WorldWideScience

Sample records for activated carbon gac

  1. Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes.

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-15

    Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors. PMID:26410699

  2. Biodegradation of high explosives on granular activated carbon [GAC]: Enhanced desorption of high explosives from GAC -- Batch studies

    Morley, M.C.; Speitel, G.E. Jr. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1999-03-01

    Adsorption to GAC is an effective method for removing high explosives (HE) compounds from water, but no permanent treatment is achieved. Bioregeneration, which treats adsorbed contaminants by desorption and biodegradation, is being developed as a method for reducing GAC usage rates and permanently degrading RDX and HMX. Because desorption is often the limiting mass transfer mechanism in bioregeneration systems, several methods for increasing the rate and extent of desorption of RDX and HMX are being studied. These include use of cosolvents (methanol and ethanol), surfactants (both anionic and nonionic), and {beta}- and {gamma}-cyclodextrins. Batch experiments to characterize the desorption of these HEs from GAC have been completed using Northwestern LB-830, the GAC being used at Pantex. Over a total of 11 days of desorption, about 3% of the adsorbed RDX was desorbed from the GAC using buffered water as the desorption fluid. In comparison, about 96% of the RDX was extracted from the GAC by acetonitrile over the same desorption period. Ethanol and methanol were both effective in desorbing RDX and HMX; higher alcohol concentrations were able to desorb more HE from the GAC. Surfactants varied widely in their abilities to enhance desorption of HEs. The most effective surfactant that was studied was sodium dodecyl sulfate (SDS), which desorbed 56.4% of the adsorbed RDX at a concentration of 500 mg SDS/L. The cyclodextrins that were used were marginally more effective than water. Continuous-flow column tests are underway for further testing the most promising of these methods. These results will be compared to column experiments that have been completed under baseline conditions (using buffered water as the desorption fluid). Results of this research will support modeling and design of further desorption and bioregeneration experiments.

  3. GAC

    GAC

    2014-01-01

          GAC-EPA Groupement des Anciens CERN-ESO Pensioners’ Association Association du Personnel du CERN CH-1211 GENEVE 23 e-mail : http://gac-epa@gac-epa.org web : http://www.gac-epa.org Nous vous annonçons que l’Assemblée générale ordinaire 2014 du GAC aura lieu le mercredi 26 mars 2014 à 14h00 à l’Amphithéâtre principal du CERN, bâtiment 60.

  4. Hydrogenophaga carboriunda sp. nov., a tertiary butyl alcohol-oxidizing, psychrotolerant aerobe derived from granular-activated carbon (GAC).

    Reinauer, Kimberly M; Popovic, Jovan; Weber, Christopher D; Millerick, Kayleigh A; Kwon, Man Jae; Wei, Na; Zhang, Yang; Finneran, Kevin T

    2014-04-01

    A Gram-negative, rod-shaped bacterium was isolated from a mixed culture that degraded tert-butyl alcohol (TBA) in a granular-activated carbon (GAC) sample from a Biological-GAC reactor. Strain YZ2(T) was assigned to the Betaproteobacteria within the family Comamonadaceae based on 16S rRNA gene similarities. The nearest phylogenetic relative (95.0 % similarity) with a valid name was Hydrogenophaga taeniospiralis. The DNA G+C content was 66.4 mol%. DNA:DNA hybridization indicated that the level of relatedness to members of the genus Hydrogenophaga ranged from 1.1 to 10.8 %. The dominant cellular fatty acids were: 18:1 w7c (75 %), 16:0 (4.9 %), 17:0 (3.85 %), 18:0 (2.93 %), 11 methyl 18:1 w7c (2.69 %), Summed Feature 2 (2.27 %), and 18:0 3OH (1.35 %). The primary substrate used was TBA, which is a fuel oxygenate and groundwater contaminant. YZ2(T) was non-motile, without apparent flagella. It is a psychrotolerant, facultative aerobe that grew between pH 6.5 and 9.5, and 4 and 30 °C. The culture grew on and mineralized TBA at 4 °C, which is the first report of psychrotolerant TBA degradation. Hydrogen was used as an alternative electron donor. The culture also grew well in defined freshwater medium with ethanol, butanol, hydroxy isobutyric acid, acetate, pyruvate, citrate, lactate, isopropanol, and benzoic acid as electron donors. Nitrate was reduced with hydrogen as the sole electron donor. On the basis of morphological, physiological, and chemotaxonomic data, a new species, Hydrogenophaga carboriunda is proposed, with YZ2(T) as the type strain. PMID:24343174

  5. GAC

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. * * * * * Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  6. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO3- was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD5 TKN and dye removal efficiencies of only 64.7 ± 4.9% and 50.2 ± 6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD5). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW + glucose) or Thai rice noodle wastewater (TWW + TRNWW), respectively. SRT of the systems were 28 ± 1 days and 31 ± 2 days with TWW + glucose and TWW + TRNWW, respectively

  7. Removal of absorbable organic halides (aox) from recycled paper mill effluent using granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR)

    Paper mills generate varieties of pollutants depending upon the type of the pulping process. Paper mill wastewaters have high chemical oxygen demand (COD) and colour, indicating high concentrations of recalcitrant organics. The study was conducted employing a Granular Activated Carbon - Sequencing Batch Biofilm Reactor (GAC-SBBR), containing 3.0 L working volume, operated in aerobic condition and packed with 200 g/L of 2-3 mm granular activated carbon (coconut shells) as a medium for biofilm growth. For the first couple of month, the HRT was 36 hours and the HRT of this reactor was adjusted to 24 hours in order to evaluate the performance of the system. The treated wastewater sample for these studies came from a recycle paper factory from MNI Sdn Bhd with 4 different samples characteristics. The adsorbable organic halides (AOX) to be determined and treated were Pentachlorophenol (PCP), 2,3,4,5-Tetrachlorophenol (2,3,4,5-TeCP), 2,4,6-Trichlorophenol (2,4,6-TCP), 2,4-Dichlorophenol ( 2,4-DCP), 2-Chlorophenol (CP) and phenol. Results showed that, the biofilm attached onto granular activated carbon (GAC) could substantially remove these recalcitrant in the wastewater. More over, results from the studies showed that high removal was achieved by the biofilm SBR with 10-100% removal of AOX and depending on HRT. (Author)

  8. GAC

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 octobre de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. * * * * * Nous avons appris avec tristesse les décès de : M. Maurice RACLET (1934), retraité en 1995 (ex-division ST), décédé le 2 septembre 2010. Il laisse une veuve : Mme Nelly RACLET M. Michel MONESI (193...

  9. Modelling GAC adsorption of biologically pre-treated process water from hydrothermal carbonization.

    Fettig, J; Liebe, H

    2015-01-01

    Granular-activated carbon (GAC) adsorption of biologically pre-treated process waters from hydrothermal carbonization (HTC) of different materials was investigated. Overall, isotherms showed that most of the dissolved organic substances are strongly adsorbable while the non-adsorbable fractions are small. The equilibrium data were modelled by using five fictive components to represent the organic matter. Mean film transfer coefficients and mean intraparticle diffusivities were derived from short-column and batch kinetic test data, respectively. Breakthrough curves in GAC columns could be predicted satisfactorily by applying the film-homogeneous diffusion model and using the equilibrium and kinetic parameters determined from batch tests. Thus, the approach is suited to model GAC adsorption of HTC process water under technical-scale conditions. PMID:26114274

  10. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively. PMID:23542216

  11. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  12. 75 FR 981 - Certain Activated Carbon From the People's Republic of China: Notice of Rescission of Changed...

    2010-01-07

    ... powdered activated carbon (``PAC''), granular activated carbon (``GAC''), and pelletized activated carbon... International Trade Administration Certain Activated Carbon From the People's Republic of China: Notice of... circumstance review (``CCR'') of the antidumping duty order on certain activated carbon from the......

  13. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  14. Evaluation of activated carbon processes for removing trihalomethane precursors from a surface water impoundment

    Lavinder, Steven Robert

    1987-01-01

    A pilot plant study was conducted in Newport News, Virginia to investigate the effectiveness of powdered activated carbon [PAC] and granular activated carbon [GAC], with and without preoxidation, for reducing trihalomethane [THM] precursor concentrations in Harwood's Mill Reservoir water. Preoxidation with ozone followed by GAC is referred to as the "biological activated carbonâ [BAC] process. This study showed that the GAC and BAC processes obtained the same level of organic...

  15. Microtiter plate based colorimetric assay for characterization of dehalogenation activity of GAC/Fe0 composite

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.;

    2015-01-01

    Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, a quantification of nZVI reactivity has not been standardized. Here, we developed series of colorimetric assays for determining reductive activity of...... microplate having 230 μL of sample volume and 2 h of reaction time. The three groups of compounds, nitrate, nitrobenzene, and para-positioned halogenated phenols, showed graduated reactivity and were possible to distinguish a reaction mechanism between normal reduction and catalytic behaviour of second metal....... The applicability was successfully proven by determining reactivity of GAC/Fe(0) composite prepared in various reduction conditions. It was shown that reactivity of GAC/Fe(0) was significantly influenced by reduction conditions, i.e. pH and reduction time, and addition of second metal further...

  16. Promoting direct interspecies electron transfer with activated carbon

    Liu, Fanghua; Rotaru, Amelia-Elena; Shrestha, Pravin M.;

    2012-01-01

    Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation of...... methanogenesis might be to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens. Metabolism was substantially accelerated when GAC was added to co-cultures of Geobacter metallireducens and Geobacter sulfurreducens grown under conditions previously shown to require DIET. Cells...... were attached to GAC, but did not aggregate as they do when making biological electrical connections between cells. Studies with a series of gene deletion mutants eliminated the possibility that GAC promoted electron exchange via interspecies hydrogen or formate transfer and demonstrated that DIET in...

  17. GacS-dependent regulation of enzymic and antifungal activities and synthesis of N-acylhomoserine lactones in rhizospheric strain Pseudomonas chlororaphis 449.

    Veselova, M; Lipasova, V; Protsenko, M A; Buza, N; Khmel, I A

    2009-09-01

    Pseudomonas chlororaphis strain 449 isolated from the rhizosphere of maize suppresses numerous plant pathogens in vitro. The strain produces phenazine antibiotics and synthesizes at least three types of quorum sensing signaling molecules, N-acylhomoserine lactones. Here we have shown that the rhizospheric P. chlororaphis strains 449, well known strain 30-84 as well as two other P. chlororaphis strains exhibit polygalacturonase activity. Using mini-Tn5 transposon mutagenesis, four independent mutants of strain P. chlororaphis 449 with insertion of mini-Tn5 Km2 in gene gacS of two-component GacA-GacS system of global regulation were selected. All these mutant strains were deficient in production of extracellular proteinase(s), phenazines, N-acylhomoserine lactones synthesis, and did not inhibit the growth of G(+) bacteria in comparison with the wild type strain. The P. chlororaphis 449-06 gacS (-) mutant studied in greater detail was deficient in polygalacturonase, pectin methylesterase activities, swarming motility and antifungal activity. It is the first time the involvement of GacA-GacS system in the regulation of enzymes of pectin metabolism, polygalacturonase and pectin methylesterase, was demonstrated in fluorescent pseudomonads. PMID:19937212

  18. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties. PMID:27131303

  19. Mobile GAC system cleans up petroleum leak

    Industry experts have been aware of carbon technology's environmental benefits for more than a decade. These benefits derive in part from granular activated carbon's (GAC) physical properties, including attrition resistance, high surface area, adsorption rate and capacity. Most often used to remove dissolved organics, industrial solvents and other toxic chemicals from groundwater, wastewater and potable sources, GAC expedites EPA compliance and is ideal for a wide variety of remediation applications. Secondary benefits of GAC systems include decolorization, odor control and solvent recovery. Now, pressure-rated systems are available to improve remediation efficiency and speed compliance. Using high-quality GAC, these systems adsorb groundwater contaminants to less-than-detectable concentrations with minimum downtime. This paper reports on a hydrogeological study conducted to investigate the extent of contamination and make recommendations on the best technology available to begin remediating the site. Forty-five monitoring wells were installed to identify the plume's vertical and horizontal profiles, direction of flow and groundwater characteristics. Results were used to identify ideal locations for placing the purge wells necessary to begin remediation

  20. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxy

  1. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  2. Persulfate Oxidation Regeneration of Granular Activated Carbon: Reversible Impacts on Sorption Behavior

    Chemical oxidation regeneration of granular activated carbon (GAC) is a developing technology that can be carried out utilizing thermally-activated persulfate. During chemical regeneration of GAC, aggressive oxidative conditions lead to high acidity (pH < 2) and the accumulation ...

  3. COMPARISON OF PHENOL REMOVAL IN ANAEROBIC FLUIDIZED BED REACTORS WITH SAND AND GAC MEDIA

    A.R. Yazdanbakhsh; A.R. Mesdaghinia; A. Torabian; M. Shariat

    1997-08-01

    Full Text Available In this study two identical anaerobic completely mixed fluidized bed reactors with GAC and sand media were employed for COD & phenol removal. At loading rate of 1.6 g phenol L-1d-1, the efficiency of phenol removal in GAC & sand reactors were 97.7% & 74%, respectively. At high loading rate of phenol (6.09 g phenol I: 1d1 the efficiency of phenol removal in GAC reactor was better than 95%. In GAC reactor, the main mechanism for phenol removal at steady state condition was biological process; this was concluded through balance of gas production and COD removal. Better efficiency of GAC reactor comparing with sand reactor was because of resistance to fluctuations, higher surface for biomass growth and adsorption capacity of activated carbon.

  4. Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol.

    Toh, Run-Hong; Lim, Poh-Eng; Seng, Chye-Eng; Adnan, Rohana

    2013-09-01

    The objectives of the study are to use immobilized acclimated biomass and immobilized biomass-powdered activated carbon (PAC) as a novel approach in the bioregeneration of granular activated carbon (GAC) loaded with phenol and o-cresol, respectively, and to compare the efficiency and rate of the bioregeneration of the phenolic compound-loaded GAC using immobilized and suspended biomasses under varying GAC dosages. Bioregeneration of GAC loaded with phenol and o-cresol, respectively, was conducted in batch system using the sequential adsorption and biodegradation approach. The results showed that the bioregeneration efficiency of GAC loaded with phenol or o-cresol was basically the same irrespective of whether the immobilized or suspended biomass was used. Nonetheless, the duration for bioregeneration was longer under immobilized biomass. The beneficial effect of immobilized PAC-biomass for bioregeneration is the enhancement of the removal rate of the phenolic compounds via adsorption and the shortening of the bioregeneration duration. PMID:23796608

  5. GAC-EPA

    GAC-EPA

    2012-01-01

    It saddens us deeply to learn of the passing away of Jean-Paul Diss who died suddenly on 7 June 2012 at his home.  A tribute can be read on the GAC-EPA site. * * * * * Information: http://gac-epa.org/ e-mail: gac-epa@gac-epa.org

  6. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon

    Bhatnagar, A.; Ji, M.; Choi, Y.H.;

    2008-01-01

    Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process...... variables such as chemical ratio and activation temperature. Experimental results reveal that chemical weight ratio of 200% and temperature of 500 degrees C was found to be optimum for the maximum removal of nitrate from water. Both untreated and ZnCl2 treated coconut GACs were characterized by scanning...... capacity of untreated and ZnCl2 treated coconut GACs were found 1.7 and 10.2 mg/g, respectively. The adsorption of nitrate on ZnCl2 treated coconut GAC was studied as a function of contact time, initial concentration of nitrate anion, temperature, and pH by batch mode adsorption experiments. The kinetic...

  7. Adsorption And Simultaneous Dechlorination Of PCBs On GAC/Fe/Pd: Mechanistic Aspects And Reactive Capping Barrier Concept

    There are many concerns and challenges in current remediation strategies for sediments contaminated with polychlorinated biphenyls (PCBs). Our efforts have been geared toward the development of granular activated carbon (GAC) impregnated with reactive iron/palladium (Fe/Pd) bime...

  8. GAC - EPA

    GAC - EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 septembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 octobre, 2 novembre et 7 décembre.   Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.     * * * * * Nous avons appris avec tristesse les décès de : M. Georges MARCHAND (1932), décédé le 08 août 2010. Il avait été mis en pens...

  9. Granular activated carbon/pyrite composites for environmental application: synthesis and characterization.

    Liang, Chenju; Lee, Po-Han

    2012-09-15

    The goal of this study was to produce a reactive granular activated carbon (GAC) coated with pyrite (FeS(2)) for environmental remediation, which would combine both functions of GAC adsorption and FeS(2) reduction reactions. GAC-FeS(2) composite materials have been successfully prepared via sequential processes, i.e., incipient wetness iron impregnation, transformation into hematite (Fe(2)O(3)) by calcination at 300 °C and sulfurization by calcination at 400 °C. The point of zero charge (pH(PZC)) of GAC washed with nitric acid (HNO(3)) decreased to improve the drawing of iron ionic species into the pores of GAC and the results of FTIR confirmed the predominance of carboxylic acid groups which cause a negative charged GAC surface. XRD results indicated that the calcined composites are transitional GAC-Fe(2)O(3) and final GAC-FeS(2). The obtained FeS(2) crystallite size calculated using Scherrer formulae was around 31-34 nm and SEM/SEI showed FeS(2) had an angular shape. The existence of FeS(2) in GAC gave rise to a significant reduction of BET surface and pore volume. However, even though these reductions may result in the decrease of adsorption capacity when compared to the virgin GAC, the coated reactive FeS(2) may result in the abiotic transformation of adsorbates such as trichloroethylene (TCE) and this would compensate for the loss of adsorption. Furthermore, the preliminary results of TCE experiments on GAC-FeS(2) adsorption/dechlorination revealed that the composite initially accumulated and confined TCE on GAC and gradually dechlorinated TCE by embedded FeS(2). PMID:22795588

  10. Comparison between sequential and simultaneous application of activated carbon with membrane bioreactor for trace organic contaminant removal.

