WorldWideScience

Sample records for activated carbon prepared

  1. Preparation of very pure active carbon

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  2. Preparation and characterisation of activated carbon

    Activated carbon was prepared from Agricultural wastes, such as coconut shell, Palm oil Shell and mangrove trunk by destructive distillation under vakuum. Chemical and Physical properties of the activated carbon were studied and some potentially useful application in the fields of chemistry was also carried out

  3. Preparation of activated carbon by chemical activation under vacuum.

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  4. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  5. PREPARATION OF ACTIVATED CARBON FROM PEAT

    Yasumitsu Uraki

    2009-02-01

    Full Text Available Peat with an approximate 60% carbon content collected in the suburbs of Palangka Raya, Indonesia, was carbonized, followed by activation with steam in an electric furnace. The resultant activated carbon (AC had ca. 900 m2/g of BET surface area and 1000 mg/g of iodine adsorption. This performance implies that this AC can be used as an adsorbent for environmental purification. We had a carbonizing furnace manufactured in Palangka Raya, which did not require electric power. Some AC having 350 mg/g of iodine adsorption was obtained by using this furnace. Although the adsorption ability was much lower than that of commercially available AC, the AC achieved significant decoloration and decrease in chemical oxygen demand of polluted river water. Thus, this article demonstrated the potential of tropical peat soil as a source of AC.

  6. Lithium carbonate tablets. Preparation techniques influence over active ingredient liberation

    Lithium carbonate tablets, prepared using wet and dry granulation, were assessed in vitro so as to determine the active ingredient dissolution. In this study, standardized formulations were used and developed with usual adjuvants (lactose - maize starch). Parallel to the dissolution testing. The influence of the preparation process over some physical characteristics (hardness, friability and disintegration) was also analysed. Although a better performance was observed of tables prepared using dry granulation, the authors concluded that the wet process is more suitable in preparing tables with the mentioned drug. (author)

  7. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  8. Preparation and characterization of activated carbon from demineralized tyre char

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  9. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  10. Activated carbon fibers prepared from quinoline and isoquinoline pitches

    Mochida, I.; An, K.; Korai, Y. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study; Kojima, T.; Komatsu, M. [Mitsubishi Gas Chemical Co. Inc., Tokyo (Japan); Yoshikawa, M. [Osaka Gas Co. Ltd., Osaka (Japan)

    1998-11-01

    Nitrogen enriched activated carbon fibers (ACFs) were prepared from isotropic quinoline and isoquinoline pitches produced by the catalytic action of HF/BF3 through spinning, stabilization, carbonization, and oxidative activation. The pitches exhibited excellent spinnability, and the resultant fibers had mechanical properties comparable to those of commercial fibers. The surface areas and nitrogen contents of the ACFs, obtained hereby were 740-860 m{sup 2}/g and 4-5.6%, respectively, at around 50 wt% of burn-off. FT-IR and XPS analyses identified the surface oxygen and nitrogen functional groups on the stabilized and activated fibers. The ACFs from isoquinoline pitch (IQP-ACF) exhibited higher basicity (l.3 meq/g) than commercial ACFs of similar surface areas (0.68 and 0.25 meq/g for PAN (FE-300) and coal tar pitch (OG-8A) based ACFs, respectively) due to a higher basic nitrogen content on the surface. The activation appears to expose basic nitrogen atoms, which were located under the surface. The basicity of ACF from quinoline pitch (QP-ACF) was much lower than that of IQP-ACF, however, QP-ACF adsorbed 74 mg/g of SO2, which was 1.4 and 2.3 times higher than that over FE-300 and OG-8A. In contrast, IQP-ACFs showed less adsorption of SO2 than that of QP-ACF and FE-300, but more than that of OG-8A. Oxidation activity of ACF surface may participate in the adsorption of SO2 in the form of SO3 or H2SO4. The oxygen functional groups under the influence of neighboring nitrogen atoms may be the active sites for the oxidative adsorption. 15 refs., 8 figs., 4 tabs.

  11. Preparation of Activated Carbon from Waste Tires and its application in Gasoline Removal from Water

    Mohammad Ali Baghapour

    2014-03-01

    Conclusion: Produced activated carbon has desired surface area and adsorptive capacity for gasoline adsorption in aquatic environments and it seems preparation activated carbon from waste tiers is cheap, effective and environment friendly.

  12. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    Olive-tree has been grown in the Mediterranean countries for centuries. For an adequate development of the tree it must be subjected to different treatments such as trimming, large amounts of a woody residue being produced. Such a residue has been traditionally used as a domestic fuel or simply burnt in the landfield. In both cases greenhouse gases are generated to a large extent. Thus, the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. Commonly, two activation strategies are used with such an aim, namely chemical and physical activation. In this study, the optimization of the physical activation method with air for the production of activated carbon has been analyzed. The results obtained clearly show that if the preparation conditions are adequately controlled, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  13. Preparation and Characterization of Sisal Fiber-based Activated Carbon by Chemical Activation with Zinc Chloride

    Sisal fiber, an agricultural resource abundantly available in China, has been used as raw material to prepare activated carbon with high surface area and huge pore volume by chemical activation with zinc chloride. The orthogonal test was designed to investigate the influence of zinc chloride concentration, impregnation ratio, activation temperature and activation time on preparation of activated carbon. Scanning electron micrograph, Thermo-gravimetric, N2-adsorption isotherm, mathematical models such as t-plot, H-K equation, D-R equation and BJH methods were used to characterize the properties of the prepared carbons and the activation mechanism was discussed. The results showed that ZnCl2 changed the pyrolysis process of sisal fiber. Characteristics of activated carbon are: BET surface area was 1628 m2/g, total pore volume was 1.316 m3/g and ratio of mesopore volume to total pore volume up to 94.3%. These results suggest that sisal fiber is an attractive source to prepare mesoporous high-capacity activated carbon by chemical activation with zinc chloride

  14. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  15. The comparison of two activation techniques to prepare activated carbon from corn cob

    We report on the preparation of biomass-based activated carbons by the steam physical activation and KOH chemical activation methods. In addition, we also investigate their adsorption performance. By adjusting the reaction parameters, different carbon materials are prepared from corn residues and characterized using instrumental analyses such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauer–Emmett–Teller (BET). It is found that the synthesized activated carbons exhibit high surface area (1600 m2 g−1) and large pore volume (2.01 cm3 g−1). Furthermore, the high methylene blue and iodine adsorption value and a considerable CO2 uptake (exceeding 1.5 mmol g−1) are attained with the activated carbons, showing their potential usage for the CO2 adsorbent. -- Highlights: ► We research the reaction parameters effect of two different activation methods. ► The effect of reaction parameters and activation methods on carbon were observed. ► The adsorption capabilities are comparable with the commercial activated carbon

  16. Liquid-phase adsorption of phenol onto activated carbons prepared with different activation levels

    Hsieh, C.T.; Teng, H.S.

    2000-07-01

    The paper investigates the influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons were found to vary with the burn-off level. The paper demonstrates that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores.

  17. CHARACTERIZATION OF ACACIA MANGIUM WOOD BASED ACTIVATED CARBONS PREPARED IN THE PRESENCE OF BASIC ACTIVATING AGENTS

    Mohammed Danish

    2011-06-01

    Full Text Available The aim of this study was to observe the effects of alkaline activating agents on the characteristics, composition, and surface morphology of the designed activated carbons. Activated carbons were prepared by pyrolysis of Acacia mangium wood in the presence of two basic activating agents (calcium oxide and potassium hydroxide. The extent of impregnation ratio of precursor to activating agents was fixed at 2:1(w/w. Prior to pyrolysis, 24 hours soaking was conducted at 348 K. Activation was carried out in a stainless steel capped graphite crucible at 773 K for 2 hours in the absence of purge gas. The burn-off percentage was found to be 70.27±0.93% for CaO activated carbon (COAC and 73.30±0.20% for KOH activated carbon (PHAC. The activating agents had a strong influence on the surface functional groups as well as elemental composition of these activated carbons. Characterization of the activated carbon obtained was performed with field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and nitrogen adsorption as Brunauer, Emmett and Teller (BET and Dubinin-Radushkevich (DR isotherms.

  18. Preparation and characterization of activated carbon from marine macro-algal biomass

    Activated carbons prepared from two macro-algal biomass Sargassum longifolium (SL) and Hypnea valentiae (HV) have been examined for the removal of phenol from aqueous solution. The activated carbon has been prepared by zinc chloride activation. Experiments have been carried out at different activating agent/precursor ratio and carbonization temperature, which had significant effect on the pore structure of carbon. Developed activated carbon has been characterized by BET surface area (SBET) analysis and iodine number. The carbons, ZSLC-800 and ZHVC-800, showed surface area around 802 and 783 m2 g-1, respectively. The activated carbon developed showed substantial capability to adsorb phenol from aqueous solutions. The kinetic data were fitted to the models of pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Column studies have also been carried out with ZSLC-800 activated carbon

  19. Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells

    The effects of activation temperature on the textural and chemical properties of the activated carbons prepared from pistachio-nut shells using zinc chloride activation under both inert nitrogen gas atmosphere and vacuum condition were studied. Relatively low temperature of 400 deg. C was beneficial for the development of pore structures. Too high an activation temperature would lead to sintering of volatiles and shrinkage of the carbon structure. The microstructures and microcrystallinity of the activated carbons prepared were examined by scanning electron microscope and powder X-ray diffraction techniques, respectively, while Fourier transform infrared spectra determined the changes in the surface functional groups at the various stages of preparation

  20. Preparation and performance of carbon aerogel and activated carbon aerogel as electrode materials

    Carbon aerogel (CA) was prepared by the polycondensation of resorcinol (R) and formaldehyde (F) and then activated by CO2 flow. XRD analysis indicates that in the process of activation, CO2 infiltrates into the network of CA and weakens the(002) and (100) peaks. SEM analysis shows that the CO2 activation does not destroy the framework of CA but adds a great number of nano miropores, and accordingly the specific surface area and micropore proportion of CA are greatly improved. Electrochemical characterization was performed using cyclic Jantammetry and chronopotentiometry in 1 mol/L KOH aqueous solution electrolyte. The CA electrode with and without activation has a stable electrochemistry performance and preferable reversibility. The specific capacitance of CA is 103 F/g before activation, and reaches 371 F/g after activation due to the increase in specific area. (authors)

  1. Adsorption of dyes onto activated carbon prepared from olive stones

    Souad NAJAR-SOUISSI; Abdelmottaleb OUEDERNI; Abdelhamid RATEL

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue(MB), Rhodamine B(RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30℃, which were well described by Langmuir model.The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C00.51 .

  2. Preparation of mesoporous activated carbons from coal liquefaction residue for methane decomposition

    Jianbo Zhang; Lijun Jin; Shengwei Zhu; Haoquan Hu

    2012-01-01

    Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method,and the experiments were carried out to investigate the effects of KOH/CLR ratio,solvent for mixing the CLR and KOH,and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD).The results showed that optimal KOH/CLR ratio of 2 ∶ 1;solvent with higher solubility to KOH or the CLR,and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD.The resultant mesoporous carbons show higher and more stable activity than microporous carbons.Additionally,the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.

  3. Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation

    Sliced activated carbons were prepared from palm tree fronds, a biomass material, using a single step physical method. Effect of the synthetic parameters on the surface area, pore size and pore volume of the activated carbon were studied, pursuing by the optimization of studied parameters. The activation temperature, heating ramp rate, reaction vessel pressure and the CO2 flowrate were found to be the influential parameters for the synthesis of sliced activated carbon with larger porosity and surface area. The optimum conditions to synthesize the porous activated carbon bearing high pore volume and surface area were studied and identified. Highest surface area of 1094 m2 g−1 was achieved under the optimum conditions. Scanning electron microscopy (SEM) for the porosity and Fourier transform infrared spectroscopy (FTIR) for surface functional groups and transmission electron microscopy (TEM) confirms the presence of uniform nanoparticles of 2.1385 nm. - Highlights: • Used local waste material from Saudi Arabia. • Convenient single step physical activation procedure. • Achievement of 1094 m2 g−1 Surface Area, particle size 2.1385 nm and 0.4382 cm3 g−1 Pore volume

  4. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation

    In this work, pistachio nut shell, a biomass residue abundantly available from the pistachio nut processing industries, was utilized as a feedstock for the preparation of activated carbon (PSAC) via microwave assisted KOH activation. The activation step was performed at the microwave input power of 600 W and irradiation time of 7 min. The porosity, functional and surface chemistry were featured by means of low temperature nitrogen adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. Result showed that the BET surface area, Langmuir surface area, and total pore volume of PSAC were 700.53 m2 g-1, 1038.78 m2 g-1 and 0.375 m3 g-1, respectively. The adsorptive property of PSAC was tested using methylene blue dye as the targeted adsorbate. Equilibrium data was best fitted by the Langmuir isotherm model, showing a monolayer adsorption capacity of 296.57 mg g-1. The study revealed the potentiality of microwave-induced activation as a viable activation method. -- Highlights: → Pistachio nut shell activated carbon (PSAC) was prepared via microwave assisted KOH activation. → The activation step was performed at the microwave input power of 600 W and irradiation time of 7 min. → BET surface area of PSAC was 700.53 m2/g. → Monolayer adsorption capacity of PSAC for MB was 296.57 mg/g.

  5. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  6. Preparation, characterization and photocatalytic activity of a novel composite photocatalyst: Ceria-coated activated carbon

    In the present work, a novel composite photocatalyst ceria-coated activated carbon (CCAC) was prepared by a facile method. The composite photocatalyst was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and photocatalytic degradation of 4-chlorophenol (4-CP). A synergy effect for 4-CP degradation was observed because the activated carbon (AC) with strong adsorbent activity provided sites for the adsorption of 4-CP. Then, the adsorbed 4-CP can migrate continuously onto the surface of ceria particles and then degraded at there. Hydroquinone (HQ) and benzoquinone (BQ) were found to be the main intermediates of the photocatalytic 4-CP degradation with ceria or CCAC by HPLC measurement. The results suggested that the same reaction mechanism occurred in the presence of ceria or titania.

  7. A simple and highly effective process for the preparation of activated carbons with high surface area

    Highlights: → High surface area activated carbon can be prepared by rice husk H3PO4 without pretreatment. → The characteristics of the activated carbon were greatly influenced by post-processing method. → The lower SiO2 content of the activated carbons, the higher pore volume the carbons had. → Some silica in rice husk reacted with H3PO4 to form SiP2O7 which could be removed by post-process. - Abstract: Activated carbons with high surface area were prepared by phosphoric acid as activation agent and rice husks as precursors. It was found that the characteristics of the activated carbons were influenced not only by the preparation but also by the post-processing method. The high surface area of the activated carbons was prepared under the optimum condition (50% H3PO4 with impregnation ratio of 5:1, activation temperature of 500 deg. C, activation time of 0.5 h, wash water temperature of 100 deg. C). SiO2 content could affect the surface area of activated carbons, either. The lower SiO2 content of the activated carbons, the higher pore volume the carbons had. The SiO2 content was 11.2% when used the optimum condition. The explanation was that silicon element in rice husks reacted with H3PO4 to form silicon phosphate (SiP2O7), and it could be proved further by X-ray diffraction analysis, SiP2O7 could be removed by post-process.

  8. A simple and highly effective process for the preparation of activated carbons with high surface area

    Li Ying, E-mail: liyingjlu@163.com [College of Chemistry, Jilin University, Changchun 130012 (China); Ding Xuefeng; Guo Yupeng; Wang Lili; Rong Chunguang; Qu Yuning; Ma Xiaoyu [College of Chemistry, Jilin University, Changchun 130012 (China); Wang Zichen, E-mail: wangzc@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2011-06-15

    Highlights: {yields} High surface area activated carbon can be prepared by rice husk H{sub 3}PO{sub 4} without pretreatment. {yields} The characteristics of the activated carbon were greatly influenced by post-processing method. {yields} The lower SiO{sub 2} content of the activated carbons, the higher pore volume the carbons had. {yields} Some silica in rice husk reacted with H{sub 3}PO{sub 4} to form SiP{sub 2}O{sub 7} which could be removed by post-process. - Abstract: Activated carbons with high surface area were prepared by phosphoric acid as activation agent and rice husks as precursors. It was found that the characteristics of the activated carbons were influenced not only by the preparation but also by the post-processing method. The high surface area of the activated carbons was prepared under the optimum condition (50% H{sub 3}PO{sub 4} with impregnation ratio of 5:1, activation temperature of 500 deg. C, activation time of 0.5 h, wash water temperature of 100 deg. C). SiO{sub 2} content could affect the surface area of activated carbons, either. The lower SiO{sub 2} content of the activated carbons, the higher pore volume the carbons had. The SiO{sub 2} content was 11.2% when used the optimum condition. The explanation was that silicon element in rice husks reacted with H{sub 3}PO{sub 4} to form silicon phosphate (SiP{sub 2}O{sub 7}), and it could be proved further by X-ray diffraction analysis, SiP{sub 2}O{sub 7} could be removed by post-process.

  9. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste

    Highlights: • Cotton woven waste can be recycled as precursor to produce activated carbon fiber. • The optimum carbonization and activation temperature are 700 °C and 800 °C. • The prepared ACF is in the form of fiber, with the surface area of 789 m2/g. • The prepared ACF can be used to remove over 80% of COD from oilfield wastewater. - Abstract: In this study, the activated carbon fibers (ACFs) were prepared using cotton woven waste as precursor. The cotton woven waste was first partly dissolved by 80% phosphoric acid and then was pre-soaked in 7.5% diammonium hydrogen phosphate solution. Finally, carbonization and activation were proceeded to get ACF. The optimum preparation conditions, including carbonization temperature, carbonization time, activation temperature and activation time, were chosen by orthogonal design. Nitrogen adsorption/desorption test was conducted to characterize the prepared ACF's pore structure. Fourier transform infrared spectroscopy (FTIR) analysis, X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscope (ESEM) were employed to characterize its chemical properties and morphology. Adsorption of oilfield wastewater was used to evaluate its adsorption properties. The results show that the prepared ACF is in the form of fiber, with the sectional diameters of 11.7 × 2.6 μm and the surface area of 789 m2/g. XPS results show that carbon concentration of the prepared ACF is higher than that of the commercial ACF. When the prepared ACF dosage is 6 g/L, over 80% of COD and over 70% of chrominance can be removed after 24 h of adsorption at 18 °C

  10. PREPARATION OF MICROWAVE ABSORBING NICKEL-BASED ACTIVATED CARBON BY ELECTROLESS PLATING WITH PALLADIUM-FREE ACTIVATION

    Boyang Jia; Lijuan Wang

    2010-01-01

    Nickel-based activated carbon was prepared from coconut shell activated carbon by electroless plating with palladium-free activation. The materials were characterized by scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), vibrating sample magnetometry (VSM), and vector network analyzer, respectively. The results show that the surface of the activated carbon was covered by a Ni-P coating, which was uniform, compact, and continuous and had an obvious metallic sheen. ...

  11. Comparison of various sources of high surface area carbon prepared by different types of activation

    Activated carbon has been known as an excellent adsorbent and is widely used due to its large adsorption capacity. Activation condition and types of activation influence the surface area and porosity of the activated carbon produced. In this study, palm kernel shells and commercially activated carbon were used. To convert palm kernel shells into coal, two methods were employed, namely chemical activation and physical activation. For chemical activation, two activating agents, zinc chloride and potassium carbonate, were used. The activated carbons were analyzed using Fourier Transform Infrared (FTIR) spectroscopy, single point BET and free emission scanning electron microscopy (FESEM). The commercial activated carbon was also characterized. FTIR results indicate that all the palm kernel shells were successfully converted to carbon. Single point BET surface area of all the carbons prepared were obtained. From FESEM micrograph, the chemically activated palm kernel shells shows well highly defined cavities and pores. This study also shows that palm kernel shells can be used to be a better source of high surface area carbon. (author)

  12. Insights into properties of activated carbons prepared from different raw precursors by pyrophosphoric acid activation.

    Gao, Yuan; Yue, Qinyan; Gao, Baoyu

    2016-03-01

    Low-cost activated carbons (ACs) were prepared from four kinds of solid wastes: petroleum coke, Enteromorpha prolifera, lignin from papermaking black liquid and hair, by pyrophosphoric acid (H4P2O7) activation. Thermo-gravimetric analysis of the pyrolysis of H4P2O7-precursor mixtures implied that H4P2O7 had different influences on the pyrolysis behavior of the four raw materials. N2 adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons. AC derived from E. prolifera exhibited the highest surface area (1094m(2)/g) and maximum monolayer adsorption capacity for malachite green (1250mg/g). Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model. The adsorption isotherms were well described by the Langmuir isotherm model, indicating the adsorption of dye onto the ACs proceeded by monolayers. PMID:26969070

  13. Preparation of Activated Carbon from Waste Tires and its application in Gasoline Removal from Water

    Mohammad Ali Baghapour; Babak jahed; Gholam Hossein Joshani

    2014-01-01

    Background and Objectives: Increasing waste tiers production has made the recycling of this solid waste a critical issue in the world. On the other hand, it seems contamination of groundwater to the petroleum pollutant like gasoline is a great threat to the health of societies in developing countries. The main objective of this study was gasoline removal from aquatic environment by waste tire derived activated carbon. Materials and Methods: In this study for preparation of activated carbon...

  14. Porous texture of activated carbons prepared by phosphoric acid activation of woods

    Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.

    2004-11-01

    Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.

  15. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass

    The preparation of activated carbon from date stone treated with phosphoric acid was optimized using rotatable central composite design of response surface methodology (RSM). The chemical activating agent concentration and temperature of activation plays a crucial role in preparation of large surface area activated carbons. The optimized activated carbon was characterized using thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the larger surface area of activated carbon from date stone can be achieved under optimum activating agent (phosphoric acid) concentration, 50.0% (8.674 mol L−1) and activation temperature, 900 °C. The Brunauer–Emmett–Teller (BET) surface area of optimized activated carbon was found to be 1225 m2 g−1, and thermogravimetric analysis revealed that 55.2% mass of optimized activated carbon was found thermally stable till 900 °C. The leading chemical functional groups found in the date stone activated carbon were aliphatic carboxylic acid salt ν(C=O) 1561.22 cm−1 and 1384.52 cm−1, aliphatic hydrocarbons ν(C–H) 2922.99 cm−1 (C–H sym./asym. stretch frequency), aliphatic phosphates ν(P–O–C) 1054.09 cm−1, and secondary aliphatic alcohols ν(O–H) 3419.81 cm−1 and 1159.83 cm−1. - Highlights: • RSM optimization was done for the production of large surface area activated carbon. • Two independent variables with two responses were selected for optimization. • Characterization was done for surface area, morphology and chemical constituents. • Optimized date stone activated carbon achieved surface area 1225 m2 g−1

  16. Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2

    Hao Yang; Maochu Gong; Yaoqiang Chen

    2011-01-01

    Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD,FT-IR and texture property test.The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces.The texture property test reveals that the activated carbons displayed different texture properties,especially the micropore size distribution.The adsorption capacities of the activated carbons were investigated by adsorbing CH4,CO2,N2 and O2 at 25 ℃ in the pressure range of 0-200 kPa.The results reveal that all the activated carbons had high CO2 adsorption capacity,one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa.And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa.In the pressure range of 0-200 kPa,the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.

  17. Adsorption of uranium from aqueous solutions using activated carbon prepared from olive stones

    Full text: Separation and purification processes based on adsorption technique are important in nuclear industry where activated carbon is often used for the separation of metal ions from solutions, due to its selective adsorption, high radiation stability and high purity [1]. Activated carbons are unique adsorbents because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity [2]. Aegean Region of Turkey is famous with olive trees. Therefore, there are considerable amount of olive stones as an agricultural by-product. Activated carbon can be produced by using every kind of carbonaceous material including agricultural by-products. Taking into consideration of its importance as an agricultural by-product, it can be widely used as a precursor for the preparation of activated carbon. The activated carbons used in this study were prepared by the chemical activation of olive stone. Adsorption experiments were carried out by a batch technique. Before and after adsorption, the concentration of uranium was determined by the ICP-OES. In this study 1:2 precursor/activating agent (ZnCl2) ratio and 600oC carbonization temperature were used for the preparation of adsorbent. The adsorption of uranium was studied as a function of shaking time, pH, initial uranium concentration and temperature. The optimum conditions were found as 5 minutes shaking time, pH 6, 25 ppm uranium concentration, and 30oC temperature. The results suggest that uranium is favorably adsorbed by activated carbon prepared from olive stones. We are of the opinion that the method can be used for preventing environmental contamination and adsorption of uranium from wastes in various stages of nuclear fuel production depending on uranium fuel cycle

  18. Preparation of activated carbon from sorghum pith and its structural and electrochemical properties

    Research highlights: → Sorghum pith as the cost effective raw material for activated carbon preparation. → Physicochemical method/KOH activation for preparation of activated carbon is inexpensive. → Activated carbon having lower surface area surprisingly delivered a higher specific capacitance. → Treated at 500 oC activated carbon exceeds maximum specific capacitances of 320.6 F/g at 10 mV/s. -- Abstract: The cost effective activated carbon (AC) has been prepared from sorghum pith by NaOH activation at various temperatures, including 300 oC (AC1), 400 oC (AC2) and 500 oC (AC3) for the electrodes in electric double layer capacitor (EDLC) applications. The amorphous nature of the samples has been observed from X-ray diffraction and Raman spectral studies. Subsequently, the surface functional groups, surface morphology, pore diameter and specific surface area have been identified through FT-IR, SEM, histogram and N2 adsorption/desorption isotherm methods. The electrochemical characterization of AC electrodes has been examined using cyclic voltammetry technique in the potential range of -0.1-1.2 V in 1.0 M H2SO4 electrolyte at different scan rates (10, 20, 30, 40, 50 and 100 mV/s). The maximum specific capacitances of 320.6 F/g at 10 mV/s and 222.1 F/g at 100 mV/s have been obtained for AC3 electrode when compared with AC1 and AC2 electrodes. Based on the characterization studies, it has been inferred that the activated carbon prepared from sorghum pith may be one of the innovative carbon electrode materials for EDLC applications.

  19. Preparation and photocatalytic activity of carbon coating TiO2 nanotubes

    Kong, Junhan; Wang, Yongqian; Wang, Zhengshu; Jia, Hanxiang

    2016-01-01

    Carbon coating TiO2 nanotubes (TNTs) were successfully prepared via anodic oxidation method as well as hydrothermal method, and their photocatalytic activity was evaluated by photodegrading methylene blue. The crystal shape of carbon coating TNTs was affected by the heating treatment temperature and they had a great enhancement on visible light absorption while contrasting with the primitive TNTs. As for photocatalytic activity of carbon coating TNTs in this study, we found that the photo-degradation rate of them can reach to 92.5% after 4 h when the concentration of glucose was 0.025 M. At last, a tentative mechanism for the enhancement of sunlight absorption was proposed.

  20. Preparation and characterizations of activated carbon monolith from rubber wood and its effect on supercapacitor performances

    Taer, E.; Taslim, R.; Deraman, M.

    2016-02-01

    Preparation of activated carbon monolith (ACM) from rubber wood was investigated. Two kind of preparation method were carried out by pre-carbonized of rubber wood saw dust and rubber wood material as it is naturally. The samples were prepared with pelletizing method and small cutting of rubber wood in cross sectional method. Both of samples were characterized by physical and electrochemical technique. The physical properties such as morphology and porosity were investigated. The electrochemical properties of both samples such as equivalent series resistances (ESR) and specific capacitances were also compared. In conclusion, this study showed that both of different preparation method would propose a simple method of ACM electrode preparation technique for supercapacitor applications.

  1. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, XP (g H3PO4/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77 K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m2/g) and high pore volume (up to 1.19 cm3/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R2) and the normalized standard deviation Δq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB and phenol

  2. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation

    Altenor, Sandro [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); LAQUE, Universite Quisqueya d' Haiti, Port-au-Prince (Haiti); Carene, Betty [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Emmanuel, Evens [LAQUE, Universite Quisqueya d' Haiti, Port-au-Prince (Haiti); Lambert, Jacques; Ehrhardt, Jean-Jacques [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS-Nancy Universities, 405 rue de Vandoeuvre, F 54600 Villers-les-Nancy Cedex (France); Gaspard, Sarra, E-mail: sgaspard@univ-ag.fr [COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France)

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X{sub P} (g H{sub 3}PO{sub 4}/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77 K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m{sup 2}/g) and high pore volume (up to 1.19 cm{sup 3}/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R{sup 2}) and the normalized standard deviation {Delta}q (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse

  3. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  4. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode materials for Supercapacitor

    Zhang; Jianrong

    2001-01-01

    In this paper, we reported a new method to directly prepare the amorphous hydrous ruthenium oxide/active carbon powders. The relationship between the specific capacitance and ruthenium content in powders was studied in detail. Physical properties of the powders such as crystallinity、 particle size, and electrochemical characteristics of electrodes were reported along with the capacitor performance.  ……

  5. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode materials for Supercapacitor

    Zhang Jianrong; Jiang Dechen; Chen Bin; Zhu Junjie; Jiang Liping; Fang Huiqun

    2001-01-01

    @@ In this paper, we reported a new method to directly prepare the amorphous hydrous ruthenium oxide/active carbon powders. The relationship between the specific capacitance and ruthenium content in powders was studied in detail. Physical properties of the powders such as crystallinity、 particle size, and electrochemical characteristics of electrodes were reported along with the capacitor performance.

  6. Preparation of Bamboo Chars and Bamboo Activated Carbons to Remove Color and COD from Ink Wastewater.

    Hata, Motohide; Amano, Yoshimasa; Thiravetyan, Paitip; Machida, Motoi

    2016-01-01

    Bamboo chars and bamboo activated carbons prepared by steam activation were applied for ink wastewater treatment. Bamboo char at 800 °C was the best for the removal of color and chemical oxygen demand (COD) from ink wastewater compared to bamboo chars at 300 to 700 °C due to higher surface area and mesopore volume. Bamboo activated carbon at 600 °C (S600) was the best compared to bamboo activated carbon at 800 °C (S800), although S800 had larger surface area (1108 m(2)/g) than S600 (734 m(2)/g). S600 had higher mesopore volume (0.20 cm(3)/g) than S800 (0.16 cm(3)/g) and therefore achieved higher color and COD removal. All bamboo activated carbons showed higher color and COD removal efficiency than commercial activated carbon. In addition, S600 had the superior adsorption capacity for methylene blue (0.89 mmol/g). Therefore, bamboo is a suitable material to prepare adsorbents for removal of organic pollutants. PMID:26803031

  7. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production. PMID:27536531

  8. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  9. A study on the consecutive preparation of silica powders and active carbon from rice husk ash

    Rice husk ash (RHA) is an abundant agricultural by-product. The present research work deals with the production of silica powders and active carbon from RHA with a consecutive method. The RHA is firstly treated with acid leaching to remove mineral composition, and then is boiled with base to leach silica. The filtrate is used to synthesize silica powders with CO2 precipitator and solid residue is used to prepare active carbon. The optimum conditions of preparing silica powders are as follows: the concentration of Na2CO3 is 25 wt.%, the base-leached time is 4 h, and the impregnation ratio of Na2CO3 solution to RHA is 6:1. The yield of silica leached from RHA is 84.57 wt.%. The synthesized silica powders are hydrated with amorphous structure, moreover, with a relative smooth surface and high purity. The residue is activated with potassium hydroxide (KOH) after base-leached. The activated carbons are found to be a mixture of micropore and mesopore pore structures. The maximum pore volume, BET surface area and iodine adsorption capacity of as-prepared active carbon can reach 1.22 cm3/g, 1936.62 m2/g and 1259.06 mg/g, respectively. Field emission scanning electron microscopy (SEM) is used to characterize the morphological features of the ash after step by step treatment.

  10. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  11. Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation

    The present work was focused on the determination of texture, morphology, crystanillity and oxygenated surface groups characteristics of an activated carbon prepared from date stems. Chemical activation of this precursor at different temperatures (450, 550 and 650 °C) was adopted using phosphoric acid as dehydrating agent at (2/1) impregnation ratio. Fourier transform infrared spectroscopy study was carried out to identify surface groups in date stems activated carbons. The microscopic structure was examined by nitrogen adsorption at 77 K. The interlayer spacing (d200 and d100), stack height (Lc), stack width (La) and effective dimension L of the turbostratic crystallites (microcrystallite) in the date stems activated carbons were estimated from X-ray diffraction data (XRD). Results yielded a surface area, SBET, and total pore volume of 682, 1455, 1319 m2/g and 0,343, 1,045 and 0.735 cm3/g, for the carbon prepared at 450, 550 and 650 °C, respectively. Scanning electron microscopy exhibits a highly developed porosity which is in good agreement with the porous texture derived from gas adsorption data and these results confirm that the activated carbon is dominated by network of slit-shaped mesopores morphology and in some cases by varied micropores morphologies.

  12. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells

    Fouladi Tajar, Amir [Chemical Engineering Department, Amirkabir University of Technology, No.424, Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Kaghazchi, Tahereh, E-mail: kaghazch@aut.ac.ir [Chemical Engineering Department, Amirkabir University of Technology, No.424, Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Soleimani, Mansooreh [Chemical Engineering Department, Amirkabir University of Technology, No.424, Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2009-06-15

    Low-cost activated carbon, derived from nut shells, and its modified sample have been used as replacements for the current expensive methods of removing cadmium from aqueous solutions and waste waters. Adsorption of cadmium onto four kinds of activated carbons has been studied; prepared activated carbon (PAC), commercial activated carbon (CAC), and the sulfurized ones (SPAC and SCAC). The activated carbon has been derived, characterized, treated with sulfur and then utilized for the removal of Cd{sup 2+}. Sulfurizing agent (SO{sub 2} gas) was successfully used in adsorbents' modification process at the ambient temperature. Samples were then characterized and tested as adsorbents of cadmium. Effect of some parameters such as contact time, initial concentration and pH were examined. With increasing pH, the adsorption of cadmium ions was increased and maximum removal, 92.4% for SPAC, was observed in pH > 8.0 (C{sub 0} = 100 mg/L). The H-type adsorption isotherms, obtained for the adsorbents, indicated a favorable process. Adsorption data on both prepared and commercial activated carbon, before and after sulfurization, followed both the Frendlich and Langmuir models. They were better fitted by Frendlich isotherm as compared to Langmuir. The maximum adsorption capacities were 90.09, 104.17, 126.58 and 142.86 mg/g for CAC, PAC, SCAC and SPAC, respectively. Accordingly, surface modification of activated carbons using SO{sub 2} greatly enhanced cadmium removal. The reversibility of the process has been studied in a qualitative manner and it shows that the spent SPAC can be effectively regenerated for further use easily.

  13. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells

    Low-cost activated carbon, derived from nut shells, and its modified sample have been used as replacements for the current expensive methods of removing cadmium from aqueous solutions and waste waters. Adsorption of cadmium onto four kinds of activated carbons has been studied; prepared activated carbon (PAC), commercial activated carbon (CAC), and the sulfurized ones (SPAC and SCAC). The activated carbon has been derived, characterized, treated with sulfur and then utilized for the removal of Cd2+. Sulfurizing agent (SO2 gas) was successfully used in adsorbents' modification process at the ambient temperature. Samples were then characterized and tested as adsorbents of cadmium. Effect of some parameters such as contact time, initial concentration and pH were examined. With increasing pH, the adsorption of cadmium ions was increased and maximum removal, 92.4% for SPAC, was observed in pH > 8.0 (C0 = 100 mg/L). The H-type adsorption isotherms, obtained for the adsorbents, indicated a favorable process. Adsorption data on both prepared and commercial activated carbon, before and after sulfurization, followed both the Frendlich and Langmuir models. They were better fitted by Frendlich isotherm as compared to Langmuir. The maximum adsorption capacities were 90.09, 104.17, 126.58 and 142.86 mg/g for CAC, PAC, SCAC and SPAC, respectively. Accordingly, surface modification of activated carbons using SO2 greatly enhanced cadmium removal. The reversibility of the process has been studied in a qualitative manner and it shows that the spent SPAC can be effectively regenerated for further use easily.

  14. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor

    We report a new methodology to prepare activated carbon and activated carbons/ZnO composites from walnut shell-derived hydrothermal carbons (hydrochars), which were prepared under hydrothermal condition in presence of ZnCl2. For this method, activated carbon/ZnO composites were prepared via heat treatment of hydrochars under inert environment and activated carbons were prepared by removing the ZnO in activated carbon/ZnO composites. The chemical structure of walnut shell, hydrochars, activated carbon/ZnO and activated carbon was investigated by Fourier transform infrared spectroscopy, Raman, X-ray powder diffraction, thermogravimetric analysis and N2 adsorption/desorption measurements. It is found ZnCl2 plays multiple roles, i.e., helping to remove the oxygen-containing groups during hydrothermal stage, improving the surface area of activated carbon and acting as the precursor of ZnO in heat-treatment stage. The specific surface areas up to 818.9 and 1072.7 m2 g−1 have been achieved for activated carbon/ZnO composites and activated carbon, respectively. The activated carbon/ZnO as electrode materials for supercapacitors showed that specific capacitance of up to 117.4 F g−1 at a current density of 0.5 A g−1 in KOH aqueous solution can be achieved and keeps stable in 1000 cycles. - Highlights: • Hydrochars as intermediate to prepare activated carbon/ZnO composites. • Activated carbon/ZnO showed excellent electrochemical performance in supercapacitors. • Activated carbon with large surface area can be obtained by removing ZnO

  15. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor

    Li, Yueming, E-mail: liyueming@ysu.edu.cn; Liu, Xi

    2014-11-14

    We report a new methodology to prepare activated carbon and activated carbons/ZnO composites from walnut shell-derived hydrothermal carbons (hydrochars), which were prepared under hydrothermal condition in presence of ZnCl{sub 2}. For this method, activated carbon/ZnO composites were prepared via heat treatment of hydrochars under inert environment and activated carbons were prepared by removing the ZnO in activated carbon/ZnO composites. The chemical structure of walnut shell, hydrochars, activated carbon/ZnO and activated carbon was investigated by Fourier transform infrared spectroscopy, Raman, X-ray powder diffraction, thermogravimetric analysis and N{sub 2} adsorption/desorption measurements. It is found ZnCl{sub 2} plays multiple roles, i.e., helping to remove the oxygen-containing groups during hydrothermal stage, improving the surface area of activated carbon and acting as the precursor of ZnO in heat-treatment stage. The specific surface areas up to 818.9 and 1072.7 m{sup 2} g{sup −1} have been achieved for activated carbon/ZnO composites and activated carbon, respectively. The activated carbon/ZnO as electrode materials for supercapacitors showed that specific capacitance of up to 117.4 F g{sup −1} at a current density of 0.5 A g{sup −1} in KOH aqueous solution can be achieved and keeps stable in 1000 cycles. - Highlights: • Hydrochars as intermediate to prepare activated carbon/ZnO composites. • Activated carbon/ZnO showed excellent electrochemical performance in supercapacitors. • Activated carbon with large surface area can be obtained by removing ZnO.

  16. Preparing activated carbon from charcoal and investigation of the selective uranium adsorption

    . Due to its selective adsorption, high radiation stability and high purity, activated carbon is often used for the separation of metal ions from solutions in nuclear industry . Using the activated carbon for separation of some fission products, radon measurements and removal of some radioisotopes has been the subject of several investigations. The preconcentration of uranium based on adsorption is important because it has found many applications in nuclear industry and from the environmental and waste disposal point of view . In view of the anticipated exhaustion of terresterial uranium reserves in the near future, further research has been made directed to recover uranium from nonconventional resources such as natural waters, seawater, industrial waste waters and in addition that other waste sources cause environmental pollution . Activated carbon can be prepared from a variety of materials such as coal, lignite and polymers. A large variety of agricultural byproducts and wastes such as rice husks, peach stones and almond shells also have been used to prepare activated carbons. Depending on the raw materials, activated carbons have different surface characteristics with surface functional groups, surface area, porosity and pore size distribution . Activation involves two fundamentally different processes: (i) Chemical activation using chemicals such as phosphoric acid and zinc chloride applied to the initial uncarbonized material (ii) Physical activation using gases such as steam, carbon dioxide, carbon monoxide applied to the carbonized materials . In comparison with physical activation, advantage of chemical activation is the lower temperature in which the process is accomplished . Practically, the type of raw material and the method of activation are important parameters which may influence the type of porosity

  17. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam

    The use of rubber-seed shell as a raw material for the production of activated carbon with physical activation was investigated. The produced activated carbons were characterized by Nitrogen adsorption isotherms, Scanning electron microscope, Thermo-gravimetric and Differential scanning calorimetric in order to understand the rubber-seed shell activated carbon. The results showed that rubber-seed shell is a good precursor for activated carbon. The optimal activation condition is: temperature 880 oC, steam flow 6 kg h-1, residence time 60 min. Characteristics of activated carbon with a high yield (30.5%) are: specific surface area (SBET) 948 m2 g-1, total volume 0.988 m3 kg-1, iodine number of adsorbent (qiodine) 1.326 g g-1, amount of methylene blue adsorption of adsorbent (qmb) 265 mg g-1, hardness 94.7%. It is demonstrated that rubber-seed shell is an attractive source of raw material for producing high capacity activated carbon by physical activation with steam.

  18. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.

    Peláez-Cid, Alejandra-Alicia; Herrera-González, Ana-María; Salazar-Villanueva, Martín; Bautista-Hernández, Alejandro

    2016-10-01

    In this study, three mesoporous activated carbons prepared from vegetable residues were used to remove acid, basic, and direct dyes from aqueous solutions, and reactive and vat dyes from textile wastewater. Granular carbons obtained by chemical activation at 673 K with phosphoric acid from prickly pear peels (CarTunaQ), broccoli stems (CarBrocQ), and white sapote seeds (CarZapQ) were highly efficient for the removal of dyes. Adsorption equilibrium studies were carried out in batch systems and treated with Langmuir and Freundlich isotherms. The maximum adsorption capacities calculated from the Langmuir isotherms ranged between 131.6 and 312.5 mg/g for acid dyes, and between 277.8 and 500.0 mg/g for basic dyes at 303 K. Our objective in this paper was to show that vegetable wastes can serve as precursors for activated carbons that can be used for the adsorption of dyes. Specifically CarBrocQ was the best carbon produced for the removal of textile dyes. The color removal of dyes present in textile wastewaters was compared with that of a commercial powdered carbon, and it was found that the carbons produced using waste material reached similar efficiency levels. Carbon samples were characterized by bulk density, point of zero charge, thermogravimetric analysis, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, methylene blue adsorption isotherms at 303 K, and nitrogen adsorption isotherms at 77 K (SBET). The results show that the activated carbons possess a large specific surface area (1025-1177 m(2)/g) and high total pore volume (1.06-2.16 cm(3)/g) with average pore size diameters between 4.1 and 8.4 nm. Desorption and regeneration tests were made to test the viability of reusing the activated carbons. PMID:27372249

  19. A new mechanism about the process of preparing nanoporous silica with activated carbon mold

    Supercritical fluids can be used to proceed nanoscale casting, during which silica precursor dissolved in supercritical CO2 and the supercritical CO2 was in contact with the active carbon templates. After removal of active carbon templates by calcinations, microporous and mesoporous silica samples replicating not only mesostructures, but also macroscopic of active carbon molds were obtained and the product have better porous capacity and specific surface area. Here, we studied the influences of a variety of factors upon nanoscale casting using supercritical fluids (NC-SCF), and determined the best casting condition. Also, we compared nanoscale casting by using supercritical fluids to simple liquid casting and on the basis of these studies, a new mechanism about preparing nanoporous silica with supercritical CO2-assisted method and with simple liquid casting was proposed

  20. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  1. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment

    Hjaila, Kefah; Baccar, Rym; Sarrà, Montserrat; Gasol, C.M.; Blánquez, Paqui

    2013-01-01

    he life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 pres...

  2. PREPARATION OF MICROWAVE ABSORBING NICKEL-BASED ACTIVATED CARBON BY ELECTROLESS PLATING WITH PALLADIUM-FREE ACTIVATION

    Boyang Jia

    2010-08-01

    Full Text Available Nickel-based activated carbon was prepared from coconut shell activated carbon by electroless plating with palladium-free activation. The materials were characterized by scanning electron microscopy (SEM, X-ray energy dispersion spectroscopy (EDS, vibrating sample magnetometry (VSM, and vector network analyzer, respectively. The results show that the surface of the activated carbon was covered by a Ni-P coating, which was uniform, compact, and continuous and had an obvious metallic sheen. The content of P and Ni was 2.73% and 97.27% in the coating. Compared with the untreated activated carbon, the real permeability μ′ and imaginary permeability μ″ of Ni-based activated carbon became greater, whereas the real permittivity ε′ and imaginary permittivity ε″ became smaller. Also, the plated activated carbon was magnetic, making it suitable for some special applications. In general, the method reported here might be a feasible procedure to coat activated carbon with other magnetic metals, which may find application in various areas.

  3. Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells (Pisum sativum

    Ünal Geçgel

    2013-01-01

    Full Text Available An activated carbon was prepared from pea shells and used for the removal of methylene blue (MB from aqueous solutions. The influence of various factors such as adsorbent concentration, initial dye concentration, temperature, contact time, pH, and surfactant was studied. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. The adsorption isotherm was found to follow the Langmuir model. The monolayer sorption capacity of activated carbon prepared from pea shell for MB was found to be 246.91 mg g−1 at 25 ∘C. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. Kinetic studies showed that the adsorption followed pseudo-second-order kinetic model. Various thermodynamic parameters such as , , and were evaluated. The results in this study indicated that activated carbon prepared from pea shell could be employed as an adsorbent for the removal of MB from aqueous solutions.

