.; Rao, G. Mohan

    2011-04-01

    We present the direct evidence of defective and disorder places on the surface of multiwall carbon nanotube (MWCNT), visualizing the presence of amorphous carbon at those sites. These defective surfaces being higher in energy are the key features of functionalization with different materials. The interaction of the π orbital electrons of different carbon atoms of adjacent layers is more at the bent portion, than that of regular portion of the CNT. Hence the tubular structure of the bent portion of nanotubes is spaced more than that of regular portion of the nanotubes, minimizing the stress.

  20. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    Olive-tree has been grown in the Mediterranean countries for centuries. For an adequate development of the tree it must be subjected to different treatments such as trimming, large amounts of a woody residue being produced. Such a residue has been traditionally used as a domestic fuel or simply burnt in the landfield. In both cases greenhouse gases are generated to a large extent. Thus, the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. Commonly, two activation strategies are used with such an aim, namely chemical and physical activation. In this study, the optimization of the physical activation method with air for the production of activated carbon has been analyzed. The results obtained clearly show that if the preparation conditions are adequately controlled, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  1. Activated carbon monoliths for methane storage

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  2. Surface plasmon observed for carbon nanotubes

    This paper presents parallel electron energy loss spectra (PEELS) results, obtained for individual carbon nanotubes, using nanoprobe techniques (1-2 nm diameter electron beam), energy resolution 0.5 eV and collection times of 4-25 sec. The aim was to use a nanoprobe to compare PEELS spectra from different parts of a tube, in order to search for variations in sp2/sp3 bonding ratios as well as to look for orientation dependent plasmon and core-loss phenomena. It also seemed interesting to compare results for nanotubes with those for other varieties of graphitized carbons. The most interesting result so far was the appearance of a 15 eV plasmon peak, which appeared only for tubes containing ≤ about 12 graphite-like layers. This peak did not shift significantly with tube size. A low-loss peaks at 6 eV of variable relative intensity was also observed this peak was relatively very weak for amorphous tubes; it appears to be characteristic of graphite-like layers, as found for nanotubes and, of course, graphite itself. This paper is restricted to discussion of the low-loss results. The experimental techniques are first described, including some details of the methods which may be used to disperse and support sooty carbons for high-resolution transmission electron microscopy. The results are then presented, followed by an interpretation of all the low-loss PEELS results, including those of the other authors. 14 refs., 2 figs

  3. Carbon key-properties for microcystin adsorption in drinking water treatment: structure or surface chemistry?

    Júlio, Maria de Fátima de Jesus Leal

    2011-01-01

    The carbon key-properties (structure and surface chemistry) for microcystin-LR (MC-LR) adsorption onto activated carbon were investigated. Waters with an inorganic background matrix approaching that of the soft natural water (2.5 mM ionic strength) were used. Also, model waters with controlled ionic make-up and NOM surrogate with similar size of MC-LR (tannic acid - TA) with MC-LR extracts were tested with activated carbon NORIT 0.8 SUPRA. For this AC, two particle sizes, 125-180 μm and 63-90...

  4. Production of activated carbon from cellulosic fibers for environment protection

    Activated carbon fibers (ACF) have received an increasing attention in recent years as an adsorbent for purifying polluted gaseous and aqueous streams. Their preparation, characterization and application have been reported in many studies [1], which show that the porosity of ACF is dependent on activation conditions, as temperature, time or gas. ACF provide adsorption rates 2 to 50 times higher than Granular Activated Carbon [2], because of their low diameter (∼10 m) providing a larger external surface area in contact with the fluid compared with that of granules. Furthermore, their potential for the removal of various pollutants from water was demonstrated towards micro-organics like phenols [3], pesticides or dyes [4]. Generally, fibrous activated carbons are produced from natural or synthetic precursors by carbonization at 600-1000 C followed by an activation step by CO2 oe steam at higher temperature [2]. Another way to produce the fibrous activated carbons is chemical activation with H3PO4, HNO3, KOH...[5]. Different types of synthetic or natural fibers have been used as precursors of fibrous activated carbons since 1970: polyacrylonitrile (PAN), polyphenol, rayon, cellulose phosphate, pitch, etc. Each of them has its own applications and limitations. The synthetic fibers being generally expensive, it would be interesting to find out low-cost precursors from local material resources. This work is a part of a research exchange program between the Vietnamese National Center of Natural Sciences and Technology (Vietnam) and the Ecole des Mines de Nantes (Gepea, France), with the aim to find some economical solutions for water treatment. Fibrous activated carbons are produced from natural cellulose fibers, namely jute and coconut fibers, which are abundant in Vietnam as well as in other tropical countries, have a low ash content and a low cost in comparison with synthetic fibers. Two methods are compared to produce activated carbons: 1) a physical activation with

  5. Atmospheric pressure plasma surface modification of carbon fibres

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He...... temperature for a month the O/C ratio at the plasma treated surfaces decreased to 0.151, which is close to that of the untreated ones. It can be attributed to the adsorption of hydrocarbon contamination at the plasma treated surfaces....

  6. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes; Uso da voltametria ciclica e da espectroscopia de impedancia eletroquimica na determinacao da area superficial ativa de eletrodos modificados a base de carbono

    Souza, Leticia Lopes de

    2011-07-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO{sub 3} 0.1 mol.L{sup -1} solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10{sup -2} and 2.83 X 10{sup -1} cm{sup 2}, respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm{sup 2} during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 {mu}F.cm{sup -2} found for the glassy carbon is consistent with the literature data ({approx} 200 {mu}F.cm'-{sup 2}). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C{sub d}, 3.0 x 10{sup -5} {mu}F.cm'-{sup 2} and 11 x 10{sup 3} {mu}F.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm{sup 2} and 4.72 cm{sup 2}. To sum up, the

  7. Activation and micropore structure of carbon-fiber composites

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  8. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width. PMID:17092643

  9. Effect of textural property of coconut shell-based activated carbon on desorption activation energy of benzothiophene

    Moxin YU; Zhong LI; Hongxia XI; Qibin XIA; Shuwen WANG

    2008-01-01

    In this work,the effect of the textural property of activated carbons on desorption activation energy and adsorption capacity for benzothiophene (BT) was investi-gated.BET surface areas and the textural parameters of three kinds of the activated carbons,namely SY-6,SY-13 and SY-19,were measured with an ASAP 2010 instru-ment.The desorption activation energies of BT on the activated carbons were determined by temperature-pro-grammed desorption (TPD).Static adsorption experi-ments were carried out to determine the isotherms of BT on the activated carbons.The influence of the textural property of the activated carbons on desorption activa-tion energy and the adsorption capacity for BT was dis-cussed.Results showed that the BET surface areas of the activated carbons,SY-6,SY-13 and SY-19 were 1106,diameters were 1.96,2.58 and 2.16 nm,respectively.The TPD results indicated that the desorption activation energy of BT on the activated carbons,SY-6,SY-19 and SY-13 were 58.84,53.02 and 42.57 KJ/mol,respectively.The isotherms showed that the amount of BT adsorbed on the activated carbons followed the order of SY-6 > SY-19 > SY-13.The smaller the average pore diameter of the activated carbon,the stronger its adsorption for BT and the higher the activation energy required for BT desorp-tion on its surface.The Freundlich adsorption isotherm model can be properly used to formulate the adsorption behavior of BT on the activated carbons.

  10. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.