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Nghiem, Long D; Price, William E; Guo, Wenshan; Ngo, Huu H; Tung, Kuo-Lun

    2013-02-01

    The removal efficiency of 22 selected trace organic contaminants by sequential application of granular activated carbon (GAC) and simultaneous application of powdered activated carbon (PAC) with membrane bioreactor (MBR) was compared in this study. Both sequential application of GAC following MBR treatment (MBR-GAC) and simultaneous application of PAC within MBR (PAC-MBR) achieved improved removal (over 95%) of seven hydrophilic and biologically persistent compounds, which were less efficiently removed by MBR-only treatment (negligible to 70%). However, gradual breakthrough of these compounds occurred over an extended operation period. Charged compounds, particularly, fenoprop and diclofenac, demonstrated the fastest breakthrough (complete and 50-70%, in MBR-GAC and PAC-MBR, respectively). Based on a simple comparison from the long-term performance stability and activated carbon usage points of view, PAC-MBR appears to be a better option than MBR-GAC treatment. PMID:23313687

  11. Effect of granular activated carbon concentration on the content of organic matter and salt, influencing E. coli activity and survival in fluidized bed disinfection reactor

    Racyte, J.; Langenhoff, A.A.M.; Ribeiro, A.F.M.M.R.; Paulitsch-Fuchs, A.H.; Bruning, H.; Rijnaarts, H.

    2014-01-01

    Granular activated carbon (GAC) is used in water treatment systems, typically to remove pollutants such as natural organic matter, volatile organic compounds, chlorine, taste, and odor. GAC is also used as a key component of a new technology that combines a fluidized bed reactor with radio frequency

  12. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream. PMID:21683520

  13. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  14. Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment.

    Frank, Joshua; Ruhl, Aki Sebastian; Jekel, Martin

    2015-12-15

    The use of granular activated carbon (GAC) in fixed bed filters is a promising option for the removal of organic micropollutants (OMP) from wastewater treatment plant effluents. Frequent backwashing of the filter bed is inevitable, but its effect on potential filter stratification is not well understood yet and thus has been evaluated in the present study for two commercial GAC products. Backwashing of GAC filters was simulated with 10 or 100 filter bed expansions of 20 or 100% at backwash velocities of 12 and 40 m/h, respectively. Five vertical fractions were extracted and revealed a vertical stratification according to grain sizes and material densities. Sieve analyses indicated increasing grain sizes towards the bottom for one GAC while grain sizes of the other GAC were more homogeneously distributed throughout the filter bed. The apparent densities of the top sections were significantly lower than that of the bottom sections of both products. Comparative long term fixed bed adsorption experiments with the top and bottom sections of the stratified GAC showed remarkable differences in breakthrough curves of dissolved organic carbon, UV light absorption at 254 nm wavelength (UVA254) and OMP. GAC from the upper section showed constantly better removal efficiencies than GAC from the bottom section, especially for weakly adsorbing OMP such as sulfamethoxazole. Furthermore correlations between UVA254 reductions and OMP removals were found. PMID:26405842

  15. 75 FR 26927 - Certain Activated Carbon From the People's Republic of China: Notice of Preliminary Results of...

    2010-05-13

    ...: Certain Activated Carbon From the People's Republic of China, 71 FR 59721 (October 11, 2006); unchanged in... merchandise subject to this order is certain activated carbon. Certain activated carbon is a powdered... powdered activated carbon (``PAC''), granular activated carbon (``GAC''), and pelletized......

  16. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. PMID:26836607

  17. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons.

    Cooper, Anne Marie; Hristovski, Kiril D; Möller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g(-1) dry media and ∼4 L g(-1) dry media of water contaminated with 30 μg L(-1) TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant. PMID:20688429

  18. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g-1 dry media and ∼4 L g-1 dry media of water contaminated with 30 μg L-1 TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  19. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents

  20. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration

  1. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  2. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  3. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality. PMID:23306264

  4. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. PMID:26360230

  5. Effect of carbon content on magnetostructural properties of Mn3GaC

    Effect of carbon content on magnetostructural transformation in antiperovskites of the type Mn3GaCx (x=0.8, 1.0 and 1.05) has been investigated. It is found that increase in carbon content changes the ground state from ferromagnetic metallic (x=0.8) to antiferromagnetic semiconducting (x=1.05) type. This has been attributed to localization of itinerant Mn 3d electrons due to increased Mn3d – C2p hybridization. Such a hybridization strengthens Mn–C–Mn antiferromagnetic interactions over Mn–Mn ferromagnetic interactions. Further, magnetic field can be used as a tool to modulate the relative strengths of these ferromagnetic and antiferromagnetic interactions thereby affecting the nature and strength of magnetocaloric properties. - Highlights: • Effect of carbon content on magnetostructural transformation in Mn3GaCx has been investigated. • Increase in C content changes the ground state from FM metallic to AFM semiconducting type. • This behavior can be understood to be due to increased Mn3d – C2p hybridization • Magnetic field can be used to modulate the relative strengths of competing magnetic interactions

  6. Effect of carbon content on magnetostructural properties of Mn{sub 3}GaC

    Dias, E.T. [Department of Physics, Goa University, Goa 403206 (India); Priolkar, K.R., E-mail: krp@unigoa.ac.in [Department of Physics, Goa University, Goa 403206 (India); Nigam, A.K. [Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2014-08-01

    Effect of carbon content on magnetostructural transformation in antiperovskites of the type Mn{sub 3}GaC{sub x} (x=0.8, 1.0 and 1.05) has been investigated. It is found that increase in carbon content changes the ground state from ferromagnetic metallic (x=0.8) to antiferromagnetic semiconducting (x=1.05) type. This has been attributed to localization of itinerant Mn 3d electrons due to increased Mn3d – C2p hybridization. Such a hybridization strengthens Mn–C–Mn antiferromagnetic interactions over Mn–Mn ferromagnetic interactions. Further, magnetic field can be used as a tool to modulate the relative strengths of these ferromagnetic and antiferromagnetic interactions thereby affecting the nature and strength of magnetocaloric properties. - Highlights: • Effect of carbon content on magnetostructural transformation in Mn{sub 3}GaC{sub x} has been investigated. • Increase in C content changes the ground state from FM metallic to AFM semiconducting type. • This behavior can be understood to be due to increased Mn3d – C2p hybridization • Magnetic field can be used to modulate the relative strengths of competing magnetic interactions.

  7. Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon

    The present study suggests a combined adsorption and Fenton oxidation using an acid treated Fe-amended granular activated carbon (Fe-GAC) for effective removal of bisphenol A in water. When the Fe-GAC adsorbs and is saturated with BPA in water, Fenton oxidation of BPA occurs in ...

  8. Radon removal by poe gac systems: Design, performance, and cost

    The report summarizes previous research conducted by Lowry Engineering, Inc. (LEI), the Maine Department of Human Services, Division of Health Engineering, and the University of Maine, Department of civil Engineering, on the removal of Rn from drinking water supplies using granular activated carbon (GAC) in 121 point-of-entry (POE) applications. The primary focus of the work was an analysis of the existing treatment data collected over the past seven years at POE locations in 12 states. All but three systems treated private househuLd well supplies. In addition, two schools and one public water supply were included. In summary, the POE GAC treatment was very effective, with the exception of approximately 6 percent of the units that exhibited diminishing effectiveness over time. Ninety-four and 84 percent of all units exceeded 90 and 95 percent removal, respectively. The need for gamma shielding was evaluated and related to the raw water Rn level treated by the POE devices. While POE GAC installations were found to be effective, the use of GAC for Rn removal may be limited in the future to wells containing less than 5,000 to 10,000 pCi/L. This would result if the private residence desired to achieve the new MCL for Rn, which is expected to be set between 200 and 2,000 pCi/L

  9. Influence of activated carbon preloading by EfOM fractions from treated wastewater on adsorption of pharmaceutically active compounds.

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2016-05-01

    In this study, the preloading effects of different fractions of wastewater effluent organic matter (EfOM) on the adsorption of trace-level pharmaceutically active compounds (PhACs) onto granular activated carbon (GAC) were investigated. A nanofiltration (NF) membrane was employed to separate the EfOM by size, and two GACs with distinct pore structures were chosen for comparison. The results showed that preloading with EfOM substantially decreased PhAC uptake of the GACs; however, comparable PhAC adsorption capacities were achieved on GACs preloaded by feed EfOM and the NF-permeating EfOM. This indicates that: (1) the NF-rejected, larger EfOM molecules with an expectation to block the PhAC adsorption pores exerted little impact on the adsorbability of PhACs; (2) the smaller EfOM molecules present in the NF permeate contributed mainly to the decrease in PhAC uptake, mostly due to site competition. Of the two examined GACs, the wide pore-size-distributed GAC was found to be more susceptible to EfOM preloading than the microporous GAC. Furthermore, among the fourteen investigated PhACs, the negatively charged hydrophilic PhACs were generally subjected to a greater EfOM preloading impact. PMID:26891356

  10. Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system.

    Li, Yuanqing; Kemper, Jerome M; Datuin, Gwen; Akey, Ann; Mitch, William A; Luthy, Richard G

    2016-07-01

    Low molecular weight, uncharged, halogenated disinfection byproducts (DBPs) are poorly removed by the reverse osmosis and advanced oxidation process treatment units often applied for further treatment of municipal wastewater for potable reuse. Granular activated carbon (GAC) treatment effectively sorbed 22 halogenated DBPs. Conversion of the GAC to a cathode within an electrolysis cell resulted in significant degradation of the 22 halogenated DBPs by reductive electrolysis at -1 V vs. Standard Hydrogen Electrode (SHE). The lowest removal efficiency over 6 h electrolysis was for trichloromethane (chloroform; 47%) but removal efficiencies were >90% for 13 of the 22 DBPs. In all cases, DBP degradation was higher than in electrolysis-free controls, and degradation was verified by the production of halides as reduction products. Activated carbons and charcoal were more effective than graphite for electrolysis, with graphite featuring poor sorption for the DBPs. A subset of halogenated DBPs (e.g., haloacetonitriles, chloropicrin) were degraded upon sorption to the GAC, even without electrolysis. Using chloropicrin as a model, experiments indicated that this loss was attributable to the partial reduction of sorbed chloropicrin from reducing equivalents in the GAC. Reducing equivalents depleted by these reactions could be restored when the GAC was treated by reductive electrolysis. GAC treatment of an advanced treatment train effluent for potable reuse effectively reduced the concentrations of chloroform, bromodichloromethane and dichloroacetonitrile measured in the column influent to below the method detection limits. Treatment of the GAC by reductive electrolysis at -1 V vs. SHE over 12 h resulted in significant degradation of the chloroform (63%), bromodichloromethane (96%) and dichloroacetonitrile (99%) accumulated on the GAC. The results suggest that DBPs in advanced treatment train effluents could be captured and degraded continuously by reductive electrolysis

  11. Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field.

    Rakowska, Magdalena I; Kupryianchyk, Darya; Koelmans, Albert A; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-12-15

    Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of PAHs and PCBs to powdered and granular activated carbons (AC) after three different sediment treatments: sediment mixed with powdered AC (PAC), sediment mixed with granular AC (GAC), and addition of GAC followed by 2 d mixing and subsequent removal ('sediment stripping'). Remediation efficiency was assessed by quantifying fluxes of PAHs towards SPME passive samplers inserted in the sediment top layer, which showed that the efficiency decreased in the order of PAC > GAC stripping > GAC addition. Sorption was very strong to PAC, with Log KAC (L/kg) values up to 10.5. Log KAC values for GAC ranged from 6.3-7.1 and 4.8-6.2 for PAHs and PCBs, respectively. Log KAC values for GAC in the stripped sediment were 7.4-8.6 and 5.8-7.7 for PAH and PCB. Apparent first order adsorption rate constants for GAC (kGAC) in the stripping scenario were calculated with a first-order kinetic model and ranged from 1.6 × 10(-2) (PHE) to 1.7 × 10(-5) d(-1) (InP). Sorption affinity parameters did not change within 9 months post treatment, confirming the longer term effectiveness of AC in field applications for PAC and GAC. PMID:25262554

  12. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor.

    Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D

    2016-06-01

    Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). PMID:26803903

  13. Use of chlorination, ozonization and GAC adsorption to eliminate triazine pesticides in water supplies; Eliminacion de plaguicidas en aguas de abastecimiento mediante cloracion, ozonizacion y adsorcion con GAC

    Ormad Melero, M. P.; Garcia Castillo, F. J.; Munarriz Cid, B.

    2009-07-01

    This study is focused on the research made between Facsa and Universidad de Zaragoza (Spain) related to the oxidation techniques application by chlorination and ozonization, and their combination with granular activated carbon (GAC) adsorption of mineral origin, in order to control triazine pesticides in water supplies. Experiments are carried out is a pilot plant. Although the chlorination or ozonization can partially degrade pesticides under study (atrazine, simazine, terbutilazine and bromacil), their passing through an adsorption column with GAC mineral, achieves their total removal when their initial concentrations are about 500 ng/l. These concentrations are obtained by fortification of studied sample. (Author) 9 refs.

  14. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation.

    Quan, Xie; Liu, Xitao; Bo, Longli; Chen, Shuo; Zhao, Yazhi; Cui, Xinyi

    2004-12-01

    An investigation was performed for the regeneration of three granular activated carbons (GACs) exhausted with acid orange 7 (AO7). The three GACs were made from different materials, i.e. coconut shells, almond nucleus and coal. The AO7 adsorption process was carried out in a continuous-flow adsorption column. After adsorption, the AO7-saturated GAC was dried at 120 degrees C, then regenerated in a quartz reactor by 2450 MHz microwave (MW) irradiation at 850 W for 5 min. The efficacy of this procedure was analyzed by determining the rates and amounts of AO7 adsorbed in successive adsorption-MW regeneration cycles. Effects of this regeneration on the structural properties, surface chemistry and the AO7 adsorption capacities of GAC samples were examined. It was found that after several adsorption-MW regeneration cycles, the adsorption rates and capacities of GACs could maintain relatively high levels, even higher than those of virgin GACs, as indicated by AO7 breakthrough curves and adsorption isotherms. The improvement of GAC adsorption properties resulted from the modification of pore size distribution and surface chemistry by MW irradiation. PMID:15556223

  15. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    Chen, Jiajun; Zhai, Yunbo; Chen, Hongmei; Li, Caiting; Zeng, Guangming; Pang, Daoxiong; Lu, Pei

    2012-12-01

    In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO3, H2O2 and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO3 were 723.88 m2/g and 0.229 cm3/g, respectively, while virgin GAC were 742.34 m2/g and 0.276 cm3/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Nsbnd CH3 group and Cdbnd N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H2O2 was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  16. GAC-EPA

    GAC-EPA

    2013-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  17. GAC-EPA

    GAC-EPA

    2013-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 3 décembre 2013. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  18. GAC-EPA

    GAC-EPA

    2013-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 1er octobre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 novembre et 3 décembre 2013. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  19. GAC-EPA

    GAC-EPA

    2013-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/ e-mail : gac-epa@gac-epa.org

  20. GAC-EPA

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. * * * * * Informations : http://gac-epa.org/ e-mail : gac-epa@gac-epa.org

  1. GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 février de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/ e-mail : gac-epa@gac-epa.org

  2. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 février de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er mars, 5 avril, 3 mai, 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  3. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 3 mai, 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre décembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  4. GAC-EPA

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 juin de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er septembre, 6 octobre, 3 novembre et 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  5. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 1er mars de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 avril, 3 mai, 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  6. GAC-EPA

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 mars de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 7 avril, 5 mai, 2 juin, 1er septembre, 6 octobre, 3 novembre et 1er décembre 2013. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  7. GAC-EPA

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 mai, 2 juin, 1er septembre, 6 octobre, 3 novembre et 1er décembre 2013. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  8. GAC-EPA

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  9. GAC-EPA

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 1er décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  10. GAC-EPA

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 février de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  11. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 3 mai, 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  12. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre décembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org.

  13. GAC-EPA

    GAC-EPA

    2014-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 4 février de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. Informations : http://gac-epa.org/. e-mail : gac-epa@gac-epa.org. * * * * * Carte de membre de l'Association du personnel du CERN Les membres GAC-EPA qui souhaitent recevoir une carte de membre AP en 2014 doivent  en faire la demande par email à secretariat@gac-epa.org, ou par lettre au secrétaire ...

  14. Comparison of activated carbon and bottom ash removal of reactive dye from aqueous solution

    Dincer, A.R.; Gunes, Y.; Karakaya, N.; Gunes, E. [Trakya University, Tekirdag (Turkey). Dept. of Environmental Engineering

    2007-03-15

    The adsorption of reactive dye from synthetic aqueous solution onto granular activated carbon (GAC) and coal-based bottom ash (CBBA) were studied under the same experimental conditions. As an alternative to GAC CBBA was used as adsorbent for dye removal from aqueous solution. The amount of Vertigo Navy Marine (VNM) adsorbed onto CBBA was lower compared with GAC at equilibrium and dye adsorption capacity increased from 0.71 to 3.82 mg g{sup -1}, and 0.73 to 6.35 mg g{sup -1} with the initial concentration of dye from 25 to 300 mg l{sup -1} respectively. The initial dye uptake of CBBA was not so rapid as in the case of GAC and the dye uptake was slow and gradually attained equilibrium.