  4. treatment of waste effluents using active carbon prepared from AGRO-residues

    the main goal of the investigation is to improve the efficiency of adsorption of radionuclides and anions from liquid waste by modifying sorption properties of adsorbents . thus, the present study is directed towards investigating the feasibility of using agricultural wastes and locally available materials in such a manner as to treat waste effluents. activated carbons derived from rice straw were prepared by one-step steam pyrolysis. the activated rice straw was subjected to liquid-phase oxidation by different modifying agents include KOH, HNO3.H2So4, H2O2, and kMno4 to obtain carbon with various surface characters. the prepared carbon samples were characterized using various techniques: x-ray diffraction, pore parameters analysis, point of zero charge pHpzc, FTIR. Boehm titration method. elemental analysis, iodine number, methylene blue, and phenol index. the prepared carbon samples were tested for removal of certain cation pollutants of nuclear interest from waste solutions such as uranium and thorium as well as anion pollutants such as fluoride, nitrate and nitrite.factors affecting the sorption behaviour e.g. carbon properties . contact time ,initial concentration of the solute, mass of adsorbent, ph of solution and temperature were studied by applying batch technique.thorium. fluoride, and nitrate sorption are better occurred at lower temperature while uranium is favoured at higher temperature. the adsorption followed the langmuir adsorption isotherm model in case of uranium and thorium while anions followed langmuir-freundlich isotherm . the ability of RS2/kMno4 to remove F-from egyptian crude phosphoric acid (P2O5=48.42%) was tested and the adsorption capacity of F - in H3PO4 was greater than that in distilled water due to lower ph enhances f-adsorption onto RS2/kMnO4 carbon

  5. A novel process for preparation of active carbon from sapropelitic coals

    Bodoev, N.V.; Gruber, R.; Kucherenko, V.A.; Guet, J.-M.; Khabarova, T.; Cohaut, N.; Heintz, O.; Rokosova, N.N. [Siberian Branch of the Russian Academy of Sciences, Kemerovo (Russian Federation). Inst. of Carbon Material Chemistry

    1998-05-01

    The paper reports the preparation of active carbons starting from sapropelitic coals. First a traditional route of manufacturing, coking and activation (820{degree}C) was carried out. The specific area (BET) of the activated semicokes of six sapropelitic coal samples varied from a few square meters to about five hundred (for Taimylir coal). Secondly, using Taimylir coal, a novel way of active carbon preparation was attempted combining low temperature modification and chemical activation. The modification was carried out using nitric acid-acetic anhydride mixture at room temperature and tested by swelling and weight uptake measurements. The modified coal samples were analyzed by thermogravimetry (TGA) and FT-IR spectroscopy. The chemical activation route included impregnation by an activant (KOH) and a subsequent heating (2 hr under argon) at selected temperatures ranging from 300 to 900{degree}C. Surface areas were determined by BET and SAXS methods. The chemical modification resulted in a new functional group formation and organic framework reorganization, which strongly affected the activation, as a value of 1200 m{sup 2} g{sup -1} was obtained after chemical activation. 11 refs., 4 figs., 4 tabs.

  6. Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk

    A biomass agricultural waste material, rice husk (RH) was used for preparation of activated carbon by chemical activation using phosphoric acid. The effect of various factors, e.g. time, ph, initial concentration and temperature of carbon on the adsorption capacity of lanthanum and erbium were quantitatively determined. It was found that the monolayer capacity is 175.4 mg/g for La(III) and 250 mg/g for Er(III) . The calculated activation energy of La(III) adsorption on the activated carbon derived from rice husk was equal to 5.84 kJ/ mol while 14.6 kJ/ mol for Er(III), which confirm that the reaction is mainly particle-diffusion controlled. The kinetics of sorption was described by a model of a pseudo-second-order. External diffusion and intra-particular diffusion were examined. The experimental data show that the external diffusion and intra-particular diffusion are significant in the determination of the sorption rate. Therefore, the developed sorbent is considered as a better replacement technology for removal of La (III) and Er(III) ions from aqueous solution due to its low cost and good efficiency, fast kinetics, as well as easy to handle and thus no or small amount of secondary sludge is obtained in this application

  7. Microscopic and mesoscopic structural features of an activated carbon sample, prepared from sorghum via activation by phosphoric acid

    Graphical abstract: Display Omitted Highlights: ► Preparation of a new activated carbon sample from sorghum. ► Characterization by adsorption/desorption methods. ► Determination of the structure by synchrotron X-ray diffraction. ► The sample is amorphous and contains distorted graphene fragments. ► A characteristic nanoscale distance is established from the radial distribution function. -- Abstract: An acidic chemical activation procedure has been used for preparing activated carbon with a surface area exceeding 1000 m2/g from sorghum. In order to reveal structural features, synchrotron X-ray diffraction measurements have been performed. The structure of the material has been characterized by the total scattering structure factor and the radial distribution function describing short-range arrangement of atoms at distances of the order of a few atomic diameters as well as correlations at a longer scale, of the order of nanometers. The atomic arrangement has been found to be consistent with that of amorphous graphite-like carbon. As far as the mesoscopic structure is concerned, the presence of a characteristic distance is suggested on the basis of the clear nanometer scale oscillations of the radial distribution function, which distance may be assigned as the mesopore size in the material. It is suggested that the approach devized here may later be applied routinely for other activated carbon samples, too, for characterizing atomic and nanoscale order simultaneously.

  8. Effect of Activation Temperature and Heating Duration on Physical Characteristics of Activated Carbon Prepared from Agriculture Waste

    Tham Yee Jun

    2010-01-01

    Full Text Available This study was conducted to determine the physical characteristics of activated carbon prepared from durian shell in varied heating durations from 10 min to 30 min and activation temperatures of 400C and 500C. Durian shells have been characterized in term of ultimate and proximate analysis, chemical composition and thermal behaviour with a view to be used as activated carbon precursor. Durian shell activated carbon was prepared by impregnating 10g of sample in 10% (v/v concentration of phosphoric acid for 24 h, followed by carbonization at 400C and 500C with different heating durations under nitrogen atmosphere. The results showed that various treatment conditions affect the percentage of yield, BET surface area, micropore volume, and average pore diameter. The highest surface area (SBET 1024 m2/g was obtained at 500C and 20 min of heating duration with 63% of yield and 0.21 cm3/g micropore volume.

  9. TEXTURAL AND CHEMICAL CHARACTERISATION OF ACTIVATED CARBONS PREPARED FROM RICE HUSK (ORYZA SATIVA USING A TWO- STAGE ACTIVATION PROCESS

    JOSEPH G. COLLIN

    2008-12-01

    Full Text Available Activated carbons from agro-industrial wastes; rice husk; were prepared by physical and chemical activation using phosphoric acid as the dehydrating agent. A two-stage activation process method was used; with semi-carbonisation stage at 200oC for 15 minutes as the first stage followed by an activation stage at 500oC for 45 minutes as the second stage. The precursor material with the impregnation agent was exposed straightaway to semi-carbonization and activation temperature unlike the specific temperature progression as reported in the literature. All experiments were conducted in a laboratory scale muffle furnace under static conditions in a self generated atmosphere covering process parameters such as impregnation ratios. We found that by using this method, the AC5 had the highest iodine number and methylene blue adsorption capacity which was 506.6 mg/g and 319.0 mg/g respectively.

  10. Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

    Parvathi, C.; Maruthavanan, T.; S. Sivamani; Prakash, C

    2011-01-01

    The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution....

  11. Preparation of Ammonia Adsorbent by Carbonizing and Activating Mixture of Biomass Material and Hygroscopic Salt

    LONG Zhen; BU Xianbiao; LU Zhenneng; LI Huashan; MA Weibin

    2015-01-01

    We put forward a new and ingenious method for the preparation of a new adsorbent by soaking, carbonizing and activating the mixture of hygroscopic salt and biomass material. The new adsorbent has high porosity, uniform distribution and high content of CaCl2, and exhibits high adsorption performance. The ammonia uptake and specific cooling power (SCP) at 5 min adsorption time can reach as high as 0.19 g•g-1 and 793.9 W•kg-1, respectively. The concept of utilizing the biomass materials and hygroscopic salts as raw materials for the preparation of adsorbents is of practical interest with respect to the potential quantity of biomass materials around the world, indicating that there would be a new market for biomass materials.

  12. Preparation of activated carbon from acacia arabica by chemical activation for possible use in the treatment of chemical activation for possible use in the treatment of textile effluents

    Wood of Acacia Arabica syn. A. Nilotica, a locally available tree was used for the preparation of porous activated carbon for adsorption of dyes from aqueous solutions. The broken pieces of wood (6-10 mm size) were semicarbonized at 350 degree C in an atmosphere of N/sub 2/ gas and then impregnated with varying concentration of ZnCl/sub 2/ solution. The dried samples were sieved and carbonized under nitrogen atmosphere at various temperatures for activation. The porosity of the resulting carbon increased with the carbonization temperature to a maximum and then started decreasing with further increase in temperature. The optimum conditions for the production of activated carbon from kikar wood were observed to be carbonization temperature of 700 degree C for one hour with impregnation of wood to ZnCl/sub 2/ ratio of 1:2.5. The prepared activated carbon was evaluated with standard test methods and found to have high active surface area (Maximum Iodine No. 890). The possible industrial utility of the produced activated carbon was examined by adsorption of Congo red dye from its solutions. Different parameters including agitation time, adsorbent dose and temperature of adsorption were studied for finding the optimum conditions for maximum adsorption of the dye. Maximum removal of the dye (99%) was observed at 80 degree C with agitation time of 30min and activated carbon dose of 0.5g/100 ml solution for an initial concentrations of 100 mg/l of the dye. (author)

  13. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s. PMID:22524013

  14. Air-activated carbons from almond tree pruning: Preparation and characterization

    Gañán, J.; González, J. F.; González-García, C. M.; Ramiro, A.; Sabio, E.; Román, S.

    2006-06-01

    In this work the results obtained in the preparation and characterization of carbons made from almond tree pruning by non-catalytic and catalytic gasification (using K and Co) with air are analyzed and discussed. The main aim was to obtain high quality activated carbons at the lowest possible cost. The variables studied have been the temperature (190-260 °C) and the time (1-10 h) in non-catalytic gasification and the influence of the catalyst type (K and Co, 1 wt.% referred to cation, at 190 °C and 1 h) and the time (1-4 h) in catalytic gasification with Co at 190 °C. The air flow rate used in all the series was 167 cm 3 min -1. In non-catalytic gasification the reaction normalized rate versus the conversion degree was maintained until a conversion value of 10% for the experiment made at 260 °C since, at lower temperatures, this rate drops quickly for low conversion values. The N 2 adsorption isotherms for the carbons of this series resemble type I, although there is an increase of N 2 adsorbed volume at relatively high pressures. A temperature rise produced an increase of the carbon porosity and BET specific surface (116-469 m 2 g -1). The activation time has a positive effect on the N 2 volume adsorbed by the carbons. The isotherms shapes were similar to those previously commented. A concentration equal to 1 wt.% was used to study the influence of the catalyst type. Under the studied experimental conditions, Co drives to a bigger porosity development than K, although with both catalysts a very similar pore size distribution is obtained. The activation time, in the gasifications catalyzed with Co, gives rise to a very important porosity development in the carbons. This produces a strong increase of the carbon specific surface area with very high values in the 4 h experiment, in which a BET specific surface of 959 m 2 g -1 was obtained.

  15. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation

    Activated carbon was prepared from Enteromorpha prolifera (EP) by zinc chloride activation. The physico-chemical properties of EP-activated carbon (EPAC) were characterized by thermal stability, zeta potential and Boehm titration methods. The examination showed that EPAC has a porous structure with a high surface area of 1688 m2/g. Batch adsorption experiments were carried out to study the effect of various parameters such as initial pH, adsorbent dosage, contact time and temperature on Pb(II) ions adsorption properties by EPAC. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Freundlich isotherm model. Thermodynamic studies indicated that the adsorption reaction was a spontaneous and endothermic process.

  16. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields. - Highlights: • ACF with strong adsorption capacity and porous structure for enhanced surface area • The incorporation of ACF promoting the porosity of composite scaffolds • The composite scaffolds having no side effect on cell adhesion and proliferation • The composite scaffolds presenting good biocompatibility in vivo

  17. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations

    Shi, Yanni [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Han, Hao [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Bayer Material Science China Co., Ltd, Shanghai 200120 (China); Quan, Haiyu; Zang, Yongju; Wang, Ning; Ren, Guizhi [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Xing, Melcolm [Department of Mechanical Engineering, Faculty of Engineering and Department of Biochemistry and Genetics, Faculty of Medicine P.I., Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba (Canada); Wu, Qilin, E-mail: wql@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2014-10-01

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields. - Highlights: • ACF with strong adsorption capacity and porous structure for enhanced surface area • The incorporation of ACF promoting the porosity of composite scaffolds • The composite scaffolds having no side effect on cell adhesion and proliferation • The composite scaffolds presenting good biocompatibility in vivo.

  18. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  19. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity

  20. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation.

    Sun, Yuanyuan; Li, Hong; Li, Guangci; Gao, Baoyu; Yue, Qinyan; Li, Xuebing

    2016-10-01

    As biomass wastes, Arundo donax Linn and pomelo peel were used as precursors for activated carbons (ALAC and PPAC) preparation by phosphoric acid activation. The pore structure and surface acidic functional groups of both carbons were characterized by nitrogen adsorption/desorption experiment, NH3-temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR). A batch of experiments was carried out to investigate the adsorption performances of ciprofloxacin under different conditions. Results showed that PPAC exhibited larger surface area (1252m(2)/g) and larger portion of mesoporous, while ALAC was typical of microporous materials. Results from NH3-TPD suggested that ALAC was characteristic of more acidic functional group than PPAC. The maximum monolayer adsorption capability was 244mg/g for ALAC and 400mg/L for PPAC. Kinetics studies showed intra-particle diffusion was not the unique rate-controlling step. Boundary layer resistance existed between adsorbent and adsorbate. PMID:27034157

  1. Adsorption of copper, lead and cadmium from aqueous solutions by activated carbon prepared from saffron leaves

    Shidvash Dowlatshahi

    2014-11-01

    Full Text Available Background: Industrial development has caused the release of various pollutants including heavy metals into the environment. These toxic compounds are extremely dangerous to living beings and the environment due to their non-biodegradability, severe toxicity, carcinogenicity, the ability to be accumulated in nature and the ability to contaminate groundwater and surface water. The aim of the present research was to provide an appropriate and cost-effective adsorbent to remove heavy metals from aqueous solutions. Methods: The activated carbon was produced from the dried. Batch experiments were performed on real and synthetic samples at room temperature. The effect of pH, adsorbent dose, initial concentration, and contact time were studied, and the adsorption isotherms of heavy metals were determined. The removal efficiency was evaluated on real wastewater. Results: The maximum removal efficiency of heavy metals (copper, cadmium and lead by activated carbon adsorbent prepared from saffron leaves was obtained in pH 7. The optimum amount of adsorbent was 0.6 g, and the optimum contact times were 45 min for copper and cadmium ions and 90 min for lead ion, respectively. In these optimum conditions the removal efficiencies were 76.36%, 91.25% and 97.5%, respectively. The removal efficiencies of heavy metals from actual samples (copper industry and the battery industry in the optimum conditions were 82.25%, 69.95% and 91.23%, respectively. The results obtained showed the highest correlation with Langmuir isotherm model. Conclusion: Based on the results obtained, the activated carbon produced from saffron leaves has a good capability in removal of the metal ions from the aqueous solutions. Considering the availability of saffron leaves in Khorasan, its cost-effectiveness, and high uptake capacity, it can be applied as a proper absorbent to remove the heavy metals from industrial wastewater.

  2. Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue.

    Li, Yaxin; Zhang, Xian; Yang, Ruiguang; Li, Guiying; Hu, Changwei

    2016-01-01

    The treatment of dye wastewater by activated carbon (AC) prepared from rice husk residue wastes was studied. Batch adsorption studies were conducted to investigate the effects of contact time, initial concentration (50-450 mg/L), pH (3-11) and temperature (30-70 °C) on the removal of methylene blue (MB), neutral red, and methyl orange. Kinetic investigation revealed that the adsorption of dyes followed pseudo-second-order kinetics. The results suggested that AC was effective to remove dyes, especially MB, from aqueous solutions. Desorption studies found that chemisorption by the adsorbent might be the major mode of dye removal. Fourier transform infrared results suggested that dye molecules were likely to combine with the O-H and P=OOH groups of AC. PMID:26942535

  3. Preparation of Low-phenylalanine Whey Hydrolysates, Using Papain and Pancreatin Immobilized on Activated Carbon and Alumina

    Viviane D.M. Silva; Leticia M. De Marco; Wendel O. Afonso; Daniella C.F. Lopes; JoseN. Januario; Marcos J.B. Aguiar; Ana Lucia P. Starling; Marialice P.C. Silvestre

    2007-01-01

    This study involves the preparation of whey hydrolysates with low phenylalanine (Phe) content aiming the treatment of phenylketonuria. For hydrolysing the proteins, two enzymes were used, papain and pancreatin, in an immobilized form, on Activated Carbon (AC) and alumina (AL) and three enzyme: substrate ratios (E:S) were tested for each enzyme. Activated carbon was used to remove Phe from hydrolysates. The second order spectrophotometry was used to evaluate the efficiency of Phe removal as we...

  4. The effect of ultrasound on the catalytic activity of alkaline carbons: preparation of N-alkyl imidazoles

    Duran-Valle, C.J.; Ferrera-Escudero, S.; Calvino-Casilda, V.; Diaz-Teran, J.; Martin-Aranda, R.M

    2004-11-15

    N-Alkyl imidazoles have been prepared by sonochemical irradiation of imidazole and 1-bromobutane using alkaline promoted carbons. Under the experimental conditions, N-alkyl imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing basicity of the catalyst. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  5. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal. PMID:19815339

  6. Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials.

    Fleker, Ohad; Borenstein, Arie; Lavi, Ronit; Benisvy, Laurent; Ruthstein, Sharon; Aurbach, Doron

    2016-05-17

    Metal organic frameworks (MOFs) have unique properties that make them excellent candidates for many high-tech applications. Nevertheless, their nonconducting character is an obstacle to their practical utilization in electronic and energy systems. Using the familiar HKUST-1 MOF as a model, we present a new method of imparting electrical conductivity to otherwise nonconducting MOFs by preparing MOF nanoparticles within the conducting matrix of mesoporous activated carbon (AC). This composite material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption measurements, and electron paramagnetic resonance (EPR) spectroscopy. We show that MOF nanoparticles grown within the carbon matrix maintain their crystalline characteristics and their surface area. Surprisingly, as a result of the composition process, EPR measurements revealed a copper signal that had not yet been achieved. For the first time, we could analyze the complex EPR response of HKUST-1. We demonstrate the high conductivity of the MOF composite and discuss various factors that are responsible for these results. Finally, we present an optional application for using the conductive MOF composite as a high-performance electrode for pseudocapacitors. PMID:27104367

  7. Influence of oxidation on the preparation of porous carbons from phenol-formaldehyde resins with KOH activation

    Teng, H.; Wang, S.C.

    2000-03-01

    The influence of oxidation on the production of high-porosity carbons from phenol-formaldehyde resins with KOH activation were examined under various preparation conditions. The activation process principally consisted of KOH impregnation followed by carbonization. Experimental results showed that prior to carbonization treating the resins with oxygen at 120 C, either before or after KOH impregnation, enabled the enhancement of the yield of the carbon products. The porosity development was found to be hindered by conducting oxidation prior to the impregnation. For oxidation performed after the impregnation, at a low KOH/resin ratio the porosity was found to decrease upon oxidation, whereas the oxidation enhanced porosity development for activation performed at higher ratios. Varying the carbonization temperature and time did not show obvious influence on the effects of the oxidation.

  8. Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene

    Sevilla Solís, Marta; Fuertes Arias, Antonio Benito; Mokaya, R.

    2011-01-01

    [EN] Highly porous carbons have been successfully synthesized by chemical activation of polythiophene with KOH. The activation process was performed under relatively mild activation conditions, i. e., a KOH/polymer weight ratio of 2 and reaction temperatures in the 600–850 °C range. The porous carbons thus obtained possess very large surface areas, up to 3000 m2/g, and pore volumes of up to 1.75 cm3/g. The pore size distribution of these carbons can be tuned via modification of the activation...

  9. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO4 as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu2+ ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO4 into insoluble manganese (IV) oxide (MnO2) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon

  10. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions

    Baccar, R. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: rym.baccar@tunet.tn; Bouzid, J. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: jalel.bouzid@tunet.tn; Feki, M. [Unite de Recherche de Chimie Industrielle et Materiaux, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: mongi.feki@yahoo.fr; Montiel, A. [Laboratoire Eau Energie Environnement, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia)], E-mail: montiel.antoine@free.fr

    2009-03-15

    The present work explored the use of Tunisian olive-waste cakes, a by-product of the manufacture process of olive oil in mills, as a potential feedstock for the preparation of activated carbon. Chemical activation of this precursor, using phosphoric acid as dehydrating agent, was adopted. To optimize the preparation method, the effect of the main process parameters (such as acid concentration, impregnation ratio, temperature of pyrolysis step) on the performances of the obtained activated carbons (expressed in terms of iodine and methylene blue numbers and specific surface area) was studied. The optimal activated carbon was fully characterized considering its adsorption properties as well as its chemical structure and morphology. To enhance the adsorption capacity of this carbon for heavy metals, a modification of the chemical characteristics of the sorbent surface was performed, using KMnO{sub 4} as oxidant. The efficiency of this treatment was evaluated considering the adsorption of Cu{sup 2+} ions as a model for metallic species. Column adsorption tests showed the high capacity of the activated carbon to reduce KMnO{sub 4} into insoluble manganese (IV) oxide (MnO{sub 2}) which impregnated the sorbent surface. The results indicated also that copper uptake capacity was enhanced by a factor of up to 3 for the permanganate-treated activated carbon.

  11. Removal of phenol by activated carbons prepared from palm oil mill effluent sludge

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Mariatul F.MANSOR; Radziah WAHID

    2006-01-01

    The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely,thermal activation at 300, 500 and 800℃, and physical activation at 150℃ (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo- first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.

  12. On the preparation and characterization of chars and activated carbons from orange skin

    Rosas, J.M.; Bedia, J.; Rodriguez-Mirasol, J.; Cordero, T. [Chemical Engineering Department, School of Industrial Engineering, Campus de Teatinos s/n, 29071, University of Malaga (Spain)

    2010-10-15

    Activated carbons were obtained by carbonization of orange skin waste and partial gasification with CO{sub 2}. The orange skin contains a significant amount of inorganic matter mainly potassium, calcium and phosphorus. CO{sub 2} gasification is catalyzed by potassium and calcium, resulting in carbons with a microporous structure. Thermal treatment up to 900 C applied to orange skin-derived activated carbons yields carbons with a highly developed porous structure, and a significant contribution of mesopores, due to the activation effect of potassium compounds. This porous structure is initially blocked by the inorganic matter that is removed by a subsequent acid wash, opening the porous structure of the final carbon; an activated carbon with a very wide porous structure and a specific surface area of around 1200 m{sup 2}/g was obtained. The activated carbon with high potassium content shows relatively high NO adsorption capacities in the presence of oxygen at 120 C, probably due to the catalytic effect of potassium on the oxidation of NO. The breakthrough times of the NO adsorption in the presence of oxygen at 120 C were predicted by the Bohart and Adams model with a relevant agreement between the calculated and the experimental times. (author)

  13. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook, E-mail: swkim@dongguk.ac.kr

    2015-08-01

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W{sub 2}C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  14. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Graphical abstract: - Highlights: • Tungsten carbon composites have shown great recognition in catalysis and electrochemistry. • W-carbon composites are prepared by template replication and W-doping on carbon cage. • Nanocomposites offer enormous assurance as adsorbent, electrode and heterogeneous catalyst. - Abstract: Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W2C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25–40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted

  15. Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films

    Polyaniline was synthesized via polyaniline/activated carbon (PANI/AC) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/AC composite films were prepared by drop-by-drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/AC composite films were measured according to the standard four-point-probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/AC composites were investigated by spectroscopic methods including UV-vis, FTIR and photoluminescence. UV-vis and FTIR studies showed that AC particles affect the quinoid units along the polymer backbone and indicate strong interactions between AC particles and quinoidal sites of PANI. The photoluminescence properties of PANI and PANI/AC composites were studied and the photoluminescence intensity of PANI/AC composites was higher than that of neat PANI. The increase of conductivity of PANI/AC composites may be partially due to the doping or impurity effect of AC, where the AC competes with chloride ions. The amount of weight loss and the thermostability of PANI and PANI/AC composites were determined from thermogravimetric analysis. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the AC particles were well dispersed and isolated in composite films.

  16. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls

    Rao, M. Madhava; Ramana, D.K.; Seshaiah, K. [Analytical and Environmental Chemistry Division, Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Wang, M.C., E-mail: mcwang@cyut.edu.tw [Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufong Township 41349, Taichung County, Taiwan (China); Chien, S.W. Chang [Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufong Township 41349, Taichung County, Taiwan (China)

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g{sup -1} for Pb(II), 21.2 mg g{sup -1} for Zn(II), 19.5 mg g{sup -1} for Cu(II), and 15.7 mg g{sup -1} for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  17. Preparation and characterization of activated carbon from castor de-oiled cake

    Viviana M. Ospina-Guarín

    2014-01-01

    Full Text Available Biomass residues have been used to produce activated carbons. On this process, the activation method and the raw composition determine the properties as porosity and surface area of the charcoal. After the extraction of castor oil, there is a solid byproduct (cake of low added value, which was used in the production of activated carbon to add value to this waste. For this purpose two traditional methods were used, first, physical activation using as activating agents steam, CO2 and mixture of both, and additionally chemical activation using K2CO3 as the activating agent. Some activated carbons were characterized using N2 adsorption isotherms, BET surface areas varied between 255.98 (m2/g and 1218.43 (m2/g. By SEM and EDS analysis was possible to observe that materials obtained by the two types of activation are principally amorphous and morphological characteristics of the carbon obtained by physical activation are very different from those obtained by chemical activation. Finally, through impregnation of inorganic phases of Ni and Mo was revealed that the high dispersion characteristics, these carbonaceous materials will have potential to be used as catalyst support.

  18. Preparation and CO conversion activity of ceria nanotubes by carbon nanotubes templating method

    FANG Jianhui; CAO Zhiyuan; ZHANG Dengsong; SHEN Xia; DING Weizhong; SHI Liyi

    2008-01-01

    Ceria nanotubes with high CO conversion activity by means of carbon nanotubes as removable templates in the simple liquid phase process were fabricated under moderate conditions. The pristine CNTs were first pretreated by refluxing in a 30% nitric acid solution at 140 °C for 24 h, then dispersed in an ethanolic Ce(NO3)3·6H2O solution with ultrasonic radiation at room temperature for 1 h. Under vigorous stirring, NaOH solution was added drop by drop into the above ethanolic solution until the pH value was 10. The product was collected and repeatedly washed with ethanol and on drying at 60 °C, the CeO2/CNT composites were obtained. Then, the as-prepared composites were heated at 450 °C in an air atmosphere for 30 min to remove CNTs. The ceria nanotubes were characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-Ray Photoelectron Spectrum (XPS). The results showed that the ceria nanotubes were polycrystalline face-centered cubic phase and were composed of lots of dense ceria nanoparticles. The diameter of ceria nanotubes was about 40-50 nm. Catalytic activity of the product for CO oxidation was carried out at the region of 30-300 °C in a U-shaped quartz reactor with feeding about 0.15 g of the catalyst, which was loaded on Al2O3 carrier. The inlet gas composition was 1.0% CO and 28% O2 with N2 as balance, and the rate of flow was kept at 40 ml/min. The catalytic products were analyzed by gas chromatography. The as-prepared CeO2 nanotubes showed higher CO oxidation activity, which indicated that the morphology of ceria products affected the catalytic performance. The ceria nanotubes supported on Al2O3 demonstrated that conversion temperature for CO oxidation to CO2 was lower than that for bulk catalysts.

  19. Effect of temperature and time on microstructure and surface functional groups of activated carbon fibers prepared from liquefied wood

    Wenjing Liu

    2012-11-01

    Full Text Available Activated carbon fibers were prepared from liquefied wood through stream activation. The effects of activation temperature and time on the microstructure and surface functional groups of the liquefied wood activated carbon fibers (LWACFs were studied using analysis of burning behavior, X-ray diffraction, nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and SEM. The results showed that the burn-off value of the LWACFs increased gradually with the increase in temperature or time. All the LWACFs were far from being structurally graphitized, and in general, as temperature or time increased, the degree of graphitization and thickness of crystal structure increased. In addition, the LWACFs possessed rich micropores, and their specific surface area, pore volume, micropore size, and mesopore quantity were directly related to the activation temperature or time. The maximum specific surface area was found to be 2641 m2/g. The fractal dimension values of all samples were close to 3, indicating that their surfaces were very rough. Furthermore, with an increase in temperature or time, the elemental content of carbon increased, while that of oxygen decreased. Meanwhile, as the temperature or time increased, the relative content of graphitic carbon decreased, whereas that of carbon bonded to oxygen-containing functions increased. The surface of samples prepared at higher temperature or with longer time formed a considerable amount of holes.

  20. Preparation of activated carbons from mesophase pitch and their electrochemical properties

    2007-01-01

    The influences of molar ratio of KOH to C and activated temperature on the pore structure and electrochemical property of porous activated carbon from mesophase pitch activated by KOH were investigated. The surface areas and the pore structures of activated carbons were analyzed by nitrogen adsorption, and the electrochemical properties of the activated carbons were studied using two-electrode capacitors in organic electrolyte. The results indicate that the maximum surface area of 3 190 m2/g is obtained at molar ratio of KOH to C of 5:1, the maximum specific capacitance of 122 F/g is attained at molar ratio of KOH to C of 4:1, and 800 ℃ is the proper temperature to obtain the maximum surface area and capacitance.

  1. Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo (Oxytenanthera abyssinica)

    Dula, Tamirat; Siraj, Khalid; Kitte, Shimeles Addisu

    2014-01-01

    This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order k...

  2. A sustainable route for the preparation of activated carbon and silica from rice husk ash

    An environmentally friendly and economically effective process to produce silica and activated carbon form rice husk ask simultaneously has been developed in this study. An extraction yield of silica of 72-98% was obtained and the particle size was 40-50 nm. The microstructures of the as-obtained silica powders were characterized by X-ray diffraction (XRD) and infrared spectra (IR). The surface area, iodine number and capacitance value of activated carbon could achieve 570 m2/g, 1708 mg/g, 180 F/g, respectively. In the whole synthetic procedure, the wastewater and the carbon dioxide were collected and reutilized. The recovery rate of sodium carbonate was achieved 92.25%. The process is inexpensive, sustainable, environmentally friendly and suitable for large-scale production.

  3. A sustainable route for the preparation of activated carbon and silica from rice husk ash

    Liu Yan; Guo Yupeng; Zhu Yanchao; An Dongmin; Gao Wei; Wang Zhuo; Ma Yuejia [College of Chemistry, Jilin University, Qianjin Street, 2699, Changchun 130012 (China); Wang Zichen, E-mail: wangzc@jlu.edu.cn [College of Chemistry, Jilin University, Qianjin Street, 2699, Changchun 130012 (China)

    2011-02-28

    An environmentally friendly and economically effective process to produce silica and activated carbon form rice husk ask simultaneously has been developed in this study. An extraction yield of silica of 72-98% was obtained and the particle size was 40-50 nm. The microstructures of the as-obtained silica powders were characterized by X-ray diffraction (XRD) and infrared spectra (IR). The surface area, iodine number and capacitance value of activated carbon could achieve 570 m{sup 2}/g, 1708 mg/g, 180 F/g, respectively. In the whole synthetic procedure, the wastewater and the carbon dioxide were collected and reutilized. The recovery rate of sodium carbonate was achieved 92.25%. The process is inexpensive, sustainable, environmentally friendly and suitable for large-scale production.

  4. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  5. Activated Carbon Prepared From Orange Peels Coated With Titanium Oxide Nanoparticles: Characterization and Applications in the Decomposition of Nox

    Liliana Giraldo

    2014-06-01

    Full Text Available In this work, we report the degradation of NOx using two catalysts prepared by coating activated carbon from orange peels with TiO2. This study compared the performance of TiO2-coated catalysts prepared by CVD (AC1/TiO2 and the sol-gel method (AC2/TiO2. The catalysts were characterized by X-ray diffraction, BET surface area and TEM. The photocatalytic activity was measured by studying the degradation of NOx in the vapor phase. The results show that the catalyst synthesized by the CVD method was more efficient in the decomposition of NOx. TEM and XRD revealed the presence of a mixture of the anatase and rutile phases, which favors the NOx decomposition process. Nitrogen isotherms showed that coating the nanoparticles with titanium oxide did not significantly change the surface area of the original activated carbon.

  6. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. PMID:24091159

  7. Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: Optimization using response surface methodology

    The effects of three preparation variables: CO2 activation temperature, CO2 activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO2 activation temperature of 814 deg. C, CO2 activation time of 1.9 h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m2/g, total pore volume of 0.6 cm3/g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.

  8. Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process

    The adsorption of Cu(II) from aqueous solution by carbons prepared from rice husk through pyrolysis and steam activation was studied. The rice husk carbon was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and its pore structure was also examined. After comparing different characteristics of the carbons prepared under different conditions and their adsorption abilities of Cu(II), the optimum temperature for pyrolysis and steam activation was chosen as 700 and 750 oC, respectively, using 3% (V/V) steam as the best activation gas. It was found that the Cu(II) adsorption on the rice husk derived carbons was pH and temperature dependent with an optimum pH value of 5.0, and an equilibrium time of 24 h. The adsorption kinetics and isotherms of Cu(II) by the rice husk derived carbons were also investigated under four different temperatures, and good correlation coefficients were obtained for the pseudo-second-order kinetic models, and the Langmuir isotherm model fitted very well with the experimental data. The mean free energy E (kJ mol-1) obtained in the Dubinin-Radushkevitch (D-R) adsorption isortherm equation indicated a chemical ion-exchange mechanism. Several thermodynamic parameters were also caculated to predict the nature of adsorption process.

  9. Separation of Tetramethyl Ammonium Hydroxide in Waste Water with Ion Exchange Using Activated Carbon Prepared by Bamboo

    Yamaguchi, Ayako; Nishihama, Syouhei; Yoshizuka, Kazuharu

    Activated carbon is prepared by bamboo for the selective recovery of tetramethyl ammonium hydroxide (TMAH), contained in waste water from semiconductive industry, at the end of pipe of the plant. The adsorption ability of the activated carbon from bamboo (BAC) is comparable to the commercial activated carbons. The adsorption of TMAH with BAC in batchwise system increases with increase in pH value of the aqueous solution, and the effective adsorption and elution yield is also obtained in column system. Quantitative adsorption-elution processing can be achieved with the present BAC, and thus indicating the BAC is effective material as the adsorbent of TMAH at the end of pipe of the plant.

  10. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    Angın, Dilek, E-mail: angin@sakarya.edu.tr [Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya (Turkey); Köse, T. Ennil, E-mail: ennilb@ogu.edu.tr [Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480 Meselik-Eskisehir (Turkey); Selengil, Uğur, E-mail: uselen@ogu.edu.tr [Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480 Meselik-Eskisehir (Turkey)

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m{sup 2}/g and 0.4952 cm{sup 3}/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin–Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG{sup o}, ΔH{sup o} and ΔS{sup o} were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from waste water.

  11. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    Angın, Dilek; Köse, T. Ennil; Selengil, Uğur

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m2/g and 0.4952 cm3/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin-Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG̊, ΔH̊ and ΔS̊ were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from wastewater.

  12. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  13. REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ACTIVATED CARBON PREPARED FROM THE PEEL OF CUCUMIS SATIVA FRUIT BY ADSORPTION

    Manonmani Subbian; Santhi Thirumalisamy

    2010-01-01

    The use of low-cost, locally available, highly efficient, and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of methylene blue (MB) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were inves...

  14. Removal of malachite green from aqueous solution by activated carbon prepared from the Annona squmosa seed by adsorption

    Santhi, T.; Manonmani, S.; SMITH, T

    2010-01-01

    The use of low -cost, locally available, highly efficient and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the Annona squmosa seed for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were investigated a...

  15. Treatment of semi-aerobic landfill leachate using durian peel-based activated carbon adsorption- Optimization of preparation conditions

    Mohamad Anuar Kamaruddin, Mohd Suffian Yusoff, Mohd Azmier Ahmad

    2012-01-01

    Full Text Available The treatability of semi-aerobic landfill leachate parameters using durian peel-based activated carbon (DPAC was investigated. An ideal experimental design was conducted based on central composite design (CCD using response surface methodology to evaluate individual and interactive effects of operational variables namely activation temperature, activation time and carbon dioxide (CO2 flow rate on treatment performance in terms of chemical oxygen demand (COD and colour removal efficiencies. The DPAC was prepared using physical activation method which consists of CO2 gasification. The adsorptions of COD and colour were described by Langmuir and Freundlich isotherm models. Based on the CCD, quadratic model was developed to correlate preparation variables to the two responses. The optimum DPAC preparation conditions were obtained using 800 °C activation temperature, 2.1 h activation time and 68.68 ml/s of CO2 flow rate. From the experimental work, the maximum removal of COD and colour obtained were 41.98 and 39.86%, respectively.

  16. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4

    Highlights: • Activated carbons were produced from reedy grass leaves by activation with phosphoric acid. • The activated carbons have a large number of oxygen- and phosphorus-containing surface groups. • The structure of activated carbons was bight fibers features on the surface and the external surface of the activated carbons was slightly corrugated and abundant pores. - Abstract: Activated carbons were produced from reedy grass leaves by chemical activation with H3PO4 in N2 atmosphere and their characteristics were investigated. The effects of activation temperature and time were examined. Adsorption capacity was demonstrated with BET and iodine number. Micropore volume and pore size distribution of activated carbons were characterized by N2 adsorption isotherms. The surface area and iodine number of the activated carbons produced at 500 °C for 2 h were 1474 m2/g and 1128 mg/g, respectively. Thermal decomposition of pure reedy grass leaves and H3PO4-impregnated reedy grass leaves have been investigated with thermogravimetric/mass spectroscopy (TG–MS) technique. It was found that the temperature and intensity of maximum evolution of H2O and CO2 of H3PO4-impregnated reedy grass leaves were lower than that of pure reedy grass leaves. This implies that H3PO4 as an activating reagent changed the thermal degradation of the reedy grass leaves, stabilized the cellulose structure, leading to a subsequent change in the evolution of porosity. The results of X-ray photoelectron spectroscopy and Fourier-infrared spectroscopy analysis indicate that the produced activated carbons have rich functional groups on surface

  17. Pyrolysis polygeneration of pine nut shell: Quality of pyrolysis products and study on the preparation of activated carbon from biochar.

    Chen, Dengyu; Chen, Xiaojuan; Sun, Jun; Zheng, Zhongcheng; Fu, Kexin

    2016-09-01

    A lab-scale pyrolysis reactor was utilized to investigate the effect of pyrolysis temperature (300-700°C) on the yield, quality, and energy distribution of products issued from the pyrolysis polygeneration of pine nut shells. Afterward, activated carbon was prepared from biochar using the steam activation method. Pyrolysis temperatures ranging from 500 to 600°C were found to be optimal in inducing products with improved properties, such as higher heating values of non-condensable gas, lower water content and elevated heating values of bio-oil, and substantial fixed carbon content and greater specific surface area of biochar. In addition, it was noticed that the activation conditions had a significant effect on the yield and adsorption performance of the activated carbon. As a result, activated carbon with elevated specific surface area reaching 1057.8m(2)/g was obtained at the optimal conditions of 850°C activation temperature, 80min activation time, and 1.5 steam/biochar ratio. PMID:27289053

  18. Preparation and Characterization of Various Activated Carbons Derived From Mixed Precursors Using Phosphoric Acid

    Rice straw (RS) and rice husk (RH), a low-cost agricultural by-products, have been used as a mixed precursor (i.e., RS mixed with RH in 1:1; 1:3 and 3:1 ratios) for the production of novel carbons using phosphoric acid as chemical activation. The raw materials were impregnated with 50% and 70% H3PO4 followed by activation at 500 degree C. The latter proved to be the most effective in producing active carbon with good adsorptive capacity. The resulting carbons were characterized by elemental analysis, infrared spectroscopy, density, SEM and SBET. In general, the resulting carbons showed reasonable surface areas with mainly micropore structure. The adsorption capacity was demonstrated by the isotherms of methylene blue (MB), phenol and iodine from aqueous solution. The adsorption data was found to conform with the Langmuir equation with the concentration range studied, and the monolayer coverage was determined for each of the samples. It was found that surface area is mainly attributed to micropore volume so that phenol adsorption and iodine number correspond well with surface area determined by nitrogen adsorption

  19. Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method.

    Liu, Po-I; Chung, Li-Ching; Ho, Chia-Hua; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Chang, Min-Chao; Ma, Chen-Chi M

    2015-05-15

    Titanium dioxide (TiO2)/ activated carbon (AC) composite materials, as capacitive deionization electrodes, were prepared by a two-step microwave-assisted ionothermal synthesis method. The electrosorption capacity of the composite electrodes was studied and the effects of AC characteristics were explored. These effects were investigated by multiple analytical techniques, including X-ray photoelectron spectroscopy, thermogravimetry analysis and electrochemical impedance spectroscopy, etc. The experimental results indicated that the electrosorption capacity of the TiO2/AC composite electrode is dependent on the characteristics of AC including the pore structure and the surface property. An enhancement in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher mesopore content and less hydrophilic surface. This enhancement is due to the deposition of anatase TiO2 with suitable amount of Ti-OH. On the other hand, a decline in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher micropore content and highly hydrophilic surface. High content of hydrogen bond complex formed between the functional group on hydrophilic surface with H2O, which will slow down the TiO2 precursor-H2O reaction. In such situation, the effect of TiO2 becomes unfavorable as the loading amount of TiO2 is less and the micropore can also be blocked. PMID:25576198

  20. A simple preparation of carbon doped porous Bi2O3 with enhanced visible-light photocatalytic activity

    Graphical abstract: Carbon doped bismuth oxide with a porous structure was prepared by calcination of bismuth nitrate in glycol solution. The as-prepared samples show enhanced visible-light photocatalytic activity. - Highlights: • C-doped Bi2O3 with a porous structure is obtained by a simply calcination of Bi(NO3)3 in glycol. • The C-doped Bi2O3 exhibited much higher photocatalytic activity than the pure Bi2O3. • Carbon was incorporated into the lattice of Bi2O3 lattice. - Abstract: Carbon doped bismuth oxide (Bi2O3) with a porous structure is obtained by a simply calcination of bismuth nitrate pentahydrate (Bi(NO3)3⋅5H2O) in glycol solution. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV–Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange (MO) in an aqueous solution under visible-light radiation (λ > 420 nm). The results show that carbon was incorporated into the lattice of Bi2O3. The absorption intensity of C-doped Bi2O3 increases in the region of 450–530 nm and the absorption edge has an obvious shift to long wavelength. The C-doped Bi2O3 exhibited much higher photocatalytic activity than the pure one due to the synergetic effects of the porous structure and the improved absorption in the visible-light region

  1. Removal of cadmium(II) from wastewater using activated carbon prepared from Agro Industrial by-products.

    Hema, M; Srinivasan, K

    2011-10-01

    Removal of cadmium from wastewater using activated carbons prepared from Cocos nucifera (coconut) and Azadirachta indica (neem) oilcakes-an agricultural solid by-product was investigated. Batch experiments were performed to evaluate the effect of pH, agitation time, initial metal ion concentration and adsorbent dose on the cadmium sorption in coconut oil cake activated carbon (COCAC) and neem oil cake activated carbon (NOCAC). The experiments demonstrated that the adsorption process corresponds to the pseudo-second-order-kinetic model and the equilibrium adsorption data fit well with Temkin isotherm model. The adsorption capacity 'b' calculated from the Langmuir isotherm was 188.68 mg/g for COCAC and 23.7 mg/g for NOCAC. The percent removal of Cd(II) in COCAC increased in pH from 2 to 5, and remained constant up to pH 8, increasing the percent removal with increasing pH for NOCAC. Desorption studies were performed with 0.1M hydrochloric acid. It was found that quantitative recovery of the metal ion is possible. It was also observed that the mechanism of adsorption seems to be ion exchange. Reuse of both carbons were carried out for five cycles at optimum conditions. Adsorption efficiency of carbons was reduced from 99 to 89% in the case of COCAC and 97 to 86% for NOCAC. PMID:23505814

  2. Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust.

    Macedo, Jeremias de Souza; da Costa Júnior, Nivan Bezerra; Almeida, Luis Eduardo; Vieira, Eunice Fragoso da Silva; Cestari, Antonio Reinaldo; Gimenez, Iara de Fátima; Villarreal Carreño, Neftali Lênin; Barreto, Ledjane Silva

    2006-06-15

    Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material. PMID:16497318

  3. Performance of Electric Double Layer Capacitors using Active Carbons Prepared from Petroleum Coke by KOH and Vapor Re-Etching

    2003-01-01

    The electrochemical storage of energy in a special kind of active carbon materials used as capacitor electrodes isconsidered. Pet roleum coke was used for preparation of carbons with different porosities by KOH and vapor etchingwith catalysis of FeCl3 in turn. Carbon electrodes were fabricated and used as electrodes of double layer capacitors.Nitrogen adsorption was used to characterize the porous structure of the carbons. The electrochemical performanceof the capacitors in 6 mol/L KOH was investigated with constant current charge and discharge experiments. Aspecific capacitance larger than 160 F/g was achieved with an electrode composed of 75% active carbon with aspecific surface area of 1180 m2/g and 20% graphite as conductive agent. Evaluation of capacitor performance wasconducted by different techniques, e.g. voltammetry and impedance spectroscopy. Characteristics of the capacitorwere also discussed. A hybrid power source consisting of nickel- hydrogen and double layer capacitor was demonstratedby powering successfully a simulated power load encountered in communication equipment.

  4. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113

    Research highlights: → The system is cheap, efficient and fast for the removal of dyes from waters. → Higher adsorption capacity is due to higher mesoporous volume of the adsorbent. → The rate determining step of the adsorption process is particle diffusion. - Abstract: A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  5. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications

    The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO3)2/0.04 M H3PO4.12MoO3/4 M HNO3 solution that were heated to 200 deg. C under argon were found to have the best overall performance of the samples studied in this work.

  6. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications

    Smith, J.W.H.; Westreich, P.; Abdellatif, H.; Filbee-Dexter, P.; Smith, A.J. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Wood, T.E. [3M Company, St. Paul, MN, 55144 (United States); Croll, L.M.; Reynolds, J.H. [3M Canada Company, Brockville, Ontario, K6V 5V8 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.ca [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 (Canada)

    2010-08-15

    The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO{sub 3}){sub 2}/0.04 M H{sub 3}PO{sub 4}.12MoO{sub 3}/4 M HNO{sub 3} solution that were heated to 200 deg. C under argon were found to have the best overall performance of the samples studied in this work.

  7. Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material

    This work focuses on the preparation of AC (activated carbon) through a physical activation method using peat soil as a precursor, followed by the use of the AC as an inorganic framework for the preparation of SPCM (shape-stabilized phase change material). The SPCM, composed of n-octadecane as the core and AC pores as a framework, was fabricated by a simple impregnation method, with the mass fraction of n-octadecane varying from 10 to 90 wt.%. The AC has a specific surface area of 893 m2 g−1 and an average pore size of 22 Å. The field emission scanning electron microscope images and nitrogen gas adsorption-desorption isotherms shows that the n-octadecane was actually encapsulated into the AC pores. The melting and freezing temperatures of the composite PCM (phase change material) were 30.9 °C and 24.1 °C, respectively, and its corresponding latent heat values were 95.4 Jg−1 and 99.6 Jg−1, respectively. The composite shows a good thermal reliability, even after 1000 melting/freezing cycles. The present research provided a new SPCM material for thermal energy storage as well as some new insights into the design of composite PCM by tailoring the pore structure of AC derived from peat soil, a natural resource. - Highlights: • Activated carbon from peat soil was used as framework. • n-Octadecane/activated carbon composite was fabricated by impregnation method. • The thermal property could be tailor by adjusting pore size of activated carbon. • The shape-stabilized PCM (phase change material) have the potential to be used for thermal energy storage

  8. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H 2SO 4 activation and its adsorption behavior in aqueous solutions

    Gerçel, Özgül; Özcan, Adnan; Özcan, A. Safa; Gerçel, H. Ferdi

    2007-03-01

    The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H 2SO 4. The surface area of chemically modified activated carbon was 741.2 m 2 g -1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g -1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as Δ G°, Δ H° and Δ S° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol -1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.