  15. Microbial activity in granular activated carbon filters in drinking water treatment

    Knezev, A.

    2015-01-01

    The investigations described are carried out to analyse the microbiological processes in relation to the GAC characteristics and the removal of natural organic matter (NOM) in Granular Activated Carbon filters (GACFs) in water treatment. The main goal of the study was to obtain a qualitative descrip

  16. Use of chlorination, ozonization and GAC adsorption to eliminate triazine pesticides in water supplies

    This study is focused on the research made between Facsa and Universidad de Zaragoza (Spain) related to the oxidation techniques application by chlorination and ozonization, and their combination with granular activated carbon (GAC) adsorption of mineral origin, in order to control triazine pesticides in water supplies. Experiments are carried out is a pilot plant. Although the chlorination or ozonization can partially degrade pesticides under study (atrazine, simazine, terbutilazine and bromacil), their passing through an adsorption column with GAC mineral, achieves their total removal when their initial concentrations are about 500 ng/l. These concentrations are obtained by fortification of studied sample. (Author) 9 refs

  17. Microbiological Analysis of an Active Pilot-Scale Mobile Bioreactor Treating Organic Contaminants

    Samples were obtained for microbiological analysis from a granular activated carbon fluidized bed bioreactor (GAC-FBR). This GAC-FBR was in operation at a former manufactured gas plant (MGP) Site in Augusta Georgia for in situ groundwater bioremediation of organics. The samples included contaminated site groundwater, GAC-FBR effluent, and biofilm coated granular activated carbon at 5, 9, and 13 feet within the GAC-FBR column. The objective of this analysis was to correlate contaminant removal with microbiological activity within the GAC-FBR

  18. Adsorption of dissolved natural organic matter by modified activated carbons.

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  19. Pilot Study on Nanofiltration Combined with Ozonation and GAC for Advanced Drinking Water Treatment

    XUE Gang; HE Sheng-bing; WANG Xin-ze

    2004-01-01

    A pilot-scale study of advanced drinking water treatment was carried out in test site, and a combination of ozonation, granular activated carbon (GAC) and nanofiltration was employed as the experimental process. By optimizing the operational parameters of ozonation and GAC, a large quantity of micro-pollutants in drinking water was removed, which made the post-positioned nanofiltration operate more reliably. It was evident that nanofiltration shows good performance for removing residual organic matter, meantime partial minerals can also be retained by nanofiltration. Therefore the quality of drinking water can be further improved. In addition, NF membrane fouling and scaling can be solved by concentrate recycling, anti-scalant dosing and chemical rinsing effectively. By GAC adsorption for the residue chlorine and ozone self-decomposition, their oxidation on NF membrane material can be eliminated completely.

  20. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester.

    Xu, Suyun; He, Chuanqiu; Luo, Liwen; Lü, Fan; He, Pinjing; Cui, Lifeng

    2015-11-01

    Two sizes of conductive particles, i.e. 10-20 mesh granulated activated carbon (GAC) and 80-100 mesh powdered activated carbon (PAC) were added into lab-scale upflow anaerobic sludge blanket reactors, respectively, to testify their enhancement on the syntrophic metabolism of alcohols and volatile fatty acids (VFAs) in 95days operation. When OLR increased to more than 5.8gCOD/L/d, the differences between GAC/PAC supplemented reactors and the control reactor became more significant. The introduction of activated carbon could facilitate the enrichment of methanogens and accelerate the startup of methanogenesis, as indicated by enhanced methane yield and substrate degradation. High-throughput pyrosequencing analysis showed that syntrophic bacteria and Methanosarcina sp. with versatile metabolic capability increased in the tightly absorbed fraction on the PAC surface, leading to the promoted syntrophic associations. Thus PAC prevails over than GAC for methanogenic reactor with heavy load. PMID:26298405

  1. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. PMID:26897407

  2. Effect of Activated Carbon Amendment on Bacterial Community Structure and Functions in a PAH Impacted Urban Soil

    Meynet, Paola; Hale, Sarah E.; Davenport, Russell J; Cornelissen, Gerard; Breedveld, Gijs D.; Werner, David

    2012-01-01

    We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophores...

  3. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.

    Gangupomu, Roja Haritha; Sattler, Melanie L; Ramirez, David

    2016-01-25

    The overall goal was to determine an optimum pre-treatment condition for carbon nanotubes (CNTs) to facilitate air pollutant adsorption. Various combinations of heat and chemical pre-treatment were explored, and toluene was tested as an example hazardous air pollutant adsorbate. Specific objectives were (1) to characterize raw and pre-treated single-wall (SW) and multi-wall (MW) CNTs and compare their physical/chemical properties to commercially available granular activated carbon (GAC), (2) to determine the adsorption capacities for toluene onto pre-treated CNTs vs. GAC. CNTs were purified via heat-treatment at 400 °C in steam, followed by nitric acid treatment (3N, 5N, 11N, 16N) for 3-12 h to create openings to facilitate adsorption onto interior CNT sites. For SWNT, Raman spectroscopy showed that acid treatment removed impurities up to a point, but amorphous carbon reformed with 10h-6N acid treatment. Surface area of SWNTs with 3 h-3N acid treatment (1347 m(2)/g) was higher than the raw sample (1136 m(2)/g), and their toluene maximum adsorption capacity was comparable to GAC. When bed effluent reached 10% of inlet concentration (breakthrough indicating time for bed cleaning), SWNTs had adsorbed 240 mg/g of toluene, compared to 150 mg/g for GAC. Physical/chemical analyses showed no substantial difference for pre-treated vs. raw MWNTs. PMID:26476807

  4. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    Chang, Shenteng; Lu, Chungsying, E-mail: clu@nchu.edu.tw; Lin, Kun-Yi Andrew

    2015-01-30

    Graphical abstract: A comparison of TMAH adsorption capacity with GO, NaY and GAC is conducted and the result reveals that the magnitude of qe follows the order of GO > NaY > GAC. The adsorption capacity of GO is significantly higher than those of zeolite and activated carbon in this and reported studies, showing its encouraging potential. GO also exhibits good reversibility of TMAH adsorption through 10 cycles of adsorption and desorption process. This reflects that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment. - Highlights: • Adsorption kinetics and isotherms of TMAH to GO, NaY and GAC are compared. • Thermodynamics of TMAH adsorption to GO, NaY and GAC is determined. • GO exhibits the highest TMAH adsorption capacity, followed by NaY and GAC. • Recyclabilities of NaY and GO remain above 95% but that of GAC dropped to 70%. - Abstract: Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  5. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    Graphical abstract: A comparison of TMAH adsorption capacity with GO, NaY and GAC is conducted and the result reveals that the magnitude of qe follows the order of GO > NaY > GAC. The adsorption capacity of GO is significantly higher than those of zeolite and activated carbon in this and reported studies, showing its encouraging potential. GO also exhibits good reversibility of TMAH adsorption through 10 cycles of adsorption and desorption process. This reflects that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment. - Highlights: • Adsorption kinetics and isotherms of TMAH to GO, NaY and GAC are compared. • Thermodynamics of TMAH adsorption to GO, NaY and GAC is determined. • GO exhibits the highest TMAH adsorption capacity, followed by NaY and GAC. • Recyclabilities of NaY and GO remain above 95% but that of GAC dropped to 70%. - Abstract: Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment

  6. GAC-EPA

    GAC-EPA

    2013-01-01

    Carte de membre de l'Association du personnel du CERN Comme cela a été précisé dans le bulletin d'automne n° 43, les membres GAC-EPA qui souhaitent recevoir une carte de membre AP en 2013 devront en faire la demande, avant le 31 janvier, par email à secretariat@gac-epa.org, ou par lettre au secrétaire du GAC-EPA, p/a Association du personnel CERN, CH-1211 GENEVE 23. Il n'y a pas de tacite reconduction de ces cartes et par conséquent une demande doit être faite chaque année par l'intéressé(e).

  7. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa.

    Chambonnier, Gaël; Roux, Lorène; Redelberger, David; Fadel, Firas; Filloux, Alain; Sivaneson, Melissa; de Bentzmann, Sophie; Bordi, Christophe

    2016-05-01

    In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response. PMID:27176226

  8. Pesticide (acephate) removal by GAC: a case study.

    Banerjee, G; Kumar, B

    2002-04-01

    Pesticides are persistent pollutants which need utmost attention in agricultural pollution. They usually accumulate in the food chain, and hence are hazardous in nature. The present study reports the performance of granular activated carbon (GAC) in the removal of acephate contained in the effluent of a nearby pesticide manufacturing industry. In the batch study, the optimum dose of GAC was found to be 85 gm/litre for almost 100% removal of acephate from its initial concentration of 2.9 mg/litre which was found in the industrial effluent under treatment. The adsorption kinetics were represented closely by Langmuir isotherm. The equilibrium time was found as 80 minutes. The adsorptive capacity of GAC for acephate (pesticide) was of the order of 0.04614 mg/gm. A column system was devised and designed based on bed depth-service time (BDST) approach with the experimental value of 'a' and 'b' as 6.125 and 47.75 respectively. PMID:14503380

  9. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L-1 sorbed 82% of RB5 (100 mg L-1) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH0 of 7, current density of 277 A m-2, and NaCl of 1 g L-1. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L-1 effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L-1, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A265 (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  10. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Su, Yu-Chun; Chang, Chih-Yuan [Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, 300, Taiwan (China)

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L{sup -1} sorbed 82% of RB5 (100 mg L{sup -1}) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH{sub 0} of 7, current density of 277 A m{sup -2}, and NaCl of 1 g L{sup -1}. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L{sup -1} effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L{sup -1}, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A{sub 265} (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  11. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    Henke, J.L.; Speitel, G.E. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1998-08-01

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

  12. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft2, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance

  13. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    Highlights: → The morphology, content and distribution of ZrO2 nanoparticles inside the pores of GAC are affected by the type of GAC. → Lignite ZrO2-GAC exhibited Zr content of 12%, while bituminous based ZrO2-GAC exhibited Zr content of 9.5%. → The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO3 buffered water matrix were ∼8.6 As/g Zr and ∼12.2 mg As/g Zr at pH = 7.6. → The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while ∼1.5 mg As/g Zr and ∼3.2 mg As/g Zr at pH = 7.6. → Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO2-GAC, while the one of bituminous ZrO2-GAC decreased. - Abstract: This study investigated the effects of in situ ZrO2 nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 oC in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO2 nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO3 buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C0 ∼ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal suggested that

  14. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    Chen Jiajun [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhai Yunbo, E-mail: ybzhai@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen Hongmei; Li Caiting; Zeng Guangming; Pang Daoxiong; Lu Pei [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The effects of pretreatment on the surface chemistry and pore sizes were studied. Black-Right-Pointing-Pointer Treated GAC was nitrogen functionalized and alkylated GAC also called modified GAC. Black-Right-Pointing-Pointer HNO{sub 3} pretreatment caused a slight decrease in surface area and microporosity. Black-Right-Pointing-Pointer The nitrogen percentage of modified GAC which pretreated by H{sub 2}O{sub 2} was 4.07%. Black-Right-Pointing-Pointer The pyridine of modified GAC which pretreated by urea-formaldehyde resin was 45.88%. - Abstract: In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO{sub 3}, H{sub 2}O{sub 2} and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO{sub 3} were 723.88 m{sup 2}/g and 0.229 cm{sup 3}/g, respectively, while virgin GAC were 742.34 m{sup 2}/g and 0.276 cm{sup 3}/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). N-CH{sub 3} group and C=N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H{sub 2}O{sub 2} was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  15. Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay

    Wasewar, Kailas L. [Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra (India); Kumar, Pradeep; Teng, Tjoon Tow [Environmental Technology Division, School of Industrial Technology, University Science of Malaysia, Minden, Penang (Malaysia); Chand, Shri; Padmini, Bina N. [Department of Chemical Engineering, Indian Institute of Technology, Roorkee (India)

    2010-07-15

    The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A-clay). GAC was of commercial grade where as the A-clay was prepared by acid treatment of clay with 1 mol/L of H{sub 2}SO{sub 4}. Bulk densities of A-clay and GAC were 1132 and 599 kg/m{sup 3}, respectively. The surface areas were 358 m{sup 2}/g for GAC and 90 m{sup 2}/g for A-clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A-clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A-clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP. PMID:25465650

  17. Advanced wastewater treatment by nanofiltration and activated carbon for high quality water reuse

    Kazner, Christian

    2012-01-01

    Hybrid processes combining activated carbon and nanofiltration have been studied to identify the optimum solution for advanced wastewater treatment in high quality water reclamation and reuse. With a focus on the removal of bulk and trace organic compounds the investigation identified three promising process combinations, namely powdered activated carbon followed by nanofiltration (PAC/NF), granular activated carbon followed by nanofiltration (GAC/NF) and nanofiltration followed by granular a...

  18. Adsorption and biodegradation of high explosives on granular activated carbon

    Morley, M.C.; Shammas, S.; Speitel, G.E. Jr.

    1999-07-01

    Adsorption to granular activated carbon (GAC) is an effective method for removing high explosives (HE) compounds from water, but no permanent treatment is achieved. An off-line bioregeneration system, which combines adsorption and biodegradation, is being developed to reduce GAC usage rates and destroy RDX and HMX. Desorption is often the limiting mass transfer mechanism in bioregeneration systems; thus, two cosolvents, four surfactants, and two cyclodextrins were considered for improving desorption of RDX and HMX. In batch experiments, about 3% of the adsorbed RDX was desorbed over 11 days using buggered water as the desorption fluid. In comparison, about 96% of the RDX was extracted from the GAC by acetonitrile. Ethanol and methanol were both effective in desorbing RDX and HMX. Sodium dodecyl sulfate (SDS), an anionic surfactant, desorbed 56.4% of the RDX at a concentration of 500 mg SDS/L. Cyclodextrins were marginally more effective than water. Continuous operation of a sequencing batch reactor (SBR) has effectively treated both contaminants. In an SBR that was operated with 4-day cycles for 72 days, mixed cultures consistently reduced RDX concentrations from 1 mg/L to non-detectable levels and HMX from 0.6 mg/L to 0.4 mg/L over each cycle. When removal from groundwater by adsorption is combined with enhanced desorption and subsequent biological treatment, the overall process is expected to effectively increase the GAC service life and provide a permanent treatment method for RDX and HMX.

  19. GAC-EPA

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.     René Oberli 1930 – 2011 Nous avons le regret  de vous annoncer le décès de notre collègue et ami René Oberli survenu le 24 décembre 2011. Vous trouverez un hommage sur le site web du GAC-EPA sous http://www.gac-epa.org/History/Tributes/2011/Ren...

  20. Mechanisms of granular activated carbon anaerobic fluidized-bed process for treating phenols wastewater

    2002-01-01

    Granular activated carbon (GAC) anaerobic fluidized-bed reactor was applied to treating phenols wastewater. When influent phenol concentration was 1000 mg/L, volume loadings of phenol and CODCr were 0.39 kg/(m3*d) and 0.98 kg/(m3*d), their removal rates were 99.9% and 96.4% respectively. From analyzing above results, the main mechanisms of the process are that through fluidizing GAC, its adsorption is combined with biodegradation, both activities are brought into full play, and phenol in wastewater is effectively decomposed. Meanwhile problems concerning gas-liquid separation and medium plugging are well solved.

  1. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS), which is the main contaminant in rinsing water. The main research question is to identify adsorption kinetics of LAS onto GAC-1240 and LDH. The influence of pre-treatment of the adsorbent, ...

  2. A gacS deletion in Pseudomonas aeruginosa cystic fibrosis isolate CHA shapes its virulence.

    Khady Mayebine Sall

    Full Text Available Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections, and no Type VI Secretion System (H1-T6SS. This virulence profile is due to a 426 bp deletion in the 3' end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor.

  3. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  4. "Comparison of Nanofiltration and GAC Adsorption Processes for Chloroform Removal from Drinking Water"

    S Nasseri

    2004-08-01

    Full Text Available In this research, the Chloroform (CHCl3 removal effectiveness of two water treatment systems including membrane technology and granular activated carbon (GAC adsorption were studied. Two bench-scales were designed and set up: 1 Nanofiltration (NF spiral-wound modules and 2 GAC adsorption column. Chloroform was considered as trihalomethanes (THMs basic indicator compound. The inlet and outlet CHCl3 concentrations were detected by gas chromatography (GC with electron capture detector (ECD. The study was carried out for the two cases of spiked deionized water with CHCl3 and chlorinated Tehran tap water. Flow rate, CHCl3 and total dissolved solids (TDS concentrations were considered in both treatment systems and the transmembrane pressures for membrane pilot, as the basic variables affecting removal efficiencies. Results showed that CHCl3 rejection coefficients for NF 300 Da, NF 600 Da and GAC Column, with various operation conditions had a range of 55.2% to 87.8%, 78% to 85% and 41.4% to 74.1%, respectively. It was found that removal efficiencies for NF 600 Da were lower than those of NF 300 Da and GAC column. The obtained data were analyzed by SPSS and non-parametric Kruskal-Wallis method. Results showed a positive correlation between the flow rate, CHCl3 concentration and chloroform rejection coefficients and the TDS concentration had no significant effect on chloroform removal efficiencies.