  9. Preparation and Characterization of Activated Carbon from Iraqi Khestawy Date Palm

    Falah H. Hussein

    2015-01-01

    Full Text Available This work includes a synthesis of three types of the activated carbon (AC from three different positions from the same Iraqi Khestawy date palm. These three positions are the palm fronds (AC1, the date palm seeds (AC2, and the palm fiber (AC3. These three types of AC were synthesized by a physiochemical activation method using the same activator which was H3PO4. These materials were investigated using different techniques such as Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The adsorption activity of the synthesized AC samples was investigated by following the removal of both Bismarck brown G (BBG and reactive yellow dye 145 (RY145. Both the kinetics of adsorption and the removal percentage of these dyes were investigated from the batch tests in this study. Different reaction parameters and conditions for adsorption processes were investigated. Also an investigation of both Langmuir and Freundlich adsorption isotherms was considered. The different physical properties of these materials were undertaken such as the point zero charges of the synthesized samples (PZCs, the percentage of humidity, and the adsorption capacity also being investigated. The activity of these materials in the removal of BBG from the aqueous solution was as follows: AC1>AC2>AC3.

  10. Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H{sub 3}PO{sub 4}

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    In the conditioning tasks of olive-tree a large amount of a woody residue is generated. Such a residue has been traditionally used as a domestic fuel. In the last decades, however, this kind of use has lost importance and the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. In this study, the optimization of the chemical activation method with phosphoric acid for the production of activated carbon has been analyzed. The results obtained clearly show that samples prepared at 350 and 400 C exhibit a discrete porous development. On the contrary, when the carbonization temperature increases above 450 C the presence of a well-developed mesoporosity is observed. The mercury intrusion curves indicate that the samples exhibit a noticeably developed mesopore volume as well as a wide variety of mesopores ranging from 40 up to 1100 Aa of diameter. If the appropriate conditions are used, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  11. Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors

    Highlights: ► Preparation of ternary nanocomposites (ACTB/PANI) consisting of polyaniline (PANI), activated carbon, and TiO2(B) nanowires. ► Structural and electrochemical characterizations of ternary ACTB/PANI nanocomposites. ► Excellent cycle stability of ACTB/PANI based electrode. ► Tailoring the electrochemical performance by means of a composite construction. -- Abstract: We herein report the synthesis of ternary nanocomposites consisting of polyaniline (PANI), activated carbon, and TiO2(B) components, which involves the preparation of activated carbon/TiO2(B) nanowires (ACTB) using sonochemical–hydrothermal method, and their subsequent composites with PANI via in situ polymerization. The morphology and structure of ACTB/PANI ternary nanocomposites are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Morphology analysis shows that the porous network layer of PANI homogeneously coated on the outer surface of ACTB support. The electrochemical properties of the ternary nanocomposite as the electrode material for electrochemical capacitors are examined by cyclic voltammetry and galvanostatic charge/discharge test in an organic electrolyte (1.0 M LiClO4 in propylene carbonate). The results show that the ternary nanocomposites have a specific capacitance as large as 286 F g−1 in the potential range from −3 to 3 V (vs. SCE) at a charge–discharge current density of 1.0 A g−1, which is a significant improvement compared to those of the three separate components, demonstrating that the ACTB/PANI nanocomposites are promising materials for supercapacitor electrode

  12. Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier

    Odetola, Christopher; Trevani, Liliana; Easton, E. Bradley

    2015-10-01

    Two TiO2-C composite materials were prepared through a conventional sol gel synthesis using Vulcan XC-72 carbon black. The carbon was initially functionalised to form acid treated Vulcan (ATV) prior to TiO2 deposition. In one composite, the ATV was further modified through glucose adsorption (G-ATV) in order to facilitate the growth of small and uniform TiO2 nanoparticles on the carbon surface. Platinum nanoparticles were deposited on TiO2/G-ATV and TiO2/ATV supports through reduction of H2PtCl6 with NaBH4 at 0 °C. The electrochemical properties of the two composite catalysts were compared with in house Pt/C catalyst. We observed a three-fold increase in TiO2 loading (14 wt%) on glucose doped carbon surface compared with just acid treated support (5 wt%). The beginning of life (BOL) electrochemical active surface area (ECSA) of Pt/14 wt%TiO2/G-ATV catalyst was 40.4 m2 g-1 compared to 37.1 m2 g-1 obtained for Pt on 5 wt% TiO2/ATV despite increased TiO2 loadings on the former. Furthermore these composite catalysts showed enhanced oxygen reduction activity and better durability during accelerated stress tests which was attributed to an electronic interaction between Pt and the TiO2 on the support.

  13. Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films

    Cuprous oxide (Cu2O) nanocrystals have been successfully synthesized using copper acetate as precursors via a polyol process. The as-synthesized products were easily deposited on the surface of carbon nanofibres (CNFs) and then were characterized through XRD, FESEM, TEM and FTIR, etc. The photocatalytic performance of these composite films was evaluated using methyl orange as a model organic compound under visible light irradiation. Results showed that the shape of Cu2O nanparticles could be changed from irregular nanoparticle to cubic, flower-like particle assembled by Cu2O nanocubes with the change of the reaction conditions. All of these Cu2O/CNFs composite films showed the satisfied photocatalytic activity to methyl orange even after 3 cycles of degradation experiment due to the protectable function of carbon fibre films to the Cu2O nanocrystals. The Cu2O/CNFs composite films may offer a feasible method for the potential application of Cu2O nanocrystals in the treatment of organic contamination.

  14. Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification

    Using Camellia oleifera shell as starting material, production of activated carbon rich in mesoporous structure has been investigated with water vapor gasification followed by phosphoric acid modification. This method is found to be very effective in increasing the mesoporous ratio of the activated carbon. The micropores of the activated carbon gasified by water vapor (raw activated carbon) serve as channels for phosphoric acid impregnation to enlarge the pore size. Results of the activated carbon modified by phosphoric acid (final activated carbon) show a high mesoporous ratio of 61%, which is twice as high as that of raw activated carbon. Such modification also increases the BET surface area and total pore volume to 1608 m2/g and 1.17 cm3/g, respectively. The final activated carbon exhibits high adsorption capacity for methylene blue and iodine, with the adsorption values of methylene blue and iodine increasing from 180 to 1012 mg/g to 330 and 1326 mg/g, respectively. The present preparation is a convenient yet promising method to combine gasification and modification to obtain activated carbon with highly developed mesoporous structures. -- Highlights: → C. oleifera shell is good feedstock for high adsorb capacity activated carbon. → Combining gasification and modification obtain highly developed mesoporous structures. → Mesoporous volume and ratio increase from 0.81 cm3/g and 33% to 1.17 cm3/g and 61%. → The final activated carbon exhibits high adsorption capacity.

  15. Production of biodiesel fuel from canola oil with dimethyl carbonate using an active sodium methoxide catalyst prepared by crystallization.

    Kai, Takami; Mak, Goon Lum; Wada, Shohei; Nakazato, Tsutomu; Takanashi, Hirokazu; Uemura, Yoshimitsu

    2014-07-01

    In this study, a novel method for the production of biodiesel under mild conditions using fine particles of sodium methoxide formed in dimethyl carbonate (DMC) is proposed. Biodiesel is generally produced from vegetable oils by the transesterification of triglycerides with methanol. However, this reaction produces glycerol as a byproduct, and raw materials are not effectively utilized. Transesterification with DMC has recently been studied because glycerol is not formed in the process. Although solid-state sodium methoxide has been reported to be inactive for this reaction, the catalytic activity dramatically increased with the preparation of fine catalyst powders by crystallization. The transesterification of canola oil with DMC was studied using this catalyst for the preparation of biodiesel. A conversion greater than 96% was obtained at 65°C for 2h with a 3:1M ratio of DMC and oil and 2.0 wt% catalyst. PMID:24813567

  16. Adsorption of Bismark Brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods

    Hevea brasiliensis or rubberwood tree, as it is commonly known finds limited use once the latex has been tapped. The sawdust of this tree is chosen to ascertain it viability as a precursor for activation. The carbons thus obtained were characterized in terms of iodine, methylene blue number and surface area. The best carbon in each method was utilized to study the adsorption of Bismark Brown, a dye used in the leather industry. Adsorption equilibrium studies were carried out with the synthetic solutions of the dye, at room temperature (298 K). Equilibrium data are fitted with the Langmuir and the Freundlich isotherms models for the system. The effects of contact time, adsorbent dosage and initial dye concentrations on sorption capacity were carried out. Excellent adsorption capacities of 2000 and 1111 mg g-1 were obtained for steam and chemical followed by steam-activated carbons, respectively. Pilot-plant experimental studies have been performed using packed-bed column with different feed concentrations, flow rates and bed heights, to evaluate sorption of Bismark Brown on steam-activated carbon. Bed depth service time (BDST) design model have been used to analyze the data

  17. The preparation of activated carbon from South African coal for use in PGM extraction / D.J. Kruger

    Kruger, Diederick Johannes

    2007-01-01

    Activated carbons used in the Platinum Group Metals extraction industry are characterised by large internal surface areas and a great affinity for platinum, palladium and ruthenium. It is therefore necessary in this study to develop a method to produce an activated carbon that is suitable and yet cost effective, for use in the extraction of PGM's. The quality of the coal-based activated carbon may not prove to be as good as activated carbon produced from other traditional sources, but the pro...

  18. Assessments of activated carbon prepared from date stones in adsorption of indoor radon

    Radiochemical department (RCD) at Tajoura Nuclear Research Center (TNRC) in Tripoli city is one of the fewest workplaces which have experienced indoor level evaluation. In this present study, it is intended to investigate the efficiency of domestic activated carbons (AC) derived from most locally available agricultural by products date stones (DS) in the adsorption of indoor radon-222 ('222Rn) at different oriented sites of RCD. The average indoor radon concentration values in the study areas varied from (34±3.0) Bq/m3 to (192.7±9.1) Bq/m3, while the values of the annual effective dose varied from (0.355) mSv/y to (0.974) mSv/y. All obtained values were within the recommended action levels of (200 - 300) Bq/m3 and 2.4 mSv/y which are given by International Commission on Radiological Protection (ICRP) in 1993 and 1987 respectively. A designed set up of portable ACDS canisters are proposed to be utilized in other different workplaces such as schools, where educational buildings are considered as locations of ventilation deficiency and high occupancy times for children and such naturally occurring radio-active radon is distinguished as a second leading cause of lung cancer worldwide.(author)

  19. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  20. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K. PMID:27177317

  1. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. PMID:26731310

  2. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K

  3. Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods

    Nores-Pondal, F.J.; Granada, M.; Corti, H.R. [Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), General Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Vilella, I.M.J.; de Miguel, S.R.; Scelza, O.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE), Facultad de Ingenieria Quimica (Universidad Nacional del Litoral) - CONICET, Santiago del Estero 2654, 3000 Santa Fe (Argentina); Troiani, H. [Departamento de Fisica, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2009-10-15

    In this work nanoparticulated platinum catalysts have been prepared on carbon Vulcan XC-72 using three methods starting with chloroplatinic acid as a precursor: (i) formic acid as a reductor agent; (ii) impregnation method followed by reduction in hydrogen atmosphere at moderated temperature; and (iii) microwave-assisted reduction in ethylene glycol. The catalytic and size studies were also performed on a commercial Pt catalyst (E-Tek, De Nora). The characterization of the particle size and distribution was performed by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD). The characterizations of the catalytic and electrocatalytic properties of the catalysts were determined by studying the cyclohexane dehydrogenation reaction (CHD) and the behavior under cyclic voltammetry (CV) in sulfuric acid solutions. The measured electrochemical activity, along with the hydrogen chemisorption of the catalysts allows the estimation of effective particle sizes, which are much larger than those measured by TEM and XRD. The catalysts prepared by reduction with formic acid and ethylene glycol (microwave-assisted) show electrochemical activities very close to those of the commercial catalyst, and are almost insensitive to the Pt dispersion or Pt particle size. The chemical activity in CHD correlates well with the metallic dispersion determined by hydrogen chemisorption, indicating similar accesibility of H{sub 2} and cyclohexane to the catalyst surface. (author)

  4. Optimization of Preparation Condition for Meso pores Activated Carbon based on Hevea Brasiliensis Seed Coat for the Removal of Remazol Brilliant Blue R Dye

    The conditions for the preparation of rubber (hevea brasiliensis) seed coat based activated carbon (RSCAC) treated with NaOH were optimized through response surface methodology (RSM). The effects of three preparation variables: the activation temperature, activation time and NaOH impregnation ratio (IR) on Remazol Brilliant Blue R (RBBR) removal from aqueous solutions and RSCAC yield were investigated. Based on the RSM, two quadratic models were respectively developed to correlate the preparation variables to the RBBR percentage removal and carbon yield. The significant factors on each experimental design response were identified from the analysis of variance (ANOVA). The optimum conditions for RSCAC preparation were obtained by using activation temperature of 700 degree Celsius, activation time of 1.0 h and IR of 1.0, which resulted in 70.82 % of RBBR removal and 24.93 % of RSCAC yield. (author)

  5. Simple preparation of tungsten supported carbon nanoreactors for specific applications: Adsorption, catalysis and electrochemical activity

    Mayani, Vishal J.; Mayani, Suranjana V.; Kim, Sang Wook

    2015-08-01

    Porous carbon supported tungsten carbide nanoreactors, two sizes (∼25 and 170 nm), were designed using economical petroleum pitch residue followed by tungsten (W) doping. X-ray diffractions showed both carbon tungsten composites (CTC-25 and CTC-170) contained tungsten subcarbide (W2C) and monocarbide (WC) as the major and minor crystalline phases, respectively. The present study provides a multiple perspective of carbon tungsten composites (CTCs) for methanol oxidation (as an electrode), adsorption (as an adsorbent) and degradation (as a solid catalyst) of methylene blue (MB). The operational electrodes were designed from both CTCs and used as a catalyst in an electrocatalysis process. The electrocatalysts exhibited high and stable catalytic performance (CTCE-25 > CTCE-170) in methanol electro-oxidation. The newly synthesized W-doped carbon nanoreactors were used successfully as an adsorbent for MB and a heterogeneous catalyst for MB oxidation. Ordered CTC-25 and CTC-170 exhibited dynamic MB adsorption within 15 min and complete oxidation of MB in 25-40 min. A synergetic effect between tungsten carbide and the carbon cage framework was noted.

  6. RuO2/Activated Carbon Composite Electrode Prepared by Modified Colloidal Procedure and Thermal Decomposition Method

    Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun

    2016-01-01

    RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.

  7. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 oC) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (ΔHo), standard entropy (ΔSo) and standard free energy (ΔGo) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions

  8. Preparation of activated carbons from walnut shells by vacuum chemical activation%核桃壳真空化学活化制备活性炭

    杨娟; 丘克强

    2012-01-01

    Activated carbons were prepared from walnut shells by vacuum chemical activation. The effects of system pressure, activation temperature and impregnation ratio on the properties (BET surface area, pore size distribution, iodine and methylene blue adsorption values, and surface characteristics) of activated carbon were studied. The results show that the BET surface area and total pore volume of activated carbon obtained at system pressure of 30 kPa have increased by 27% and 25% respectively compared with those of activated carbon prepared under atmospheric condition. Vacuum condition is beneficial to develop microporous structure, and mesopore tends to be well developed at high impregnation ratio. The activated carbon prepared at system pressure of 30 kPa, activation temperature of 450 ℃, and impregnation ratio of 2.0, possesses a BET surface area of 1 800 m2/g, a total pore volume of 1.176 cm3/g, an iodine adsorption value of 1 050 mg/'g. a methylene blue adsorption value of 315 mg/g and an isoelectric point of 9.15.%采用真空化学活化法,以核桃壳为原料,氯化锌为活化剂制备活性炭,探讨体系压力、活化温度、浸渍比对活性炭比表面积、孔径分布、碘值和亚甲基蓝值以及表面性质的影响.研究结果表明,30 kPa时制备的活性炭其比表面积和总孔体积比常压条件时分别提高了27%和25%;在低压条件下有利于微孔的形成,在高浸渍比的条件下有利于中孔的形成.在体系压力为30 kPa,活化温度为450℃,浸渍比为2.0时,所得活性炭的BET比表面积为1800 m2/g,总孔体积为1.176 cm3/g,等电点为9.15,碘吸附量为1050 mg/g,亚甲基蓝吸附量为315 mg/g.

  9. Preparation of new titanium nitride-carbon nanocomposites in supercritical benzene and their oxygen reduction activity in alkaline medium

    Highlights: • TiN/C/graphene composite (SIV) was synthesized using supercritical benzene medium. • SIV catalyst shows high ORR activity due to both TiN and graphene phases. • SIV improves ORR via a mainly 4-electron pathway to form water and around 16% H2O2. • SIV exhibits high stability due to reduce H2O2 and prevent surface poisoning. - Abstract: Titanium nitride-carbon nanocomposites are synthesized by the reaction of TiCl4 and NaN3 in supercritical benzene medium that also serves as a carbon source. The as-prepared precursors (SI, SII) are subjected to several heat treatments (SIII–SV). The synthesized nanoparticles are characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The samples are tested as electrocatalyst for oxygen reduction reaction in an alkaline electrolyte. It is shown that the electrocatalytic properties of the synthesized nanoparticles are highly dependent on the heat treatment atmosphere and duration. The heat treatment under ammonia atmosphere at 1000 °C for 10 h (SIV) increased the ORR mass activity from −0.64 (SI) to −1.28 mA mg−1 (SIV) at −0.6 V vs. SCE. Moreover, the heat treated sample (SIV) shows almost twice ORR mass activity as commercial TiN. Rotating disk electrode (RDE) measurements exhibit ORR on commercial TiN proceeds via two parallel pathways including two and four electrons, resulting in almost 60% H2O2 production, while SIV sample improves ORR by reducing H2O2 formation to almost 16%. The high ORR activity and stability of the sample SIV are mainly due to (i) random layer structure of carbon that combines through a hybrid state with TiN nanoparticles, (ii) unstoichiometric nitrogen and oxygen doped into TiN lattice, and (iii) higher electrochemical surface area. Moreover, the possible pathways of carbon phase formation in vicinity of

  10. Carbons prepared from coffee grounds by H{sub 3}PO{sub 4} activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL

    Reffas, A. [LCME, Polytech' Savoie, Universite de Savoie, 73376 Le Bourget du Lac Cedex (France); Laboratoire de l' Ingenierie des Procedes, d' Environnement, Departement de Chimie Industrielle, Universite Mentouri, Constantine 25000 (Algeria); Bernardet, V.; David, B.; Reinert, L. [LCME, Polytech' Savoie, Universite de Savoie, 73376 Le Bourget du Lac Cedex (France); Lehocine, M. Bencheikh [Laboratoire de l' Ingenierie des Procedes, d' Environnement, Departement de Chimie Industrielle, Universite Mentouri, Constantine 25000 (Algeria); Dubois, M.; Batisse, N. [LMI, CNRS, Universite Blaise Pascal, 24 Avenue des Landais, 63177 Aubiere Cedex (France); Duclaux, L., E-mail: laurent.duclaux@univ-savoie.fr [LCME, Polytech' Savoie, Universite de Savoie, 73376 Le Bourget du Lac Cedex (France)

    2010-03-15

    Activated carbons were prepared by the pyrolysis of coffee grounds impregnated by phosphoric acid at 450 deg. C for different impregnation ratios: 30, 60, 120 and 180 wt.%. Materials were characterized for their surface chemistry by elemental analysis, 'Boehm titrations', point of zero charge measurements, Infrared spectroscopy, thermogravimetric analysis (TGA); as well as for their porous and morphological structure by Scanning Electron Microscopy (SEM) and nitrogen adsorption at 77 K. The impregnation ratio was found to govern the porous structure of the prepared activated carbons. Low impregnation ratios (<120 wt.%) led to essentially microporous and acidic activated carbons whereas high impregnation ratios (>120 wt.%) yielded to essentially mesoporous carbons with specific surface areas as high as 925 m{sup 2} g{sup -1}, pore volume as large as 0.7 cm{sup 3} g{sup -1}, and neutral surface. The activated carbons prepared from coffee grounds were compared to a commercial activated carbon (S{sub BET} {approx} 1400 m{sup 2} g{sup -1}) for their adsorption isotherms of methylene blue and 'Nylosan Red N-2RBL', a cationic and anionic (azo) dye respectively. The mesoporous structure of the material produced at 180 wt.% H{sub 3}PO{sub 4} ratio was found to be appropriate for an efficient sorption of the latter azo dye.

  11. Process optimization of preparation of ZnO-porous carbon composite from spent catalysts using one step activation.

    Jin, Wen; Qu, Wen-Wen; Srinivasakannan, C; Peng, Jin-Hui; Duan, Xin-Hui; Zhang, Shi-Min

    2012-08-01

    The process parameters of one step preparation of ZnO/Activated Carbon (AC) composite materials, from vinyl acetate synthesis spent catalyst were optimized using response surface methodology (RSM) and the central composite rotatable design (CCD). Regeneration temperature, time and flow rate of CO2 were the process variables, while the iodine number and the yield were the response variables. All the three process variables were found to significantly influence the yield of the regenerated carbon, while only the regeneration temperature and CO2 flow rate were found to significantly affect the iodine number. The optimized process conditions that maximize the yield and iodine adsorption capacity were identified to be a regeneration temperature of 950 degrees C, time of 120 min and flow rate of CO2 of 600 ml/min, with the corresponding yield and iodine number to be in excess of 50% and 1100 mg/g. The BET surface area of the regenerated composite was estimated to be 1263 m2/g, with micropore to mesopore ratio of 0.75. The pore volume was found to have increased 6 times as compared to the spent catalyst. The composite material (AC/ZnO) with high surface area and pore volume coupled with high yield augur economic feasibility of the process. EDS and XRD spectrum indicate presence of ZnO in the regenerated samples. PMID:22962730

  12. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2016-02-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium (q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) were determined and the positive value of (ΔH) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  13. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling. PMID:26685062

  14. Preparation of N-doped ultramicropore-containing active carbons from waste soybean dreg by one-step carbonization/activation%炭活化一步法制备豆渣基极微孔活性炭

    李大伟; 田原宇; 郝俊辉; 田斌; 李俊花; 车远军

    2015-01-01

    So far, some studies have been conducted on preparation of nitrogen-doped (N-doped) active carbon from N-containing biomasses using alkalis as activators. In these studies, the commonly used preparation method was activation with alkali after biomass carbonization. Compared with this method, the one-step carbonization/activation method was simple and apt to reduce energy consumption, but its application in the preparation of N-doped active carbon was not investigated. In this research, N-doped active carbon with ultramicropores was prepared from waste soybean dreg using K2CO3 as activator via one-step carbonization/activation technology. The effects of activation temperature on chemical composition, pore structure, and low-pressure CO2 adsorption performances of the active carbon were investigated. To prepare active carbon, waste soybean dreg with particle size of 0.15-0.90 mm was impregnated with K2CO3 aqueous solution at K2CO3/dreg dry-basis weight ratio of 2:1, and after mixing uniformly, the mixture was sealed and kept for 4 h. Then, it was dried in an oven at 110℃ till constant weight was achieved. Subsequently, the dried mixture was heated to 500-650℃ at an average heating rate of 6℃/minand then kept for 75 min. Afterwards, the heated mixture was washed with distilled water until the pH value reached about neutral, and then dried at 110℃ for 12 h to produce active carbon. The obtained samples were subsequently characterized; pore structure and CO2 adsorption performance were measured with volumetric adsorption analyzers, elemental composition was measured with an elemental analyzer, surface chemistry was measured with an X-ray photoelectron spectroscopy, and surface morphology was measured with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To gain an insight into the mechanism of pore formation, the soybean dreg and K2CO3-impregnated soybean dreg were pyrolyzed and analyzed using a thermogravimetric analyzer

  15. Preparation of isolated carbon nanotubes

    Full text: Carbon nanotubes are of great interest for a large range of applications from physical chemistry, solid state physics to molecular quantum optics. We propose the preparation of molecular beams of isolated carbon nanotubes for future matter wave experiments, as well as for applications in the material sciences and spectroscopy. Carbon nanotubes may be particularly interesting for quantum experiments because of their low ionization threshold, high mechanical stability and high polarizability. This is expected to facilitate the cooling, coherent manipulation and efficient detection of such molecular beams. For this purpose we are investigating different methods of solvation, isolation and shortening of carbon nanotubes from commercial bundles. Length and diameter distributions are recorded by SPM whereas the unbundling of the tubes is determined by absorption spectroscopy. Established methods from physical chemistry, such as laser desorption are currently being modified and studied as potential tools for generating beams of nanotubes in the mass range of around 50.000-100.000 amu. (author)

  16. REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY ACTIVATED CARBON PREPARED FROM THE PEEL OF CUCUMIS SATIVA FRUIT BY ADSORPTION

    Manonmani Subbian

    2010-02-01

    Full Text Available The use of low-cost, locally available, highly efficient, and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of methylene blue (MB dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated, and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. The optimum pH for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of each experiment. The adsorption of methylene blue followed the pseudo-second-order rate equation and fit the Langmuir, Freundlich, Dubinin-Radushekevich (D-R, and Tempkin equations well. Maximum removal of MB was obtained at pH 6 as 99.79% for adsorbent doses of 0.6 g/ 50 mL and 25 mg/L initial dye concentrations at room temperature. The maximum adsorption capacity obtained from the Langmuir equation was 46.73 mg g-1. The rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2 > 0.9677 with intraparticle diffusion as one of the rate-determining steps. Activated carbon developed from the peel of Cucumis sativa fruit can be an attractive option for dye removal from wastewater.

  17. Activated carbon for incinerator uses

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  18. Characterization and use of high surface area activated carbons prepared from cane pith for liquid-phase adsorption

    Carbonaceous adsorbents with controllable surface areas were chemically activated with KOH at 780 deg. C from char that had been carbonized from cane pith at 450 deg. C. The pore properties including the BET surface area, pore volume, pore size distribution, and mean pore diameter of these activated carbons were characterized and derived using the t-plot method based on N2 adsorption isotherms. The activated cane pith carbons, with KOH/char ratios of 2-6, exhibited BET surface areas ranging from 912 to 2299 m2 g-1. The scanning electron microscopic (SEM) observations revealed that the surface morphology of honeycombed holes on all activated cane pith carbons was significantly influenced by the KOH/char ratio. The adsorption kinetics and equilibrium isotherms of acid blue 74, methylene blue, basic brown 1, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water at 30 deg. C on the activated carbons were studied. The adsorption kinetics were suitably described by a simplified kinetic model, the Elovich equation. All adsorption equilibrium isotherms were in agreement with the Langmuir equation, and were used to compare the covered area (S c/S p) of the activated carbons at different KOH/char ratios. The high-surface-area activated carbons were proven to be promising adsorbents for pollution control and for other applications

  19. An optimization study on removal of Zn from aqueous solution by ultrasound assisted preparation of activated carbon from alkaline impregnated hazelnut shell

    Nowadays, ultrasound has gained importance in a wide variety of industrial fields especially in wastewater and sewage treatment. Ultrasound exhibits several beneficial effects in solid liquid systems by means of the cavitations phenomenon by causing the formation of many microcracks on the solid surface; thus, it increases the surface area between the reactants and cleans solid reactant or catalyst particle surfaces. In this study, activated carbon adsorbent for removing heavy metal cations such as Zn2+ from aqueous solutions has been prepared. For this purpose, KOH solution was impregnated into hazelnut shells under ultrasonic irradiation. After filtration, hazelnut shells have been carbonized under inert N2 atmosphere. The experiments were planned by statistical design methods. Finally, activated carbons were characterized by the evolution of their zinc adsorption capacity. Optimum preparation conditions were obtained by using constrained optimization program by means of the Matlab computer software. Activated carbon with the maximum adsorption capacity was further characterized by using scanning electron microscopy. The alkaline impregnation into hazelnut shells under ultrasonic irradiation was found to be beneficial for preparation of activated carbon for use as adsorbents to remove Zn2+ from aqueous solutions. (author)

  20. Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL

    Activated carbons were prepared by the pyrolysis of coffee grounds impregnated by phosphoric acid at 450 deg. C for different impregnation ratios: 30, 60, 120 and 180 wt.%. Materials were characterized for their surface chemistry by elemental analysis, 'Boehm titrations', point of zero charge measurements, Infrared spectroscopy, thermogravimetric analysis (TGA); as well as for their porous and morphological structure by Scanning Electron Microscopy (SEM) and nitrogen adsorption at 77 K. The impregnation ratio was found to govern the porous structure of the prepared activated carbons. Low impregnation ratios (120 wt.%) yielded to essentially mesoporous carbons with specific surface areas as high as 925 m2 g-1, pore volume as large as 0.7 cm3 g-1, and neutral surface. The activated carbons prepared from coffee grounds were compared to a commercial activated carbon (SBET ∼ 1400 m2 g-1) for their adsorption isotherms of methylene blue and 'Nylosan Red N-2RBL', a cationic and anionic (azo) dye respectively. The mesoporous structure of the material produced at 180 wt.% H3PO4 ratio was found to be appropriate for an efficient sorption of the latter azo dye.

  1. Preparation of hollow spherical carbon nanocages

    Tsai, C.-K.; Kang, H. Y.; Hong, C.-I; Huang, C.-H.; Chang, F.-C.; Wang, H. Paul, E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering, Taiwan (China)

    2012-12-15

    This study presents a new and simple method for the synthesis of hollow carbon spheres possessing nanocage sizes of 7.1, 14, and 20 nm in diameter. The core-shell (i.e., Cu-C) nanoparticles prepared by carbonization of the Cu{sup 2+}-cyclodextrin (CD) complexes at 573 K for 2 h was etched with HCl (6N) to yield the hollow carbon spheres. The carbon-shell of the hollow carbon nanospheres, which consisted of mainly diamond-like and graphite carbons, is not perturbed during etching. In addition to the nanocages, the hollow carbon nanospheres also possess micropores with an opening of 0.45 nm, allowing small molecules to diffuse in and out through the carbon-shell. Many elements (such as Zn{sup 2+} or Cu{sup 2+}) can therefore be filled into the nanocages of the hollow carbon nanospheres. With these unique properties, for instance, designable active species such as Cu and ZnO encapsulated in the carbon-shell can act as Cu-ZnO-C yolk-shell nanoreactors which are found very effective in the catalytic decomposition of methanol.

  2. Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust.

    Dhorabe, Prashant T; Lataye, Dilip H; Ingole, Ramakant S

    2016-01-01

    The present paper deals with a complete batch adsorption study of 4-nitrophenol (4NP) from aqueous solution onto activated carbon prepared from Acacia glauca sawdust (AGAC). The surface area of the adsorbent determined by methylene blue method is found to be 311.20 m(2)/g. The optimum dose of adsorbent was found to be 2 g/l with 4NP uptake of 25.93 mg/g. The equilibrium time was found to be 30 minutes with the percentage removal of 96.40 at the initial concentration of 50 ppm. The maximum removal of 98.94% was found to be at pH of 6. The equilibrium and kinetic study revealed that the Radke-Prausnitz isotherm and pseudo second order kinetics model fitted the respective data well. In the thermodynamic study, the negative value of Gibbs free energy change (-26.38 kJ/mol at 30°C) and enthalpy change (-6.12 kJ/mol) showed the spontaneous and exothermic nature of the adsorption process. PMID:26901740

  3. Preparation and electrochemical properties of RuO2-containing activated carbon nanofiber composites with hollow cores

    RuO2-containing activated carbon nanofibers with hollow cores (PMRu-ACNFs) are prepared through one-step electrospinning using polyacrylonitrile (PAN), poly(methyl methacrylate) (PMMA), and ruthenium(III) acetylacetonate followed by thermal treatment. The porous PMRu-ACNF composites exhibit an improved morphological structure and textual properties due to the increased surface area, unique nanotexture, and presence of several functional groups such RuO2 in the ACNFs. Electrochemical measurements of PMRu-ACNF reveal a maximum specific capacitance of 180 Fg−1 and high energy densities of 20-14 Whkg−1 in the power density range of 400 to 10,000 W kg−1 in aqueous KOH electrolyte. In contrast, the ACNF electrodes show a lower specific capacitance and the energy density rapidly drops to 2 Whkg−1 at power densities of 4,000 Wkg−1. Therefore, the PMRu-ACNF composite electrodes may be more suitable as supercapacitors than regular ACNFs are, due to the synergistic effect between the electric double-layer capacitance of porous ACNFs and the pseudocapacitance of RuO2

  4. Removal of Hg (II) from aqueous solution on powdered coal-based activated carbon: experiemental design of microwave assisted preparation, equilibrium and kinetic study

    Preparation of activated carbon from anthracite through microwave-assisted activation was optimized by response surface methodology (RSM). The satisfactory conditions were obtained as follows: 693 W of microwave power, 10 min of irradiation time and 1:1 of the ratio of KOH to coal, and the corresponding adsorbance of iodine and methylene blue (MB) were of 799.32 and 132.03 mg/g, respectively. The production was characterized using nitrogen adsorption isotherm, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The resultant powdered activated carbons were applied for removing Hg(II) from aqueous solution at different dosage of activated carbon, concentrations of Hg(II), adsorption temperature and pH. The Langmuir isotherm was excellently correlated to equilibrium data of Hg(II) adsorption, showing Langmuir adsorption capacities of Hg(II) was 145.41 mg/g. (author)

  5. 碳酸钾化学活化法制备土霉素菌渣活性炭研究%Preparation of Oxytetracycline Bacterial Residue Activated Carbon by Chemical Activation with Potassium Carbonate

    周保华; 高勤; 郭斌; 朱能

    2012-01-01

    为了解决制药行业土霉素菌渣处置的难题,该文以土霉素菌渣为原材料,K2CO3为活化剂,采用化学活化法制备土霉素菌渣活性炭.通过电镜扫描和氮气吸附对较佳条件下制备的活性炭特性进行了表征.实验得出制备土霉素菌渣活性炭的较佳工艺条件为:活化温度800℃,活化时间3h,活化比1∶3.该活性炭的苯酚吸附值为215 mg/g,比表面积达1 593.09 m2/g,亚甲基蓝吸附值为117 mg/g.该活性炭孔结构丰富,主要以微孔为主,平均孔径为1.09 nm,微孔孔容为0.54 cm3/g,中孔孔容为0.27 cm3/g.%In order to solve the problem of oxytetracycline bacterial residue disposal of pharmaceutical industry,the activated carbons prepared from oxytetracycline bacterial residue with K2CO3 under chemical activation are investigated here. The properties of the activated carbons under better conditions are performed by sanning electron microscopy and Nitrogen adsorption. Experimental results show that the better process conditions of preparation for oxytetracycline bacterial residue activated carbons are 800 ℃ activation temperature,3 h activation time and 1:3 activation ratio. The phenol adsorption of these activated carbons is 215 mg/g,the special surface area is 1 593. 09 m2/g and the methylene blue adsorption is 117 mg/g. The activated carbons are affluent in pores, which are mainly micropores. The average pore size of the activated carbons is 1. 09 nm, and the micropore volume and mesopore volume are 0. 54 cm3/g and 0. 27 cmVg respectively.

  6. Preparation of potassium iron(III) hexacyanoferrate(II) supported on activated carbon and Cs uptake performance of the adsorbent

    Synthesis of potassium iron(III) hexacyanoferrate(II) (K/Fe-Fe(CN)6) in the pores of activated carbon (AC) was attempted by impregnating AC with K4[Fe(CN)6] and FeCl3, and the Cs uptake performance of the resulting adsorbent was examined. K/Fe-Fe(CN)6 supported on AC was prepared by varying the reaction conditions such as the supplied amounts and molar ratios of the reagents, and the Cs uptake performance was optimized. The impregnated product was characterized by XRD, EPMA, and porosimetry to elucidate the condition to which Fe4[Fe(CN)6]3 was filled in the AC pores. The K/Fe-Fe(CN)6-on-AC was immersed in seawater containing 0.075 mmol·dm-3 Cs and agitated for 1 day to obtain the Cs uptake. The Cs uptake was large at pH 10.5. The maximum Cs uptake was 10.4 μmol·g-1 at the equilibrium Cs concentration of 49 μmol·dm-3 and the distribution coefficient was 45.5 dm3·g-1 at the equilibrium concentration of 0.015 μmol·dm-3, respectively. When K/Fe-Fe(CN)6-on-AC was immersed in Cs-containing seawater, K+ ions in the adsorbent were completely exchanged for Na+ ions in seawater, and the added Cs+ ions were then substituted for the Na+ ions in the adsorbent. (author)

  7. Preparation and textural characterisation of activated carbon from vine shoots ( Vitis vinifera) by H 3PO 4—Chemical activation

    Corcho-Corral, B.; Olivares-Marín, M.; Fernández-González, C.; Gómez-Serrano, V.; Macías-García, A.

    2006-06-01

    An abundant and low-cost agricultural waste as vine shoots ( Vitis vinifera) (VS), which is generated by the annual pruning of vineyards, has been used as raw material in the preparation of powder activated carbon (AC) by the method of chemical activation with phosphoric acid. After size reduction, VS were impregnated for 2 h with 60 wt.% H 3PO 4 solution at room temperature, 50 and 85 °C. The three impregnated products were carbonised at 400 °C. The product impregnated at 50 °C was heated either first at 150-250 °C and then at 400 °C or simply at 350-550 °C in N 2 atmosphere. The time of isothermal treatment after each dynamic heating was 2 h. The carbons were texturally characterised by gas adsorption (N 2, -196 °C), mercury porosimetry, and density measurements. FT-IR spectroscopy was also applied. Better developments of surface area and microporosity are obtained when the impregnation of VS with the H 3PO 4 solution is effected at 50 °C and for the products heated isothermally at 200 and 450 °C. The mesopore volume is also usually higher for the products impregnated and heated at intermediate temperatures.

  8. Study on preparation of water hyacinth-based activated carbon for pulp and paper mill wastewater treatment.

    Boonpoke, Anusorn

    2015-09-01

    Mulberry pulp and paper mills produce high chemical- and organic matter containing waste water in Thailand. Many of the mills are not equipped with wastewater treatment unit; their untreated effluent is directly discharged into recipient water resources. The effluent constituents are well recognized as acute and chronic pollutants that are hazardous to the environment. The present study aimed to investigate the utilization of an activated carbon from a low-cost material and to examine its adsorption performance using batch and fixed-bed adsorption. Water hyacinth was used as a raw material for activated carbon production via a chemical activation method. The results showed that water hyacinth-based activated carbon (WHAC) provided a high surface area of 912-1,066 m2g(-1) and exhibited micropore structure. Based on the Freundlich fit, the maximum adsorption capacity of COD and color was 4.52 mgg(-1) and 13.57 Pt-Cog(-1), respectively. The fixed bed adsorption provided maximum removal efficiency of 91.70 and 92.62% for COD and color, respectively. A continuous adsorption data agreed well with the Thomas kinetic model. In summary, water hyacinth can be used as a low-cost material for activated carbon production with high removal efficiency of COD and color for pulp and paper mill wastewater treatment. PMID:26521558

  9. Optimization of Preparation of Activated Carbon from Ricinus communis Leaves by Microwave-Assisted Zinc Chloride Chemical Activation: Competitive Adsorption of Ni2+ Ions from Aqueous Solution

    M. Makeswari

    2013-01-01

    Full Text Available The preparation of activated carbon (AC from Ricinus communis leaves was investigated in this paper. Orthogonal array experimental design method was used to optimize the preparation of AC using microwave assisted zinc chloride. Optimized parameters were radiation power of 100 W, radiation time of 8 min, concentration of zinc chloride of 30% by volume, and impregnation time of 24 h, respectively. The surface characteristics of the AC prepared under optimized conditions were examined by pHZPC, SEM-EDAX, XRD, and FTIR. Competitive adsorption of Ni2+ ions on Ricinus communis leaves by microwave assisted zinc chloride chemical activation (ZLRC present in binary and ternary mixture was compared with the single metal solution. The effects of the presence of one metal ion on the adsorption of the other metal ion were investigated. The experimental results indicated that the uptake capacity of one metal ion was reduced by the presence of the other metal ion. The extent of adsorption capacity of the binary and ternary metal ions tested on ZLRC was low (48–69% as compared to single metal ions. Comparisons with the biosorption of Ni2+ ions by the biomass of ZLRC in the binary (48.98–68.41%-~Ni-Cu and 69.76–66.29%-~Ni-Cr and ternary solution (67.32–57.07%-~Ni–Cu and Cr could lead to the conclusion that biosorption of Ni2+ ions was reduced by the influence of Cu2+ and Cr3+ ions. The equilibrium data of the adsorption was well fitted to the Langmuir isotherm. The adsorption process follows the pseudo-second-order kinetic model.

  10. Preparation of Co-Mo catalyst using activated carbon produced from egg shell and SiO2 as support – A hydrogenation study

    Adeniyi Sunday Ogunlaja

    2010-12-01

    Full Text Available The preparation of a series of cobalt-molybdenum (Co-Mo catalysts supported on SiO2 and carbonized egg shells were investigated using standard procedures; the catalysts were further calcined at the 500 oC temperature to generate the internally consistent set, and the metal atoms content were varied in a regular manner. The ratio 1:4 (Co2+: Mo6+ by weight was employed for the various catalysts prepared. The carbonized egg shells were divided into two parts: the first part was leached with HNO3, as the other one was not leached. Activity tests were run using these catalysts containing leached and unleached carbon for the hydrogenation of methyl orange; the changes in absorbance regarding the unhydrogenated methyl orange at a wavelength of 460 nm were respectively 0.07 and 0.067 when the catalyst containing the leached carbonized egg shell (catalyst A and the catalyst containing the unleached activated carbon (catalyst B were used for the hydrogenation reaction. This confirms that catalyst A is more efficient in hydrogenating methyl orange than catalyst B.

  11. The influence of oxidation with nitric acid on the preparation and properties of active carbon enriched in nitrogen

    Pietrzak, Robert; Nowicki, Piotr; Wachowska, Helena

    2009-01-01

    The effect of oxidation by 20% nitric acid on the properties and performance of active carbons enriched with nitrogen by means of the reaction with urea in the presence of air has been studied. The study has been made on demineralised orthocoking coal and the carbonisates obtained from it at 600 or 700 °C, subjected to the processes of nitrogenation, oxidation and activation with KOH in different sequences. The amount of nitrogen introduced into the carbon with the aid of urea has been found to depend on the stage at which the process of nitrogenation was performed. The process of oxidation of the demineralised coal and the active carbon obtained from the former has been found to favour nitrogen introduction into the carbon structure. In the process of nitrogenation of the carbonisates the amount of nitrogen introduced has inversely depended on the temperature of carbonisation. The modifications of the processes permitted obtaining materials of different textural parameters, different acid-base character of the surface and different iodine sorption capacity.

  12. The influence of oxidation with nitric acid on the preparation and properties of active carbon enriched in nitrogen

    The effect of oxidation by 20% nitric acid on the properties and performance of active carbons enriched with nitrogen by means of the reaction with urea in the presence of air has been studied. The study has been made on demineralised orthocoking coal and the carbonisates obtained from it at 600 or 700 deg. C, subjected to the processes of nitrogenation, oxidation and activation with KOH in different sequences. The amount of nitrogen introduced into the carbon with the aid of urea has been found to depend on the stage at which the process of nitrogenation was performed. The process of oxidation of the demineralised coal and the active carbon obtained from the former has been found to favour nitrogen introduction into the carbon structure. In the process of nitrogenation of the carbonisates the amount of nitrogen introduced has inversely depended on the temperature of carbonisation. The modifications of the processes permitted obtaining materials of different textural parameters, different acid-base character of the surface and different iodine sorption capacity.

  13. TiO2 Immobilized on Manihot Carbon: Optimal Preparation and Evaluation of Its Activity in the Decomposition of Indigo Carmine

    Cynthia M. Antonio-Cisneros

    2015-01-01

    Full Text Available Applications of carbon-TiO2 materials have attracted attention in nanotechnology due to their synergic effects. We report the immobilization of TiO2 on carbon prepared from residues of the plant Manihot, commercial TiO2 and glycerol. The objective was to obtain a moderate loading of the anatase phase by preserving the carbonaceous external surface and micropores of the composite. Two preparation methods were compared, including mixing dry precursors and immobilization using a glycerol slurry. The evaluation of the micropore blocking was performed using nitrogen adsorption isotherms. The results indicated that it was possible to use Manihot residues and glycerol to prepare an anatase-containing material with a basic surface and a significant SBET value. The activities of the prepared materials were tested in a decomposition assay of indigo carmine. The TiO2/carbon eliminated nearly 100% of the dye under UV irradiation using the optimal conditions found by a Taguchi L4 orthogonal array considering the specific surface, temperature and initial concentration. The reaction was monitored by UV-Vis spectrophotometry and LC-ESI-(Qq-TOF-MS, enabling the identification of some intermediates. No isatin-5-sulfonic acid was detected after a 60 min photocatalytic reaction, and three sulfonated aromatic amines, including 4-amino-3-hydroxybenzenesulfonic acid, 2-(2-amino-5-sulfophenyl-2-oxoacetic acid and 2-amino-5-sulfobenzoic acid, were present in the reaction mixture.

  14. High-valued Utilization of China Fir Sawdust Extracted Essential Oil: Preparation of Granular Activated Carbons for n-Butane Adsorption

    ZHU Guang-zhen; DENG Xian-lun; LIU Xiao-min

    2011-01-01

    [Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil. [Method] In the field of fir essential oil extraction, the processed China fir sawdust was used to prepare low-valued products. The high-valued utilization of China fir sawdust extracted essential oil (CFSEEO), namely as a precursor to prepare granular activated carbons (GACs), was attempted. The materials were characterized by ultimate analysis, SEM and XRD. [Rusult] A butane working capacity (BWC) of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml. It was available to introduce the technology of extracting essential oil from the China fir sawdust (CFS) in the industrial production process of activated carbons with high BWC (12.0 -16.5 g/100 ml) and high surface area (2 000 -2 630m2/g) using phosphoric acid based on previous studies of the authors. [Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.

  15. A simple preparation of carbon doped porous Bi{sub 2}O{sub 3} with enhanced visible-light photocatalytic activity

    Dai, Gaopeng, E-mail: dgp2000@126.com [Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Liu, Suqin [Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Liang, Ying [Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053 (China)

    2014-09-01

    Graphical abstract: Carbon doped bismuth oxide with a porous structure was prepared by calcination of bismuth nitrate in glycol solution. The as-prepared samples show enhanced visible-light photocatalytic activity. - Highlights: • C-doped Bi{sub 2}O{sub 3} with a porous structure is obtained by a simply calcination of Bi(NO{sub 3}){sub 3} in glycol. • The C-doped Bi{sub 2}O{sub 3} exhibited much higher photocatalytic activity than the pure Bi{sub 2}O{sub 3}. • Carbon was incorporated into the lattice of Bi{sub 2}O{sub 3} lattice. - Abstract: Carbon doped bismuth oxide (Bi{sub 2}O{sub 3}) with a porous structure is obtained by a simply calcination of bismuth nitrate pentahydrate (Bi(NO{sub 3}){sub 3}⋅5H{sub 2}O) in glycol solution. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV–Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange (MO) in an aqueous solution under visible-light radiation (λ > 420 nm). The results show that carbon was incorporated into the lattice of Bi{sub 2}O{sub 3}. The absorption intensity of C-doped Bi{sub 2}O{sub 3} increases in the region of 450–530 nm and the absorption edge has an obvious shift to long wavelength. The C-doped Bi{sub 2}O{sub 3} exhibited much higher photocatalytic activity than the pure one due to the synergetic effects of the porous structure and the improved absorption in the visible-light region.

  16. The differences of electrochemical performance between the purchased lead carbonate and the prepared lead carbonate

    包有富

    2005-01-01

    The differences of electrochemistry performance between the purchased lead carbonate and the prepared lead carbonate were studied by the methods of cycle voltammogram, electrochemical impedance spectroscope (EIS), constant current discharge, thermal gravimetric analysis, and scan electron microscope (SEM) etc. in the paper. It was showed that the reacting activity of the prepared lead carbonate was higher than that of the purchased lead carbonate. And several points of view were concluded as follows. (1) The prepared lead carbonate contains chemical structure water, but the purchased lead carbonate doesn't contain chemical structure water. (2) The main chemical substance in the purchased lead carbonate powder is PbCO3, while the one in the prepared lead carbonate is smaller than that of the pur-chased lead carbonate.

  17. Spherical carbons: Synthesis, characterization and activation processes

    Romero Anaya, Aroldo José; Ouzzine, Mohammed; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2014-01-01

    Spherical carbons have been prepared through hydrothermal treatment of three carbohydrates (glucose, saccharose and cellulose). Preparation variables such as treatment time, treatment temperature and concentration of carbohydrate have been analyzed to obtain spherical carbons. These spherical carbons can be prepared with particle sizes larger than 10 μm, especially from saccharose, and have subsequently been activated using different activation processes (H3PO4, NaOH, KOH or physical activati...

  18. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    2008-01-01

    TiO2 nanoparticle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatalytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  19. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    LI Youdi; LI Jing; MA MingYuan; OUYANG YuZhu; YAN WenBin

    2008-01-01

    TiO2 nanoparUcle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatslytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  20. PROGRESS ON ACTIVATED CARBON FIBERS

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  1. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.

    Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A

    2013-03-01

    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively. PMID:23411456

  2. Preparation, Characterization, and In Vitro and Vivo Antitumor Activity of Oridonin-Conjugated Multiwalled Carbon Nanotubes Functionalized with Carboxylic Group

    Chuanjin Wang

    2016-01-01

    Full Text Available Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI is a poorly water-soluble diterpenoid compound (C20H28O6 used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH were used as ORI carrier. ORI was noncovalently encapsulated into (or onto the functionalized carbon nanotubes (MWCNTs-ORI. The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w. In vitro cytotoxicity assay on MWCNTs-ORI gave IC50 of 7.29±0.5 μg/mL and ORI-F gave IC50 of 14.5±1.4 μg/mL. The antitumor effect studies in vivo showed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1 was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1 which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.

  3. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process

    Marcelo Marques Tusi; Michele Brandalise; Olandir Vercino Correa; Almir Oliveira Neto; Marcelo Linardi; Estevam Vitorio Spinacé

    2007-01-01

    PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent...

  4. Preparation and Capacitive Behavior of Dandelion-Like γ-MnO2 Nanofibre/Activated Carbon Microbeads Composite for the Application of Supercapacitor

    Li Bai; Xianyou Wang; Xingyan Wang; Xiaoyan Zhang; Wanmei Long; Hong Wang; Jiaojiao Li

    2011-01-01

    Dandelion-like γ-manganese dioxide (γ-MnO2) nanofibre/activated carbon microbeads (ACMBs) composite is prepared by an in situ coating technique. The structure and morphology of the composite are characterized by scanning electron microscopy and X-ray diffraction. The results show that γ-MnO2 nanofibre is uniformly encapsulated on the surface of ACMB, and the composite finally becomes a dandelion-like microbead. Cyclic voltammetry, galvanostatic current charge/discharge, and cycle life measure...

  5. Activated carbons and gold

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  6. Preparation, electrochemical behavior and electrocatalytic activity of chlorogenic acid multi-wall carbon nanotubes as a hydroxylamine sensor

    Electrochemical characteristics of an electrodeposited chlorogenic acid film on multi-wall carbon nanotubes glassy carbon electrode (CGA-MWCNT-GCE) and its role as a sensor for electrocatalytic oxidation of hydroxylamine are described. Cyclic voltammograms of the CGA-MWCNT-GCE indicate a pair of well-defined and nearly reversible redox couple with the surface confined characteristics at a wide pH range of 2.0-12.0. The charge transfer coefficient, α, and the charge transfer rate constant, ks, of CGA adsorbed on MWCNT were calculated 0.48 and 44 ± 2 s-1 respectively. The CGA-MWCNT-GCE shows a dramatic increase in the peak current and/or a decrease in the overvoltage of hydroxylamine electrooxidation in comparison with that seen at a CGA modified GCE, MWCNT modified GCE and activated GCE. The kinetic parameters of electron transfer coefficient, α, the heterogeneous electron transfer rate constant, k', and exchange current, i0, for oxidation of hydroxylamine at the modified electrode surface were determined using cyclic voltammetry. Four linear calibration ranges and high repeatability with relative standard deviation of 4.6%, for a series of four successive measurements in 17.7 μM hydroxylamine, are obtained at the CGA-MWCNT-GCE using an amperometric method. Finally, the modified electrode was successfully used for determination of spiked hydroxylamine in two water samples.

  7. Method of strontium carbonate preparation

    A technique for humidity decrease of strontium carbonate, obtained by its precipitation by sodium carbonate out of strontium salt solution with further precipitate separation, its washing by repulpation and drying, is proposed. The use of sodium carbonate solution with 0.8-1.5 g/l concentration during the precipitation repulpation permits to decrease the product humidity from 45-50% to 29-35%, to improve its quality, to reduce energy consumption for filtration and drying of precipitation

  8. Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: artificial neural network modeling.

    Ghaedi, A M; Ghaedi, M; Karami, P

    2015-03-01

    The present work focused on the removal of sunset yellow (SY) dye from aqueous solution by ultrasound-assisted adsorption and stirrer by activated carbon prepared from wood of an orange tree. Also, the artificial neural network (ANN) model was used for predicting removal (%) of SY dye based on experimental data. In this study a green approach was described for the synthesis of activated carbon prepared from wood of an orange tree and usability of it for the removal of sunset yellow. This material was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of variables, including initial dye concentration (mg/L), pH, adsorbent dosage (g), sonication time (min) and temperature (°C) on SY removal were studied. Fitting the experimental equilibrium data of different isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models display the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data by different kinetic models including pseudo-first and second order, Elovich and intraparticle diffusion models indicate the applicability of the second-order equation model. The adsorbent (0.5g) is applicable for successful removal of SY (>98%) in short time (10min) under ultrasound condition. PMID:25435487

  9. Equilibrium and kinetic studies on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells

    The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This paper deals with the removal of Acid Red 114 (AR 114) from aqueous solutions using activated carbons prepared from agricultural waste materials such as gingelly (sesame) (Sp), cotton (Cp) and pongam (Pp) seed shells. Optimum conditions for AR 114 removal were found to be pH 3, adsorbent dosage = 3 g/L of solution and equilibrium time = 4 h. Higher removal percentages were observed at lower concentrations of AR 114. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the adsorption capacity of the studied adsorbents was in the order Sp > Cp > Pp. Kinetic studies showed that the adsorption followed both pseudo-second-order and Elovich equation. The thermodynamics parameters such as ΔGo, ΔHo, ΔSo were also evaluated. The activated carbons prepared were characterized by FT-IR, SEM and BET analysis

  10. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II)

    Muniz, G. [Laboratoire de Chimie du Solide Mineral, Nancy-Universite, UMR CNRS 7555, BP 239, 54506 Vandoeuvre-les Nancy (France); Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Circuito Universitario S/N, Chihuahua (Mexico); Fierro, V., E-mail: Vanessa.Fierro@lcsm-uhp.nancy.fr [Laboratoire de Chimie du Solide Mineral, Nancy-Universite, UMR CNRS 7555, BP 239, 54506 Vandoeuvre-les Nancy (France); Celzard, A. [Laboratoire de Chimie du Solide Mineral, UMR CNRS 7555, Nancy-Universite, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal Cedex 9 (France); Furdin, G. [Laboratoire de Chimie du Solide Mineral, Nancy-Universite, UMR CNRS 7555, BP 239, 54506 Vandoeuvre-les Nancy (France); Gonzalez-Sanchez, G. [Centro de Investigacion en Materiales Avanzados (CIMAV) Miguel de Cervantes 120, Compl. Ind. Chih., 31109 Chihuahua (Mexico); Ballinas, M.L. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Circuito Universitario S/N, Chihuahua (Mexico)

    2009-06-15

    Arsenic removal from natural well water from the state of Chihuahua (Mexico) is investigated by adsorption using a commercial activated carbon (AC). The latter is used as such, or after oxidation by several chemicals in aqueous solution: nitric acid, hydrogen peroxide, and ammonium persulphate. Raw and oxidised activated carbons are fully characterised (elementary analysis, surface chemistry, pore texture parameters, pH{sub ZC}, and TEM observation). Adsorption of As is measured in the aforementioned water, containing ca. 300 ppb of arsenic: removal of As is poor with the raw AC, and only the most oxidised carbons exhibit higher performances. By contrast, iron-doped ACs are much more efficient for that purpose, though their As uptake strongly depends on their preparation conditions: a number of samples were synthesised by impregnation of raw and oxidised ACs with HCl aqueous solutions of either FeCl{sub 3} or FeCl{sub 2} at various concentrations and various pH. It is shown that iron(II) chloride is better for obtaining high iron contents in the resultant ACs (up to 8.34 wt.%), leading to high As uptake, close to 0.036 mg As/g C. In these conditions, 100% of the As initially present in the natural well water is removed, as soon as the Fe content of the adsorbent is higher than 2 wt.%.

  11. Preparation of composite electroheat carbon film

    XIA Jin-tong; TU Chuan-jun; LI Yan; HU Li-min; DENG Jiu-hua

    2005-01-01

    A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly.The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19± 2 ℃) and 22 V for 5 min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin = 1. 8/1) reaches 112 ℃ while HPMETCF (mfiller/mresin = 3. 6/1) reaches 265 ℃.

  12. 磷酸-硫酸活化法制备木屑活性炭工艺%Preparation of Sawdust Active Carbon by Phosphoric Acid-Sulfuric Acid Activation

    李学琴; 李翔宇; 亓伟; 时君友; 庞久寅; 杜洪双

    2015-01-01

    以林业废弃物杨木屑为原料,采用正交试验法探讨以磷酸为主活化剂,浓硫酸为辅助活化剂,在不同工艺条件下制备活性炭,测定其亚甲基蓝脱色力和碘的吸附值,考虑活化因素对活性炭得率和吸附性能的影响,确定最佳工艺参数.试验结果表明:磷酸-硫酸活化法制备木屑活性炭的最佳工艺条件为浸渍比1∶2.5,浸渍浓度60%,活化时间90 min,活化温度550℃.%The various process conditions of activated carbon were prepared from waste poplar sawdust by phosphoric acid-sulfuric acid activation which used phosphoric acid as main activator and concentrated sulfuric acid as auxiliary activator according to orthogonal test. The experiment determined the methylene blue decolorizing power and iodine adsorption value of activated carbon,the influence of activating factors on the yield and adsorption properties of activated carbon was studied. The experimental results showed that the optimum process conditions of preparation of sawdust active carbon by phosphoric acid-sulfuric acid activation are impregnation ratio 1 ∶ 2. 5, impregnation concentration 60%, activation time 90 min, activation temperature 550℃.

  13. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process

    Marcelo Marques Tusi

    2007-06-01

    Full Text Available PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent of carbon source and time used in the synthesis.

  14. 高分子固-固相变材料的热性能%Preparation and Properties of Paraffin/Active Carbon Phase Change Materials

    王忠; 陈立贵; 付蕾

    2012-01-01

    以活性炭颗粒(ACG)为吸附增强材料,高密度聚乙烯(HDPE)、聚乙二醇(PEG)为相变材料,采用物理共混法制备两种高分子固-固相变材料.利用差示扫描量热仪、导热系数测定仪、高温综合热分析仪对所得相变材料的热性能进行了研究.结果表明:入活性炭颗粒,可提高材料的导热系数和热稳定性.%The preparation and characterization of novel solid-solid phase change materials by blending was reported. The main materials were high density polyethylene, polyethylene glycol and active carbon granule. The composite were characterized by differential scanning calorimetry, Thermal conductivity device and thermo-gravimetric apparatus. The results indicated that the thermo-stability and the thermal conductivity of phase changed materials both increase after adding active carbon granule.

  15. Preparation of highly active and stable polyaniline-cobalt-carbon nanotube electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell

    This paper established an in-situ synthesis strategy that the mixing solution of aniline, CNTs and CoCl2 was directly reduced to prepare polyaniline-cobalt-carbon nanotube (PANI-Co-CNT) electrocatalyst. Furthermore, this strategy was effectively modified by pretreating CoCl2 precursor with citric acid (CA), forming 2-4 nm cobalt nanoparticles uniformly distributed on PANI-CNT support with porous structure. The control experiments revealed various PANI states in the growth stage, further proposing the self-assembly mechanisms in these two routes with and without CA pretreatment. These two PANI-Co-CNT electrocatalysts were also checked by oxygen reduction reaction (ORR) in acid environment, to corroborate their basically 4-electron processes. Inspiringly, the large activity and stability for the pretreated route could be comparable with those of the advanced electrocatalysts. All these progresses lay a bottom-up approach for future electrocatalysts

  16. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K., E-mail: kp2952002@gmail.com

    2014-11-15

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO{sub 2} adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO{sub 2} at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability.

  17. Preparation of thin carbon films (1963)

    Carbon deposits have been prepared on silica glass supports in order to determine more accurately than by weighing the losses liable to occur during oxidation, for example under irradiation in the presence of CO2. Several processes have been studied with a view to obtaining deposits for which the variation in optical density as a function of carbon departure shall be reproducible for each sample. Among the methods used, the most satisfactory is that in which the pyrolytic carbon deposited on a carbon filament is evaporated; however only the samples prepared simultaneously exhibit the required identical behaviour. The carbonaceous deposits have been studied by micro-electronic diffraction. An examination of the photographs shows the presence of graphite monocrystals of about (30 μ)2. (author)

  18. Preparation of double-walled carbon nanotubes

    JIANG Bin; WEI Jinquan; CI Lijie; WU Dehai

    2004-01-01

    Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200℃; the catalyst vapor temperature is 80℃; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.

  19. 钼/活性炭渣油加氢催化剂的制备%Preparation of activated carbon supported molybdenum-based catalysts for hydroprocessing of residue

    刘元东

    2012-01-01

    渣油加氢工艺是一种渣油深度加工技术,高性能渣油加氢催化剂的研发是其核心。本文以钼酸铵为活性组分前体,采用等体积法制备了钼/活性炭催化剂(Mo/AC),考察了制备条件如金属负载量、焙烧温度、溶液pH值等对催化剂的影响,利用XRD、SEM、XPS等手段对催化剂进行了表征。在浸渍时间4h,焙烧温度440℃条件下制备出负载量8%(以MoO3计)的Mo/AC催化剂,活性组分钼呈高度分散的单层分布,催化剂活性评价结果表明,渣油转化率可达79%,馏分油收率为75%,同时,生焦率控制在1.5%的较低水平上。%Residue hydroprocessing technology is a significant residue upgrading technology,and the development of catalysts with high performance is the core issue.In this paper,a novel activated carbon supported molybdenum-based catalyst(Mo/AC) for hydroprocessing of residue was prepared by the incipient wetness impregnation method using(NH4)6Mo7O24.4H2O as precursor.The effect of preparation conditions,including MoO3 loading,calcination temperature and pH value on catalytic activity was investigated.The catalyst was characterized by means of XRD,SEM,XPS,and the characterization results indicated that Mo atoms were monolayer-dispersed on the surface of activated carbon.Under the following conditions:impregnation time 4 h,calcination temperature 440 ℃,loading amount of MoO38%,the prepared Mo/AC catalyst achieved high levels of residue conversion(79%) and distillate yield(75%) and low coke yield(1.5%).

  20. Preparation of a novel PAN/cellulose acetate-Ag based activated carbon nanofiber and its adsorption performance for low-concentration SO2

    Wu, Yan-bo; Bi, Jun; Lou, Ting; Song, Tie-ben; Yu, Hong-quan

    2015-04-01

    Polyacrylonitrile (PAN), PAN/cellulose acetate (CA), and PAN/CA-Ag based activated carbon nanofiber (ACNF) were prepared using electrostatic spinning and further heat treatment. Thermogravimetry-differential scanning calorimetry (TG-DSC) analysis indicated that the addition of CA or Ag did not have a significant impact on the thermal decomposition of PAN materials but the yields of fibers could be improved. Scanning electron microscopy (SEM) analysis showed that the micromorphologies of produced fibers were greatly influenced by the viscosity and conductivity of precursor solutions. Fourier transform infrared spectroscopy (FT-IR) analysis proved that a cyclized or trapezoidal structure could form and the carbon scaffold composed of C=C bonds appeared in the PAN-based ACNFs. The characteristic diffraction peaks in X-ray diffraction (XRD) spectra were the evidence of a turbostratic structure and silver existed in the PAN/CA-Ag based ACNF. Brunner-Emmett-Teller (BET) analysis showed that the doping of CA and Ag increased surface area and micropore volume of fibers; particularly, PAN/CA-Ag based ACNF exhibited the best porosity feature. Furthermore, SO2 adsorption experiments indicated that all the three fibers had good adsorption effects on lower concentrations of SO2 at room temperature; especially, the PAN/CA-Ag based ACNF showed the best adsorption performance, and it may be one of the most promising adsorbents used in the fields of chemical industry and environment protection.

  1. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  2. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  3. 掺杂活性炭的制备及其电化学性能%Preparation and electrochemical properties of a doped activated carbon

    黄铮铮; 肖承义; 毛朝辉; 杨晶晶; 刘恩辉

    2012-01-01

    利用聚苯胺(PANI)为原料,经炭化、水蒸气活化制备了一种氮氧原子掺杂的活性炭.利用扫描电子显微镜(SEM)观察材料的表面形貌;通过X射线光电子能谱(XPS)和Brunauer-Emmett-Teller法(BET)研究材料的表面化学状态和比表面积;采用循环伏安、恒流充放电和交流阻抗等测试手段表征其电化学性能.研究表明:经活化后、氮氧原子的含量增加、材料获得了良好的电化学性能.比电容达到220 F/g,并且在SA/g的电流密度下循环10000次后,容量几乎没有衰减,表明该材料具有良好的循环稳定性,是一种具有应用前景的超级电容器材料.%An activated carbon doped with nitrogen and oxygen was prepared from polianiline by carbonization and steam activation. Scanning electron microscope (SEM) was used to observe the morphology of the material. X-ray photoelectron spectroscopy (XPS) and brunauer-emmett-teller (BET) measurements were carried out for studying the surface chemical state and surface area of the carbon. The material was made into supercapacitor electrode to study the capacrtive performance by cyclic vottammograms, gah/anostatic charge/discharge and electrochemical impedance spectroscopy measurements. The results show that the concentration of N and O is improved after activation, resulting in good electrochemical property. The charge-discharge efficiency is high. The specific capacity of this material is up to 220 F/g, and it is hardly decreased after 10 000 cycles at the high current density of 5 A/g, which means that the carbon material has excellent cycle stability and may be a promising supercapacitor material.

  4. Fibrous TiO2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption, hydrolysis and calcinations

    Hui-na YANG; Li-fen LIU; Feng-lin YANG; Jimmy C. YU

    2008-01-01

    TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by Ne to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at <200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brtmauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysisThe pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m2/g and 148 m2/g for samples deposited at 100 ℃ and 200 ℃ (using ACF1700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds.

  5. Removal of Direct Yellow-12 Dye from Water by Adsorption on Activated Carbon Prepared from Ficus Racemosa L.

    Revathi, G.; Ramalingam, S; P. Subramaniam; A. Ganapathi

    2011-01-01

    The adsorption of direct yellow-12 dye (DY-12) by Atti leaf (Ficus racemosa) powder carbon (ATC) was carried out by varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second-order kinetics. The adsorption capacity was found to be 6.7 mg dye per gram of the adsorbent. Acidic pH was favorable for the adsorption of DY-12. Desorption studies suggest t...

  6. High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength

    Fan, Wenxin; Wang, Yanxiang; Wang, Chengguo; Chen, Jiqiang; Wang, Qifen; Yuan, Yan; Niu, Fangxu

    2016-02-01

    An innovative technique has been developed to obtain the uniform catalyst coating on continuously moving carbon fibers. Carbon nanotube (CNT)-grafted carbon fibers with significantly improved tensile strength have been succeeded to produce by using chemical vapor deposition (CVD) when compared to the tensile strength of untreated carbon fibers. The critical requirements for preparation of CNT-grafted carbon fibers with high tensile strength have been found, mainly including (i) the obtainment of uniform coating of catalyst particles with small particle size, (ii) the low catalyst-induced and mechano-chemical degradation of carbon fibers, and (iii) the high catalyst activity which could facilitate the healing and strengthening of carbon fibers during the growth of CNTs. The optimum growth temperature was found to be about 500 °C, and the optimum catalyst is Ni due to its highest activity, there is a pronounced increase of 10% in tensile strength of carbon fibers after CNT growth at 500 °C by using Ni catalyst. Based on the observation from HRTEM images, a healing and crosslink model of neighboring carbon crystals by CNTs has been formulated to reveal the main reason that causes an increase in tensile strength of carbon fibers after the growth of CNTs. Such results have provided the theoretical and experimental foundation for the large-scale preparation of CNT-grafted carbon fibers with the improved tensile strength, significantly promoting the development of CNT-grafted carbon fiber reinforced polymer composites.

  7. Preparation of activated carbon from rice husk and optimization of adsorption parameters for Cr(vi) removal from aqueous solutions

    The potential to remove Cromium (Cr)VI from aqueous solution by using activated rice husk was investigated in batch experiments. Rice husk (Oryza sativa) of Kernel Basmati brand was purchased from the rice mill Shadadpur. Rice husk was chemically activated with nitric acid to increase its surface properties. The adsorption process parameters viz., pH, agitation speed, agitation time, adsorbent dose and adsorbate concentration were optimized. There was almost 94.73% sorption of Cr(VI) onto activated rice husk at pH 2. Maximum sorption was achieved at an agitation speed 100 rpm. Kinetic experiments revealed that the equilibrium time was 70 minutes. The amount of sorbent was optimized and remained constant at 0.5 gms. The various characteristics of parameters indicates that activated rice husk could be a good resource material for sorption of Cr(VI) to treat wastewater containing low concentration of the metal. (author)

  8. Mesoporous activated carbons with metal-oxide particles prepared from Morwell coal; Morwell tan wo genryo to shita kinzoku sankabutsu tanji kasseitan no saiko kozo

    Yoshizawa, N.; Yamada, Y.; Shiraishi, M. [National Institute for Resources and Environment, Tsukuba (Japan); Kojima, S.; Tamai, H.; Yasuda, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-10-28

    The metal dependence of mesoporous activated carbons with various metal acetylacetonate (acac) particles prepared from Morwell coal was studied. In experiment, the mixture of Morwell coal and acac metal complexes were dissipated into tetrahydrofuran, and after agitation in Ar atmosphere, the solvent was removed by vacuum distillation. Coal specimens with Fe(acac)3, Ni(acac)2 and Co(acac)2 as acac complexes were activated by exchanging flow gas with water vapor after heat treatment in N2 gas flow at 900{degree}C. The pore sizes of the specimens were obtained from N2 adsorption isotherms by BET method and BJH method. Conditions of pores and metals in the specimens were examined by XRD measurement and TEM observation. The relation between the above conditions and pore characteristics obtained from adsorption experiment was also examined. As a result, the difference in mesopore ratio between the specimens and blank specimens was larger in the order of Fe, Co and Ni, and the effect of added metal complexes was also larger in this order. 3 refs., 3 figs., 3 tabs.

  9. Preparation and electrocatalytic oxidation properties of a nickel pentacyanonitrosylferrate modified carbon composite electrode by two-step sol-gel technique: improvement of the catalytic activity

    The sol-gel technique was used to construct nickel pentacyanonitrosylferrate (NiPCNF) modified composite ceramic carbon electrodes (CCEs). This involves two steps: forming a CCE containing Ni powder and then immersing the electrode into a sodium pentacyanonitrosyl-ferrate solution (electroless deposition). The cyclic voltammograms of the resulting surface modified CCE under optimum conditions show a well-defined redox couple due to the [NiIIFeIII/II(CN)5NO]0/-1 system. The electrochemical properties and stability of the modified electrode were investigated by cyclic voltammetry. The apparent electron transfer rate constant (ks) and transfer coefficient (α) were determined by cyclic voltammetry being about 1.1 s-1 and 0.55, respectively. Sulfite has been chosen as a model to elucidate the electrocatalytic ability of NiPCNF-modified CCE prepared by one- or two-step sol-gel technique. The modified electrode showed excellent electrocatalytic activity toward the SO32- electro oxidation in pH range 3-9 in comparison with CCE modified by homogeneous mixture of graphite powder, Ni(NO3)2 and Na2[Fe(CN)5NO] (one-step sol-gel technique). Sulfite was determined amperometrically at the surface of this modified electrode in pH 7. Under the optimized conditions the calibration curve is linear in the concentration range 2 μM to 2.0 mM. The detection limit (signal-to-noise is 3) and sensitivity are 0.5 μM and 13.5 nA/μM. The modified carbon ceramic electrode containing nickel pentacyanonitrosylferrate shows good repeatability, short response time, t (90%) 2[Fe(CN)5NO] solution. The advantages of the SO32- amperometrically detector based on the nickel pentacyanonitrosylferrate-doped CCE is high sensitivity, inherent stability at wide pH range, excellent catalytic activity and less expense and simplicity of preparation. This sensor can be used as amperometric detector in chromatographic instruments

  10. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon--a review.

    Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine

    2012-10-01

    This paper provides a review of recent scientific research on the removal by activated carbon (AC) in drinking water (DW) treatment of 1) two classes of currently unregulated trace level contaminants with potential chronic toxicity-pharmaceutically activate compounds (PhACs) and endocrine disrupting compounds (EDCs); 2) cyanobacterial toxins (CyBTs), which are a group of highly toxic and regulated compounds (as microcystin-LR); and 3) the above mentioned compounds by the hybrid system powdered AC/membrane filtration. The influence of solute and AC properties, as well as the competitive effect from background natural organic matter on the adsorption of such trace contaminants, are also considered. In addition, a number of adsorption isotherm parameters reported for PhACs, EDCs and CyBTs are presented herein. AC adsorption has proven to be an effective removal process for such trace contaminants without generating transformation products. This process appears to be a crucial step in order to minimize PhACs, EDCs and CyBTs in finished DW, hence calling for further studies on AC adsorption removal of these compounds. Finally, a priority chart of PhACs and EDCs warranting further study for the removal by AC adsorption is proposed based on the compounds' structural characteristics and their low removal by AC compared to the other compounds. PMID:22885596

  11. Preparation of Microporous Activated Carbon from Raw Coconut Shell by Two-step Procedure%两步法制备椰壳基微孔活性炭

    苏伟; 周理; 周亚平

    2006-01-01

    A novel two-step procedure was used to manufacture microporous activated carbon from raw coconut shell. In this process, the raw coconut shell was (1) heated in an inert environment to temperatures between 450℃ and 850℃, and reacted with oxygen ( po2 = 1.1 -5.3kPa) for some time, and (2) heated again in inert environment to activation temperature(850℃) to produce an activated carbon. Activated carbons with specific surface area greater than 700m2.g-1 were manufactured with a yield between 24% and 28%. It was shown that the carbon had a narrow distribution of pore size, possibly less than lnm, which was calculated by a simple method based on local density function theory.

  12. Preparação de carvão ativado em baixas temperaturas de carbonização a partir de rejeitos de café: utilização de FeCl3 como agente ativante Preparation of activated carbon at low carbonization temperatures: utilization of FeCl3 as an alternative activating agent

    Elaine Pereira; Luiz C. A. Oliveira; Andréa Vallone; Karim Sapag; Márcio Pereira

    2008-01-01

    Ferric chloride as a new activating agent was used to obtain activated carbons from agroindustrial waste. This material was prepared at three temperatures of pyrolysis, 200, 280 and 400 ºC. The carbonaceous materials obtained after the activation processes showed high specific surface areas (BET), with values higher than 900 m² g-1. The materials showed different behaviors in the adsorption of methylene blue dye and reactive red textile dye in water solutions. An important fact in the use of ...

  13. Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of Congo red from aqueous solution

    Ghaedi, Mehrorang; Tavallali, Hossein; Sharifi, Mahdi; Kokhdan, Syamak Nasiri; Asghari, Alireza

    2012-02-01

    In this research, the potential applicability of activated carbon prepared from Myrtus communis (AC-MC) and pomegranate (AC-PG) as useful adsorbents for the removal of Congo red (CR) from aqueous solutions in batch method was investigated. The effects of pH, contact time, agitation time and amount of adsorbents on removal percentage of Congo red on both adsorbents were examined. Increase in pH up to 6 for AC-MC and pH 7 for AC-PG increase the adsorption percentage (capacity) and reach equilibrium within 30 min of contact time. Fitting the experimental data to conventional isotherm models like Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich show that the experimental data fitted very well to the Freundlich isotherm for AC-MC and Langmuir isotherm for AC-PG. Fitting the experimental data to different kinetic models such as pseudo first-order, pseudo second-order, Elovich and intraparticle diffusion mechanism showed the applicability of a pseudo second-order with involvement of intraparticle diffusion model for interpretation of experimental data for both adsorbents. The adsorption capacity of AC-PG and AC-MC for the removal of CR was found to be 19.231 and 10 mg g -1. These results clearly indicate the efficiency of adsorbents as a low cost adsorbent for treatment of wastewater containing CR.

  14. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution.

    Liang, Xuanqi; Gondal, Mohammed A; Chang, Xiaofeng; Yamani, Zain H; Li, Nianwu; Lu, Hongling; Ji, Guangbin

    2011-01-01

    The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well. PMID:21961696

  15. Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation

    Xiaojun Ma

    2015-09-01

    Full Text Available Using MnSO4·H2O as manganese source and urea as nitrogen source, Mn/N co-doped TiO2 loaded on wood-based activated carbon fiber (Mn/Ti-N-WACF was prepared by sol–gel method. Mn/Ti-N-WACF with different Mn doping contents was characterized by scanning electron microscopy, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS, and ultraviolet-visible spectrophotometer. Results showed that the loading rate of TiO2 in Mn/Ti-N-WACF was improved by Mn/N co-doping. After calcination at 450 °C, the degree of crystallinity of TiO2 was reduced due to Mn/N co-doption in the resulting Mn/Ti-N-WACF samples, but the TiO2 crystal phase was not changed. XPS spectra revealed that some Ti4+ ions from the TiO2 lattice of Mn/Ti-N-WACF system were substituted by doped Mn. Moreover, new bonds formed within N–Ti–N and Ti–N–O because of the doped N that substituted some oxygen atoms in the TiO2 lattice. Notably, the degradation rate of methylene blue for Mn/Ti-N-WACF was improved because of the co-doped Mn/N under visible-light irradiation.

  16. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  17. Preparation of TiO2/activated carbon with Fe ions doping photocatalyst and its application to photocatalytic degradation of reactive brilliant red K2G

    2009-01-01

    Titanium dioxide coated on activated carbon(AC) with Fe ions doping(Fe-TiO2/AC) composite was prepared by an improved sol-gel method.The photocatalytic activities were tested by photocatalytic degradation of reactive brilliant red K2G in solution.The results show that in comparison with the agglomeration of pure TiO2,the TiO2 nanoparticles are well dispersed in the AC matrix,of which sizes are decreased with Fe ions doping.Additionally,the iron species on TiO2 of composite are Fe2O3 and FeO,which do not affect the crystalline structures of TiO2 nanoparticles.The AC matrix and iron doping content influence the fluorescence intensity of composite due to their effects on recombination probability of hole-electron pairs.Compared with TiO2,0.3% Fe-TiO2,TiO2/AC,0.5% Fe-TiO2/AC and 0.1% Fe-TiO2/AC,the 0.3% Fe-TiO2/AC shows the highest photoactivity with the complete mineralization of K2G for finite time due to the optimum Fe ions content and AC matrix.Furthermore,the kinetic constant(k=0.0229 min-1) of 0.3% Fe-TiO2/AC composite is more than the sum of both TiO2/AC(0.0154 min-1) and 0.3% Fe-TiO2(0.0057 min-1) because coexistence of the AC and Fe ions has an enlarging effect on improving the photoactivity of TiO2.

  18. Preparation of TiO2/activated carbon with Fe ions doping photocatalyst and its application to photocatalytic degradation of reactive brilliant red K2G

    LI YouJi; LI Jing; MA MingYuan; OUYANG YuZhu; YAN WenBin

    2009-01-01

    Titanium dioxide coated on activated carbon(AC)with Fe ions doping(Fe-TiO2/AC)composite was prepared by an improved sol-gel method.The photocatalytic activities were tested by photocatalytic degradation of reactive brilliant red K2G in solution.The results show that in comparison with the agglomeration of pure TiO2,the TiO2 nanoparticles are well dispersed in the AC matrix,of which sizes are decreased with Fe ions doping.Additionally,the iron species on TiO2 of composite are Fe2O3 and FeO,which do not affect the crystalline structures of TiO2 nanopanicles.The AC matrix and iron doping content influence the fluorescence intensity of composite due to their effects on recombination prob ability of hole-electron paire.Compared with TiO2,0.3%Fe-TiO2,TiO2/AC,0.5% Fe-TiO2/AC and 0.1% Fe-TiO2/AC,the 0.3%Fe-TiO2/AC shows the highest photoactivity with the complete mineralization of K2G for finite time due to the optimum Fe ions content and AC matrix.Furthermore,the kinetic constant(K=0.0229 min-1)of 0.3% Fe-TiO2/AC composite is more than the sum of both TiO2/AC(0.0154 min-1)and 0.3% Fe-TiO2(0.0057 min-1)because coexistence of the AC end Fe ions has an enlarging effect on improving the photoactivity of TiO2.

  19. Preparation and electrocatalytic property of WC/carbon nanotube composite

    Tungsten carbide/carbon nanotube composite was prepared by surface decoration and in situ reduction-carbonization. The samples were characterized by XRD, SEM, EDS, TEM, HRTEM and BET, respectively. The XRD results show that the sample is composed of carbon nanotube, tungsten carbide and tungsten oxide. The EDS results show that the distribution of tungsten oxide is consistent with that of tungsten carbide. SEM, TEM and HRTEM results show that the tungsten carbide nanoparticle with irregular granule grows on the outside surface of carbon nanotube homogenously. The electrocatalytic activity of the sample for p-nitrophenol reduction was tested by a powder microelectrode in a basic solution. The results show that the electrocatalytic activity of the sample is higher than that of granular tungsten carbide, hollow globe tungsten carbide with mesoporosity and carbon nanotube purified. The improvement of the electrocatalytic activity of the sample can be attributed to its components and composite structure. These results indicate that tungsten carbide/carbon nanotube composite is one of the effective ways to improve the electrocatalytic activity of tungsten carbide

  20. Preparation of carbon molecular sieve from lignocellulosic biomass: A review

    Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Mohammadi, Maedeh; Darzi, Ghasem Najafpour [Faculty of Chemical Engineering, Noushirvani University of Technology, Babol (Iran)

    2010-08-15

    A literature review on preparation of carbon molecular sieve (CMS) from lignocellulosic biomass is presented. The effect of various operation parameters such as pyrolytic temperature, flow rate of the carbonizing agent and time of pyrolysis on the carbonization of the lignocellulosic biomass as a carbon precursor was reviewed. Various physical and chemical processes for the activation of the biomass-based char and their effects on textural properties of the activated char were discussed. Conversion of activated chars to CMS as the final stage of the preparation process through different techniques of chemical vapor deposition (CVD) and controlled pyrolysis was assessed. Survey of literature revealed that production of CMS with BET surface area of 1247 m{sup 2}/g and micropore volume of 0.51 cm{sup 3}/g, under appropriate conditions has been reported. Also, maximum selectivity of 7.6 and 400 for separation of O{sub 2}/N{sub 2} and CO{sub 2}/CH{sub 4} was devoted to palm shell and coconut shell-based CMS, respectively. (author)

  1. Preparation of carbon nanotubes by MPECVD

    Microwave plasma-enhanced chemical vapor deposition (MPECVD) method has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the large area growth, the lower growth temperature, uniform heat distribution and the good control of the different growth parameters. In this work we present our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapor deposition MPECVD. Well aligned, curly and coiled carbon nanotubes have been prepared. We have investigated the effect of the different growth condition parameters such as type of the catalyst, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results were showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. There is a linear relation between the growth rate and the methane to hydrogen ratio. We found that the growth rate has a great dependence on the amount of methane. For example the growth rate varied from the value 1,34 μm/min when the methane flow rate was 10 sccm to more than 14 μm/min when the methane flow rate was raised to 50 sccm. This growth rate is greater than that reported in the literature. The effect of the gas pressure on the CNTs was also studied. The Raman spectra (excitation wavelength 473 nm) of all samples show D-band peak at around 1300 cm-1 and G-band peak at around 1580 cm-1, which indicate that our CNTs are multi wall CNTs (MWCNTs). The D-band and the G-band correspond to sp2 and sp3 carbon stretching modes relatively, and their intensity ratio is a measure of the amount of disorder in the CNTs. The D-band is known to be attributed to the carbonaceous particles, defects in the curved graphitic sheet and tube ends. It has been suggested that lower Ig/Id ratios and narrower first and second order D and G bands are suggestive of well-aligned NNTs. The photoluminescence PL

  2. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol. PMID:25458692

  3. Dewatering Peat With Activated Carbon

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  4. Activated carbon preparation with pore nanosized from biomass precursors; Preparacao de carvoes ativados com poros de dimensoes nanometricas a partir de precursores de biomassa

    Capobianco, Gino [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Planejamento de Sistemas Energeticos; Coutinho, Aparecido dos Reis [Universidade Metodista de Piracicaba, SP (Brazil). Lab. de Materiais Carbonosos; Luengo, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Grupo Combustiveis Alternativos

    2004-07-01

    Here are reported preliminary tests using pinnus wood, mesocarpo of green coconut and macadamia shell. They are carbonized and later physically activated with CO{sub 2} or chemically with ZnCl{sub 2}. The resulting activated carbons (AC) are characterized with scanning electronic microscopy, the BET method for determination of the specific surface area-ASE, real density-DR, helium picnometry among others. The results indicate macadamia shell originates better AC, with average micropores in the range of 1,2-1,6 nm, apparent density of 1,08 g/cm{sup 3}, and ASE-BET 1400m{sup 2}/g. Then, these AC have the possibility to be applied in NG storage. (author)

  5. 酚醛树脂基磁性活性炭的制备及性能研究%Preparation and characterization of magnetic -activated carbon from phenolic aldehyde

    刘晓琳; 解强; 张婷婷; 王燕; 杨明顺; 姜勇

    2011-01-01

    Magnetic activated carbons (MACs) were prepared from phenolic resin in the presence of ferrocene.Pore structures, adsorption capacity and magnetic properties of activated carbons were characterized by gas adsorption, liquid absorption and vibration magnetometer instruments. In addition, primary process parameters in magnetic activated carbon preparation,such as amount of ferrocene and activation time, were studied and optimized. Results show that ferrocene plays roles during the preparation of MAC in two respects, one is catalytic effect to regulate the pore distribution,and the other is magnetization agent to magnetize the resulted activated carbon. When 6% ferrocene is introduced into the raw material,the derived MAC behaves high adsorption and magnetic performances,i e iodine value is 1022. 03mg/g,methylene blue value is 99.8mg/g and the saturation magnetization of MAC reaches up to 24.85A · m2/kg,which is 24.9 times by the common activated carbon.%以酚醛树脂为原料、二茂铁作为添加剂,制备了磁性活性炭(magnetic activated carbon,MAC),并采用气体吸附、液相吸附和振动磁强仪等方法表征了活性炭的孔结构、吸附能力和磁特性.此外,对磁性活性炭制备过程中的二茂铁添加量、活化时间等主要工艺参数进行了研究和初步优化.结果表明,二茂铁对活性炭孔隙的产生具有促进作用,提高了活性炭的吸附性能,二茂铁添加剂还赋予活性炭磁性:添加6%二茂铁时MAC的碘值为1022.03mg/g,亚甲蓝值为137.6mg/g,比饱和磁化强度达到24.85A·m2/kg,是普通活性炭的24.9倍.

  6. Preparation and Microwave Absorbing Properties of an Electroless Ni-Co Coating on Multiwall Carbon Nanotubes Using [Ag(NH3)2]+ as Activator

    Qiao-ling Li; Xiao-yong He; Yue-qing Zhang; Xiao-feng Yang

    2015-01-01

    Ni-Co-coated carbon nanotubes (CNTs) composites with different molar ratios of Ni/Co were synthesized using [Ag(NH3)2]+ as activator and H2PO2- as reductant, thereby replacing the conventional noble metal Pd salt activator and Sn2+ reductant. Scanning electron microscopy, X-ray diffraction, and X-ray energy dispersive spectrometry analyses demonstrated that the CNTs were deposited with a dense, uniform Ni-Co coating. The possible mechanism of the electroless method was studied, which indicate...

  7. Active carbon production from modified asphalt

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  8. Preparação de carvão ativado em baixas temperaturas de carbonização a partir de rejeitos de café: utilização de FeCl3 como agente ativante Preparation of activated carbon at low carbonization temperatures: utilization of FeCl3 as an alternative activating agent

    Elaine Pereira

    2008-01-01

    Full Text Available Ferric chloride as a new activating agent was used to obtain activated carbons from agroindustrial waste. This material was prepared at three temperatures of pyrolysis, 200, 280 and 400 ºC. The carbonaceous materials obtained after the activation processes showed high specific surface areas (BET, with values higher than 900 m² g-1. The materials showed different behaviors in the adsorption of methylene blue dye and reactive red textile dye in water solutions. An important fact in the use of FeCl3 as an activating agent is that the activation temperature is at 280 ºC, well below of those commonly employed in chemical or physical activations described in the literature.

  9. Characteristics of camellia shell pyrolysis products and optimization of preparation parameters of activated carbon%油茶壳热解产物特性及热解炭制备活性炭工艺优化

    顾洁; 周建斌; 马欢欢; 马孟; 邢美腾

    2015-01-01

    为了探究热解终温对油茶壳热解产物特性的影响,实现油茶壳热解多联产产物的有效利用,该文研究了油茶壳300~700℃热解过程中气、液、固的得率,特性和能量分布规律,讨论了油茶壳热解炭制备活性炭的工艺条件。研究表明,随着热解终温的升高,生物质炭得率下降,不可凝气体得率上升,生物质油得率则呈现先上升后下降的变化趋势。生物质炭的能量产率高达47.21%~81.59%,是油茶壳热解的主要产物,随着热解终温的升高,其固定碳含量增大,比表面积先增加后减小,在600℃达到最高值278 m2/g。油茶壳活性炭制备的最佳工艺条件活化温度850℃,活化时间1.5 h,水蒸气用量与炭的比2.0,此条件下的活性炭得率为37.47%,碘吸附值为825 mg/g,BET比表面积为736 m2/g。该研究为油茶壳热解多联产工艺及产物的综合有效利用提供参考依据。%Biomass is a clean, abundant and renewable energy source with many ecological advantages. Camellia, as one of the most important economic forest resources in China, is a potential biomass source for energy demand. Camellia shell is the primary residue left over from camellia oil production. Currently, the majority of camellia shells haven't been converted into high-quality bio-fuels efficiently. To utilize the camellia shell waste, pyrolysis for poly-generation is a promising technology which converts biomass resource to solid char, liquid oil and biogas. This paper focused on the product yields, characteristics and energy distribution during camellia shell pyrolysis at the temperature ranging from 300 to 700℃, and the reaction of activated carbon prepared from camellia shell pyrolysis used water vapor activation, so as to explore the effects of temperature on the characteristics of camellia shell pyrolysis product, and achieve the comprehensive utilization of products derived from camellia shell pyrolysis

  10. PREPARATION OF CARBON NANOFIBERS BY POLYMER BLEND TECHNIQUE

    2007-01-01

    The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results by means of SEM, TGA, Element Analysis, etc.

  11. Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors

    Ruiz Ruiz, Vanesa; Blanco Rodríguez, Clara; Granda Ferreira, Marcos; Menéndez López, Rosa María; Santamaría Ramírez, Ricardo

    2007-01-01

    [EN] This work investigates the influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. Studies were performed using the same activated carbon and polymer polyvynilidene fluoride (PVDF) in the same proportions (10 wt.% PVDF). Only the way in which these components were mixed was modified. The procedure for mixing the activated carbon and the polymer has a significant influence on the electrochemical behaviour of the electrode used in a supercapacit...

  12. A new method of preparing single-walled carbon nanotubes

    S R C Vivekchand; A Govindaraj

    2003-10-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

  13. Physical and electrochemical properties of supercapacitor composite electrodes prepared from biomass carbon and carbon from green petroleum coke

    Awitdrus, Deraman, M.; Talib, I. A.; Farma, R.; Omar, R.; Ishak, M. M.; Taer, E.; Dolah, B. N. M.; Basri, N. H.; Nor, N. S. M.

    2015-04-01

    The green monoliths (GMs) were prepared from the mixtures of pre-carbonized fibers of oil palm empty fruit bunches (or self-adhesive carbon grains (SACG)) and green petroleum coke (GPC) with the mixing ratio of 0, 10, 30, 50 and 70 % GPC, respectively. The GMs were carbonized in N2 environment at 800°C to produce carbon monoliths (CM00, CM10, CM30, CM50 and CM70). The CMs were CO2 activated at 800°C for 1 hour to produced activated carbon monolith electrodes (ACM00, ACM10, ACM30, ACM50 and ACM70). For each percentage of GPC, three duplicate symmetrical supercapacitor cells were fabricated using these activated carbon monolith electrodes respectively, and the capacitive performance amongst the cells was compared and analyzed in order to observe the relationship between the capacitive performance and the physical properties (microstructure and porosity) of the ACMs electrodes containing varying percentage of GPC.

  14. ACTIVATED CARBON IN WATER TREATMENT FOR DRINKS

    Олійник, С. І.; Прибильский, В. Л.; Куц, A. М.; Ковальчук, В. П.; Коваленко, O. О.