  5. GAC-EPA

    GAC-EPA

    2012-01-01

    Le GAC-EPA organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 5 juin de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  6. GAC-EPA

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 6 mars de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  7. GAC-EPA

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 4 décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  8. GAC-EPA

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 5 juin de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  9. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 6 décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  10. GAC-EPA

    GAC-EPA

    2014-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 décembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  11. Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6.

    Kim, Chul Hong; Kim, Yong Hwan; Anderson, Anne J; Kim, Young Cheol

    2014-06-01

    The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium. PMID:25289007

  12. GAC-EPA

    GAC-EPA

    2013-01-01

    Dear GAC-EPA members, This year, owing to works in the main Auditorium, we have to hold our General assembly in the auditorium of the Globe on 27 March 2013 and we really hope that you can be present. We wish to give you some preliminary practical recommendations: Do not forget your CERN access card, the guards may carry out checks. As far as possible, use public transport because there is very limited parking. If you come by car, park your vehicle on the car parks inside CERN because the outside car park cannot be used by visitors. Refreshments cannot be organized in the Globe; they will be held in cafeteria n°1, which will force us to move by using CERN entrances A or B or via building 33 (access cards required here too). We thank you for your attention and hope to see you soon. Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 avril de 13 h 30 à 16 h 00 Salle de réunion de l&rsquo...

  13. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment. PMID:26874318

  14. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  15. Removal of microcystin-LR from spiked water using either activated carbon or anthracite as filter material.

    Drogui, Patrick; Daghrir, Rimeh; Simard, Marie-Christine; Sauvageau, Christine; Blais, Jean François

    2012-01-01

    The occurrence of cyanobacterial toxins (blue-green algae) in drinking water sources is a big concern for human health. Removal of microcystin-LR (MC-LR) from drinking water was evaluated at the laboratory pilot scale using either granular activated carbon (GAC) or powdered activated carbon (PAC) and compared with the treatment using anthracite as filter material. Virgin GAC was more effective at removing MC-LR (initial concentration ranging from 9 to 47 microg L(-1)) to reach the World Health Organization recommended level (1.0 microg L(-1)). When the GAC filter was colonized by bacteria, the filter became less effective at removing MC-LR owing to competitive reactions occurring between protein adsorption (released by bacteria) and MC-LR adsorption. Using PAC, the concentration of MC-LR decreased from 22 to 3 microg L(-1) (removal of 86% of MC-LR) by the addition of 100 mg PAC L(-1). PMID:22629609

  16. Degradation of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst

    ZHANG Yao-bin; QUAN Xie; ZHAO Hui-min; CHEN Shuo; YANG Feng-lin

    2005-01-01

    A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid( 1-amino8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon (GAG), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.

  17. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : mardi 4 octobre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  18. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence, initialement prévue le 6 septembre est avancée au mardi 30 août de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  19. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence, initialement prévue le 6 septembre est avancée au mardi 30 août de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires  

  20. GAC-EPA

    GAC-EPA

    2012-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. CARTE DE MEMBRE Notre Groupement étant créé, selon nos Statuts, dans le cadre de l'Association du personnel du CERN (AP), chaque membre de notre Groupement est automatiquement membre de l'AP (statut 'membre pensionné'). En conséquence chacun d'entre nous p...

  1. GAC-EPA

    GAC-EPA

    2012-01-01

        Le GAC organise chaque mois des permanences avec entretiens individuels.     La prochaine permanence se tiendra le : Mardi 6 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La  permanence suivante aura lieu le mardi 4 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  2. GAC-EPA

    GAC-EPA

    2013-01-01

        Le GAC organise chaque mois des permanences avec entretiens individuels.     La prochaine permanence se tiendra le : Mardi 5 mars de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les  permanences suivantes auront lieu les mardis 2 avril, 7 mai, 4 juin, 3 septembre, 1er octobre,  5 novembre  et 3 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  3. GAC-EPA

    GAC-EPA

    2010-01-01

    GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO   Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 2 mars de 13h30 à 16h30 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 6 avril, 4 mai, 1er juin, 7 septembre, 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  4. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 février de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 8 mars, 5 avril, 4 mai, 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre.   Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * *

  5. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 6 septembre de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  6. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 4 octobre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les  permanences suivantes auront lieu les mardis 8 novembre et 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  7. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 3 mai de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  8. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 7 juin de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 6 septembre, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  9. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 8 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La  permanence suivante aura lieu le mardi 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  10. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 6 septembre de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les prochaines permanences auront lieu les mardis 4 octobre, 8 novembre et 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  11. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 8 novembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  12. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 6 septembre de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les  permanences suivantes auront lieu les mardis 4 octobre, 8 novembre et 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  13. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 13 avril de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 4 mai, 1er juin, 7 septembre, 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  14. GAC-EPA

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 2 juin, 1er septembre, 6 octobre, 3 novembre et 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  15. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence, initialement prévue le 7 juin est avancée au mardi 31 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  16. GAC-EPA

    GAC-EPA

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 juin de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er septembre, 6 octobre, 3 novembre et 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  17. GAC-EPA

    Staff Association

    2015-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 avril de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 mai, 2 juin, 1er septembre, 6 octobre, 3 novembre et 1er décembre 2015. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  18. GAC-EPA

    GAC-EPA

    2016-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 3 mai de 13 h 30 à 16 h 00 Salle de réunion de l’Association du personnel. Les permanences suivantes auront lieu les mardis 7 juin, 6 septembre, 4 octobre, 1er et 29 novembre 2016. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.

  19. ORC-GAC-Fe0 system for the remediation of trichloroethylene and monochlorobenzene contaminated aquifer: 1. Adsorption and degradation.

    Lin, Qi; Chen, Ying-xu; Plagentz, V; Schäfer, D; Dahmke, A

    2004-01-01

    Activities at a former Chemistry Triangle in Bitterfeld, Germany, resulted in contamination of groundwater with a mixture of trichloroethylene(TCE) and monochlorobenzene(MCB). The objective of this study was to develop a barrier system, which includes an ORC(oxygen release compounds) and GAC(granular activated carbon) layer for adsorption of MCB and bioregeneration of GAC, a Fe0 layer for chemical reductive dechlorination of TCE and other chlorinated hydrocarbon in situ. A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system. This experiment was performed using a series of continuous flow Teflon columns including an ORC column, a GAC column, and a Fe0 column. Simulated MCB and TCE contaminated groundwater was pumped upflow into this system at a flow rate of 1.1 ml/min. Results showed that 17%-50% of TCE and 28%-50% of MCB were dissipated in ORC column. Chloride ion, however, was not released, which suggest the dechlorination do not happen in ORC column. In GAC column, the adsorption of contaminants on activated carbon and their induced degradation by adapted microorganisms attached to the carbon surface were observed. Due to competitive exchange processes, TCE can be desorbed by MCB in GAC column and further degraded in iron column. The completely dechlorination rate of TCE was 0.16-0.18 cm(-1), 1-4 magnitudes more than the formation rate of three dichloroethene isomers. Cis-DCE is the main chlorinated product, which can be cumulated in the system, not only depending on the formation rate and its decaying rate, but also the initial concentration of TCE. PMID:14971463

  20. ORC-GAC-Fe0 system for the remediation of trichloroethylene and monochlorobenzene contaminated aquifer:1.Adsorption and degradation

    LIN Qi; CHEN Ying-xu; Plagentz V.; Sch(a)fer D.; Dahmke A.

    2004-01-01

    Activities at a former Chemistry Triangle in Bitterfeld, Germany, resulted in contamination of groundwater with a mixture of trichloroethylene(TCE) and monochlorobenzene(MCB). The objective of this study was to develop a barrier system, which includes an ORC(oxygen release compounds) and GAC(granular activated carbon) layer for adsorption of MCB and bioregeneration of GAC, a Fe0layer for chemical reductive dechlorination of TCE and other chlorinated hydrocarbon in situ. A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system. This experiment was performed using a series of continuous flow Teflon columns including an ORC column, a GAC column, and a Fe0 column. Simulated MCB and TCE contaminated groundwater was pumped upflow into this system at a flow rate of t. 1 ml/min. Results showed that 17%-50% of TCE and 28%-50% of MCB were dissipated in ORC column. Chloride ion, however, was not released, which suggest the dechlorination do not happen in ORC column. In GAC column, the adsorption of contaminants on activated carbon and their induced degradation by adapted microorganisms attached to the carbon surface were observed. Due to competitive exchange processes, TCE can be desorbed by MCB in GAC column and further degraded in iron column. The completely dechlorination rate of TCE was 0.16-0.18 cm-1, 1-4 magnitudes more than the formation rate of three dichloroethene isomers. Cis-DCE is the main chlorinated product, which can be cumulated in the system, not only depending on the formation rate and its decaying rate, but also the initial concentration of TCE.

  1. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  2. Removal and transformation of effluent organic matter (EfOM) in biotreated textile wastewater by GAC/O3 pre-oxidation and enhanced coagulation.

    Qian, Feiyue; Sun, Xianbo; Liu, Yongdi; Xu, Hongyong

    2013-01-01

    GAC/O3 (ozonation in the presence of granular activated carbon) combined with enhanced coagulation was employed to process biotreated textile wastewater for possible reuse. The doses of ozone, GAC and coagulant were the variables studied for optimization. The effects of different treatment processes on effluent organic matter (EfOM) characteristics, including biodegradability, hydrophobic and hydrophilic nature, and apparent molecular weight (AMW) distribution were also investigated. Compared with ozonation, GAC/O3 not only presented a higher pre-oxidation efficiency, but also improved the treatability of hydrophobic and high molecular weight compounds by enhanced coagulation. After treatment by GAC/O3 pre-oxidation (0.6 mg O3 x mg(-1) COD and 20 g x L(-1) GAC) and enhanced coagulation (25 mg x L(-1) Al3+ at pH 5.5), the removal efficiencies of chemical oxygen demand (COD), dissolved organic carbon (DOC) and colour were higher than those for coagulation alone by 17.3%, 12.0% and 25.6%, respectively. Residual organic matter consisted mainly of hydrophobic acids and hydrophilic compounds of AMW treatment strategy for removing EfOM from biotreated textile wastewater. PMID:24191486

  3. Activated Carbon Adsorption Properties of the Residual Matters in Textile Dyeing and Printing Secondary Effluent

    TIAN Qing; LI Fang; LIU Fang; YANG Bo; CHEN Ji-hua

    2008-01-01

    The research employed the adsorption isotherm measurement, the batch kinetic adsorption and the rapid small-scale carbon column test (RSSCT) to find out the characteristics and main impacting factors of granular activated carbon (GAC) adsorption, in treating the textile dyeing-printing/polyester alkali de-weighting secondary effluent (TSE). The adsorption affinities and capacities for the organics surrogated by CODCr, color and UV254 (UV absorbency at λ= 254 nm) predicted by isotherm, small-scale-fixed bed were discussed. Adsorption rates for CODCr, color and UV254 are much different and carbon particle size dependent. The color adsorption rate and capacity should be taken as the main consideration factors in designing bio-activated carbon filter(BACF). The breakthrough of GAC adsorption column is mainly influenced by the low MW readily adsorbable organics in TSE. UVm is a good adsorption breakthrough indicator. The study provides References for BACFs' design and operation control in textile secondary effluent (TSE) tertiary treatment.

  4. Comparative study of different types of granular activated carbon in removing medium level radon from water

    Granular activated carbon (GAC) has proven its effectiveness in removing radon from water supplies. Laboratory and pilot plant studies were carried out using three different types of activated carbons (F-300, F-400, and HD-4000) to remove radon from water supply. From the experimental kinetic study, the data indicated that at least 6 h are needed to attain equilibrium between radon activity adsorbed onto carbon and its concentration in the aqueous phase. Also, it showed that HD-4000 has higher capacity for removing radon than the other two investigated carbons F-300 and F-400. The adsorption isotherms were satisfactorily explained by Freundlich equation. In the pilot plant study, the performance of the three activated carbons in removing radon at medium concentration (∼111 Bq dm-3) was evaluated over 60 days of continuous water flow. Four empty-bed contact times (EBCTs) corresponding to four bed depths were continuously monitored and the corresponding steady state adsorption-decay constant values were calculated and the efficiency of each carbon was used to provide a facet for comparison. The γ-radiation exposure rate distribution throughout each GAC bed was measured and compared. This study, despite paucity of literature in this field, is useful for designing a GAC adsorption system for the removal of medium level radon concentration from water supplies. (author)

  5. Prediction and Simulation the Breakthrough of Residual Chlorine Removal by Granular Activated Carbon Adsorbent Using Artificial Neural Networks

    Rusul Naseer

    2012-07-01

    Full Text Available This study has included two parts. The first part has dealt with carbon production whereas the date Palm was used to produce Granular Activated Carbon (GAC with specific physical characteristics. The new produced of GAC is used to adsorbate the Residual chlorine from water by deep bed filter column. In the second part, the experimental results of the breakthrough of residual chlorine curves is predicted and simulated using artificial neural network with back propagation algorithm whereas the optimum number of neuron was investigated based on RMSE. The removal of residual chlorine has been used as target function in ANN while the other properties of adsorption process such as operation conditions, chlorine concentration in raw water and GAC characteristics has been used as input parameters. The results showed that ANN with back propagation algorithm is a good tool that can be used to predict the best operating parameter for designing GAC layer in multimedia filter whereas 35 neuron gave the best fitting with experimental data. In addition to that, the simulation result was showed that the predictions of breakthrough curve model has been coincided well with the measured values which explained that the depth 25 cm with grain size 1.5 mm of GAC filter bed will be give the optimum removal of residual chlorine from chlorinated water.

  6. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 février de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 8 mars, 5 avril, 4 mai, 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * * Nous avons appris avec tristesse les décès de : Mme Lyda GAECHTER (1927) survenu le 27 novembre 2010. Elle avait été mise en pension d&rsq...

  7. GAC-EPA

    GAC-EPA

    2011-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le :   Mardi 8 mars de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 avril, 4 mai, 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * * Nous avons appris avec tristesse le décès de : Mme Maria Pia GILI (1924) décédé le 30 janvier 2011, veuve de M. Aldo GILI retrait&a...

  8. GAC-EPA

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le :   Mardi 2 novembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 7 décembre.   Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * *   Nous avons appris avec tristesse le décès de :   M. Noël CRETIN décédé le 22 octobre 2010. Né en 1940. Entré au CERN en 1968, il avait pris sa retra...

  9. GAC-EPA

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 septembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. * * * * * Nous avons appris avec tristesse le décès de : M. Ugo Ubaldi (1927), décédé le 9 août 2010. Il avait été mis en pension d'invalidité &agrav...

  10. GAC-EPA

    GAC-EPA

    2010-01-01

    GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 7 septembre de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   Nous avons appris avec tristesse les décès de : M. Helmut Rottstock (1928), décédé le 14 juillet 2010. Il avait pris sa ret...

  11. GAC-EPA

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 5 octobre de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 2 novembre et 7 décembre.   Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * * Nous avons appris avec tristesse les décès de : M. Maurice RACLET (1934), retraité en 1995 (ex-division ST), décédé le 2 septembre 2010. Il lai...

  12. GAC-EPA

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 2 novembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel La permanence suivante aura lieu le mardi 7 décembre.   Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires. * * * * * Nous avons appris avec tristesse les décès de : M. Charles E. HILL, décédé le 4 octobre 2010. Né en 1942. Entré au CERN en 1969, il avait pris sa retraite en 2007 (ex-AB). Il laisse une veuve : Mrs...

  13. GAC-EPA

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le :   Mardi 7 décembre de 13h30 à 16h00   Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * *   Nous avons appris avec tristesse les décès de : M. Frank BLYTHE décédé le 22 octobre 2010. Né en 1924. Entré au CERN en 1956, il avait pris sa retraite en 1980 (ex-EP). Il laisse une veuve : Mrs Patricia BLYTHE. M. ...

  14. GAC-EPA

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 7 décembre de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * *   Nous avons appris avec tristesse les décès de : M. Fernand CONTANT, né en 1924, décédé le 10 novembre 2010. Entré au CERN en 1957, il avait pris sa retraite en 1985 (ex-PS). M. Antonio DE TENA, né en 1928, déc&e...

  15. GAC-EPA

    GAC-EPA

    2013-01-01

    En tant que Président du GAC-EPA, je porte à votre connaissance ce communiqué émanant de la Direction du CERN. Le 2 juin 2013, le CERN inaugure le projet Passeport Big Bang, un parcours touristique et scientifique formé de dix plates-formes d'exposition devant dix sites du CERN dans le Pays de Gex et le Canton de Genève. Les plateformes sont reliées par des itinéraires balisés et par un jeu de piste. C'est un projet est mené en collaboration avec les communes du Pays de Gex, Meyrin et Genève Tourisme dans un souci de renforcer notre dialogue avec nos voisins : http://passeport-big-bang.web.cern.ch/fr. A l’occasion de cette inauguration, nous organisons un événement populaire et festif : le matin, les familles pourront participer à des randonnées à vélo tandis que les sportifs pourront tester les 5...

  16. GAC-EPA

    GAC-EPA

    2010-01-01

    Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le : Mardi 8 février de 13h30 à 16h00 Salle de réunion de l’Association du personnel Les permanences suivantes auront lieu les mardis 8 mars, 5 avril, 4 mai, 7 juin, 6 septembre, 4 octobre, 8 novembre, 6 décembre. Les permanences du Groupement des Anciens sont ouvertes aux bénéficiaires de la Caisse de pensions (y compris les conjoints survivants !) et à tous ceux qui approchent de la retraite. Nous invitons vivement ces derniers à s’associer à notre groupement en se procurant, auprès de l’Association du personnel, les documents nécessaires.   * * * * * Nous avons appris avec tristesse les décès de : M. Ferdinand SCHENK (1923), décédé le 26 novembre 2010. Il avait pris sa retraite e...

  17. GAC-EPA

    GAC-EPA

    2010-01-01

    INFORMATION Le service des maladies osseuses des Hôpitaux Universitaires de Genève (HUG) vous propose de participer à une étude visant à identifier les facteurs de risque de l'ostéoporose. Il est toujours encore à la recherche de personnes intéressées. Si vous êtes une femme entre 63 et 67 ans, un homme entre 63 et 67 ans, vous pouvez contacter Madame le Docteur Claire Durosier au 022 372 71 83 (lundi au vendredi, 9h - 18h). Dr. Jean-Paul DISS   *****   GROUPEMENT DES ANCIENS DU CERN ET DE L’ESO Le GAC organise chaque mois des permanences avec entretiens individuels. La prochaine permanence se tiendra le Mardi 4 mai de 13h30 à 16h00 Salle de conférence de l’Association du personnel Les permanences suivantes auront lieu les mardis 1er juin, 7 septembre, 5 octobre, 2 novembre et 7 décembre. Les permanences du Groupement...

  18. Granular biochar compared with activated carbon for wastewater treatment and resource recovery.

    Huggins, Tyler M; Haeger, Alexander; Biffinger, Justin C; Ren, Zhiyong Jason

    2016-05-01

    Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery. PMID:26954576

  19. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance. PMID:26463999

  20. Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor

    The objective of this research was to determine the toluene removal efficiency and breakthrough time using commercially available coconut shell-based granular activated carbon in packed bed reactor. To study the effect of toluene removal and break point time of the granular activated carbon (GAC), the parameters studied were bed lengths (2, 3, and 4 cm), concentrations (5, 10, and 15 mg l-1) and flow rates (20, 40, and 60 ml/min). The maximum percentage removal of 90% was achieved and the maximum carbon capacity for 5 mg l-1 of toluene, 60 ml/min flow rate and 3 cm bed length shows 607.14 mg/g. The results of dynamic adsorption in a packed bed were consistent with those of equilibrium adsorption by gravimetric method. The breakthrough time and quantity shows that GAC with appropriate surface area can be utilized for air cleaning filters. The result shows that the physisorption plays main role in toluene removal.

  1. Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment

    Liang-liang WEI; Qing-liang ZHAO; Shuang XUE; Ting JIA

    2008-01-01

    This paper focused on the removal and transformation of the dissolved organic matter (DOM) in secondary effluent during the granular activated carbon (GAC) treatment. Using XAD-8/XAD-4 resins, DOM was fractionated into five classes:hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). Subsequently, the water quality parameters of dissolved organic carbon (DOC), absorbance of ultraviolet light at 254 nm (UV-254), specific ultraviolet light absorbance (SUVA) and trihalomethane formation potential (THMFP) were analyzed for the unfractionated and fractionated water samples. The results showed that the order of the DOC removal with respect to DOM fractions was observed to be HPI>HPO-A>HPO-N>TPI-A>TPI-N. During the GAC treatment, the THMFP of the unfractionated water samples decreased from 397.4 μg/L to 176.5 μg/L, resulting in a removal efficiency of 55.6%. The removal order of the trihalomethanes (THMs) precursor was as follows: HPO-A>TPI-A>TPI-N>HPO-N>HPI. By the GAC treatment, the specific THMFP of HPO-A, TPI-A, TPI-N and the original unfractionated water samples had a noticeable decrease, while that of HPO-N and HPI showed a converse trend. The Fourier transform infrared (FTIR) results showed that the hydroxide groups, carboxylic acids, aliphatie C-H were significantly reduced by GAC treatment.

  2. ENUMERATION, TRANSPORT AND SURVIVAL OF BACTERIA ATTACHED TO GRANULAR ACTIVITATED CARBON IN DRINKING WATER

    The surfaces of granular activated carbon (GAC), sand, and anthracite particles were found to be populated to the same levels with heterotrophic plate count (HPC) bacteria. GAC supported a greater number of Klebsiella oxytoca than the other two filter media. In a study of operati...

  3. Optimizing the industrial wastewater pretreatment by activated carbon and coagulation: effects of hydrophobicity/hydrophilicity and molecular weights of dissolved organics.

    Khan, M Hammad; Ha, Dong-Hwan; Jung, Jinyoung

    2013-01-01

    This study addresses industrial wastewater treatment to remove dissolved organic compounds (DOC) using Fenton and coagulation processes, followed by granular activated carbon (GAC), and powdered activated carbon (PAC) as a pretreatment before reverse osmosis (RO). The effects of the hydrophobic / hydrophilic fractions and the molecular weights (MW) of the organics on DOC removal were tested and used to optimize the combination process. The raw wastewater (RWW) had a dominant hydrophobic fraction, as determined by polymeric resins Amberlite XAD-4. High performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) results showed that MW of organics were 256, 172, 258, 146, 392, 321, 182, 373, 276, 365, 409 and 453 in increasing order of hydrophobicity. GAC had higher adsorption capacity and was more selective for hydrophobic DOC removal than PAC. The removal efficiency of DOC by PAC and GAC was decreased after Fenton treatment, which decreased the hydrophobic fraction. Coagulation with ferric chloride efficiently removed the non-ionic hydrophilic and anionic hydrophilic organics. The coagulant doses selected as a pretreatment before GAC were 2.1 and 15.5 mg Fe(III)/mg DOC. The effluent total organic carbon (TOC) trends were correlated with the hydrophobic and hydrophilic fractions by using a rapid small-scale column test (RSSCT) for GAC breakthrough with a scale down factor of 5. GAC preferentially adsorbed the hydrophobic and the cationic hydrophilic organics. The effluent TOC trend could be divided into four stages: maximum adsorption, hydrophobic stage, exhaustion, and biological. The TOC removal after the exhaustion stage was almost equal to the hydrophilic fraction of TOC. Therefore these results demonstrated that the combination of coagulation and GAC adsorption was a highly efficient process for reducing DOC. PMID:23383639

  4. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  5. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Iuliana Gabriela Breaban; Corneliu Sergiu Stan; Liliana Rozemarie Manea; Benoit Cagnon; Igor Cretescu; Marius Sebastian Secula

    2013-01-01

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels w...

  6. Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal.

    Watson, Kalinda; Farré, Maria José; Knight, Nicole

    2016-01-15

    During disinfection, bromide, iodide and natural organic matter (NOM) in source waters can lead to the formation of brominated and/or iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The objective of this study was to compare the efficiency of a silver-impregnated activated carbon (SIAC) with the equivalent unimpregnated granular activated carbon (GAC) for the removal of bromide, iodide and NOM from a matrix of synthetic waters with variable NOM, halide, and alkalinity concentrations, and to investigate the impact on DBP formation. An enhanced coagulation (EC) pre-treatment was employed prior to sample exposure to either carbon adsorbent. Excellent halide removals were observed by the SIAC treatment across the sample matrix, with iodide concentrations consistently reduced to below the method reporting limit (removal of bromide achieved. Bromide removal by unimpregnated GAC was poor, however iodide removal was comparable to that achieved by SIAC. The combination of EC with SIAC treatment removed 77±8% of the dissolved organic carbon (DOC) present, across the sample matrix, which was similar to removals by EC/GAC (67±14%). Combined EC/SIAC treatment reduced both total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs) formation by 97±3%, while also achieving a greater than 74% removal of two chloropropanones and a 92±8% decrease in chloral hydrate (CH), compared to untreated samples, regardless of the sample's starting water quality (bromide, alkalinity and NOM concentration). Combined EC/GAC treatment led to similar DBP removals to EC/SIAC for the fully chlorinated DBPs, however, brominated DBPs were less efficiently removed, or experienced concentration increases. PMID:26546763

  7. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  8. Removal of Chloroform (CHCl3 from Tehran Drinking Water by GAC and Air Stripping Columns

    M T Samadi, S Nasseri, A Mesdaghinia, M R Alizadefard

    2004-07-01

    Full Text Available The harmful substances, defined as trihalomethanes (THMs, were found to be formed during the disinfection of drinking water when chlorine was used as the disinfectant. In this research, the effectiveness of granular activated carbon (GAC and air stripping (AS packed column for the removal of chloroform (CHCl3 (as THMs basic indicator compound in many resources in range of 50 to300µg/L, from drinking water was studied. Pilots of GAC and air stripping columns were designed and set up. The study was carried out for the two cases of deionized and chlorinated Tehran tap water. Also the effects of flow rate, chloroform and TDS concentrations were considered in both treatment systems. Gas chromatography (GC with electron capture detector (ECD was used for determination of chloroform concentration in inlet and outlet samples. The obtained data were analyzed by SPSS and non-parametric Kruskal–Wallis method. Results showed a positive correlation between the flow rate and chloroform concentration, and removal efficiencies. The average of variations of removal efficiencies for AS and GAC columns with deionized water samples were, 89.9%, 71.2% and for chlorinated Tehran tap water were 91.2% and 76.4%, respectively. The removal of feed residual chlorine in these columns with 0.5, 0.8 ppm was 100%, respectively and re-chlorination for finishing water was recommended. Results showed AS to be considered more effective in chloroform removal for conventional water treatment plants as a finishing process.

  9. Desorption experiments and modeling of micropollutants on activated carbon in water phase: application to transient concentrations mitigation

    Bourneuf, Séda; Jacob, Matthieu; Albasi, Claire; Sochard, Sabine; Richard, Romain; Manero, Marie-Hélène

    2016-01-01

    International audience Experimental studies and numerical modeling were conducted to assess the feasibility of a granular activated carbon column to buffer load variations of contaminants before wastewater treatment devices. Studies of cycles of adsorption, and more especially desorption, of methyldiethanolamine (MDEA) and 2,4-dimethylphenol (2,4-DMP) have been carried out on granular activated carbon (GAC). Dynamic variations of contaminants concentrations were run at several conditions o...

  10. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. PMID:26606188

  11. 4-MCHM sorption to and desorption from granular activated carbon and raw coal.

    Jeter, T Scott; Sarver, Emily A; McNair, Harold M; Rezaee, Mohammad

    2016-08-01

    4-Methylcyclohexanemethanol (4-MCHM) is a saturated higher alicyclic primary alcohol that is used in the froth flotation process for cleaning coal. In early 2014, a large spill of crude chemical (containing primarily 4-MCHM) to the Elk River near Charleston, WV contaminated the local water supply. Carbon filters at the affected water treatment facility quickly became saturated, and the contaminated water was distributed to nearby homes and businesses. Sorption of 4-MCHM to granular activated carbon (GAC) was studied in the laboratory using head space (HS) analysis via gas chromatography with a flame ionization detector (GC-FID). Sorption to raw coal was also investigated, since this material may be of interest as a sorbent in the case of an on-site spill. As expected, sorption to both materials increased with decreased particle size and with increased exposure time; although exposure time proved to be much more important in the case of GAC than for coal. Under similar conditions, GAC sorbed more 4-MCHM than raw coal (e.g., 84.9 vs. 63.1 mg/g, respectively, for 20 × 30 mesh particles exposed to 860 mg/L 4-MCHM solution for 24 h). Desorption from both materials was additionally evaluated. Interestingly, desorption of 4-MCHM on a mass per mass basis was also higher for GAC than for raw coal. Overall, results indicated that GAC readily sorbs 4-MCHM but can also readily release a portion of the chemical, whereas coal sorbs somewhat less 4-MCHM but holds it tightly. PMID:27219291

  12. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    Sohair I. Abou-Elela; Mohammed Eid M. Ali; Ibrahim, Hanan S.

    2016-01-01

    The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC). The effects of operating condition on Fento...

  13. The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6

    Ji Soo Kim

    2014-06-01

    Full Text Available The GacS/GacA two component system regulates various traits related to the biocontrol potential of plant-associated pseudomonads. The role of the sensor kinase, GacS, differs between strains in regulation of motility. In this study, we determined how a gacS mutation changed cell morphology and motility in Pseudomonas chlororaphis O6. The gacS mutant cells were elongated in stationary-phase compared to the wild type and the complemented gacS mutant, but cells did not differ in length in logarithmic phase. The gacS mutant had a two-fold increase in the number of flagella compared with the wild type strain; flagella number was restored to that of the wild type in the complemented gacS mutant. The more highly flagellated gacS mutant cells had greater swimming motilities than that of the wild type strain. Enhanced flagella formation in the gacS mutant correlated with increased expression of three genes, fleQ, fliQ and flhF, involved in flagellar formation. Expression of these genes in the complemented gacS mutant was similar to that of the wild type. These findings show that this root-colonizing pseudomonad adjusts flagella formation and cell morphology in stationary-phase using GacS as a major regulator.

  14. Active carbon production from modified asphalt

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  15. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor

    Highlights: • A fluidized bed reactor, filled with a Pseudomonas aeruginosa immobilized on GAC, has been used for BPA removal. • BPA removal resulted from a biological activated carbon (BAC) process. • Equations describing the results have been indicated. • BPA removal was analyzed as a function of time and biofilm reuse. - Abstract: Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems

  16. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor

    Mita, Luigi [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Grumiro, Laura [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Rossi, Sergio [Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Bianco, Carmen; Defez, Roberto [Institute of Biosciences and BioResources, Via P. Castellino, 111, 80131 Naples (Italy); Gallo, Pasquale [Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Naples (Italy); Mita, Damiano Gustavo, E-mail: mita@igb.cnr.it [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Diano, Nadia [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Department of Experimental Medicine, Second University of Naples, Via S.M. di Costantinopoli, 16, 80138 Naples Italy (Italy)

    2015-06-30

    Highlights: • A fluidized bed reactor, filled with a Pseudomonas aeruginosa immobilized on GAC, has been used for BPA removal. • BPA removal resulted from a biological activated carbon (BAC) process. • Equations describing the results have been indicated. • BPA removal was analyzed as a function of time and biofilm reuse. - Abstract: Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems.

  17. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  18. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption.

    Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan

    2016-07-01

    Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system. PMID:27032632

  19. Ozonation of Cephalexin Antibiotic Using Granular Activated Carbon in a Circulating Reactor

    A circulating reactor was used to decompose cephalexin during catalytic ozonation. The effect of ozone supply and granular activated carbon (GAC) catalyst was investigated for removal of CEX and COD. The regeneration of exhausted activated carbon was investigated during in-situ ozonation. According to results, ozone supply appeared as the most influencing variable followed by dosage of granular activated carbon. The BET surface area, thermogravimetric analysis (TGA) and temperature programmed desorption (TPD) curves indicated that solid phase regeneration of activated carbon using ozone gas followed by mild thermal decomposition was very effective. The adsorption capacity of regenerated activated carbon was slightly lower than virgin activated carbon. The overall study revealed that catalytic ozonation was effective in removing cephalexin from solution and the method can be applied for in-situ ozonation processes. (author)

  20. Biological activated carbon fluidized-bed system to treat gasoline-contaminated groundwater

    An integrated biological granular activated carbon fluidized-bed reactor (GAC-FBR) and a biological fluidized-bed reactor (FBR) charged with nonactivated carbon were evaluated for treating groundwater contaminated with the gasoline constituents benzene, toluene, and xylenes (BTX). The systems were studied under several conditions including startup, steady-state, and step-load increase conditions. Development of bioactivity in the GAC-FBR was faster than in the FBR using a nonactivated carbon biomass carrier. Under two steady-state conditions, organic loading rates of 3 and 6 kg-chemical oxygen demand (COD)/m3-day, BTX removal was similar in the two systems with more than 90% of applied BTX removed. The GAC-FBR produced superior effluent quality during step organic load rate (OLR) increases compared to the FBR. The results from an extremely high step OLR increase show the formation of partial oxidization products from the degradation of BTX. Significant adsorption capacity was still observed after the biofilm developed, although capacity gradually decreased over a 6-month period of operation to approximately 50% of its original value

  1. Activated carbons and gold

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  2. Clinical evaluation of Gac extract (Momordica cochinchinensis) in an antiwrinkle cream formulation.

    Leevutinun, Pakapun; Krisadaphong, Panvipa; Petsom, Amorn

    2015-01-01

    The objective of this work was to evaluate the antioxidant and antityrosinase activities of Gac (Momordica cochinchinensis) extract and to clinically evaluate a Gac-containing antiwrinkle cream formulation. Gac extract exhibited higher antioxidant activity than vitamin C or E, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH, 41.25 ± 0.34 mg TEAC/ml extract), 2, 2'-azinobis 3-ethylbenzothialine-6-sulfonic acid (ABTS, 47.70 ± 0.18 mg TEAC/ml extract), and ferric reducing antioxidant power (FRAP, 105.03 ± 2.326 mg TEAC/ml extract) scavenging. The antioxidant activity of Gac extract was 5.85- and 11.75-fold higher than that of vitamin E in the DPPH and ABTS assays, respectively. The FRAP assay indicated that the antioxidant activity of Gac extract was 2.91-fold higher than that of vitamin C. Gac extract also exhibited high tyrosinase inhibition (62.83% ± 1.99%). The tyrosinase inhibition activity of Gac extract was 1.51- and 2.06-fold greater than that of vitamins C and E, respectively. The safety and efficacy of the formulated Gac extract cream as an antiwrinkle agent and its promotion of skin moisturization and smoothness were investigated. Evaluation of acute skin tolerance indicated nonirritating properties. A clinical study revealed increases in cutaneous hydration. Average roughness was decreased, while smoothness was increased. Skin overlook analysis indicated skin roughness relief. These results indicate that the formulated Gac extract product is an effective antiwrinkle cream. PMID:26454905

  3. Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support

    Jae H. Kwon

    2014-03-01

    Full Text Available Sorption uptake kinetics and equilibrium studies for 4-hydroxy-3-nitrobenzene arsonic acid (roxarsone was evaluated with synthetic magnetite (Mag-P, commercial magnetite (Mag-C, magnetite 10%, 19%, and 32% composite material (CM-10, -19, -32 that contains granular activated carbon (GAC, and synthetic goethite at pH 7.00 in water at 21 °C for 24 h. GAC showed the highest sorptive removal of roxarsone and the relative uptake for each sorbent material with roxarsone are listed in descending order as follows: GAC (471 mg/g > goethite (418 mg/g > CM-10 (377 mg/g CM-19 (254 mg/g > CM-32 (227 mg/g > Mag-P (132 mg/g > Mag-C (29.5 mg/g. The As (V moiety of roxarsone is adsorbed onto the surface of the iron oxide/oxyhydrate and is inferred as inner-sphere surface complexes; monodentate-mononuclear, bidentate-mononuclear, and bidentate-binuclear depending on the protolytic speciation of roxarsone. The phenyl ring of roxarsone provides the primary driving force for the sorptive interaction with the graphene surface of GAC and its composites. Thus, magnetite composites are proposed as multi-purpose adsorbents for the co-removal of inorganic and organic arsenicals due to the presence of graphenic and iron oxide active adsorption sites.

  4. Controlling a toxic shock of pentachlorophenol (PCP) to anaerobic digestion using activated carbon addition.

    Xiao, Yeyuan; De Araujo, Cecilia; Sze, Chun Chau; Stuckey, David C

    2015-04-01

    Several powdered and granular activated carbons (PACs and GACs) were tested for adsorption of pentachlorophenol (PCP) in bench-scale anaerobic digestion reactors to control the toxicity of PCP to acetoclastic methanogenesis. Results showed that the adsorption capacities of PAC were reduced by 21-54%, depending on the PAC addition time, in the presence of the methanogenic sludge compared to the controls without sludge. As a preventive measure, PAC at a low dose of 20% (mass ratio to the VSS) added 24 h prior to, or simultaneously with, the addition of PCP could completely eliminate the toxic effects of PCP. At the same dose, PAC also enabled methanogenesis to recover immediately after the sludge had been exposed to PCP for 24h. GAC was not effective in enabling the recovery of methanogenesis due to its slow adsorption kinetics; however, at a dose of 80% it could partially ameliorate the toxic shock of PCP. PMID:25665874

  5. Effect of DOM Size on Organic Micropollutant Adsorption by GAC.

    Kennedy, Anthony M; Summers, R Scott

    2015-06-01

    Granular activated carbon (GAC) adsorption of the micropollutants 2-methylisoborneol (MIB) and warfarin (WFN) at ng/L levels was investigated in five waters with isolated natural dissolved organic matter (DOM) held at a constant dissolved organic carbon concentration. Each water was evaluated for competitive adsorption effects based on the pretreatment of ultrafiltration, coagulation, and additional background micropollutants. Using the breakthrough with unfractionated DOM as a baseline, on average, the water with lower molecular weight (MW) DOM decreased MIB and WFN adsorption capacity by 59%, whereas the water with higher MW DOM increased MIB and WFN adsorption capacity by 64%. All waters showed similar decreasing MIB and WFN adsorption capacity with increasing empty bed contact time (EBCT), with more dramatic effects seen for the more strongly adsorbing WFN. On average, MIB and WFN adsorption kinetics were two times slower in the water with higher MW DOM compared to the water with lower MW DOM, as described by the intraparticle pore diffusion tortuosity. Increased adsorption competition from 27 micropollutants other than MIB and WFN at environmentally relevant concentrations had little to no effect on MIB and WFN breakthrough behavior. Any competitive effect from background micropollutants became indiscernible at longer EBCTs. PMID:25955134

  6. Theoretical and Experimental Study on the Adsorption and Desorption of Methane by Granular Activated Carbon at 25 ℃

    E. Salehi; V. Taghikhani; C. Ghotbi; E. Nemati Lay; A. Shojaei

    2007-01-01

    A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry out the experiments, the volumetric method was used up to 500 psia at constant temperature of 25 ℃. In these experiments, adsorption as well as desorption capacities of four different GAC in the adsorption of methane, the major constituent of natural gas, at various equilibrium pressures and a constant temperature were studied. Also, various adsorption isotherm models were used to model the experimental data collected from the experiments. The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported. The results shows that the physical characteristics of activated carbons such as BET surface area, micropore volume, packing density, and pore size distribution play an important role in the amount of methane to be adsorbed and desorbed.

  7. Charcoal bed operation for optimal organic carbon removal

    Historically, evaporation, reverse osmosis or charcoal-demineralizer systems have been used to remove impurities in liquid radwaste processing systems. At Nine Mile point, we recently replaced our evaporators with charcoal-demineralizer systems to purify floor drain water. A comparison of the evaporator to the charcoal-demineralizer system has shown that the charcoal-demineralizer system is more effective in organic carbon removal. We also show the performance data of the Granulated Activated Charcoal (GAC) vessel as a mechanical filter. Actual data showing that frequent backflushing and controlled flow rates through the GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. GAC vessel dramatically increases Total Organic Carbon (TOC) removal efficiency. Recommendations are provided for operating the GAC vessel to ensure optimal performance

  8. An innovative treatment concept for future drinking water production: fluidized ion exchange-ultrafiltration-nanofiltration-granular activated carbon filtration

    J. C. van Dijk

    2009-01-01

    Full Text Available A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX, ultrafiltration (UF, nanofiltration (NF, and granular activated carbon filtration (GAC. The FIEX process removed calcium and other divalent cations; the UF membrane removed particles and micro-organisms; and the NF membrane and GAC removed natural organic matter (NOM and micro-pollutants. This study focused on the prevention of fouling of the UF and scaling of the NF and investigated the overall removal of micro-pollutants by the treatment concept. The results of the experiments showed that in 14 days of continuous operation at a flux of 65 l/h. m2 the UF performance was stable with the FIEX pre-treated feed water without the aid of a coagulant. The scaling of the NF was also not observed even at 97% recovery. Different micro-pollutants were spiked in the NF feed water and their concentrations in the effluent of NF and GAC were measured. The combination of NF and GAC removed most of the micro-pollutants successfully, except for the very polar substances with a molecular weight lower than 100 Daltons.

  9. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H

    Mohamed E. Goher

    2015-01-01

    Full Text Available The removal of aluminum, iron and manganese from some pollution sources that drain into Ismailia Canal has been investigated using two different sorbents; granular activated carbon (GAC and Amberlite IR-120H (AIR-120H. Batch equilibrium experiments showed that the two sorbents have maximum removal efficiency for aluminum and iron pH 5 and 10 min contact time in ambient room temperature, while pH 7 and 30 min were the most appropriate for manganese removal. Dosage of 2 g/l for both GAC and AIR-120H was established to give the maximum removal capacity. At optimum conditions, the removal trend was in order of Al+3 > Fe+2 > Mn+2 with 99.2, 99.02 and 79.05 and 99.55, 99.42 and 96.65% of metal removal with GAC and AIR-120H, respectively. For the three metals, Langmuir and Freundlich isotherms showed higher R2 values, with a slightly better fitting for the Langmuir model. In addition, separation factors (RL and exponent (n values indicated favorable Langmuir (0 < RL < 1 and Freundlich (1 < n < 10 approach. GAC and AIR-120H can be used as excellent alternative, effective and inexpensive materials to remove high amounts of heavy metals from waste water.

  10. Developing Polycation-Clay Sorbents for Efficient Filtration of Diclofenac: Effect of Dissolved Organic Matter and Comparison to Activated Carbon.

    Kohay, Hagay; Izbitski, Avital; Mishael, Yael G

    2015-08-01

    The presence of nanoconcentrations of persistent pharmaceuticals in treated wastewater effluent and in surface water has been frequently reported. A novel organic-inorganic hybrid sorbent based on adsorbing quarternized poly vinylpyridinium-co-styrene (QPVPcS) to montmorillonite (MMT) was designed for the removal of the anionic micropollutants. QPVPcS-clay composites were characterized by X-ray diffraction, FTIR, thermal gravimetric analysis, Zeta potential and element analysis. Based on these measurements polymer-clay micro- and nanostructures, as a function of polymer loading, were suggested. The affinity of the anionic pharmaceutical, diclofenac (DCF), to the composite was high and did not decrease dramatically with an increase of ionic strength, indicating that the interactions are not only electrostatic. The presence of humic acid (HA) did not hinder DCF removal by the composite; whereas, its filtration by granulated activated carbon (GAC) was compromised in the presence of HA. The kinetics and adsorption at equilibrium of DCF to the composite and to GAC were measured and modeled by the time dependent Langmuir equation. The adsorption of DCF to the composite was significantly faster than to GAC. Accordingly, the filtration of micro- and nanoconcentrations of DCF by composite columns, in the presence of HA, was more efficient than by GAC columns. PMID:26126078

  11. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. Highlights: •Biochar and GAC reduced PCB uptake into plants and earthworms. •Biochar offered additional benefits, including increased plant and earthworm biomass. •BSAF reductions are greater when amendments are mechanically vs. manually mixed. •Mechanically mixing carbon amendments may over-estimate their remediation potential. -- In situ AC and biochar soil amendments perform equally well at reducing PCB uptake, however, laboratory-based mixing methods may exaggerate the sorptive capacities of both amendments

  12. Synthesis of iron/GAC catalyst for wastewater treatment using heterogeneous Fenton reaction

    S T T Le; T T Ngo; W Khanitchaidecha; A Nakaruk

    2015-08-01

    Iron catalyst dispersed on granular activated carbon (GAC) was prepared by impregnating Fe(NO3)3 solution on GAC. The mixed solution was annealed at 600°C in muffle furnace under ambient condition for 1 h. The structural property of the catalyst was investigated using X-ray diffraction (XRD). The catalyst’s activity and lifetime were tested using the degradation of 50 ppm methyl orange (MO) solution. In addition, the optimum conditions of the Fenton reaction such as initial pH, initial MO concentration hydrogen peroxide concentration and the amount of catalyst were also investigated. The XRD results showed that magnetite and haematite were two main compositions of the synthesized catalyst. The investigation of optimum conditions suggested that initial pH at 3 provided the highest efficiency of MO removal. In addition, the concentration of hydrogen peroxide at 8 ppm was the most suitable. The optimum condition of amount of catalyst was 5 g l−1. The efficiencies of MO removal reached 95% at 60 min of reaction time at low initial MO concentration (25–500 mg l−1). In the meantime, the removal efficiency was found to decrease with the increase in the initial MO concentration. The efficiency decreased to 70 and 30% at 1000 and 3000 mg l−1 of initial MO concentration, respectively. Additionally, after reuse the synthesized catalyst 3 times the MO removal efficiency still remained over 90%. In conclusion, the iron/GAC catalyst was successfully synthesized and applied to dye treatment using heterogeneous Fenton reaction. The catalyst showed high efficiency of MO removal and could be reused many times.

  13. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  14. FACTORS AFFECTING THE REMOVAL OF A BASIC AND AN AZO DYE FROM ARTIFICIAL SOLUTIONS BY ADSORPTION USING ACTIVATED CARBON

    Albroomi, H I; ElSayed, Mohamed; Baraka, A.; Abdelmaged, M A

    2014-01-01

    Decolourisation of wastewater, particularly from textile industries, is one of the major environmental concerns these days. Current methods for removing dyes from wastewater are costly and cannot effectively be used to treat wide range of such wastewater. This work describes the use of commercial available granular activated carbon (GAC) as an efficient adsorbent material for dyes removal. Aqueous solutions of various basic dye Methylene Blue (MB) and azo-dye Tartrazine with concentrations 5-...

  15. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates.

    Anumol, Tarun; Sgroi, Massimiliano; Park, Minkyu; Roccaro, Paolo; Snyder, Shane A

    2015-06-01

    This study investigated the applicability of bulk organic parameters like dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), and total fluorescence (TF) to act as surrogates in predicting trace organic compound (TOrC) removal by granular activated carbon in water reuse applications. Using rapid small-scale column testing, empirical linear correlations for thirteen TOrCs were determined with DOC, UV254, and TF in four wastewater effluents. Linear correlations (R(2) > 0.7) were obtained for eight TOrCs in each water quality in the UV254 model, while ten TOrCs had R(2) > 0.7 in the TF model. Conversely, DOC was shown to be a poor surrogate for TOrC breakthrough prediction. When the data from all four water qualities was combined, good linear correlations were still obtained with TF having higher R(2) than UV254 especially for TOrCs with log Dow>1. Excellent linear relationship (R(2) > 0.9) between log Dow and the removal of TOrC at 0% surrogate removal (y-intercept) were obtained for the five neutral TOrCs tested in this study. Positively charged TOrCs had enhanced removals due to electrostatic interactions with negatively charged GAC that caused them to deviate from removals that would be expected with their log Dow. Application of the empirical linear correlation models to full-scale samples provided good results for six of seven TOrCs (except meprobamate) tested when comparing predicted TOrC removal by UV254 and TF with actual removals for GAC in all the five samples tested. Surrogate predictions using UV254 and TF provide valuable tools for rapid or on-line monitoring of GAC performance and can result in cost savings by extended GAC run times as compared to using DOC breakthrough to trigger regeneration or replacement. PMID:25792436

  16. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles. PMID:27494099

  17. Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.

    Zhang, Wei; Yu, Tian; Han, Xiaolin; Ying, Weichi

    2016-09-01

    We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl (2-ClBP) from soil-water system using granular activated carbon (GAC) impregnated with nanoscale zerovalent iron (reactive activated carbon or RAC). The RAC samples were successfully synthesized by the liquid precipitation method. The mesoporous GAC based RAC with low iron content (1.32%) exhibited higher 2-ClBP removal efficiency (54.6%) in the water phase. The result of Langmuir-Hinshelwood kinetic model implied that the different molecular structures between 2-ClBP and trichloroethylene (TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities. Compared to removing 2-ClBP in the water phase, RAC removed the 2-ClBP more slowly in the soil phase due to the significant external mass transfer resistance. However, in the soil phase, a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-ClBP. This important result verified the effectiveness of RAC for removing 2-ClBP in the soil phase. Although reducing the total RAC removal rate of 2-ClBP, soil organic matter (SOM), especially the soft carbon, also served as an electron transfer medium to promote the dechlorination of 2-ClBP in the long term. PMID:27593281

  18. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    Konsowa, A.H., E-mail: akonsowa@alex-eng.edu.eg [Chem Eng Dept., Faculty of Engineering, Alexandria University, Alexandria 21544 (Egypt); Ossman, M.E. [Mubarak City for Scientific Research and Technological Application, Alexandria (Egypt); Chen, Yongsheng [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0373 (United States); Crittenden, John C. [Civil and Environmental Engineering Dept., Arizona State University, Tempe, AZ 85287 (United States)

    2010-04-15

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  19. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon

    The decolorization of industrial wastewater containing direct dye (Drimarene Red CL-3B) by advanced oxidation process using ozonation in a semi-batch bubble column reactor followed by granule activated carbon (GAC) adsorption process was studied. The effect of initial dye concentration, ozone concentration, pH and ozone-air flow rate on the rate of dye decolorization were investigated. It was found that the rate of dye decolorization increases with increasing ozone concentration, ozone-air flow rate, and pH but decreases with increasing initial dye concentration. This study is a hybrid system conducted in combination between ozonation process and GAC adsorption to reveal higher and efficient removal of color and TOC. The process started with ozonation for efficient and rapid decolorization of dyeing wastewater, followed by GAC adsorption process to gain efficient removal of color and TOC. The adsorption process was found to be very efficient in removal of ozonation residual TOC, in view of high TOC removal, up to 37% TOC removal was obtained. Numerical correlation using regression analysis for decolorization time with the operating conditions of the ozonation process were presented.

  20. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains.

    Kupryianchyk, D; Rakowska, M I; Roessink, I; Reichman, E P; Grotenhuis, J T C; Koelmans, A A

    2013-05-01

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC) concentrations in pore water, benthic invertebrates, zooplankton, and fish (Leuciscus idus melanotus). AC treatments were mixing with powdered AC (PAC), mixing with granular AC (GAC), and addition-removal of GAC (sediment stripping). The AC treatments resulted in a significant decrease in HOC concentrations in pore water, benthic invertebrates, zooplankton, macrophytes, and fish. In 6 months, PAC treatment caused a reduction of accumulation of polychlorobiphenyls (PCB) in fish by a factor of 20, bringing pollutant levels below toxic thresholds. All AC treatments supported growth of fish, but growth was inhibited in the PAC treatment, which was likely explained by reduced nutrient concentrations, resulting in lower zooplankton (i.e., food) densities for the fish. PAC treatment may be advised for sites where immediate ecosystem protection is required. GAC treatment may be equally effective in the longer term and may be adequate for vulnerable ecosystems where longer-term protection suffices. PMID:23544454

  1. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment

    2006-01-01

    A study on advanced drinking water treatment was conducted in a pilot scale plant taking water from conventional treatment process. Ozonation-biological activated carbon process (O3-BAC) and granular activated carbon process (GAC) were evaluated based on the following parameters: CODMn, UV254, total organic carbon (TOC), assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). In this test, the average removal rates of CODMn , UV254 and TOC in O3-BAC were18.2%, 9.0% and 10.2% higher on (AOC) than in GAC, respectively. Ozonation increased 19.3-57.6 μg Acetate-C/L in AOC-P17,45.6-130.6 μg Acetate-C/L in AOC-NOX and 0.1-0.5 mg/L in BDOC with ozone doses of 2-8 mg/L. The optimum ozone dose for maximum AOC formation was 3 mgO3/L. BAC filtration was effective process to improve biostability.

  2. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. PMID:27107611

  3. An innovative treatment concept for future drinking water production: fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    J. C. van Dijk

    2009-08-01

    Full Text Available A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX, ultrafiltration (UF, nanofiltration (NF, and granular activated carbon filtration (GAC. The FIEX process removed calcium and other divalent cations; the UF membrane removed particles and micro-organisms; and the NF membrane and GAC removed natural organic matter (NOM and micro-pollutants. This study focused on the prevention of fouling of the UF and scaling of the NF and investigated the overall removal of micro-pollutants by the treatment concept. The results of the experiments showed that in 14 days of continuous operation at a flux of 65 l/h m2 the UF performance was stable with the FIEX pre-treated feed water without the aid of a coagulant. The scaling of the NF was also not observed even at 97% recovery. Different micro-pollutants were spiked in the NF feed water and their concentrations in the effluent of NF and GAC were measured. The combination of NF and GAC removed most of the micro-pollutants successfully, except for the very polar substances with a molecular weight lower than 100 Daltons.

  4. Remediation of Trichloroethylene and Monochlorobenzene-Contaminated Aquifers Using the ORC-GAC-Fe0-CaCO3 System:Volatilization, Precipitation,and Porosity Losses

    LIN Qi; V. PLAGENTZ; D. SCHAFER; A. DAHMKE

    2007-01-01

    The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlorobenzene (MCB) and trichloroethylene (TCE)-contaminated aquifers using the ORC-GAC-Fe0-CaCO3 system. The system consisted of four columns (112 cm long and 10 cm in diameter) with oxygen-releasing compound (ORC), granular activated carbon (GAC),zero-valent iron (Fe0), and calcite used sequentially as the reactive media. The concentrations of MCB in the GAC column effluent and TCE in the Fe0 column effluent were below the detection limit. However, the concentrations of MCB and TCE in the final calcite column exceeded the maximum contaminant level (MCL) under the Safe Drinking Water Act of the US Environmental Protection Agency (US EPA) that protects human health and environment. These results suggested that partitioning of MCB and TCE into the gas phase could occur, and also that transportation of volatile organic pollutants in the gas phase was important. Three main precipitates formed in the ORC-GAC-Fe0-CaCO3 system:CaCO3 in the ORC column along with Fe(OH)2 and FeCO3 in the Fe0 column. The total porosity losses caused by mineral precipitation corresponded to about 0.24% porosity in the ORC column, and 1% in the Fe0 column. The most important cause of porosity losses was anaerobic corrosion of iron. The porosity losses caused by gas because of the production and entrapment of oxygen in the ORC column and hydrogen in the Fe0 column should not be ignored. Volatilization, precipitation and porosity losses were considered to be the main drawbacks of the ORC-GAC-Fe0-CaCO3 system in remediating the MCB and TCE-contaminated aquifers. Thus, measurements such as using a suitable oxygen-releasing compound, weakening the increase in pH using a buffer material such as soil, stimulating biodegradation rates and minimizing the plugging caused by the relatively high

  5. Bioavailability assessments following biochar and activated carbon amendment in DDT-contaminated soil.

    Denyes, Mackenzie J; Rutter, Allison; Zeeb, Barbara A

    2016-02-01

    The effects of 2.8% w/w granulated activated carbon (GAC) and two types of biochar (Burt's and BlueLeaf) on DDT bioavailability in soil (39 μg/g) were investigated using invertebrates (Eisenia fetida), plants (Cucurbita pepo spp. pepo) and a polyoxymethylene (POM) passive sampler method. Biochar significantly reduced DDT accumulation in E. fetida (49%) and showed no detrimental effects to invertebrate health. In contrast, addition of GAC caused significant toxic effects (invertebrate avoidance and decreased weight) and did not significantly reduce the accumulation of DDT into invertebrate tissue. None of the carbon amendments reduced plant uptake of DDT. Bioaccumulation of 4,4'DDT and 4,4'-DDE in plants (C. pepo spp. pepo) and invertebrates (E. fetida) was assessed using bioaccumulation factors (BAFs) and compared to predicted bioavailability using the freely-dissolved porewater obtained from a polyoxymethylene (POM) equilibrium biomimetic method. The bioavailable fraction predicted by the POM samplers correlated well with measured invertebrate uptake ( 10 μg/g. The results of these studies illustrate the importance of including plants in bioavailability studies as the use of carbon materials for in situ contaminant sorption moves from predominantly sediment to soil remediation technologies. PMID:26495827

  6. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100.

    Krediet, Cory J; Carpinone, Emily M; Ritchie, Kim B; Teplitski, Max

    2013-05-01

    Opportunistic pathogens rely on global regulatory systems to assess the environment and to control virulence and metabolism to overcome host defenses and outcompete host-associated microbiota. In Gammaproteobacteria, GacS/GacA is one such regulatory system. GacA orthologs direct the expression of the csr (rsm) small regulatory RNAs, which through their interaction with the RNA-binding protein CsrA (RsmA), control genes with functions in carbon metabolism, motility, biofilm formation, and virulence. The csrB gene was controlled by gacA in Serratia marcescens PDL100. A disruption of the S. marcescens gacA gene resulted in an increased fitness of the mutant on mucus of the host coral Acropora palmata and its high molecular weight fraction, whereas the mutant was as competitive as the wild type on the low molecular weight fraction of the mucus. Swarming motility and biofilm formation were reduced in the gacA mutant. This indicates a critical role for gacA in the efficient utilization of specific components of coral mucus and establishment within the surface mucopolysaccharide layer. While significantly affecting early colonization behaviors (coral mucus utilization, swarming motility, and biofilm formation), gacA was not required for virulence of S. marcescens PDL100 in either a model polyp Aiptasia pallida or in brine shrimp Artemia nauplii. PMID:23278392

  7. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    LI Youdi; LI Jing; MA MingYuan; OUYANG YuZhu; YAN WenBin

    2008-01-01

    TiO2 nanoparUcle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatslytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  8. Preparation and photocatalytic activity of TiO2-coated granular activated carbon composites by a molecular adsorption-deposition method

    2008-01-01

    TiO2 nanoparticle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatalytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served.

  9. Determination of the structural and chemisorption characteristics of granulated active charcoal on the basis of coconut shell

    Milenković Dragan D.

    2004-01-01

    Full Text Available Wastewater purification and the acquirement of drinking water from water streams that are in most cases recipients of various industrial plants, present a significant problem nowadays. The structural characteristics of granulated active charcoal (GAC obtained by the carbonization of coconut shells and activated by steam are presented in this paper. The established kinetics of suspending cyanide from aqueous solution using GAC impregnated with copper(II acetate were studied and a mathematical model estabkusged by a regression - correlation analysis.

  10. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil.

    Meynet, Paola; Hale, Sarah E; Davenport, Russell J; Cornelissen, Gerard; Breedveld, Gijs D; Werner, David

    2012-05-01

    We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil. PMID:22455603

  11. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  12. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  13. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon.

    Radian, Adi; Mishael, Yael

    2012-06-01

    Pyrene removal by polycation-montmorillonite (MMT) composites and granulated activated carbon (GAC) in the presence of humic acid (HA) was examined. Pyrene, HA, and sorbent interactions were characterized by FTIR, fluorescence and zeta measurements, adsorption, and column filtration experiments. Pyrene binding coefficients to the macromolecules were in the order of PVPcoS (poly-4-vinylpiridine-co-styrene) > HA > PDADMAC (poly diallyl-dimethyl-ammonium-chloride), correlating to pyrene-macromolecules compatibility. Electrostatic interactions explained the high adsorption of HA to both composites (∼100%), whereas HA adsorption by GAC was low. Pyrene removal by the composites, unlike GAC, was enhanced in the presence of HA; removal by PDADMAC-MMT increased from ∼50 (k(d) = 2.2 × 10(3) kg/L) to ∼70% (k(d) = 2.4 × 10(3) kg/L) in the presence of HA. This improvement was attributed to the adsorption of pyrene-HA complexes. PVPcoS-MMT was most efficient in removing pyrene (k(d) = 1.1 × 10(4) kg/L, >95% removal) which was explained in terms of specific π donor-π acceptor interactions. Pyrene uptake by column filters of GAC reached ∼50% and decreased to ∼30% in the presence of HA. Pyrene removal by the PVPcoS-MMT filter was significantly higher (100-85% removal), exhibiting only a small decrease in the presence of HA. The utilization of HA as an enhancing agent in pollutant removal is novel and of major importance in water treatment. PMID:22545663

  14. Metaldehyde removal from aqueous solution by adsorption and ion exchange mechanisms onto activated carbon and polymeric sorbents

    Highlights: ► First detailed analysis and study on metaldehyde removal by physical adsorbents. ► Adsorption performance of current method studied to probe reasons for failure of removal. ► Sorption performances of proposed alternative materials studied and mechanism proposed. ► Mechanism explains full sorption and degradation of metaldehyde. ► Results are of marked significance to the water treatment industries. -- Abstract: Metaldehyde removal from aqueous solution was evaluated using granular activated carbon (GAC), a non-functionalised hyper-cross-linked polymer Macronet (MN200) and an ion-exchange resin (S957) with sulfonic and phosphonic functional groups. Equilibrium experimental data were successfully described by Freundlich isotherm models. The maximum adsorption capacity of S957 (7.5 g metaldehyde/g S957) exceeded those of MN200 and GAC. Thermodynamic studies showed that sorption of metaldehyde onto all sorbents is endothermic and processes are controlled by entropic rather than enthalpic changes. Kinetic experiments demonstrated that experimental data for MN200 and GAC obey pseudo-second order models with rates limited by particle diffusion. Comparatively, S957 was shown to obey a pseudo-first order model with a rate-limiting step of metaldehyde diffusion through the solid/liquid interface. Results obtained suggest that metaldehyde adsorption onto MN200 and GAC are driven by hydrophobic interactions and hydrogen bonding, as leaching tendencies were high since no degradation of metaldehyde occurred. Conversely, adsorption of metaldehyde onto S957 occurs via ion-exchange processes, where sulfonic and phosphonic functionalities degrade adsorbed metaldehyde molecules and failure to detect metaldehyde in leaching studies for S957 supports this theory. Consequently, the high adsorption capacity and absence of leaching indicate S957 is promising for metaldehyde removal from source water

  15. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration.

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2013-06-01

    This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation). PMID:23540811

  16. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  17. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA. PMID:25860623

  18. Dewatering Peat With Activated Carbon

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  19. Combinative dyebath treatment with activated carbon and UV/H2O2: a case study on Everzol Black-GSP.

    Ince, N H; Hasan, D A; Ustün, B; Tezcanli, G

    2002-01-01

    Treatability of textile dyebath effluents by two simultaneously operated processes comprising adsorption and advanced oxidation was investigated using a reactive dyestuff, Everzol Black-GSP (EBG). The method was comprised of contacting aqueous solutions of the dye with hydrogen peroxide and granules of activated carbon (GAC) during irradiation of the reactor with ultraviolet light (UV). Control experiments were run separately with each individual process (advanced oxidation with UV/H2O2 and adsorption on GAC) to select the operating parameters on the basis of maximum color removal. The effectiveness of the combined scheme was tested by monitoring the rate of decolorization and the degree of carbon mineralization in effluent samples. It was found that in a combined medium of advanced oxidation and adsorption, color was principally removed by oxidative degradation, while adsorption contributed to the longer process of dye mineralization. Economic evaluation of the system based on total color removal and 50% mineralization showed that in the case of Everzol Black-GSP, which adsorbs relatively poorly on GAC, the proposed combination provides 25% and 35% reduction in hydrogen peroxide and energy consumption relative to the UV/H2O2 system. Higher cost reductions are expected in cases with well adsorbing dyes and/or with less costly adsorbents. PMID:12361048

  20. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale.

    Mailler, R; Gasperi, J; Coquet, Y; Buleté, A; Vulliet, E; Deshayes, S; Zedek, S; Mirande-Bret, C; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbonGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90-100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for μGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92

  1. 2-chlorophenol sorption from aqueous solution using granular activated carbon and polymeric adsorbents

    Ghatbandhe, A. S.; Jahagirdar, H. G.; Yenkie, M. K. N.; Deosarkar, S. D.

    2013-08-01

    Adsorption equilibrium and kinetics of 2-chlorophenol (2-CP) one of the chlorophenols (CPs) onto bituminous coal based Filtrasorb-400 grade granular activated carbon and three different types of polymeric adsorbents were studied in aqueous solution in a batch system. Langmuir isotherm models were applied to experimental equilibrium data of 2-CP adsorption. Equilibrium data fitted very well to the Langmuir equilibrium models of 2-CP. Adsorbent monolayer capacity Q Langmuir constant b and adsorption rate constants k a were evaluated. 2-CP adsorption using GAC is very rapid in the first hour of contact where 70-80% of the adsorbate is removed by GAC followed by a slow approach to equilibrium. Whereas in case of polymeric adsorbents 60-65% of the adsorbate is removed in the first 30 min which is then followed by a slow approach to equilibrium. The order of adsorption of 2-CP on different adsorbents used in the study is found to be in following order: F-400 > XAD-1180 > XAD-4 > XAD-7HP.

  2. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  3. Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon

    This paper presents the observations on the bio-removal of arsenic from contaminated water by using Ralstonia eutropha MTCC 2487 and activated carbon in a batch reactor. The effects of agitation time, pH, type of granular activated carbon (GAC) and initial arsenic concentration (Aso) on the % removal of arsenic have been discussed. Under the experimental conditions, optimum removal was obtained at the pH of 6-7 with agitation time of 100 h. The % removal of As(T) increased initially with the increase in Aso and after attaining the maximum removal (∼86%) at the Aso value of around 15 ppm, it started to decrease. Simultaneous adsorption bioaccumulation (SABA) was observed, when fresh GAC was used as supporting media for bacterial immobilization. In case of SABA, the % removal of As(III) was almost similar (only ∼1% more) to the additive values of individual removal of As(III) obtained by only adsorption and only bio-adsorption. However, for As(V) the % removal was less (∼8%) than the additive value of the individual % removals obtained by only adsorption and bio-adsorption. Percentage removal of Fe, Mn, Cu and Zn were 65.17%, 72.76%, 98.6% and 99.31%, respectively. Maximum regeneration (∼99.4%) of the used bio-adsorbent was achieved by the treatment with 5NH2SO4 followed by 1N NaOH and 30% H2O2 in HNO3. The fitness of the isotherms to predict the specific uptake for bio-adsorption/accumulation process has been found to decrease in the following order: Temkin isotherm > Langmuir isotherm > Freundlich isotherm. For the adsorption process with fresh GAC the corresponding order is Freundlich isotherm > Langmuir isotherm > Temkin isotherm for As(V) and As(T). However, for As(III) it was Langmuir > Temkin > Freundlich

  4. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon.

    Hernández-Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2011-04-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100-1600 μgL(-1)) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL(-1), reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100-1600 μgL(-1) at a PAC dose of 1.25 gL(-1) and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1-10 μgL(-1) at a flow of 0.5 bed volumes (BV)h(-1) showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh(-1). Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10-100 μgL(-1), efficient removal to below limits of quantification

  5. Pleiotropic Effects of GacA on Pseudomonas fluorescens Pf0-1 In Vitro and in Soil

    Seaton, Sarah C.; Silby, Mark W.; Levy, Stuart B.

    2013-01-01

    Pseudomonas species can exhibit phenotypic variation resulting from gacS or gacA mutation. P. fluorescens Pf0-1 is a gacA mutant and exhibits pleiotropic changes following the introduction of a functional allele. GacA enhances biofilm development while reducing dissemination in soil, suggesting that alternative Gac phenotypes enable Pseudomonas sp. to exploit varied environments.

  6. Detection of hydroxyl radicals during regeneration of granular activated carbon in dielectric barrier discharge plasma system

    To understand the reactions taking place in the dielectric barrier discharge (DBD) plasma system of activated carbon regeneration, the determination of active species is necessary. A method based on High Performance Liquid Chromatography with radical trapping by salicylic acid, has been developed to measure hydroxyl radical (.OH) in the DBD plasma reactor. The effects of applied voltage, treatment time, and gas flow rate and atmosphere were investigated. Experimental results indicated that increasing voltage, treatment time and air flow rate could enhance the formation of .OH. Oxygen atmosphere and a suitable GAC water content were contributed to .OH generation. The results give an insight into plasma chemical processes, and can be helpful to optimize the design and application for the plasma system.

  7. Activated carbon for incinerator uses

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  8. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwave-assisted catalytic oxidation

    Granular activated carbon-supported platinum (Pt/GAC) catalysts were prepared by microwave irradiation and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Pt particles dispersing onto the surface of GAC could be penetrated by microwave and acted as 'reaction centre' in the degradations of p-nitrophenol (PNP) and pentachlorophenol (PCP) in aqueous solution by microwave-assisted catalytic oxidation. The reaction was carried out through a packed bed reactor under ambient pressure and continuous flow mode. Under the conditions of microwave power 400 W, influent flow 6.4 mL min-1 and air flow 120 mL min-1, phenolic solutions with high concentration (initial concentrations of PNP and PCP solutions were 1469 and 1454 mg L-1, respectively) were treated effectively by Pt/GAC, 86% PNP and 90% PCP were degraded and total organic carbon (TOC) removal reached 85% and 71%, respectively. Compared with GAC, loaded Pt apparently accelerated oxidative reaction so that Pt/GAC had a better degrading and mineralizing efficiencies for PNP. Hydraulic retention time was only 16 min in experiment, which was shortened greatly compared with catalytic wet air oxidation. Pyrolysis and oxidation of phenolic pollutants occurred simultaneously on the surface of Pt/GAC by microwave irradiation

  9. The Transcriptomic Fingerprint of the Pseudomonas fluorescens Pf-5 GacS/GacA Signal Transduction System

    A whole genome oligonucleotide microarray was used to assess the global transcriptomic consequences of a gacA knock-out mutation in P. fluorescens Pf-5. Modest changes to the P. fluorescens Pf-5 transcriptome were observed during early exponential growth phase in the gacA null mutant. In contrast, g...

  10. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  11. Spontaneous phenotypic suppression of GacA-defective Vibrio fischeri is achieved via mutation of csrA and ihfA

    Foxall, Randi L.; Ballok, Alicia E.; Avitabile, Ashley; Whistler, Cheryl A.

    2015-01-01

    Background: Symbiosis defective GacA-mutant derivatives of Vibrio fischeri are growth impaired thereby creating a selective advantage for growth-enhanced spontaneous suppressors. Suppressors were isolated and characterized for effects of the mutations on gacA-mutant defects of growth, siderophore activity and luminescence. The mutations were identified by targeted and whole genome sequencing. Results: Most mutations that restored multiple phenotypes were non-null mutations that mapped to cons...

  12. Adsorption studies of Dichloromethane on some commercially available GACs: Effect of kinetics, thermodynamics and competitive ions

    Khan, Moonis Ali; Kim, Seong-wook [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710 (Korea, Republic of); Rao, Rifaqat Ali Khan [Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002 (India); Abou-Shanab, R.A.I. [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710 (Korea, Republic of); Department of Environmental Biotechnology, Mubarak City for Scientific Research, Alexandria (Egypt); Bhatnagar, Amit [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710 (Korea, Republic of); Song, Hocheol [Geologic Environment Division, KIGAM, Daejeon 305-350 (Korea, Republic of); Jeon, Byong-Hun, E-mail: bhjeon@yonsei.ac.kr [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710 (Korea, Republic of)

    2010-06-15

    The objective of this work was to compare the effectiveness of four commercially available granular activated carbons (GACs); coconut (CGAC), wood (WGAC), lignite (LGAC) and bituminous (BGAC) for the removal of dichloromethane (DCM) from aqueous solution by batch process. Various parameters such as thermodynamics, kinetics, pH, concentration of adsorbate, dosages of adsorbent and competitive ions effect on DCM adsorption were investigated. Maximum adsorption capacity (45.5 mg/g for CGAC) was observed at pH 6.0-8.0. The kinetics data indicate better applicability of pseudo-second-order kinetics model at 25 and 35 deg. C. Freundlich model was better obeyed on CGAC, WGAC, and BGAC, while LGAC followed Langmuir model. The adsorption process for 100 mg/L initial DCM concentration on CGAC was exothermic in nature. The adsorption of DCM on various adsorbents involves physical adsorption process. The adsorption of DCM over a large range of initial concentration on CGAC and LGAC is effective even in presence of ionic salts.

  13. Adsorption studies of Dichloromethane on some commercially available GACs: Effect of kinetics, thermodynamics and competitive ions

    The objective of this work was to compare the effectiveness of four commercially available granular activated carbons (GACs); coconut (CGAC), wood (WGAC), lignite (LGAC) and bituminous (BGAC) for the removal of dichloromethane (DCM) from aqueous solution by batch process. Various parameters such as thermodynamics, kinetics, pH, concentration of adsorbate, dosages of adsorbent and competitive ions effect on DCM adsorption were investigated. Maximum adsorption capacity (45.5 mg/g for CGAC) was observed at pH 6.0-8.0. The kinetics data indicate better applicability of pseudo-second-order kinetics model at 25 and 35 deg. C. Freundlich model was better obeyed on CGAC, WGAC, and BGAC, while LGAC followed Langmuir model. The adsorption process for 100 mg/L initial DCM concentration on CGAC was exothermic in nature. The adsorption of DCM on various adsorbents involves physical adsorption process. The adsorption of DCM over a large range of initial concentration on CGAC and LGAC is effective even in presence of ionic salts.

  14. Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc.

    Cui, Y; Chatterjee, A; Chatterjee, A K

    2001-04-01

    Posttranscriptional regulation mediated by the regulator of secondary metabolites (RSM) RsmA-rsmB pair is the most important factor in the expression of genes for extracellular enzymes and HarpinEcc in Erwinia carotovora subsp. carotovora. RsmA is a small RNA-binding protein, which acts by lowering the half-life of a mRNA species. rsmB specifies an untranslated regulatory RNA and neutralizes the RsmA effect. It has been speculated that GacA-GacS, members of a two-component system, may affect gene expression via RsmA. Because expA, a gacA homolog, and expS (or rpfA), a gacS homolog, have been identified in E. carotovora subsp. carotovora, we examined the effects of these gacA and gacS homologs on the expression of rsmA, rsmB, and an assortment of exoprotein genes. The gacA gene of E. carotovora subsp. carotovora strain 71 stimulated transcription of genes for several extracellular enzymes (pel-1, a pectate lyase gene; peh-1, a polygalacturonase gene; and celV, a cellulase gene), hrpNEcc (an E. carotovora subsp. carotovora gene specifying the elicitor of hypersensitive reaction), and rsmB in GacA+ and GacS+ E. carotovora subsp. carotovora strains. Similarly, the E. carotovora subsp. carotovora gacA gene stimulated csrB (rsmB) transcription in Escherichia coli. A GacS- mutant of E. carotovora subsp. carotovora strain AH2 and a GacA- mutant of E. carotovora subsp. carotovora strain Ecc71 compared with their parent strains produced very low levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts but produced similar levels of rsmA RNA and RsmA protein as well as transcripts of hyperproduction of extracellular enzymes (Hex) hexA, kdgR (repressor of genes for uronate and pectate catabolism), rsmC, and rpoS (gene for Sigma-S, an alternate Sigma factor). The levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts as well as production of pectate lyase, polygalacturonase, cellulase, protease, and HarpinEcc proteins were stimulated in GacS- and GacA- mutants by GacS

  15. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II) Ions from Wastewater by Using Mangostana garcinia Peel-Based Granular-Activated Carbon

    Rafique, R. F.; A. K. Rashid; S. M. Zain; Z. Z. Chowdhury; Khalid, K.

    2013-01-01

    The potential of granular-activated carbon (GAC) derived from agrowaste of Mangostene (Mangostana garcinia) fruit peel was investigated in batch and fixed bed system as a replacement of current expensive methods for treating wastewater contaminated by manganese, Mn(II) cations. Batch equilibrium data was analyzed by Langmuir, Freundlich, and Temkin isotherm models at different temperatures. The effect of inlet metal ion concentration (50 mg/L, 70 mg/L, and 100 mg/L), feed flow rate (1 mL/min ...

  16. An Island and Coastal Image Segmentation Method Based on Quadtree and GAC Model

    GUO Haitao

    2016-01-01

    Full Text Available Island and coastal image segmentation is of great importance for the subsequent coastline extraction, terrain inversion for intertidal zone, analysis of the situation for shore evolution, and so on. Firstly, the advantages and disadvantages of quadtree, geodesic active contour (GAC model and Canny edge detector used in the island and coastal image segmentation are analyzed. Secondly, an island and coastal image segmentation method is proposed by integrating quadtree, GAC model and Canny edge detector. The advantages of these three kinds of method are taken in the method proposed in this paper. The method introduces the results of Canny edge detector into edge indicator function of geodesic active contour model based on quadtree segmentation, evolutes the level set equation, and realizes island and coastal image segmentation.The experimental results show that the method proposed in this paper is of high speed, precision, reliability and automation for island and coastal image segmentation, even in the weak edges and serious concave edges.

  17. PROGRESS ON ACTIVATED CARBON FIBERS

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  18. Biological treatment of textile mill wastewater in the. presence of activated carbon

    The main goal of this study was to find out effectiveness of biological treatment for the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of the textile processing industrial wastewater in the absence and presence of granular activated carbon (GAC) in shake flask experiment. To check the pollution level, physio-chemical analysis of effluent from Amtex industry (Faisalabad) was carried out. The outlet effluent contained high value of COD (1100 mg/l), BOD (309 mg/l) with pH 9.2, electrical conductivity (Ec) 3.7 mS/m, total dissolved solids (TDS) (2640 mg/l), total solids (TS) (3060 mg/l), total suspended solids (TSS) (420 19/l) and phenol (.34 mg/l). After initial period of activated sludge adaptation to wastewater, shake flask batch cultures (with and without activated carbon) were operated on lab scale. The COD and BOD were noted after very 12 hours for 3 days. The maximum reduction in COD (82%) and BOD (90%) was observed biological treatment in presence of activated carbon at retention time of 72 hours. (author)

  19. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  20. High-valued Utilization of China Fir Sawdust Extracted Essential Oil: Preparation of Granular Activated Carbons for n-Butane Adsorption

    ZHU Guang-zhen; DENG Xian-lun; LIU Xiao-min

    2011-01-01

    [Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil. [Method] In the field of fir essential oil extraction, the processed China fir sawdust was used to prepare low-valued products. The high-valued utilization of China fir sawdust extracted essential oil (CFSEEO), namely as a precursor to prepare granular activated carbons (GACs), was attempted. The materials were characterized by ultimate analysis, SEM and XRD. [Rusult] A butane working capacity (BWC) of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml. It was available to introduce the technology of extracting essential oil from the China fir sawdust (CFS) in the industrial production process of activated carbons with high BWC (12.0 -16.5 g/100 ml) and high surface area (2 000 -2 630m2/g) using phosphoric acid based on previous studies of the authors. [Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.

  1. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. PMID:24980029

  2. Preparation of very pure active carbon

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  3. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb{sup 2+} from aqueous solutions

    Fernando, M. Shanika [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, Rohini M. de, E-mail: rohini@chem.cmb.ac.lk [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Silva, K.M. Nalin de [Department of Chemistry, University of Colombo, Colombo 03 (Sri Lanka); Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama (Sri Lanka)

    2015-10-01

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb{sup 2+} ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb{sup 2+} ions at room temperature at different pH levels. The adsorption data for Pb{sup 2+} ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g{sup −1}. For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g{sup −1}. Leaching of Ca{sup 2+} ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca{sup 2+} was high in neat HAp than C-HAp. The leaching of Ca{sup 2+} by neat HAp and C

  4. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions

    Highlights: • Synthesis of neat nano Hydroxyapatite using wet chemical precipitation methods. • This resulted rod like nanocrystals with a diameter around 50–80 nm. • Impregnation of of nano HAp onto the granular activated carbon (GAC) was achieved. • Materials were characterized using FT-IR, PXRD, and SEM. • Adsorption studies were conducted for Pb2+ ions. • The adsorption data were evaluated according to isotherm models. - Abstract: Synthesis of neat nano hydroxyapatite (HAp) was carried out using wet chemical precipitation methods at low temperature and this resulted rod like HAp nanocrystals with a diameter around 50–80 nm and length of about 250 nm. Impregnation of nano HAp onto the granular activated carbon (GAC) to prepare hydroxyapatite granular activated carbon nanocomposite (C-HAp) was carried out using in situ synthesis of nano HAp in the presence of GAC. The samples of neat nano HAp and C-HAp composite were characterized using Fourier-Transformed Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Detailed adsorption studies of neat nano HAp, C-HAp and neat GAC were conducted for Pb2+ ions at room temperature at different pH levels. The adsorption data for Pb2+ ions was evaluated according to both Langmuir and Freundlich adsorption isotherm models for both neat nano HAp and C-HAp separately at ambient temperature, 298 K. The equilibrium adsorption data were fitted well with Langmuir adsorption isotherm for neat nano HAp with an adsorption capacity in the range of 138–83 mg g−1. For C-HAp nanocomposite the adsorption data were well fitted with Freundlich model and the calculated adsorption capacity was in the range of 9–14 mg g−1. Leaching of Ca2+ ions by neat nano HAp and C-HAp were also analyzed as a function of pH. It was found that the leaching of Ca2+ was high in neat HAp than C-HAp. The leaching of Ca2+ by neat HAp and C-HAp during adsorption of Pb2+ ions were also

  5. Photoconductivity of Activated Carbon Fibers

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  6. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor.

    Mao, Ran; Zhao, Xu; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2015-06-15

    Bromate (BrO3(-)) is a carcinogenic and genotoxic contaminant commonly generated during ozonation of bromide-containing water. In this work, the reductive removal of BrO3(-) in a continuous three-dimensional electrochemical reactor with palladium-reduced graphene oxide modified carbon paper (Pd-rGO/C) cathode and Pd-rGO modified granular activated carbon (Pd-rGO/GAC) particles was investigated. The results indicated that the rGO sheets significantly promoted the electrochemical reduction of BrO3(-). With the enhanced electron transfer by rGO sheets, the electroreduction of H2O to atomic H* on the polarized Pd particles could be significantly accelerated, leading to a faster reaction rate of BrO3(-) with atomic H*. The synergistic effect of the Pd-rGO/C cathode and Pd-rGO/GAC particles were also exhibited. The atomic H* involved in various electroreduction processes was detected by electron spin resonance spectroscopy and its role for BrO3(-) reduction was determined. The performance of the reactor was evaluated in terms of the removal of BrO3(-) and the yield of Br(-) as a function of the GO concentration, Pd loading amount, current density, hydraulic residence time (HRT), and initial BrO3(-) concentration. Under the current density of 0.9 mA/cm(2), BrO3(-) with the initial concentration of 20 μg/L was reduced to be less than 6.6 μg/L at the HRT of 20 min. The BrO3(-) reduction was inhibited in the presence of dissolved organic matter. Although the precipitates generated from Ca(2+) and Mg(2+) in the tap water would cover the Pd catalysts, a long-lasting electrocatalytic activity could be maintained for the 30 d treatment. SEM and XPS analysis demonstrated that the precipitates were predominantly deposited onto the Pd-rGO/C cathode rather than the Pd-rGO/GAC particles. PMID:25834955

  7. Removal of micropollutants in WWTP effluent by biological assisted membrane carbon filtration (BioMAC).

    Weemaes, M; Fink, G; Lachmund, C; Magdeburg, A; Stalter, D; Thoeye, C; De Gueldre, G; Van De Steene, B

    2011-01-01

    In the frame of the European FP6 project Neptune, a combination of biological activated carbon with ultrafiltration (BioMAC) was investigated for micropollutant, pathogen and ecotoxicity removal. One pilot scale set-up and two lab-scale set-ups, of which in one set-up the granular activated carbon (GAC) was replaced by sand, were followed up during a period of 11 months. It was found that a combination of GAC and ultrafiltration led to an almost complete removal of antibiotics and a high removal (>80%) of most of the investigated acidic pharmaceuticals and iodinated contrast media. The duration of the tests did however not allow to conclude that the biological activation was able to extend the lifetime of the GAC. Furthermore, a significant decrease in estrogenic and anti-androgenic activity could be illustrated. The set-up in which GAC was replaced by sand showed a considerably lower removal efficiency for micropollutants, especially for antibiotics but no influence on steroid activity. PMID:21245556

  8. Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents.

    Gur-Reznik, Shirra; Katz, Ilan; Dosoretz, Carlos G

    2008-03-01

    The adsorption of dissolved organic matter (DOM) on granular-activated carbon (GAC) as a pretreatment to reverse osmosis (RO) desalination of membrane bioreactor (MBR) effluents was studied in lab- and pilot-scale columns. The pattern and efficiency of DOM adsorption and fate of the hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions were characterized, as well as their impact on organic fouling of the RO membranes. Relatively low DOM adsorption capacity and low intensity of adsorption were observed in batch studies. Continuous adsorption experiments performed within a range of hydraulic velocities of 0.9-12m/h depicted permissible values within the mass transfer zone up to 1.6m/h. The breakthrough curves within this range displayed a non-adsorbable fraction of 24+/-6% and a biodegradable fraction of 49+/-12%. Interestingly, the adsorbable fraction remained almost constant ( approximately 30%) in the entire hydraulic range studied. Comparative analysis by HPO interaction chromatography showed a steady removal (63-66%) of the HPO fraction. SUVA index and Fourier Transform Infrared (FTIR) spectra indicated that DOM changes during the adsorption phase were mainly due to elution of the more HPI components. GAC pretreatment in pilot-scale columns resulted in 80-90% DOM removal from MBR effluents, which in turn stabilized membrane permeability and increased permeate quality. FTIR analysis indicated that the residual DOM present in the RO permeate, regardless of the pretreatment, was mainly of HPI character (e.g., low-molecular-weight humics linked to polysaccharides and proteins). The DOM removed by GAC pretreatment is composed mainly of HPO and biodegradable components, which constitutes the fraction primarily causing organic fouling. PMID:17980400

  9. Volumetric and superficial characterization of carbon activated

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  10. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...