    2014-01-01

    The purpose of scientific research, the results of which are given in the article, is the improvement of the technology of water conditioning by sorption purification of water for the production of beverages, including alcoholic beverages. The subject of research was drinking water, prepared water, activated carbon such grades Silcarbon K1810, Silcarbon K835, Silcarbon K814 compared to Silcarbon K3060. During the research we are used the conventional methods of analysis in liqueur and vodka p...

  15. Preparation and Microwave Absorbing Properties of an Electroless Ni-Co Coating on Multiwall Carbon Nanotubes Using [Ag(NH32]+ as Activator

    Qiao-ling Li

    2015-01-01

    Full Text Available Ni-Co-coated carbon nanotubes (CNTs composites with different molar ratios of Ni/Co were synthesized using [Ag(NH32]+ as activator and H2PO2- as reductant, thereby replacing the conventional noble metal Pd salt activator and Sn2+ reductant. Scanning electron microscopy, X-ray diffraction, and X-ray energy dispersive spectrometry analyses demonstrated that the CNTs were deposited with a dense, uniform Ni-Co coating. The possible mechanism of the electroless method was studied, which indicates that pure Ag0 acted as a nucleation site for subsequent Ni-Co-P deposition. Network vector analyzer measurements indicated that the composite with only Ni coated had an absorbing value of −12.6 dB and the composite with a Ni/Co ratio of four had the maximum wave absorption (−15.6 dB and the widest absorption bandwidth (800 MHz, RL < −10 dB, while the saturation magnetization (Ms was 4.28 emu·g−1 and the coercive force (Hc was 31.33 Oe.

  16. Preparation of tea seed shell activated carbon and its electrochemical performance%茶籽壳质活性炭的制备及其电化学性能

    田莹莹; 刘恩辉; 沈海杰; 向晓霞; 吴玉虎; 谢慧; 胡添添

    2012-01-01

    以茶籽壳为原料,以K2CO3作为活化剂,制备了新型活性炭。用氮气吸脱附法对活性炭的孔结梢进行了分析。以活性炭为电极材料,6mol/LKOH溶液为电解液组装成超级电容器,利用恒电流充放电、循环伏安、交流阻抗等电化学测试方法研究其电化学性能。结果表明,活化后的茶籽壳炭,其比表面积高达1272m^2/g,比电容高达150F/g,研究表明茶籽壳活性炭适用于超级电容器的电极活性材料。%Novel activated carbon has been prepared from tea seed shell by activation with K2CO3. The porosity of the activitated carbon sample was studied by the nitrogen adsorption at 77K. The supercapacitors were assembled with carbon electrode and electrolyte of 6mol/L KOH solution. Their electrochemical properties were investigated by galvanostatic charge/discharge, cyclic voltammogram and impedance spectrum. The results show that the specific surface area of the activated carbon is sharply increased after activation, the value is up to 1272m2/g, and the electrochemical performance is obviously improved, the specific capacitance is up to 150F/g, which suggests that it may be promising candidates for supercapacitors.

  17. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    Leilei, Zhang, E-mail: zhangleilei1121@aliyun.com; Hejun, Li; Kezhi, Li; Shouyang, Zhang; Qiangang, Fu; Yulei, Zhang; Jinhua, Lu; Wei, Li

    2014-09-15

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na{sup +} and CO{sub 3}{sup 2−} were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement.

  18. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na+ and CO32− were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement

  19. 氮硫双掺杂活性炭材料的制备和电容性能%Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials

    李朝辉; 李仕蛟; 周晋; 朱婷婷; 沈红龙; 禚淑萍

    2015-01-01

    In this work, N, S co-doped microporous carbon materials were successful y prepared using human hair and sucrose as carbon precursors via a two-step method that combined hydrothermal treatment and post-KOH activation. The morphology, pore texture, and surface chemical properties of the activated carbon materials were investigated by scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical capacitive behavior of the prepared carbons was systematical y studied in 6 mol∙L-1 KOH electrolyte. The maximum specific surface area of the prepared carbons was found to be 1849.4 m2∙g-1 with a porosity that mainly consisted of micropores. Nitrogen and sulfur contents varied from 1.6%to 2.5%and from 0.2%to 0.5%(atomic fraction (x)), respectively. The synergistic-positive effect of N, O, and S-containing groups caused the prepared carbons to exhibit a large pseudo-capacitance. High specific capacitances of up to 200 F∙g-1 at 0.2 A∙g-1 were observed, response to an energy density of 6.9 Wh∙kg-1. At a power density of 10000 W∙kg-1, the energy density was found to be 4.1 Wh∙kg-1. The present work highlights the significance of this new strategy to prepare N, S co-doped carbon materials from renewable biomass.%以头发和蔗糖为原料,通过水热碳化和KOH活化两步法制备了氮硫双掺杂微孔炭材料.利用扫描电子显微镜,透射电子显微镜,氮气吸脱附,X射线光电子能谱,电子能谱和傅里叶交换红外光谱等手段系统表征了所制备活性炭材料的微观形貌,孔隙结构和表面化学性质.并在6 mol∙L-1 KOH溶液中研究了所制备活性炭材料的电容性能.氮气吸脱附测试表明,所制备活性炭材料的比表面积最高可达1849.4 m2∙g-1,孔道以微孔为主.所制备活性炭材料氮元素含量为1.6%-2.5%(原子

  20. Preparation of Magnesium Carbonate Whisker from Magnesite Tailings

    Wang, N; Chen, M [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Ni, H W, E-mail: chenm@smm.neu.edu.cn [Wuhan University of Science and Technology, Wuhan 430081 (China)

    2011-10-29

    Magnesium carbonate whisker was prepared by thermal decomposition of Mg(HCO{sub 3}){sub 2} solution that was prepared through hydration and carbonation of light burnt magnesia derived from magnesite tailings. The effects of thermal decomposition conditions on the morphology of magnesium carbonate crystal were investigated. The results showed that thermal decomposition product was MgCO{sub 3{center_dot}}3H{sub 2}O, and its crystal morphology was appreciably influenced by the additives added to Mg(HCO{sub 3}){sub 2} solution. Magnesium carbonate whiskers were successfully prepared when a kind of soluble magnesium salt was added, and magnesium carbonate whiskers with the length of 20 to 60{mu}m and aspect ratio of 10{approx}20 were obtained under the condition of 50deg. C thermal decomposition temperature and 200 rpm stirring intensity.

  1. Preparation of Metal Nanowire Decorated Carbon Allotropes

    Southward, Robin E. (Inventor); Delozier, Donavon Mark (Inventor); Watson, Kent A. (Inventor); Smith, Joseph G. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)

    2014-01-01

    In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.

  2. Preparation, characterization and performance of a novel visible light responsive spherical activated carbon-supported and Er3+:YFeO3-doped TiO2 photocatalyst

    Highlights: ► Er3+:YFeO3 could be as upconversion luminescence. ► Er3+:YFeO3/TiO2-SAC possessed the photocatalytic capability under visible light. ► Photocatalytic degradation followed the Langmiur–Hinshelwood kinetics. ► Photocatalyst possessed good physical stability to sheer force at studied range. ► Washing-calcination and pickling-calcination treatments can regenerate. - Abstract: A novel spherical activated carbon (SAC) supported and Er3+:YFeO3-doped TiO2 visible-light responsive photocatalyst (Er3+:YFeO3/TiO2-SAC) was synthesized by a modified sol–gel method with ultrasonic dispersion. It was characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS), powder X-ray diffractometer (XRD) and UV–vis diffuse reflectance spectrophotometer (DRS). The photocatalytic activity of Er3+:YFeO3/TiO2-SAC was evaluated for degradation of methyl orange (MO) under visible light irradiation. The effects of calcination temperature and irradiation time on its photocatalytic activity were examined. The experimental results indicated that Er3+:YFeO3 could function as an upconversion luminescence agent, enabling photocatalytic degradation of MO by TiO2 under visible light. The Er3+:YFeO3/TiO2 calcinated at 700 °C showed the highest photocatalytic capability compared to those calcinated at other temperatures. The photocatalytic degradation of MO followed the Langmuir–Hinshelwood kinetic model. Although the photocatalyst showed a good physical stability and could tolerate a shear force up to 25 × 10−3 N/g, its photocatalytic activity decreased over a four-cycle of reuse in concentrated MO solution, indicating that the decreased activity was ascribed to the fouling of catalyst surface by MO during the degradation process. However, the fouled Er3+:YFeO3/TiO2-SAC could be regenerated through water rinsing-calcination or acid rinsing-calcination treatment.

  3. Preparation of array of long carbon nanotubes and fibers therefrom

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  4. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications. PMID:24934321

  5. Processes for preparing carbon fibers using gaseous sulfur trioxide

    Barton, Bryan E.; Lysenko, Zenon; Bernius, Mark T.; Hukkanen, Eric J.

    2016-01-05

    Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C.

  6. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  7. Superior capacitive performance of active carbons derived from Enteromorpha prolifera

    Highlights: • An ocean biomass, Entromorphra prolifera, has been processed into supercapacitor electrodes. • KOH activation can prepare hierarchical porous carbon. • The as-prepared carbons have high capacitance with good rate capability. • This work provided an approach to value-added products from an ocean biomass. - Abstract: Enteromorpha prolifera (E.prolifera), an ocean biomass, was used as raw materials to prepare active carbons by a two-step strategy (pre-carbonization followed by chemical activation). The as-prepared active carbons have been characterized by a variety of means such as N2 adsorption, field emission scanning electron microscope, transmission electron microscope, Raman spectroscopy. The results showed that the carbons have large surface area and developed porosity with micro-meso hierarchical pore texture. As evidenced by electrochemical measurements, the specific capacitance of the carbons can reach up to 296 F g−1. More importantly, the carbons can maintain a high capacitance of up to 152 F g−1 at a very high current density of 30 A g−1, highlighting the promise of the carbons for high power applications

  8. Preparation of arrays of long carbon nanotubes using catalyst structure

    Zhu, Yuntian T.; Arendt, Paul; Li, Qingwen; Zhang, Xiefie

    2016-03-22

    A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.

  9. Effects of CO 2 activation on porous structures of coconut shell-based activated carbons

    Guo, Shenghui; Peng, Jinhui; Li, Wei; Yang, Kunbin; Zhang, Libo; Zhang, Shimin; Xia, Hongying

    2009-07-01

    In this paper, textural characterization of an activated carbon derived from carbonized coconut shell char obtained at carbonization temperature of 600 °C for 2 h by CO 2 activation was investigated. The effects of activation temperature, activation time and flow rate of CO 2 on the BET surface area, total volume, micropore volume and yield of activated carbons prepared were evaluated systematically. The results showed that: (i) enhancing activation temperature was favorable to the formation of pores, widening of pores and an increase in mesopores; (ii) increasing activation time was favorable to the formation of micropores and mesopores, and longer activation time would result in collapsing of pores; (iii) increasing flow rate of CO 2 was favorable to the reactions of all active sites and formation of pores, further increasing flow rate of CO 2 would lead carbon to burn out and was unfavorable to the formation of pores. The degree of surface roughness of activated carbon prepared was measured by the fractal dimension which was calculated by FHH (Frenkel-Halsey-Hill) theory. The fractal dimensions of activated carbons prepared were greater than 2.6, indicating the activated carbon samples prepared had very irregular structures, and agreed well with those of average micropore size.

  10. Low-temperature preparation of pyrolytic carbon

    Previous studies have demonstrated that nuclear waste forms coated with chemical vapor deposited pyrolytic carbon (PyC) at about 1273 K can provide ground water leach protection. To minimize the release during coating of volatile material from the waste forms and permit the coating of waste forms with a low softening point, a study was initiated to develop parameters for the catalytic deposition of PyC at low temperatures. The parameters surveyed in a fluidized-bed coater were deposition temperatures, carbon precursors, catalyst, diluent gas, concentration, and pressure

  11. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Izquierdo Pantoja, María Teresa; Yuso, A. M. de; Valenciano, Raquel; Rubio Villa, Begoña; Pino, María Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation...

  12. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  13. Preparation and oil absorption performance of sponge-like activated carbon/organic composites%海绵状活性炭/有机复合多孔材料的制备及其吸油性能

    马伟; 徐赛男; 陈克; 郭玉强; 赵峰惠; 陈永

    2015-01-01

    针对活性炭粉末和活性炭块体在吸油除污过程中,易沉积到水中,不利于吸附漂浮在水面上的油膜,同时难以回收再利用的问题. 首先对椰壳活性炭改性,以提高其吸油性能;再通过聚乙烯醇与甲醛聚合反应,并经发泡致孔,制备出可循环使用﹑具有三维网络孔结构的活性炭/有机复合材料. 通过正交实验方案设计,考察水﹑活性炭﹑稀硫酸(9%)﹑甲醛溶液(40%)﹑可溶性淀粉的量及反应温度对所制多孔复合材料吸附油水混合体系效果的影响. 相对于粉末活性炭和块体活性炭,所制柔性复合材料密度小(0.1977g/cm3),在使用过程中可以完全漂浮在水面上,有利于吸附漂浮的油膜,方便回收再利用.所制的多孔复合材料呈海绵状,具有丰富发达的多级孔结构,在最佳工艺条件下油吸附量达到活性炭的1. 5倍左右.%Activated carbons in powder and monolithic form easily form sediments in water, leading to the failure to adsorb an oil film on the water surface. To solve these problems, coconut shell activated carbons were modified to increase their oil-absorption ability and a 3D sponge-like activated carbon/organic composite was then prepared through polymerization of polyvinyl alcohol with formalin in the presence of a foaming agent and the modified activated carbon. The effects of the amounts of water, activated car-bon, dilute sulfuric acid (9%) and formaldehyde solution (40%), and reaction temperature on the oil adsorption performance of the composites were investigated. The composites had a hierarchical porous structure and floated on the water surface due to their low density (about 0. 197 7 g/cm3). A composite prepared under optimal conditions can adsorb approximately 1. 5 times as much oil as the original activated carbon. Its robust and flexible properties make it suitable for recycling during use.

  14. Use of sawdust Eucalyptus sp. in the preparation of activated carbons Utilização de serragem de Eucalyptus sp. na preparação de carvões ativados

    Gabriela Martucci Couto

    2012-02-01

    Full Text Available Wood sawdust is a solid residue, generated in the timber industry, which is of no profitable use and can cause serious environmental problems if disposed inadequately. The aim of this study was to use the eucalyptus sawdust in the preparation of activated carbons AC and test them as adsorbents of methylene blue (MB and phenol, representative pollutants from aqueous effluents of various industries. The eucalyptus sawdust was characterized by instrumental analysis such as elementary analysis (CHNS-O, thermogravimetric analysis (TGA, infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The activated carbons were prepared by physical activation with carbon dioxide AC_CO2, (10º C min-1, 850º C, 1h and by chemical activation with potassium carbonate AC_K2CO3 (10º C min-1, 850º C, 3h. The AC_CO2 and AC_K2CO3 were characterized by CHN-O, TGA, FTIR, N2 adsorption/desorption (BET to evaluate the specific surface area and SEM. The resulting activated carbons were tested for their ability to adsorb MB and phenol in water. The activated carbons produced in this work were predominantly microporous and showed specific surface area of about 535 m² g-1. The AC_K2CO3 was more effective in the adsorption of MB (81 mg g-1 and phenol (330 mg g-1 than AC_CO2 (32 mg g-1 and 172 mg g-1, respectively, for MB and phenol.A serragem é um resíduo sólido, gerado na indústria madeireira, que não tem uso rentável e pode causar sérios problemas ambientais quando disposta inadequadamente. Neste estudo, objetivou-se utilizar a serragem de eucalipto na preparação de carvões ativados (AC e testá-los como adsorventes do corante azul de metileno (MB e fenol; moléculas que representam poluentes de efluentes industriais. A serragem de eucalipto foi caracterizada por análises instrumentais, tais como: análise elementar (CHNS-O, análise termogravimétrica (TGA, espectroscopia na região do infravermelho (FTIR e microscopia eletrônica de varredura (SEM

  15. Highly transparent carbon counter electrode prepared via an in situ carbonization method for bifacial dye-sensitized solar cells.

    Bu, Chenghao; Liu, Yumin; Yu, Zhenhua; You, Sujian; Huang, Niu; Liang, Liangliang; Zhao, Xing-Zhong

    2013-08-14

    A facile in situ carbonization method was demonstrated to prepare the highly transparent carbon counter electrode (CE) with good mechanical stability for bifacial dye-sensitized solar cells (DSCs). The optical and electrochemical properties of carbon CEs were dramatically affected by the composition and concentration of the precursor. The well-optimized carbon CE exhibited high transparency and sufficient catalytic activity for I3(-) reduction. The bifacial DSC with obtained carbon CE achieved a high power conversion efficiency (PCE) of 5.04% under rear-side illumination, which approaches 85% that of front-side illumination (6.07%). Moreover, the device shows excellent stability as confirmed by the aging test. These promising results reveal the enormous potential of this transparent carbon CE in scaling up and commercialization of low cost and effective bifacial DSCs. PMID:23806279

  16. Preparation and study of ultra-low density carbon aerogel

    The ultra-low density resorcinol (R)-formaldehyde (F) aerogel and carbon aerogel were prepared via a sol-gel route, which density are 10 mg/cm3 and 20 mg/cm3, respectively. The microstructures and properties of the carbon aerogel were investigated by using scanning electron microscope, transmission electron microscope, pore size distribution measurement, and so on. The ultra-low density products are some tortuous chains consisting of carbon nanospheres ranging from 10 to 15 nm. The carbon nanosphere consists of nanoparticles whose sizes are about several nanometers. The surface area of the low-density carbon aerogel is 1 783.7 m2/g. The hydrogen adsorption capacity of the ultra-low density carbon aerogel is 4.4% (mass fraction) at liquid nitrogen temperature under atmospheric pressure. (authors)

  17. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  18. PREPARATION OF ACTIVATED CARBON FROM PALM OIL SHELL BY CHEMICAL ACTIVATION WITH Na2CO3 AND ZnCl2 AS IMPRENATED AGENTS FOR H2S ADSORPTION

    Kanokorn Hussaro

    2014-01-01

    Full Text Available Hydrogen Sulfide (H2S, rotten-egg is one of the major environmental pollutants having its sources in natural and anthropogenic activities. It’s had smell gas produced by anaerobic digestion in acid condition from organic and inorganic compounds containing sulphur, presents dual problems of its toxicity and foul ordour. One of methods of its removal is adsorption. Activated carbon is a widely used adsorbent in the treatment of air pollution. Adsorption type and capacity are primarily based on the physical properties of pores, namely the surface area. Convetionnally, activated carbon is produced from biomass residues, wood coal and agricultural residuces. Today, one promising approach for the production of cheap and efficient activated carbon is used of waste from palm oil mill industries, which is palm oil shell. Palm oil shell is available in large quantities of approximately 0.53 million tonnes annually in Thailand. Palm oil shell is a by-products of the palm oil industry and was used as a raw material in this study due to its high carbon content, high density and low ash content. Normally, H2S in biogas, which is found the range between as low as about 50-10,000 ppm depending on the feed material composition to prodction, can cause corrosion to engine and metal substance via of SO2 from combustion. H2S must be removed from biogas product prior to further utilization. Therefore, in these research the usage of palm oil shell is especially important due to its high value added for produced activated carbon adsorbent for H2S adsorption in biogas product. In this study, fixed bed reactor (stainless steel with 54.1 mm internal diameter and 320 mm length was studied to observe the effect of char product: Chemical agent ratio (Na2CO3 and ZnCl2, 1:1 to 1:3, which there are activated at 700°C activation temperature for 2 h on the chemical and physical properties

  19. Preparation of carbon-free TEM microgrids by metal sputtering

    Janbroers, S., E-mail: stephan.janbroers@albemarle.com [Albemarle Catalysts B.V., Nieuwendammerkade 1-3, 1030 BE, Amsterdam (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kruijff, T.R. de; Xu, Q. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kooyman, P.J. [DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL, Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Zandbergen, H.W. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2009-08-15

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  20. Preparation of carbon-free TEM microgrids by metal sputtering

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  1. Preparation of carbon-free TEM microgrids by metal sputtering.

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions. PMID:19450927

  2. Preparation of Carbon Nanotubes from Methane on Ni/Cu/A1 Catalyst

    Renzhong Wei; Fengyi Li; Yan Ju

    2005-01-01

    A series of Ni/Cu/Al catalyst samples were prepared by the co-precipitation method. Carbon nanotubes with large inner diameters are successfully synthesized from methane on Ni/Cu/Al catalyst by adding sodium carbonate. The effects of the copper content and amounts of sodium carbonate on the morphology and microstructures of carbon nanotubes were investigated by CO adsorption and TEM technique. The experimental results showed that copper can influence both the catalytic activity and catalyst life. Best result was obtained when the copper content was 15%. Addition of sodium carbonate favors the formation of carbon nanotubes with large inner diameters. The growth mechanism of carbon nanotubes with large inner diameter is discussed.

  3. [Flue gas desulfurization by a novel biomass activated carbon].

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%. PMID:23798152

  4. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li+/Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient dLi decreases with an increase of Li ion concentration in carbon nanotube host

  5. Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics

    Microwave sintering using the activated carbon as embedding material was applied in preparation of porous A-type carbonated hydroxyapatite ceramics with nano(nCHA) and submicron (mCHA) structure. By examining the linear shrinkages and the compressive strengths of samples at different temperatures, a suitable microwave sintering temperature was achieved. The microwave sintering method was successfully used to prepare A-type CHA with nano or submicron structure, and the mechanism of the formation of A-type carbonate groups was discussed also. Compared with the samples prepared by the conventional sintering method (mHA), the nCHA bioceramics synthesized by the microwave sintering approach had smaller grain size and more uniform microstructure, and showed a compressive strength similar to the conventional samples. In vitro dissolution test proved that nCHA exhibits better degradation property in comparison to pure HA. Rat osteoblasts were cultured with nCHA, mCHA and mHA to evaluate their biocompatibility, and nCHA showed significant enhancement of cells in attachment, proliferation and differentiation. In conclusion, carbonate groups can be easily introduced to HA crystal structure using the activated carbon as embedding material, and microwave sintering is an effective and simple method in preparing A-type CHA with a nanostructure. Results from this in vitro biological study suggest that porous A-type carbonated hydroxyapatite nanoceramics may be a much better candidate for clinical use in terms of bioactivity. - Highlights: ► We prepared porous A-type carbonated hydroxyapatite nanoceramics with microwave sintering. ► We examined physico-chemical characterization and osteoblast response. ► The nanoceramics have a comparable compressive strength to samples with conventional sintering method. ► The nanoceramics enhance degradation property, osteoblast proliferation and differentiation. ► The activated carbon is favorable for preheating samples and providing

  6. Studies relevant to the catalytic activation of carbon monoxide

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  7. Obtenção e caracterização de carbono ativado a partir de resíduos provenientes de bandas de rodagem Preparation and characterization of activated carbons from thread of tire waste

    Irene T. S. Garcia

    2007-12-01

    Full Text Available Neste trabalho foi investigada a preparação de carbonos ativados através da pirólise de composições elastoméricas provenientes de resíduos de bandas de rodagem de pneus de automóveis. O material foi processado nas temperaturas de 500, 620 e 700 °C, em atmosfera de N2, utilizando-se o hidróxido de potássio como agente ativador. Os produtos resultantes foram caracterizados pela fisisorção de N2 a 77 K, através de isotermas de Brunauer, Emmet e Teller e por microscopia eletrônica de varredura. Esses carbonos ativados apresentam estruturas típicas de sólidos mesoporosos e a temperatura de pirólise tem grande influência na área específica e distribuição de volume de poros. O carbono ativado obtido a 700 °C apresentou maior área específica e estrutura porosa compacta. Esse material apresenta melhor desempenho frente à adsorção de azul de metileno, removendo até 1,0 x 10-1 g de corante por grama de carbono utilizado, em tempos inferiores a 300 s.In this work, the preparation of activated carbons through the pyrolysis of elastomers, arising from car threads of tire waste, was investigated. The material was processed at 500, 620 and 700 °C, under N2 atmosphere, by using potassium hydroxide as activating agent. The resulting products were characterized by physisorption of N2 at 77 K, through Brunauer, Emmet and Teller isotherms, and scanning electron microscopy. The carbons obtained display a characteristic structure of mesoporous materials and the pyrolysis temperature has strong influence on the specific area and porous volume distribution. The activated carbon obtained at 700 °C has high specific area and compact structure. It exhibited high performance for adsorption of methylene blue solution, removing 1.1 x 10-1 g of the dye per gram of carbon in less than 300 s.

  8. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors

    Graphical abstract: - Highlights: • The interconnected carbon nanofibers were prepared by an electrospinning technique. • The interconnected fibers developed conductive pathways. • The interconnected fibers showed 24% enhancement on the specific capacitance. • The interconnected fibers are promising to be used as electrodes for supercapacitors. - Abstract: The interconnected carbon nanofibers were prepared by an electrospinning technique using a polymer solution composed of polyacrylonitrile (PAN), poly(acrylonitrile-co-butadiene (PAN-co-PB) copolymer, and N,N-dimethylformamide. Post-treatment including stabilization at 250 °C and carbonization at 800 °C converted electrospun fibers to bonded carbon nanofibers. The formation of interconnected carbon nanofibers was attributed to the decomposition of PB, which reduced the viscosity of nanofibers and caused the fusion of connecting points. As a result, the conductive pathways developed, leading to an increase in both the electrical conductivity and microcrystallite size. Electrochemical measurements revealed that the specific capacitance of the 90:10 PAN/PAN-co-PB derived carbon nanofibers was 170.2 F/g, which was about 24% higher than that of the neat PAN-derived carbon nanofibers. Furthermore, the fibers showed good cycling stability of energy storage with the retention ratio of 100% after 2000 cycles. Our results corroborated the advantage of these interconnected nanofibers

  9. Preparation of porous carbon particle with shell/core structure

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  10. Preparation of activated carbon supported catalysts and their application in residue hydroprocessing%活性炭负载型催化剂的制备及其在渣油加氢中的应用

    刘元东; 宗保宁; 赵愉生; 赵元生; 范建光; 郜亮; 温朗友

    2011-01-01

    Residue hydroprocessing is a significant residue upgrading technology,and the development of catalysts with high performance is the core content.The latest research progress of activated carbon supported catalysts is introduced,including preparation method,activity and active phase.More attention should be paid to increasing mechanical strength,improving extrusion molding and keeping stability of catalyst in future research and development.%渣油加氢工艺是一项重要的渣油深度转化技术,高性能渣油加氢催化剂的研发是其核心。本文介绍了一种新型渣油加氢催化剂——金属/活性炭负载型催化剂,从催化剂制备方法、反应活性、活性相等多个方面,阐述了其在渣油加氢中的应用研究情况。提出应该从增强催化剂机械强度、改进催化剂成型工艺、提高催化剂稳定性等方面改进催化剂的性能。

  11. The preparation of calcium carbonate in an emulsified liquid membrane

    Davey, R. J.; Hirai, T.

    1997-01-01

    A method for preparing 1 μm calcite rhombs in a double emulsion is described. This is the first report of the use of such a system for precipitation of a carbonate and may find application in a range of industrially important materials such as fillers and catalysts.

  12. Photoconductivity of Activated Carbon Fibers

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  13. Produção e caracterização de carvão ativado produzido a partir do defeito preto, verde, ardido (PVA do café Production and characterization of activated carbon prepared from PVA defect coffee

    Paulize H. Ramos

    2009-01-01

    Full Text Available The black, green and sour coffee defect (PVA contributes with 20% of the total coffee production. It should be separate from the normal coffee grains in order to improve the final quality of the beverage. In this way, the present work has the objective to use the PVA reject for the production of activated carbon. The activated carbon (CA was prepared from PVA defect using zinc chloride as activating agent. The prepared material (CA PVA was characterized and the adsorption tests were carried out using as organic models methylene blue (AM and reactive red (VR. The CA PVA revealed to be more efficient in the removal of the organic contaminants compared to a commercial activated carbon.

  14. 酚醛基活性炭布的制备及电化学性能研究%Investigation of Preparation and Electrochemical Performance of Phenolic Resin Based Activated Carbon Cloth

    耿煜; 宋燕; 钟明; 李鹏; 郭全贵; 刘朗

    2011-01-01

    以实验室自制的酚醛基纤维布为原料,以二氧化碳为活化剂制备了系列酚醛基活性炭布(Activated Carbon Cloths,ACCs),利用低温N2(77K)吸附法测定了所制活性炭布的孔结构,并将所制得活性炭布用做超级电容器电极材料,采用恒流充放电法和交流阻抗技术考察了所制模拟电容器的电化学性能(电解液:1 M(CH2 CH3)3CH3 NBF4/PC).结果表明:随着活性炭布的比表面积的增大,比电容也随之增大,其中ACC4样品在50mA· g-1的电流密度下达到135F·g-1.随着电流密度的增大,微孔对比电容的贡献下降而中孔的贡献增大,说明中孔有利于提高活性炭布的功率特性.随活化程度的加深,活性炭布的导电性下降,等效串联电阻增大.%Phenolic resin based Activated Carbon Cloths (ACCs) were prepared by carbon dioxide activation treatment, and were used as electrodes of supercapacitors. The pore structure and the electrochemical properties of the resultant ACCs were investigated by means of nitrogen adsorption, AC impedance and constant current discharge techniques. The relationship of pore structure and the electrochemical performance in 1M (CH2CH3)3CH3NBF4/PC were discussed in details. Results showed that the specific capacitance of the samples increase with the BET surface area,and the specific capacitance of ACC4 reached 135 F · g-1 at current density of 50mA · g-1. Besides, the contribution to the specific capacitance from micropores decreases while that of from mesopores increases with the increase of the current density. The conductivity of the sample decreased and the ESR increased with the enhancement of activation degree.

  15. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    Mokhlesur M. Rahman

    2014-05-01

    Full Text Available In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II, lead(II and chromium(VI. Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II and lead(II were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II and lead(II. The removal of chromium(VI was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II, Pb(II and Cr(VI by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

  16. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  17. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization.

    Ismadji, S; Sudaryanto, Y; Hartono, S B; Setiawan, L E K; Ayucitra, A

    2005-08-01

    The preparation of activated carbon from vacuum pyrolysis char of teak sawdust was studied and the results are presented in this paper. The effects of process variables such as temperature and activation time on the pore structure of activated carbons were studied. The activated carbon prepared from char obtained by vacuum pyrolysis has higher surface area and pore volume than that from atmospheric pyrolysis char. The BET surface area and pore volume of activated carbon prepared from vacuum pyrolysis char were 1150 m2/g and 0.43 cm3/g, respectively. PMID:15792584

  18. Carbon monoxide affects electrical and contractile activity of rat myocardium

    Porokhnya Maria V; Haertdinov Nail N; Abramochkin Denis V; Zefirov Andrew L; Sitdikova Gusel F

    2011-01-01

    Abstract Background Carbon monoxide (CO) is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and vent...

  19. Preparation of anti-oxidative carbon fiber at high temperature

    Kim, Bo-Hye; Kim, Su Yeun; Kim, Chang Hyo; Yang, Kap Seung; Lee, Young-Jun

    2010-11-01

    In this paper, carbon fibers with improved thermal stability and oxidation resistive properties were prepared and evaluated their physical performances under oxidation condition. Carbon fibers were coated with SiC particles dispersed in a polyacrylonitrile solution and then followed by pyrolyzed at 1400 °C to obtain the SiC nanoparticle deposition on the surface of the carbon fiber. The SiC coated carbon fiber showed extended oxidation resistive property as remaining 80-88% of the original weight even at high temperature 1000 °C under air, as compared with the control of zero weight at 600 °C. The effects of the coating conditions on the oxidation resistive properties of the coated fibers were studied in detail.

  20. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m2/g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  1. Attempts to prepare an all-carbon indigoid system

    Şeref Yildizhan; Henning Hopf; Jones, Peter G

    2015-01-01

    First attempts are described to prepare a precursor for an all-carbon analog of indigo, the tetracyclic triene 4. Starting from indan-2-one (9) the α-methylene ketone 13 was prepared. Upon subjecting this compound to a McMurry coupling reaction, it dimerized to the bis-indene derivative 17, rather than providing the tetramethyl derivative of 4, the hydrocarbon 14. In a second approach, indan-1-one (18) was dimerized to the conjugated enedione 21 through the bis-1-indene dimer 19. All attempts...

  2. The application of prepared porous carbon materials: Effect of different components on the heavy metal adsorption.

    Song, Min; Wei, Yuexing; Yu, Lei; Tang, Xinhong

    2016-06-01

    In this study, five typical municipal solid waste (MSW) components (tyres, cardboard, polyvinyl chloride (PVC), acrylic textile, toilet paper) were used as raw materials to prepare four kinds of MSW-based carbon materials (paperboard-based carbon materials (AC1); the tyres and paperboard-based carbon materials (AC2); the tyres, paperboard and PVC-based carbon materials (AC3); the tyres, paperboard, toilet paper, PVC and acrylic textile-based carbon materials (AC4)) by the KOH activation method. The characteristic results illustrate that the prepared carbon adsorbents exhibited a large pore volume, high surface area and sufficient oxygen functional groups. Furthermore, the application of AC1, AC2, AC3, AC4 on different heavy metal (Cu(2+), Zn(2+), Pb(2+), Cr(3+)) removals was explored to investigate their adsorption properties. The effects of reaction time, pH, temperature and adsorbent dosage on the adsorption capability of heavy metals were investigated. Comparisons of heavy metal adsorption on carbon of different components were carried out. Among the four samples, AC1 exhibits the highest adsorption capacity for Cu(2+); the highest adsorption capacities of Pb(2+) and Zn(2+) are obtained for AC2; that of Cr(3+) are obtained for AC4. In addition, the carbon materials exhibit better adsorption capability of Cu(2+) and Pb(2+) than the other two kind of metal ions (Zn(2+) and Cr(3+)). PMID:26951338

  3. Optimization of activated carbon from sewage sludge using response surface methodology

    Wastewater sludge cake was used to prepare activated carbon using physical activation method. The effects of three preparation variables; the activation temperature, activation time and carbon dioxide gas flow rate on chemical oxygen demand (COD) and ammonia removal from leachate solutions were investigated. Based on the central composite design (CCD), two quadratic models were developed to correlate the preparation variables to the COD and ammonia removal. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from wastewater sludge cake was obtained by using activation temperature of 510 degree Celsius, activation time of 30 min and carbon dioxide flow rate of 500 ml/ min. The optimum activated carbon showed COD and ammonia removal of 26 and 13 %, respectively. (author)

  4. Preparation of very long and open aligned carbon nanotubes

    潘正伟; 常保和; 孙连峰; 钱露茜; 刘祖琴; 唐东升; 王刚; 解思深

    2000-01-01

    Very long and open aligned carbon nanotubes that reach about 2 mm long, an order of magnitude longer than previously reached, have been prepared by chemical vapor deposition over silica dioxide substrates on the surface, where iron/silica nano-composite particles are evenly positioned. The nanotubes are naturally opened at the bottom ends. The growth mechanism of the very long and open-ended nanotubes is also discussed.

  5. Preparation Of Melt Spun Electroconductive Fine Fibres Containing Carbon Nanotubes

    Mirjalili Mohammad; Karimi Loghman

    2015-01-01

    Preparation of electroconductive fine fibres containing carbon nanotubes (CNTs) by melt spinning was the main goal of the present study. In this regard, the influence of the main operating parameters such as type of polymer used (polyester, polypropylene and polyamide), type and concentration of the CNTs on conductivity, and mechanical and thermal properties of the melt spun fibres was studied. The conductivity of melt spun fibres was measured based on the method developed by Morton and Hearl...

  6. The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes

    Sutrisno, Bachrun; Hidayat, Arif

    2015-12-01

    This research focused on investigating in the effect of activation temperature on the physico-chemical properties of palm empty fruit bunch (PEFB) based activated carbon prepared by physical activation with carbon dioxide. The activation temperature was studied in the range of 400-800°C by keeping the activation temperature at 800°C for 120 min. It was found that the porous properties of activated carbon decreased with an increase in carbonization temperature. The activated carbons prepared at the highest activation temperature at 800°C and activation time of 120 min gave the activated carbon with the highest of BET surface area and pore volume of 938 m2/g and 0.4502 cm3/g, respectively

  7. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  8. Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode

    Xin Zhuang; Yingjia Liu; Jian Chen; Hao Chen; Baolian Yi

    2014-01-01

    Ordered porous cabon with a 2-D hexagonal structure, high specific surface area and large pore volume was synthesized through a two-step heating method using tri-block copolymer as template and phenolic resin as carbon precursor. The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon. Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area. Its initial discharge capacity can be as high as 1200 mAh·g-1 at a current density of 167.5 mA·g-1. The improved capacity retention was obtained during the cell cycling as well.

  9. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter. PMID:26726459

  10. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  11. Preparation of carbon/carbon composite by pyrolysis of ethanol and methane

    Highlights: • The mixture of ethanol and methane was used as the precursor of pyrolytic carbon. • C/C composites with high textured pyrolytic carbon and high density were obtained. • At the same condition, the high textured carbon cannot be obtained using methane. • The mixture precursor is a promising candidate for C/C composites in CVI. - Abstract: A high textured carbon/carbon (C/C) composite was prepared using the mixture gas of ethanol and methane as the precursor by isothermal chemical vapor infiltration. The preform was infiltrated at 1180 °C with the gas pressure from 2 to 10 kPa. For 85 h infiltration, the average bulk density is up to 1.8 ± 0.02 g cm−3. The texture of the infiltrated carbon was studied by polarized-light microscopy and characterized with the aid of the extinction angle. Texture and fracture morphology of the pyrolytic carbon matrix were observed using scanning electronic microscope. C/C composites with high textured pyrolytic carbon matrix and high density were obtained by pyrolysis of ethanol and methane. This indicates the mixture of ethanol and methane is a promising candidate of the precursors for the preparation of C/C composites

  12. Volumetric and superficial characterization of carbon activated

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  13. One-pot synthetic method to prepare highly N-doped nanoporous carbons for CO2 adsorption

    A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m2 g−1) and high pore volumes (0.394–1.591 cm3 g−1). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO2 adsorption capacity of 177 mg g−1 at 298 K and 1 bar. The CO2 adsorption capacity was found to be dependent on the microporosity and N contents. - Highlights: • A one-pot synthetic method was used for the preparation of N-doped nanoporous carbons. • Polypyrrole (PPY) were activated with NaOH under set conditions (NaOH/PPY = 2 and 4). • N-doped activated carbon exhibited high specific surface areas (2169 m2 g−1). • The carbons showed a very high CO2 adsorption capacity of 177 mg g−1 at 298 K

  14. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  15. Morphosynthesis of cubic silver cages on monolithic activated carbon.

    Wang, Fei; Zhao, Hong; Lai, Yijian; Liu, Siyu; Zhao, Binyuan; Ning, Yuesheng; Hu, Xiaobin

    2013-11-14

    Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism. PMID:24080952

  16. Nanostructural activated carbons for hydrogen storage

    Li, Suoding

    A series of nanostructured activated carbons have been synthesized from poly(ether ether ketone) (PEEK), and its derivatives. These carbons, with surface area exceeding 3000 m2/g and with average pore diameters of ≤ 20 A, are proven to be superior hydrogen storage materials, with hydrogen storage capacities up to 5.5 wt% at 77 K and 45 atm. The porous texture of these carbons was controlled via optimizing three synthetic steps: thermo-oxidation of PEEK in air, pyrolysis or carbonization of the oxidized PEEK in an inert atmosphere, and activation of the pre-carbonized PEEK with metal hydroxide. Thermo-oxidation of PEEK and carbonization process were thoroughly studied. These processes have been investigated by MDSC, FTIR, TGA and Py-MS. The pyrolysis or carbonization of PEEK involves the degradation of PEEK chains in three stages. Carbon morphology, including crystallinity and porous texture, is readily controlled by adjusting carbonization temperature. Activation of PEEK carbons, using inorganic bases and other activation agents, produces microporous carbons having a very narrow pore size distribution and an average pore diameter of ≤ 20 A. The activation control parameters including activation agent, activation temperature, time and carbon morphology have been investigated extensively. High surface area activated carbon is obtained by activating a highly amorphous carbon with a high activation agent/carbon ratio at 800°C. Theoretical calculations show that the pores with smaller diameter, especially smaller than 7 A, favor hydrogen adsorption. The experimental results confirm this fact and show that: (1) the hydrogen adsorption capacity per unit surface area at 77 K and 1 bar is larger in the smaller pores, (2) gravimetric hydrogen storage capacity (W(H2)) is directly proportional to the ultramicropore (< 7 A) volume; and (3) the volumetric hydrogen storage capacity is directly proportional to the volume fraction of ultramicropores in carbon. Hydrogen

  17. Measurement of carbon thermodynamic activity in sodium

    The report presents the brief outline on system of carbon activity detecting system in sodium (SCD), operating on the carbon-permeable membrane, of the methods and the results of testing it under the experimental circulating loop conditions. The results of carbon activity sensor calibration with the use of equilibrium samples of XI8H9, Fe -8Ni, Fe -12Mn materials are listed. The behaviour of carbon activity sensor signals in sodium under various transitional conditions and hydrodynamic perturbation in the circulating loop, containing carbon bearing impurities in the sodium flow and their deposits on the surfaces flushed by sodium, are described. (author)

  18. Carbon-based acid catalyst from waste seed shells: preparation and characterization

    Wang Li H.

    2015-12-01

    Full Text Available A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized seed shells of Jatropha curcas (J. curcas L.. The structure of amorphous carbon consisting of polycyclic aromatic carbon sheets attached a high density of acidic SO3H groups (2.0 mmol · g−1 was identified with scanning electron microscopy (SEM, fourier transform infrared (FTIR spectroscopy, powder X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. The performance of the solid acid catalyst was evaluated for biodiesel production in the esterification of oleic acid with methanol. 95.7% yield of biodiesel was obtained after 2 h reaction and the conversions with reused catalyst varied in the range of 95.7% to 95.1%, showing better activity and stability than commercial catalyst amberlyst-46. It was also observed that the prepared catalyst showed enhanced activity in the transesterification of triolein with methanol when compared with other solid acid catalysts. A synergistic effect results from the high density of SO3H groups and the good access of reactants to the acidic sites can be used to explain the excellent catalytic activity, as well as the strong affinity between the hydrophilic reactants and the neutral OH groups bonded to the polycyclic aromatic carbon rings.

  19. Preparation of calcium carbonate particles coated with titanium dioxide

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  20. Porous texture evolution in Nomex-derived activated carbon fibers.

    Villar-Rodil, S; Denoyel, R; Rouquerol, J; Martínez-Alonso, A; Tascón, J M D

    2002-08-01

    In the present work, the textural evolution of a series of activated carbon fibers with increasing burn-off degree, prepared by the pyrolysis and steam activation of Nomex aramid fibers, is followed by measurements of physical adsorption of N(2) (77 K) and CO(2) (273 K) and immersion calorimetry into different liquids (dichloromethane, benzene, cyclohexane). The immersion calorimetry results are discussed in depth, paying special attention to the choice of the reference material. The activated carbon fibers studied possess an essentially homogeneous microporous texture, which suggests that these materials may be applied in gas separation, either directly or with additional CVD treatment. PMID:16290775

  1. Ni supported on activated carbon as catalyst for flue gas desulfurization

    2010-01-01

    A series of Ni supported on activated carbon are prepared by excessive impregnation and the desulfurization activity is investigated. It has been shown that the activated carbon-supported Ni is an efficient solid catalyst for flue gas desulfurization. The activated carbon treated by HNO3 exhibits high desulfurization activity, and different amounts of loaded-Ni on activated carbon significantly influence the desulfurization activity. The catalysts are studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results of XRD and XPS indicate that the activated carbon treated by HNO3 can increase oxygen-containing functional groups. Ni on activated carbon after calcination at 800 °C shows major Ni phase and minor NiO phase, and with increasing Ni content on activated carbon, Ni phase increases and affects the desulfurization activity of the catalyst, which proves that Ni is the main active phase.

  2. Dielectric properties of 'diamondlike' carbon prepared by RF plasma deposition

    Lamb, J. D.; Woollam, J. A.

    1985-01-01

    Metal-carbon-metal structures were fabricated using either gold or aluminum evaporated electrodes and RF plasma (methane) deposited 'diamondlike' carbon films. Alternating-current conductance and capacitance versus voltage and frequency (10 Hz to 13 MHz) data were taken to determine the dielectric properties of these films. Conductance versus frequency data fit a generalized power law, consistent with both dc and hopping conduction components. The capacitance versus frequency data are well matched to the conductance versus frequency data, as predicted by a Kramers-Kronig analysis. The dielectric loss tangent is nearly constant at 0.5 to 1.0 percent over the frequency range from 1 to 100 kHz. The dc resistivity is above 10 to the 13th ohm cm, and the dc breakdown strength is above 8 x 10 to the 6th V/cm is properly prepared samples.

  3. Process for preparing tapes from thermoplastic polymers and carbon fibers

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  4. Preparation and properties of gluten/calcium carbonate composites

    Min Zuo; Zheng Zheng Lai; Yi Hu Song; Qiang Zheng

    2008-01-01

    Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) as matrix, calcium carbonate (CaCO3) as filler and glycerol as plasticizer followed by compression molding the mixture at 120 ℃ to crosslink the WG matrix. Morphology observation showed that the CaCO3 particles were finely dispersed in matrix. Incorporation of CaCO3 up to 10 wt% into the composites caused Young's modulus and tensile strength to increase markedly. On the other hand, the moisture absorption and elongation at break decreased slightly.

  5. Preparation and physical properties of vapour-deposited carbon-carbon composites

    In its first part, this research thesis reports a bibliographical study on methods of preparation of various types of vapour-deposited (CVD) carbons, and the author notices that only structure and texture properties of these macroscopically homogeneous pyro-carbons have been studied in detail. For a better understanding of the behaviour of carbon-carbon composites, this thesis thus reports the study of the relationships between physical properties, macroscopic texture and microscopic structure. A densification installation and methods of characterisation have been developed. The fabrication process and its installation are presented (oven with its temperature and gas rate controls, study of its thermal gradient, substrate, heat treatments), and the study and characterisation of carbon-carbon composites are reported: structure and texture properties (studied by optic and scanning electronic microscopy, density measurements, and X-ray diffraction), physical properties (electronic paramagnetic resonance, static magnetism, electric and thermal conductivity). In the last part, the author comments and discusses the obtained results: conditions of preparation, existence, physical properties of the different observed microstructures

  6. Studies of activated carbon and carbon black for supercapacitor applications

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  7. Methane storage in a commercial activated carbon.

    K. Wang

    2008-06-01

    Full Text Available A commercial activated carbon was examined for possible methane storage application. The structural and surface propertiesof the carbon were characterized by Nitrogen adsorption isotherm at 77 oK. It was found that the carbon is largelymicroporous with a surface area of approximately 860 m2/g. Adsorption test shows the carbon is able to achieve a methanestorage capacity of approximately 70/cc.

  8. Adsorption of organic compounds onto activated carbons from recycled vegetables biomass.

    Mameli, Anna; Cincotti, Alberto; Lai, Nicola; Crisafulli, Carmelo; Sciré, Salvatore; Cao, Giacomo

    2004-01-01

    The removal of organic species from aqueous solution by activated carbons is investigated. The latter ones are prepared from olive husks and almond shells. A wide range of surface area values are obtained varying temperature and duration of both carbonization and activation steps. The adsorption isotherm of phenol, catechol and 2,6-dichlorophenol involving the activated carbons prepared are obtained at 25 degrees C. The corresponding behavior is quantitatively correlated using classical isotherm, whose parameters are estimated by fitting the equilibrium data. A two component isotherm (phenol/2,6-dichlorophenol) is determined in order to test activated carbon behavior during competitive adsorption. PMID:15347202

  9. Multi-physical field coupling simulation of TCVI process for preparing carbon/carbon composites

    2009-01-01

    To prepare Carbon/Carbon (C/C) composites with advanced performance, the thermal gradient chemical vapor infiltration (TCVI) process has been optimized by simulation. A 2D axisymmetric unstable model was built, which included convection, conduction, diffusion, densification reactions in the pores and the evolution of the porous medium. The multi-physical field coupling model was solved by finite element method (FEM) and iterative calculation. The time evolution of the fluid, temperature and preform density field were obtained by the calculation. It is indicated that convection strongly affects the temperature field. For the preform of carbon/carbon composites infiltrated for 100 h by TCVI, the radial average densities from simulation agrees well with those from experiment. The model is validated to be reliable and the simulation has capability of forecasting the process.

  10. Separation of Th from aqueous solutions using activated carbon

    Since the last century, thorium has been extensively used in a variety of applications. These applications produce various gaseous, liquid and solid wastes containing isotopes of thorium. Liquid wastes are freed into the surface or the underground waters of mines. Solid and liquid wastes are also produced during nuclear fuel production. Direct toxicity of thorium is low due to its stability at ambient temperatures; however thorium fine powder is self-ignitable to thorium oxide. When thorium nitrate enters living organisms it is mainly localized in liver, spleen and marrow and it precipitates in a hydroxide form. Investigations concerning the removal or minimization of the thorium concentration in the waste waters are of considerable importance environmental point of view. Adsorption is an important technique in separation and purification processes. Among many types of adsorbent materials, activated carbons are the most widely used, because of their large adsorptive capacity and low cost. Activated carbons are unique adsorbents because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. Separation and purification processes based on adsorption technique are also important in nuclear industry where activated carbon is often used for the separation of metal ions from solutions, due to its selective adsorption, high radiation stability and high purity. The activated carbons used in this study were prepared by the chemical activation of acrylic fiber. The chemical composition of acrylic fiber is a copolymer of acrylonitrile-vinyl acetate is called also poliacrylonitryl fiber. The effects of carbonization conditions resulting activated carbon were examined. Precursor/activating agent (KOH and ZnCl2) ratio and carbonization temperature were investigated for the preparation of adsorbent. Adsorption experiments were carried out by a batch technique. The adsorption of thorium was studied as a function of

  11. Characterization of carbon/carbon composites prepared by different processing routes including liquid pitch densification process

    Carbon/carbon composites with an apparent density higher than 1.80 g/cm3 were prepared using a multi-step densification process. This consists of a pre-densification step followed by pitch impregnation/pyrolysis (I/P) cycles carried out under moderate pressure. Three pre-densification methods were investigated to significantly increase the apparent density of a raw preform to about 1.4 g/cm3. These were:(i) impregnation by carbonaceous powder slurry, (ii) film boiling chemical vapor infiltration, (iii) impregnation with a combination of synthetic pitch I/P and carbonaceous powder slurry. Composites were prepared from each of these three pre-densified materials, using a liquid pitch processing route with four I/P cycles with M50 petroleum pitch, under moderate pressures (10 MPa). As a reference a carbon/carbon composite was prepared using four I/P cycles with pitch. All four composites had different microstructural characteristics and different thermal properties. The influence of processing on thermal properties is discussed in relation to the microstructural characteristics. (authors)

  12. Activated carbon derived from marine Posidonia Oceanica for electric energy storage

    N. Boukmouche; N. Azzouz; L. Bouchama; J.P. Chopart; Y. Bouznit

    2014-01-01

    In this paper, the synthesis and characterization of activated carbon from marine Posidonia Oceanica were studied. The activated carbon was prepared by a simple process namely pyrolysis under inert atmosphere. The activated carbon can be used as electrodes for supercapacitor devices. X-ray diffraction result revealed a polycrystalline graphitic structure. While scanning electron microscope investigation showed a layered structure with micropores. The EDS analysis showed that the activated car...

  13. Activated carbons from African oil palm waste shells and fibre for hydrogen storage

    Liliana Giraldo; Maria Fernanda González-Navarro; Juan Carlos Moreno-Piraján

    2013-01-01

    We prepared a series of activated carbons by chemical activation with two strong bases in-group that few use, and I with waste from shell and fibers and oil-palm African. Activated carbons are obtained with relatively high surface areas (1605 m2/g). We study the textural and chemical properties and its effect on hydrogen storage. The activated carbons obtained from fibrous wastes exhibit a high hydrogen storage capacity of 6.0 wt % at 77 K and 12 bar.

  14. Removal of dye by immobilised photo catalyst loaded activated carbon

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO2/ AC was found to be two times better than the removal by immobilised AC or immobilised TiO2 alone. In 4 hours and with the concentration of 10 ppm, TiO2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  15. Adsorption of organic substances to activated carbon

    Adsorption systems using activated carbon as an almost universal adsorbent for organic substances are widely applied for purifying exhaust air. The possibilities, limits and measures for an optimum design of activated carbon processes are given from the point of view of the plant designed and under the aspects of the present laws for environmental control. (orig.)

  16. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

    Zeng, Minfeng; Wang, Yudong; Liu, Qi; Yuan, Xia; Feng, Ruokun; Yang, Zhen; Qi, Chenze

    2016-08-01

    In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials. PMID:27155234

  17. Nafion-carbon nanocomposite membranes prepared using hydrothermal carbonization for proton-exchange-membrane fuel cells

    Chai, Zhanli [Department of Chemical Engineering, Monash University, Clayton VIC 3182 (Australia); College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia 010021 (China); Wang, Cheng; Zhang, Hongjie [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Doherty, Cara M.; Hill, Anita J. [CSIRO Materials Science and Engineering, Locked Bag 33, Clayton South MDC, VIC 3169 (Australia); Ladewig, Bradley P.; Wang, Huanting [Department of Chemical Engineering, Monash University, Clayton VIC 3182 (Australia)

    2010-12-21

    Nafion-carbon (NC) composite membranes were prepared by hydrothermal treatment of Nafion membrane impregnated with glucose solution. The carbon loading of the NC membrane was tuned by controlling the hydrothermal carbonization time. X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and positron annihilation lifetime spectroscopy were used to characterize plain Nafion and NC composite membranes. Nafion-carbon composite membranes exhibited better proton conductivity and reduced methanol permeability than those of the plain Nafion membrane. A single cell prepared with the NC composite membrane with a carbon loading of 3.6 wt% exhibited the highest cell performance. Compared with the cell performance of plain Nafion membrane, the maximum power density of the new cell improved by 31.7% for an H{sub 2}/O{sub 2} fuel cell at room temperature, and by 44.0% for a direct methanol fuel cell at 60 C. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Determination of ascorbic acid in pharmaceutical preparation and fruit juice using modified carbon paste electrode

    Simona Žabčíková

    2016-06-01

    Full Text Available Acrobic acid is key substance in the human metabolism and the rapid and accurate determination in food is of a great interest. Ascorbic acid is an electroactive compound, however poorly responded on the bare carbon paste electrodes. In this paper, brilliant cresyl blue and multi-walled carbon nanotubes were used for the modification of carbon paste electrode. Brilliant cresyl blue acts as a mediator improving the transition of electrons, whereas multiwalled carbon nanotubes increased the surface of the electrode. Both brilliant cresyl blue and multiwalled carbon nanotubes were added directly to the composite material. The electrochemical behavior of modified electode was determined in electrolyte at various pH, and the effect of the scan rate was also performed. It was shown that the electrochemical process on the surface of the modified carbon paste electrode was diffusion-controlled. The resulted modified carbon paste electrode showed a good electrocatalytic activity towards the oxidation of ascorbic acid at a reduced overpotential of +100 mV descreasing the risk of interferences. A linear response of the ascorbic acid oxidation current measured by the amperometry in the range of 0.1 - 350 µmol.L-1 was obtained applying the sensor for the standard solution. The limit of detection and limit of quantification was found to be 0.05 and 0.15 µmol.L-1, respectively. The novel method was applied for the determination of ascorbic acid in pharmaceutical vitamin preparation and fruit juice, and the results were in good agreement with the standard HPLC method. The presented modification of carbon paste electrode is suitable for the fast, sensitive and very accurate determination of ascorbic acid in fruit juices and pharmaceutical preparation.

  19. Preparation of carbon-nitride bulk samples in the presence of seed carbon-nitride films

    A procedure was developed for preparing bulk carbon-nitride crystals from polymeric α-C3N4.2 at high pressure and high temperature in the presence of seeds of crystalline carbon-nitride films prepared by using a high-voltage discharge plasma combined with pulsed laser ablation of a graphite target. The samples were evaluated by using X-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrated that the nitrogen composition in the α-C3N4.2 material, which initially contained more than 58 % nitrogen, decreased during the annealing process and reached a common, stable composition of ∼ 45 %. The thermobaric experiments were performed at 10 - 77 kbar and 350 - 1200 .deg. C.

  20. VPO catalysts synthesized on substrates with modified activated carbons

    VPO catalysts were prepared on oxidized and unoxidized activated carbons differing in initial porous structure. Carbons were oxidized under relatively soft (30% H2O2, 200 deg. C) and hard (50% H2O2, 350 deg. C) conditions. Carbon modification was carried out hydrothermally in a traditional autoclave (HTT) or a microwave reactor (MWT). The synthesis was also carried out under hydrothermal (HTS or MWS) conditions. V2O5 and NH4VO3 were used as precursors. The samples are characterized by diversified porous structure at SBET = 732-1617 m2/g and Vpor = 0.44-0.90 cm3/g, as well as various degree of VPO crystallinity. Possibility of preparation of the VPO catalysts under ecologically appropriate conditions, i.e. in aqueous solutions, was shown.

  1. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  2. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.

    Dong, Qiang; Wang, Gang; Wu, Tingting; Peng, Senpei; Qiu, Jieshan

    2015-05-15

    Capacitive deionization (CDI) is an alternative, effective and environmentally friendly technology for desalination of brackish water. The performance of the CDI device is highly determined by the electrode materials. In this paper, a composite of carbon nanotubes (CNTs) embedded in activated carbon nanofiber (ACF) was prepared by a direct co-electrospinning way and subsequent CO2 activation. The introduction of CNTs can greatly improve the conductivity while the CO2-mediated activation can render the final product with high porosity. As such, the hybrid structure can provide an excellent storage space and pathways for ion adsorption and conduction. When evaluated as electrode materials for CDI, the as-prepared CNT/ACF composites with higher electrical conductivity and mesopore ratios exhibited higher electrosorption capacity and good regeneration performance in comparison with the pure ACF. PMID:25595622

  3. Preparation of PAN/phenolic-based carbon/carbon composites with flexible towpreg carbon fiber

    Carbon/carbon composites made with flexible towpreg carbon fiber as reinforcement and phenolic resins as matrix precursor were impregnated with pitch during re-carbonization process. The structural characteristics of the composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), three-point bending tests, Archimedes' method and water adsorption. Results showed that the density of the carbon/carbon composites increases from 1.45 to 1.54 g/cm3 with the cycles of pitch impregnated and re-carbonization. Open porosity measurement indicated that the increase of porosity resulted from the decomposition of phenolic resin matrix, and the open porosity of the composite gradually decreased after the impregnation and re-carbonization process. These composites also exhibited an improvement in flexural strength with increasing number of densification cycles. From SEM morphological observation, it was concluded that few cracks appeared in the surfaces and a few smaller pores with a diameter <1 μm could be observed

  4. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  5. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  6. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  7. Preparation and mechanical properties of chitosan/carbon nanotubes composites.

    Wang, Shao-Feng; Shen, Lu; Zhang, Wei-De; Tong, Yue-Jin

    2005-01-01

    Biopolymer chitosan/multiwalled carbon nanotubes (MWNTs) nanocomposites have been successfully prepared by a simple solution-evaporation method. The morphology and mechanical properties of the chitosan/MWNTs nanocomposites have been characterized with field emission scanning electron microscopy (SEM), bright field transmission electron microscopy (TEM), optical microscopy (OM), wide-angle X-ray diffraction (XRD), and tensile as well as nanoindentation tests. The MWNTs were observed to be homogeneously dispersed throughout the chitosan matrix. When compared with neat chitosan, the mechanical properties, including the tensile modulus and strength, of the nanocomposites are greatly improved by about 93% and 99%, respectively, with incorporation of only 0.8 wt % of MWNTs into the chitosan matrix. PMID:16283728

  8. Preparation Of Melt Spun Electroconductive Fine Fibres Containing Carbon Nanotubes

    Mirjalili Mohammad

    2015-06-01

    Full Text Available Preparation of electroconductive fine fibres containing carbon nanotubes (CNTs by melt spinning was the main goal of the present study. In this regard, the influence of the main operating parameters such as type of polymer used (polyester, polypropylene and polyamide, type and concentration of the CNTs on conductivity, and mechanical and thermal properties of the melt spun fibres was studied. The conductivity of melt spun fibres was measured based on the method developed by Morton and Hearl. The morphologies of the CNTs–polymer composite fibres were studied by scanning electron microscopy. Thermal behaviours and mechanical properties of the CNTs–polymer composite fibres were investigated using differential scanning calorimetry and tearing tester, respectively. The results reveal that using CNTs had tangible effect on electrical, thermal and mechanical properties of the melt spun fibres. Also, polyamide had a better dispersion of CNTs and correspondingly lower surface resistivity.

  9. Pilot scale for preparation of ammonium uranyl carbonate

    The procedure adopted for obtaining Ammonium Uranyl Carbonate (AUC) from uranium hexafluoride (UF sub(6)) or aqueous solutions of uranylnitrate (UO sub(2)(NO sub(3)) sub(2)) is described in the present work. This procedure involves the precipitation of AUC in a chemical reactor by the addition of gaseous UF sub(6) or solutions of uranylnitrate to NH sub(3) and CO sub(2) gases in a solution containing ammonium bicarbonate, where pH and temperature are controlled. Details regarding the characterization and quality control methods in the preparation of AUC are presented along with their physical and chemical properties. Some informations about effluents generated during the process are presented too. An attempt is made to correlate the parameters involved in the precipitation process of AUC and their characteristics. (author)

  10. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L-1 initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  11. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    Beker, Ulker, E-mail: ubeker@gmail.co [Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus, 34210 Esenler, Istanbul (Turkey); Ganbold, Batchimeg [National University of Mongolia, Faculty of Organic Chemistry, Ikh Surguuliin Gudamj 1, P.O. Box 46a/523, 210646 Ulaanbaatar (Mongolia); Dertli, Halil [Istanbul Technical University, Chemical Engineering Department, Maslak, Istanbul (Turkey); Guelbayir, Dilek Duranoglu [Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus, 34210 Esenler, Istanbul (Turkey)

    2010-02-15

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L{sup -1} initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  12. POROUS STRUCTURE OF CARBON NANOPARTICLES PREPARED BY CHLORINATION OF NANOPARTICLES OF SILICON CARBID

    Sokolov, V. V.; PETROV N.A.; TOMKOVICH M.V.; GUSAROV V. V.

    2014-01-01

    Specific features of the structure of nanoporous carbon, prepared by chlorinating silicon carbide nanoparticles followed by treatment thereof by hydrogenation have been studied. A considerable number of microscopic pores in carbon nanoparticles have been shown.

  13. 磺化石墨烯/活性炭复合电极的制备及其不对称电容器脱盐%Preparation of Sulfonated Graphene/Activated Carbon Composite Electrode for Asymmetric Capacitive Deionization

    卢淼; 刘建允; 王世平; 程健

    2014-01-01

    在还原剂 NaBH4存在下,采用对氨基苯磺酸重氮盐与氧化石墨(GO)表面共价键合制备磺化石墨烯(GP-SO3 H).傅里叶变换红外光谱(FTIR)证明磺酸基团在石墨烯表面接枝.采用扫描电子显微镜(SEM)研究了磺化石墨烯的表面形貌.以磺化石墨烯为添加剂,制备了磺化石墨烯/活性炭(GP-SO3 H/ AC)复合电极.循环伏安及阻抗分析结果表明,该复合电极的电容特性及导电性有明显改善.以活性炭电极为对电极组装了不对称电容器(GP-SO3 H/ AC| AC),研究了该不对称电容器的电化学脱盐性能.与对称电容器(AC | AC)相比,不对称电容器中由于电极内磺酸基团对反离子的屏蔽作用,电容器的电流效率达到89.4%以上,脱盐量提高2.4倍,单个循环脱盐量达到10.87 mg/ g.%Sulfonated graphene( GP-SO3 H) was prepared by grafting reaction of sulfonated diazoniun salt. The sulfonated graphene was characterized by Fourier transform infrared spectrometry( FTIR) and scanning electron microscopy(SEM), respectively. The experimental results indicate that the sulfonic groups have been grafted onto graphene oxide. The sulfonated graphene / activated carbon composite electrode(GP-SO3 H/ AC) was prepared by mixing 10% ( mass fraction) GP-SO3 H as dopant. Compared with AC electrode, this composite electrode exhibits an ideal double layer capacitive behavior and high conductivity, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. The hybrid capacitor was assembled by the resultant GP-SO3 H/ AC as negative electrode and AC as counter electrode for capacitor deionization(CDI). Under the constant current charging-discharging condition, the salt removal amount of 10. 87 mg / g in single cycle was obtained, about 2. 4 times that of the normal AC capacitor. And the current efficiency was improved dramatically owing to the facile adsorption of sulfonic groups to cations, and the shielding effect of sulfonic groups

  14. Use of grape must as a binder to obtain activated carbon briquettes

    A. C. Deiana; D. L. Granados; L. M. Petkovic; M. F. Sardella; H. S. Silva

    2004-01-01

    The results of studies on briquetting activated-carbon-based adsorbent materials, prepared from raw materials from the region of Cuyo, Argentina, are reported in this article. Several steps were carried out to obtain activated-carbon briquettes from Eucalyptus camaldulensis Dehn wood. These steps included carbonization of wood to obtain char; blending of char and a novel binder, i.e., grape must; formation of cylinder-like briquettes by pressure; and activation of the resulting material. The ...

  15. Attempts to prepare an all-carbon indigoid system

    Şeref Yildizhan

    2015-03-01

    Full Text Available First attempts are described to prepare a precursor for an all-carbon analog of indigo, the tetracyclic triene 4. Starting from indan-2-one (9 the α-methylene ketone 13 was prepared. Upon subjecting this compound to a McMurry coupling reaction, it dimerized to the bis-indene derivative 17, rather than providing the tetramethyl derivative of 4, the hydrocarbon 14. In a second approach, indan-1-one (18 was dimerized to the conjugated enedione 21 through the bis-1-indene dimer 19. All attempts to methylenate 21 failed, however. When 19 was treated with the Tebbe reagent, the dimer 23 was produced, presumably through a Cope reaction of the intermediately generated isomer 22. The bis-indene derivative 23 can be alkylated with 1,2-dibromoethane to produce a 1:1 mixture of the spiro compounds 24 and 25. Although 9 could be reductively dimerized to 30, the conversion of this olefin to 14 failed.

  16. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  17. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  18. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: → Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. → Activity is related to the structure, crystal phase and chemical component of the nanocomposite. → The property of electrolyte affects the electrocatalytic activity. → A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide and titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.

  19. Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity

    Visible-light-activated C-modified anatase titania films have been synthesized from TiCl4 and carbonic ink by using the sol-gel route. The synthesized photocatalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The modifying carbon not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared films into visible region. The results of visible-light-induced degradation of methyl orange (MO) show that the C-modified titania films exhibits much higher photocatalytic activities than that of pure titania film prepared at the same conditions. - Graphical abstract: Carbon modifying not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared titania films into visible region

  20. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater

  1. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  2. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications.

    Konikkara, Niketha; Kennedy, L John; Vijaya, J Judith

    2016-11-15

    Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC's showed an extent of micro-and mesoporosity with maximum BET surface area of 716m(2)/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960F/g in 1M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices. PMID:27420389

  3. Preparation and characterization of platinum/carbon and ruthenium/platinum/carbon nanocatalyst using the novel rotating disk-slurry electrode (RoDSE) technique

    Santiago de Jesus, Diana

    An effort to develop electrochemically smaller and well-dispersed catalytic material on a high surface area carbon material is required for fuel cell applications. In terms of pure metal catalysts, platinum has shown to be the most common catalyst used in fuel cells, but suffers from poisoning when carbon monoxide is strongly adsorbed on its surface when used for direct methanol fuel cell applications. The addition of a metal with the ability to form oxides, such as ruthenium, helps to oxidize the carbon monoxide, freeing the platinum surface for new methanol oxidation. The deposition of catalysts of PtRu onto a carbon support helps to increase the active surface area of the catalyst. Vulcan X is the most commonly used of the amorphous carbon materials for fuel cell applications. Also, a high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthetic method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. A rotating disk-slurry electrode (RoDSE) technique was developed as a unique method to electrochemically prepare bulk Pt/Carbon and PtRu/Carbon nanocatalysts avoiding a constant contact of the carbon support to an electrode surface during the electrodeposition process. The nanocatalysts were prepared by using a slurry that was saturated with functionalized Vulcan XC-72R and the metal precursor in sulfuric acid. The electrochemically prepared Pt/C and PtRu/C catalysts were characterized by using TEM, STEM, XRD, XRF, TGA, XPS and electrochemical techniques. A computational analysis also was done.

  4. Preparação e caracterização de carvão ativado quimicamente a partir da casca de arroz Preparation and characterization of chemically activated carbon from rice hulls

    Miguel A. Schettino Jr.

    2007-01-01

    Full Text Available This work consists in a study about the chemical activation of charred rice hulls using NaOH as the activation agent. The influence of the naturally-occurring silica was particularly evidenced. X-ray diffraction patterns showed the formation of sodium carbonate and silicates in the activated samples, whereas thermogravimetric curves revealed a strong reduction in the ash content of these samples after washing with water. Nitrogen adsorption data indicated a microporosity development only in the washed samples, with BET surface area values of 450 and 1380 m²/g achieved for the samples activated at 800 °C starting from the precursor with or without silica, respectively.

  5. Preparation and Utilization of Kapok Hull Carbon for the Removal of Rhodamine-B from Aqueous Solution

    P. S. Syed Shabudeen; R. Venckatesh; S. Pattabhi

    2006-01-01

    A carbonaceous sorbent prepared from the indegeneous agricultural waste (which is facing solid waste disposal problem) Kapok Hull, by acid treatment was tested for its efficiency in removing basic dyes. Batch kinetic and isotherm experiments were conducted to determine the sorption and desorption of the Rhodamine-B from aqueous solution with activated carbon. The factors affecting the rate processes involved in the removal of dye for initial dye concentration, agitation time, and carbon dose ...

  6. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  7. Active inference, attention and motor preparation

    HarrietBrown

    2011-09-01

    Full Text Available Perception is the foundation of cognition and is fundamental to our beliefs and consequent action planning. The Editorial (this issue asks: “what mechanisms, if any, mediate between perceptual and cognitive processes?” It has recently been argued that attention might furnish such a mechanism. In this paper, we pursue the idea that action planning (motor preparation is an attentional phenomenon directed towards kinaesthetic signals. This rests on a view of motor control as active inference, where predictions of proprioceptive signals are fulfilled by peripheral motor reflexes. If valid, active inference suggests that attention should not be limited to the optimal biasing of perceptual signals in the exteroceptive (e.g. visual domain but should also bias proprioceptive signals during movement. Here, we test this idea using a classical attention (Posner paradigm cast in a motor setting. Specially, we looked for decreases in reaction times when movements were preceded by valid relative to invalid cues. Furthermore, we addressed the hierarchical level at which putative attentional effects were expressed by independently cueing the nature of the movement and the hand used to execute it. We found a significant interaction between the validity of movement and effector cues on reaction times. This suggests that attentional bias might be mediated at a low level in the motor hierarchy, in an intrinsic frame of reference. This finding is consistent with attentional enabling of top-down predictions of proprioceptive input and may rely upon the same synaptic mechanisms that mediate directed spatial attention in the visual system.

  8. The determination of chromium in water samples by neutron activation analysis after preconcentration on activated carbon

    A method is presented for the determination of chromium in sea- and fresh water. Chromium is concentrated on activated carbon from a neutral solution after a previous reduction of chromate with sodium sulfite at pH 1.5. The adsorption conditions, acidity, concentrations, amount of carbon, stirring-time, sample-volume, salinity, the influence of storage on the ratio of tervalent to hexavalent chromium, were investigated. The final determination of the total chromium content is performed by instrumental neutron-activation analysis. By preconcentration on activated carbon, a differentiation between tervalent and hexavalent chromium is possible. A separate determination of both species is not yet feasible due to the high carbon blank and to the necessity of measuring the adsorption percentage on carbon. The lower limit of determination, which depends on the value of the carbon blank, is 0.05 μg Cr/l with a precision of 20%. The determination is hampered by the considerable blank from the carbon. The use of activated carbon prepared from recrystallized sugar will probably improve the lower limit of determination and possibly allow the determination of chromate. (T.G.)

  9. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide

    Okman, Irem; Karagöz, Selhan; Tay, Turgay; Erdem, Murat

    2014-02-01

    Activated carbons were produced from grape seed using either potassium carbonate (K2CO3) or potassium hydroxide (KOH). The carbonization experiments were accomplished at 600 and 800 °C. The effects of the experimental conditions (i.e., type of activation reagents, reagent concentrations, and carbonization temperatures) on the yields and the properties of these activated carbons were analyzed under identical conditions. An increase in the temperature at the same concentrations for both K2CO3 and KOH led to a decrease in the yields of the activated carbons. The lowest activated carbon yields were obtained at 800 °C at the highest reagent concentration (100 wt%) for both K2CO3 and KOH. The activated carbon with the highest surface area of 1238 m2g-1 was obtained at 800 °C in K2CO3 concentration of 50 wt% while KOH produced the activated carbon with the highest surface area of 1222 m2g-1 in a concentration of 25wt% at 800 °C. The obtained activated carbons were mainly microporous.

  10. Carbon Activation Diagnostic for Tertiary Neutron Measurements

    Glebov, V.Yu.; Stoeckl, C.; Sangster, T.C.; Meyerhofer, D.D.; Radha, P.B.; Padalino, S.; Baumgart, L.; Fuschino, J.

    2003-03-28

    OAK B202 The yield of tertiary neutrons with energies greater than 20 MeV has been proposed to determine the high rho R of inertial confinement fusion targets. The activation of carbon is a valuable measurement technique because of its high reaction threshold, the availability of high-purity samples, and relatively low cost. The 12C(n,2n)11C reaction has a Q value of 18.7 MeV, well above the 14.1 MeV primary DT neutron energy. The isotope 11C decays with a half-life of 20.3 min and emits a positron, resulting in the production of two back-to-back, 511 keV gamma rays upon annihilation. The positron decay of 11C is nearly identical to the copper decay used in the activation measurements of 14.1 MeV primary DT yields; therefore, the present copper activation gamma-detection system can be used to detect the tertiary-produced carbon activation. Because the tertiary neutron yield is more than six orders of magnitude lower than primary neutron yield, the carbon activation diagnostic requires ultrapure carbon samples, free from any positron-emitting contamination. In recent years we have developed carbon purification, packaging, and handling procedures that minimize the contamination signal to a level low enough to use carbon activation for tertiary neutron measurements in direct-drive implosion experiments with DT cryogenic targets on OMEGA. Experimental results of contamination measurements in carbon samples performed on high-neutron-yield shots on OMEGA in 2001-2002 will be presented. A concept for implementing a carbon activation system on the National Ignition Facility (NIF)will be discussed.

  11. Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing

    In order to improve the energy-conversion efficiency in fuel cells, the authors loaded Pt nanoparticles on carbon nanoballs (CNBs) by using solution plasma processing (SPP) involving CNB and Pt ion with a protection group. In this study, we employed poly(vinylpyrrolidone) (PVP) or sodium dodecyl sulfate (SDS) to prepare Pt nanoparticles supported on CNB (Pt/CNB) by the SPP, and the electrochemical properties as a catalyst was evaluated by cyclic voltammetry. The carbon nanoballs were prepared by thermal decomposition process of ethylene and hydrogen gases. Color of the solution changed from yellow to dark brown as synthesis time. This change indicates the improvement of dispersibility of CNB. Moreover, transmission electron microscopy images and elemental mapping images showed the Pt nanoparticles supported on CNB. A catalytic activity of the Pt/CNB in use of SDS was shown to be higher than the Pt/CNB prepared with PVP system. The SDS-containing Pt/CNB also showed the higher activity than that obtained by the conventional method.

  12. Organic solvent regeneration of granular activated carbon

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  13. Preparation, characterization and applications of functionalized carbon nano-onions

    Sreeramoju, Mahendra K.

    Carbon nano-onions (CNOs) discovered by Ugarte in 1992 are multi-layered fullerenes that are spherical analogs of multi-walled carbon nanotubes with diameters varying from 6 nm to 30 nm. Among the various methods of synthesis, CNOs prepared by graphitization of nanodiamonds (N-CNOs) and underwater electric arc of graphite rods (A-CNOs) are the subject of our research. N-CNOs are considered as more reactive than A-CNOs due to their smaller size, high curvature and surface defects. This dissertation focuses on structural analysis and surface functionalization of NCNOs with diameters ranging from 6---10 nm. Synthetic approaches such as oleumassisted oxidation, Freidel-Crafts acylation and Billups reductive alkylation were used to functionalize N-CNOs to improve their dispersion properties in aqueous and organic solvents. Functionalized N-CNOs were characterized using various techniques such as TGA, TG-MS, Raman spectroscopy and pH-titrimetry. We designed an experimental method to isolate polycyclic aromatic adsorbates formed on the surface of oleum oxidized N-CNOs (ON-CNOs) and characterized them. A-CNOs, on the other hand are bigger than N-CNOs with diameters ranging from 20---40 nm. In this dissertation, we discuss the preparation of graphene structures by unzipping of A-CNOs using KMnO4 as oxidizing agent. These graphene structures were characterized using powder X-ray diffraction, TGA, BET nitrogen adsorption/desorption studies and compressed powder conductivity. This dissertation also focuses on lithiation/delithiation studies of N-CNOs, ACNOs and A-CNO-derived graphene structures to use them as negative electrode materials in lithium-ion batteries. The cycling performances of these materials at a charge/discharge rate of C/10 were discussed. The cycling performance of N-CNOs was tested at faster charge/discharge rate of C. KEYWORDS: Nano-onions, oleum-assisted oxidation, Friedel-Crafts acylation, graphene, lithium ion batteries.

  14. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry.

    Bautista-Toledo, I; Ferro-García, M A; Rivera-Utrilla, J; Moreno-Castilla, C; Vegas Fernández, F J

    2005-08-15

    The present study aimed to analyze the behavior of different activated carbons in the adsorption and removal of bisphenol A (2-2-bis-4-hydroxypheniyl propane) from aqueous solutions in order to identify the parameters that determine this process. Two commercial activated carbons and one prepared in our laboratory from almond shells were used; they were texturally and chemically characterized, obtaining the surface area, pore size distribution, mineral matter content, elemental analysis, oxygen surface groups, and pH of the point of zero charge (pH(PZC)), among other parameters. Adsorption isotherms of bisphenol A and adsorption capacities were obtained. The capacity of the carbons to remove bisphenol A was related to their characteristics. Thus, the adsorption of bisphenol A on activated carbon fundamentally depends on the chemical nature of the carbon surface and the pH of the solution. The most favorable experimental conditions for this process are those in which the net charge density of the carbon is zero and the bisphenol A is in molecular form. Under these conditions, the adsorbent-adsorbate interactions that govern the adsorption mechanism are enhanced. Influences of the mineral matter present in the carbon samples and the solution chemistry (pH and ionic strength) were also analyzed. The presence of mineral matter in carbons reduces their adsorption capacity because of the hydrophilic nature of the matter. The presence of electrolytes in the solution favor the adsorption process because of the screening effect produced between the positively charged carbon surface and the bisphenol A molecules, with a resulting increase in adsorbent-adsorbate interactions. PMID:16173588

  15. Microwave-assisted regeneration of activated carbon.

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons. PMID:22728787

  16. Preparation and evaluation of medicinal carbon oral films.

    Sakuda, Yoko; Ito, Akihiko; Sasatsu, Masanaho; Machida, Yoshiharu

    2010-04-01

    Medicinal carbon (MC) films, which can be taken more easily than other dosage forms, were prepared using sodium carboxymethyl cellulose (CMC), hydroxypropylmethyl cellulose (HPMC) and alginic acid sodium (ALG) as film base materials. Brilliant blue FCF (BB) was used as a model drug. The films containing MC had sufficient strength and disintegration time, but their ability to adsorb BB was clearly inhibited compared to that of MC in powder form. When ALG was used as the film base, the BB adsorption capacity of MC film was approximately 50% of that of MC powder. In an attempt to improve this adsorption ability, two saccharides, sorbitol (SOR) and maltitol (MT), were separately added to MC at a mixing ratio of 1 : 1 by weight. When ALG was the film base, MC films containing SOR or MT showed rapid adsorption profiles and had greatly increased capacities for BB adsorption compared with films containing MC alone. SOR was superior to MT as an additive, though both gave MC-containing films a BB adsorption capacity almost equal to that of MC powder after 24 h, and physical mixtures tended to have better BB adsorption capacities than pre-treatment mixture. In addition, both SOR and MT tended to increase vertical strength of films, but neither additive in either type of mixture had a clear effect on disintegration time. When CMC or HPMC was used as the film base, on the other hand, the addition of SOR or MT caused hardly any improvement in adsorption ability. The above results demonstrate that ALG is useful as a film base material for the preparation of MC films, and that MC films with sufficient strength and adsorption capacities equal to those of MC powders can be produced using a physical mixture of MC and SOR on an ALG base. PMID:20410622

  17. Antimicrobial Activity of Carbon-Based Nanoparticles

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  18. Carbon monoxide affects electrical and contractile activity of rat myocardium

    Porokhnya Maria V

    2011-06-01

    Full Text Available Abstract Background Carbon monoxide (CO is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and ventricular myocardium. Contractions of atrial myocardial stripes were registered via force transducer. Results CO (10-4 - 10-3 M caused prominent decrease of action potential duration (APD in working atrial myocardium as well as significant acceleration of sinus rhythm. In addition CO reduced force of contractions and other parameters of contractile activity. Inhibitor of heme oxygenase zinc protoporphyrin IX exerts opposite effects: prolongation of action potential, reduction of sinus rhythm rate and enhancement of contractile function. Therefore, endogenous CO, which may be generated in the heart due to the presence of active heme oxygenase, is likely to exert the same effects as exogenous CO applied to the perfusing medium. In ventricular myocardium preparations exogenous CO also induced shortening of action potential, while zinc protoporphyrin IX produced the opposite effect. Conclusions Thus, endogenous or exogenous carbon monoxide may act as an important regulator of electrical and contractile cardiac activity.

  19. Activated coconut shell charcoal carbon using chemical-physical activation

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  20. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites

    Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    A mesoporous carbon prepared from sucrose was successfully employed as a hard template to produce hierarchical silicalite-1, thus providing a very simple and inexpensive route to desirable zeolite catalysts from widely available raw materials. The porous carbon was prepared by hydrothermal treatm...

  1. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. PMID:26257348

  2. Metal-loaded polystyrene-based activated carbons as DBT removal media via reactive adsorption

    Ovín Ania, María Concepción; Bandosz, T.J.

    2006-01-01

    [EN] To improve the desulfurization capability of activated carbons, new metal-loaded carbon-based sorbents containing sodium, cobalt, copper, and silver highly dispersed within the carbon matrix were prepared and tested at room temperature for dibenzothiophene (DBT) adsorption. The content of metals can be controlled by selective washing. The new adsorbents showed good adsorption capacities and selectivity towards DBT. The metals incorporated to the surface act not only as active sites for s...

  3. Research of composition and photocatalytic property of carbon-doped Ti-O films prepared by R-MS using CO{sub 2} gas resource

    Wen, F., E-mail: fwen323@163.com [Key Lab. of Advanced Materials of Tropical Island Resources, Ministry of Education, Haikou 570228 (China); School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Zhang, C. [School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Xie, D.; Sun, H.; Leng, Y.X. [Key Lab. of Advanced Technologies of Materials, Ministry of Education, Chengdu 610031 (China)

    2013-07-15

    In this paper, carbon-doped Ti-O films were prepared on silicon wafer and stainless steel by reaction magnetron sputtering using CO{sub 2} as carbon and oxygen source. By changing the ratio of CO{sub 2}/O{sub 2}, a series of films with different composition can be obtained. X-ray photoelectron spectroscopy (XPS) was employed to analyze composition of as-prepared films. The result proved that carbon was doped into titanium successfully. Ultraviolet–visible (UV–Vis) spectrophotometer in the wavelength range of 250–900 nm was used to record the absorbance of as-prepared film samples. The photocatalytic activities of as-prepared films were evaluated by measuring the decolorization rate of methyl orange under UV light irradiation. The results showed that as-prepared carbon-doped Ti-O films have fairly photocatalysis activity, which to be hoped to become candidate materials for photocatalyst.

  4. Research of composition and photocatalytic property of carbon-doped Ti-O films prepared by R-MS using CO2 gas resource

    In this paper, carbon-doped Ti-O films were prepared on silicon wafer and stainless steel by reaction magnetron sputtering using CO2 as carbon and oxygen source. By changing the ratio of CO2/O2, a series of films with different composition can be obtained. X-ray photoelectron spectroscopy (XPS) was employed to analyze composition of as-prepared films. The result proved that carbon was doped into titanium successfully. Ultraviolet–visible (UV–Vis) spectrophotometer in the wavelength range of 250–900 nm was used to record the absorbance of as-prepared film samples. The photocatalytic activities of as-prepared films were evaluated by measuring the decolorization rate of methyl orange under UV light irradiation. The results showed that as-prepared carbon-doped Ti-O films have fairly photocatalysis activity, which to be hoped to become candidate materials for photocatalyst

  5. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying

    Organic aerogels are prepared by the sol-gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample which was carbonized at 900 deg. C was also activated in a carbon dioxide atmosphere at 900 deg. C. The chemical reaction mechanism and optimum synthesis conditions are investigated by means of Fourier transform infrared spectroscopy and thermoanalyses (thermogravimetric/differential thermal analyses) with a focus on the sol-gel process. The carbon aerogels were investigated with respect to their microstructures, using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and nitrogen adsorption measurements at 77 K. SAXS studies showed that micropores with a radius of gyration of 2 g-1 displayed a reasonably high hydrogen uptake at 77 K with a maximum hydrogen sorption of 3.6 wt% at 2.5 MPa. These results suggest that CA are promising candidate hydrogen storage materials.

  6. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  7. Studies on the Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate):Ⅰ. Catalytic Activity of Metal Acetate in Transesterification of Ethylene Carbonate with Dimethyl Terephthalate

    Dan ZHANG; Shu Yong JIA; Yue WANG; Jie YAO; Yi ZENG; Gong Ying WANG

    2006-01-01

    A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.

  8. Preparation and antibacterial property of silver decorated carbon microspheres

    Li, Sha [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Yan, Xiaoliang [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Zhi; Yang, Yongzhen [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zou, Jing, E-mail: zoujing@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2014-02-15

    Carbon microspheres (CMSs) were prepared by glucose hydrothermal method. The effects of glucose concentration and reaction time on the size and morphology of CMSs were studied. CMSs with surface area of 642.5 m{sup 2}/g and pore size of 0.8 nm were exploited to design hybrid material of CMSs with Ag decoration by radio frequency plasma (RF plasma). A series of investigations using X-ray diffraction, UV–vis spectrometry, Fourier transform infrared spectrometry, X-ray photoelectron spectrometry, thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was carried out to characterize the Ag decorated CMSs. RF plasma was employed to reduce Ag{sup +} ions to metallic nano-particles with the particle size of 10–20 nm and form a clean metal-support (Ag-CMSs) interface. The mechanism for the structure formation of Ag decorated CMSs was discussed. Plasma produced Ag/CMSs showed antibacterial property and proved suitable for potential biological and environmental applications.

  9. Preparation and antibacterial property of silver decorated carbon microspheres

    Carbon microspheres (CMSs) were prepared by glucose hydrothermal method. The effects of glucose concentration and reaction time on the size and morphology of CMSs were studied. CMSs with surface area of 642.5 m2/g and pore size of 0.8 nm were exploited to design hybrid material of CMSs with Ag decoration by radio frequency plasma (RF plasma). A series of investigations using X-ray diffraction, UV–vis spectrometry, Fourier transform infrared spectrometry, X-ray photoelectron spectrometry, thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was carried out to characterize the Ag decorated CMSs. RF plasma was employed to reduce Ag+ ions to metallic nano-particles with the particle size of 10–20 nm and form a clean metal-support (Ag-CMSs) interface. The mechanism for the structure formation of Ag decorated CMSs was discussed. Plasma produced Ag/CMSs showed antibacterial property and proved suitable for potential biological and environmental applications.

  10. Preparation of photoluminescent carbon dots-embedded polyelectrolyte microcapsules

    Xiaoling Yang; Liming Peng; Jie Zong; Yihua Zhu

    2013-01-01

    Two types of photoluminescent carbon dots (CDs)-embedded polyelectrolyte (PE) microcapsules were successfully prepared via the layer-by-layer (LbL) assembly approach on sacrificial templates.For the first type,the PE microcapsules with CDs embedded in the cavity were produced from assembly of five pairs of poly(sodium 4-styrensulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) on CDs-pre-loaded meso-porous silica.For the second type,the PE microcapsules with CDs embedded in the wall were made of CDs and PAH,which were derived from SiO2 particles as templates.Microscope images confirmed the introduction of CDs into the two CDs-embedded microcapsules.These two microcapsules also retained the optical properties of free CDs.Photoluminescence spectra revealed that the two types of microcapsules had excitation-dependent photoluminescence behavior.When the excitation wavelength changed from 280 to 340 nm,photoluminescence emission peak of the PE microcapsules with CDs embedded in the cavity shifts from 369 to 377 nm,while for microcapsules with CDs embedded in the wall,emission peak shifts from 367 to 390 nm.Due to low toxicity,good hydrophilicity and photoluminescence properties of CDs,these two kinds of photo-luminescent microcapsules have competitive potential for application in carriers for imaging,drug delivery and biosensors.

  11. Preparation, characterization and electrochemical properties of a graphene-like carbon nano-fragment material

    Highlights: • The spent graphite material is utilized to prepare carbon nano-fragments (CNFs). • The preparation procedure is based on chemical oxidation and ultrasonic crushing. • The as-prepared graphene-like CNFs are systemically characterized. • The CNFs exhibit high electrocatalytic and electrochemical energy-storage properties. - Abstract: A graphene-like nanomaterial, carbon nano-fragments (CNFs), is obtained using the graphite anodes of spent lithium-ion batteries (LIBs) as carbon source, and its morphology, structure, functional groups, and reactivity are characterized to evaluate the properties and potential applications. The interlayer space increase, layer distortion, and remnant lithium of the waste lithium-intercalated graphite are utilized to prepare the oxidized CNFs (ox-CNFs) through a chemical oxidation and ultrasonic crushing process. These ox-CNFs exhibit a size distribution of 15 nm to 2 μm and excellent hydrophilicity, and disperse well in an aqueous suspension. Under the hydrothermal condition at 180 °C for 12 h, the ox-CNFs are converted into a suspension of reduced CNFs (re-CNFs), or a cylindrical aggregate when the concentration exceeds 2 mg·mL−1. The spectroscopic results demonstrate that there are abundant edges, defects, and functional groups existing on the CNFs, which affect their reactive, electronic, and electrochemical properties. Thereinto, the vacuum-dried ox-CNFs film can be converted from an insulator to a conductor after a chemical reduction by hydroiodic acid. And the re-CNFs modified glass carbon electrode (re-CNFs/GCE) exhibits enhanced electrocatalytic activity of about 8 times than the GCE to the oxidation reaction of dopamine. Furthermore, with the addition of the carboxylic ox-CNFs in aniline, the CNFs/polyaniline composite discharges a capacitance of 356.4 F·g−1 at 2 mV·s−1, an increase of 80.5% compared to the polyaniline. This preparation entails not only novel carbon nanomaterials but also an

  12. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  13. Production of activated carbons from almond shell

    Nabais, Joao M. Valente; Laginhas, Carlos Eduardo C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    The production of activated carbons from almond shell, using physical activation by CO{sub 2} is reported in this work. The used method has produced activated carbons with apparent BET surface areas and micropore volume as high as 1138 m{sup 2} g{sup -1} and 0.49 cm{sup 3} g{sup -1}, respectively. The activated carbons produced have essentially primary micropores and only a small volume of wider micropores. By FTIR analysis it was possible to identify, in the surface of the activated carbons, several functional groups, namely hydroxyls (free and phenol), ethers, esters, lactones, pyrones and Si-H bonds. By the analysis of the XRD patterns it was possible to calculate the microcrystallites dimensions with height between 1.178 and 1.881 nm and width between 3.106 and 5.917 nm. From the XRD it was also possible to identify the presence of traces of inorganic heteroatoms such as Si, Pb, K, Fe and P. All activated carbons showed basic characteristics with point of zero charge between 9.42 and 10.43. (author)

  14. Refining of hydrochars/ hydrothermally carbonized biomass into activated carbons and their applications

    Hao, Wenming

    2014-01-01

    Hydrothermally treated biomass could not only be used as a fuel or a fertilizer but it can also be refined into high-value products. Activated carbons are one of those. In the studies of this thesis, four different hydrothermally carbonized (HTC) biomasses, including horse manure, grass cuttings, beer waste and biosludge, have been successfully made into activated carbons. The activated carbon materials were in the forms of powdered activated carbons, powdered composites of activated carbon a...

  15. Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries

    Wu, Yuanhe; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Li, Xiang; Liu, Yongfeng; Pan, Hongge, E-mail: hgpan@zju.edu.cn

    2014-09-01

    Highlights: • Mesohollow and microporous carbon fibers were prepared via electrospinning and carbonization. • Sulfur (S) incorporated into the porous fibers by thermal heating in 60 wt.%, forming composite. • S fills fully in the micropores and partially in the mesohollows of the carbon fibers. • The composite shows high capacity and capacity retention as cathode material for Li–S batteries. • Mesohollow and microporous structure is effective in improving the property of S cathode. - Abstract: Mesohollow and microporous carbon nanofibers (MhMpCFs) were prepared by a coaxial electrospinning with polyacrylonitrile (PAN) and polymethylmethacrylate (PMMA) as outer and inner spinning solutions followed by a carbonization. The carbon fibers were thermal treated with sublimed sulfur to form S/MhMpCFs composite, which was used as cathode material for lithium–sulfur batteries. Electrochemical study shows that the S/MhMpCFs cathode material provides a maximum capacity of 815 mA h/g after several cycles of activation, and the capacity retains 715 mA h/g after 70 cycles, corresponding to a retention of 88%. The electrochemical property of the S/MhMpCFs composite is much superior than the S-incorporated solid carbon fibers prepared from electrospinning of single PAN. The mechanism of the enhanced electrochemical property of the S/MhMpCFs composite is discussed.

  16. Ignition properties of nuclear grade activated carbons

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH3131I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  17. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  18. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C. PMID:24721493

  19. Preparation of 103Pd brachytherapy seeds by electroless plating of 103Pd onto carbon bars

    A method for preparing 103Pd brachytherapy seeds is reported. The key of the method was to deposit 103Pd onto carbon bars by electroless plating so as to prepare source cores. After each carbon bar with 103Pd was sealed in a titanium capsule, the 103Pd seeds were fabricated. This paper provides valuable experiences and data for the preparation of 103Pd brachytherapy seeds

  20. Dynamic adsorption of radon on activated carbon

    The adsorption of 222Rn from air onto activated carbon was studied over the range 0 to 550C. A sharp pulse of radon was injected into an air stream that flowed through a bed of activated carbon. The radon concentration in the exit from the column was continuously monitored using a zinc sulfide α-scintillation flow cell. Elution curves were analyzed to determine the dynamic adsorption coefficient and the number of theoretical stages. Five types of activated carbon were tested and the dynamic adsorption coefficient was found to increase linearly with surface area in the range 1000 to 1300 m2g-1. The adsorptive capacity of activated carbon was reduced by up to 30% if the entering gas was saturated with water vapor and the bed was initially dry. If the bed was allowed to equilibrate with saturated air, the adsorptive capacity was too low to be of practical use. The minimum height equivalent to a theoretical stage (HETS) was about four times the particle diameter and occurred at superficial velocities within the range 0.002 to 0.02 m s-1. For superficial velocities above 0.05 m s-1, the HETS was determined by the rate of mass transfer. The application of these results to the design of activated carbon systems for radon retention is discussed

  1. Integrating carbon nanotube into activated carbon matrix for improving the performance of supercapacitor

    Highlights: ► Hydrothermal carbonization method to prepare “tube-in-activated carbon” composite. ► Due to high specific surface area, suitable pore size and low electrical resistance. ► It exhibited high capacitance value and excellent cyclibility for supercapacitor. - Abstract: A method of in situ integrating carbon nanotubes (CNTs) into activated carbon (AC) matrix was developed to improve the performance of AC as a supercapacitor electrode. Glucose solution containing pre-dispersed CNTs was hydrothermally carbonized to be a char-like intermediate product, and finally converted into a “tube-in-AC” structure by the chemical activation using KOH. The “tube-in-AC” composite had oxygen content of 12.98 wt%, specific surface area of 1626 m2/g and 90% of 1–2 nm micropores. It exhibited capacitance of 378 F/g in the aqueous KOH electrolyte and excellent cyclibility under high current, that is, the capacitance only decreased 4.6% after 2000 cycles at scanning rate of 100 mV/s. These performances of “tube-in-AC” electrode are better than those of commercial AC electrodes, post-mixed with CNTs or carbon black.

  2. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels

    Jayachandran Venkatesan

    2014-05-01

    Full Text Available In the present study, we have prepared chitosan-carbon nanotube (Chitosan-CNT hydrogels by the freeze-lyophilization method and examined their antimicrobial activity. Different concentrations of CNT were used in the preparation of Chitosan-CNT hydrogels. These differently concentrated CNT hydrogels were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electron Microscopy and Optical microscopy. The porosity of the hydrogels were found to be >94%. Dispersion of chitosan was observed in the CNT matrix by normal photography and optical microscopy. The addition of CNT in the composite scaffold significantly reduced the water uptake ability. In order to evaluate antimicrobial activity, the serial dilution method was used towards Staphylococcus aureus, Escherichia coli and Candida tropicalis. The composite Chitosan-CNT hydrogel showed greater antimicrobial activity with increasing CNT concentration, suggesting that Chitosan-CNT hydrogel scaffold will be a promising biomaterial in biomedical applications.

  3. Enhanced photocatalytic activity of titanium dioxide by nut shell carbon

    Shi Xiaoliang, E-mail: sxl@whut.edu.cn [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Wang Sheng; Dong Xuebin [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Zhang Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2009-08-15

    Nut shell carbon (NSC)-nanotitanium dioxide (TiO{sub 2}) composites were prepared by sol-gel method. Photocatalytic activity on degradation of dye Rhodamine B was studied. X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller surface area, pore size distribution, ultraviolet-vis light absorption spectrum, and photoluminescence spectrum were carried out to characterize the composite catalyst. The results indicated that the photocatalytic activity of NSC-nano-TiO{sub 2} composites was much higher than P25 (Degussa). NSC could greatly absorb the organic substance and oxygen of solution because of its large surface area.

  4. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    Leitner, K.; Lerf, A.; Winter, M.; Besenhard, J. O.; Villar-Rodil, S.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J. M. D.

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300-2800 m 2 g -1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g -1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.

  5. Endo- and exohedral carbon nanotube hybrids: Preparation and spectroscopic characterisation

    Cambre, Sofie

    One of the most fascinating properties of carbon nanotubes (CNTs) is that their external surface as well as their inner hollow space can be used to adsorb or encapsulate various molecules, thereby creating so-called exo- and endohedral nanohybrids that combine the properties of the individual components with new functionalities which originate from the interaction between both materials. In this thesis, different endo- and exohedral CNT-hybrids are investigated by means of a range of spectroscopic techniques, in particular UV/Vis absorption, steady-state and time-resolved fluorescence, resonant Raman scattering (RRS) and electron paramagnetic resonance (EPR). The solubilisation of the CNTs with bile salt surfactants, yielding highly concentrated solutions of individually isolated CNTs in water, is investigated with spin-probe EPR. The spin-probe is incorporated inside the micellar layer wrapping the CNTs and the dynamics and orientation of this spin-probe is studied by EPR. In this thesis it is demonstrated that the encapsulation of water in pre-opened CNTs can be probed by resonant Raman scattering of the radial breathing modes of the CNTs. The frequencies of these modes, as well as the electronic resonances of the CNTs are shifted upon water-filling. Therefore it was possible to set up a technique to quantitatively monitor the opening/closing and water-filling of CNTs after different chemical and mechanical treatments. Exohedral porphyrin/CNT hybrids were prepared and investigated by EPR. It was found that metallic CNTs are stronger pi-acceptors than semiconducting CNTs. After solubilising the nanohybrids using bile salts, we obtained, for the first time, the isolated nanohybrids in solution in the pure form. The absorption spectrum of these porphyrins in the nanohybrids is strongly red shifted compared to the free porphyrin absorption. In addition also a quasi-complete quenching of the porphyrin fluorescence is observed. Finally endohedral CNT hybrids, using

  6. Microcystin-LR Adsorption by Activated Carbon.

    Pendleton, Phillip; Schumann, Russell; Wong, Shiaw Hui

    2001-08-01

    We use a selection of wood-based and coconut-based activated carbons to investigate the factors controlling the removal of the hepatotoxin microcystin-LR (m-LR) from aqueous solutions. The wood carbons contain both micropores and mesopores. The coconut carbons contain micropores only. Confirming previously published observations, we also find that the wood-based carbons adsorb more microcystin than the coconut-based carbons. From a combination of a judicious modification of a wood-based carbon's surface chemistry and of the solution chemistry, we demonstrate that both surface and solution chemistry play minor roles in the adsorption process, with the adsorbent surface chemistry exhibiting less influence than the solution chemistry. Conformational changes at low solution pH probably contribute to the observed increase in adsorption by both classes of adsorbent. At the solution pH of 2.5, the coconut-based carbons exhibit a 400% increased affinity for m-LR compared with 100% increases for the wood-based carbons. In an analysis of the thermodynamics of adsorption, using multiple temperature adsorption chromatography methods, we indicate that m-LR adsorption is an entropy-driven process for each of the carbons, except the most hydrophilic and mesoporous carbon, B1. In this case, exothermic enthalpy contributions to adsorption also exist. From our overall observations, since m-LR contains molecular dimensions in the secondary micropore width range, we demonstrate that it is important to consider both the secondary micropore and the mesopore volumes for the adsorption of m-LR from aqueous solutions. Copyright 2001 Academic Press. PMID:11446779

  7. Imobilização da pancreatina em carvão ativado e em alumina para o preparo de hidrolisados de soro de leite = Immobilization of pancreatin in activated carbon and in alumina for preparing whey hydrolysates

    Viviane Dias Medeiros Silva

    2005-07-01

    Full Text Available Tendo como objetivo a redução de custos do processo de fabricação dehidrolisados protéicos, estudou-se neste trabalho a imobilização da pancreatina, por adsorção, em carvão ativado e em alumina. Para isso, foram testadas diferentes condições de imobilização (30, 60 e 90min a 25°C, e 12h a 5°C. Para verificar a taxa de imobilização, determinou-se indiretamente a enzima não adsorvida nos suportes. Ao se utilizar o carvão ativado, não foi observada diferença significativa entre as condições testadas, tendo-se obtido 100% de imobilização enzimática. Para a alumina, a melhor condição foi a de 90min, na qual se obteve 37% de imobilização. A medida do grau de exposição da fenilalanina, pela espectrofotometria derivada segunda, foi empregada para a determinação da estabilidade operacional da enzima, tendo sido mostrado que a imobilização em carvão ativado e emalumina permitiu a reutilização da pancreatina por até 5 vezes e 2 vezes, respectivamente.Immobilization of pancreatin in activated carbon and in alumina was studied for producing protein hydrolysates, in order to reduce the process costs. Different immobilization conditions were tested (30, 60 and 90min at 25°C, and 12h at 5°C. For estimating the immobilization rate the amount of the non-adsorbed enzyme on the supports was indirectly determined. When activated carbon was used, no significant difference was observed among the tested conditions, obtaining 100% of enzymatic immobilization. In case of alumina, the best condition showed to be the 90min treatment which produced 37% of immobilization. The evaluation of the degree of exposition ofphenylalanine, by second derivative spectrophotometry, was used for the determination of the enzyme operational stability, and showed that the immobilization in activated carbon and in alumina allowed the reusability of the pancreatin for 5 times and 2 times,respectively.

  8. Production Scale-Up or Activated Carbons for Ultracapacitors

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  9. Preparation and characterization of active carbon material modified by TiO2%活性炭负载TiO2改性处理及其性能表征

    李海红; 张超; 董军旗; 李红艳

    2015-01-01

    Activated carbon (AC) was loaded with TiO2 by using sol-gel method after a pretreatment process, and the physical and chemical properties of the activated carbon before and after loaded with TiO2 nanoparticles were characterized by using Scanning Electron Microscopy (SEM), Energy Dispersion Spectrum analyzer (EDS), Brunauer-Emmett-Teller gas adsorption method (BET), thermal gravimetric analysis (TG-DTG), and Fourier Transform Infrared spectroscopy (FTIR) respectively. Electrochemical properties were characterized by electrochemical workstation and electrical adsorption deionization tests. The results show that the optimal temperature is 450℃, and there is flocculent or granulate TiO2 in the surface and pores of TiO2/AC composite under the temperature. The mass fraction of titanium element in the TiO2/AC complex is about 24.91%, and TiO2crystal is anatase type. Meanwhile, Ti—O bonds are found on the surface of the activated carbon material after loaded with TiO2. The specific surface area significantly decreases by 23.1% and its specific capacitance increases by 16.4% in comparison with original activated carbon, and its electrical adsorption efficiency also increses. TiO2/AC composite material can be used as an electrode material for the removal of the inorganic ions in wastewater.%采用溶胶–凝胶法对盐酸预处理后的活性炭(activated carbon,AC)进行负载TiO2改性处理,利用扫描电镜(SEM)、能谱分析(EDS)、比表面积及孔径测试(BET)、热重分析(TG/DTG)、傅立叶红外光谱分析(FTIR)等对负载TiO2前后的活性炭结构与理化性能进行表征,并利用电化学工作站测试其电化学性能。结果表明,凝胶的最佳煅烧温度为450℃,制得的TiO2/AC复合体表面及孔道中有絮状或颗粒状的TiO2存在,Ti元素含量(质量分数)为24.91%,晶体类型为锐钛矿型;同时,TiO2/AC表面形成一些Ti—O键的含氧官能团。活性炭负载TiO2改性后,比表面积降低23

  10. Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent

    Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon

    2015-12-29

    Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.

  11. Production and characterization of activated carbon from indigenous coal (lakhra coal)

    In the present study, indigenous coal has been exploited for the preparation of activated carbon by physical. activation and characterization of if was done by using available techniques. Physical activation involved two steps; Carbonization and CO; activation. For different temperatures, carbonization was carried out for 4 hours in an oven and it was observed that percent yield and iodine number was maximum at 600 degree C. The carbonized material of 600 C was activated at different intervals of time and different temperatures for constant flow of CO/sub 2/; (activating gas). The optimum temperature and time for CO/sub 2/; activation was observed to be 750 C and 3 hours respectively, which gave lower percent yield of active carbon but of higher iodine number and methylene blue values. (author)

  12. Preparation and characterization of carbon nanofiber-polymide composites

    Li, Xiaobing

    interact with polymer. However, XPS indicated that approximately one percent of the carbon atoms on the CNF surface reacted with diamine, which was derivatized from scarce reactive oxygen groups available on the OCNFs. Polyimide based composites were produced using either blending CNFs assisted by sonication or in-situ polymerization. Pristine fibers, oxidized fibers and fibers functionalized with PDA and polyimide oligomer were incorporated into the polyimide matrix, respectively. The goal was to investigate the effect of surface functional groups and the approach to form composite on the dispersion of fibers in the matrix and on the tensile strength and thermal mechanical properties. Scanning electron microscope (SEM) images showed that pristine fibers had poor dispersion in which agglomerations and a bottom-settled layer of fibers were observed, while there were few agglomerations of any other type of fibers formed in the matrix. Blending in hot DMAc and in-situ polymerization were found to disperse fibers well in the polyimide matrix. Functionalized fiber-PI composites exhibited improvement in glass transition temperature (Tg), modulus and tensile strength. In addition, the impact of fiber loadings from 0.5% to 5.0% by weight in composite was investigated. There was about a 10°C increase in Tg even at very low fiber concentration of 0.5 wt%. The modulus of the composites prepared in this study was as high as 130% of that of base PI. While functionalized fibers effectively enhanced the modulus and tensile strength of composites, pristine fibers exhibited little reinforcement to the host PI at low concentration (0.5 wt% and 1.5 wt%) and adversely affected the properties of composite at high loading of 5.0 wt%, indicating better compatibility and interfacial interaction in the case of functionalized fibers embedded.

  13. A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes:Preparation, characterization and electrochemical capacitive performance

    Huili Fan; Fen Ran∗; Xuanxuan Zhang; Haiming Song; Wenxia Jing; Kuiwen Shen; Lingbin Kong; Long Kang

    2014-01-01

    Novel hierarchical porous carbon membranes were fabricated through a simple carbonization procedure of well-defined blending polymer membrane precursors containing the source of carbon polyacrylonitrile (PAN) and an additive of polyvinylpyrrolidone (PVP), which was prepared using phase inversion method. The as-fabricated materials were further used as the active electrode materials for supercapacitors. The effects of PVP concentration in the casting solution on structure feature and electrochemical capacitive performance of the as-prepared carbon membranes were also studied in detail. As the electrode material for supercapacitor, a high specific capacitance of 278.0 F/g could be attained at a current of 5 mA/cm2 and about 92.90%capacity retention could be maintained after 2000 charge/discharge cycles in 2 mol/L KOH solution with a PVP concentration of 0.3 wt%in the casting solution. The facile hierarchical pore structure preparation method and the good electrochemical capacitive performance make the prepared carbon membrane particularly promising for use in supercapacitor.

  14. Carbon composition with hierarchical porosity, and methods of preparation

    Mayes, Richard T; Dai, Sheng

    2014-10-21

    A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.

  15. Rare earths: preparation of spectro chemically pure standards, study of their carbonates and synthesis of a new compound series - the peroxy carbonates

    In this work the following studies are concerned: I) preparation of lanthanum, cerium, praseodymium, neodymium and samarium oxides for use as spectro chemically pure standards; II) behavior of the rare earth (La, Ce, Pr, Nd, Sm) carbonates soluble in ammonium carbonate and mixture of ammonium carbonate/ammonium hydroxide, and III) synthesis and characterization of rare earth peroxy carbonates - a new series of compounds. Data for the synthesis and characterization of the rare earths peroxy carbonates described for the first time in this work are presented and discussed. With the aid of thermal analysis (TG-DTG) the thermal stability and the stoichiometric composition for new compounds were established and a mechanism of thermal decomposition was proposed. The peroxy carbonate was prepared by the addition of hydrogen peroxyde to the complexed soluble rare earths carbonates. These studies included also the determinations of active oxygen, the total rare earth oxide by gravimetry and complexometry and the C, H and N contents by microanalysis. The new compounds were also investigated by infrared spectroscopy. (author)

  16. Antibacterial activity of carbon-coated zinc oxide particles.

    Sawai, Jun; Yamamoto, Osamu; Ozkal, Burak; Nakagawa, Zenbe-E

    2007-03-01

    Particles of ZnO coated with carbon (ZnOCC) were prepared and evaluated for their antibacterial activity. ZnO powder and poly(vinyl alcohol) (PVA) (polymerization degree: 2,000-95,000) were mixed at a mass ratio (ZnO/PVA) of 1, and then heated at 500-650 degree C for 3 h under argon gas with a flow rate of 50ml/min. Carbon deposited on the ZnOCC surface was amorphous as revealed by X-ray diffraction studies. The ZnOCC particles maintained their shape in water, even under agitation. The antibacterial activity of ZnOCC powder against Staphylococcus aureus was evaluated quantitatively by measuring the change in the electrical conductivity of the growth medium caused by bacterial metabolism (conductimetric assay). The conductivity curves obtained were analyzed using the growth inhibition kinetic model proposed by Takahashi for calorimetric evaluation, allowing the estimation of the antibacterial efficacy and kinetic parameters of ZnOCC. In a previous study, when ZnO was immobilized on materials, such as activated carbon, the amount of ZnO immobilized was approximately 10-50%, and the antibacterial activity markedly decreased compared to that of the original ZnO. On the other hand, the ZnOCC particles prepared in this study contained approximately 95% ZnO and possessed antibacterial activity similar to that of pure ZnO. The carbon-coating treatment could maintain the antibacterial efficacy of the ZnO and may be useful in the develop-ment of multifunctional antimicrobial materials. PMID:17408004

  17. Activated carbon monoliths for methane storage

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  18. Preparation and characterization of nanomaterials based on bifacial carbon nanotubes and iron oxides: Application in catalysis

    Zafour-Hadj-Ziane A.

    2013-09-01

    Full Text Available The application of magnetic particles technology for the development of new nanomaterials has received considerable attention in recent years. In this context, the objective of this study is firstly, to prepare new catalytic materials that gather the strong adsorption capacities of carbon nanotubes and magnetic properties of iron, it concerns nanocomposites based on a mixture of carbon nanotubes in a very small amounts and iron oxide. Secondly we want to appear their capacities in catalytic oxidation reactions of phenol. Synthesis under the optimal conditions was carried out at different pH. And the characterization of this new nanomaterial reveals a good specific surface area BET, the identification of carbon nanotubes within the matrix was performed by infrared spectroscopy and transmission electron microscopy. The use of this new material as a catalytic support in catalytic oxidation reactions of phenol indicates the high selectivity of this latter and a yield better than this obtained with iron oxide supported by activated carbon. The good catalyst regeneration of the new catalysis and the improvement in their properties are the interesting parameters for the new type nanomaterials.

  19. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive. PMID:25531980

  20. Electrical Conductivity Of Carbon Pellets Prepared From Mixtures Of Pyropolymers From Oil Palm Bunches and Petroleum Green Coke

    Deraman, M.; Awitdrus, Talib, I. A.; Omar, R.; Jumali, M. H.; Ishak, M. M.; Saad, S. K. M.; Taer, E.; Saman, M. M.; Farma, R.; Yunus, R. M.

    2010-12-01

    Green pellets (GPs), prepared at different compression pressures (cs = 6, 7.5 and 12 metric tonne) from mixtures containing self-adhesive carbon grains (sacg) from the oil palm empty fruit bunch (EFB) and different percentages (pr = 0 to 90%) of a non self-adhesive powder of petroleum green coke (ppgc), were carbonized (800° C) and activated with CO2 to produce carbon pellets (CPs). The measured electrical conductivity (σ) of the CP for all cs showed a curve having a minimum value at pr around 50%, indicating that the conducting phase displays a nonlinear σ- pr relationship. A significant increase in the σ due to CO2 activation was observed. For a sufficienctly high cs, an existence of a pr range in which the σ varies linearly with the density was also observed. These results provide some new information for modifying the electrical conductivity of carbon derived from the sacg from EFB or other types of biomass.

  1. A novel method for preparation of hollow and solid carbon spheres

    Boyang Liu; Dechang Jia; Jiancun Rao; Qiangchang Meng; Yingfeng Shao

    2008-10-01

    Hollow and solid carbon spheres were prepared by the reaction of ferrocene and ammonium carbonate in a sealed quartz tube at 500°C. The morphology and microstructure of the product were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The carbon spheres are amorphous and their diameters range from 0.8–2.8 m. The shell thickness of the hollow carbon spheres is not uniform and ranges from 100–180 nm. It is suggested that ammonium carbonate is crucial for the formation of carbon spheres and its amount also influences the morphology of the product. The method may be suitable for large scale preparation of carbon spheres.

  2. Preparation of single-walled carbon nanotube reinforced magnesia films

    Du, C S; Pan, Ning

    2004-01-01

    Single-walled carbon nanotube (SWNT)/MgO composite films were fabricated by growing carbon nanotubes while simultaneously sintering a MgO film. The effect of iron and molybdenum concentrations in liquid catalysts and the effect of the density of carbon nanotubes in the composite films on the quality of the films were investigated. Microstructure analysis showed that SWNTs were uniformly grown in the MgO film. The presence of a controlled amount of carbon nanotubes in MgO films is believed to ...

  3. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  4. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  5. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance

    Graphical abstract: Hierarchical porous carbon with 3D macroporous structure is prepared via a facile method and displays high lithium ion storage capacity and rate capability. - Highlights: • Hierarchical porous carbon is prepared from lignin via a facile method. • KOH acts both as activating agent and template in the preparation process. • Lignin based hierarchical porous carbon displays high lithium storage capacity. • Lignin based hierarchical porous carbon displays stable cycling stability. - Abstract: Hierarchical porous carbon derived from lignin (denoted as LHPC) was prepared via a facile method. In this method, KOH acts both as activating agent and template. The obtained LHPC was composed of unique 3D macroporous network with mesopores and micropores decorated on carbon walls. LHPC was further applied as the anode material of lithium ion battery and displayed a stable, high capacity of 470 mAh g−1 after 400 galvanostatic charge-discharge cycles at a current density of 200 mA g−1. Furthermore, LHPC displayed high cycling stability and perfect rate capability. This facile method for the preparation of LHPC offers a new route for the preparation of a series of hierarchical porous carbons for the application in supercapacitors, fuel cells, lithium ion batteries, etc

  6. Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition

    The pulse electrodeposition (PED) technique was utilized to deposit nanosized (≤10 nm) Ni catalysts on carbon fabric (CF). Via an in situ potential profile, the PED technique can control the Ni catalyst loading, which is an important parameter for the growth of carbon nanofibers (CNFs) on CF. The preparation of CNF-coated CF (carpet-like CF) was carried out in a thermal chemical vapor deposition system with an optimum loading of Ni catalysts deposited in the PED pulse range from 20 to 320 cycles. CNFs grown at 813 K using different pulse cycles had a narrow diameter distribution, around 15 ± 5 nm to 29 ± 7 nm; they have a hydrophobic surface, like lotus leaves. Transmission electron microscopy images confirmed the graphene structural transformation of CNFs with the growth temperature. Solid wire CNFs were initially grown at 813 K with graphene edges exposed on the external surface. At elevated growth temperatures (1073 and 1173 K), bamboo-like CNFs were obtained, with herringbone structures and intersectional hollow cores

  7. 76 FR 67142 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    2011-10-31

    ... Administrative Review, 75 FR 48644 (August 11, 2010) (``First Rescission''). \\5\\ See Certain Activated Carbon... activated carbon is a powdered, granular, or pelletized carbon product obtained by ``activating'' with heat... activated carbon, including powdered activated carbon (``PAC''), granular......

  8. Characteristic and mercury adsorption of activated carbon produced by CO2 of chicken waste

    HUANG Yaji; JIN Baosheng; ZHONG Zhaoping; ZHONG Wenqi; XIAO Rui

    2008-01-01

    Preparation of activated carbon from chicken waste is a promising way to produce a useful adsorbent for Hg removal.A three-stage activation process (drying at 200℃,pyrolysis in N2 atmosphere,followed by CO2 activation) was used for the production of activated samples.The effects of carbonization temperature (400-600 ℃),activation temperature (700-900 ℃),and activation time (1-2.5 h) on the physicochemieal properties (weight-loss and BET surface) of the prepared carbon were investigated.Adsorptive removal of mercury from real flue gas onto activated carbon has been studied.The activated carbon from chicken waste has the same mercury capacity as commercial activated carbon (Darco LH) (HgV:38.7% vs.53.5%,HgO:50.5% vs.68.8%),although its surface area is around 10 times smaller,89.5 m2/g vs.862 m2/g.The low cost activated carbon can be produced from chicken waste,and the procedure is suitable.

  9. Catalyst deposition for the preparation of carbon nanotubes

    2013-01-01

    covered nano patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  10. Impregnated active carbons to control atmospheric emissions: influence of impregnation methodology and raw material on the catalytic activity.

    Alvim-Ferraz, Maria C M; Gaspar, Carla M T B

    2005-08-15

    Previous studies have reported the influence of raw material on the catalytic activity of metal oxides impregnated in activated carbons. However, knowledge was as yet quite scarce for impregnation performed before activation. The main objective of the study here reported was the development of such knowledge. Olive stones, pinewood sawdust, nutshells, and almond shells were recycled to prepare the activated carbons. Transition metal oxides (CoO, Co3O4, and CrO3) were impregnated aiming to prepare activated carbons to be used for the complete catalytic oxidation of benzene. When impregnation was performed after activation the impregnated species were deposited on the internal surface, blocking part of the initial porous texture. When impregnation was performed before activation, the metal species acted as catalysts during the activation step, allowing better catalyst distribution on a more well-developed mesoporous texture. Co3O4 was the best catalyst and almond shells were the best support. With this catalyst/support pair a conversion of 90% was possible at 404 K, the lowest temperature of all the carbons studied. Good conversions were obtained at temperatures that guarantee carbon stability (lower than 575 K). It was concluded that activated carbon was a suitable support for metal oxide catalysts aiming for the complete oxidation of benzene, especially when a suitable porous texture is induced, by performing the impregnation step before activation. PMID:16173586

  11. Device for determining carbon activity through pressure

    A hollow iron capsule of annular shape having an interior layer of Fe0.947O and a near absolute internal vacuum is submersed within a molten metal with the inner chamber of the capsule connected to a pressure sensor. Carbon present in the molten metal diffuses through the capsule wall and reacts with the Fe0.947O layer to generate a CO2--CO gas mixture within the internal chamber. The total absolute pressure of the gas measured by the pressure sensor is directly proportional to the carbon activity of the molten metal

  12. Removal of Phenol from Water by Carbon Adsorbents Prepared by Pyrolysis of Sorghum and Millet Straws in Ortho Phosphoric Acid

    A.O. Lawal

    2011-06-01

    Full Text Available The aim of this study is to determine the suitability of sorghum and millet straws as precursors for carbon adsorbents with capabilities for removing phenol from contaminated water. Phenol compounds react with chlorine in water to produce chlorophenols which have very low threshold odour concentrations in domestic water supply. Activated carbon adsorbents were prepared from millet and sorghum straws by chemical activation with phosphoric acid and used for the removal of aqueous phenol. The abilities of the carbon adsorbents to remove phenol from contaminated water were determined by aqueous phase phenol adsorption. Equilibrium concentrations of phenol were monitored, using Cole UV7504 Spectrophotometer at a wavelength of 269 nm. The adsorption data fitted the Freundlich isotherm and indicated multilayer adsorption of aqueous phenol on the carbon beds. The maximum adsorption capacities of the granular activated carbon from the cellulosic precursors were 80.36 and 82.34 mg/g of carbon from millet and sorghum straws respectively. The results suggest the suitability of the carbon adsorbents in community water detoxification protocols to remove phenol.

  13. Studies relevant to the catalytic activation of carbon monoxide. Technical progress report, September 1991

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  14. Activated carbons from African oil palm waste shells and fibre for hydrogen storage

    Liliana Giraldo

    2013-06-01

    Full Text Available We prepared a series of activated carbons by chemical activation with two strong bases in-group that few use, and I with waste from shell and fibers and oil-palm African. Activated carbons are obtained with relatively high surface areas (1605 m2/g. We study the textural and chemical properties and its effect on hydrogen storage. The activated carbons obtained from fibrous wastes exhibit a high hydrogen storage capacity of 6.0 wt % at 77 K and 12 bar.

  15. Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance

    Graphical abstract: N-doped hierarchical porous carbons with high rate capacitive performance are prepared by a combination method of nano-SiO2 template/KOH activation. - Highlights: • A mass produced nano-SiO2 is used to prepared hierarchical porous carbon. • N-doped hierarchical porous carbon materials are easily prepared. • The NHPCs materials exhibit a very high capacitance of up to 260.5 F g−1. • The NHPC-800 sample shows very high rate capability. • Hierarchical porosity and N-doping synergistically enhances the whole capacitance. - Abstract: In this work, nitrogen-doped hierarchical porous carbon materials (NHPCs) are prepared by a two-step method combined of a hard template process and KOH-activation treatment. Low cost and large-scale commercial nano-SiO2 are used as a hard template. The hierarchical porosity, structure and nitrogen-doped surface chemical properties are proved by a varies of means, such as scanning electron microscopy, transition electron microscopy, N2 sorption, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. When the prepared NHPCs materials are used as the electrode materials for supercapacitors in KOH electrolyte, they exhibit very high specific capacitance, good power capability and excellent cyclic stability. NHPC-800 carbon shows a high capacitance of 114.0 F g−1 at the current density of 40 A g−1, responding to a high energy and power densities of 4.0 Wh kg−1 and 10 000 W kg−1, and a very short drain time of 1.4 s. The excellent capacitive performance may be due to the synergistic effect of the hierarchical porosity, high effective surface area and heteroatom doping, resulting in both electrochemical double layer and Faradaic capacitance contributions

  16. Preparation of Silver Carbonate and its Application as Visible Light-driven Photocatalyst Without Sacrificial Reagent.

    Jiang, Wei; Zeng, Ya; Wang, Xiaoyan; Yue, Xiaoning; Yuan, Shaojun; Lu, Houfang; Liang, Bin

    2015-11-01

    Visible light-driven photocatalyst is the current research focus and silver oxyacid salts with p-block elements are the promising candidates. In this research, Ag2 CO3 was prepared by a facile precipitation method and used to degrade the pollutants from waters. The results revealed that the silver carbonate with monoclinic structure quickly decomposed methyl orange and rhodamine B in less than 15 min under visible light irradiation. When it was recycled six times, the degradation of methyl orange still can reach 87% after 30 min. The calculated band gap of Ag2 CO3 was 2.312 eV with Valence band edge potential of 2.685 eV and Conduction band 0.373 eV vs NHE, which endowed the excellent photo-oxidation ability of silver carbonate. Photogenerated holes and ozone anion radicals were the primary active species in the photo-oxidization degradation of dye. The generation of metallic silver resulted from photocorrosion and the consequent reduction in the ozone anion radical amount led to the performance degradation of Ag2 CO3 . The simple preparation method and high photocatalytic performance of Ag2 CO3 increases its prospect of application in future. PMID:26174413

  17. Administrative activities in the phase of preparation

    Details of the licensing procedure in the FRG: site selection, necessary documents for application, selection of a safety level for the plant in question, organization of the licensing authority, consultant and expert activities. (HP)

  18. Preparation of Zircon Whisker Using Carbon Black as Reducing Agent

    WANG San-Hai, JIANG Wei-Hui, FENG Guo, LIU Jian-Min, MIAO Li-Feng, WANG Hong-Da

    2014-08-01

    Full Text Available Zircon whisker was synthesized at 700°C via non-hydrolytic Sol-Gel method using anhydrous zirconium tetrachloride (ZrCl4 as zirconium source, tetraethylorthosilicate (TEOS as silicon source, lithium fluoride (LiF as mineralizer, ethanol as solvent and carbon black as reducing agent. Thermogravimetric analysis and differential thermal analysis (TG-DTA, X-ray diffraction analysis (XRD and transmission electron microscope (TEM were employed to characterize the influences of adding ways and amount of carbon black on the synthesis and morphology of zircon whisker. The results show that the carbon black added in form of suspension is favorable to the one-dimension growth of zircon. When 6wt% carbon black is added, optimized zircon whiskers are achieved along the growth direction of [001], which diameter and aspect ratio are in the range of 30­90 nm and 6­15, respectively. Because of carbon black reacting with oxygen to form carbon dioxide and monoxide, the adding way and amount of carbon black efficiently regulate the oxygen partial pressure in the reaction system. Reducing oxygen partial pressure can form more SiF4 gas, which is the basis of one-dimensional direction growth of zircon. However, excessively low oxygen partial pressure is against the ZrSiO4 formation. Therefore, appropriate oxygen partial pressure can promote the growth of zircon whisker.

  19. Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology.

    Hameed, B H; Tan, I A W; Ahmad, A L

    2008-10-30

    Oil palm fibre was used to prepare activated carbon using physiochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables: the activation temperature, activation time and chemical impregnation (KOH:char) ratio on methylene blue (MB) uptake from aqueous solutions and activated carbon yield were investigated. Based on the central composite design (CCD), a quadratic model and a two factor interaction (2FI) model were respectively developed to correlate the preparation variables to the MB uptake and carbon yield. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from oil palm fibre was obtained by using activation temperature of 862 degrees C, activation time of 1h and chemical impregnation ratio of 3.1. The optimum activated carbon showed MB uptake of 203.83 mg/g and activated carbon yield of 16.50%. The equilibrium data for adsorption of MB on the optimum activated carbon were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 400mg/g at 30 degrees C. PMID:18329169

  20. Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors

    Highlights: •Nitrogen-doped three-dimensional hierarchically porous carbon is synthesized under mild condition. •The N-3DHPC shows the hierarchical porosity and the surface nitrogen-doping. •The high specific capacitance of 308.4 F g−1 is achieved. •The energy density of N-3DHPC supercapacitor is still as high as 9 Wh kg−1 even at 5000 W kg−1. -- Abstract: A novel nitrogen-doped three-dimensional hierarchically porous carbon (N-3DHPC) has been designed and prepared by the carbonization of polyaniline (PANI) covered on the three-dimensional macroporous carbon (3DMC), followed by KOH activation to generate micropores and mesopores on the wall of macropores. The pore structure, morphology and surface physicochemical properties of the carbon samples are characterized by nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and elemental analysis. The N-3DHPC inherits the morphology of the pristine 3DMC and processes a hierarchically porous structure with a high specific area of 1084.0 m2 g−1 and some nitrogen-doped species on the surface. The electrochemical behaviors of the N-3DHPC are characterized by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) test, electrochemical impedance spectroscopy (EIS) and cycle life measurement. The results show that the N-3DHPC obtains high specific capacitance of 308.4 F g−1 at a current density of 1 A g−1. Moreover, the N-3DHPC supercapacitor exhibits excellent rate performance, low resistance, high energy density of 10.7 Wh kg−1 at the power density of 500 W kg−1 and excellent cyclic stability with the specific capacitance retention of 96 % even after 10000 cycles, thus the N-3DHPC will be a promising electrode material for supercapacitors

  1. Effect of Activated Carbon as a Support on Metal Dispersion and Activity of Ruthenium Catalyst for Ammonia Synthesis

    2002-01-01

    Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10.0 MPa and 10 000 h-1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13.17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1.37% over 4%Ru-BaO/AC10 catalyst.

  2. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures. PMID:15461177

  3. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  4. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  5. The preparation of glucose uniformly labelled with carbon-14

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO2 produced from 14C-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs

  6. The preparation of glucosa uniformly labelled with carbon-14

    The plant, (Zea mais, L) and culture conditions for an optimun production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxilation are carried on under an artificial atmosphere of 14CO2 produced from 14C-barium carbonate. Following photosynthesis, the sugars are extracted and then the extract purified by several methods. The purified glucose is, finally, degraded and the specific radiactivity is determined in each of its carbon atoms. (author)

  7. Antioxidant activity of Chinese ant extract preparations.

    Zhao,Yi

    1995-12-01

    Full Text Available Chinese ant extract preparations (CAEP are a Chinese traditional medicine which is mainly used as a health food or drink for the treatment of rheumatism, rheumatoid arthritis, chronic hepatitis, sexual hypofunction, and antiaging in China. The effects on free radicals were examined by electron spin resonance spectrometry using the spin trapping agent 5.5-dimethyl-1-pyrroline-1-oxide (DMPO. Superoxide radicals (3.35 x 10(15 spins/ml were quenched 50% by the extract at 0.5 mg/ml. The CAEP extract at 0.7 mg/ml inhibited 50% of hydroxyl radicals (52.0 x 10(15 spins/ml generated by the Fenton reaction. Against DPPH radical, the scavenging action of CAEP was observed at 1.8 mg/ml of the extract and 50% of the DPPH radicals (8.14 x 10(15 spins/ml were quenched. In vitro tests showed that CAEP inhibited the production of thiobarbituric acid-reactive substances, an index of lipid peroxidation, in rat brain homogenate.

  8. Immunological Activities of Purified Preparations of Enterobacterial Common Antigen

    Gannon, Patrick J.; Jacobs, Diane M.; Marx, Arthur; Mayer, Hubert; Romanowska, Elzbieta; Neter, Erwin

    1982-01-01

    The immunological activities of three purified preparations of enterobacterial common antigen (ECA) obtained by different procedures were studied. ECA-Ma (method of A. Marx) was from Salmonella typhimurium TV149 (Ra mutant), ECA-My (method of H. Mayer) was from S. montevideo, and ECA-Ro (method of E. Romanowska) was from Shigella sonnei phase I. These preparations, on a weight basis, neutralized similar amounts of ECA antibodies, indicating that the serological activities were comparable. Nei...

  9. Conversion of some fruit stones and shells into activated carbons

    The pyrolysis of certain biomass waste (stones of date, apricot, peach and olive as well as shells of walnut and coconut) was investigated to prepare activated carbons (ACs) suitable for some commercial purposes. The pyrolysis process was performed into fixed bed reactor which was designed for this purpose. The resulted char was chemically activated using NaOH and the adsorption characteristics, such as iodine number, methylene blue (MB) value, and p-nitrophenol (PNP) value were measured. The surface area of the prepared ACs were estimated from the calibration curve as between IN and BET surface area of some established ACs from the literature. The adsorption from solution method was also used to measure the specific surface area of the prepared ACs, using MB and PNP as solutes. The adsorption isotherms of the ACs from both atmospheric pyrolysis (AP) and reduced pressure pyrolysis (RPP) were determined and were found to fit the Langmuir type of isotherm. The prepared ACs show different adsorption properties and surface areas, and that AC obtained from apricot stones had the highest porosity as indicating by IN and SABET. (author)

  10. Active carbons from low temperature conversion chars

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm3 to 0.52 g.cm3. Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g-1), while O. martiana contained the highest lignin content (40.7 g.100g-1). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (Vmicro) was between 0.33cm3.g-1 - 0.40cm3.g-1, while the mesopore volume(Vmeso) was between 0.05 cm3.g-1 - 0.07 cm3.g-1. The BET specific surface exceeds 1000 m2.g-1. All these values compared favourably with high grade commercial active carbons. (author)

  11. Preparation of Nickel-Copper Bilayers Coated on Single-Walled Carbon Nanotubes

    Zhong Zheng; Shan Zhao; Shijie Dong; Lianjie Li; Anchun Xiao; Sinian Li

    2015-01-01

    Due to oxidizability of copper coating on carbon nanotubes, the interfacial bond strength between copper coating and its matrix is weak, which leads to the reduction of the macroscopic properties of copper matrix composite. The electroless coating technics was applied to prepare nickel-copper bilayers coated on single-walled carbon nanotubes. The coated single-walled carbon nanotubes were characterized through transmission electron microscope spectroscopy, field-emission electron microscope s...

  12. Preparation of PtRu/C Electrocatalysts by Hydrothermal Carbonization Process for Methanol Electro-oxidation

    M. M. Tusi; M. Brandalise; Correa, O. V.; A. O. Neto; M. Linardi; E. V. Spinacé

    2009-01-01

    PtRu/C electrocatalysts were prepared by hydrothermal carbonization process using starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. pH of the reaction medium was adjusted using KOH or TPAOH (tetrapropylammonium hydroxide). The obtained PtRu/C electrocatalysts were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry and chronoamperometr...

  13. Polyherbal preparation for anti-diabetic activity: A screening study

    Noopur Srivastava; Gaurav Tiwari; Ruchi Tiwari

    2010-01-01

    Objective: To screen the Polyherbal preparation for anti-diabetic activity in rats. Materials and Methods: The blood glucose lowering activity of the Polyherbal preparation-I (1:1:1 of Wheat germ oil, Coriandrum sativum and Aloe vera) was studied in normal rats after oral administration at doses of 1.0 and 2.0 ml/kg and Polyherbal preparation-I, II (Wheat germ oil, fresh juice of C. sativum and Aloe vera in the ratio of 2:2:1), and III (Wheat germ oil, fresh juice of C. sativum and Aloe vera ...

  14. Preparation of lamellar carbon matrix for sulfur as cathode material of lithium-sulfur batteries

    Sulfur is a promising cathode material for lithium batteries as it has high theoretical specific capacity and low cost. However, practical electrochemical performance of lithium-sulfur batteries needs to be improved. In this work, a new method is described to prepare carbon matrix for sulfur to improve electrochemical properties of sulfur electrodes. The carbon matrix is prepared by deoxidizing carbon precursor synthesized by carbonizing sucrose with concentrated sulfuric acid. Carbon matrix-sulfur composite has been characterized by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared. Results indicate that carbon matrix-sulfur composite is composed of lamellas. The lamella contains a layer of carbon coating on the outside and chemical bonds of C-S. The formation of C-S bonds is promoted by deoxidizing carbon precursor. The carbon matrix-sulfur electrode exhibits improved discharge properties, which results from the appropriate structure. Carbon coating and C-S bonds confine sulfur and maintain contact between sulfur species and conductive carbon matrix

  15. Alumina-Activated Carbon Composite as Adsorbent of Procion Red Dye from Wastewater Songket Industry

    Poedji Loekitowati Hariani; Fatma Fatma; Zulfikar Zulfikar

    2015-01-01

    Alumina-activated carbon composite has been synthesized and studied for adsorption procion red dye. Composite was prepared by precipitation method aluminium hydroxide on the surface of activated carbon followed by calcinations. The Fourier transform Infra Red (FTIR), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) and Brunaeur Emmet Teller (BET) surface are being used to characterize the adsorbent. Batch adsorption experiments were carried out for the adsorption of...

  16. Adsorption of cationic dye methylene blue onto activated carbon obtained from horse chestnut kernel

    Momčilović Milan Z.; Purenović Milovan M.; Miljković Milena N.; Bojić Aleksandar Lj.; Ranđelović Marjan S.

    2011-01-01

    Horse chestnut kernel was used as the precursor for the preparation of powdered activated carbon using phosphoric acid as the activating agent. Batch adsorption experiments for the adsorption of cationic dye methylene blue from aqueous solutions were carried out using the obtained carbon as adsorbent. Equilibrium and kinetic experiments were conducted. The equilibrium data were fitted with the Langmuir, Freundlich and Temkin theoretical isotherm models. The best results was obtained in ...

  17. Na-doped hydroxyapatite coating on carbon/carbon composites: Preparation, in vitro bioactivity and biocompatibility

    Highlights: ► Na-HA coating with a thickness of 10 ± 2 μm was directly prepared onto C/C using ECD. ► The shear bonding strength of Na-HA coating on C/C is 5.55 ± 0.77 MPa. ► Na-HA coated C/C can rapidly induce bone-like apatite nucleation and growth on its surface in SBF. ► The Na-HA coating was better to improve the biocompatibility of C/C compared with HA coating. - Abstract: Na-doped hydroxyapatite (Na-HA) coating was directly prepared onto carbon/carbon (C/C) composites using electrochemical deposition (ECD) and the mean thickness of the coating is approximately 10 ± 2 μm. The formed Na-HA crystals which are Ca-deficient, are rod-like with a hexagonal cross section. The Na/P molar ratios of the coating formed on C/C substrate is 0.097. During the deposition, the Na-HA crystals grow in both radial and longitudinal directions, and faster along the longitudinal direction. The pattern formation of crystal growth leads to dense coating which would help to increase the bonding strength of the coating. The average shear bonding strength of Na-HA coating on C/C is 5.55 ± 0.77 MPa. The in vitro bioactivity of the Na-HA coated C/C composites were investigated by soaking the samples in a simulated body fluid (SBF) for 14 days. The results indicate that the Na-HA coated C/C composites can rapidly induce bone-like apatite nucleation and growth on its surface in SBF. The in vitro cellular biocompatibility tests reveal that the Na-HA coating was better to improve the in vitro biocompatibility of C/C composites compared with hydroxyapatite (HA) coating. It was suggested that the Na-HA coating might be an effective method to improve the surface bioactivity and biocompatibility of C/C composites.

  18. Preparation and evaluation of the homogeneity of milk as a candidate reference material for carbon-14

    A pilot project was initiated to study the feasibility of preparing milk as a candidate reference material for 14C near environmental levels. Two materials, MK-B at natural level of 14C and MK-C4 at an elevated level, have been prepared from pasteurized 2% dairy milk. MK-C4 was spiked with an appropriate amount of 14C-methylated casein tracer to achieve the elevated level. Several samples from MK-B and MK-C4 have been analyzed to test the homogeneity of these materials for the distribution of 14C. The samples were combusted in oxygen under 20 atmospheres pressure using a Parr bomb. The 14C concentrations were determined by liquid scintillation counting using Carbo-Sorb/Permafluor E+ cocktail. The results indicate that these materials are homogeneous with respect to 14C concentration even in sub-sample sizes of 0.25 g of the freeze-dried material. The precision of our 14C measurements, as expressed by the % relative standard deviation, is within 5%. The accuracy has been tested by analyzing replicate samples of the IAEA 14C quality assurance materials, C-3 (cellulose) and C-6 (ANU sucrose) and found to be within 3%. The lower limits of detection are 0.08, 0.05 and 0.02 Bq.g-1 of carbon for 20 ml of liquid scintillation mixture (Carbo-Sorb/Permafluor E+ = ∼0.67) loaded with up to 0.4g of carbon from the sample and counted for 3 cycles of 60, 180 and 1000 min each, respectively. Our measurements of 14C specific activities of MK-B and MK-C4 are 0.26 ± 0.01 and 15.3 ± 0.4 Bq.g-1 of carbon, respectively. (author)

  19. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  20. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  1. Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption%橡胶木屑基活性炭-聚氨酯复合材料的制备及其微波吸收性能

    Azizah Shaaban; Sian-Meng Se; Imran Mohd Ibrahim; Qumrul Ahsan

    2015-01-01

    采用 ZnCl2对橡胶木屑进行化学活化制备出活性炭。 ZnCl2与橡胶木屑的浸渍质量比为1.0-2.0,活化温度为500℃,时间为60 min。通过扫描电镜、X射线衍射和BET比表面分析仪探讨浸渍比例对活性炭孔结构的影响。结果表明,当浸渍比为1.5:1时,样品的比表面积和孔径分别为1301 m2/g 和0.37 cm3/g。通过化学发泡工艺将不同质量分数(1%,2%,3%,5%,8%)的活性炭填充至聚氨酯中制备出聚氨酯复合材料。在1-5 GHz频率范围内,复合材料吸收微波。随着活性炭含量增加,在1-3 GHz范围内,介电常数(ε’)和回波损耗增加。活性炭含量为8%时复合材料的介电常数达到最大值3.0。在1.8 GHz时,复合材料的回波损耗为10 dB。在-2.5 GHz,电磁屏蔽效率大于3 dB。与传统聚合物材料如填加金属的聚氨酯和聚酯相比,所制复合材料呈微波段吸收,可作为电磁屏蔽材料。%Activated carbons were prepared from rubber wood sawdust by chemical activation using ZnCl2 as an activation agent at 500 ℃ for 60 minutes with ZnCl2/dried rubber wood sawdust mass ratios from 1. 0 to 2. 0. Flat polyurethane ( PU) composites filled with the activated carbons were prepared by a chemical foaming method using different loading amounts of the activated car-bons to investigate their complex permittivity and the microwave absorption properties for use in electromagnetic interference ( EMI) shielding. It was found that the best activated carbon is obtained at a ratio of 1. 5, which has the highest Brunauer-Emmett-Teller surface area and a micropore volume of 1 301 m2/g and 0. 37 cm3/g, respectively. With increasing activated carbon content, the di-electric constant (ε’ ) and the return loss increase in the frequency range of 1-3 GHz. The composite filled with 8% activated car-bon has a maximum dielectric constant of 3. 0 and its return loss is above 10 dB at the global system mobile phone frequency of 1. 8 GHz. Its EMI

  2. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  3. Production of activated carbon from microalgae

    Hernández Férez, María del Remedio; Valdés Barceló, Francisco Javier; García Cortés, Ángela Nuria; Marcilla Gomis, Antonio; Chápuli Fernández, Eloy

    2008-01-01

    Presentado como póster en el 11th Mediterranean Congress of Chemical Engineering, Barcelona 2008. Resumen publicado en el libro de actas del congreso. Activated carbon is an important filter material for the removal of different compounds such as hazardous components in exhaust gases, for purification of drinking water, waste water treatment, adsorption of pollution from liquid phases, in catalysis, electrochemistry or for gas storage and present an important demand. Theoretically, activat...

  4. Interactions of xanthines with activated carbon

    Navarrete Casas, R. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain)]. E-mail: rncasas@ugr.es; Garcia Rodriguez, A. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain); Rey Bueno, F. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain); Espinola Lara, A. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain); Valenzuela Calahorro, C. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain); Navarrete Guijosa, A. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain)

    2006-06-30

    Because of their pharmaceutical and industrial applications, we have studied the adsorption of xanthine derivates (caffeine and theophylline) by activated carbon. To this end, we examined kinetic, equilibrium and thermodynamic aspects of the process. This paper reports the kinetics results. The experimental results indicate that the process was first order in C and the overall process was assumed to involve a single, reversible adsorption-desorption process obeying a kinetic law postulated by us.

  5. Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER).

    Araujo, Rafael A; Rubira, Adley F; Asefa, Tewodros; Silva, Rafael

    2016-02-10

    Cellulose nanowhiskers (CNW) from cotton, was prepared by acid hydrolysis and purified using a size selection process to obtain homogeneous samples with average particle size of 270 nm and 85.5% crystallinity. Purified CNW was used as precursor to carbon nanoneedles (CNN) synthesis. The synthesis of CNN loaded with different metals dopants were carried out by a nanoreactor method and the obtained CNNs applied as electrocatalysts for hydrogen evolution reaction (HER). In the carbon nanoneedles synthesis, Ni, Cu, or Fe worked as graphitization catalyst and the metal were found present as dopants in the final material. The used metal appeared to have direct influence on the degree of organization of the particles and also in the surface density of polar groups. It was evaluated the influence of the graphitic organization on the general properties and nickel was found as the more appropriate metal since it leads to a more organized material and also to a high activity toward HER. PMID:26686184

  6. Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials

    LI Jing; LI Jie; LAI Yan-qing; SONG Hai-sheng; ZHANG Zhi-an; LIU Ye-xiang

    2006-01-01

    Taking the selection of coal-tar pitch as precursor and KOH as activated agent, the activated carbon electrode material was fabricated for supercapacitor. The surface area and the pore structure of activated carbon were analyzed by Nitro adsorption method. The electrochemical properties of the activated carbons were determined using two-electrode capacitors in 6 mol/L KOH aqueous electrolytes. The influences of activated temperature and mass ratio ofKOH to C on the pore structure and electrochemical property of porous activated carbon were investigated in detail. The reasons for the changes of pore structure and electrochemical performance of activated carbon prepared under different conditions were also discussed theoretically. The results indicate that the maximum specific capacitance of 240 F/g can be obtained in alkaline medium, and the surface area, the pore structure and the specific capacitance of activated carbon depend on the treatment methods; the capacitance variation of activated carbon cannot be interpreted only by the change of surface area and pore structure, the lattice order and the electrolyte wetting effect of the activated carbon should also be taken into account.

  7. Production of activated carbons from waste tyres for low temperature NOx control.

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. PMID:26856444

  8. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry

    Lupul, Iwona; Yperman, Jan; Carleer, Robert; Gryglewicz, Grazyna

    2015-01-01

    Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were exa...

  9. The production of activated carbon using the equipment of thermal power plants and heating plants

    Osintsev, K. V.; Osintsev, V. V.; Dzhundubaev, A. K.; Kim, S. P.; Al'musin, G. T.; Akbaev, T. A.; Bogatkin, V. I.

    2013-08-01

    The production technology of activated carbon using the conventional equipment of the thermal power stations and boiler houses is proposed. The obtained product is directed into the systems of chemical water preparation and water drain of enterprises. The production cycle is invariable when producing the activated carbon by the proposed technology. The fuel consumption and heat losses are considerably reduced when implementing this technology compared with the known analogs of the carbon sorbent. The production efficiency increases if small dust particles are preliminary separated and coal is activated in narrow ranges of fraction sizes.

  10. Robust bifunctional aluminium–salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides

    Yuri A. Rulev

    2015-09-01

    Full Text Available Two new one-component aluminium-based catalysts for the reaction between epoxides and carbon dioxide have been prepared. The catalysts are composed of aluminium–salen chloride complexes with trialkylammonium groups directly attached to the aromatic rings of the salen ligand. With terminal epoxides, the catalysts induced the formation of cyclic carbonates under mild reaction conditions (25–35 °C; 1–10 bar carbon dioxide pressure. However, with cyclohexene oxide under the same reaction conditions, the same catalysts induced the formation of polycarbonate. The catalysts could be recovered from the reaction mixture and reused.

  11. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    Yu Aimin, E-mail: aiminyu@swin.edu.au [College of Chemical and Environmental Engineering, Hubei Normal University, 435002 (China); Faculty of Life and Social Sciences, Swinburne University of Technology, Melbourne, VIC 3122 (Australia); Zhang Xing [College of Chemical and Environmental Engineering, Hubei Normal University, 435002 (China); School of Chemical and Mathematic Sciences, Murdoch University, Perth, WA 6150 (Australia); Zhang Haili; Han, Deyan [College of Chemical and Environmental Engineering, Hubei Normal University, 435002 (China); Knight, Allan R. [School of Chemical and Mathematic Sciences, Murdoch University, Perth, WA 6150 (Australia)

    2011-10-30

    Highlights: > Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. > The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. > The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN){sub 6}]{sup 3-/4-} as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  12. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT

    T S Sonia; P A Mini; R Nandhini; Kalluri Sujith; Balakrishnan Avinash; S V Nair; K R V Subramanian

    2013-08-01

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.

  13. Densification and microstructure of carbon/carbon composites prepared by chemical vapor infiltration using ethanol as precursor

    2010-01-01

    Chemical vapor infiltration of carbon fiber felts with uniform initial bulk density of 0.47 g·cm-3 was investigated at the ethanol partial pressures of 5-20 kPa,as well as the temperatures of 1050,1100,1150 and 1200°C.Ethanol,diluted by nitrogen,was employed as the precursor of pyrolytic carbon.Polarized light microscopy(PLM),scanning electron microscopy and X-ray diffraction were adopted to study the texture of pyrolytic carbon deposited at various temperatures.A change from medium-to high-textured pyrolytic carbon was observed in the sample infiltrated at 1050°C.Whereas,homogeneous high-textured pyrolytic carbons were deposited at the temperatures of 1100,1150 and 1200°C.Extinction angles of 19°-21° were determined for different regions in the samples densified at the temperatures ranging from 1100 to 1200°C.Scanning electron microscopy of the fracture surface after bending test indicated that the prepared carbon/carbon composite samples exhibited a pseudo-plastic fracture behavior.In addition,fracture behavior of the carbon/carbon samples was obviously effected by their infiltration temperature.The fracture mode of C/C composites was transformed from shearing failure to tensile breakage with increasing infiltration temperature. Results of this study show that ethanol is a promising carbon source to synthesize carbon/carbon composites with homogeneously high-textured pyrolytic carbon over a wide range of temperatures(from 1100 to 1200°C).

  14. Preparation Of Pure Carbon From Heavy Oil Fly Ash

    The Egyptian production of heavy oil is approximately 12 million tons of heavy oil per year and approximately 5.3 million tons of this amount is used as fuel in the electric power stations. Based on the fact that the ash content of Egyptian heavy oil is approximately 0.2 %, about 10600 tons of fly ash is produced per/year which causes a lot of environmental problems such as dusting, release of the acidic liquids and heavy metals such as vanadium, nickel, zinc and unburned carbon. Treatment of fly ash by leaching of vanadium and zinc was carried out under different conditions to achieve the best leaching efficiency of both vanadium and zinc by sodium hydroxide. The leaching efficiency obtained was 91% for vanadium and 98% for zinc. This study was concerned with the precipitation of zinc at pH 7.5 as zinc hydroxide and the precipitation of vanadium as ammonium metavanadate at pH 8.5. Leaching of nickel, iron and other elements from the residue was carried out by 2M HCl under different conditions. The achieved leaching efficiency of nickel was 95% where as that of iron was 92%. Precipitation efficiency of both nickel and iron were 99.9%. The residue, which contains mainly unburned carbon, have been washed two times with water and dried at 200oC then ground to < 300μm. According to the achieved analysis of the obtained carbon, it can be characterized as pure carbon

  15. Carbon-mineral adsorbents prepared by pyrolysis of waste materials in the presence of tetrachloromethane.

    Leboda, Roman; Charmas, Barbara; Skubiszewska-Zieba, Jadwiga; Chodorowski, Stanislaw; Oleszczuk, Patryk; Gun'ko, Vladimir M; Pokrovskiy, Valery A

    2005-04-01

    Natural bentonite spent in the process of plant oil bleaching was used as an initial material for preparation of carbon-mineral adsorbents. The spent bleaching earth was treated using four procedures: T (thermal treatment); H (hydrothermal treatment); C (thermal treatment with addition of CCl4 vapor); M (modification of porous structure). Raw bentonite, RB (raw bleaching earth), and carbon materials prepared using plant oil were compared. The physicochemical characteristics of the adsorbents were determined using different methods: nitrogen adsorption/desorption, XRD, TEM, and MS-TPD. Carbon-mineral adsorbents contain from 5.23 to 19.92% C (w/w) and carbon adsorbents include from 84.2 to 91.18% C (w/w). Parallel processes of organic substance carbonization, porous structure modification, sublimation or evaporation of metal chlorides, and removal of hydrogen chloride take place during pyrolysis of waste mineral materials in the CCl4 atmosphere. PMID:15752782

  16. Less-costly activated carbon for sewage treatment

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  17. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  18. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  19. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    Gonzalez-Garcia, C.M.; Gonzalez, J.F.; Roman, S. [Extremadura Univ., Badajoz (Spain). Dept. de Fisica Aplicada

    2011-02-15

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  20. CO2 Activated Carbon Aerogel with Enhanced Electrochemical Performance as a Supercapacitor Electrode Material.

    Lee, Eo Jin; Lee, Yoon Jae; Kim, Jeong Kwon; Hong, Ung Gi; Yi, Jongheop; Yoon, Jung Rag; Song, In Kyu

    2015-11-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde in ambient conditions. A series of activated carbon aerogels (ACA-X, X = 1, 2, 3, 4, 5, and 6 h) were then prepared by CO2 activation of CA with a variation of activation time (X) for use as an electrode material for supercapacitor. Specific capacitances of CA and ACA-X electrodes were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples, ACA-5 h showed the highest BET surface area (2574 m2/g) and the highest specific capacitance (100 F/g). It was found that CO2 activation was a very efficient method for enhancing physicochemical property and supercapacitive electrochemical performance of activated carbon aerogel. PMID:26726618

  1. Preparation and characterization of carbons for the retention of halogens in the condenser vacuum system of a thermonuclear plant

    Roman, S. [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas, s/n, 06071 Badajoz (Spain)]. E-mail: sroman@unex.es; Gonzalez, J.F. [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas, s/n, 06071 Badajoz (Spain); Ganan, J. [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas, s/n, 06071 Badajoz (Spain); Sabio, E. [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas, s/n, 06071 Badajoz (Spain); Gonzalez-Garcia, C.M. [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas, s/n, 06071 Badajoz (Spain); Ramiro, A. [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas, s/n, 06071 Badajoz (Spain); Mangut, V. [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas, s/n, 06071 Badajoz (Spain)

    2006-06-30

    Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 deg. C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO{sub 2}, the influence of the temperature (700-950 deg. C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N{sub 2} adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N{sub 2} adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has S {sub BET} of 741 m{sup 2} g{sup -1}, V {sub mi} of 0.39 cm{sup 3} g{sup -1} and a iodine retention capacity of 429.3 mg g{sup -1}): carbon C (gasification with CO{sub 2} at 850 deg. Cduring 1 h), with S {sub BET} of 523 m{sup 2} g{sup -1}, V {sub mi} of 0.33 cm{sup 3} g{sup -1} and a iodine retention capacity of 402.5 mg g{sup -1}, and carbon D (gasification with CO{sub 2} at 900 deg. Cduring 1 h), whose S {sub BET} is 672 m{sup 2} g{sup -1}, V {sub mi} is 0

  2. Preparation and characterization of carbons for the retention of halogens in the condenser vacuum system of a thermonuclear plant

    Román, S.; González, J. F.; Gañán, J.; Sabio, E.; González-García, C. M.; Ramiro, A.; Mangut, V.

    2006-06-01

    Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO 2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N 2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N 2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m 2 g -1, Vmi of 0.39 cm 3 g -1 and a iodine retention capacity of 429.3 mg g -1): carbon C (gasification with CO 2 at 850 °C during 1 h), with SBET of 523 m 2 g -1, Vmi of 0.33 cm 3 g -1 and a iodine retention capacity of 402.5 mg g -1, and carbon D (gasification with CO 2 at 900 °C during 1 h), whose SBET is 672 m 2 g -1, Vmi is 0.28 cm 3 g -1 and has a iodine retention capacity of 345.2 mg g -1.

  3. Preparation and characterization of carbons for the retention of halogens in the condenser vacuum system of a thermonuclear plant

    Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 deg. C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 deg. C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has S BET of 741 m2 g-1, V mi of 0.39 cm3 g-1 and a iodine retention capacity of 429.3 mg g-1): carbon C (gasification with CO2 at 850 deg. Cduring 1 h), with S BET of 523 m2 g-1, V mi of 0.33 cm3 g-1 and a iodine retention capacity of 402.5 mg g-1, and carbon D (gasification with CO2 at 900 deg. Cduring 1 h), whose S BET is 672 m2 g-1, V mi is 0.28 cm3 g-1 and has a iodine retention capacity of 345.2 mg g-1

  4. Preparation of carbon nanotube composite material with metal matrix by electroplating

    AN Bai-gang; LI Li-xiang; Li Hong-xi

    2005-01-01

    It is demonstrated that the nickel can be deposited directly on the surface of carbon nanotubes without pre-sensitization by Sn2+ and Pd2+ in a watt bath containing suspended nanotubes by electroplating. The nickel is deposited as spherical nanoparticle on the nanotubes. By increasing reaction time, the carbon nanotube is fully coated with nickel. A probable model, which represents the formation process of carbon nanotube-nickel composites by electroplating, is presented. The results show that this method is efficient and simple for preparing carbon nanotube-metal composite.

  5. Preparation and characterization of morph-genetic aluminum nitride/carbon composites from filter paper

    Morph-genetic aluminum nitride/carbon composites with cablelike structure were prepared from filter paper template through the surface sol-gel process and carbothermal nitridation reaction. The resulting materials have a hierarchical structure originating from the morphology of cellulose paper. The aluminum nitride/carbon composites have the core-shell microstructure, the core is graphitic carbon, and the shell is aluminum nitride nanocoating formed by carbothermal nitridation reduction of alumina with the interfacial carbon in nitrogen atmosphere. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscope were employed to characterize the structural morphology and phase compositions of the final products

  6. Preparation of Nickel-Copper Bilayers Coated on Single-Walled Carbon Nanotubes

    Zhong Zheng

    2015-01-01

    Full Text Available Due to oxidizability of copper coating on carbon nanotubes, the interfacial bond strength between copper coating and its matrix is weak, which leads to the reduction of the macroscopic properties of copper matrix composite. The electroless coating technics was applied to prepare nickel-copper bilayers coated on single-walled carbon nanotubes. The coated single-walled carbon nanotubes were characterized through transmission electron microscope spectroscopy, field-emission electron microscope spectroscopy, X-ray diffractometry, and thermogravimetric analysis. The results demonstrated that the nickel-copper bilayers coated on single-walled carbon nanotubes possessed higher purity of unoxidized copper fine-grains than copper monolayers.

  7. Preparation and Characterization of Polycarbonate Modified Multiple-walled Carbon Nanotubes

    YU Jin-Gang; HUANG Ke-Long; LIU Su-Qin; TANG Jin-Chun

    2008-01-01

    To prepare polymer/carbon nanotube composites, polycarbonate was chosen to modify multiple-walled carbon nanotubes. Poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)], poly(butylene-co-ε-caprolactone carbonate),and poly[(propylene oxide)-co-(carbon dioxide)-co-(maleic anhydride)] were the polycarbonates which were used to modify multiple-walled carbon nanotubes, but only soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes could be obtained. Thermogravimetric analysis clearly indicated that more polycarbonates were attached to soluble poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes. The formation of surface functional groups and changes of nanotube structures and morphology were monitored by infrared spectroscopy, scanning electron microscopy and transmission electron microscopy, respectively. Because of their solubility and bioactive moieties,poly[(propylene oxide)-(carbon dioxide)-(ε-caprolactone)] modified multiple-walled carbon nanotubes may find their potential use in drug delivery.

  8. Activated carbon from thermo-compressed wood and other lignocellulosic precursors

    Capart, R.

    2007-05-01

    Full Text Available The effects of thermo-compression on the physical properties such as bulk density, mass yield, surface area, and also adsorption capacity of activated carbon were studied. The activated carbon samples were prepared from thermo-compressed and virgin fir-wood by two methods, a physical activation with CO2 and a chemical activation with KOH. A preliminary thermo-compression method seems an easy way to confer to a tender wood a bulk density almost three times larger than its initial density. Thermo-compression increased yield regardless of the mode of activation. The physical activation caused structural alteration, which enhanced the enlargement of micropores and even their degradation, leading to the formation of mesopores. Chemical activation conferred to activated carbon a heterogeneous and exclusively microporous nature. Moreover, when coupled to chemical activation, thermo-compression resulted in a satisfactory yield (23%, a high surface area (>1700 m2.g-1, and a good adsorption capacity for two model pollutants in aqueous solution: methylene blue and phenol. Activated carbon prepared from thermo-compressed wood exhibited a higher adsorption capacity for both the pollutants than did a commercial activated carbon.

  9. Raman Spectroscopy and Electrochemical Investigations of Pt Electrocatalyst Supported on Carbon Prepared through Plasma Pyrolysis of Natural Gas

    Tereza Cristina Santos Evangelista

    2015-01-01

    Full Text Available Physicochemical and electrochemical characterisations of Pt-based electrocatalysts supported on carbon (Vulcan carbon, C1, and carbon produced by plasma pyrolysis of natural gas, C2 toward ethanol electrooxidation were investigated. The Pt20/C180 and Pt20/C280 electrocatalysts were prepared by thermal decomposition of polymeric precursors at 350°C. The electrochemical and physicochemical characterisations of the electrocatalysts were performed by means of X-ray diffraction (XRD, transmission electron microscope (TEM, Raman scattering, cyclic voltammetry, and chronoamperometry tests. The XRD results show that the Pt-based electrocatalysts present platinum metallic which is face-centered cubic structure. The results indicate that the Pt20/C180 electrocatalyst has a smaller particle size (10.1–6.9 nm compared with the Pt20/C280 electrocatalyst; however, the Pt20/C280 particle sizes are similar (12.8–10.4 nm and almost independent of the reflection planes, which suggests that the Pt crystallites grow with a radial shape. Raman results reveal that both Vulcan carbon and plasma carbon are graphite-like materials consisting mostly of sp2 carbon. Cyclic voltammetry and chronoamperometry data obtained in this study indicate that the deposition of Pt on plasma carbon increases its electrocatalytic activity toward ethanol oxidation reaction.

  10. Preparation and characterization of Polyacrylonitrile/ Manganese Dioxides- based Carbon Nanofibers via electrospinning process

    Che Othman, F. E.; Yusof, N.; Jaafar, J.; Ismail, A. F.; Hasbullah, H.; Abdullah, N.; Ismail, M. S.

    2016-06-01

    This research reports the production of precursor polyacrylonitrile (PAN)/ manganese dioxide (MnO2) nanofibers (NFs) via electrospinning method followed by stabilization and carbonization processes. Nowadays, electrospinning has become a suitable method in manufacturing continuous NFs, thus it is employed to fabricate NFs in this study. The microstructural properties and adsorption competencies of the produced NFs were also studied. The NFs were prepared by electrospinning the polymer solution of Polyacrylonitrile (PAN) and Manganese Dioxide (MnO2) in, N, N-Dimethylformamide (DMF) solvent. The factors considered in this study were various polymer PAN/MnO2 concentrations which will significantly affect the specific surface area, fiber morphology and the diameter of the NFs prepared. Subsequently, heat treatment is applied by setting up the stabilization temperature at 275 °C and carbonization temperature at 800 °C with constant dwelling time (30 min). Nitrogen gas at constant rate 0.2 L/min was used for stabilization and carbonization with the stabilization rate (2 °C/min) and carbonization rate (5 °C/min). The carbon nanofibers (CNFs) produced were characterized using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) surface area and Fourier Transmission Infrared Spectroscopy (FTIR). It was found that the PAN/MnO2 CNFs were successfully produced with the carbonization temperature of 800 °C. The prepared PAN/MnO2 CNFs prepared showed an enhanced in specific surface area about two times compared to it precursor NFs.

  11. Isotropic and high density carbon made from carbonaceous powder prepared by distillation under reduced pressure

    It is attempted to produce high density, high strength and isotropic carbon made from carbonaceous powder. The carbonaceous powder was prepared by carbonization of coal-tar pitch at a temperature of 440 - 5000C and subsequent distillation under reduced pressure. The distillation was performed at a temperature of 300 - 5000C below the carbonization temperature. In some cases additional quinoline extraction was carried out on the powder. Green carbon body was formed without binder pitch under isostatic pressure at room temperature. The body was heat-treated at a temperature of 1100 - 28000C. Bulk density, weight loss, shrinkage, strength, lattice parameter, crystallite size and BAF of the obtained carbon body were measured. It is confirmed that high density, high strength and isotropic carbon made from the carbonaceous powder and the following results were obtained. 1) BS (benzene soluble) fraction, β-resin (benzene insoluble and quinoline soluble) fraction and QI (quinoline insoluble) fraction were able to fractionate by distillation under reduced pressure. Concentration gradient of each fraction seems to exist in the carbonaceous powder. 2) Using the powder prepared by a lower temperature of the carbonization and/or the distillation, the carbon body had higher bulk density and higher strength. 3) The β-resin fraction had the effects of increasing the green density and enhancing the shrinkage of carbon body during the heat treatment. (author)

  12. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.

    Zhang, Quanqing; Zhang, Qinghe; Xiong, Zhichao; Wan, Hao; Chen, Xiaoting; Li, Hongmei; Zou, Hanfa

    2016-01-01

    A sandwich-like composite composed of ordered mesoporous carbon-silica shell-coated graphene (denoted as graphene@mSiO2-C) was prepared by an in-situ carbonation strategy. A mesoporous silica shell was synthesized by a sol-gel method, and cetyltrimethyl ammonium bromide inside the mesopores were in-situ carbonized as a carbon source to obtain a carbon-silica shell. The resulting mesoporous carbon-silica material with a sandwich structure possesses a high surface area (600 m(2) g(-1)), large pore volume (0.587 cm(3) g(-1)), highly ordered mesoporous pore (3 nm), and high carbon content (30%). This material shows not only high hydrophobicity of graphene and mesoporous carbon but also a hydrophilic silica framework that ensures excellent dispersibility in aqueous solution. The material can capture many more peptides from bovine serum albumin tryptic digests than mesoporous silica shell-coated graphene, demonstrating great enrichment efficiency for peptides. Furthermore, the prepared composite was applied to the enrichment of low-abundance endogenous peptides in human serum. Based on Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry identification, the graphene@mSiO2-C could efficiently size-exclude proteins and enriches the low-abundant peptides on the graphene and mesoporous carbon. And based on the LC-MS/MS results, 892 endogenous peptides were obtained by graphene@mSiO2-C, hinting at its great potential in peptides analysis. PMID:26695263

  13. On the use of mesophase pitch for the preparation of hierarchical porous carbon monoliths by nanocasting

    Philipp Adelhelm, Karin Cabrera and Bernd M Smarsly

    2012-01-01

    Full Text Available A detailed study is given on the synthesis of a hierarchical porous carbon, possessing both meso- and macropores, using a mesophase pitch (MP as the carbon precursor. This carbon material is prepared by the nanocasting approach involving the replication of a porous silica monolith (hard templating. While this carbon material has already been tested in energy storage applications, various detailed aspects of its formation and structure are addressed in this study. Scanning electron microscopy (SEM, Hg porosimetry and N2 physisorption are used to characterize the morphology and porosity of the carbon replica. A novel approach for the detailed analysis of wide-angle x-ray scattering (WAXS from non-graphitic carbons is applied to quantitatively compare the graphene microstructures of carbons prepared using MP and furfuryl alcohol (FA. This WAXS analysis underlines the importance of the carbon precursor in the synthesis of templated porous carbon materials via the nanocasting route. Our study demonstrates that a mesophase pitch is a superior precursor whenever a high-purity, low-micropore-content and well-developed graphene structure is desired.

  14. TREATMENT OF RADIOACTIVE WASTE SOLUTIONS CONTAINING CESIUM AND STRONTIUM BY CHEMICALLY MODIFIED ACTIVATED CARBON

    The aim of this study is to develop activated carbon prepared from peach stone shell as an adsorbent for Cs+ and Sr2+ ions from their aqueous waste solutions. In this respect, five samples of peach stone shell were investigated. The first four samples were prepared by immersing the samples in different concentrations of either ZnCl2 or KOH, individually, prior to heat treatment at 500oC. The fifth sample was prepared only by thermal treatment at 500oC.The physical and chemical characteristics of the prepared samples were carried out. A comparative study for the removal of Cs+ and Sr2+ ions from their aqueous waste solutions using the investigated samples have been carried out using batch experiments.The different parameters affecting adsorption process such as contact time and metal ion concentration were studied. The results obtained showed that the activated carbon prepared using ZnCl2 was more effective than the other investigated samples for adsorbing Cs+ and Sr2+ ions since the removal percentages reached 85% and 98% , respectively, while the activated carbon prepared using KOH was less effective for the removal of the same elements since the removal percentages reached 69% and 60%, respectively. In case of using physically activated carbon, the removal percentages reached 18% and 25% for Cs+ and Sr2+, respectively.From the obtained data, it can be concluded that the activated carbon prepared using ZnCl2 can be used as a good adsorbent for the removal of the investigated elements that may present in radioactive waste solutions before their discharge to the environment

  15. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  16. Vibration damping with active carbon fiber structures

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  17. Effects of thermal activation conditions on the microstructure regulation of corncob-derived activated carbon for hydrogen storage

    Dabin Wang; Zhen Geng; Cunman Zhang; Xiangyang Zhou; Xupeng Liu

    2014-01-01

    Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt%at 40 bar and -196◦C. The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.

  18. Potential application of activated carbon from maize tassel for the removal of heavy metals in water

    Olorundare, O. F.; Krause, R. W. M.; Okonkwo, J. O.; Mamba, B. B.

    Water-pollution problems worldwide have led to an acute shortage of clean and pure water for both domestic and human consumption. Various technologies and techniques are available for water treatment which includes the use of activated carbon. In this study activated carbons used for the removal of lead (II) ions from water samples were prepared from maize tassels (an agricultural waste residue) which were modified using physical and chemical activation. In the physical activation CO2 was used as the activating agent, while in chemical activation H3PO4 with an impregnation ratio ranging from 1 to 4 was employed. The maize tassel was pyrolysed at different temperatures ranging from 300 °C to 700 °C in an inert atmosphere for a period of 60 min and activated at 700 °C for 30 min. The effects of activation temperature, impregnation ratio and duration were examined. The resultant modified tassels were characterised by measuring their particle-size distribution, porosities, pore volume, and pore-size distribution using scanning electron microscopy (SEM). The activated carbon produced by chemical activation had the highest BET surface area ranging from 623 m2 g-1 to 1 262 m2 g-1. The surface chemistry characteristics of the modified tassels were determined by FT-IR spectroscopy and Boehm’s titration method. The experimental data proved that properties of activated carbon depend on final temperature of the process, impregnation ratio and duration of the treatment at final temperature. The adsorption studies showed that chemically prepared activated carbon performed better than physically prepared activated carbon.

  19. Polyherbal preparation for anti-diabetic activity: A screening study

    Noopur Srivastava

    2010-01-01

    Full Text Available Objective: To screen the Polyherbal preparation for anti-diabetic activity in rats. Materials and Methods: The blood glucose lowering activity of the Polyherbal preparation-I (1:1:1 of Wheat germ oil, Coriandrum sativum and Aloe vera was studied in normal rats after oral administration at doses of 1.0 and 2.0 ml/kg and Polyherbal preparation-I, II (Wheat germ oil, fresh juice of C. sativum and Aloe vera in the ratio of 2:2:1, and III (Wheat germ oil, fresh juice of C. sativum and Aloe vera in the ratio of 1:2:2 on alloxan-induced diabetic rats, after oral administration at doses of 1.0 and 2.0 ml/kg. Blood samples were collected from the tail vein method at 0, 0.5, 1, 2, 4, 8, 12, and 24 h in normal rats and in diabetic rats at 0, 1, 3, 7, 15, and 30 days. Blood plasma glucose was estimated by the GOD/POD (glucose oxidase and peroxidase method. The data was compared statistically using the one-way ANOVA method followed by the Dunnett multiple component test. Statistical significance was set at P<0.05. Results: The Polyherbal preparation-I produced significant (P<0.05 reduction in the blood glucose level of normal rats and Polyherbal preparation-I, II, and III produced significant (P<0.01 reduction in the blood glucose level of diabetic rats during 30 days study and compared with that of control and Glibenclamide. Conclusion: The Polyherbal preparation-I showed a significant glucose lowering effect in normal rats and Polyherbal preparation-I, II, and III in diabetic rats. This preparation is going to be promising anti-diabetic preparation for masses; however, it requires further extensive studies in human beings.

  20. Carbon nanotube prepared from carbon monoxide by CVD method and its application as electrode materials

    AN Yuliang; YUAN Xia; CHENG Shinan; GEN Xin

    2006-01-01

    Carbon nanotubes with larger inner diameter were synthesized by the chemical vapor deposition of carbon monoxide (CO) on iron catalyst using H2S as promoting agent.It is found that the structure and morphology of carbon nanotubes can be tailored, to some degree, by varying the experimental conditions such as precursor components and process parameters.The results show that the presence of H2S may play key role for growing Y-branched carbon nanotubes.The products were characterized by SEM, TEM, and Raman spectroscopy, respectively.Furthermore, the obtained carbon nanotubes were explored as electrode materials for supercapacitor.

  1. Nickel/carbon nanofibers composite electrodes as supercapacitors prepared by electrospinning

    Nickel-embedded carbon nanofibers were prepared by the processes of stabilization and carbonation after electrospinning a mixture solution of nickel acetate and polyacrylonitrile in N,N-dimethylformamide. The surface morphology and structure of composites were examined by scanning electron microscope (SEM) and X-ray diffraction (XRD). Compared with performances of composite electrodes with different mass ratios of nickel and carbon by cyclic voltammetry (CV) and chronopotentiogram test, the results show that the introduction of a proper proportion of nickel into carbon could enhance both specific capacitance (SC) and electrochemical stability. The specific capacitance of the carbon nanofiber electrode without the Ni loading was 50 F/g, while that of 22.4 wt.% Ni/carbon electrode increased to 164 F/g. The improved specific capacitance may be attributed to synergic effects from each pristine component, and the electrochemical catalysis effect of nickel.

  2. Microstructure and properties of SiC-coated carbon fibers prepared by radio frequency magnetron sputtering

    Cheng, Yong; Huang, Xiaozhong; Du, Zuojuan; Xiao, Jianrong; Zhou, Shan; Wei, Yongshan

    2016-04-01

    SiC-coated carbon fibers are prepared at room temperature with different radio-frequency magnetron sputtering powers. Results show that the coated carbon fibers have uniform, continuous, and flawless surfaces. The mean strengths of the coated carbon fibers with different sputtering powers are not influenced by other factors. Filament strength of SiC-coated carbon fibers increases by approximately 2% compared with that of uncoated carbon fibers at a sputtering power of fibers increase by 9.3% and 12% at sputtering powers of 250 and 300 W, respectively. However, the mean strength of the SiC-coated carbon fibers decreased by 8% at a sputtering power of 400 W.

  3. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets

    El-Said Ibrahim El-Shafey; Haider Al-Lawati; Asmaa Soliman Al-Sumri

    2012-01-01

    A chemically prepared carbon was synthesized from date palm leaflets via sulphuric acid carbonization at 160℃.Adsorption of ciprofloxacin (CIP) from aqueous solution was investigated in terms of time,pH,concentration,temperature and adsorbent status (wet and dry).The equilibrium time was found to be 48 hr.The adsorption rate was enhanced by raising the temperature for both adsorbents,with adsorption data fitting a pseudo second-order model well.The activation energy,Ea,was found to be 17 kJ/mol,indicating a diffusion-controlled,physical adsorption process.The maximum adsorption was found at initial pH 6.The wet adsorbent showed faster removal with higher uptake than the dry adsorbent,with increased performance as temperature increased (25-45℃ ).The equilibrium data were found to fit the Langmuir model better than the Freundlich model.The thermodynamic parameters showed that the adsorption process is spontaneous and endothermic.The adsorption mechanism is mainly related to cation exchange and hydrogen bonding.

  4. Platinum-Niobium(V Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation

    Virginija KEPENIENĖ

    2016-05-01

    Full Text Available In the present work, Pt nanoparticles were deposited by means of microwave synthesis on the primary carbon supported Nb2O5 composite which was prepared in two different ways: (A by dispersion of Nb2O5 and carbon with the mass ratio equal to 1:1 in a 2-propanol solution by ultrasonication for 30 min. with further desiccation of the mixture and (B by heating the Nb2O5/C composite obtained according to the procedure (A at 500 °C for 2 h. The transmission electron microscopy was used to determine the shape and the size of catalyst particles. X-ray diffraction and inductively coupled plasma optical emission spectroscopy were employed to characterize the structure and composition of the synthesized catalysts. The electrocatalytic activity of the synthesized catalysts towards the oxidation of ethanol in an alkaline medium was investigated by means of cyclic voltammetry.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8609

  5. Investigation of physiologically active products obtained from carbon-ion irradiated actinomycetes

    Charged particles such as carbon-ions are superior to X-rays or gamma-rays in the physical and biological characteristics. The propose research project is aimed to provide new insights on antibiotic development. Mutants were prepared by heavy ion irradiation, examined the effect of physiologically active substances produced. Product(s) from carbon-ion irradiated microorganera suppressed growth of human cololectal cancer cells and breast cancer cells. We suggested that carbon-ion irradiated actinomycetes produce antitumor active product(s) for cololectal and breast cancer cells. (author)

  6. Carbon ceramic electrodes: preparation parameters, properties and application as electrochemical sensors

    Christiana Andrade Pessoa

    2009-03-01

    Full Text Available The electrodes based on carbon ceramic (CCE preparation has been improved during last decades, increasing the potential for application of electrodes and electrochemical sensors. The interest on these materials are principally related to their features such as renewable surface, high thermal stability and mechanical strength. This review sets out some of the key aspects related to CCEs, such as the preparation parameters, which directly influence in their electrochemical properties, besides some applications such as electrochemical sensors. Among the preparation factors stand out the precursor characteristic, carbon material type, precursor proportion, catalyst and carbon material. The CCE modification with electron mediator species can broaden the application as electrochemical sensors as increasing the selectivity and sensitivity.

  7. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  8. Preparation of Co/Pd alloy particles dispersed multiwalled carbon nanotube supported nanocatalysts via gamma irradiation

    New multiwalled carbon nanotube/silica supported cobalt-palladium bimetallic nanocatalysts (MWNT-silica/Co–Pd NPs) were prepared by a simple one step gamma irradiation method. The method involves the in-situ surface modification of MWNT with silica (MWNT-silica) and simultaneous formation of Co–Pd bimetallic NPs using gamma irradiation. The bimetallic NPs were stabilized by silica particles formed over the surface of MWNT. Extensive characterization studies have been performed on structural, morphological, and electrochemical, aspects of MWNT-silica/Co–Pd NPs. MWNT-silica/Co–Pd NPs were characterized by field emission scanning microscopy (FESEM), UV–visible spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy. The influence of irradiation dosage levels on the stabilizing effect of silica particles has been studied. The electrolytic activities of the MWNT-silica/Co–Pd NPs were investigated by cyclic voltammetry. - Highlights: ► New supported cobalt–palladium bimetallic nanocatalysts were prepared. ► Structural, morphological and electrochemical properties are reported. ► Electrocatalytic reduction of oxygen has been demonstrated for the new catalysts.

  9. Characterization by SEM, TEM and Quantum-Chemical Simulations of the Spherical Carbon with Nitrogen (SCN Active Carbon Produced by Thermal Decomposition of Poly(vinylpyridine-divinylbenzene Copolymer

    Vladyslav V. Lisnyak

    2009-09-01

    Full Text Available Amorphous Spherical Carbon with Nitrogen (SCN active carbon has been prepared by carbonization of poly(vinylpyridine-divinylbenzene (PVPDVB copolymer. The PVPDVB dehydrogenation copolymer has been quantum chemically (QC simulated using cluster and periodic models. Scanning electron microscopy (SEM, transmission electron microscopy (TEM and energy dispersive X-ray (EDX studies of the resulting product have conformed the QC computation results. Great structural similarity is found both at the nano- and micro-levels between the N-doped SCN carbon and its pure carbonic SKS analog.

  10. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    F Gaslain; J Parmentier; V Valtchev; J Patarin [Laboratoire de Materiaux a Porosite Controlee (LMPC), UMR CNRS 7016, ENSCMu Universite de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, (France); C Vix Guterl [Institut de Chimie des Surfaces et Interfaces (ICSI), UPR CNRS 9069, 15 rue Jean Starky, 68057 Mulhouse Cedex (France)

    2005-07-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter {<=} 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite {beta} (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N{sub 2} and CO{sub 2} adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and

  11. Structure of impregnated active carbons produced with almond shells - influence of impregnation methodology

    Alvim Ferraz, M.C.M.; Cabral Monteiro, J.L. [Oporto University, Porto (Portugal). Chemical Engineering Dept.

    2000-05-01

    Activated carbons impregnated with CoO, Co{sub 3}O{sub 4} and CrO{sub 3} were prepared, to be used in the oxidation destruction of atmospheric organic pollutants. To analyse the influence of impregnation methodology on the structure, the impregnation step was conducted after activation and after carbonization. When impregnation is made after activation, the impregnated salts must be deposited on the internal surface, blocking the access to part of the initial structure. When impregnation is made after carbonization, the impregnated active carbons have even more important contribution of micro and mesoporosity. The metallic impregnants catalyse the activation step, allowing a controlled development of the large micropores and mesopores, i.e. bigger for higher metal percentages and with Co{sub 3}O{sub 4} as catalyst. 18 refs., 2 figs., 6 tabs.

  12. Control of atmospheric emissions of volatile organic compounds using impregnated active carbons

    Alvim Ferraz, M.C.M.; Moeser, S.; Tonhaeeuser, M. [Oporto University, Oporto (Portugal). Chemical Engineering Dept.

    1999-10-01

    The combination of carbon adsorption with catalytic complete oxidation for control of emissions of n-hexane, 2,3-dimethylbutane, cyclohexane and benzene is analysed. The activities of activated carbons prepared with almond shells and impregnated with CoO, Co{sub 3}O{sub 4} and CrO{sub 3} were compared, in relation with carbon structure, catalyst content and catalyst species. The microcatalytic-chromatographic technique developed was very suitable for rapid comparison of catalytic activities, that are higher for carbons with a better development of surface area and pore volumes, and increased with increasing catalyst content. Catalytic activity of cobalt is better than that of chromium, the oxidation state of cobalt in Co{sub 3}O{sub 4} being better than in CoO. The catalytic activity depends clearly on the hydrocarbons chemical structure. 20 refs., 4 figs., 3 tabs.

  13. Production of activated carbon from TCR char

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  14. Preparation method of carbon aerogels as the target materials of laser inertial confinement fusion

    Resorcinol-formaldehyde (RF) aerogels with high RC ratio (molar ratio of resorcinol to catalyst) are prepared by using sol-gel process. They can be dried at ambient conditions by solvent substitution. Carbon aerogels are formed by pyrolyzing the RF aerogels, and the grain and pore size, density and specific surface area of aerogels can be controlled by adjusting the RC ratio and the concentration of resorcinol. The micro-structure of the porous carbon aerogels is measured by SEM and BET

  15. Copper-carbon nanocomposites prepared by solid-phase pyrolysis of copper phthalocyanine

    By using solid-phase pyrolysis of copper phthalocyanine we have prepared copper nanoparticles in carbon matrices. The elemental composition, structure and morphology of nanocomposites were investigated by scanning electron microscopy, energy dispersive X-ray microanalysis and X ray diffraction. Depending on the temperature and time of pyrolysis the sizes of copper nanoparticles can be varied from 10 nm to 400 nm. The structure of carbon matrices also strongly depends on the pyrolysis conditions, which allows to synthesize nanocomposites with given properties

  16. Activated carbon nanofiber webs made by electrospinning for capacitive deionization

    Activated carbon fiber (ACF) webs with a non-woven multi-scale texture were fabricated from polyacrylonitrile (PAN), and their electrosorption performance in capacitive deionization for desalination was investigated. PAN nanofibers were prepared by electrospinning, followed by oxidative stabilization and activation with carbon dioxide at 750–900 °C, resulting in the ACF webs that were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and nitrogen adsorption. The results show that the as-made ACFs have a specific surface area of 335–712 m2/g and an average nanofiber diameter of 285–800 nm, which can be tuned by varying the activation temperature. With the ACF webs as an electrode, an electrosorption capacity as high as 4.64 mg/g was achieved on a batch-type electrosorptive setup operated at 1.6 V. The ACF webs made by electrospinning are of potential as an excellent electrode material for capacitive deionization for desalination.

  17. Facile preparation of superhydrophobic surface with high adhesive forces based carbon/silica composite films

    Ruanbing Hu; Guohua Jiang; Xiaohong Wang; Xiaoguang Xi; Rijing Wang

    2013-11-01

    Glass substrates modified by carbon/silica composites are fabricated through a two-step process for the preparation of a superhydrophobic surface (water contact angle ≥ 150°). Carbon nanoparticles were first prepared through a deposition process on glass using a hydrothermal synthesis route, then the glass was modified by SiO2 using the hydrolysis reaction of tetraethylorthosilicate at room temperature. It is not only a facile method to create a superhydrophobic surface, but also helps to form a multi-functional surface with high adhesive forces.

  18. Preparation and characterization of aligned carbon nanotubes coated with titania nanoparticles

    YU Hongtao; ZHAO Huimin; QUAN Xie; CHEN Shuo

    2006-01-01

    Well-aligned carbon nanotubes coated with titania (TiO2) were prepared by atmospheric pressure chemical vapor deposition (APCVD), and the sequential experiments including carbon nanotubes preparation, air-oxidation purification and titania nanoparticles coating were performed at different temperatures in the same reactor. Scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction patterns (XRD), and energy- dispersive X-ray spectra (EDX) demonstrated the well-aligned nanotubes and TiO2 nanoparticles in close proximity and the average diameter of TiO2 nanoparticles was 11.5 nm.

  19. Chemical preparation and shock wave compression of carbon nitride precursors

    Two synthetic routes have been developed to produce high-molecular-weight organic precursors containing a high weight fraction of nitrogen. One of the precursors is a pyrolysis residue of melamine-formaldehyde resin. The second precursor is the byproduct of an unusual low-temperature combustion reaction of tetrazole and its sodium salt. These precursors have been shock compressed under typical conditions for diamond and wurtzite boron nitride synthesis in an attempt to recover a new ultrahard carbon nitride. The recovered material has been analyzed by X-ray diffraction, FTIR, and Raman microprobe analysis. Diamond is present in the recovered material. This diamond is well ordered relative to diamond shock synthesized from carbonaceous starting materials

  20. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    S. G. Herawan; Hadi, M. S.; Md. R. Ayob; A. Putra

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied....