WorldWideScience

Sample records for activated alpha4beta1 integrin

  1. Highly Potent, Water Soluble Benzimidazole Antagonist for Activated (alpha)4(beta)1 Integrin

    Carpenter, R D; Andrei, M; Lau, E Y; Lightstone, F C; Liu, R; Lam, K S; Kurth, M J

    2007-08-29

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin, activated constitutively in lymphoma, can be targeted with the bisaryl urea peptidomimetic antagonist 1 (LLP2A). However, concerns on its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzimidazole moiety resulting in improved solubility while maintaining picomolar potency [5 (KLCA4); IC{sub 50} = 305 pM]. With exceptional solubility, this finding has potential for improving PK to help diagnose and treat lymphomas.

  2. Recombinant laminin-8 (alpha(4)beta(1)gamma(1)). Production, purification,and interactions with integrins.

    Kortesmaa, J; Yurchenco, P; Tryggvason, K

    2000-05-19

    Laminins are a large family of heterotrimeric extracellular matrix glycoproteins that, in addition to having structural roles, take part in the regulation of processes such as cell migration, differentiation, and proliferation. The laminin alpha(4) chain is widely distributed both in adults and during development in tissues such as cardiac, skeletal and smooth muscle fibers, vascular endothelia, lungs, and in peripheral nerves. It can associate with laminin beta(1)/gamma(1) chains to form laminin-8 and with the beta(2)/gamma(1) chains to form laminin-9. Functional studies on these laminins have been hampered by poor availability of the protein in pure and soluble forms. To facilitate studies on laminin-8, recombinant laminin-8 was produced in a mammalian expression system, purified and shown to form native Y-shaped molecules in rotary shadowing electron microscopy. Integrins mediating cell adhesion to laminin-8 were identified using function-blocking mAbs. The integrin specificities were found to differ somewhat from that of laminin-1. Integrin alpha(6)beta(1) was found to be a major mediator of adhesion of HT-1080 and cultured capillary endothelial cells to laminin-8. Considering the expression patterns of laminin-8 and integrin alpha(6)beta(1) it is likely that the former is a ligand for the latter in vivo as well. PMID:10809728

  3. Blood platelets contain and secrete laminin-8 (alpha4beta1gamma1) and adhere to laminin-8 via alpha6beta1 integrin.

    Geberhiwot, T; Ingerpuu, S; Pedraza, C; Neira, M; Lehto, U; Virtanen, I; Kortesmaa, J; Tryggvason, K; Engvall, E; Patarroyo, M

    1999-12-15

    Laminins, a family of heterotrimeric proteins with cell adhesive/signaling properties, are characteristic components of basement membranes of vasculature and tissues. In the present study, permeabilized platelets were found to react with a monoclonal antibody to laminin gamma1 chain by immunofluorescence. In Western blot analysis of platelet lysates, several monoclonal antibodies to gamma1 and beta1 laminin chains recognized 220- to 230-kDa polypeptides, under reducing conditions, and a structure with much slower electrophoretic mobility under nonreducing conditions. Immunoaffinity purification on a laminin beta1 antibody-Sepharose column yielded polypeptides of 230, 220, 200, and 180 kDa from platelet lysates. In the purified material, mAbs to beta1 and gamma1 reacted with the two larger polypeptides, while affinity-purified rabbit antibodies to laminin alpha4 chain recognized the smallest polypeptide. Identity of the polypeptides was confirmed by microsequencing. One million platelets contained on average 1 ng of laminin (approximately 700 molecules per cell), of which 20-35% was secreted within minutes after stimulation with either thrombin or phorbol ester. Platelets adhered to plastic surfaces coated with the purified platelet laminin, and this process was largely inhibited by antibodies to beta1 and alpha6 integrin chains. We conclude that platelets contain and, following activation, secrete laminin-8 (alpha4beta1gamma1) and that the cells adhere to the protein by using alpha6beta1 integrin. PMID:10585296

  4. Discovery, SAR, and Radiolabeling of Halogenated Benzimidazole Carboxamide Antagonists as Useful Tools for (alpha)4(beta)1 Integrin Expressed on T- and B-cell Lymphomas

    Carpenter, R D; Natarajan, A; Lau, E Y; Andrei, M; Solano, D M; Lightstone, F C; DeNardo, S J; Lam, K S; Kurth, M J

    2010-02-08

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin is an attractive yet poorly understood target for selective diagnosis and treatment of T- and B-cell lymphomas. This report focuses on the rapid microwave preparation of medicinally pertinent benzimidazole heterocycles, structure-activity relationships (SAR) of novel halobenzimidazole carboxamide antagonists 3-6, and preliminary biological evaluation of radioiodinated agents 7, 8, and 18. The I-125 derivative 18 had good tumor uptake (12 {+-} 1% ID/g at 24 h; 4.5 {+-} 1% ID/g at 48 h) and tumor:kidney ratio ({approx}4:1 at 24 h; 2.5:1 at 48 h) in xenograft murine models of B-cell lymphoma. Molecular homology models of {alpha}{sub 4}{beta}{sub 1} integrin have predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. These high affinity ({approx} pM binding) halogenated ligands are attractive tools for medicinal and biological use; the fluoro and iodo derivatives are potential radiodiagnostic ({sup 18}F) or radiotherapeutic ({sup 131}I) agents, whereas the chloro and bromo analogues could provide structural insight into integrin-ligand interactions through photoaffinity cross-linking/mass spectroscopy experiments, as well as co-crystallization X-ray studies.

  5. Chondroitin sulphate modification in the alpha4 chain of human recombinant laminin-8 (alpha4beta1gamma1).

    Kortesmaa, Jarkko; Doi, Masayuki; Patarroyo, Manuel; Tryggvason, Karl

    2002-10-01

    We have produced human laminin-8 (alpha4beta1gamma1) using recombinant technology. Approximately half of the recombinant laminin-8 (rLN-8) molecules were found to have a chondroitin sulphate modification in the alpha4 chain. The substituted and non-substituted forms were separated and tested for cell adhesion activity. Lower cell adhesion promoting activity was seen for the substituted form, but the integrin receptor utilization was similar. We also found the human rLN-8 to behave identically in cell adhesion assays compared to a human/mouse hybrid variant of rLN-8. PMID:12392759

  6. Monocytic cells synthesize, adhere to, and migrate on laminin-8 (alpha 4 beta 1 gamma 1).

    Pedraza, C; Geberhiwot, T; Ingerpuu, S; Assefa, D; Wondimu, Z; Kortesmaa, J; Tryggvason, K; Virtanen, I; Patarroyo, M

    2000-11-15

    Laminins, a growing family of large heterotrimeric proteins with cell adhesive and signaling properties, are major components of vascular and other basement membranes. Expression, recognition, and use of laminin isoforms by leukocytes are poorly understood. In monoblastic THP-1 cells, transcripts for laminin gamma(1)-, beta(1)-, and alpha(4)-chains were detected by RT-PCR. Following immunoaffinity purification on a laminin beta(1) Ab-Sepharose column, laminin beta(1)- (220 kDa), gamma(1)- (200 kDa), and alpha(4)- (180/200 kDa) chains were detected by Western blotting in THP-1 cells and in two other monoblastic cell lines, U-937 and Mono Mac 6. After cell permeabilization, a mAb to laminin gamma(1)-chain reacted with practically all blood monocytes by immunofluorescence flow cytometry, and laminin-8 (alpha(4)beta(1)gamma(1)) could be isolated also from these cells. Monoblastic JOSK-I cells adhered constitutively to immobilized recombinant laminin-8, less than to laminin-10/11 (alpha(5)beta(1)gamma(1)/alpha(5)beta(2)gamma(1)) but to a higher level than to laminin-1 (alpha(1)beta(1)gamma(1)). Compared with the other laminin isoforms, adhesion to laminin-8 was preferentially mediated by alpha(6)beta(1) and beta(2) integrins. Laminin-8 and, to a lower extent, laminin-1 promoted spontaneous and chemokine-induced migration of blood monocytes, whereas laminin-10/11 was inhibitory. Altogether, the results indicate that leukocytes, as other cell types, are able to synthesize complete laminin molecules. Expression, recognition, and use of laminin-8 by leukocytes suggest a major role of this laminin isoform in leukocyte physiology. PMID:11067943

  7. Laminin-8 (alpha4beta1gamma1) is synthesized by lymphoid cells, promotes lymphocyte migration and costimulates T cell proliferation.

    Geberhiwot, T; Assefa, D; Kortesmaa, J; Ingerpuu, S; Pedraza, C; Wondimu, Z; Charo, J; Kiessling, R; Virtanen, I; Tryggvason, K; Patarroyo, M

    2001-01-01

    Laminins are a growing family of large heterotrimeric proteins with cell adhesive and signalling functions. They are major components of basement membranes and are found in many organs, including the vasculature and other compartments of bone marrow, thymus, lymph nodes and spleen. However, expression, recognition and use of laminin isoforms by lymphoid cells are poorly understood. In the present study, lymphoid T cells (Jurkat) were found to synthesize laminin alpha4, beta1 and gamma1 mRNAs and polypeptides and to assemble the chains into laminin-8. Lymphoblastoid B (NAD-20) cells, lymphoid NK (NKL) cells and blood lymphocytes also contained laminin-8 and, after cell permeabilization, practically all blood lymphocytes reacted with mAbs to laminin beta1 and gamma1 chains. Following stimulation, blood lymphocytes secreted laminin-8, and this laminin isoform, but not laminin-10/11(alpha5beta1gamma1/alpha5beta2gamma1), promoted chemokine-induced migration of the cells. In an activation-dependent manner, purified blood CD4 T cells adhered to immobilized laminin-8 and laminin-10/11 by using alpha6beta1 integrin, but minimally to laminin-1 (alpha1beta1gamma1). Accordingly, laminin-8 and laminin-10/11, but not laminin-1, strongly costimulated proliferation of the T cells via the same integrin. Thus, lymphoid cells are able to synthesize and secrete complete laminin molecules. In addition, synthesis of laminin-8 and recognition of laminin-8 and -10/11 by lymphocytes indicate relevance of these laminin isoforms in lymphocyte physiology. PMID:11148143

  8. An endothelial laminin isoform, laminin 8 (alpha4beta1gamma1), is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis.

    Wondimu, Zenebech; Geberhiwot, Tarekegn; Ingerpuu, Sulev; Juronen, Erkki; Xie, Xun; Lindbom, Lennart; Doi, Masayuki; Kortesmaa, Jarkko; Thyboll, Jill; Tryggvason, Karl; Fadeel, Bengt; Patarroyo, Manuel

    2004-09-15

    During extravasation, neutrophils migrate through the perivascular basement membrane (BM), a specialized extracellular matrix rich in laminins. Laminins 8 (LN-8) (alpha4beta1gamma1) and 10 (LN-10) (alpha5beta1gamma1) are major components of the endothelial BM, but expression, recognition, and use of these laminin isoforms by neutrophils are poorly understood. In the present study, we provide evidence, using a panel of novel monoclonal antibodies against human laminin alpha4 (LNalpha4) chain, that neutrophils contain and secrete LN-8, and that this endogenous laminin contributes to chemoattractant-induced, alphaMbeta2-integrin-dependent neutrophil migration through albumin-coated filters. Phorbol ester-stimulated neutrophils adhered to recombinant human (rh) LN-8, rhLN-10, and mouse LN-1 (mLN-1) (alpha1beta1gamma1) via alphaMbeta2-integrin, and these laminin isoforms strongly promoted chemoattractant-induced neutrophil migration via the same integrin. However, only rhLN-8 enhanced the spontaneous migration. In addition, recruitment of neutrophils into the peritoneum following an inflammatory stimulus was impaired in LNalpha4-deficient mice. rhLN-8 also protected isolated neutrophils from spontaneous apoptosis. This study is the first to identify a specific laminin isoform in neutrophils and provides evidence for the role of LN-8 in the adhesion, migration, extravasation, and survival of these cells. PMID:15172971

  9. Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA) and integrin alpha v beta 3 induces signal transduction and enhances plasminogen activation.

    Tarui, Takehiko; Akakura, Nobuaki; Majumdar, Mousumi; Andronicos, Nicholas; Takagi, Junichi; Mazar, Andrew P; Bdeir, Khalil; Kuo, Alice; Yarovoi, Serge V; Cines, Douglas B; Takada, Yoshikazu

    2006-03-01

    It has been questioned whether there are receptors for urokinase-type plasminogen activator (uPA) that facilitate plasminogen activation other than the high affinity uPA receptor (uPAR/CD87) since studies of uPAR knockout mice did not support a major role of uPAR in plasminogen activation. uPA also promotes cell adhesion, chemotaxis, and proliferation besides plasminogen activation. These uPA-induced signaling events are not mediated by uPAR, but mediated by unidentified, lower-affinity receptors for the uPA kringle. We found that uPA binds specifically to integrin alpha v beta 3 on CHO cells depleted of uPAR. The binding of uPA to alpha v beta 3 required the uPA kringle domain. The isolated uPA kringle domain binds specifically to purified, recombinant soluble, and cell surface alpha v beta 3, and other integrins (alpha 4 beta 1 and alpha 9 beta 1), and induced migration of CHO cells in an alpha v beta 3-dependent manner. The binding of the uPA kringle to alpha v beta 3 and uPA kringle-induced alpha v beta 3-dependent cell migration were blocked by homologous plasminogen kringles 1-3 or 1-4 (angiostatin), a known integrin antagonist. We studied whether the binding of uPA to integrin alpha v beta 3 through the kringle domain plays a role in plasminogen activation. On CHO cell depleted of uPAR, uPA enhanced plasminogen activation in a kringle and alpha v beta 3-dependent manner. Endothelial cells bound to and migrated on uPA and uPA kringle in an alpha v beta 3-dependent manner. These results suggest that uPA binding to integrins through the kringle domain plays an important role in both plasminogen activation and uPA-induced intracellular signaling. The uPA kringle-integrin interaction may represent a novel therapeutic target for cancer, inflammation, and vascular remodeling. PMID:16525582

  10. Spermidine/spermine N-1-acetyltransferase specifically binds to the integrin alpha 9 subunit cytoplasmic domain and enhances cell migration

    Chen, C.; Young, B A; Coleman, C S; Pegg, A E; Sheppard, D

    2004-01-01

    T he integrin alpha9beta1 is expressed on migrating cells, such as leukocytes, and binds to multiple ligands that are present at sites of tissue injury and inflammation. alpha9beta1, like the structurally related integrin alpha4beta1, mediates accelerated cell migration, an effect that depends on the beta cytoplasmic domain. alpha4beta1 enhances migration through reversible binding to the adapter protein, paxillin, but alpha9beta1-dependent migration is paxillin independent. Using yeast two-h...

  11. Integrin Activation and Viral Infection

    Shan-dian GAO; Jun-zheng DU; Jian-hua ZHOU; Hui-yun CHANG; Qing-ge XIE

    2008-01-01

    Integrins are members of a ubiquitous membrane receptor family which includes 18 different α subunits and 8 β subunits forming more than 20 α/β heterodimers. Integrins play key functions in vascular endothelial cell and tumour cell adhesion, lymphocyte trafficking, tumor growth and viral infection. Current understanding of the molecular basis of integrins as viral receptors has been achieved through many decades of study into the biology of transmembrane glycoproteins and their interactions with several viruses. This review provides a summary of the current knowledge on the molecular bases of interactions between viruses and integrins, which are of potential practical significance. Inhibition of virus-integrin interactions at the points of virus attachment or entry will provide a novel approach for the therapeutic treatment of viral diseases.

  12. Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions

    Barja-Fidalgo C.

    2005-01-01

    Full Text Available Extracellular matrix proteins and cell adhesion receptors (integrins play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.

  13. Genetic analysis of beta1 integrin "activation motifs" in mice

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R;

    2006-01-01

    /beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin...

  14. Leukocyte arrest: Biomechanics and molecular mechanisms of β2 integrin activation

    Fan, Zhichao; Ley, Klaus

    2016-01-01

    Integrins are a group of heterodimeric transmembrane receptors that play essential roles in cell–cell and cell–matrix interaction. Integrins are important in many physiological processes and diseases. Integrins acquire affinity to their ligand by undergoing molecular conformational changes called activation. Here we review the molecular biomechanics during conformational changes of integrins, integrin functions in leukocyte biorheology (adhesive functions during rolling and arrest) and molecules involved in integrin activation. PMID:26684674

  15. FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly.

    Nader, Guilherme P F; Ezratty, Ellen J; Gundersen, Gregg G

    2016-05-01

    Integrin endocytic recycling is critical for cell migration, yet how recycled integrins assemble into new adhesions is unclear. By synchronizing endocytic disassembly of focal adhesions (FAs), we find that recycled integrins reassemble FAs coincident with their return to the cell surface and dependent on Rab5 and Rab11. Unexpectedly, endocytosed integrins remained in an active but unliganded state in endosomes. FAK and Src kinases co-localized with endocytosed integrin and were critical for FA reassembly by regulating integrin activation and recycling, respectively. FAK sustained the active integrin conformation by maintaining talin association with Rab11 endosomes in a type I phosphatidylinositol phosphate kinase (PIPKIγ)-dependent manner. In migrating cells, endocytosed integrins reassembled FAs polarized towards the leading edge, and this polarization required FAK. These studies identify unanticipated roles for FA proteins in maintaining endocytosed integrin in an active conformation. We propose that the conformational memory of endocytosed integrin enhances polarized reassembly of FAs to enable directional cell migration. PMID:27043085

  16. Integrin activation by a cold atmospheric plasma jet

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ∼30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. (paper)

  17. Suppression of integrin activation by the membrane-distal sequence of the integrin alphaIIb cytoplasmic tail.

    Yamanouchi, Jun; Hato, Takaaki; Tamura, Tatsushiro; Fujita, Shigeru

    2004-01-01

    Integrin cytoplasmic tails regulate integrin activation including an increase in integrin affinity for ligands. Although there is ample evidence that the membrane-proximal regions of the alpha and beta tails interact with each other to maintain integrins in a low-affinity state, little is known about the role of the membrane-distal region of the alpha tail in regulation of integrin activation. We report a critical sequence for regulation of integrin activation in the membrane-distal region of the alphaIIb tail. Alanine substitution of the RPP residues in the alphaIIb tail rendered alphaIIbbeta3 constitutively active in a metabolic energy-dependent manner. Although an alphaIIb/alpha6Abeta3 chimaeric integrin, in which the alphaIIb tail was replaced by the alpha6A tail, was in an energy-dependent active state to bind soluble ligands, introduction of the RPP sequence into the alpha6A tail inhibited binding of an activation-dependent antibody PAC1. In alphaIIb/alpha6Abeta3, deleting the TSDA sequence from the alpha6A tail or single amino acid substitutions of the TSDA residues inhibited alphaIIb/alpha6Abeta3 activation and replacing the membrane-distal region of the alphaIIb tail with TSDA rendered alphaIIbbeta3 active, suggesting a stimulatory role of TSDA in energy-dependent integrin activation. However, adding TSDA to the alphaIIb tail containing the RPP sequence of the membrane-distal region failed to activate alphaIIbbeta3. These results suggest that the RPP sequence after the GFFKR motif of the alphaIIb tail suppresses energy-dependent alphaIIbbeta3 activation. These findings provide a molecular basis for the regulation of energy-dependent integrin activation by alpha subunit tails. PMID:14723599

  18. Lamellipodial tension, not integrin/ligand binding, is the crucial factor to realise integrin activation and cell migration.

    Schulte, Carsten; Ferraris, Gian Maria Sarra; Oldani, Amanda; Galluzzi, Massimiliano; Podestà, Alessandro; Puricelli, Luca; de Lorenzi, Valentina; Lenardi, Cristina; Milani, Paolo; Sidenius, Nicolai

    2016-01-01

    The molecular clutch (MC) model proposes that actomyosin-driven force transmission permits integrin-dependent cell migration. To investigate the MC, we introduced diverse talin (TLN) and integrin variants into Flp-In™ T-Rex™ HEK293 cells stably expressing uPAR. Vitronectin variants served as substrate providing uPAR-mediated cell adhesion and optionally integrin binding. This particular system allowed us to selectively analyse key MC proteins and interactions, effectively from the extracellular matrix substrate to intracellular f-actin, and to therewith study mechanobiological aspects of MC engagement also uncoupled from integrin/ligand binding. With this experimental approach, we found that for the initial PIP2-dependent membrane/TLN/f-actin linkage and persistent lamellipodia formation the C-terminal TLN actin binding site (ABS) is dispensable. The establishment of an adequate MC-mediated lamellipodial tension instead depends predominantly on the coupling of this C-terminal TLN ABS to the actomyosin-driven retrograde actin flow force. This lamellipodial tension is crucial for full integrin activation eventually determining integrin-dependent cell migration. In the integrin/ligand-independent condition the frictional membrane resistance participates to these processes. Integrin/ligand binding can also contribute but is not necessarily required. PMID:26616200

  19. Structural Requirements for Activation in αIIbβ3 Integrin*

    Kamata, Tetsuji; Handa, Makoto; Ito, Sonomi; Sato, Yukiko; Ohtani, Toshimitsu; Kawai, Yohko; Ikeda, Yasuo; Aiso, Sadakazu

    2010-01-01

    Integrins are postulated to undergo structural rearrangement from a low affinity bent conformer to a high affinity extended conformer upon activation. However, some reports have shown that a bent conformer is capable of binding a ligand, whereas another report has shown that integrin extension does not absolutely lead to activation. To clarify whether integrin affinity is indeed regulated by the so-called switchblade-like movement, we have engineered a series of mutant αIIbβ3 integrins that a...

  20. Integrin activation and focal complex formation in cardiac hypertrophy

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  1. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma

    Barthel, Steven R; Johansson, Mats W.; McNamee, Dawn M.; Deane F Mosher

    2007-01-01

    Eosinophilic inflammation is a characteristic feature of asthma. Integrins are highly versatile cellular receptors that regulate extravasation of eosinophils from the postcapillary segment of the bronchial circulation to the airway wall and airspace. Such movement into the asthmatic lung is described as a sequential, multistep paradigm, whereby integrins on circulating eosinophils become activated, eosinophils tether in flow and roll on bronchial endothelial cells, integrins on rolling eosino...

  2. Alpha V integrin prolongs collagenase production through Jun activation binding protein 1.

    Levinson, Howard; Sil, Alok K; Conwell, John E; Hopper, James E; Ehrlich, H Paul

    2004-08-01

    Robust expression of alphav integrin and matrix metalloproteinase 1 (MMP1) plays an important role in cancer metastasis and wound healing. A patient with an abnormal scar that appeared stretched and thinned out was found to have fibroblasts that overexpressed alphav integrin; therefore, a relationship between alphav integrin expression and MMP1 production was sought. A yeast 2 hybrid screen revealed alphav integrin interacts with jun activation binding domain-1 (JAB1). Mesenchymal-derived cells were transfected with the alphav integrin gene and incorporated into collagen lattices. Transfected cells maximally contracted collagen lattices beginning on day 5, whereas control transfected cells did not contract lattices. Late-phase collagen lattice contraction was inhibited by a pan-MMP inhibitor, BB4. Overexpression of alphav correlated with enhanced MMP1 transcription, as determined by a luciferase assay (P production and that this signaling pathway in fibroblasts may lead to abnormal scarring. PMID:15269586

  3. Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens.

    Siljander, Pia R-M; Hamaia, Samir; Peachey, Anthony R; Slatter, David A; Smethurst, Peter A; Ouwehand, Willem H; Knight, C Graham; Farndale, Richard W

    2004-11-12

    Only three recognition motifs, GFOGER, GLOGER, and GASGER, all present in type I collagen, have been identified to date for collagen-binding integrins, such as alpha(2)beta(1). Sequence alignment was used to investigate the occurrence of related motifs in other human fibrillar collagens, and located a conserved array of novel GER motifs within their triple helical domains. We compared the integrin binding properties of synthetic triple helical peptides containing examples of such sequences (GLSGER, GMOGER, GAOGER, and GQRGER) or the previously identified motifs. Recombinant inserted (I) domains of integrin subunits alpha(1), alpha(2) and alpha(11) all bound poorly to all motifs other than GFOGER and GLOGER. Similarly, alpha(2)beta(1) -containing resting platelets adhered well only to GFOGER and GLOGER, while ADP-activated platelets, HT1080 cells and two active alpha(2)I domain mutants (E318W, locked open) bound all motifs well, indicating that affinity modulation determines the sequence selectivity of integrins. GxO/SGER peptides inhibited platelet adhesion to collagen monomers with order of potency F >/= L >/= M > A. These results establish GFOGER as a high affinity sequence, which can interact with the alpha(2)I domain in the absence of activation and suggest that integrin reactivity of collagens may be predicted from their GER content. PMID:15345717

  4. Integrin α1β1 Promotes Caveolin-1 Dephosphorylation by Activating T Cell Protein-tyrosine Phosphatase*

    Borza, Corina M.; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R.; Zent, Roy; Pozzi, Ambra

    2010-01-01

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  5. Integrin {alpha}1{beta}1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase.

    Borza, Corina M; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R; Zent, Roy; Pozzi, Ambra

    2010-12-17

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  6. Discoidin domain receptor 1 is activated independently of beta(1) integrin

    Vogel, W; Brakebusch, C; Fässler, R;

    2000-01-01

    Various types of collagen have been identified as potential ligands for the two mammalian discoidin domain receptor (DDR) tyrosine kinases, DDR1 and DDR2. It is presently unclear whether collagen-induced DDR receptor activation, which occurs with very slow kinetics, involves additional proteins...... blocking antibodies for alpha(2)beta(1) integrin or in cells with a targeted deletion of the beta(1) integrin gene. Finally, we show that overexpression of dominant negative DDR1 in the myoblast cell line C2C12 blocks cellular differentiation and the formation of myofibers....

  7. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  8. A computational analysis of the dynamic roles of talin, Dok1, and PIPKI for integrin activation.

    Florian Geier

    Full Text Available Integrin signaling regulates cell migration and plays a pivotal role in developmental processes and cancer metastasis. Integrin signaling has been studied extensively and much data is available on pathway components and interactions. Yet the data is fragmented and an integrated model is missing. We use a rule-based modeling approach to integrate available data and test biological hypotheses regarding the role of talin, Dok1 and PIPKI in integrin activation. The detailed biochemical characterization of integrin signaling provides us with measured values for most of the kinetics parameters. However, measurements are not fully accurate and the cellular concentrations of signaling proteins are largely unknown and expected to vary substantially across different cellular conditions. By sampling model behaviors over the physiologically realistic parameter range we find that the model exhibits only two different qualitative behaviors and these depend mainly on the relative protein concentrations, which offers a powerful point of control to the cell. Our study highlights the necessity to characterize model behavior not for a single parameter optimum, but to identify parameter sets that characterize different signaling modes.

  9. Integrin α6Bβ4 inhibits colon cancer cell proliferation and c-Myc activity

    Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin β4 subunit is up-regulated in primary colon cancer. Its partner, the integrin α6 subunit, exists as two different mRNA splice variants, α6A and α6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these α6 splice variants is still lacking. In this work, we first analyzed the expression of integrin α6A and α6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of α6A and α6B on the regulation of cell proliferation in a colon cancer cell line. Using variant-specific antibodies, we observed that α6A and α6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express α6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed α6B. A relative decrease of α6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the α6A/α6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the α6A/α6B balance in favor of α6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc. The findings that the α6Bβ4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its α6Aβ4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this α6Bβ4 integrin. Taken together, these findings point out the importance of integrin

  10. Vipegitide: a folded peptidomimetic partial antagonist of α2β1 integrin with antiplatelet aggregation activity

    Momic T

    2015-01-01

    Full Text Available Tatjana Momic,1 Jehoshua Katzhendler,1 Ela Shai,2 Efrat Noy,3 Hanoch Senderowitz,3 Johannes A Eble,4 Cezary Marcinkiewicz,5 David Varon,2 Philip Lazarovici11School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, 2Department of Hematology, Coagulation Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; 3Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel; 4Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany; 5Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USAAbstract: Linear peptides containing the sequence WKTSRTSHY were used as lead compounds to synthesize a novel peptidomimetic antagonist of α2β1 integrin, with platelet aggregation-inhibiting activity, named Vipegitide. Vipegitide is a 13-amino acid, folded peptidomimetic molecule, containing two α-aminoisobutyric acid residues at positions 6 and 8 and not stable in human serum. Substitution of glycine and tryptophan residues at positions 1 and 2, respectively, with a unit of two polyethylene glycol (PEG molecules yielded peptidomimetic Vipegitide-PEG2, stable in human serum for over 3 hours. Vipegitide and Vipegitide-PEG2 showed high potency (7×10-10 M and 1.5×10-10 M, respectively and intermediate efficacy (40% and 35%, respectively as well as selectivity toward α2 integrin in inhibition of adhesion of α1/α2 integrin overexpressing cells toward respective collagens. Interaction of both peptidomimetics with extracellular active domain of α2 integrin was confirmed in cell-free binding assay with recombinant α2 A-domain. Integrin α2β1 receptor is found on the platelet membrane and triggers collagen-induced platelet aggregation. Vipegitide and Vipegitide-PEG2 inhibited α2β1 integrin-mediated adhesion of human and murine platelets under the flow condition, by 50%. They efficiently blocked adenosine diphosphate

  11. Integrin α1β1 Regulates Epidermal Growth Factor Receptor Activation by Controlling Peroxisome Proliferator-Activated Receptor γ-Dependent Caveolin-1 Expression ▿ # ‖

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C.; Zent, Roy; Pozzi, Ambra

    2010-01-01

    Integrin α1β1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin α1β1-mediated EGFR activation. Integrin α1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin α1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin α1-null MCs decreases EGFR-mediated ROS production. We further show that integrin α1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARγ or inhibition of ERK increases Cav-1 levels in the integrin α1-null MCs. Finally, we show that glomeruli of integrin α1-null mice have reduced levels of Cav-1 and activated PPARγ but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin α1β1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARγ axis plays a key role in regulating integrin α1β1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  12. Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression.

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C; Zent, Roy; Pozzi, Ambra

    2010-06-01

    Integrin alpha1beta1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin alpha1beta1-mediated EGFR activation. Integrin alpha1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin alpha1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin alpha1-null MCs decreases EGFR-mediated ROS production. We further show that integrin alpha1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARgamma or inhibition of ERK increases Cav-1 levels in the integrin alpha1-null MCs. Finally, we show that glomeruli of integrin alpha1-null mice have reduced levels of Cav-1 and activated PPARgamma but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin alpha1beta1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARgamma axis plays a key role in regulating integrin alpha1beta1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  13. αvβ3-integrin is a major sensor and activator of innate immunity to herpes simplex virus-1

    Gianni, Tatiana; Leoni, Valerio; Chesnokova, Liudmila S; Lindsey M Hutt-Fletcher; Campadelli-Fiume, Gabriella

    2012-01-01

    Pathogens are sensed by Toll-like receptors (TLRs) and a growing number of non-TLR receptors. Integrins constitute a family of signaling receptors exploited by viruses and bacteria to access cells. By gain- and loss-of-function approaches we found that αvβ3-integrin is a sensor of and plays a crucial role in the innate defense against herpes simplex virus (HSV). αvβ3-integrin signaled through two pathways. One concurred with TLR2, affected activation/induction of interferons type 1 (IFNs-1), ...

  14. Integrin β6 Mediates Phospholipid and Collectin Homeostasis by Activation of Latent TGF-β1

    Koth, Laura L.; Alex, Byron; Hawgood, Samuel; Nead, Michael A.; Sheppard, Dean; Erle, David J.; Morris, David G.

    2007-01-01

    Surfactant lines the alveolar surface and prevents alveolar collapse. Derangements of surfactant cause respiratory failure and interstitial lung diseases. The collectins, surfactant proteins A and D, are also important in innate host defense. However, surfactant regulation in the postnatal lung is poorly understood. We found that the epithelial integrin, αvβ6, regulates surfactant homeostasis in vivo by activating latent transforming growth factor (TGF)-β. Adult mice lacking the β-subunit of ...

  15. Constitutive integrin activation on tumor cells contributes to progression of leptomeningeal metastases1

    Brandsma, Dieta; Ulfman, Laurien; Reijneveld, Jaap C.; Bracke, Madelon; Taphoorn, Martin J.B.; Zwaginga, Jaap Jan; Gebbink, Martijn F.B.; de Boer, Hetty; Koenderman, Leo; Emile E. Voest

    2006-01-01

    Leptomeningeal metastases are a serious neurological complication in cancer patients and associated with a dismal prognosis. Tumor cells that enter the subarachnoid space adhere to the leptomeninges and form tumor deposits. It is largely unknown which adhesion molecules mediate tumor cell adhesion to leptomeninges. We studied the role of integrin expression and activation in the progression of leptomeningeal metastases. For this study, we used a mouse acute lymphocytic leukemic cell line that...

  16. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  17. Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex.

    Qiao, Shuhong; Homayouni, Ramin

    2015-01-01

    Dab2IP (DOC-2/DAB2 interacting protein) is a GTPase-activating protein which is involved in various aspects of brain development in addition to its roles in tumor formation and apoptosis in other systems. In this study, we carefully examined the expression profile of Dab2IP and investigated its physiological role during brain development using a Dab2IP-knockdown (KD) mouse model created by retroviral insertion of a LacZ-encoding gene-trapping cassette. LacZ staining revealed that Dab2IP is expressed in the ventricular zone as well as the cortical plate and the intermediate zone. Immunohistochemical analysis showed that Dab2IP protein is localized in the leading process and proximal cytoplasmic regions of migrating neurons in the intermediate zone. Bromodeoxyuridine birth dating experiments in combination with immunohistochemical analysis using layer-specific markers showed that Dab2IP is important for proper positioning of a subset of layer II-IV neurons in the developing cortex. Notably, neuronal migration was not completely disrupted in the cerebral cortex of Dab2IP-KD mice and disruption of migration was not strictly layer specific. Previously, we found that Dab2IP regulates multipolar transition in cortical neurons. Others have shown that Rap1 regulates the transition from multipolar to bipolar morphology in migrating postmitotic neurons through N-cadherin signaling and somal translocation in the superficial layer of the cortical plate through integrin signaling. Therefore, we examined whether Rap1 and integrin signaling were affected in Dab2IP-KD brains. We found that Dab2IP-KD resulted in higher levels of activated Rap1 and integrin in the developing cortex. Taken together, our results suggest that Dab2IP plays an important role in the migration and positioning of a subpopulation of later-born (layers II-IV) neurons, likely through the regulation of Rap1 and integrin signaling. PMID:25721469

  18. Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin.

    Tetsuji Kamata

    Full Text Available Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.

  19. Structural insight into the recognition of complement C3 activation products by integrin receptors

    Bajic, Goran

    2015-01-01

    associated with microbes and apoptotic or necrotic cells. Complement not only protects against pathogens but also maintains body homeostasis. Activation of complement leads to cleavage of the complement proteins C4, C3 and C5, and their fragments have effector functions through binding to pathogen surfaces...... small fragment C3a called anaphylatoxin. Complement leads to opsonization as the proteolytic fragment C3b becomes covalently linked to the activator surface through a reactive thioester. Self-surfaces are protected by complement regulators, whereas complement activation vividly amplifies on pathogens....... An important outcome of the regulators is the degradation of C3b to iC3b. Phagocytic receptor αMβ2 integrin (also called CR3, CD11b/CD18, or Mac-1) on leukocytes engages the opsonized activator subsequently to C3b cleavage into iC3b. Apoptotic cells activate complement leading to iC3b deposition and...

  20. Integrin-mediated adhesion as self-sustained waves of enzymatic activation.

    Block, M R; Destaing, O; Petropoulos, C; Planus, E; Albigès-Rizo, C; Fourcade, B

    2015-10-01

    Integrin receptors mediate interaction between the cellular actin-cytoskeleton and extracellular matrix. Based on their activation properties, we propose a reaction-diffusion model where the kinetics of the two-state receptors is modulated by their lipidic environment. This environment serves as an activator variable, while a second variable plays the role of a scaffold protein and controls the self-sustained activation of the receptors. Due to receptor diffusion which couples dynamically the activator and the inhibitor, our model connects major classes of reaction diffusion systems for excitable media. Spot and rosette solutions, characterized by receptor clustering into localized static or dynamic structures, are organized into a phase diagram. It is shown that diffusion and kinetics of receptors determines the dynamics and the stability of these structures. We discuss this model as a precursor model for cell signaling in the context of podosomes forming actoadhesive metastructures, and we study how generic signaling defects influence their organization. PMID:26565269

  1. Alpha6beta4 integrin crosslinking induces EGFR clustering and promotes EGF-mediated Rho activation in breast cancer

    Woodward Wendy A

    2009-05-01

    Full Text Available Abstract Background The α6β4 integrin is overexpressed in the basal subtype of breast cancer and plays an important role in tumor cell motility and invasion. EGFR is also overexpressed in the basal subtype of breast cancer, and crosstalk between α6β4 integrin and EGFR appears to be important in tumor progression. Methods We evaluated the effects of α6β4 crosslinking on the distribution and function of EGFR in breast carcinoma cell line MDA-MB-231. Receptor distribution was evaluated by fluorescence microscopy and multispectral imaging flow cytometry, and ligand-mediated EGFR signaling was evaluated using Western blots and a Rho pull-down assay. Results Antibody-mediated crosslinking of α6β4 integrin was sufficient to induce cell-surface clustering of not only α6β4 but also EGFR in nonadherent cells. The induced clustering of EGFR was observed minimally after 5 min of integrin crosslinking but was more prominent after 15 min. EGFR clustering had minimal effect on the phosphorylation of Akt or Erk1,2 in response to EGF in suspended cells or in response to HB-EGF in adherent cells. However, EGFR clustering induced by crosslinking α6β4 had a marked effect on Rho activation in response to EGF. Conclusion Crosslinking α6β4 integrin in breast carcinoma cells induces EGFR clustering and preferentially promotes Rho activation in response to EGF. We hypothesize that this integrin-EGFR crosstalk may facilitate tumor cell cytoskeletal rearrangements important for tumor progression.

  2. Expression of VLA-integrins and their related basement membrane ligands in gingiva from patients of various periodontitis categories

    Gürses, N.; Thorup, Alis Karabulut; Reibel, J.; Carter, G.W.; Holmstrup, Palle

    integrins, basement membrane, gingiva, periodontitis, periodontal disease activity immunofluorescence......integrins, basement membrane, gingiva, periodontitis, periodontal disease activity immunofluorescence...

  3. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  4. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH)2D3, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion

  5. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  6. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  7. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  8. Integrin αIIb (CD41 plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta

    Jean-Charles Boisset

    2013-04-01

    Integrins are transmembrane receptors that play important roles as modulators of cell behaviour through their adhesion properties and the initiation of signaling cascades. The αIIb integrin subunit (CD41 is one of the first cell surface markers indicative of hematopoietic commitment. αIIb pairs exclusively with β3 to form the αIIbβ3 integrin. β3 (CD61 also pairs with αv (CD51 to form the αvβ3 integrin. The expression and putative role of these integrins during mouse hematopoietic development is as yet unknown. We show here that hematopoietic stem cells (HSCs differentially express αIIbβ3 and αvβ3 integrins throughout development. Whereas the first HSCs generated in the aorta at mid-gestation express both integrins, HSCs from the placenta only express αvβ3, and most fetal liver HSCs do not express either integrin. By using αIIb deficient embryos, we show that αIIb is not only a reliable HSC marker but it also plays an important and specific function in maintaining the HSC activity in the mouse embryonic aorta.

  9. The NLRP3 Inflammasome Is a Pathogen Sensor for Invasive Entamoeba histolytica via Activation of α5β1 Integrin at the Macrophage-Amebae Intercellular Junction.

    Leanne Mortimer

    2015-05-01

    Full Text Available Entamoeba histolytica (Eh is an extracellular protozoan parasite of humans that invades the colon to cause life-threatening intestinal and extra-intestinal amebiasis. Colonized Eh is asymptomatic, however, when trophozoites adhere to host cells there is a considerable inflammatory response that is critical in the pathogenesis of amebiasis. The host and/or parasite factors that trigger the inflammatory response to invading Eh are not well understood. We recently identified that Eh adherence to macrophages induces inflammasome activation and in the present study we sought to determine the molecular events upon contact that coordinates this response. Here we report that Eh contact-dependent activation of α5β1 integrin is critical for activation of the NLRP3 inflammasome. Eh-macrophage contact triggered recruitment of α5β1 integrin and NLRP3 into the intercellular junction, where α5β1 integrin underwent activation by an integrin-binding cysteine protease on the parasite surface, termed EhCP5. As a result of its activation, α5β1 integrin induced ATP release into the extracellular space through opening of pannexin-1 channels that signalled through P2X7 receptors to deliver a critical co-stimulatory signal that activated the NLRP3 inflammasome. Both the cysteine protease activity and integrin-binding domain of EhCP5 were required to trigger α5β1 integrin that led to ATP release and NLRP3 inflammasome activation. These findings reveal engagement of α5β1 integrin across the parasite-host junction is a key regulatory step that initiates robust inflammatory responses to Eh. We propose that α5β1 integrin distinguishes Eh direct contact and functions with NLRP3 as pathogenicity sensor for invasive Eh infection.

  10. Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibalpha

    Bergmeier, W; Bouvard, D; Eble, J A;

    2001-01-01

    collagen may activate platelets by a similar mechanism. In contrast to these findings, we provided evidence that rhodocytin does not bind to alpha(2)beta(1) integrin. Here we show that the Cre/loxP-mediated loss of beta(1) integrin on mouse platelets has no effect on rhodocytin-induced platelet activation......Although alpha(2)beta(1) integrin (glycoprotein Ia/IIa) has been established as a platelet collagen receptor, its role in collagen-induced platelet activation has been controversial. Recently, it has been demonstrated that rhodocytin (also termed aggretin), a snake venom toxin purified from the......, excluding an essential role of alpha(2)beta(1) integrin in this process. Furthermore, proteolytic cleavage of the 45-kDa N-terminal domain of glycoprotein (GP) Ibalpha either on normal or on beta(1)-null platelets had no significant effect on rhodocytin-induced platelet activation. Moreover, mouse platelets...

  11. A β-integrin from sea cucumber Apostichopus japonicus exhibits LPS binding activity and negatively regulates coelomocyte apoptosis.

    Wang, Zhenhui; Shao, Yina; Li, Chenghua; Lv, Zhimeng; Wang, Haihong; Zhang, Weiwei; Zhao, Xuelin

    2016-05-01

    Integrins are a family of membrane glycoproteins, which are the major receptors for extracellular matrix and cell-cell adhesion molecules. In this study, a 1038 bp sequence representing the full-length cDNA of a novel β-integrin subunit (designated as AjITGB) was cloned from Apostichopus japonicusby using combined transcriptome sequencing and RACE approaches. The deduced amino acid sequence of AjITGB shared a conserved tripeptide Arg-Gly-Asp (RGD) binding domain with an S-diglyceridecysteine or N-Palm cysteine residue (C(31)), a transmembrane domain, and a β-integrin cytoplasmic domain. Spatial distribution analysis showed that AjITGB was constitutively expressed in all tested tissues with dominant expression in the muscles and weak expression in the respiratory tree. The pathogen Vibrio splendidus challenge and LPS stimulation could both significantly down-regulate the mRNA expression of AjITGB. Functional investigation revealed that recombinant AjITGB displayed higher LPS binding activity but lower binding activity to PGN and MAN. More importantly, knockdown of AjITGB by specific siRNA resulted in the significant promotion of coelomocyte apoptosis in vitro. Results indicated that AjITGB may serve as an apoptosis inhibitor with LPS binding activity during host-pathogen interaction in sea cucumber. PMID:26994670

  12. Integrin α(IIb)β₃ exists in an activated state in subjects with elevated plasma homocysteine levels.

    McGarrigle, Sarah A

    2011-01-01

    Elevated levels of plasma homocysteine (Hcy) are an independent risk factor for cardiovascular disease and thrombosis. The molecular basis for this phenomenon is not known but may relate to modification of cell surface thiols. The platelet specific integrin α(IIb)β₃ is a cysteine-rich cell adhesion molecule that plays a critical role in platelet aggregation and adhesion in haemostasis and thrombosis. In this study, we looked for evidence of a homocysteine-induced modification of α(IIb)β₃ using a fluorescently labeled PAC-1 antibody that recognizes the activated conformation of the integrin on the platelet surface. We show that exogenous Hcy (10-100 µM) and homocysteine thiolactone (HcyTL) (10-100 µM) increased PAC-1 binding to platelets in a concentration dependent manner in vitro. In parallel, we show subjects with clinical hyperhomocysteinemia exhibit a greater degree of activation of α(IIb)β₃ compared to age-matched controls. These findings demonstrate that circulating Hcy can modulate the activation state of the platelet integrin α(IIb)β₃, a key player in platelet aggregation and thrombosis.

  13. Activated R-Ras, Rac1, Pi 3-Kinase and Pkcε Can Each Restore Cell Spreading Inhibited by Isolated Integrin β1 Cytoplasmic Domains

    Berrier, Allison L.; Mastrangelo, Anthony M.; Downward, Julian; Ginsberg, Mark; LaFlamme, Susan E.

    2000-01-01

    Attachment of many cell types to extracellular matrix proteins triggers cell spreading, a process that strengthens cell adhesion and is a prerequisite for many adhesion-dependent processes including cell migration, survival, and proliferation. Cell spreading requires integrins with intact β cytoplasmic domains, presumably to connect integrins with the actin cytoskeleton and to activate signaling pathways that promote cell spreading. Several signaling proteins are known to regulate cell spread...

  14. Heterocyclic Scaffolds in the Design of Peptidomimetic Integrin Ligands: Synthetic Strategies, Structural Aspects, and Biological Activity.

    De Marco, Rossella; Mazzotti, Giacomo; Greco, Arianna; Gentilucci, Luca

    2016-01-01

    The integrin receptors represent valuable targets for therapeutic interventions; being overexpressed in many pathological states, their inhibition can be effective to treat a number of severe diseases. Since integrin functions are mediated by interactions with ECM protein ligands, the inhibition can be achieved by interfering with such interactions using small mimetics of the integrin-ligand recognition motifs (e.g. RGD, LDV, etc.). In this review, we focus on the antagonists with peptideheterocycle hybrid structures. The introduction of well-designed scaffolds has met considerable success in the rational design of highly stable, bioavailable, and conformationally defined antagonists. Two main approaches are discussed herein. The first approach is the use of scaffolds external to the main recognition motifs, aimed at improving conformational definition. In the second approach, heterocyclic cores are introduced within the recognition motifs, giving access to libraries of 3D diverse candidate antagonists. PMID:26265351

  15. Induction of matrix metalloproteinase-9 and -2 activity in mouse blastocyst by fibronectin-integrin interaction

    2000-01-01

    Fibronectin, a major extracellular matrix, plays an important role in embryo implantation by mediating embryo adhesion and outgrowth. In this work, mouse blastocysts produced pro-matrix metalloproteinase-9, pro-matrix metalloproteinase-2 and 64 ku matrix metalloproteinase-2 when they were co-cultured with fibronectin. In contrast, mouse blastocysts did not produce these proteinases without fibronectin. Focal adhesion kinase is a fundamental molecule of integrin signaling pathway and its antisense oligodeoxynucleiotide inhibited blastocyst matrix metalloproteinases expression induced by fibronectin. The results indicated that fibronectin triggered matrix metalloproteinase-9 and -2 expression in mouse blastocyst through its integrin receptors and subsequent signaling pathway, which enhanced the synchronization of blastocyst invasiveness and uterine receptivity and ensured the accuracy of events relative to implantation in timing and spatiality.

  16. Integrin αIIb-mediated PI3K/Akt activation in platelets.

    Haixia Niu

    Full Text Available Integrin αIIbβ3 mediated bidirectional signaling plays a critical role in thrombosis and haemostasis. Signaling mediated by the β3 subunit has been extensively studied, but αIIb mediated signaling has not been characterized. Previously, we reported that platelet granule secretion and TxA2 production induced by αIIb mediated outside-in signaling is negatively regulated by the β3 cytoplasmic domain residues R(724KEFAKFEEER(734. In this study, we identified part of the signaling pathway utilized by αIIb mediated outside-in signaling. Platelets from humans and gene deficient mice, and genetically modified CHO cells as well as a variety of kinase inhibitors were used for this work. We found that aggregation of TxA2 production and granule secretion by β3Δ724 human platelets initiated by αIIb mediated outside-in signaling was inhibited by the Src family kinase inhibitor PP2 and the PI3K inhibitor wortmannin, respectively, but not by the MAPK inhibitor U0126. Also, PP2 and wortmannin, and the palmitoylated β3 peptide R(724KEFAKFEEER(734, each inhibited the phosphorylation of Akt residue Ser473 and prevented TxA2 production and storage granule secretion. Similarly, Akt phosphorylation in mouse platelets stimulated by the PAR4 agonist peptide AYPGKF was αIIbβ3-dependent, and blocked by PP2, wortmannin and the palmitoylated peptide p-RKEFAKFEEER. Akt was also phosphorylated in response to mAb D3 plus Fg treatment of CHO cells in suspension expressing αIIbβ3-Δ724 or αIIbβ3E(724AERKFERKFE(734, but not in cells expressing wild type αIIbβ3. In summary, SFK(s and PI3K/Akt signaling is utilized by αIIb-mediated outside-in signaling to activate platelets even in the absence of all but 8 membrane proximal residues of the β3 cytoplasmic domain. Our results provide new insight into the signaling pathway used by αIIb-mediated outside-in signaling in platelets.

  17. TGFβ Signaling Intersects with CD103 Integrin Signaling to Promote T-Lymphocyte Accumulation and Antitumor Activity in the Lung Tumor Microenvironment.

    Boutet, Marie; Gauthier, Ludiane; Leclerc, Marine; Gros, Gwendoline; de Montpreville, Vincent; Théret, Nathalie; Donnadieu, Emmanuel; Mami-Chouaib, Fathia

    2016-04-01

    Homing of CD8(+) T lymphocytes to the tumor microenvironment is an important step for mounting a robust antitumor immune response. TGFβ is responsible for CD103 (αEβ7) integrin induction in activated intraepithelial CD8(+) T lymphocytes. However, the interplay between TGFβ and CD103 and their contribution to T-cell infiltration and antitumor activity remain unknown. Here, we used viable human lung tumor slices and autologous tumor antigen-specific T-lymphocyte clones to provide evidence that CD103 is directly involved in T-lymphocyte recruitment within epithelial tumor islets and intratumoral early T-cell signaling. Moreover, TGFβ enhanced CD103-dependent T-cell adhesion and signaling, whereas it inhibited leukocyte function-associated antigen (LFA)-1 (αLβ2) integrin expression and LFA-1-mediated T-lymphocyte functions. Mechanistic investigations revealed that TGFβ bound to its receptors (TGFBR), which promoted the recruitment and phosphorylation of integrin-linked kinase (ILK) by TGFBR1. We further show that ILK interacted with the CD103 intracellular domain, resulting in protein kinase B (PKB)/AKT activation, thereby initiating integrin inside-out signaling. Collectively, our findings suggest that the abundance of TGFβ in the tumor microenvironment may in fact engage with integrin signaling pathways to promote T-lymphocyte antitumor functions, with potential implications for T-cell-based immunotherapies for cancer. Cancer Res; 76(7); 1757-69. ©2016 AACR. PMID:26921343

  18. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect of...... tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... inactivation of the c-src gene. In response to adhesion on a fibronectin substrate, RPTPalpha-/- fibroblasts also exhibited characteristic deficiencies in integrin-mediated signalling responses, such as decreased tyrosine phosphorylation of the c-Src substrates Fak and p 130(cas), and reduced activation of...

  19. Integrin Targeted Delivery of Radiotherapeutics

    Zhaofei Liu, Fan Wang, Xiaoyuan Chen

    2011-01-01

    Full Text Available Targeted radionuclide therapy, which is based on the selective delivery of a sufficient radiation dose to tumors without significantly affecting normal tissues, is a promising therapeutic approach for the treatment of a wide variety of malignancies. Integrins, a family of cell adhesion molecules, play key roles during tumor angiogenesis and metastasis. Among all the integrins, αvβ3 seems to be the most important in the process of tumor angiogenesis. Integrin αvβ3 is highly expressed on activated endothelial cells, new-born vessels as well as some tumor cells, but is not present in resting endothelial cells and most normal organ systems, making it a suitable target for anti-tumor therapy. In this review, we summarize the current development and applications of antibody-, peptide-, and other ligand-based integrin targeted radiotherapeutics for tumor radiation therapy.

  20. Assessing activation of hepatic stellate cells by 99mTc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study

    Objective: Hepatic stellate cell (HSC) activation, which is accompanied by increased expression of integrin αvβ3, is an important factor in liver fibrogenesis. Molecular imaging targeting the integrin αvβ3 could provide a non-invasive method for evaluating the expression and the function of the integrin αvβ3 on the activated HSCs (aHSCs) in the injured liver, and then provide important prognostic information. 99mTc-3PRGD2 is such a radiotracer specific for integrin αvβ3. In this study, we aimed to compare the differences in liver uptake and retention of the 99mTc-3PRGD2 between normal liver and injured liver to evaluate the feasibility of 99mTc-3PRGD2 scintigraphy for this purpose. Methods: We used planar scintigraphy to assess changes in integrin αvβ3 binding of intravenously-administered 99mTc-3PRGD2 in the livers of rats with thioacetamide (TAA)-induced liver fibrosis compared with the controls. We co-injected cold c(RGDyK) with 99mTc-3PRGD2 to assess the specific binding of the radiotracer. We performed Sirius red staining to assess liver fibrosis, immunofluorescent colocalization to identify the location of integrin αvβ3 expressed in the fibrotic liver, and we measured protein and messenger RNA expression of integrin αvβ3 and alpha smooth muscle actin (α-SMA) in the control and fibrotic livers. Results: The fibrotic livers showed enhanced 99mTc-3PRGD2 uptake and retention. The radiotracer was demonstrated to bind specifically with the integrin αvβ3 mainly expressed on the aHSCs. The liver-to-heart ratio at 30 min post-injection was higher in the fibrotic livers than in the control livers (TAA, 1.98 ± 0.08 vs. control, 1.50 ± 0.12, p < 0.01). The liver t1/2 was longer than in the controls (TAA, 27.07 ± 10.69 min vs. control, 12.67 ± 4.10 min, p < 0.01). The difference of heart t1/2 between the two groups was not statistically significant (TAA, 3.13 ± 0.63 min vs. control, 3.41 ± 0.77 min, p = 0.94). Conclusions: 99mTc-3PRGD2 molecular

  1. An activating mutation reveals a second binding mode of the integrin α2 I domain to the GFOGER motif in collagens.

    Federico Carafoli

    Full Text Available The GFOGER motif in collagens (O denotes hydroxyproline represents a high-affinity binding site for all collagen-binding integrins. Other GxOGER motifs require integrin activation for maximal binding. The E318W mutant of the integrin α2β1 I domain displays a relaxed collagen specificity, typical of an active state. E318W binds more strongly than the wild-type α2 I domain to GMOGER, and forms a 2:1 complex with a homotrimeric, collagen-like, GFOGER peptide. Crystal structure analysis of this complex reveals two E318W I domains, A and B, bound to a single triple helix. The E318W I domains are virtually identical to the collagen-bound wild-type I domain, suggesting that the E318W mutation activates the I domain by destabilising the unligated conformation. E318W I domain A interacts with two collagen chains similarly to wild-type I domain (high-affinity mode. E318W I domain B makes favourable interactions with only one collagen chain (low-affinity mode. This observation suggests that single GxOGER motifs in the heterotrimeric collagens V and IX may support binding of activated integrins.

  2. The recognition of adsorbed and denatured proteins of different topographies by β2 integrins and effects on leukocyte adhesion and activation

    Brevig, T.; Holst, B.; Ademovic, Z.;

    2005-01-01

    Leukocyte beta(2) integrins Mac-1 and p150,95 are promiscuous cell-surface receptors that recognise and mediate cell adhesion to a variety of adsorbed and denatured proteins. We used albumin as a model protein to study whether leukocyte adhesion and activation depended on the nm-scale topography ...

  3. Anti-Integrin Therapy for Multiple Sclerosis

    Eiji Kawamoto

    2012-01-01

    Full Text Available Integrins are the foremost family of cell adhesion molecules that regulate immune cell trafficking in health and diseases. Integrin alpha4 mediates organ-specific migration of immune cells to the inflamed brain, thereby playing the critical role in the pathogenesis of multiple sclerosis. Anti-alpha4 integrin therapy aiming to block infiltration of autoreactive lymphocytes to the inflamed brain has been validated in several clinical trials for the treatment of multiple sclerosis. This paper provides readers with an overview of the molecular and structural bases of integrin activation as well as rationale for using anti-alpha4 integrin therapy for multiple sclerosis and then chronicles the rise and fall of this treatment strategy using natalizumab, a humanized anti-alpha4 integrin.

  4. Increased Osteogenic Differentiation of Periodontal Ligament Stem Cells on Polydopamine Film Occurs via Activation of Integrin and PI3K Signaling Pathways

    Jeong Seok Lee

    2014-11-01

    Full Text Available Background/Aims: Mussel-inspired polydopamine (PDA is known to be an effective bioadhesive and bioactive material for controlling stem cell fate, which is important in stem cell-based regenerative medicine; however, the effect of PDA on osteogenic differentiation of periodontal ligament stem cells (PDLSCs is not fully understood. In this study, we investigated the osteoinductive effect of PDA on PDLSCs and examined how this phenomenon is encouraged. Methods: Osteogenic induction of PDLSCs was established by culturing cells on PDA film or on an uncoated polystyrene surface as a control. Osteogenic differentiation of PDLSCs was assessed by measurement of intracellular calcium levels and alkaline phosphatase (ALP activity as well as by evaluation of protein expression of osteocalcin (OCN, osterix (OSX, and runt-related transcription factor 2 (RUNX2. Results: The PDLSCs cultured on PDA film showed higher osteogenic activity than those on the control surface. Moreover, PDLSCs on PDA film expressed increased levels of the integrin adhesion receptors integrin α5 and β1 compared to control cells. Expression of one isoform of the intracellular signaling protein phosphatidylinositol-3-kinase (PI3K, p110γ, was increased in PDLSCs on PDA film in a PDA dose-dependent manner. This signaling protein was found to interact with integrin β1, demonstrating integrin-linked PI3K activation in response to PDA. Finally, the blockage of PI3K reduced the PDA-induced osteogenic activity of PDLSCs. Conclusion: our findings suggest that the bioadhesive PDA stimulates osteogenic differentiation of PDLSCs via activation of the integrin α5/β1 and PI3K signaling pathways.

  5. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells

    Zhenguo Dong

    2015-01-01

    Full Text Available Our previous study reported that muscle cell enhancement factor 2C (MEF2C was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

  6. The Activation of β1-integrin by Type I Collagen Coupling with the Hedgehog Pathway Promotes the Epithelial-Mesenchymal Transition in Pancreatic Cancer.

    Duan, Wanxing; Ma, Jiguang; Ma, Qingyong; Xu, Qinhong; Lei, Jianjun; Han, Liang; Li, Xuqi; Wang, Zheng; Wu, Zheng; Lv, Shifang; Ma, Zhenhua; Liu, Mouzhu; Wang, Fengfei; Wu, Erxi

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by the excessive deposition of extracellular matrix (ECM), which is thought to contribute to this tumor's malignant behavior. However, the detailed mechanism and the contribution of excessive deposition of ECM in PDAC progression remain unclear. A better understanding of the mechanism involved in this process is essential for the design of new effective therapies. In this study, we demonstrated that pancreatic cancer cells exhibited increased proliferation and decreased apoptosis in response to type I collagen. In addition, PDAC cells exposed to type I collagen lost the expression of E-cadherin and increased expression of mesenchymal markers, including N-cadherin and vimentin. This epithelial- mesenchymal transition (EMT) was correlated with enhanced cell migration and invasiveness. Knockdown of β1-integrin abolished the effects induced by type I collagen, and further investigation revealed that type I collagen activates β1-integrin (marked by phosphorylation of β1 integrin downstream effectors, focal adhesion kinase [FAK], AKT, and ERK) accompanied by markedly up-regulation of Gli-1, a component of the Hedgehog (HH) pathway. Knockdown of Gli-1 reversed the effects of type I collagen on PDAC invasion and EMT. These results suggest that there is cross-talk between the β1-integrin signaling pathway and the HH pathway in pancreatic cancer and that activation of the HH pathway plays a key role in the type I collagen-induced effects on pancreatic cancer. PMID:24720337

  7. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model

    Zhang C

    2016-03-01

    Full Text Available Caiyuan Zhang,1,* Huanhuan Liu,1,* Yanfen Cui,1,* Xiaoming Li,1 Zhongyang Zhang,1 Yong Zhang,2 Dengbin Wang1 1Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 2MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs at different stages of liver fibrosis induced by carbon tetrachloride (CCl4 in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI with arginine-glycine-aspartic acid (RGD peptide modified ultrasmall superparamagnetic iron oxide nanoparticle (USPIO specifically targeting integrin αvβ3.Materials and methods: All experiments received approval from our Institutional Animal Care and Use Committee. Thirty-six rats were randomly divided into three groups of 12 subjects each, and intraperitoneally injected with CCl4 for either 3, 6, or 9 weeks. Controls (n=10 received pure olive oil. The change in T2* relaxation rate (ΔR2* pre- and postintravenous administration of RGD-USPIO or naked USPIO was measured by 3.0T clinical MRI and compared by one-way analysis of variance or the Student’s t-test. The relationship between expression level of integrin αvβ3 and liver fibrotic degree was evaluated by Spearman’s ranked correlation.Results: Activated HSCs were confirmed to be the main cell types expressing integrin αvβ3 during liver fibrogenesis. The protein level of integrin αv and β3 subunit expressed on activated HSCs was upregulated and correlated well with the progression of liver fibrosis (r=0.954, P<0.001; r=0.931, P<0.001, respectively. After injection of RGD-USPIO, there is significant difference in ΔR2* among rats treated with 0, 3, 6, and 9 weeks of CCl4 (P<0.001. The accumulation of iron particles in fibrotic liver specimen is

  8. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream.

    Weber, Martin R; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E; Zijlstra, Andries; Quigley, James P; Staflin, Karin; Eliceiri, Brian P; Krueger, Joseph S; Marchese, Patrizia; Ruggeri, Zaverio M; Felding, Brunhilde H

    2016-04-01

    Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. PMID:27067975

  9. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism.

    Wang, Jiang Huai

    2012-02-03

    Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin\\/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.

  10. Hierarchy of ADAM12 binding to integrins in tumor cells

    Thodeti, Charles Kumar; Fröhlich, Camilla; Nielsen, Christian Kamp;

    2005-01-01

    12. However, when alpha9beta1 integrin is not expressed--as in many carcinoma cells--other members of the beta1 integrin family can replace its ligand binding activity. In attachment assays, the recombinant disintegrin domain of ADAM12 only supported alpha9 integrin-dependent tumor cell attachment...... with a rounded morphology; attachment of cells with a spread morphology required further activation of the alpha9beta1 integrin. We demonstrated that phosphoinositide-3-kinase appears to be central in regulating alpha9beta1 integrin cell spreading activity in response to ADAM12....

  11. Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin alpha(9)beta(1).

    Majumdar, Mousumi; Tarui, Takehiko; Shi, Biao; Akakura, Nobuaki; Ruf, Wolfram; Takada, Yoshikazu

    2004-09-01

    Plasmin is a major extracellular protease that elicits intracellular signals to mediate platelet aggregation, chemotaxis of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types in a G protein-dependent manner. Angiostatin, a fragment of plasmin(ogen), is a ligand and an antagonist for integrin alpha(9)beta(1). Here we report that plasmin specifically interacts with alpha(9)beta(1) and that plasmin induces of cells expressing migration recombinant alpha(9)beta(1) (alpha(9)-Chinese hamster ovary (CHO) cells). Migration was dependent on an interaction of the kringle domains of plasmin with alpha(9)beta(1) as well as the catalytic activity of plasmin. Angiostatin, representing the kringle domains of plasmin, alone did not induce the migration of alpha(9)-CHO cells, but simultaneous activation of the G protein-coupled protease-activated receptor (PAR)-1 with an agonist peptide induced the migration on angiostatin, whereas PAR-2 or PAR-4 agonist peptides were without effect. Furthermore, a small chemical inhibitor of PAR-1 (RWJ 58259) and a palmitoylated PAR-1-blocking peptide inhibited plasmin-induced migration of alpha(9)-CHO cells. These results suggest that plasmin induces migration by kringle-mediated binding to alpha(9)beta(1) and simultaneous proteolytic activation of PAR-1. PMID:15247268

  12. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E; Novobrantseva, Tatiana I; Sprague, Andrew G; de Fougerolles, Antonin R; Christensen, Jan P

    2003-01-01

    Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of...... alpha(1)beta(1) parallels that of viral-specific effector CD8(+) T cells (defined by tetramer and IFN-gamma staining). In an adoptive transfer model, mAb-mediated blockade of these integrins on activated effector and memory T cells inhibited Ag-specific delayed-type hypersensitivity responses; similar...

  13. In the hypoxic central nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and increased expression of the α6β4 integrin and dystroglycan

    Li, Longxuan; Welser, Jennifer V.; Dore-Duffy, Paula; del Zoppo, Gregory J.; LaManna, Joseph C.; Milner, Richard

    2010-01-01

    Cerebral hypoxia induces a profound angiogenic response in the central nervous system (CNS). Using a mouse model of chronic cerebral hypoxia, we previously demonstrated that angiogenic vessels in the hypoxic CNS show marked upregulation of the extracellular matrix (ECM) protein fibronectin, along with increased expression of its major receptor, α5β1integrin on brain endothelial cells (BEC). As cerebral hypoxia also leads to glial activation, the aim of the current study was to define the temp...

  14. Integrin α4β1 controls G9a activity that regulates epigenetic changes and nuclear properties required for lymphocyte migration.

    Zhang, Xiaohong; Cook, Peter C; Zindy, Egor; Williams, Craig J; Jowitt, Thomas A; Streuli, Charles H; MacDonald, Andrew S; Redondo-Muñoz, Javier

    2016-04-20

    The mechanical properties of the cell nucleus change to allow cells to migrate, but how chromatin modifications contribute to nuclear deformability has not been defined. Here, we demonstrate that a major factor in this process involves epigenetic changes that underpin nuclear structure. We investigated the link between cell adhesion and epigenetic changes in T-cells, and demonstrate that T-cell adhesion to VCAM1viaα4β1 integrin drives histone H3 methylation (H3K9me2/3) through the methyltransferase G9a. In this process, active G9a is recruited to the nuclear envelope and interacts with lamin B1 during T-cell adhesion through α4β1 integrin. G9a activity not only reorganises the chromatin structure in T-cells, but also affects the stiffness and viscoelastic properties of the nucleus. Moreover, we further demonstrated that these epigenetic changes were linked to lymphocyte movement, as depletion or inhibition of G9a blocks T-cell migration in both 2D and 3D environments. Thus, our results identify a novel mechanism in T-cells by which α4β1 integrin signaling drives specific chromatin modifications, which alter the physical properties of the nucleus and thereby enable T-cell migration. PMID:26657637

  15. EGFR-mediated carcinoma cell metastasis mediated by integrin αvβ5 depends on activation of c-Src and cleavage of MUC1.

    Steven K M Lau

    Full Text Available Receptor tyrosine kinases and integrins play an essential role in tumor cell invasion and metastasis. We previously showed that EGF and other growth factors induce human carcinoma cell invasion and metastasis mediated by integrin αvβ5 that is prevented by Src blockade. MUC1, a transmembrane glycoprotein, is expressed in most epithelial tumors as a heterodimer consisting of an extracellular and a transmembrane subunit. The MUC1 cytoplasmic domain of the transmembrane subunit (MUC1.CD translocates to the nucleus where it promotes the transcription of a metastatic gene signature associated with epithelial to mesenchymal transition. Here, we demonstrate a requirement for MUC1 in carcinoma cell metastasis dependent on EGFR and Src without affecting primary tumor growth. EGF stimulates Src-dependent MUC1 cleavage and nuclear localization leading to the expression of genes linked to metastasis. Moreover, expression of MUC1.CD results in its nuclear localization and is sufficient for transcription of the metastatic gene signature and tumor cell metastasis. These results demonstrate that EGFR and Src activity contribute to carcinoma cell invasion and metastasis mediated by integrin αvβ5 in part by promoting proteolytic cleavage of MUC1 and highlight the ability of MUC1.CD to promote metastasis in a context-dependent manner. Our findings may have implications for the use and future design of targeted therapies in cancers known to express EGFR, Src, or MUC1.

  16. Molecular Interactions Between the Active Sites of RGD (Arg-Gly-Asp with its Receptor (Integrine

    E. Jauregui

    2000-03-01

    Full Text Available A study of the molecular interactions between the active sites of RGD (Arg-Gly-Asp with it Receptor using simultaions is reported. Our calculations indicate that the guanidine-carboxylate complex is energetically favourd with respect to the guanidine-methyl tetrazole complex.

  17. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    Krause-Gruszczynska, Malgorzata

    2011-12-28

    Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-\\/-, integrin-beta1-\\/-, focal adhesion kinase (FAK)-\\/- and Src\\/Yes\\/Fyn-\\/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1\\/2-\\/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker

  18. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype

  19. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    Beecken Wolf-Dietrich

    2005-01-01

    Full Text Available Abstract Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a, alpha2beta1 (CD49b, alpha3beta1 (CD49c, alpha4beta1 (CD49d, alpha5beta1 (CD49e, and alpha6beta1 (CD49f receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype.

  20. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection

    Christensen, Jan Pravsgaard; Andersson, E C; Scheynius, A; Marker, O; Thomsen, Allan Randrup

    1995-01-01

    response is induced, which is associated with marked CD8+ cell-mediated inflammation. Two expressions of LCMV-induced inflammation were studied: meningitis induced by intracerebral infection and adoptive transfer of virus-specific delayed-type hypersensitivity. Our previous studies have shown that LCMV...... infection results in the appearance of activated CD8+ cells with an increased expression of VLA-4. In this study we have compared various T cell high and low responder situations, and these experiments revealed that acute inflammation correlates directly with VLA-4 expression on splenic CD8+ cells. This...... ability to transfer virus-specific, delayed-type hypersensitivity when the donor cells were given i.v., but not when the cells were injected directly into the test site. Co-transfer of CD8-depleted cells with anti-VLA-4-blocked cells did not reveal any cooperation. Taken together, these results indicate...

  1. Integrin Activation by Regulated Dimerization and Oligomerization of Platelet Endothelial Cell Adhesion Molecule (Pecam)-1 from within the Cell

    Zhao, Tieming; Newman, Peter J.

    2001-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 is a 130-kD transmembrane glycoprotein having six Ig homology domains within its extracellular domain and an immunoreceptor tyrosine–based inhibitory motif within its cytoplasmic domain. Previous studies have shown that addition of bivalent anti–PECAM-1 mAbs to the surface of T cells, natural killer cells, neutrophils, or platelets result in increased cell adhesion to immobilized integrin ligands. However, the mechanism by which this occur...

  2. Integrin αIIb (CD41) plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta

    Boisset, Jean-Charles; Clapes, Thomas; van der Linden, Reinier; Dzierzak, Elaine; Robin, Catherine

    2013-01-01

    Integrins are transmembrane receptors that play important roles as modulators of cell behaviour through their adhesion properties and the initiation of signaling cascades. The αIIb integrin subunit (CD41) is one of the first cell surface markers indicative of hematopoietic commitment. αIIb pairs exclusively with β3 to form the αIIbβ3 integrin. β3 (CD61) also pairs with αv (CD51) to form the αvβ3 integrin. The expression and putative role of these integrins during mouse hematopoietic developme...

  3. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.

    Radu O Minea

    Full Text Available Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1, VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis. Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.

  4. Integrin Trafficking and Tumor Progression

    Sejeong Shin

    2012-01-01

    Full Text Available Integrins are major mediators of cancer cell adhesion to extracellular matrix. Through this interaction, integrins play critical roles in cell migration, invasion, metastasis, and resistance to apoptosis during tumor progression. Recent studies highlight the importance of integrin trafficking, endocytosis and recycling, for the functions of integrins in cancer cells. Understanding the molecular mechanisms of integrin trafficking is pivotal for understanding tumor progression and for the development of anticancer drugs.

  5. Integrin alpha3beta1, a novel receptor for alpha3(IV) noncollagenous domain and a trans-dominant Inhibitor for integrin alphavbeta3.

    Borza, Corina M; Pozzi, Ambra; Borza, Dorin-Bogdan; Pedchenko, Vadim; Hellmark, Thomas; Hudson, Billy G; Zent, Roy

    2006-07-28

    Exogenous soluble human alpha3 noncollagenous (NC1) domain of collagen IV inhibits angiogenesis and tumor growth. These biological functions are attributed to the binding of alpha3NC1 to integrin alphavbeta3. However, in some tumor cells that express integrin alphavbeta3, the alpha3NC1 domain does not inhibit proliferation, suggesting that integrin alphavbeta3 expression is not sufficient to mediate the anti-tumorigenic activity of this domain. Therefore, in the present study, we searched for novel binding receptors for the soluble alpha3NC1 domain in cells lacking alphavbeta3 integrin. In these cells, soluble alpha3NC1 bound integrin alpha3beta1; however, unlike alphavbeta3, alpha3beta1 integrin did not mediate cell adhesion to immobilized alpha3NC1 domain. Interestingly, in cells lacking integrin alpha3beta1, adhesion to the alpha3NC1 domain was enhanced due to activation of integrin alphavbeta3. These findings indicate that integrin alpha3beta1 is a receptor for the alpha3NC1 domain and transdominantly inhibits integrin alphavbeta3 activation. Thus integrin alpha3beta1, in conjunction with integrin alphavbeta3, modulates cellular responses to the alpha3NC1 domain, which may be pivotal in the mechanism underpinning its anti-angiogenic and anti-tumorigenic activities. PMID:16731529

  6. SIKVAV, a Laminin α1-Derived Peptide, Interacts with Integrins and Increases Protease Activity of a Human Salivary Gland Adenoid Cystic Carcinoma Cell Line through the ERK 1/2 Signaling Pathway

    Freitas, Vanessa M.; Vilas-Boas, Vanessa F.; Pimenta, Daniel C.; Loureiro, Vania; Juliano, Maria A.; Carvalho, Márcia R.; Pinheiro, João J.V.; Camargo, Antonio C.M.; Moriscot, Anselmo S.; Hoffman, Matthew P.; Jaeger, Ruy G.

    2007-01-01

    Adenoid cystic carcinoma is a frequently occurring malignant salivary gland neoplasm. We studied the induction of protease activity by the laminin-derived peptide, SIKVAV, in cells (CAC2) derived from this neoplasm. Laminin α1 and matrix metalloproteinases (MMPs) 2 and 9 were immunolocalized in adenoid cystic carcinoma cells in vivo and in vitro. CAC2 cells cultured on SIKVAV showed a dose-dependent increase of MMP9 as detected by zymography and colocalization of α3 and α6 integrins. Small interfering RNA (siRNA) knockdown of integrin expression in CAC2 cells resulted in decreased adhesion to the peptide. SIKVAV affinity chromatography and immunoblot analysis showed that α3, α6, and β1 integrins were eluted from the SIKVAV column, which was confirmed by mass spectrometry and a solid-phase binding assay. Small interfering RNA experiments also showed that these integrins, through extracellular signal-regulated kinase (ERK) 1/2 signaling, regulate MMP secretion induced by SIKVAV in CAC2 cells. We propose that SIKVAV increases protease activity of a human salivary gland adenoid cystic carcinoma cell line through α3β1 and α6β1 integrins and the ERK 1/2 signaling pathway. PMID:17591960

  7. Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP-K

    Laursen, Lisbeth Schmidt; Chan, Colin W; ffrench-Constant, Charles

    2011-01-01

    Myelination in the central nervous system provides a unique example of how cells establish asymmetry. The myelinating cell, the oligodendrocyte, extends processes to and wraps multiple axons of different diameter, keeping the number of wraps proportional to the axon diameter. Local regulation of...... translation of a key sheath protein, myelin basic protein (MBP), by reversing the inhibitory effect of the mRNA 3′UTR. During oligodendrocyte differentiation and myelination α6β1-integrin interacts with hnRNP-K, an mRNA-binding protein, which binds to MBP mRNA and translocates from the nucleus to the myelin...

  8. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling

    Chiara Sandri; Guido Serini; Francesca Caccavari; Donatella Valdembri; Chiara Camillo; Stefan Veltel; Martina Santambrogio; Letizia Lanzetti; Fedenco Bussolino; Johanna Ivaska

    2012-01-01

    During developmental and tumor angiogenesis,semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases.R-Ras is mainly expressed in vascular cells,where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms.We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and-angiogenic activity of R-Ras.Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia.Upon binding,GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF)to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes.Here,the R-Ras/RIN2/Rab5 signaling module activates Racl-dependent cell adhesion via TIAM1,a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate.In conclusion,the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Racl.

  9. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering.

    Stephanie J Ellis

    2014-11-01

    Full Text Available Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.

  10. Alterated integrin expression in lichen planopilaris

    Erriquez Roberta

    2007-02-01

    Full Text Available Abstract Background Lichen planopilaris (LPP is an inflammatory disease characterized by a lymphomononuclear infiltrate surrounding the isthmus and infundibulum of the hair follicle of the scalp, that evolves into atrophic/scarring alopecia. In the active phase of the disease hairs are easily plucked with anagen-like hair-roots. In this study we focused on the expression of integrins and basement membrane components of the hair follicle in active LPP lesions. Methods Scalp biopsies were taken in 10 patients with LPP and in 5 normal controls. Using monoclonal antibodies against α3β1 and α6β4 integrins we showed the expression of these integrins and of the basement membrane components of the hair follicle in active LPP lesions and in healthy scalp skin. Results In the LPP involved areas, α3β1 was distributed in a pericellular pattern, the α6 subunit was present with a basolateral distribution while the β4 subunit showed discontinuous expression at the basal pole and occasionally, basolateral staining of the hair follicle. Conclusion: An altered distribution of the integrins in active LPP lesions can explain the phenomenon of easy pulling-out of the hair with a "gelatinous" root-sheath.

  11. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of β1 integrin at the cell surface but had no effect on total cellular β1 integrin, indicating that VAMP3 is required for trafficking of β1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  12. A role for the actin-bundling protein l-plastin in the regulation of leukocyte integrin function

    Jones, Samuel L.; Wang, Jun; Turck, Christoph W; Brown, Eric J.

    1998-01-01

    Regulation of leukocyte integrin avidity is a crucial aspect of inflammation and immunity. The actin cytoskeleton has an important role in the regulation of integrin function, but the cytoskeletal proteins involved are largely unknown. Because inflammatory stimuli that activate integrin-mediated adhesion in human polymorphonuclear neutrophils (PMN) and monocytes cause phosphorylation of the actin-bundling protein l-plastin, we tested whether l-plastin phosphorylation was involved in integrin ...

  13. Mutually Exclusive Roles of SHARPIN in Integrin Inactivation and NF-κB Signaling

    De Franceschi, Nicola; Peuhu, Emilia; Parsons, Maddy; Rissanen, Sami; Vattulainen, Ilpo; Salmi, Marko

    2015-01-01

    SHANK-associated RH domain interactor (SHARPIN) inhibits integrins through interaction with the integrin α-subunit. In addition, SHARPIN enhances nuclear factor-kappaB (NF-κB) activity as a component of the linear ubiquitin chain assembly complex (LUBAC). However, it is currently unclear how regulation of these seemingly different roles is coordinated. Here, we show that SHARPIN binds integrin and LUBAC in a mutually exclusive manner. We map the integrin binding site on SHARPIN to the ubiquitin-like (UBL) domain, the same domain implicated in SHARPIN interaction with LUBAC component RNF31 (ring finger protein 31), and identify two SHARPIN residues (V267, L276) required for both integrin and RNF31 regulation. Accordingly, the integrin α-tail is capable of competing with RNF31 for SHARPIN binding in vitro. Importantly, the full SHARPIN RNF31-binding site contains residues (F263A/I272A) that are dispensable for SHARPIN-integrin interaction. Importantly, disrupting SHARPIN interaction with integrin or RNF31 abolishes SHARPIN-mediated regulation of integrin or NF-κB activity, respectively. Altogether these data suggest that the roles of SHARPIN in inhibiting integrin activity and supporting linear ubiquitination are (molecularly) distinct. PMID:26600301

  14. βig-h3 promotes human osteosarcoma cells metastasis by interacting with integrin α2β1 and activating PI3K signaling pathway.

    Yun-Shan Guo

    Full Text Available Osteosarcoma, the most common primary bone tumor in children and young adolescents, is characterized by local invasion and distant metastasis. But the detailed mechanisms of osteosarcoma metastasis are not well known. In the present study, we found that βig-h3 promotes metastatic potential of human osteosarcoma cells in vitro and in vivo. Furthermore, βig-h3 co-localized with integrin α2β1 in osteosarcoma cells. But βig-h3 did not change integrin α2β1 expression in Saos-2 cells. Interaction of βig-h3 with integrin α2β1 mediates metastasis of human osteosarcoma cells. The second FAS1 domain of βig-h3 but not the first FAS1 domain, the third FAS1 domain or the fourth FAS1 domain mediates human osteosarcoma cells metastasis, which is the α2β1 integrin-interacting domain. We further demonstrated that PI3K/AKT signaling pathway is involved in βig-h3-induced human osteosarcoma cells metastasis process. Together, these results reveal βig-h3 enhances the metastasis potentials of human osteosarcoma cells via integrin α2β1-mediated PI3K/AKT signal pathways. The discovery of βig-h3-mediated pathway helps us to understand the mechanism of human osteosarcoma metastasis and provides evidence for the possibility that βig-h3 can be a potential therapeutic target for osteosarcoma treatment.

  15. Alpha9beta1 integrin in melanoma cells can signal different adhesion states for migration and anchorage

    Lydolph, Magnus C; Morgan-Fisher, Marie; Høye, Anette M;

    2009-01-01

    Cell surface integrins are the primary receptors for cell migration on extracellular matrix, and exist in several activation states regulated in part by ectodomain conformation. The alpha9 integrin subunit, which pairs only with beta1, has specific roles in the immune system and may regulate cell......beta1 integrin- and Rho kinase-dependent focal adhesion and stress fibre formation, suggesting that the activation status of alpha9beta1 integrin was altered. The effect of manganese ions in promoting focal adhesion formation was reproduced by beta1 integrin activating antibody. The alpha9beta1...

  16. The EDA-containing cellular fibronectin induces epithelial-mesenchymal transition in lung cancer cells through integrin α9β1-mediated activation of PI3-K/AKT and Erk1/2.

    Sun, Xiaojuan; Fa, Pingping; Cui, Zhiwen; Xia, Ye; Sun, Liang; Li, Zesong; Tang, Aifa; Gui, Yaoting; Cai, Zhiming

    2014-01-01

    Cellular fibronectin (cFN) is one of the main components of tissue extracellular matrices and is involved in multiple physiologic and pathologic processes such as embryogenesis, wound healing, inflammation and tumor progression. The function of fibronectin in regulating normal cell adhesion and migration is well documented, but its function in cancer progression is only partially unraveled. We have reported previously that fibronectin stimulates the proliferation and survival of non-small lung carcinoma cells through upregulation of pro-oncogenic signals related to cyclooxygenase-2/phosphatidylinositol-3-kinase/protein kinase B (COX-2/PI3-K/AKT)/mammalian target of rapamycin triggered by activation of the integrin α5β1. Here, we extend these studies by showing that fibronectin promotes epithelial-mesenchymal transition (EMT) in lung cancer cells. We found that cFN, but not plasma fibronectin or type 1 collagen, induces lung carcinoma cell scattering in vitro, promotes cell migration and invasion of Matrigel and stimulates the expression of the mesenchymal marker α-smooth muscle actin while decreasing the expression of the epithelial marker E-cadherin through PI3-K and Erk pathways. Interestingly, the extra domain A (EDA) within cFN was found to be crucial for this process, as confirmed by testing cells overexpressing EDA or cells exposed to EDA-containing matrices. We found that the integrin α9, but not α5, mediated cFN-induced EMT as silencing integrin α9 neutralized cFN-induced EMT. Overall, our findings show that the EDA domain within cFN induces EMT in lung carcinoma cells through integrin α9-mediated activation of PI3-K and Erk. PMID:23929437

  17. Alpha8 Integrin (Itga8 Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover.

    Ines Marek

    Full Text Available The α8 integrin (Itga8 chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.

  18. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin.

    Kawamoto, Eiji; Okamoto, Takayuki; Takagi, Yoshimi; Honda, Goichi; Suzuki, Koji; Imai, Hiroshi; Shimaoka, Motomu

    2016-05-13

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. PMID:27055590

  19. Activation of p53 pathway by Nutlin-3a inhibits the expression of the therapeutic target alpha 5 integrin in colon cancer cells

    Janoušková, Hana; Ray, A.M.; Noulet, F.; Lelong-Rebel, I.; Choulier, L.; Schaffner, F.; Lehmann, M.; Martin, S.; Teisinger, Jan; Dontenwill, M.

    2013-01-01

    Roč. 336, č. 2 (2013), s. 307-318. ISSN 0304-3835 Institutional support: RVO:67985823 Keywords : colon cancer * integrin alpha 5 beta 1 * p53 * Nutlin-3a Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.016, year: 2013

  20. A novel anti-CD 18 mAb recognizes an activation-related epitope and induces a high-affinity conformation in leukocyte integrins

    Drbal, Karel; Angelisová, Pavla; Hilgert, Ivan; Hořejší, Václav

    2001-01-01

    Roč. 203, č. 4 (2001), s. 687-698. ISSN 0171-2985 R&D Projects: GA ČR GA310/99/0349; GA AV ČR IAA7052904 Institutional research plan: CEZ:AV0Z5052915 Keywords : adhesion * integrin * LFA-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.648, year: 2001

  1. CCN2: a mechanosignaling sensor modulating integrin-dependent connective tissue remodeling in fibroblasts?

    Leask, Andrew

    2013-01-01

    Tensegrity (tensional integrity) is an emerging concept governing the structure of the body. Integrin-mediated mechanical tension is essential for connective tissue function in vivo. For example, in adult skin fibroblasts, the integrin β1 subunit mediates adhesion to collagen and fibronectin. Moreover, integrin β1, through its abilities to activate latent TGFβ1 and promote collagen production through focal adhesion kinase/rac1/nicotinamide adenine dinucleotide phosphate oxidase (NOX)/reactive...

  2. Human macrophage differentiation involves an interaction between integrins and fibronectin

    Laouar, A.; Chubb, C.B.H.; Collart, F.; Huberman, E.

    1997-03-14

    The authors have examined the role of integrins and extracellular matrix (ECM) proteins in macrophage differentiation of (1) human HL-60 myeloid leukemia cells induced by phorbol 12-myristate 13-acetate (PMA) and (2) human peripheral blood monocytes induced by either PMA or macrophage-colony stimulating factor (M-CSF). Increased {beta}{sub 1} integrin and fibronectin (FN) gene expression was observed in PMA-treated HL-60 cells and PMA- or M-CSF-treated monocytes, even at a time preceding the manifestation of macrophage markers. Treated HL-60 cells and monocytes also released and deposited FN on the culture dishes. An HL-60 cell variant, HL-525, which is deficient in protein kinase C {beta} (PKC{beta}) and resistant to PMA-induced differentiation, failed to express FN after PMA treatment. Restoration of PKC{beta} resulted in PMA-induced FN gene expression and macrophage differentiation. The macrophage phenotype induced in HL-60 cells or monocytes was attenuated by anti-{beta}{sub 1} integrin or anti-FN MAbs. The authors suggest that macrophage differentiation involves activation of PKC and expression of specific integrins and ECM proteins. The stimulated cells, through their integrins, attach and spread on these substrates by binding to the deposited ECM proteins. This attachment and spreading in turn, through integrin signaling, leads to the macrophage phenotype.

  3. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced ανβ3 and ανβ5 integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  4. SIKVAV, a Laminin α1-Derived Peptide, Interacts with Integrins and Increases Protease Activity of a Human Salivary Gland Adenoid Cystic Carcinoma Cell Line through the ERK 1/2 Signaling Pathway

    Vanessa M. Freitas; Vilas-Boas, Vanessa F.; Pimenta, Daniel C.; Loureiro, Vania; Juliano, Maria A; Carvalho, Márcia R.; Pinheiro, João J. V.; Camargo, Antonio C. M.; Moriscot, Anselmo S.; Hoffman, Matthew P.; Jaeger, Ruy G

    2007-01-01

    Adenoid cystic carcinoma is a frequently occurring malignant salivary gland neoplasm. We studied the induction of protease activity by the laminin-derived peptide, SIKVAV, in cells (CAC2) derived from this neoplasm. Laminin α1 and matrix metalloproteinases (MMPs) 2 and 9 were immunolocalized in adenoid cystic carcinoma cells in vivo and in vitro. CAC2 cells cultured on SIKVAV showed a dose-dependent increase of MMP9 as detected by zymography and colocalization of α3 and α6 integrins. Small in...

  5. Expression of β2-integrin on leukocytes in liver cirrhosis

    Anatol Panasiuk; Janusz Zak; Elzbieta Maciorkowska; Bozena Panasiuk; Danuta Prokopowicz

    2006-01-01

    AIM: To analyze β2-integrin expression on blood leukocytes in liver cirrhosis.METHODS: In 40 patients with liver cirrhosis and 20healthy individuals, the evaluation of expression of CD11a (LFA-1α), CD11b (Mac-1α), CD11c (αX) and CD49d (VLA-4α) on peripheral blood leukocytes was performed using flow cytometry. The analysis was carried out in groups of patients divided into B and C according to Child-Pugh's classification.RESULTS: An increased CD11a, CD11b, CD11c and CD49d integrin expression was observed on peripheral blood leukocytes in liver cirrhosis. The integrin levels were elevated as the advancement of liver failure progressed. The highest expression of integrins occurred predominantly on monocytes. A slight expression of VLA-4 was found on lymphocytes and granulocytes and it increased together with liver failure. A positive correlation was noted between median intensity of fluorescence (MIF) expression on polymorphonuclear cells of CD11a and CD11c and CD49d (r = 0.42, P < 0.01; r = 053, P < 0.01, respectively) in liver cirrhosis stage C. However,no correlation was observed between integrin expression on leukocytes. The concentrations of sICAM-1, sVCAM-1,and TNFα, were significantly elevated in liver cirrhosis.CONCLUSION: β2-integrin expression on leukocytes increases in liver cirrhosis decompensated as the stage of liver failure increases, which is a result of permanent activation of leukocytes circulating through the inflamed liver environment. β2-integrin expression on circulating leukocytes can intensify liver cirrhosis.

  6. The newcomer in the integrin family: Integrin a9 in biology and cancer

    Høye, Anette Melissa; Couchman, John Robert; Wewer, Ulla M.;

    2012-01-01

    Integrins are heterodimeric transmembrane receptors regulating cell-cell and cell-extracellular matrix interactions. Of the 24 integrin heterodimers identified in humans, a9ß1 integrin is one of the least studied. a9, together with a4, comprise a more recent evolutionary sub-family of integrins t...

  7. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  8. Integrin αv in the mechanical response of osteoblast lineage cells

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  9. Absence of alphavbeta6 integrin is linked to initiation and progression of periodontal disease.

    Ghannad, Farzin; Nica, Daniela; Fulle, Maria I Garcia; Grenier, Daniel; Putnins, Edward E; Johnston, Sarah; Eslami, Ameneh; Koivisto, Leeni; Jiang, Guoqiao; McKee, Marc D; Häkkinen, Lari; Larjava, Hannu

    2008-05-01

    Integrin alphavbeta6 is generally not expressed in adult epithelia but is induced in wound healing, cancer, and certain fibrotic disorders. Despite this generalized absence, we observed that alphavbeta6 integrin is constitutively expressed in the healthy junctional epithelium linking the gingiva to tooth enamel. Moreover, expression of alphavbeta6 integrin was down-regulated in human periodontal disease, a common medical condition causing tooth loss and also contributing to the development of cardiovascular diseases by increasing the total systemic inflammatory burden. Remarkably, integrin beta6 knockout mice developed classic signs of spontaneous, chronic periodontal disease with characteristic inflammation, epithelial down-growth, pocket formation, and bone loss around the teeth. Integrin alphavbeta6 acts as a major activator of transforming growth factor-beta1 (TGF-beta1), a key anti-inflammatory regulator in the immune system. Co-expression of TGF-beta1 and alphavbeta6 integrin was observed in the healthy junctional epithelium. Moreover, an antibody that blocks alphavbeta6 integrin-mediated activation of TGF-beta1 initiated inflammatory periodontal disease in a rat model of gingival inflammation. Thus, alphavbeta6 integrin is constitutively expressed in the epithelium sealing the gingiva to the tooth and plays a central role in protection against inflammatory periodontal disease through activation of TGF-beta1. PMID:18385522

  10. Key Interactions in Integrin Ectodomain Responsible for Global Conformational Change Detected by Elastic Network Normal-Mode Analysis

    Matsumoto, Atsushi; Kamata, Tetsuji; Takagi, Junichi; Iwasaki, Kenji; Yura, Kei

    2008-01-01

    Integrin, a membrane protein with a huge extracellular domain, participates in cell-cell and cell-extracellular-matrix interactions for metazoan. A group of integrins is known to perform a large-scale structural change when the protein is activated, but the activation mechanism and generality of the conformational change remain to be elucidated. We performed normal-mode analysis of the elastic network model on integrin α V β 3 ectodomain in the bent form and identified key residues that influ...

  11. Targeting of Alpha-V Integrins Reduces Malignancy of Bladder Carcinoma

    van der Horst, Geertje; Bos, Lieke; van der Mark, Maaike; Cheung, Henry; Heckmann, Bertrand; Clément-Lacroix, Philippe; Lorenzon, Giocondo; Pelger, Rob C. M.; Bevers, Rob F. M.; van der Pluijm, Gabri

    2014-01-01

    Low survival rates of metastatic cancers emphasize the need for a drug that can prevent and/or treat metastatic cancer. αv integrins are involved in essential processes for tumor growth and metastasis and targeting of αv integrins has been shown to decrease angiogenesis, tumor growth and metastasis. In this study, the role of αv integrin and its potential as a drug target in bladder cancer was investigated. Treatment with an αv integrin antagonist as well as knockdown of αv integrin in the bladder carcinoma cell lines, resulted in reduced malignancy invitro, as illustrated by decreased proliferative, migratory and clonogenic capacity. The CDH1/CDH2 ratio increased, indicating a shift towards a more epithelial phenotype. This shift appeared to be associated with downregulation of EMT-inducing transcription factors including SNAI2. The expression levels of the self-renewal genes NANOG and BMI1 decreased as well as the number of cells with high Aldehyde Dehydrogenase activity. In addition, self-renewal ability decreased as measured with the urosphere assay. In line with these observations, knockdown or treatment of αv integrins resulted in decreased metastatic growth in preclinical invivo models as assessed by bioluminescence imaging. In conclusion, we show that αv integrins are involved in migration, EMT and maintenance of Aldehyde Dehydrogenase activity in bladder cancer cells. Targeting of αv integrins might be a promising approach for treatment and/or prevention of metastatic bladder cancer. PMID:25247809

  12. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J.; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E.; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-01-01

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics. PMID:27241473

  13. Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783

    Tian Wei

    2012-10-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 or PTP4A3 has been implicated in controlling cancer cell proliferation, motility, metastasis, and angiogenesis. Deregulated expression of PRL-3 is highly correlated with cancer progression and predicts poor survival. Although PRL-3 was categorized as a tyrosine phosphatase, its cellular substrates remain largely unknown. Results We demonstrated that PRL-3 interacts with integrin β1 in cancer cells. Recombinant PRL-3 associates with the intracellular domain of integrin β1 in vitro. Silencing of integrin α1 enhances PRL-3-integrin β1 interaction. Furthermore, PRL-3 diminishes tyrosine phosphorylation of integrin β1 in vitro and in vivo. With site-specific anti-phosphotyrosine antibodies against residues in the intracellular domain of integrin β1, tyrosine-783, but not tyrosine-795, is shown to be dephosphorylated by PRL-3 in a catalytic activity-dependant manner. Phosphorylation of Y783 is potentiated by ablation of PRL-3 or by treatment with a chemical inhibitor of PRL-3. Conversely, depletion of integrin α1 decreases the phosphorylation of this site. Conclusions Our results revealed a direct interaction between PRL-3 and integrin β1 and characterized Y783 of integrin β1 as a bona fide substrate of PRL-3, which is negatively regulated by integrin α1.

  14. A Small Molecule, Which Competes with MAdCAM-1, Activates Integrin α4β7 and Fails to Prevent Mucosal Transmission of SHIV-SF162P3.

    Géraldine Arrode-Brusés

    2016-06-01

    Full Text Available Mucosal HIV-1 transmission is inefficient. However, certain viral and host characteristics may play a role in facilitating HIV acquisition and systemic expansion. Cells expressing high levels of integrin α4β7 have been implicated in favoring the transmission process and the infusion of an anti-α4β7 mAb (RM-Act-1 prior to, and during a repeated low-dose vaginal challenge (RLDC regimen with SIVmac251 reduced SIV acquisition and protected the gut-associated lymphoid tissues (GALT in the macaques that acquired SIV. α4β7 expression is required for lymphocyte trafficking to the gut lamina propria and gut inductive sites. Several therapeutic strategies that target α4β7 have been shown to be effective in treating inflammatory conditions of the intestine, such as inflammatory bowel disease (IBD. To determine if blocking α4β7 with ELN, an orally available anti-α4 small molecule, would inhibit SHIV-SF162P3 acquisition, we tested its ability to block MAdCAM-1 (α4β7 natural ligand and HIV-gp120 binding in vitro. We studied the pharmacokinetic profile of ELN after oral and vaginal delivery in macaques. Twenty-six macaques were divided into 3 groups: 9 animals were treated with ELN orally, 9 orally and vaginally and 8 were used as controls. All animals were challenged intra-vaginally with SHIV-SF162P3 using the RLDC regimen. We found that ELN did not protect macaques from SHIV acquisition although it reduced the SHIV-induced inflammatory status during the acute phase of infection. Notably, integrins can exist in different activation states and, comparing the effect of ELN and the anti-α4β7 mAb RM-Act-1 that reduced susceptibility to SIV infection, we determined that ELN induces the active conformation of α4β7, while RM-Act-1 inhibits its activation through an allosteric mechanism. These results suggest that inhibition of α4β7 activation may be necessary to reduce susceptibility to SIV/SHIV infection and highlight the complexity of anti-integrins

  15. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration

    Elena Rainero

    2015-01-01

    Full Text Available Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.

  16. Interactions between the discoidin domain receptor 1 and β1 integrin regulate attachment to collagen

    Lisa A. Staudinger

    2013-09-01

    Collagen degradation by phagocytosis is essential for physiological collagen turnover and connective tissue homeostasis. The rate limiting step of phagocytosis is the binding of specific adhesion receptors, which include the integrins and discoidin domain receptors (DDR, to fibrillar collagen. While previous data suggest that these two receptors interact, the functional nature of these interactions is not defined. In mouse and human fibroblasts we examined the effects of DDR1 knockdown and over-expression on β1 integrin subunit function. DDR1 expression levels were positively associated with enhanced contraction of floating and attached collagen gels, increased collagen binding and increased collagen remodeling. In DDR1 over-expressing cells compared with control cells, there were increased numbers, area and length of focal adhesions immunostained for talin, paxillin, vinculin and activated β1 integrin. After treatment with the integrin-cleaving protease jararhagin, in comparison to controls, DDR1 over-expressing cells exhibited increased β1 integrin cleavage at the cell membrane, indicating that DDR1 over-expression affected the access and susceptibility of cell-surface β1 integrin to the protease. DDR1 over-expression was associated with increased glycosylation of the β1 integrin subunit, which when blocked by deoxymannojirimycin, reduced collagen binding. Collectively these data indicate that DDR1 regulates β1 integrin interactions with fibrillar collagen, which positively impacts the binding step of collagen phagocytosis and collagen remodeling.

  17. Tumor targeting via integrin ligands

    HorstKessler

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  18. RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages

    von Wichert, Gotz; Jiang, Guoying; Kostic, Ana;

    2003-01-01

    -integrins at the leading edge during early spreading, and coimmunoprecipitates with alphav-integrins during spreading on fibronectin and vitronectin. RPTPalpha-dependent activation of Src family kinases, in particular activation of Fyn, is required for the force-dependent formation of focal complexes and...

  19. Modeled Microgravity Disrupts Collagen I/Integrin Signaling During Osteoblastic Differentiation of Human Mesenchymal Stem Cells

    Meyers, Valerie E.; Zayzafoon, Majd; Gonda, Steven R.; Gathings, William E.; McDonald, Jay M.

    2004-01-01

    Spaceflight leads to reduced bone mineral density in weight bearing bones that is primarily attributed to a reduction in bone formation. We have previously demonstrated severely reduced osteoblastogenesis of human mesenchymal stem cells (hMSC) following seven days culture in modeled microgravity. One potential mechanism for reduced osteoblastic differentiation is disruption of type I collagen-integrin interactions and reduced integrin signaling. Integrins are heterodimeric transmembrane receptors that bind extracellular matrix proteins and produce signals essential for proper cellular function, survival, and differentiation. Therefore, we investigated the effects of modeled microgravity on integrin expression and function in hMSC. We demonstrate that seven days of culture in modeled microgravity leads to reduced expression of the extracellular matrix protein, type I collagen (Col I). Conversely, modeled microgravity consistently increases Col I-specific alpha2 and beta1 integrin protein expression. Despite this increase in integrin sub-unit expression, autophosphorylation of adhesion-dependent kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), is significantly reduced. Activation of Akt is unaffected by the reduction in FAK activation. However, reduced downstream signaling via the Ras-MAPK pathway is evidenced by a reduction in Ras and ERK activation. Taken together, our findings indicate that modeled microgravity decreases integrin/MAPK signaling, which likely contributes to the observed reduction in osteoblastogenesis.

  20. Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA) and integrin alpha v beta 3 induces signal transduction and enhances plasminogen activation

    Tarui, Takehiko; Akakura, Nobuaki; Majumdar, Mousumi; Andronicos, Nicholas; Takagi, Junichi; Mazar, Andrew P.; Bdeir, Khalil; Kuo, Alice; Yarovoi, Serge V.; Cines, Douglas B.; Takada, Yoshikazu

    2006-01-01

    It has been questioned whether there are receptors for urokinase-type plasminogen activator (uPA) that facilitate plasminogen activation other than the high affinity uPA receptor (uPAR/CD87) since studies of uPAR knockout mice did not support a major role of uPAR in plasminogen activation. uPA also promotes cell adhesion, chemotaxis, and proliferation besides plasminogen activation. These uPA-induced signaling events are not mediated by uPAR, but mediated by unidentified, lower-affinity recep...

  1. Integrin Expression Regulates Neuroblastoma Attachment and Migration

    Amy Meyer

    2004-07-01

    Full Text Available Neuroblastoma (NBL is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR and that β1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of β1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of β1 integrin, whereas tumorigenic N-cells express little β1 integrin. Alterations in (3, integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that β1 integrin is degraded more slowly in S-type cells (SHEP than in N-type cells (SH-SY5Y and IMR32. Inhibition of α5β1 integrin prevents SHEP (but not SH-SY5Y or IMR32 cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease β1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of αvβ3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration.

  2. Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis

    Gupta Aditi

    2012-09-01

    Full Text Available Abstract Background Bone loss and pathological fractures are common skeletal complications associated with androgen deprivation therapy and bone metastases in prostate cancer patients. We have previously demonstrated that prostate cancer cells secrete receptor activator of NF-kB ligand (RANKL, a protein essential for osteoclast differentiation and activation. However, the mechanism(s by which RANKL is produced remains to be determined. The objective of this study is to gain insight into the molecular mechanisms controlling RANKL expression in metastatic prostate cancer cells. Results We show here that phosphorylation of Smad 5 by integrin αvβ3 and RUNX2 by CD44 signaling, respectively, regulates RANKL expression in human-derived PC3 prostate cancer cells isolated from bone metastasis. We found that RUNX2 intranuclear targeting is mediated by phosphorylation of Smad 5. Indeed, Smad5 knock-down via RNA interference and inhibition of Smad 5 phosphorylation by an αv inhibitor reduced RUNX2 nuclear localization and RANKL expression. Similarly, knockdown of CD44 or RUNX2 attenuated the expression of RANKL. As a result, conditioned media from these cells failed to support osteoclast differentiation in vitro. Immunohistochemistry analysis of tissue microarray sections containing primary prostatic tumor (grade2-4 detected predominant localization of RUNX2 and phosphorylated Smad 5 in the nuclei. Immunoblotting analyses of nuclear lysates from prostate tumor tissue corroborate these observations. Conclusions Collectively, we show that CD44 signaling regulates phosphorylation of RUNX2. Localization of RUNX2 in the nucleus requires phosphorylation of Smad-5 by integrin αvβ3 signaling. Our results suggest possible integration of two different pathways in the expression of RANKL. These observations imply a novel mechanistic insight into the role of these proteins in bone loss associated with bone metastases in patients with prostate cancer.

  3. The involvement of Gab1 and PI 3-kinase in β1 integrin signaling in keratinocytes

    The control of the stem cell compartment in epidermis is closely linked to the regulation of keratinocyte proliferation and differentiation. β1 integrins are expressed 2-fold higher by stem cells than transit-amplifying cells. Signaling from these β1 integrins is critical for the regulation of the epidermal stem cell compartment. To clarify the functional relevance of this differential expression of β1 integrins, we established HaCaT cells with high β1integrin expression by repeated flow cytometric sorting of this population from the parental cell line. In these obtained cells expressing β1 integrins by 5-fold, MAPK activation was markedly increased. Regarding the upstream of MAPK, Gab1 phosphorylation was also higher with high β1 integrin expression, while Shc phosphorylation was not altered. In addition, enhanced phosphatidylinositol 3-kinase activation was also observed. These observations suggest that Gab1 and phosphatidylinositol 3-kinase play pivotal roles in the β1 integrin-mediated regulation of the epidermal stem cell compartment

  4. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.

    Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime

    2016-07-01

    Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. PMID:27063097

  5. Anti-Integrin Therapy for Multiple Sclerosis

    Motomu Shimaoka; Hiroshi Imai; Takayuki Okamoto; Susumu Nakahashi; Eiji Kawamoto

    2012-01-01

    Integrins are the foremost family of cell adhesion molecules that regulate immune cell trafficking in health and diseases. Integrin alpha4 mediates organ-specific migration of immune cells to the inflamed brain, thereby playing the critical role in the pathogenesis of multiple sclerosis. Anti-alpha4 integrin therapy aiming to block infiltration of autoreactive lymphocytes to the inflamed brain has been validated in several clinical trials for the treatment of multiple sclerosis. This paper pr...

  6. Progresses in optimization strategy for radiolabeled molecular probes targeting integrin αvβ3

    Tumor angiogenesis is critical in the growth, invasion and metastasis of malignant tumors. The integrins, which express on many types of tumor cells and activated vascular endothelial cells, play an important role in regulation of the tumor angiogenesis. RGD peptide, which contains Arg-Gly-Asp sequence, binds specifically to integrin αvβ3. Therefore, the radiolabeled RGD peptides may have broad application prospects in radionuclide imaging and therapy. Major research interests include the selection of radionuclides, modification and improvement of RGD structures. In this article, we give a review on research progresses in optimization strategy for radiolabeled molecular probes targeting integrin αvβ3. (authors)

  7. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins.

    Tang, Chi-Hui; Hill, Marla L; Brumwell, Alexis N; Chapman, Harold A; Wei, Ying

    2008-11-15

    The urokinase receptor (uPAR) is upregulated upon tumor cell invasion and correlates with poor lung cancer survival. Although a cis-interaction with integrins has been ascribed to uPAR, whether this interaction alone is critical to urokinase (uPA)- and uPAR-dependent signaling and tumor promotion is unclear. Here we report the functional consequences of point mutations of uPAR (H249A-D262A) that eliminate beta1 integrin interactions but maintain uPA binding, vitronectin attachment and association with alphaV integrins, caveolin and epidermal growth factor receptor. Disruption of uPAR interactions with beta1 integrins recapitulated previously reported findings with beta1-integrin-derived peptides that attenuated matrix-dependent ERK activation, MMP expression and in vitro migration by human lung adenocarcinoma cell lines. The uPAR mutant cells acquired enhanced capacity to adhere to vitronectin via uPAR-alphaVbeta5-integrin, rather than through the uPAR-alpha3beta1-integrin complex and they were unable to initiate uPA signaling to activate ERK, Akt or Stat1. In an orthotopic lung cancer model, uPAR mutant cells exhibited reduced tumor size compared with cells expressing wild-type uPAR. Taken together, the results indicate that uPAR-beta1-integrin interactions are essential to signals induced by integrin matrix ligands or uPA that support lung cancer cell invasion in vitro and progression in vivo. PMID:18940913

  8. MR Imaging of activated hepatic stellate cells in liver injured by CCl4 of rats with integrin-targeted ultrasmall superparamagnetic iron oxide

    To demonstrate the feasibility of the ultrasmall superparamagnetic iron oxide (USPIO) modified by cyclo (Arg-Gly-Asp-Try-Cys) peptide (c(RGDyC)-USPIO) for targeting hepatic stellate cells (HSCs). A c(RGDyC)-USPIO probe was prepared by conjugating c(RGDyC) with USPIO through a thiol-maleinide interaction. The specificity of c(RGDyC)-USPIO for HSCs was investigated in vitro. In vivo, normal and fibrosis rats were treated with either c(RGDyC)-USPIO or USPIO, and magnetic resonance imaging (MRI) of the rats performed after administration of the probes for 4 h. The T2 relaxation times changes before and after probe injection were analyzed and the locations of probes in normal or injured mice were identified histologically. The hydrodynamic size of c(RGDyC)-USPIO was 13 ± 3 nm. HSCs took up more specific probes than plain ones. The reduction of T2 relaxation times in fibrosis rat by c(RGDyC)-USPIO was much greater than that by USPIO (P vβ3 integrins was feasible using a clinical 1.5-Tesla MR system. (orig.)

  9. CCN2: a mechanosignaling sensor modulating integrin-dependent connective tissue remodeling in fibroblasts?

    Leask, Andrew

    2013-08-01

    Tensegrity (tensional integrity) is an emerging concept governing the structure of the body. Integrin-mediated mechanical tension is essential for connective tissue function in vivo. For example, in adult skin fibroblasts, the integrin β1 subunit mediates adhesion to collagen and fibronectin. Moreover, integrin β1, through its abilities to activate latent TGFβ1 and promote collagen production through focal adhesion kinase/rac1/nicotinamide adenine dinucleotide phosphate oxidase (NOX)/reactive oxygen species (ROS), is essential for dermal homeostasis, repair and fibrosis. The integrin β1-interacting protein CCN2, a member of the CCN family of proteins, is induced by TGFβ1; yet, CCN2 is not a simple downstream mediator of TGFβ1, but instead synergistically promote TGFβ1-induced adhesive signaling and fibrosis. Due to its selective ability to sense mechanical forces in the microenvironment, CCN2 may represent an exquisitely precise target for therapeutic intervention. PMID:23729366

  10. Matrix crosslinking forces tumor progression by enhancing integrin signaling

    Levental, Kandice R; Yu, Hongmei; Kass, Laura; Lakins, Johnathon N; Egeblad, Mikala; Erler, Janine Terra; Fong, Sheri F T; Csiszar, Katalin; Giaccia, Amato; Weninger, Wolfgang; Yamauchi, Mitsuo; Gasser, David L; Weaver, Valerie M

    2009-01-01

    Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM remodeling to cancer is appreciated; the relevance of stiffening is less clear. We found that breast tumorigenesis is accompanied by collagen crosslinking, ECM stiffening, and increased focal...... adhesions. Induction of collagen crosslinking stiffened the ECM, promoted focal adhesions, enhanced PI3 kinase (PI3K) activity, and induced the invasion of an oncogene-initiated epithelium. Inhibition of integrin signaling repressed the invasion of a premalignant epithelium into a stiffened, crosslinked ECM...... and forced integrin clustering promoted focal adhesions, enhanced PI3K signaling, and induced the invasion of a premalignant epithelium. Consistently, reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded...

  11. Targeting of alpha-v integrins reduces malignancy of bladder carcinoma.

    Geertje van der Horst

    Full Text Available Low survival rates of metastatic cancers emphasize the need for a drug that can prevent and/or treat metastatic cancer. αv integrins are involved in essential processes for tumor growth and metastasis and targeting of αv integrins has been shown to decrease angiogenesis, tumor growth and metastasis. In this study, the role of αv integrin and its potential as a drug target in bladder cancer was investigated. Treatment with an αv integrin antagonist as well as knockdown of αv integrin in the bladder carcinoma cell lines, resulted in reduced malignancy in vitro, as illustrated by decreased proliferative, migratory and clonogenic capacity. The CDH1/CDH2 ratio increased, indicating a shift towards a more epithelial phenotype. This shift appeared to be associated with downregulation of EMT-inducing transcription factors including SNAI2. The expression levels of the self-renewal genes NANOG and BMI1 decreased as well as the number of cells with high Aldehyde Dehydrogenase activity. In addition, self-renewal ability decreased as measured with the urosphere assay. In line with these observations, knockdown or treatment of αv integrins resulted in decreased metastatic growth in preclinical in vivo models as assessed by bioluminescence imaging. In conclusion, we show that αv integrins are involved in migration, EMT and maintenance of Aldehyde Dehydrogenase activity in bladder cancer cells. Targeting of αv integrins might be a promising approach for treatment and/or prevention of metastatic bladder cancer.

  12. Integrin β3 and LKB1 are independently involved in the inhibition of proliferation by lovastatin in human intrahepatic cholangiocarcinoma.

    Yang, Sheng-Huei; Lin, Hung-Yun; Changou, Chun A; Chen, Chun-Han; Liu, Yun-Ru; Wang, Jinghan; Jiang, Xiaoqing; Luh, Frank; Yen, Yun

    2016-01-01

    Human intrahepatic cholangiocarcinomas are one of the most difficult cancers to treat. In our study, Lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme-CoA (HMG-CoA) reductase inhibitor, demonstrated anticancer properties by inhibiting cancer cell proliferation, cell migration and cell adhesion. Lovastatin inhibited the expressions of transforming growth factor (TGF)-β1, cyclooxygenase (COX)-2, and intercellular adhesion molecule (ICAM)-1. Furthermore, lovastatin inhibited the expressions of integrin β1 and integrin β3 but not integrin αv or integrin β5. While Lovastatin's inhibitory effects on TGFβ1, COX2, and ICAM-1 expression were independently controlled by the tumor suppressor LKB1, integrin β3 expression was not affected. Lovastatin's inhibitory effect on cell adhesion was associated with the decreased expression of integrin β3 and cell surface heterodimer integrin αvβ3. Quantitative real time PCR, fluorescent microscopy, and cell migration assays all confirmed that Lovastatin inhibits integrin αvβ3 downstream signaling including FAK activation, and β-catenin, vimentin, ZO-1, and β-actin. Overall, Lovastatin reduced tumor cell proliferation and migration by modifying the expression of genes involved in cell adhesion and other critical cellular processes. Our study highlights novel anti-cancer properties of Lovastatin and supports further exploration of statins in the context of cholangiocarcinoma therapy. PMID:26517522

  13. Extracellular matrix stiffness dictates Wnt expression through integrin pathway.

    Du, Jing; Zu, Yan; Li, Jing; Du, Shuyuan; Xu, Yipu; Zhang, Lang; Jiang, Li; Wang, Zhao; Chien, Shu; Yang, Chun

    2016-01-01

    It is well established that extracellular matrix (ECM) stiffness plays a significant role in regulating the phenotypes and behaviors of many cell types. However, the mechanism underlying the sensing of mechanical cues and subsequent elasticity-triggered pathways remains largely unknown. We observed that stiff ECM significantly enhanced the expression level of several members of the Wnt/β-catenin pathway in both bone marrow mesenchymal stem cells and primary chondrocytes. The activation of β-catenin by stiff ECM is not dependent on Wnt signals but is elevated by the activation of integrin/ focal adhesion kinase (FAK) pathway. The accumulated β-catenin then bound to the wnt1 promoter region to up-regulate the gene transcription, thus constituting a positive feedback of the Wnt/β-catenin pathway. With the amplifying effect of positive feedback, this integrin-activated β-catenin/Wnt pathway plays significant roles in mediating the enhancement of Wnt signal on stiff ECM and contributes to the regulation of mesenchymal stem cell differentiation and primary chondrocyte phenotype maintenance. The present integrin-regulated Wnt1 expression and signaling contributes to the understanding of the molecular mechanisms underlying the regulation of cell behaviors by ECM elasticity. PMID:26854061

  14. Aggregation of mononuclear and red blood cells through an {alpha}4{beta}1-Lu/basal cell adhesion molecule interaction in sickle cell disease. : Mononuclear and sickle red blood cell interactions

    Chaar, Vicky; Picot, Julien; Renaud, Olivier; Bartolucci, Pablo; Nzouakou, Ruben; Bachir, Dora; Galactéros, Frédéric; Colin, Yves; Le Van Kim, Caroline; El Nemer, Wassim

    2010-01-01

    BACKGROUND: Abnormal interactions between red blood cells, leukocytes and endothelial cells play a critical role in the occurrence of the painful vaso-occlusive crises associated with sickle cell disease. We investigated the interaction between circulating leukocytes and red blood cells which could lead to aggregate formation, enhancing the incidence of vaso-occlusive crises. DESIGN AND METHODS: Blood samples from patients with sickle cell disease (n=25) and healthy subjects (n=5) were analyz...

  15. The integrin-collagen connection--a glue for tissue repair?

    Zeltz, Cédric; Gullberg, Donald

    2016-02-15

    The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1. PMID:26857815

  16. RGD-Binding Integrins in Prostate Cancer: Expression Patterns and Therapeutic Prospects against Bone Metastasis

    Prostate cancer is the third leading cause of male cancer deaths in the developed world. The current lack of highly specific detection methods and efficient therapeutic agents for advanced disease have been identified as problems requiring further research. The integrins play a vital role in the cross-talk between the cell and extracellular matrix, enhancing the growth, migration, invasion and metastasis of cancer cells. Progression and metastasis of prostate adenocarcinoma is strongly associated with changes in integrin expression, notably abnormal expression and activation of the β3 integrins in tumour cells, which promotes haematogenous spread and tumour growth in bone. As such, influencing integrin cell expression and function using targeted therapeutics represents a potential treatment for bone metastasis, the most common and debilitating complication of advanced prostate cancer. In this review, we highlight the multiple ways in which RGD-binding integrins contribute to prostate cancer progression and metastasis, and identify the rationale for development of multi-integrin antagonists targeting the RGD-binding subfamily as molecularly targeted agents for its treatment

  17. Integrin beta 1 enhances the epithelial-mesenchymal transition in association with gefitinib resistance of non-small cell lung cancer.

    Ju, Lixia; Zhou, Caicun

    2013-01-01

    We have previously shown that integrinβ1 associates with gefitinib resistance. As epithelial-mesenchymal transition (EMT) also induces gefitinib resistance in vitro, we wished to determine the relation of them in gefitinib resistance. In this study, we show that integrinβ1 induced epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in xenograft tumors and gefitinib-resistant NSCLC tumors acquired EMT phenotype. Furthermore, inhibition of integrinβ1 reverses EMT, meanwhile overexpression and activation of integrinβ1 aggravates EMT. Lastly, we further identified that integrinβ1 enhanced EMT via FAK-AKT signaling pathway. These findings highlight a novel relation of integrinβ1 and EMT in EGFR TKI resistant NSCLC. PMID:24440972

  18. Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6–Abundant Breast Cancer Cells by Regulating γ-Secretase–Mediated Notch1 Activation in Caveolae

    En-Chi Hsu

    2015-06-01

    Full Text Available Interleukin-6 (IL-6 and Notch signaling are important regulators of breast cancer stem cells (CSCs, which drive the malignant phenotype through self-renewal, differentiation, and development of therapeutic resistance. We investigated the role of integrin-linked kinase (ILK in regulating IL-6–driven Notch1 activation and the ability to target breast CSCs through ILK inhibition. Ectopic expression/short hairpin RNA-mediated knockdown of ILK, pharmacological inhibition of ILK with the small molecule T315, Western blot analysis, immunofluorescence, and luciferase reporter assays were used to evaluate the regulation of IL-6–driven Notch1 activation by ILK in IL-6–producing triple-negative breast cancer cell lines (MDA-MB-231, SUM-159 and in MCF-7 and MCF-7IL-6 cells. The effects of ILK on γ-secretase complex assembly and cellular localization were determined by immunofluorescence, Western blots of membrane fractions, and immunoprecipitation. In vivo effects of T315-induced ILK inhibition on CSCs in SUM-159 xenograft models were assessed by mammosphere assays, flow cytometry, and tumorigenicity assays. Results show that the genetic knockdown or pharmacological inhibition of ILK suppressed Notch1 activation and the abundance of the γ-secretase components presenilin-1, nicastrin, and presenilin enhancer 2 at the posttranscriptional level via inhibition of caveolin-1-dependent membrane assembly of the γ-secretase complex. Accordingly, knockdown of ILK inhibited breast CSC-like properties in vitro and the breast CSC subpopulation in vivo in xenograft tumor models. Based on these findings, we propose a novel function of ILK in regulating γ-secretase–mediated Notch1 activation, which suggests the targeting of ILK as a therapeutic approach to suppress IL-6–induced breast CSCs.

  19. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation.

    Petridou, Nicoletta I; Skourides, Paris A

    2016-01-01

    Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli. PMID:26952307

  20. Integrin β1A Upregulates p27 Protein Amount at the Post-translational Level in Human Hepatocellular Carcinoma Cell Line SMMC-7721

    Yi FU; Li-Ying WANG; Yu-Long LIANG; Jia-Wei JIN; Zheng-Yu FANG; Xi-Liang ZHA

    2006-01-01

    Integrins mediate many fundamental cellular processes by binding to components of the extracellular matrix. We showed previously that integrin β1A could inhibit cell proliferation. Integrin β1A stimulated the promoter activity of p21cip1 and enhanced its transcription in SMMC-7721 cells. In this study,we demonstrated that integrin β1A upregulated p27kip1 at the post-translational level in SMMC-7721 cells. Our results showed that integrin β1A increased the p27 protein amount, both in cytoplasm and nucleus, but did not affect the p27m RNA amount. Cycloheximide treatment experiment revealed that the half-life of p27 protein was prolonged in integrin β1A overexpressing cells, indicating that integrin β1A inhibited the degradation of p27 protein. Our data also provided evidence that both the proteasome and calpain were involved in the degradation of p27 protein in SMMC-7721 cells. Integrin β1A decreased the Skp2 expression and repressed the activity of calpain during G1 phase in SMMC-7721 cells. Taken together, these results indicated that integrin β1A might upregulate the protein amount of p27 through repressing Skp2-dependent proteasome degradation and calpainmediated proteolysis in SMMC-7721 cells.

  1. Integrin Receptors Play a Key Role in the Regulation of Hepatic CYP3A.

    Jonsson-Schmunk, Kristina; Wonganan, Piynauch; Choi, Jin Huk; Callahan, Shellie M; Croyle, Maria A

    2016-05-01

    Landmark studies describing the effect of microbial infection on the expression and activity of hepatic CYP3A used bacterial lipopolysaccharide as a model antigen. Our efforts to determine whether these findings were translatable to viral infections led us to observations suggesting that engagement of integrin receptors is key in the initiation of processes responsible for changes in hepatic CYP3A4 during infection and inflammation. Studies outlined in this article were designed to evaluate whether engagement of integrins, receptors commonly used by a variety of microbes to enter cellular targets, is vital in the regulation of CYP3A in the presence and absence of virus infection. Mice infected with a recombinant adenovirus (AdlacZ) experienced a 70% reduction in hepatic CYP3A catalytic activity. Infection with a mutant virus with integrin-binding arginine-glycine-aspartic acid (RGD) sequences deleted from the penton base protein of the virus capsid (AdΔRGD) did not alter CYP3A activity. CYP3A mRNA and protein levels in AdlacZ-treated animals were also suppressed, whereas those of mice given AdΔRGD were not significantly different from uninfected control mice. Silencing of the integrinβ-subunit reverted adenovirus-mediated CYP3A4 suppression in vitro. Silencing of theα-subunit did not. Suppression of integrin subunits had a profound effect on nuclear receptors pregnane X receptor and constitutive androstane receptor, whereas retinoid X receptorαwas largely unaffected. To our knowledge, this is the first time that extracellular receptors, like integrins, have been indicated in the regulation of CYP3A. This finding has several implications owing to the important role of integrins in normal physiologic process and in many disease states. PMID:26868618

  2. Integrin αβ3-Targeted Imaging of Lung Cancer

    Xiaoyuan Chen

    2005-03-01

    Full Text Available A series of radiolabeled cyclic arginine-glycineaspartic acid (RGD peptide ligands for cell adhesion molecule integrin αβ3-targeted tumor angiogenesis targeting are being developed in our laboratory. In this study, this effort continues by applying a positron emitter 64Cu-labeled PEGylated dimeric RGD peptide radiotracer 64Cu-DOTA-PEG-E[c(RGDyK]2 for lung cancer imaging. The PEGylated RGD peptide indicated integrin αβ3 avidity, but the PEGylation reduced the receptor binding affinity of this ligand compared to the unmodified RGD dimer. The radiotracer revealed rapid blood clearance and predominant renal clearance route. The minimum nonspecific activity accumulation in normal lung tissue and heart rendered high-quality orthotopic lung cancer tumor images, enabling clear demarcation of both the primary tumor at the upper lobe of the left lung, as well as metastases in the mediastinum, contralateral lung, diaphragm. As a comparison, fluorodeoxyglucose (FDG scans on the same mice were only able to identify the primary tumor, with the metastatic lesions masked by intense cardiac uptake and high lung background. 64Cu-DOTA-PEGE[c(RGDyK]2 is an excellent positron emission tomography (PET tracer for integrin-positive tumor imaging. Further studies to improve the receptor binding affinity of the tracer and subsequently to increase the magnitude of tumor uptake without comprising the favorable in vivo kinetics are currently in progress.

  3. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  4. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    Say, R Latin-Small-Letter-Dotless-I dvan, E-mail: rsay@anadolu.edu.tr [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Yazar, Suzan [Sanovel Pharmaceutical Company (Turkey); Ugur, Alper; Huer, Deniz [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry (Turkey); Ersoez, Arzu [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey)

    2013-01-15

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin-ligand interactions are dependent on divalent cations, and Mg{sup 2+} provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP-co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  5. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  6. Fibrinogen interaction of CHO cells expressing chimeric αIIb/αvβ3 integrin

    Juan-juan CHEN; Xiao-yu SU; Xiao-dong XI; Li-ping LIN; Jian DING; He LU

    2008-01-01

    Aim: The molecular mechanisms of the affinity regulation of αvβ3 integrin are important in tumor development, wound repairing, and angiogenesis. It has been established that the cytoplasmic domains of αvβ3 integrin play an important role in integrin-ligand affinity regulation. However, the relationship of structure-func-tion within these domains remains unclear. Methods: The extracellular and trans-membrane domain of αⅡb was fused to the αv integrin cytoplasmic domain, and the chimeric α subunit was coexpressed in Chinese hamster ovary (CHO) cells with the wild-type β3 subunit or with 3 mutant 133 sequences bearing truncations at the positions of T741, Y747, and F754, respectively. The CHO cells expressing these recombinant integrins were tested for soluble fibrinogen binding and the cell adhesion and spreading on immobilized fibrinogen. Results: All 4 types of integrins bound soluble fibrinogen in the absence of agonist stimulation, and only the cells expressing the chimeric α subunit with the wild-type β3 subunit, but not those with truncated β3, could adhere to and spread on immobilized fibrinogen. Conclusion: The substitution αⅡb at the cytoplasmic domain with the ctv cyto-plasmic sequence rendered the extracellular αⅡbβ3 a constitutively activated con-formation for ligands without the need of "inside-out" signals. Our results also indicated that the COOH-terminal sequence of β3 might play a key role in integrin αⅡb/αvβ3-mediated cell adhesion and spreading on immobilized fibrinogen. The cells expressing αⅡb/αvβ3 have enormous potential for facilitating drug screen-ing for antagonists either to αvβ3 intracellular interactions or to αⅡbβ3 receptor functions.

  7. The role of integrin α(V)β(3) in osteocyte mechanotransduction.

    Haugh, Matthew G; Vaughan, Ted J; McNamara, Laoise M

    2015-02-01

    Recent in vivo studies have proposed that integrin αvβ3 attachments between osteocyte cell processes and the extracellular matrix may facilitate mechanosensation in bone. However the role of these attachments in osteocyte biochemical response to mechanical stimulus has yet to be investigated. With this in mind, the objective of this study was to determine the effect of blocking integrin αvβ3 function on the biochemical response of osteocytes to mechanical stimulus. Antagonists specific to integrin subunit β3 were used to block integrin αvβ3 on MLO-Y4 mouse osteocytes. After treatment, cells were subjected to laminar oscillatory fluid flow stimulus (1 Pa, 1 Hz) for one hour. Fluorescent staining was performed to visualise cell morphology. Prostaglandin E2 (PGE2) release was assayed using an enzyme immunoassay and qRT-PCR was used to analyse the relative expression of cyclooxygenase-2 (COX-2), receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Our results show that blocking integrin αvβ3 disrupts osteocyte morphology, causing a reduction in spread area and process retraction. Integrin αvβ3 blocking also disrupted COX-2 expression and PGE2 release in response to fluid shear stress. Taken together, the results of this study indicate that integrin αvβ3 is essential for the maintenance of osteocyte cell processes and also for mechanosensation and mechanotransduction by osteocytes. A better understanding of this process may lead to the development of novel treatments for bone pathologies where mechanosensitivity is thought to be compromised. PMID:25460927

  8. Localized LoxL3-Dependent Fibronectin Oxidation Regulates Myofiber Stretch and Integrin-Mediated Adhesion.

    Kraft-Sheleg, Ortal; Zaffryar-Eilot, Shelly; Genin, Olga; Yaseen, Wesal; Soueid-Baumgarten, Sharon; Kessler, Ofra; Smolkin, Tatyana; Akiri, Gal; Neufeld, Gera; Cinnamon, Yuval; Hasson, Peleg

    2016-03-01

    For muscles to function, myofibers have to stretch and anchor at the myotendinous junction (MTJ), a region rich in extracellular matrix (ECM). Integrin signaling is required for MTJ formation, and mutations affecting the cascade lead to muscular dystrophies in mice and humans. Underlying mechanisms for integrin activation at the MTJ and ECM modifications regulating its signaling are unclear. We show that lysyl oxidase-like 3 (LoxL3) is a key regulator of integrin signaling that ensures localized control of the cascade. In LoxL3 mutants, myofibers anchor prematurely or overshoot to adjacent somites, and are loose and lack tension. We find that LoxL3 complexes with and directly oxidizes Fibronectin (FN), an ECM scaffold protein and integrin ligand enriched at the MTJ. We identify a mechanism whereby localized LoxL3 secretion from myofiber termini oxidizes FN, enabling enhanced integrin activation at the tips of myofibers and ensuring correct positioning and anchoring of myofibers along the MTJ. PMID:26954549

  9. Endocytosis of Integrin-Binding Human Picornaviruses

    Pirjo Merilahti

    2012-01-01

    Full Text Available Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9, echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1 has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  10. Regulation of Adherence and Virulence by the Entamoeba histolytica Lectin Cytoplasmic Domain, Which Contains a β2 Integrin Motif

    Vines, Richard R.; Ramakrishnan, Girija; Rogers, Joshua B.; Lockhart, Lauren A.; Mann, Barbara J.; Petri, William A.

    1998-01-01

    Killing of human cells by the parasite Entamoeba histolytica requires adherence via an amebic cell surface lectin. Lectin activity in the parasite is regulated by inside-out signaling. The lectin cytoplasmic domain has sequence identity with a region of the β2 integrin cytoplasmic tail implicated in regulation of integrin-mediated adhesion. Intracellular expression of a fusion protein containing the cytoplasmic domain of the lectin has a dominant negative effect on extracellular lectin-mediat...

  11. Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration.

    Alvarez, Alvaro; Lagos-Cabré, Raúl; Kong, Milene; Cárdenas, Areli; Burgos-Bravo, Francesca; Schneider, Pascal; Quest, Andrew F G; Leyton, Lisette

    2016-09-01

    Our previous reports indicate that ligand-induced αVβ3 integrin and Syndecan-4 engagement increases focal adhesion formation and migration of astrocytes. Additionally, ligated integrins trigger ATP release through unknown mechanisms, activating P2X7 receptors (P2X7R), and the uptake of Ca(2+) to promote cell adhesion. However, whether the activation of P2X7R and ATP release are required for astrocyte migration and whether αVβ3 integrin and Syndecan-4 receptors communicate with P2X7R via ATP remains unknown. Here, cells were stimulated with Thy-1, a reported αVβ3 integrin and Syndecan-4 ligand. Results obtained indicate that ATP was released by Thy-1 upon integrin engagement and required the participation of phosphatidylinositol-3-kinase (PI3K), phospholipase-C gamma (PLCγ) and inositol trisphosphate (IP3) receptors (IP3R). IP3R activation leads to increased intracellular Ca(2+), hemichannel (Connexin-43 and Pannexin-1) opening, and ATP release. Moreover, silencing of the P2X7R or addition of hemichannel blockers precluded Thy-1-induced astrocyte migration. Finally, Thy-1 lacking the integrin-binding site did not stimulate ATP release, whereas Thy-1 mutated in the Syndecan-4-binding domain increased ATP release, albeit to a lesser extent and with delayed kinetics compared to wild-type Thy-1. Thus, hemichannels activated downstream of an αVβ3 integrin-PI3K-PLCγ-IP3R pathway are responsible for Thy-1-induced, hemichannel-mediated and Syndecan-4-modulated ATP release that transactivates P2X7Rs to induce Ca(2+) entry. These findings uncover a hitherto unrecognized role for hemichannels in the regulation of astrocyte migration via P2X7R transactivation induced by integrin-mediated ATP release. PMID:27235833

  12. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  13. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated

  14. Modulation of radiation-induced oral mucositis (mouse) by selective inhibition of β1 integrin

    Introduction: Oral mucositis is a severe side effect of radio(chemo)therapy for head and neck tumors, for which β1 integrins have been proposed as potential therapeutic targets. The present study was initiated to determine the effect of selective inhibition of β1 integrin on the oral epithelial radiation response. Materials and methods: Daily fractionated irradiation was given with 5 × 3 Gy/week over 1 or 2 weeks with/without the β1 integrin-inhibiting monoclonal antibody AIIB2 or an IgG control. Each protocol was terminated by graded test doses to generate full dose–effect curves for mucosal ulceration. The same technique was used for single dose irradiation. Results: Combined single dose irradiation plus AIIB2 resulted in a significant decrease of the ED50 compared to irradiation alone or control IgG. No effect of AIIB2 was found with fractionated irradiation over 1 week. With 2 weeks of fractionation, AIIB2 induced a significant increase in the ED50 for the terminating test irradiation when administered in week 2. The time course of the response was largely unaffected by β1 integrin inhibition. Conclusions: A reduction of mucosal reactions by β1 integrin inhibition later in a course of fractionation was observed, i.e. when epithelial repopulation processes were active. Further mechanistic studies are required.

  15. The cytoplasmic extension of the integrin β6 subunit regulates epithelial-to-mesenchymal transition.

    Lee, Carlin; Lee, Casey; Lee, Stacey; Siu, Amanda; Ramos, Daniel M

    2014-02-01

    Prognosis for oral cancer patients has not improved in over 60 years due to invasion and recurrence. To understand the invasive behavior of this tumor, we evaluated the role of the αvβ6 integrin. Invasive oral SCC cells express the αvβ6 integrin, which contains an 11-amino-acid extension on its β-subunit unique to the integrin family. We determined that this β6 cytoplasmic extension regulates the composition of the intermediate filament network and the organization of signaling structures called focal contacts. The auto-phosphorylation of FAK, which is localized to focal contacts, was also regulated by the β6-cytoplasmic tail, as were the transcription factors Notch and STAT3. Lastly, we also determined that activation of MAPK required the full-length β6 integrin. Together these results indicate that the signaling critical to epithelial-to-mesenchymal transition (EMT) is regulated by the β6 integrin cytoplasmic domain. PMID:24510996

  16. Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters.

    Eich, Christina; Manzo, Carlo; de Keijzer, Sandra; Bakker, Gert-Jan; Reinieren-Beeren, Inge; García-Parajo, Maria F; Cambi, Alessandra

    2016-01-01

    Sphingolipids are essential constituents of the plasma membrane (PM) and play an important role in signal transduction by modulating clustering and dynamics of membrane receptors. Changes in lipid composition are therefore likely to influence receptor organisation and function, but how this precisely occurs is difficult to address given the intricacy of the PM lipid-network. Here, we combined biochemical assays and single molecule dynamic approaches to demonstrate that the local lipid environment regulates adhesion of integrin receptors by impacting on their lateral mobility. Induction of sphingomyelinase (SMase) activity reduced sphingomyelin (SM) levels by conversion to ceramide (Cer), resulting in impaired integrin adhesion and reduced integrin mobility. Dual-colour imaging of cortical actin in combination with single molecule tracking of integrins showed that this reduced mobility results from increased coupling to the actin cytoskeleton brought about by Cer formation. As such, our data emphasizes a critical role for the PM local lipid composition in regulating the lateral mobility of integrins and their ability to dynamically increase receptor density for efficient ligand binding in the process of cell adhesion. PMID:26869100

  17. Synergistic active targeting of dually integrin αvβ3/CD44-targeted nanoparticles to B16F10 tumors located at different sites of mouse bodies.

    Shi, Sanjun; Zhou, Min; Li, Xin; Hu, Min; Li, Chenwen; Li, Min; Sheng, Fangfang; Li, Zhuoheng; Wu, Guolin; Luo, Minghe; Cui, Huanhuan; Li, Ziwei; Fu, Ruoqiu; Xiang, Mingfeng; Xu, Jing; Zhang, Qian; Lu, Laichun

    2016-08-10

    Conventional enhanced permeation and retention (EPR) mediates the effects of many drugs, including the accumulation of nanocarriers at tumor sites, but its efficiency remains low. In this study, this limitation was overcome by developing a dual-targeting delivery system based on hyaluronan (HA, a major ligand of CD44) and tetraiodothyroacetic acid (tetrac, a specific ligand of αvβ3), which was exploited to carry docetaxel (DTX) for the synergistic active targeting to tumors. First, a tetrac-HA (TeHA) conjugate was synthesized and grafted onto the surfaces of solid lipid nanoparticles (SLNs) (TeHA-SLNs/DTX), with a high encapsulation efficiency of >91.6%. The resulting SLNs exhibited an approximately toroid morphology revealed using TEM. The cellular uptake and cytotoxicity of various formulations on CD44/αvβ3-enriched B16F10 cells were then assessed, and both results confirmed the selective uptake and high cytotoxicity of the TeHA-SLNs/DTX in a TeHA-dependent manner. In vivo imaging and vessel distribution tests revealed the efficiency of synergistic active targeting was higher than that of EPR-mediated passive targeting by the TeHA-SLNs to αvβ3-expressing tumor blood vessels and CD44-expressing tumor cells via selective targeting. Finally, in both xenograft tumor mice and in situ lung metastasis tumor mice, tumor growth was significantly inhibited by TeHA-SLNs/DTX. Therefore, TeHA-SLNs are an efficient system for the dual-targeted delivery of drugs to treat cancer in vivo. PMID:27235150

  18. PREPARATION AND IDENTIFICATION OF MONOCLONAL ANTIBODIES AGAINST THE EXTRACELLULAR DOMAIN OF INTEGRIN α6 SUBUNIT-THE SPECIFIC LAMININ RECEPTOR

    吕天敬; 张青云; 周柔丽

    2002-01-01

    Objective: To prepare monoclonal antibody (McAb) against the Integrin α6 extracellular domain and identify its biological activities. Methods: Fusion-protein of integrin α6 extracellular domain (GST-IAGED) was expressed in E.coli. JM109 and used for immunizing BALB/C mice. The spleen cells from immunized mice were fused with SP2/0 cells and selectively cultured with HAT medium. ELISA and immunocytochemistry staining were used to select hybridomas. Results: One strain of hybridoma cells that secreted specific monoclonal antibody against integrin α6 extracellular domain was indentified. The immunoglobulin subclass of the McAb was IgG1. Conclusion: The McAb against the extracellular domain of integrin α6 was successfully prepared by using GST-IA6ED fusion protein expressed by E.Coli. And the McAb had positive reaction with human hepatocarcinoma cells-BEL-7402.

  19. Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function

    Gimond, C; van Der Flier, A; van Delft, S;

    1999-01-01

    was required for a complete morphological transition towards the spindle-shaped fibroblast-like phenotype. The expression of an interleukin-2 receptor (IL2R)-beta1A chimera and its incorporation into focal adhesions also induced the disruption of cadherin-based adhesions and the reorganization of ECM......Adhesion receptors, which connect cells to each other and to the surrounding extracellular matrix (ECM), play a crucial role in the control of tissue structure and of morphogenesis. In this work, we have studied how intercellular adhesion molecules and beta1 integrins influence each other using two......-catenin protein levels accompanied by their redistribution from the cytoskeleton-associated fraction to the detergent-soluble fraction. Regulation of alpha-catenin protein levels by beta1 integrins is likely to play a role in the morphological transition, since overexpression of alpha-catenin in GE11 cells before...

  20. Stable coordination of the inhibitory Ca2+ ion at MIDAS in integrin CD11b/CD18 by an antibody-derived ligand aspartate: Implications for integrin regulation and structure-based drug design

    Mahalingam, Bhuvaneshwari; Ajroud, Kaouther; Alonso, Jose Luis; Anand, Saurabh; Adair, Brian; Horenstein, Alberto L; Malavasi, Fabio; Xiong, Jian-Ping; Arnaout, M. Amin

    2011-01-01

    A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal-ion-dependent-adhesion site (MIDAS) in the integrin A-domain. This interaction stabilizes the A-domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A-domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking monoclonal antibody (mAb) 107 binds MIDAS of integrin CD11b/CD18 A-domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over Mg2+ at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of Ca2+ at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+. Binding of Fab 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that denticity of the ligand Asp/Glu can modify divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists. PMID:22095715

  1. The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta1 integrin-dependent cell spreading

    Iba, K; Albrechtsen, R; Gilpin, B;

    2000-01-01

    spread on ADAM 12. However, spreading could be efficiently induced by the addition of either 1 mM Mn(2+) or the beta1 integrin-activating monoclonal antibody 12G10, suggesting that in these carcinoma cells, the ADAM 12-syndecan complex fails to modulate the function of beta1 integrin.......-dependent manner attach to ADAM 12 via members of the syndecan family. After binding to syndecans, mesenchymal cells spread and form focal adhesions and actin stress fibers. Integrin beta1 was responsible for cell spreading because function-blocking monoclonal antibodies completely inhibited cell spreading, and...... chondroblasts lacking beta1 integrin attached but did not spread. These data suggest that mesenchymal cells use syndecans as the initial receptor for the ADAM 12 cysteine-rich domain-mediated cell adhesion, and then the beta1 integrin to induce cell spreading. Interestingly, carcinoma cells attached but did not...

  2. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies. PMID:27344026

  3. Discovery of platyhelminth-specific α/β-integrin families and evidence for their role in reproduction in Schistosoma mansoni.

    Svenja Beckmann

    Full Text Available In all metazoa, the response of cells to molecular stimuli from their environment represents a fundamental principle of regulatory processes controlling cell growth and differentiation. Among the membrane-linked receptors mediating extracellular communication processes are integrin receptors. Besides managing adhesion to the extracellular matrix or to other cells, they arrange information flow into the cells by activating intracellular signaling pathways often acting synergistically through cooperation with growth factor receptors. Although a wealth of information exists on integrins in different model organisms, there is a big gap of knowledge for platyhelminths. Here we report on the in silico detection and reconstruction of α and β integrins from free-living and parasitic platyhelminths, which according to structural and phylogenetic analyses form specific clades separate from each other and from further metazoan integrins. As representative orthologs of parasitic platyhelminths we have cloned one beta-integrin (Smβ-Int1 and four alpha-integrins (Smα-Int1 - Smα-Int4 from Schistosoma mansoni; they were characterized by molecular and biochemical analyses. Evidence is provided that Smβ-Int1 interacts and co-localizes in the reproductive organs with known schistosome cellular tyrosine kinases (CTKs, of which the Syk kinase SmTK4 appeared to be the strongest interaction partner as shown by yeast two-hybrid analyses and coimmunoprecipitation experiments. By a novel RNAi approach with adult schistosomes in vitro we demonstrate for the first time multinucleated oocytes in treated females, indicating a decisive role Smβ-Int1 during oogenesis as phenotypically analyzed by confocal laser scanning microscopy (CLSM. Our findings provide a first comprehensive overview about platyhelminth integrins, of which the parasite group exhibits unique features allowing a clear distinction from the free-living groups. Furthermore, we shed first lights on the

  4. The role of alpha 6 integrin in prostate cancer migration and bone pain in a novel xenograft model.

    Tamara E King

    significantly prevent cancer induced bone pain and slow disease progression within the bone. Since integrin cleavage is mediated by Urokinase-type Plasminogen Activator (uPA, further work is warranted to test the efficacy of uPA inhibitors for prevention or delay of cancer induced bone pain.

  5. Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study

    G Anastasi

    2009-06-01

    Full Text Available Sarcoglycans are transmembrane proteins that seem to be functionally and pathologically as important as dystrophin. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle. It has been proposed that the dystrophin-glycoprotein complex (DGC links the actin cytoskeleton with the extracellular matrix and the proper maintenance of this connection is thought to be crucial to the mechanical stability of the sarcolemma. The integrins are a family of heterodimeric cell surface receptors which play a crucial role in cell adhesion including cell-matrix and intracellular interactions and therefore are involved in various biological phenomena, including cell migration, and differentiation tissue repair. Sarcoglycans and integrins play a mechanical and signaling role stabilizing the systems during cycles of contraction and relaxation.Several studies suggested the possibility that integrins might play a role in muscle agrin signalling. On these basis, we performed an immunohistochemical analyzing sarcoglycans, integrins and agrin, on human skeletal muscle affected by sensitive-motor polyneuropathy, in order to better define the correlation between these proteins and neurogenic atrophy due to peripheral neuropathy. Our results showed the existence of a cascade mechanism which provoke a loss of regulatory effects of muscle activity on costameres, due to loss of muscle and neural agrin.This cascade mechanism could determine a quantitative modification of transmembrane receptors and loss of ?7B could be replaced and reinforced by enhanced expression of the ?7A integrin to restore muscle fiber viability. Second, it is possible that the reduced cycles of contraction and relaxation of muscle fibers, during muscular atrophy, provoke a loss of mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix. Consequently, these mechanical

  6. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin–ligand interactions are dependent on divalent cations, and Mg2+ provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP-co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  7. Mechanosensitive components of integrin adhesions: Role of vinculin.

    Atherton, Paul; Stutchbury, Ben; Jethwa, Devina; Ballestrem, Christoph

    2016-04-10

    External forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment. It is through these adhesions that forces are both sensed (from the outside inwards) and applied (from inside to out). Furthermore, several adhesion-based proteins are sensitive to changes in intracellular forces, utilising them for activation and regulation. Here, we outline how vinculin, a key component of integrin-mediated adhesions linking the actin cytoskeleton to the extracellular matrix (ECM), is regulated by force and acts as force transducing protein. We discuss the role of vinculin in vivo and its place in health and disease; summarise the proposed mechanisms by which vinculin is recruited to and activated at integrin-ECM adhesions; and discuss recent findings that place vinculin as the major force sensing and transmitting component of cell-matrix adhesion complexes. Finally, we discuss the role of vinculin in regulating the cellular responses to both the physical properties of the external environment and to externally applied physical stimuli. PMID:26607713

  8. Astroglial Integrins in the Development and Regulation of Neurovascular Units

    Hironobu Tanigami

    2012-01-01

    Full Text Available In the neurovascular units of the central nervous system, astrocytes form extensive networks that physically and functionally connect the neuronal synapses and the cerebral vascular vessels. This astrocytic network is thought to be critically important for coupling neuronal signaling activity and energy demand with cerebral vascular tone and blood flow. To establish and maintain this elaborate network, astrocytes must precisely calibrate their perisynaptic and perivascular processes in order to sense and regulate neuronal and vascular activities, respectively. Integrins, a prominent family of cell-adhesion molecules that support astrocytic migration in the brain during developmental and normal adult stages, have been implicated in regulating the integrity of the blood brain barrier and the tripartite synapse to facilitate the formation of a functionally integrated neurovascular unit. This paper describes the significant roles that integrins and connexins play not only in regulating astrocyte migration during the developmental and adult stages of the neurovascular unit, but also in general health and in such diseases as hepatic encephalopathy.

  9. Functional analysis of the cytoplasmic domain of the integrin {alpha}1 subunit in endothelial cells.

    Abair, Tristin D; Bulus, Nada; Borza, Corina; Sundaramoorthy, Munirathinam; Zent, Roy; Pozzi, Ambra

    2008-10-15

    Integrin alpha1beta1, the major collagen type IV receptor, is expressed by endothelial cells and plays a role in both physiologic and pathologic angiogenesis. Because the molecular mechanisms whereby this collagen IV receptor mediates endothelial cell functions are poorly understood, truncation and point mutants of the integrin alpha1 subunit cytoplasmic tail (amino acids 1137-1151) were generated and expressed into alpha1-null endothelial cells. We show that alpha1-null endothelial cells expressing the alpha1 subunit, which lacks the entire cytoplasmic tail (mutant alpha1-1136) or expresses all the amino acids up to the highly conserved GFFKR motif (mutant alpha1-1143), have a similar phenotype to parental alpha1-null cells. Pro(1144) and Leu(1145) were shown to be necessary for alpha1beta1-mediated endothelial cell proliferation; Lys(1146) for adhesion, migration, and tubulogenesis and Lys(1147) for tubulogenesis. Integrin alpha1beta1-dependent endothelial cell proliferation is primarily mediated by ERK activation, whereas migration and tubulogenesis require both p38 MAPK and PI3K/Akt activation. Thus, distinct amino acids distal to the GFFKR motif of the alpha1 integrin cytoplasmic tail mediate activation of selective downstream signaling pathways and specific endothelial cell functions. PMID:18647959

  10. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901

    Dan L

    2012-10-01

    Full Text Available Li Dan,1,* Ding Jian,2,* Lin Na,1 Wang Xiaozhong,1 1Digestive Department, the Union Hospital of Fujian Medical University, Fujian, People’s Republic of China; 2Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China*These authors contributed equally to this workBackground/objective: To investigate the crosstalk between epidermal growth factor receptor (EGFR and integrin-mediated signal transduction pathways in human gastric adenocarcinoma cells.Methods: EGF was used as a ligand of EGFR to stimulate the gastric adenocarcinoma cell, SGC7901. Signal molecules downstream of the integrin, FAK(Y397 and p130cas(Y410 phosphorylation, were measured by immunoprecipitation and western blot. Fibronectin (Fn was used as a ligand of integrin to stimulate the same cell line. Signal molecules downstream of EGFR and extracellular signal-regulated kinase (ERK general phosphorylation were also measured. Focal adhesion kinase (FAK small-interfering RNA was designed and transfected into SGC7901 cells to decrease the expression of FAK. Modified Boyden chambers and MTT assay were used to examine the effect of FAK inhibition on the invasiveness and proliferation of SGC7901.Results: EGF activated FAK(Y397 and p130cas(Y410 phosphorylation, while Fn activated ERK general phosphorylation. Inhibition of FAK expression decreased p130cas(Y410 phosphorylation activated by EGF and ERK general phosphorylation activated by Fn, also decreased the invasiveness and proliferation of SGC7901 cells activated by EGF or Fn.Conclusion: There is crosstalk between EGFR and integrin signal transduction. FAK may be a key cross point of the two signal pathways and acts as a potential target for human gastric cancer therapy.Keywords: gastric adenocarcinoma, epidermal growth factor receptor, integrin, focal adhesion kinase, crosstalk

  11. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and β1 integrin expression in vitro

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2-/- myotube formation. When differentiated in horse serum-containing medium, TIMP-2-/- myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2-/- myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with β1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2-/- myotube size and induces increased MMP-9 activation and decreased β1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on β1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and β1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo

  12. Cordycepin suppresses integrin/FAK signaling and epithelial-mesenchymal transition in hepatocellular carcinoma.

    Yao, Wen-Ling; Ko, Bor-Sheng; Liu, Tzu-An; Liang, Shu-Man; Liu, Chia-Chia; Lu, Yi-Jhu; Tzean, Shean-Shong; Shen, Tang-Long; Liou, Jun-Yang

    2014-01-01

    Cordycepin, also known as 3-deoxyadenosine, is an analogue of adenosine extracted from the traditional Chinese medicine "Dong Chong Xia Cao". Cordycepin is an active small molecular weight compound and is implicated in modulating multiple physiological functions including immune activation, anti-aging and anti-tumor effects. Several studies have indicated that cordycepin suppresses tumor progression. However, the signaling pathways involved in cordycepin regulating cancer cell motility, invasiveness and epithelial-mesenchymal transition (EMT) remain unclear. In this study, we found that cordycepin inhibits hepatocellular carcinoma (HCC) cell proliferation and migration/invasion. Treatment of cordycepin results in the increasing expression of epithelial marker, Ecadherin while no significant effect was found on N-cadherin α-catenin and β-catenin. Furthermore, although the expression of focal adhesion kinase (FAK) was slightly reduced, the level of phosphorylated FAK was significantly reduced by the treatment of cordycepin. In addition, cordycepin significantly suppresses the expression of integrin α3, integrin α6 and integrin β1 which are crucial interacting partners of FAK in regulating the focal adhesion complex. These results suggest cordycepin may contribute to EMT, antimigration/ invasion and growth inhibitory effects of HCC by suppressing E-cadherin and integrin/FAK signaling. Thus, cordycepin is a potential therapeutic or supplementary agent for preventing HCC tumor progression. PMID:23855336

  13. Plumieribetin, a Fish Lectin Homologous to Mannose-binding B-type Lectins, Inhibits the Collagen-binding α1β1 Integrin*

    de Santana Evangelista, Karla; Andrich, Filipe; Figueiredo de Rezende, Flávia; Niland, Stephan; Cordeiro, Marta N.; Horlacher, Tim; Castelli, Riccardo; Schmidt-Hederich, Alletta; Peter H. Seeberger; Sanchez, Eladio F.; Richardson, Michael; Gomes de Figueiredo, Suely; Eble, Johannes A.

    2009-01-01

    Recently, a few fish proteins have been described with a high homology to B-type lectins of monocotyledonous plants. Because of their mannose binding activity, they have been ascribed a role in innate immunity. By screening various fish venoms for their integrin inhibitory activity, we isolated a homologous protein from the fin stings and skin mucus of the scorpionfish (Scorpaena plumieri). This protein inhibits α1β1 integrin binding to basement membrane collagen IV. By protein chemical and s...

  14. β1 Integrins Mediate Mechanosensitive Signaling Pathways in Osteocytes

    Litzenberger, Julie B.; Tummala, Padmaja; Kim, Jae-Beom; Jacobs, Christopher R.

    2010-01-01

    Integrins are cell-substrate adhesion proteins that initiate intracellular signaling and may serve as mechanosensors in bone. MLO-Y4 cells were stably transfected with a dominant negative form of the β1 integrin subunit (β1DN) containing the transmembrane domain and cytoplasmic tail of β1 integrin. Cells expressing β1DN had reduced vinculin localization to focal contacts but no change in intracellular actin organization. When exposed to oscillatory fluid flow, β1DN cells exhibited a significa...

  15. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  16. Reduced Ets Domain-containing Protein Elk1 Promotes Pulmonary Fibrosis via Increased Integrin αvβ6 Expression.

    Tatler, Amanda L; Habgood, Anthony; Porte, Joanne; John, Alison E; Stavrou, Anastasios; Hodge, Emily; Kerama-Likoko, Cheryl; Violette, Shelia M; Weinreb, Paul H; Knox, Alan J; Laurent, Geoffrey; Parfrey, Helen; Wolters, Paul John; Wallace, William; Alberti, Siegfried; Nordheim, Alfred; Jenkins, Gisli

    2016-04-29

    Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with high mortality. Active TGFβ1 is considered central to the pathogenesis of IPF. A major mechanism of TGFβ1 activation in the lung involves the epithelially restricted αvβ6 integrin. Expression of the αvβ6 integrin is dramatically increased in IPF. How αvβ6 integrin expression is regulated in the pulmonary epithelium is unknown. Here we identify a region in the β6 subunit gene (ITGB6) promoter acting to markedly repress basal gene transcription, which responds to both the Ets domain-containing protein Elk1 (Elk1) and the glucocorticoid receptor (GR). Both Elk1 and GR can regulate αvβ6 integrin expression in vitro We demonstrate Elk1 binding to the ITGB6 promoter basally and that manipulation of Elk1 or Elk1 binding alters ITGB6 promoter activity, gene transcription, and αvβ6 integrin expression. Crucially, we find that loss of Elk1 causes enhanced Itgb6 expression and exaggerated lung fibrosis in an in vivo model of fibrosis, whereas the GR agonist dexamethasone inhibits Itgb6 expression. Moreover, Elk1 dysregulation is present in epithelium from patients with IPF. These data reveal a novel role for Elk1 regulating ITGB6 expression and highlight how dysregulation of Elk1 can contribute to human disease. PMID:26861876

  17. Inhibition of integrin α2β1 ameliorates glomerular injury.

    Borza, Corina M; Su, Yan; Chen, Xiwu; Yu, Ling; Mont, Stacey; Chetyrkin, Sergei; Voziyan, Paul; Hudson, Billy G; Billings, Paul C; Jo, Hyunil; Bennett, Joel S; Degrado, William F; Eckes, Beate; Zent, Roy; Pozzi, Ambra

    2012-06-01

    Mesangial cells and podocytes express integrins α1β1 and α2β1, which are the two major collagen receptors that regulate multiple cellular functions, including extracellular matrix homeostasis. Integrin α1β1 protects from glomerular injury by negatively regulating collagen production, but the role of integrin α2β1 in renal injury is unclear. Here, we subjected wild-type and integrin α2-null mice to injury with adriamycin or partial renal ablation. In both of these models, integrin α2-null mice developed significantly less proteinuria and glomerulosclerosis. In addition, selective pharmacological inhibition of integrin α2β1 significantly reduced adriamycin-induced proteinuria, glomerular injury, and collagen deposition in wild-type mice. This inhibitor significantly reduced collagen synthesis in wild-type, but not integrin α2-null, mesangial cells in vitro, demonstrating that its effects are integrin α2β1-dependent. Taken together, these results indicate that integrin α2β1 contributes to glomerular injury by positively regulating collagen synthesis and suggest that its inhibition may be a promising strategy to reduce glomerular injury and proteinuria. PMID:22440900

  18. Interplay of Endosomal pH and Ligand Occupancy in Integrin α5β1 Ubiquitination, Endocytic Sorting, and Cell Migration

    Dmitri Kharitidi

    2015-10-01

    Full Text Available Membrane trafficking of integrins plays a pivotal role in cell proliferation and migration. How endocytosed integrins are targeted either for recycling or lysosomal delivery is not fully understood. Here, we show that fibronectin (FN binding to α5β1 integrin triggers ubiquitination and internalization of the receptor complex. Acidification facilitates FN dissociation from integrin α5β1 in vitro and in early endosomes, promoting receptor complex deubiquitination by the USP9x and recycling to the cell surface. Depending on residual ligand occupancy of receptors, some α5β1 integrins remain ubiquitinated and are captured by ESCRT-0/I, containing histidine domain-containing protein tyrosine phosphatase (HD-PTP and ubiquitin-associated protein 1 (UBAP1, and are directed for lysosomal proteolysis, limiting receptor downstream signaling and cell migration. Thus, HD-PTP or UBAP1 depletion confers a pro-invasive phenotype. Thus, pH-dependent FN-integrin dissociation and deubiquitination of the activated integrin α5β1 are required for receptor resensitization and cell migration, representing potential targets to modulate tumor invasiveness.

  19. Microglia use multiple mechanisms to mediate interactions with vitronectin; non-essential roles for the highly-expressed αvβ3 and αvβ5 integrins

    Welser-Alves Jennifer V

    2011-11-01

    Full Text Available Abstract Background As the primary resident immune cells, microglia play a central role in regulating inflammatory processes in the CNS. The extracellular matrix (ECM protein vitronectin promotes microglial activation, switching microglia into an activated phenotype. We have shown previously that microglia express two vitronectin receptors, αvβ3 and αvβ5 integrins. As these integrins have well-defined roles in activation and phagocytic processes in other cell types, the purpose of the current study was to investigate the contribution of these two integrins in microglial activation. Methods Microglial cells were prepared from wild-type, β3 integrin knockout (KO, β5 integrin KO or β3/β5 integrin DKO mice, and their interactions and activation responses to vitronectin examined in a battery of assays, including adhesion, expression of activation markers, MMP-9 expression, and phagocytosis. Expression of other αv integrins was examined by flow cytometry and immunoprecipitation. Results Surprisingly, when cultured on vitronectin, microglia from the different knockout strains showed no obvious defects in adhesion, activation marker expression, MMP-9 induction, or phagocytosis of vitronectin-coated beads. To investigate the reason for this lack of effect, we examined the expression of other αv integrins. Flow cytometry showed that β3/β5 integrin DKO microglia expressed residual αv integrin at the cell surface, and immunoprecipitation confirmed this finding by revealing the presence of low levels of the αvβ1 and αvβ8 integrins. β1 integrin blockade had no impact on adhesion of β3/β5 integrin DKO microglia to vitronectin, suggesting that in addition to αvβ1, αvβ3, and αvβ5, αvβ8 also serves as a functional vitronectin receptor on microglia. Conclusions Taken together, this demonstrates that the αvβ3 and αvβ5 integrins are not essential for mediating microglial activation responses to vitronectin, but that microglia use

  20. Can alterations in integrin and laminin-5 expression be used as markers of malignancy?

    Thorup, Alis Karabulut; Reibel, J.; Schjødt, Morten;

    1998-01-01

    Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas......Integrins, laminin-5, cell adhesion molecules, oral, leukoplakia, premalignant, squamous cell carcinomas...

  1. α-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium.

    Ng, Bing Fu; Selvaraj, Gokul Kannan; Santa-Cruz Mateos, Carmen; Grosheva, Inna; Alvarez-Garcia, Ines; Martín-Bermudo, María Dolores; Palacios, Isabel M

    2016-04-15

    The spectrin cytoskeleton crosslinks actin to the membrane, and although it has been greatly studied in erythrocytes, much is unknown about its function in epithelia. We have studied the role of spectrins during epithelia morphogenesis using theDrosophilafollicular epithelium (FE). As previously described, we show that α-Spectrin and β-Spectrin are essential to maintain a monolayered FE, but, contrary to previous work, spectrins are not required to control proliferation. Furthermore, spectrin mutant cells show differentiation and polarity defects only in the ectopic layers of stratified epithelia, similar to integrin mutants. Our results identify α-Spectrin and integrins as novel regulators of apical constriction-independent cell elongation, asα-Spectrinand integrin mutant cells fail to columnarize. Finally, we show that increasing and reducing the activity of the Rho1-Myosin II pathway enhances and decreases multilayering ofα-Spectrincells, respectively. Similarly, higher Myosin II activity enhances the integrin multilayering phenotype. This work identifies a primary role for α-Spectrin in controlling cell shape, perhaps by modulating actomyosin. In summary, we suggest that a functional spectrin-integrin complex is essential to balance adequate forces, in order to maintain a monolayered epithelium. PMID:26952981

  2. Crosstalk between Fibroblast Growth Factor (FGF Receptor and Integrin through Direct Integrin Binding to FGF and Resulting Integrin-FGF-FGFR Ternary Complex Formation

    Seiji Mori

    2013-08-01

    Full Text Available Fibroblast growth factors (FGFs play a critical role in diverse physiological processes and the pathogenesis of diseases. Integrins are involved in FGF signaling, since integrin antagonists suppress FGF signaling. This is called integrin-FGF crosstalk, while the specifics of the crosstalk are unclear. This review highlights recent findings that FGF1 directly interacts with integrin αvβ3, and the resulting integrin-FGF-fibroblast growth factor receptor (FGFR ternary complex formation is essential for FGF1-induced cell proliferation, migration and angiogenesis. An integrin-binding defective FGF1 mutant (Arg-50 to Glu, R50E is defective in ternary complex formation and in inducing cell proliferation, migration and angiogenesis, while R50E still binds to the FGF receptor and heparin. In addition, R50E suppressed tumorigenesis in vivo, while wild-type (WT FGF1 enhanced it. Thus, the direct interaction between FGF1 and integrin αvβ3 is a potential therapeutic target, and R50E is a potential therapeutic agent.

  3. Beta4 integrin-dependent formation of polarized three-dimensionalarchitecture confers resistance to apoptosis in normal and malignantmammary epithelium

    Weaver, Valerie M.; Lelievre, Sophie; Lakins, Johnathon N.; Chrenek, Micah A.; Jones, Jonathan C.R.; Giancotti, Filippo; Werb, Zena; Bissell, Mina J.

    2002-08-27

    Tumor cells can evade chemotherapy by acquiring resistanceto apoptosis. We investigated the molecular mechanism whereby malignantand nonmalignant mammary epithelial cells become insensitive toapoptosis. We show that regardless of growth status formation ofpolarized, three-dimensional structures driven by basement membraneconfers protection to apoptosis in both nonmalignant and malignantmammary epithelial cells. By contrast, irrespective of their malignantstatus, nonpolarized structures are sensitive to induction of apoptosis.Resistance to apoptosis requires ligation of beta4 integrins, whichregulates tissue polarity, hemidesmosome formation and NFkB activation.Expression of beta4 integrin that lacks the hemidesmosome targetingdomain interferes with tissue polarity and NFkB activation and permitsapoptosis. These results indicate that integrin-induced polarity maydrive tumor cell resistance to apoptosis-inducing agents via effects onNFkB.

  4. Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells.

    Morad, Samy A F; Bridges, Lance C; Almeida Larrea, Alex D; Mayen, Anthony L; MacDougall, Matthew R; Davis, Traci S; Kester, Mark; Cabot, Myles C

    2016-07-01

    Colorectal cancer (CRC) is highly metastatic, significantly so to liver, a characteristic that embodies one of the most challenging aspects of treatment. The integrin family of cell-cell and cell-matrix adhesion receptors plays a central role in migration and invasion, functions that underlie metastatic potential. In the present work we sought to determine the impact of ceramide, which plays a key modulatory role in cancer suppression, on integrin cell surface expression and function in CRC cells in order to reveal possible ceramide-centric effects on tumor cell motility. Human CRC cells LoVo, HT-29, and HCT-116 were employed, which represent lines established from primary and metastatic sites. A cell-permeable, short-chain analog, C6-ceramide, was used as ceramide mimic. Exposure of cells to C6-ceramide (24 h) promoted a dose-dependent (2.5-10 µM) decrease in the expression of cell surface β1 and β4 integrin subunits in all cell lines; at 10 µM C6-ceramide, the decreases ranged from 30 to 50% of the control. Expression of cell surface αVβ6 integrin, which is associated with advanced invasion in CRC, was also suppressed by C6-ceramide. Decreases in integrin expression translated to diminished cellular adhesion, 50% of the control at 5 µM C6-ceramide, and markedly reduced cellular migration, approximately 30-40% of the control in all cell lines. Physicochemical examination revealed potent efficacy of nano-formulated C6-ceramide, but inferior activity of dihydro-C6-ceramide and L-C6-ceramide, compared to the unsaturated counterpart and the natural d-enantiomer, respectively. These studies demonstrate novel actions of ceramides that may have application in suppression of tumor metastasis, in addition to their known tumor suppressor effects. PMID:27045476

  5. Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the α2β1-integrin receptor

    Bix, Gregory; Iozzo, Rex A.; Woodall, Ben; Burrows, Michelle; McQuillan, Angela; Campbell, Shelly; Fields, Gregg B.; Iozzo, Renato V.

    2007-01-01

    Endorepellin, a C-terminal fragment of the vascular basement membrane proteoglycan perlecan, inhibits angiogenesis via the α2β1-integrin receptor. Because this integrin is also implicated in platelet-collagen responses and because endorepellin or its fragments are generated in response to injury and inflammation, we hypothesized that endorepellin could also affect platelet biology. We discovered that endorepellin supported α2β1-dependent platelet adhesion, without appreciably activating or ag...

  6. Functional consequences of integrin gene mutations in mice

    Bouvard, D; Brakebusch, C; Gustafsson, E; Aszódi, A; Bengtsson, T; Berna, A; Fässler, R

    2001-01-01

    Integrins are cell-surface receptors responsible for cell attachment to extracellular matrices and to other cells. The application of mouse genetics has significantly increased our understanding of integrin function in vivo. In this review, we summarize the phenotypes of mice carrying mutant inte...

  7. HGF Accelerates Wound Healing by Promoting the Dedifferentiation of Epidermal Cells through β1-Integrin/ILK Pathway

    Jin-Feng Li

    2013-01-01

    Full Text Available Skin wound healing is a critical and complex biological process after trauma. This process is activated by signaling pathways of both epithelial and nonepithelial cells, which release a myriad of different cytokines and growth factors. Hepatocyte growth factor (HGF is a cytokine known to play multiple roles during the various stages of wound healing. This study evaluated the benefits of HGF on reepithelialization during wound healing and investigated its mechanisms of action. Gross and histological results showed that HGF significantly accelerated reepithelialization in diabetic (DB rats. HGF increased the expressions of the cell adhesion molecules β1-integrin and the cytoskeleton remodeling protein integrin-linked kinase (ILK in epidermal cells in vivo and in vitro. Silencing of ILK gene expression by RNA interference reduced expression of β1-integrin, ILK, and c-met in epidermal cells, concomitantly decreasing the proliferation and migration ability of epidermal cells. β1-Integrin can be an important maker of poorly differentiated epidermal cells. Therefore, these data demonstrate that epidermal cells become poorly differentiated state and regained some characteristics of epidermal stem cells under the role of HGF after wound. Taken together, the results provide evidence that HGF can accelerate reepithelialization in skin wound healing by dedifferentiation of epidermal cells in a manner related to the β1-integrin/ILK pathway.

  8. PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling.

    Liu, Xingfeng; Huai, Jisen; Endle, Heiko; Schlüter, Leslie; Fan, Wei; Li, Yunbo; Richers, Sebastian; Yurugi, Hajime; Rajalingam, Krishnaraj; Ji, Haichao; Cheng, Hong; Rister, Benjamin; Horta, Guilherme; Baumgart, Jan; Berger, Hendrik; Laube, Gregor; Schmitt, Ulrich; Schmeisser, Michael J; Boeckers, Tobias M; Tenzer, Stefan; Vlachos, Andreas; Deller, Thomas; Nitsch, Robert; Vogt, Johannes

    2016-08-01

    Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation. PMID:27453502

  9. Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling.

    Stefanie Löffek

    Full Text Available The hemidesmosomal transmembrane component collagen XVII (ColXVII plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1⁻/⁻ keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1⁻/⁻ keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.

  10. Synthesis and Biological Evaluation of a Peptide Paclitaxel Conjugate Which Targets the Integrin αvβ6

    Li, Shunzi; Gray, Bethany Powell; McGuire, Michael J.; Brown, Kathlynn C.

    2011-01-01

    The integrin αvβ6 is an emergent biomarker for non-small cell lung cancer (NSCLC) as well as other carcinomas. We previously developed a tetrameric peptide, referred to as H2009.1, which binds αvβ6 and displays minimal affinity for other RGD-binding integrins. Here we report the use of this peptide to actively deliver paclitaxel to αvβ6–positive cells. We synthesized a water soluble paclitaxel-H2009.1 peptide conjugate in which the 2′-position of paclitaxel is attached to the tetrameric pepti...

  11. Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinβ1 and its related pathway

    Zhu, Binbin; Zhao, Li; Zhu, Litao; Wang, Hu; Sha, Yunying; Yao, Jing [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); Li, Zhiyu [Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); You, Qidong, E-mail: youqidong@gmail.com [Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China); Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn [State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009 (China)

    2012-03-15

    Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, shows effective anticancer activities and low toxicities both in vivo and in vitro in previous studies. In this study, we investigated whether the CAM-DR model of HepG2 cells showed resistance to cytotoxic agents compared with normally cultured HepG2 cells. Furthermore, after the treatment of Paclitaxel, less inhibitory effects and decreased apoptosis rate were detected in the model. Data also revealed increased expression of Integrinβ1 might be responsible for the resistance ability. Moreover, Integrinβ1-siRNA-transfected CAM-DR HepG2 cells exhibited more inhibitory effects and higher levels of apoptosis than the non-transfected CAM-DR cells. The data corroborated that Integrinβ1 played a significant role in CAM-DR. After the treatment of weakly-toxic concentrations of Oroxylin A, the apoptosis induced by Paclitaxel in the CAM-DR model increased dramatically. Western blot assay revealed Oroxylin A markedly down-regulated the expression of Integrinβ1 and the activity of related pathway. As a conclusion, Oroxylin A can reverse the resistance of CAM-DR via inhibition of Integrinβ1 and its related pathway. Oroxylin A may be a potential candidate of a CAM-DR reversal agent. Highlights: ► Adhesion of HepG2 cells to fibronectin exhibited resistance to Paclitaxel. ► The resistance was associated with the increased expression of Integrinβ1. ► Knocking down Integrinβ1 can increase the toxicity of Paclitaxel on CAM-DR model. ► Oroxylin A reversed the resistance by suppressing Integrinβ1 and related pathway.

  12. Regulation of Ligand and Shear Stress-induced Insulin-like Growth Factor 1 (IGF1) Signaling by the Integrin Pathway.

    Tahimic, Candice G T; Long, Roger K; Kubota, Takuo; Sun, Maggie Yige; Elalieh, Hashem; Fong, Chak; Menendez, Alicia T; Wang, Yongmei; Vilardaga, Jean-Pierre; Bikle, Daniel D

    2016-04-01

    Mechanical loading of the skeleton, as achieved during daily movement and exercise, preserves bone mass and stimulates bone formation, whereas skeletal unloading from prolonged immobilization leads to bone loss. A functional interplay between the insulin-like growth factor 1 receptor (IGF1R), a major player in skeletal development, and integrins, mechanosensors, is thought to regulate the anabolic response of osteogenic cells to mechanical load. The mechanistic basis for this cross-talk is unclear. Here we report that integrin signaling regulates activation of IGF1R and downstream targets in response to both IGF1 and a mechanical stimulus. In addition, integrins potentiate responsiveness of IGF1R to IGF1 and mechanical forces. We demonstrate that integrin-associated kinases, Rous sarcoma oncogene (SRC) and focal adhesion kinase (FAK), display distinct actions on IGF1 signaling; FAK regulates IGF1R activation and its downstream effectors, AKT and ERK, whereas SRC controls signaling downstream of IGF1R. These findings linked to our observation that IGF1 assembles the formation of a heterocomplex between IGF1R and integrin β3 subunit indicate that the regulation of IGF1 signaling by integrins proceeds by direct receptor-receptor interaction as a possible means to translate biomechanical forces into osteoanabolic signals. PMID:26865633

  13. β2 integrins separate graft-versus-host disease and graft-versus-leukemia effects

    Liang, Yaming; Liu, Chen; Djeu, Julie Y.; Zhong, Bin; Peters, Thorsten; Scharffetter-Kochanek, Karin; Anasetti, Claudio; Yu, Xue-Zhong

    2008-01-01

    Graft-versus-host disease (GVHD) remains a major cause of morbidity and mortality in allogeneic hematopoietic stem cell transplantation. Migration of donor-derived T cells into GVHD target organs plays an essential role in the development of GVHD. β2 integrins are critically important for leukocyte extravasation through vascular endothelia and for T-cell activation. We asked whether CD18-deficient T cells would induce less GVHD while sparing the graft-versus-leukemia (GVL) effect. In murine a...

  14. Platelet gene therapy improves hemostatic function for integrin αIIbβ3-deficient dogs

    Fang, Juan; Jensen, Eric S; Boudreaux, Mary K.; Du, Lily M.; Hawkins, Troy B.; Koukouritaki, Sevasti B.; Cornetta, Kenneth; Wilcox, David A.

    2011-01-01

    Activated blood platelets mediate the primary response to vascular injury. Although molecular abnormalities of platelet proteins occur infrequently, taken collectively, an inherited platelet defect accounts for a bleeding diathesis in ≈1:20,000 individuals. One rare example of a platelet disorder, Glanzmann thrombasthenia (GT), is characterized by life-long morbidity and mortality due to molecular abnormalities in a major platelet adhesion receptor, integrin αIIbβ3. Transfusion therapy is fre...

  15. Prostate cancer specific integrin αvβ3 modulates bone metastatic growth and tissue remodeling

    McCabe, NP; De, S.; Vasanji, A; Brainard, J; Byzova, TV

    2007-01-01

    The management of pain and morbidity owing to the spreading and growth of cancer within bone remains to be a paramount problem in clinical care. Cancer cells actively transform bone, however, the molecular requirements and mechanisms of this process remain unclear. This study shows that functional modulation of the αvβ3 integrin receptor in prostate cancer cells is required for progression within bone and determines tumor-induced bone tissue transformation. Using histology and quantitative mi...

  16. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction.

    Zhao, Fenglong; Li, Li; Guan, Liuyuan; Yang, Hong; Wu, Chunhui; Liu, Yiyao

    2014-03-01

    Adhesion of cancer cell to endothelial cells and the subsequent trans-endothelial migration are key steps in hematogenous metastasis. However, the molecular mechanisms of cancer cell/endothelial cell interaction under hemodynamic shear flow and how shear flow-induced cancer cell mechanotransduction are yet to be fully defined. In this study, we identified that the integrins of both platelet glycoprotein IIb/IIIa (GP IIb/IIIa) and αvβ3 were crucial for hematogenous metastasis of human breast carcinoma MDA-MB-231 cells. The cell migration and invasion were studied by using Millicell cell culture insert system. The numbers of invaded MDA-MB-231 cells significantly increased by thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of αvβ3 integrin, also inhibited MDA-MB-231 cell invasion. We further used a parallel-plate flow chamber to investigate MDA-MB-231 cell adhesion under flow conditions. Alike in static condition, the adhesion capability of MDA-MB-231 cells to endothelial monolayer was also significantly affected by GP IIb/IIIa and αvβ3 integrins. The expression of matrix metalloproteinase-2 (MMP-2), MMP-9 and αvβ3 integrin in MDA-MB-231 cells were up-regulated after low shear stress exposure (1.84 dynes/cm(2), 2 h). Moreover, we also demonstrated that low shear stress induced a sustained activation of p85 (a regulatory subunit of PI3K) and Akt. Pre-treating MDA-MB-231 cells with the specific PI3K inhibitor of LY294002 abolished the shear stress induced-Akt activation, and the expression of MMP-2, MMP-9, vascular endothelial growth factor (VEGF) and αvβ3 integrin were also down-regulated. Immunofluorescence assay showed that low shear stress also induced αvβ3 integrin clustering and nuclear factor-κB (NF-κB) activation. Interestingly, shear stress-induced activation of Akt and NF-κB was attenuated by LM609, a specific antibody of αvβ3 integrin. It suggests that αvβ3

  17. Loss of integrin alpha1beta1 ameliorates Kras-induced lung cancer.

    Macias-Perez, Ines; Borza, Corina; Chen, Xiwu; Yan, Xuexian; Ibanez, Raquel; Mernaugh, Glenda; Matrisian, Lynn M; Zent, Roy; Pozzi, Ambra

    2008-08-01

    The collagen IV binding receptor integrin alpha1beta1 has been shown to regulate lung cancer due to its proangiogenic properties; however, it is unclear whether this receptor also plays a direct role in promoting primary lung tumors. To investigate this possibility, integrin alpha1-null mice were crossed with KrasLA2 mice that carry an oncogenic mutation of the Kras gene (G12D) and develop spontaneous primary tumors with features of non-small cell lung cancer. We provide evidence that KrasLA2/alpha1-null mice have a decreased incidence of primary lung tumors and longer survival compared with KrasLA2/alpha1 wild-type controls. Tumors from KrasLA2/alpha1-null mice were also smaller, less vascularized, and exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen and terminal deoxynucleotidyl-transferase-mediated dUTP nick-end staining, respectively. Moreover, tumors from the KrasLA2/alpha1-null mice showed diminished extracellular signal-regulated kinase (ERK) but enhanced p38 mitogen-activated protein kinase activation. Primary lung tumor epithelial cells isolated from KrasLA2/alpha1-null mice showed a significant decrease in anchorage-independent colony formation, collagen-mediated cell proliferation, ERK activation, and, most importantly, tumorigenicity when injected into nude mice compared with KrasLA2/alpha1 wild-type tumor cells. These results indicate that loss of the integrin alpha1 subunit decreases the incidence and growth of lung epithelial tumors initiated by oncogenic Kras, suggesting that both Kras and integrin alpha1beta1 cooperate to drive the growth of non-small cell lung cancer in vivo. PMID:18676835

  18. Integrin {beta}1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix

    Ishihara, Seiichiro [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Haga, Hisashi, E-mail: haga@sci.hokudai.ac.jp [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Yasuda, Motoaki [Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, N13-W7, Kita-ku, Sapporo 060-8586 (Japan); Mizutani, Takeomi; Kawabata, Kazushige [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Shirato, Hiroki [Department of Radiology, Hokkaido University Graduate School of Medicine, N15-W7, Kita-ku, Sapporo 060-8638 (Japan); Nishioka, Takeshi [Department of Biomedical Sciences and Engineering, Faculty of Health Sciences, Hokkaido University, N12-W5, Kita-ku, Sapporo 060-0812 (Japan)

    2010-06-04

    Radiotherapy is one of the effective therapies used for treating various malignant tumors. However, the emergence of tolerant cells after irradiation remains problematic due to their high metastatic ability, sometimes indicative of poor prognosis. In this study, we showed that subcloned human lung adenocarcinoma cells (A549P-3) that are irradiation-tolerant indicate high invasive activity in vitro, and exhibit an integrin {beta}1 activity-dependent migratory pattern. In collagen gel overlay assay, majority of the A549P-3 cells displayed round morphology and low migration activity, whereas a considerable number of A549P-3IR cells surviving irradiation displayed a spindle morphology and high migration rate. Blocking integrin {beta}1 activity reduced the migration rate of A549P-3IR cells and altered the cell morphology allowing them to assume a round shape. These results suggest that the A549P-3 cells surviving irradiation acquire a highly invasive integrin {beta}1-dependent phenotype, and integrin {beta}1 might be a potentially effective therapeutic target in combination with radiotherapy.

  19. Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin ?5?1 and Fibronectin

    Nam, Jin-Min; Onodera, Yasuhito; Bissell, Mina J; Park, Catherine C

    2010-04-07

    Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that {beta}1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D lrECM) or grown as xenografts in mice. Here, we show that a specific {alpha} heterodimer of {beta}1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D lrECM culture conditions were used to compare {alpha}-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of {alpha}5{beta}1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of {alpha}5{beta}1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of {alpha}5{beta}1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of {alpha}5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and {alpha}5{beta}1-integrin as targets for breast cancer therapy.

  20. Murine lipid phosphate phosphohydrolase-3 acts as a cell-associated integrin ligand

    Lipid phosphate phosphohydrolase-3 (LPP3) is a cell surface protein that exhibits ectoenzyme activity. Previously, we identified human LPP3 in a functional assay of angiogenesis and showed that the Arg-Gly-Asp (RGD) motif in the proposed second extracellular domain interacts with a subset of integrins to mediate cell-cell adhesion. In contrast to the RGD domain of human LPP3, murine Lpp3 contains a variant sequence, Arg-Gly-Glu (RGE). Whether the RGE motif of murine Lpp3 mediates cell-cell interaction has not been studied. In this report, we test the hypothesis that the cell adhesion function of the LPP3 protein is conserved across mouse and human. A glutathione S-transferase (GST) fusion protein of the proposed second extracellular loop of the murine Lpp3 sequence (GST-mLpp3-RGE) promoted attachment of cells in a long-term cell adhesion assay. GST-mLpp3-RGE interacted with α5β1 and αvβ3 integrins in a solid-phase ELISA, while a mutant control, GST-hLPP3-RAD, did not. Long-term adhesion of endothelial cells to GST-mLpp3-RGE induced phosphorylation of FAK, SHC, and CAS, whereas adhesion to GST-hLPP3-RAD failed to do so. Upon long-term adhesion both the GST-hLPP3-RGD and GST-mLpp3-RGE substrates bound to the α5β1 integrin of FRT-α5(+) cells, an interaction that was inhibited by an anti-α5 integrin antibody. In addition, a cell aggregation assay showed that the intact mLpp3-RGE protein interacts with α5β1 and αvβ3 integrins expressed by adjacent cells, an interaction that can be blocked by GRGDSP peptides and anti-LPP3-RGD antibodies. These data, together with the known importance of integrins in angiogenesis, provide a mechanism for the function of LPP3 in cell-cell interactions in both human and mouse

  1. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes. PMID:27408918

  2. α-Hemolysin enhances Staphylococcus aureus internalization and survival within mast cells by modulating the expression of β1 integrin.

    Goldmann, Oliver; Tuchscherr, Lorena; Rohde, Manfred; Medina, Eva

    2016-06-01

    Mast cells (MCs) are important sentinels of the host defence against invading pathogens. We previously reported that Staphylococcus aureus evaded the extracellular antimicrobial activities of MCs by promoting its internalization within these cells via β1 integrins. Here, we investigated the molecular mechanisms governing this process. We found that S. aureus responded to the antimicrobial mediators released by MCs by up-regulating the expression of α-hemolysin (Hla), fibronectin-binding protein A and several regulatory systems. We also found that S. aureus induced the up-regulation of β1 integrin expression on MCs and that this effect was mediated by Hla-ADAM10 (a disintegrin and metalloproteinase 10) interaction. Thus, deletion of Hla or inhibition of Hla-ADAM10 interaction significantly impaired S. aureus internalization within MCs. Furthermore, purified Hla but not the inactive HlaH35L induced up-regulation of β1 integrin expression in MCs in a dose-dependent manner. Our data support a model in which S. aureus counter-reacts the extracellular microbicidal mechanisms of MCs by increasing expression of fibronectin-binding proteins and by inducing Hla-ADAM10-mediated up-regulation of β1 integrin in MCs. The up-regulation of bacterial fibronectin-binding proteins, concomitantly with the increased expression of its receptor β1 integrin on the MCs, resulted in enhanced S. aureus internalization through the binding of fibronectin-binding proteins to integrin β1 via fibronectin. PMID:26595647

  3. Integrinβ1 asODN-inhibition of Cell Attachment and Invasion of the Human Gastric Cancer Cell Line SGC7901

    Wu Dong; Yuehong Cui; Huimian Xu

    2005-01-01

    OBJECTIVE To study the inhibition of adhesion and invasion of SGC7901cells into the ECM by integrinβ1 antisense oligodeoxynucleotide asODN.METHODS asODN and control ODN were transfected into SGC7901 cells using liposomes as vectors. The distribution of the ODN was followed by immunochemistry and changes in the expression of integrinβ1 mRNA and protein were determined by RT-PCR and FCM, respectively. The adhesion and invasion into the ECM were measured by the MTT and Boyden chamber methods, respectively.RESULTS Integrinβ1 asODN which was transfected into SGC7901 cells distributed evenly in the cytoplasm and nucleus. PCR and FCM revealed a weakened band at 489bp and a left-shift curve, respectively. Adhesion and invasion assays showed decreased activity with an inhibition rate of 54% and 76%. The extent of decrease induced by integrinβ1 asODN was larger than that caused by random control ODN (P<0.001).CONCLUSION Transfection of integrinβ1 asODN into SGC7901 cells induced a decrease in the expression of integrinβ1 mRNA and protein,resulting in a decrease in adhesion and invasion into the ECM, with a greater effect than random control ODN.

  4. Use of synthetic peptides to locate novel integrin alpha2beta1-binding motifs in human collagen III.

    Raynal, Nicolas; Hamaia, Samir W; Siljander, Pia R-M; Maddox, Ben; Peachey, Anthony R; Fernandez, Rafael; Foley, Loraine J; Slatter, David A; Jarvis, Gavin E; Farndale, Richard W

    2006-02-17

    A set of 57 synthetic peptides encompassing the entire triplehelical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg(2+)-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg(2+). We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides. PMID:16326707

  5. Pulmonary administration of integrin-nanoparticles regenerates collapsed alveoli.

    Horiguchi, Michiko; Kojima, Hisako; Sakai, Hitomi; Kubo, Hiroshi; Yamashita, Chikamasa

    2014-08-10

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causes widespread and irreversible alveoli collapse. In search of a treatment target molecule, which is able to regenerate collapsed alveoli, we sought to identify a factor that induces differentiation in human alveolar epithelial stem cells using all-trans retinoic acid (ATRA), whose alveolar repair capacity has been reported in animal experiments. When human alveolar epithelial stem cells were exposed to ATRA at a concentration of 10μM for over seven days, approximately 20% of the cells differentiated into each of the type-I and type-II alveolar epithelial cells that constitute the alveoli. In a microarray analysis, integrin-α1 and integrin-β3 showed the largest variation in the ATRA-treated group compared with the controls. Furthermore, the effect of the induction of differentiation in human alveolar epithelial stem cells using ATRA was suppressed by approximately one-fourth by siRNA treatments with integrin α1 and integrin β3. These results suggested that integrin α1 and β3 are factors responsible for the induction of differentiation in human alveolar epithelial stem cells. We accordingly investigated whether integrin nanoparticles also had a regenerative effect in vivo. Elastase-induced COPD model mouse was produced, and the alveolar repair effect of pulmonary administration using nanoparticles of integrin protein was evaluated by X-ray CT scanning. Improvement in the CT value in comparison with an untreated group indicated that there was an alveolar repair effect. In this study, it was shown that the differentiation-inducing effect on human alveolar epithelial stem cells by ATRA was induced by increased expression of integrin, and that the induced integrin enhanced phosphorylation signaling of AKT, resulting in inducing differentiations. Furthermore, the study demonstrated that lung administration of nanoparticles with increased solubility and stability of integrin

  6. Estrogen Enhances the Cell Viability and Motility of Breast Cancer Cells through the ERα-ΔNp63-Integrin β4 Signaling Pathway.

    Jar-Yi Ho

    Full Text Available Estrogen induces ERα-positive breast cancer aggressiveness via the promotion of cell proliferation and survival, the epithelial-mesenchymal transition, and stem-like properties. Integrin β4 signaling has been implicated in estrogen/ERα-induced tumorigenicity and anti-apoptosis; however, this signaling cascade poorly understood. ΔNp63, an N-terminally truncated isoform of the p63 transcription factor, functions as a transcription factor of integrinβ4 and therefore regulates cellular adhesion and survival. Therefore, the aim of the present study was to investigate the estrogen-induced interaction between ERα, ΔNp63 and integrin β4 in breast cancer cells. In ERα-positive MCF-7 cells, estrogen activated ERα transcription, which induced ΔNp63 expression. And ΔNp63 subsequently induced integrin β4 expression, which resulted in AKT phosphorylation and enhanced cell viability and motility. Conversely, there was no inductive effect of estrogen on ΔNp63-integrinβ4-AKT signaling or on cell viability and motility in ERα-negative MDA-MB-231 cells. ΔNp63 knockdown abolishes these estrogen-induced effects and reduces cell viability and motility in MCF-7 cells. Nevertheless, ΔNp63 knockdown also inhibited cell migration in MDA-MB-231 cells through reducing integrin β4 expression and AKT phosphorylation. In conclusion, estrogen enhances ERα-positive breast cancer cell viability and motility through activating the ERα-ΔNp63-integrin β4 signaling pathway to induce AKT phosphorylated activation. Those findings should be useful to elucidate the crosstalk between estrogen/ER signaling and ΔNp63 signaling and provide novel insights into the effects of estrogen on breast cancer progression.

  7. Integrin receptors on tumor cells facilitate NK cell-mediated antibody-dependent cytotoxicity.

    Anikeeva, Nadia; Steblyanko, Maria; Fayngerts, Svetlana; Kopylova, Natalya; Marshall, Deborah J; Powers, Gordon D; Sato, Takami; Campbell, Kerry S; Sykulev, Yuri

    2014-08-01

    NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells. Although all tested tumor cells were killed by CD16.NK-92 effectors in the presence of the antibodies, the killing of target cells with a low level of ICAM-1 expression revealed a dramatic decrease in their specific lysis at high antibody concentration, revealing a dose limiting effect. A similar effect was also observed with primary human NK cells. The effect was erased after IFN-γ treatment of tumor cells resulting in upregulation of ICAM-1. Furthermore, killing of the same tumor cells induced by Herceptin antibody was significantly impaired in the presence of CNTO 95Ala-Ala antibody variant that blocks αV integrins but is incapable of binding to CD16. These data suggest that αV integrins on tumor cells could compensate for the loss of ICAM-1 molecules, thereby facilitating ADCC by NK cells. Thus, NK cells could exercise cytolytic activity against ICAM-1 deficient tumor cells in the absence of proinflammatory cytokines, emphasizing the importance of NK cells in tumor-specific immunity at early stages of cancer. PMID:24810893

  8. Integrin αvβ3-Targeted Imaging of Lung Cancer1

    Chen, Xiaoyuan; Sievers, Eric; Hou, Yingping; Park, Ryan; Tohme, Michel; Bart, Robert; Bremner, Ross; Bading, James R; Conti, Peter S

    2005-01-01

    Abstract A series of radiolabeled cyclic arginine-glycine-aspartic acid (RGD) peptide ligands for cell adhesion molecule integrin αvβ3-targeted tumor angiogenesis targeting are being developed in our laboratory. In this study, this effort continues by applying a positron emitter 64Cu-labeled PEGylated dimeric RGD peptide radiotracer 64Cu-DOTA-PEG-E[c(RGDyK)]2 for lung cancer imaging. The PEGylated RGD peptide indicated integrin αvβ3 avidity, but the PEGylation reduced the receptor binding affinity of this ligand compared to the unmodified RGD dimer. The radiotracer revealed rapid blood clearance and predominant renal clearance route. The minimum nonspecific activity accumulation in normal lung tissue and heart rendered high-quality orthotopic lung cancer tumor images, enabling clear demarcation of both the primary tumor at the upper lobe of the left lung, as well as metastases in the mediastinum, contralateral lung, and diaphragm. As a comparison, fluorodeoxyglucose (FDG) scans on the same mice were only able to identify the primary tumor, with the metastatic lesions masked by intense cardiac uptake and high lung background. 64Cu-DOTA-PEG-E[c(RGDyK)]2 is an excellent positron emission tomography (PET) tracer for integrin-positive tumor imaging. Further studies to improve the receptor binding affinity of the tracer and subsequently to increase the magnitude of tumor uptake without comprising the favorable in vivo kinetics are currently in progress. PMID:15799827

  9. Structure of the F-spondin Domain of Mindin an Integrin Ligand and Pattern Recognition Molecule

    Y Li; C Cao; W Jia; L Yu; M Mo; Q Wang; Y Huang; J Lim; M Ishihara; et. al.

    2011-12-31

    Mindin (spondin-2) is an extracellular matrix protein of unknown structure that is required for efficient T-cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N-terminal F-spondin (FS) domain and C-terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8-A resolution. The structure revealed an eight-stranded antiparallel beta-sandwich motif resembling that of membrane-targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C-mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.

  10. Structure of the F-Spondin Domain of Mindin, an Integrin Ligand and Pattern Recognition Molecule

    Li, Y.; Cao, C; Jia, W; Yu, L; Mo, M; Wang, Q; Huang, Y; Lim, J; Ishihara, M; et. al.

    2009-01-01

    Mindin (spondin-2) is an extracellular matrix protein of unknown structure that is required for efficient T-cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N-terminal F-spondin (FS) domain and C-terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8-A resolution. The structure revealed an eight-stranded antiparallel ?-sandwich motif resembling that of membrane-targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C-mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.

  11. PRL-3 suppresses c-Fos and integrin α2 expression in ovarian cancer cells

    Phosphatase of regenerating liver-3 (PRL-3), a protein tyrosine phosphatase, is highly expressed in multiple human cancers and strongly implicated in tumor progression and cancer metastasis. However, the mechanisms by which PRL-3 promotes cancer cell migration, invasion, and metastasis are not very well understood. In this study, we investigated the contribution and molecular mechanisms of PRL-3 in ovarian cancer progression. PRL-3 protein expression was detected on ovarian cancer tissue microarrays using immunohistochemistry. Stable PRL-3 depleted cell lines were generated using short hairpin RNA (shRNA) constructs. The migration and invasion potential of these cells were analyzed using Transwell and Matrigel assays, respectively. Immunoblotting and immunofluorescence were used to detect protein levels and distribution in PRL-3-ablated cells and the control cells. Cell morphology was observed with hematoxylin-eosin staining and transmission electron microscopy. Finally, PRL-3-ablated and control cells were injected into nude mice for xenograft tumorigenicity assays. Elevated PRL-3 expression was detected in 19% (26 out of 135) of human ovarian cancer patient samples, but not in normal ovary tissues (0 out of 14). Stable depletion of PRL-3 in A2780 ovarian cancer cells resulted in decreased migration ability and invasion activity compared with control parental A2780 cells. In addition, PRL-3-ablated cells also exhibited flattened morphology and extended lamellipodia. To address the possible molecular basis for the altered phenotypes associated with PRL-3 down-regulation, we assessed the expression profiles of various proteins involved in cell-matrix adhesion. Depletion of PRL-3 dramatically enhanced both RNA and protein levels of the cell surface receptor integrin α2, but not its heterologous binding partner integrin β1. Inhibition of PRL-3 also correlated with elevated expression and phosphorylation of paxillin. A pronounced increase in the expression and

  12. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry.

    Stallmann, Sonja; Hegemann, Johannes H

    2016-05-01

    Infection of human cells by the obligate intracellular bacterium Chlamydia trachomatis requires adhesion and internalization of the infectious elementary body (EB). This highly complex process is poorly understood. Here, we characterize Ctad1 (CT017) as a new adhesin and invasin from C. trachomatis serovar E. Recombinant Ctad1 (rCtad1) binds to human cells via two bacterial SH3 domains located in its N-terminal half. Pre-incubation of host cells with rCtad1 reduces subsequent adhesion and infectivity of bacteria. Interestingly, protein-coated latex beads revealed Ctad1 being an invasin. rCtad1 interacts with the integrin β1 subunit on human epithelial cells, and induces clustering of integrins at EB attachment sites. Receptor activation induces ERK1/2 phosphorylation. Accordingly, rCtad1 binding to integrin β1-negative cells is significantly impaired, as is the chlamydial infection. Thus interaction of C. trachomatis Ctad1 with integrin β1 mediates EB adhesion and induces signaling processes that promote host-cell invasion. PMID:26597572

  13. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy.

    Jiang, Wenting; Fu, Yuanting; Yang, Fang; Yang, Yufeng; Liu, Ting; Zheng, Wenjie; Zeng, Lilan; Chen, Tianfeng

    2014-08-27

    The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs. PMID:25073123

  14. Molecular physiology of the tensin brotherhood of integrin adaptor proteins.

    Haynie, Donald T

    2014-07-01

    Numerous proteins have been identified as constituents of the adhesome, the totality of molecular components in the supramolecular assemblies known as focal adhesions, fibrillar adhesions and other kinds of adhesive contact. The transmembrane receptor proteins called integrins are pivotal adhesome members, providing a physical link between the extracellular matrix (ECM) and the actin cytoskeleton. Tensins are ever more widely investigated intracellular adhesome constituents. Involved in cell attachment and migration, cytoskeleton reorganization, signal transduction and other processes relevant to cancer research, tensins have recently been linked to functional properties of deleted in liver cancer 1 (DLC1) and a mitogen-activated protein kinases (MAPK), to cell migration in breast cancer, and to metastasis suppression in the kidney. Tensins are close relatives of phosphatase homolog/tensin homolog (PTEN), an extensively studied tumor suppressor. Such findings are recasting the earlier vision of tensin (TNS) as an actin-filament (F-actin) capping protein in a different light. This critical review aims to summarize current knowledge on tensins and thus to highlight key points concerning the expression, structure, function, and evolution of the various members of the TNS brotherhood. Insight is sought by comparisons with homologous proteins. Some historical points are added for perspective. PMID:24634006

  15. Crossroads of integrins and cadherins in epithelia and stroma remodeling.

    Epifano, Carolina; Perez-Moreno, Mirna

    2012-01-01

    Adhesion events mediated by cadherin and integrin adhesion receptors have fundamental roles in the maintenance of the physiological balance of epithelial tissues, and it is well established that perturbations in their normal functional activity and/or changes in their expression are associated with tumorigenesis. Over the last decades, increasing evidence of a dynamic collaborative interaction between these complexes through their shared interactions with cytoskeletal proteins and common signaling pathways has emerged not only as an important regulator of several aspects of epithelial cell behavior, but also as a coordinated adhesion module that senses and transmits signals from and to the epithelia surrounding microenvironment. The tight regulation of their crosstalk is particularly important during epithelial remodeling events that normally take place during morphogenesis and tissue repair, and when defective it leads to cell transformation and aggravated responses of the tumor microenvironment that contribute to tumorigenesis. In this review we highlight some of the interactions that regulate their crosstalk and how this could be implicated in regulating signals across epithelial tissues to sustain homeostasis. PMID:22568988

  16. Avβ3 integrin: Pathogenetic role in osteotropic tumors.

    Stucci, Stefania; Tucci, Marco; Passarelli, Anna; Silvestris, Franco

    2015-10-01

    The interplay of cancer cells and accessory cells within the microenvironment drives signals regulating the proliferation, migration and skeleton colonization. Osteotropism of tumor cells depends on chemokine activation, production of soluble factors and defective gene expression that cooperate within the metastatic niche to the bone resorbing functions of osteoclasts. Adhesion of cancer cells to the extracellular matrix is regulated by integrins as αvβ3 that enhances their invasiveness, pro-tumor angiogenesis and skeleton invasion. Therefore, αvβ3 signaling is implicated in enhancing osteotropism of breast and prostate cancers as well as of multiple myeloma. Targeting of αvβ3 has been adopted to restrain the tumor progression in several cancer models leading to improvement of overall survival as effect of the reduction of both tumor burden and osteotropism by malignant cells. Here, we review both the role of αvβ3 in malignant osteoclastogenesis and its potential targeting to restrain the bone colonization by skeleton invading cancers. PMID:26126493

  17. The Protrusive Phase and Full Development of Integrin-Dependent Adhesions in Colon Epithelial Cells Require FAK- and ERKMediated Actin Spike Formation: Deregulation in Cancer Cells

    Valerie G. Brunton

    2001-01-01

    Full Text Available Integrins play an important role in tumour progression by influencing cellular responses and matrix-dependent adhesion. However, the regulation of matrix-dependent adhesion assembly in epithelial cells is poorly understood. We have investigated the integrin and signalling requirements of cell-matrix adhesion assembly in colon carcinoma cells after plating on fibronectin. Adhesion assembly in these, and in the adenoma cells from which they were derived, was largely dependent on αvβ6 integrin and required phosphorylation of FAK on tyrosine-397. The rate of fibronectin-induced adhesion assembly and the expression of both αvβ6 integrin and FAK were increased during the adenoma-to-carcinoma transition. The matrix-dependent adhesion assembly process, particularly the final stages of complex protrusion that is required for optimal cell spreading, required the activity of extracellular signal-regulated kinase (ERK. Furthermore, phosphorylated ERK was targeted to newly forming cell-matrix adhesions in the carcinoma cells but not the adenoma cells, and inhibition of FAK-tyrosine-397 phosphorylation or MEK suppressed the appearance of phosphorylated ERK at peripheral sites. In addition, inhibition of MEK-ERK activation blocked the formation of peripheral actin microspikes that were necessary for the protrusive phase of cell-matrix adhesion assembly. Thus, MEK-ERK-dependent peripheral actin re-organization is required for the full development of integrin-induced adhesions and this pathway is stimulated in an in vitro model of colon cancer progression.

  18. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen.

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W; Davidenko, Natalia; Best, Serena M; Cameron, Ruth E; Farndale, Richard W; Bihan, Dominique

    2016-04-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392

  19. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  20. A function blocking anti-mouse integrin α5β1 antibody inhibits angiogenesis and impedes tumor growth in vivo

    Powers David

    2007-11-01

    activity and confirms that inhibition of integrin α5β1 impedes angiogenesis and slows tumor growth in vivo.

  1. Protein phosphatase 2A plays a critical role in interleukin-2-induced beta 2-integrin dependent homotypic adhesion in human CD4+ T cell lines

    Brockdorff, J; Nielsen, M; Svejgaard, A;

    1997-01-01

    Besides its function as a growth factor for T lymphocytes, interleukin 2 (IL-2) induces beta 2-integrin mediated adhesion, migration, and extravasation of T lymphocytes. It is, however, largely unknown how IL-2 receptors (IL-2R) are coupled to the beta 2-integrin adhesion pathway. Because IL-2...... modulates enzymatic activity and/or subcellular distribution of serine/threonine phosphatases 1 and 2A (PP1/PP2A) in T cells, we examined the role of these phosphatases in IL-2 induced homotypic adhesion in antigen specific human CD4+ T cell lines. We show that calyculin A, a potent inhibitor of PP1 and PP2...... inhibitory effect on cytokine induced adhesion at concentrations which strongly inhibited phosphatase activity. In conclusion, these data provide evidence that PP2A plays a critical role in IL-2-induced beta 2-integrin-dependent adhesion of human T cell lines....

  2. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin β1-ERK1/2 and-MMP2 signaling

    Wu Jian

    2009-11-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 plays a causative role in tumor metastasis, but the underlying mechanisms are not well understood. In our previous study, we observed that PRL-3 could decrease tyrosine phosphorylation of integrin β1 and enhance activation of ERK1/2 in HEK293 cells. Herein we aim to explore the association of PRL-3 with integrin β1 signaling and its functional implications in motility, invasion, and metastasis of colon cancer cell LoVo. Methods Transwell chamber assay and nude mouse model were used to study motility and invasion, and metastsis of LoVo colon cancer cells, respectively. Knockdown of integrin β1 by siRNA or lentivirus were detected with Western blot and RT-PCR. The effect of PRL-3 on integrin β1, ERK1/2, and MMPs that mediate motility, invasion, and metastasis were measured by Western blot, immunofluorencence, co-immunoprecipitation and zymographic assays. Results We demonstrated that PRL-3 associated with integrin β1 and its expression was positively correlated with ERK1/2 phosphorylation in colon cancer tissues. Depletion of integrin β1 with siRNA, not only abrogated the activation of ERK1/2 stimulated by PRL-3, but also abolished PRL-3-induced motility and invasion of LoVo cells in vitro. Similarly, inhibition of ERK1/2 phosphorylation with U0126 or MMP activity with GM6001 also impaired PRL-3-induced invasion. In addition, PRL-3 promoted gelatinolytic activity of MMP2, and this stimulation correlated with decreased TIMP2 expression. Moreover, PRL-3-stimulated lung metastasis of LoVo cells in a nude mouse model was inhibited when integrin β1 expression was interfered with shRNA. Conclusion Our results suggest that PRL-3's roles in motility, invasion, and metastasis in colon cancer are critically controlled by the integrin β1-ERK1/2-MMP2 signaling.

  3. Synthesis and biological evaluation of potent alphavbeta3-integrin receptor antagonists.

    Dijkgraaf, I.; Kruijtzer, J.A.; Frielink, C.; Soede, A.C.; Hilbers, H.W.; Oyen, W.J.G.; Corstens, F.H.M.; Liskamp, R.M.; Boerman, O.C.

    2006-01-01

    INTRODUCTION: alpha(v)beta(3) Integrin is expressed in sprouting endothelial cells in growing tumors, whereas it is absent in quiescent blood vessels. In addition, various tumor cell types express alpha(v)beta(3) integrin. alpha(v)beta(3) Integrin, a transmembrane heterodimeric protein, binds to the

  4. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  5. α2 integrin as regulator of metastatic potential

    Miroslav BARANCIK; Albert BREIER

    2011-01-01

    @@ Regulation of cellular events is a complex process that involves several factors in their specific interactions and interplays.However, this complexity signs also exist specificity and changes in single protein, and could significantly influence the properties and responses of cells. Recently, Ramirez and colleagues[1]provided innovative results that emphasize the important and selective role of one specific protein, α2 integrin, in the complex process of tumor metastasis.This protein, as a part of heterodimeric 2β1 integrin, was identified as a metastasis suppressor in both breast and prostate cancer.

  6. β Integrins Mediate FAK Y397 Autophosphorylation of Resistance Arteries during Eutrophic Inward Remodeling in Hypertension

    Heerkens, Egidius H.J; Quinn, Lisa; Withers, Sarah B.; Heagerty, Anthony M

    2014-01-01

    Human essential hypertension is characterized by eutrophic inward remodeling of the resistance arteries with little evidence of hypertrophy. Upregulation of αVβ3 integrin is crucial during this process. In order to investigate the role of focal adhesion kinase (FAK) activation in this process, the level of FAK Y397 autophosphorylation was studied in small blood vessels from young TGR(mRen2)27 animals as blood pressure rose and eutrophic inward remodeling took place. Between weeks 4 and 5, thi...

  7. Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells.

    Gu, Yu-Chen; Kortesmaa, Jarkko; Tryggvason, Karl; Persson, Jenny; Ekblom, Peter; Jacobsen, Sten-Eirik; Ekblom, Marja

    2003-02-01

    Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis. PMID:12393739

  8. Competitive Interactions of Collagen and a Jararhagin-derived Disintegrin Peptide with the Integrin α2-I Domain*

    Lambert, Lester J; Bobkov, Andrey A.; Smith, Jeffrey W.; Marassi, Francesca M.

    2008-01-01

    Integrin α2β1 is a major receptor required for activation and adhesion of platelets, through the specific recognition of collagen by the α2-I domain (α2-I), which binds fibrillar collagen via Mg2+-bridged interactions. The crystal structure of a truncated form of the α2-I domain, bound to a triple helical collagen peptide, revealed conformational changes suggestive of a mechanism where the ligand-bound I domain can initiate and propagate conformational change to the ...

  9. Knockdown of HMGN2 increases the internalization of Klebsiella pneumoniae by respiratory epithelial cells through the regulation of α5β1 integrin expression.

    Wang, Xinyuan; Li, Jingyu; Chen, Shanze; Shen, Xiaofei; Yang, Xiaolong; Teng, Yan; Deng, Luxia; Wang, Yi; Chen, Junli; Wang, Xiaoying; Huang, Ning

    2016-09-01

    Integrin receptors, a large family of adhesion receptors, are involved in the attachment of Klebsiella pneumoniae to respiratory epithelial cells, and subsequently cause the internalization of K. pneumoniae by host cells. Although a number of molecules have been reported to regulate the expression and activity of integrin receptors in respiratory epithelial cells, the specific underlying molecular mechanisms remain largely unknown. High mobility group nucleosomal binding domain 2 (HMGN2), a non-histone nuclear protein, is present in eukaryotic cells as a ubiquitous nuclear protein. Our previous studies have demonstrated that HMGN2 affects chromatin function and modulates the expression of antibacterial peptide in A549 cells exposed to lipopolysaccharide, which indicates the critical role of HMGN2 in innate immune responses. In addition, our cDNA microarray analysis suggested that HMGN2 knockdown induced the enhanced expression of α5β1 integrin in A549 cells. Therefore, we hypothesized that intercellular HMGN2 may mediate the internalization of K. pneumoniae by altering the expression of α5β1 integrin. Using the A549 cell line, we demonstrated that HMGN2 knockdown induced the increased expression of α5β1 integrin on cell membranes, which resulted in a significant increase in K. pneumoniae internalization. Further results revealed that HMGN2 silencing induced the expression of talin and the activation of α5β1 integrin, which led to actin polymerization following the phosphorylation of FAK and Src. This study suggests a possible therapeutic application for bacterial internalization by targeting HMGN2 in order to treat K. pneumoniae infection. PMID:27460641

  10. PET Imaging of Integrin αVβ3 Expression

    Ambros J. Beer, Horst Kessler, Hans-Jürgen Wester, Markus Schwaiger

    2011-01-01

    Full Text Available PET imaging of integrin αvβ3 expression has been studied intensely by the academia and recently also by the industry. Imaging of integrin αvβ3 expression is of great potential value, as the integrin αvβ3 is a key player in tumor metastasis and angiogenesis. Therefore PET imaging of this target might be a suitable in-vivo biomarker of angiogenesis and metastatic potential of tumors. In this manuscript, the various strategies for PET imaging of the integrin αvβ3 will be summarized, including monomeric and multimeric radiolabelled RGD peptides and nanoparticles. While most experiments have been performed using preclinical tumor models, more and more clinical results on PET imaging of αvβ3 expression are available and will be discussed in detail. However, while a multitude of radiotracer strategies have been successfully evaluated for PET imaging of αvβ3, the ultimate clinical value of this new imaging biomarker still has to be evaluated in large clinical trials.

  11. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  12. Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis

    LaRusch, Gretchen A.; Mahdi, Fakhri; Shariat-Madar, Zia; Adams, Gregory; Sitrin, Robert G.; Zhang, Wan Ming; McCrae, Keith R.

    2010-01-01

    Factor XII (FXII) and high molecular weight kininogen (HK) mutually block each other's binding to the urokinase plasminogen activator receptor (uPAR). We investigated if FXII stimulates cells by interacting with uPAR. FXII (3-62nM) with 0.05mM Zn2+ induces extracellular signal-related kinase 1/2 (ERK1/2; mitogen-activated protein kinase 44 [MAPK44] andMAPK42) and Akt (Ser473) phosphorylation in endothelial cells. FXII-induced phosphorylation of ERK1/2 or Akt is a zymogen activity, not an enzymatic event. ERK1/2 or Akt phosphorylation is blocked upstream by PD98059 or Wortmannin or LY294002, respectively. An uPAR signaling region for FXII is on domain 2 adjacent to uPAR's integrin binding site. Cleaved HK or peptides from HK's domain 5 blocks FXII-induced ERK1/2 and Akt phosphorylation. A β1 integrin peptide that binds uPAR, antibody 6S6 to β1 integrin, or the epidermal growth factor receptor (EGFR) inhibitor AG1478 blocks FXII-induced phosphorylation of ERK1/2 and Akt. FXII induces endothelial cell proliferation and 5-bromo-2′deoxy-uridine incorporation. FXII stimulates aortic sprouting in normal but not uPAR-deficient mouse aorta. FXII produces angiogenesis in matrigel plugs in normal but not uPAR-deficient mice. FXII knockout mice have reduced constitutive and wound-induced blood vessel number. In sum, FXII initiates signaling mediated by uPAR, β1 integrin, and the EGFR to induce human umbilical vein endothelial cell proliferation, growth, and angiogenesis. PMID:20228268

  13. Integrin-based meningioma cell migration is promoted by photon but not by carbon-ion irradiation

    Sublethal doses of photon irradiation (IR) are suspected to increase tumor cell migration and support locoregional recurrence of disease, which has already been shown in other cell lines. This manuscript describes the effect of photon and carbon-ion IR on WHO class I meningioma cell migration and provides an approach to the underlying cellular mechanisms. Meningioma cells were gained operatively at the university hospital in Homburg/Saar, Germany. For migration, membranes (8-μm pore sizes) were coated with collagen I, with collagen IV, and with fibronectin. Cells were analyzed in migration experiments with or without serum stimulation, with or without photon and carbon IR 24 h prior to experiments, and with or without integrin antibodies. Fluorescence-activated cell sorting (FACS) analyses of the integrins ανβ1, ανβ3, and ανβ5 were performed without IR and 6, 12 and 24 h after IR. Enzyme-linked immunosorbent assay (ELISA) analyses of matrix metalloproteinases (MMP)-2 and MMP-9 were realized with and without IR after cells were cultured on collagen I, collagen IV, or fibronectin for 24 h. Cells and supernatants for FACS and ELISA were stored at - 18 C. The significance level was set at 5 % using both Student's t test and two-way ANOVA. Migration of meningioma cells was serum-inducible (p < 0.001). It could be increased by photon IR (p < 0.02). The integrins ανβ1 and ανβ5 showed a 21 and 11 % higher expression after serum stimulation (not significant), respectively, and ανβ1 expression was raised by 14 % (p = 0.0057) after photon IR. Antibody blockage of the integrins ανβ1 and ανβ5 inhibited serum- and photon-induced migration. Expression of MMP-2 and MMP-9 remained unchanged after both IR and fetal bovine serum (FBS). Carbon-ion IR left both integrin expression and meningioma cell migration unaffected. Photon but not carbon-ion IR promotes serum-based meningioma cell migration. Fibronectin receptor integrin ανβ1 signaling can be

  14. The integrin αvβ6: a novel target for CAR T-cell immunotherapy?

    Whilding, Lynsey M; Vallath, Sabari; Maher, John

    2016-04-15

    Immunotherapy of cancer using chimeric antigen receptor (CAR) T-cells is a rapidly expanding field. CARs are fusion molecules that couple the binding of a tumour-associated cell surface target to the delivery of a tailored T-cell activating signal. Re-infusion of such genetically engineered T-cells to patients with haematological disease has demonstrated unprecedented response rates in Phase I clinical trials. However, such successes have not yet been observed using CAR T-cells against solid malignancies and this is, in part, due to a lack of safe tumour-specific targets. The αvβ6 integrin is strongly up-regulated in multiple solid tumours including those derived from colon, lung, breast, cervix, ovaries/fallopian tube, pancreas and head and neck. It is associated with poorer prognosis in several cancers and exerts pro-tumorigenic activities including promotion of tumour growth, migration and invasion. By contrast, physiologic expression of αvβ6 is largely restricted to wound healing. These attributes render this epithelial-specific integrin a highly attractive candidate for targeting using immunotherapeutic strategies such as CAR T-cell adoptive immunotherapy. This mini-review will discuss the role and expression of αvβ6 in cancer, as well as its potential as a therapeutic target. PMID:27068939

  15. Adhesive and migratory effects of phosphophoryn are modulated by flanking peptides of the integrin binding motif.

    Shigeki Suzuki

    Full Text Available Phosphophoryn (PP is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP. Gene duplications in the ancestor dentin matrix protein-1 (DMP-1 genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs. Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH. This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  16. EFFECTS OF INTEGRIN ALPHA ⅡbR995A MUTATION ON RECEPTOR AFFINITY AND pp 125 (FAK) PHOSPHORYLATION

    Xue-yuan Tang; Zai-fu Jian; Guo-ping Wang; Hong-hui Yang; Wei Liu

    2004-01-01

    Objective To investigate the role of cytoplasmic domain of integrin alpha Ⅱb in platelet signal transduction.Methods Binding capacity of integrin alpha ⅡbR995Ato antibody platelet activation complex-1 (PAC-1) and pp125focal adhesion kinase (FAK) phosphorylation of cells were detected by flow cytometry, immune precipitation, and Western blotting.Results Without activation, wild-type alpha Ⅱ bbeta3 Chinese hamster ovary (CHO) cells failed to bind to PAC-1, but mutant chimera alpha ⅡbR995Aeta3 CHO cells were able to bind with PAC-1. Furthermore, phosphorylation of pp125 (FAK)in wild-type alpha Ⅱbbeta3 CHO cells occured only when cells were adhered to fibrinogen, but could not be detected in bovine serum albumin suspension. However in the mutant chimera group, it could be detected in both conditions.Conclusion The mutation in integrin alpha ⅡbR995Aalters its affinity state as a receptor, thus also mediating cytoplasmic signal transduction leading to the phosphorylation of pp125 (FAK) without ligand binding.

  17. Identification of inhibitors of α2β1 integrin, members of C-lectin type proteins, in Echis sochureki venom

    Jakubowski, Piotr [Temple University, Department of Biology, Philadelphia, PA 19122 (United States); Calvete, Juan J. [Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas, 46010 Valencia (Spain); Eble, Johannes A. [Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Vascular Matrix Biology, Frankfurt University Hospital, Frankfurt am Main 60590 (Germany); Lazarovici, Philip [The Hebrew University of Jerusalem, School of Pharmacy, Institute for Drug Research, Jerusalem 91120 (Israel); Marcinkiewicz, Cezary, E-mail: cmarcink@temple.edu [Temple University, Department of Biology, Philadelphia, PA 19122 (United States)

    2013-05-15

    Snake venom antagonists of α2β1 integrin have been identified as members of a C-lectin type family of proteins (CLP). In the present study, we characterized three new CLPs isolated from Echis sochureki venom, which interact with this integrin. These proteins were purified using a combination of gel filtration, ion exchange chromatography and reverse phase HPLC. Sochicetin-A and sochicetin-B potently inhibited adhesion of cells expressing α2β1 integrin and binding of isolated α2β1 ectodomain to collagen I, as well as bound to recombinant GST-α2A domain in ELISA, whereas activity of sochicetin-C in these assays was approximately two orders of magnitude lower. Structurally, sochicetin-B and sochicetin-C are typical heterodimeric αβ CLPs, whereas sochicetin-A exhibits a trimer of its subunits (αβ){sub 3} in the quaternary structure. Immobilized sochicetins supported adhesion of glioma cell lines, LN18 and LBC3, whereas in a soluble form they partially inhibited adhesion of these cells to collagen I. Glioma cells spread very poorly on sochicetin-A, showing no cytoskeleton rearrangement typical for adhesion to collagen I or fibronectin. Adhesion on CLP does not involve focal adhesion elements, such as vinculin. Sochicetin-A also inhibited collagen-induced platelet aggregation, similar to other CLPs' action on the blood coagulation system. - Highlights: • Isolation of three novel snake venom CLPs inhibiting α2β1 integrin • Reporting hexameric CLP, sochicetin-A with anti-collagen receptor activity • CLPs antagonize the interaction of glioma cells with collagen matrix. • Sochicetin-A does not support glioma cell spreading.

  18. Identification of inhibitors of α2β1 integrin, members of C-lectin type proteins, in Echis sochureki venom

    Snake venom antagonists of α2β1 integrin have been identified as members of a C-lectin type family of proteins (CLP). In the present study, we characterized three new CLPs isolated from Echis sochureki venom, which interact with this integrin. These proteins were purified using a combination of gel filtration, ion exchange chromatography and reverse phase HPLC. Sochicetin-A and sochicetin-B potently inhibited adhesion of cells expressing α2β1 integrin and binding of isolated α2β1 ectodomain to collagen I, as well as bound to recombinant GST-α2A domain in ELISA, whereas activity of sochicetin-C in these assays was approximately two orders of magnitude lower. Structurally, sochicetin-B and sochicetin-C are typical heterodimeric αβ CLPs, whereas sochicetin-A exhibits a trimer of its subunits (αβ)3 in the quaternary structure. Immobilized sochicetins supported adhesion of glioma cell lines, LN18 and LBC3, whereas in a soluble form they partially inhibited adhesion of these cells to collagen I. Glioma cells spread very poorly on sochicetin-A, showing no cytoskeleton rearrangement typical for adhesion to collagen I or fibronectin. Adhesion on CLP does not involve focal adhesion elements, such as vinculin. Sochicetin-A also inhibited collagen-induced platelet aggregation, similar to other CLPs' action on the blood coagulation system. - Highlights: • Isolation of three novel snake venom CLPs inhibiting α2β1 integrin • Reporting hexameric CLP, sochicetin-A with anti-collagen receptor activity • CLPs antagonize the interaction of glioma cells with collagen matrix. • Sochicetin-A does not support glioma cell spreading

  19. Noninvasive imaging of tumor integrin expression using {sup 18}F-labeled RGD dimer peptide with PEG{sub 4} linkers

    Liu, Zhaofei [Stanford University School of Medicine, Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Biophysics, and Bio-X Program, Stanford, CA (United States); Peking University, Medical Isotopes Research Center, Beijing (China); Liu, Shuanglong [Stanford University School of Medicine, Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Biophysics, and Bio-X Program, Stanford, CA (United States); Wang, Fan [Peking University, Medical Isotopes Research Center, Beijing (China); Liu, Shuang [Purdue University, School of Health Sciences, West Lafayette, IN (United States); Chen, Xiaoyuan [Stanford University School of Medicine, Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Biophysics, and Bio-X Program, Stanford, CA (United States); Stanford University School of Medicine, Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States)

    2009-08-15

    Various radiolabeled Arg-Gly-Asp (RGD) peptides have been previously investigated for tumor integrin {alpha}{sub v}{beta}{sub 3} imaging. To further develop RGD radiotracers with enhanced tumor-targeting efficacy and improved in vivo pharmacokinetics, we designed a new RGD homodimeric peptide with two PEG{sub 4} spacers (PEG{sub 4} = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) between the two monomeric RGD motifs and one PEG{sub 4} linker on the glutamate {alpha}-amino group ({sup 18}F-labeled PEG{sub 4}-E[PEG{sub 4}-c(RGDfK)]{sub 2}, P-PRGD2), as a promising agent for noninvasive imaging of integrin expression in mouse models. P-PRGD2 was labeled with {sup 18}F via 4-nitrophenyl 2-{sup 18}F-fluoropropionate ({sup 18}F-FP) prosthetic group. In vitro and in vivo characteristics of the new dimeric RGD peptide tracer {sup 18}F-FP-P-PRGD2 were investigated and compared with those of {sup 18}F-FP-P-RGD2 ({sup 18}F-labeled RGD dimer without two PEG{sub 4} spacers between the two RGD motifs). The ability of {sup 18}F-FP-P-PRGD2 to image tumor vascular integrin expression was evaluated in a 4T1 murine breast tumor model. With the insertion of two PEG{sub 4} spacers between the two RGD motifs, {sup 18}F-FP-P-PRGD2 showed enhanced integrin {alpha}{sub v}{beta}{sub 3}-binding affinity, increased tumor uptake and tumor-to-nontumor background ratios compared with {sup 18}F-FP-P-RGD2 in U87MG tumors. MicroPET imaging with {sup 18}F-FP-P-PRGD2 revealed high tumor contrast and low background in tumor-bearing nude mice. Biodistribution studies confirmed the in vivo integrin {alpha}{sub v}{beta}{sub 3}-binding specificity of {sup 18}F-FP-P-RGD2. {sup 18}F-FP-P-PRGD2 can specifically image integrin {alpha}{sub v}{beta}{sub 3} on the activated endothelial cells of tumor neovasculature. {sup 18}F-FP-P-PRGD2 can provide important information on integrin expression on the tumor vasculature. The high integrin binding affinity and specificity, excellent pharmacokinetic properties and

  20. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

    Hui, Tommy; Sørensen, Esben Skipper; Rittling, Susan R.

    2015-01-01

    Osteopontin (OPN) is a ligand for the α4 integrin, but the physiological importance of this binding is not well understood. Here, we have assessed the effect of posttranslational modifications on OPN binding to the α4 integrin on cultured human leukocyte cell lines, and compared OPN interaction...

  1. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8+ memory T cells

    Kitchens, W. H.; Haridas, D.; Wagener, M. E.; Song, M.; Kirk, A. D.; Larsen, C. P.; Ford, M. L.

    2012-01-01

    The success of belatacept in late-stage clinical trials inaugurates the arrival of a new class of immunosuppressants based on costimulatory blockade, an immunosuppression strategy that disrupts essential signals required for alloreactive T cell activation. Despite having improved renal function, kidney transplant recipients treated with belatacept experienced increased rates of acute rejection. This finding has renewed focus on costimulatory blockade-resistant rejection and specifically the role of alloreactive memory T cells in mediating this resistance. To study mechanisms of costimulatory blockade-resistant rejection and enhance the clinical efficacy of costimulatory blockade, we developed an experimental transplant system that models a donor-specific memory CD8+ T cell response. After confirming that graft-specific memory T cells mediate costimulatory blockade-resistant rejection, we characterized the role of integrins in this rejection. The resistance of memory T cells to costimulatory blockade was abrogated when costimulatory blockade was coupled with either anti-VLA-4 or anti-LFA-1. Mechanistic studies revealed that in the presence of costimulatory blockade, anti-VLA-4 impaired T cell trafficking to the graft but not memory T cell recall effector function, whereas anti-LFA-1 attenuated both trafficking and memory recall effector function. As antagonists against these integrins are clinically approved, these findings may have significant translational potential for future clinical transplant trials. PMID:21942986

  2. Function of glycoprotein VI and integrin alpha2beta1 in the procoagulant response of single, collagen-adherent platelets.

    Heemskerk, J W; Siljander, P; Vuist, W M; Breikers, G; Reutelingsperger, C P; Barnes, M J; Knight, C G; Lassila, R; Farndale, R W

    1999-05-01

    Various collagen-based materials were used to assess the structural requirements of collagen for inducing the procoagulant response of adhering platelets, as well as the collagen receptors involved. Cross-linked or monomeric collagen-related peptide (CRP), Gly-Cys-Hyp-(Gly-Pro-Hyp)10-Gly-Cys-Hyp-Gly was highly adhesive for platelets in a glycoprotein VI-(GpVI-)dependent manner. Adhesion was followed by a prolonged increase in cytosolic [Ca2+]i, formation of membrane blebs, exposure of phosphatidylserine (PS) and generation of prothrombinase-stimulating activity. Fibrils of type-I collagen were less adhesive but, once adhered, many of the platelets presented a full procoagulant response. Monomeric type-I collagen was unable to support adhesion, unless Mg(2+)-dependent integrin alpha2beta1 interactions were facilitated by omission of Ca2+ ions. With all surfaces, however, post-addition of CaCl2 to adhering platelets resulted in a potent Ca(2+)-influx signal, followed by PS exposure and bleb formation. The procoagulant response elicited by binding to CRP was inhibited by anti-GpVI Fab fragments, but not by impeding integrin alpha2beta1-mediated events. With fibrillar collagen, it was inhibited by blocking either the GpVI- or integrin alpha2beta1-mediated interactions. This suggests that the triple-helical Gly-Pro-Hyp repeat in CRP and analogous sequences in fibrillar collagen stimulate the procoagulant response of adherent platelets by acting as ligands for GpVI. Influx of Ca2+ is required for this response, and adhesion via integrin alpha2beta1 serves to potentiate the signaling effects of GpVI. PMID:10365754

  3. RECK-Mediated β1-Integrin Regulation by TGF-β1 Is Critical for Wound Contraction in Mice

    Gutiérrez, Jaime; Droppelmann, Cristian A.; Contreras, Osvaldo; Takahashi, Chiaki; Brandan, Enrique

    2015-01-01

    Fibroblasts are critical for wound contraction; a pivotal step in wound healing. They produce and modify the extracellular matrix (ECM) required for the proper tissue remodeling. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a key regulator of ECM homeostasis and turnover. However, its role in wound contraction is presently unknown. Here we describe that Transforming growth factor type β1 (TGF-β1), one of the main pro-fibrotic wound-healing promoting factors, decreases RECK expression in fibroblasts through the Smad and JNK dependent pathways. This TGF-β1 dependent downregulation of RECK occurs with the concomitant increase of β1-integrin, which is required for fibroblasts adhesion and wound contraction through the activation of focal adhesion kinase (FAK). Loss and gain RECK expression experiments performed in different types of fibroblasts indicate that RECK downregulation mediates TGF-β1 dependent β1-integrin expression. Also, reduced levels of RECK potentiate TGF-β1 effects over fibroblasts FAK-dependent contraction, without affecting its cognate signaling. The above results were confirmed on fibroblasts derived from the Reck+/- mice compared to wild type-derived fibroblasts. We observed that Reck+/- mice heal dermal wounds more efficiently than wild type mice. Our results reveal a critical role for RECK in skin wound contraction as a key mediator in the axis: TGF-β1—RECK- β1-integrin. PMID:26247610

  4. Synthesis and in vitro activity of some epimeric 20 alpha-hydroxy, 20-oxime and aziridine pregnene derivatives as inhibitors of human 17 alpha-hydroxylase/C17,20-lyase and 5 alpha-reductase.

    Ling, Y Z; Li, J S; Kato, K; Liu, Y; Wang, X; Klus, G T; Marat, K; Nnane, I P; Brodie, A M

    1998-10-01

    Some epimeric 20-hydroxy, 20-oxime, 16 alpha, 17 alpha-, 17,20- and 20,21-aziridine derivatives of progesterone were synthesized and evaluated as inhibitors of human 17 alpha-hydroxylase/C17,20-lyase (P450(17) alpha) and 5 alpha-reductase (5 alpha-R). The reduction of 16-dehydropregenolone acetate (3a) was reinvestigated. NaBH4 in the presence of CeCl3 gave better stereo-selectivity for 20 beta-ol [20 alpha/20 beta-OH (4 alpha/4 beta) = 1/2.7] than LTBAH or the Meerwein-Pondroff method reported; reduction with Zn in HOAc formed exclusively 20 alpha-ol (4 alpha b). The 20 alpha- and 20 beta-hydroxy-4,16-pregnadien-3-one (9 alpha) and (9 beta) were synthesized from the alcohols 4 alpha b and 4 beta b. Several 20-oxime pregnadienes and 16 alpha, 17 alpha-, 17,20- and 20,21-aziridinyl-5-pregnene derivatives were also synthesized. LiAlH4 reduction of the 16-en-20-oxime (12b) yielded 20 (R)-(13a) and 20(S)-17 alpha,20-aziridine (13b) and 20(R)-17 beta,20-aziridine (14a). Several compounds inhibited the human P450(17) alpha with greater potency than ketoconzole. The 5 alpha-R enzyme assay showed that while (9 alpha) did not have any activity, (9 beta) and (3b) were potent 5 alpha-reductase (IC50 = 21 and 31 nM) inhibitors with activities similar to finasteride. The 20-oximes (17a) and (17b) were potent dual inhibitors for both 5 alpha-R (IC50 = 63 and 115 nM, compared to 33 nM for finasteride) and P450(17) alpha (IC50 = 43 and 25 nM, compared to 78 nM for ketoconazole). PMID:9839000

  5. Augmentation of integrin-mediated mechanotransduction by hyaluronic acid

    Chopra, Anant; Murray, Maria E.; Byfield, Fitzroy; Mendez, Melissa; Halleluyan, Ran; Restle, David; Aroush, Dikla Raz-Ben; Peter A. Galie; Pogoda, Katarzyna; Bucki, Robert; Marcinkiewicz, Cezary; Prestwich, Glenn D.; Zarembinski, Thomas; Chen, Christopher S.; Puré, Ellen

    2013-01-01

    Changes in tissue and organ stiffness occur during development and are frequently symptoms of disease. Many cell types respond to the stiffness of substrates and neighboring cells in vitro and most cell types increase adherent area on stiffer substrates that are coated with ligands for integrins or cadherins. In vivo cells engage their extracellular matrix (ECM) by multiple mechanosensitive adhesion complexes and other surface receptors that potentially modify the mechanical signals transduce...

  6. β1 Integrin Is Essential for Teratoma Growth and Angiogenesis

    Bloch, Wilhelm; Forsberg, Erik; Lentini, Sylvia; Brakebusch, Cord; Martin, Karl; Krell, Hans W.; Weidle, Ulrich H.; Addicks, Klaus; Fässler, Reinhard

    1997-01-01

    Teratomas are benign tumors that form after ectopic injection of embryonic stem (ES) cells into mice and contain derivatives of all primitive germ layers. To study the role of β1 integrin during teratoma formation, we compared teratomas induced by normal and β1-null ES cells. Injection of normal ES cells gave rise to large teratomas. In contrast, β1-null ES cells either did not grow or formed small teratomas with an average weight of

  7. Integrin-dependent Neutrophil Migration in the Injured Mouse Cornea

    Hanlon, Samuel D.; Smith, C. Wayne; Sauter, Marika N; Burns, Alan R.

    2014-01-01

    As an early responder to an inflammatory stimulus, neutrophils (PMNs) must exit the vasculature and migrate through the extravascular tissue to the site of insult, which is often remote from the point of extravasation. Following a central epithelial corneal abrasion, PMNs recruited from the peripheral limbal vasculature migrate into the avascular corneal stroma. In vitro studies suggest PMN locomotion over 2-D surfaces is dependent on integrin binding while migration within 3-D matrices can b...

  8. Investigating the role of Integrin Linked Kinase in mammary epithelial cell differentiation

    Rooney, Nicholas

    2014-01-01

    Epithelial cell adhesion to the surrounding extracellular matrix (ECM) is necessary for their proper behaviour and function. During pregnancy and lactation mammary epithelial cells (MECs) require signals imparted by specific β1 integrin-laminin interactions for their functional differentiation in response to Prolactin (Prl) and for the correct formation of polarised secretory acini. Downstream of β1 integrin (β1Itg), the scaffold protein Integrin Linked Kinase (ILK) has been identified as the...

  9. Inhibition of a novel specific neuroglial integrin signaling pathway increases STAT3-mediated CNTF expression

    Keasey, Matthew P.; Kang, Seong Su; Lovins, Chiharu; Hagg, Theo

    2013-01-01

    Background Ciliary neurotrophic factor (CNTF) expression is repressed in astrocytes by neuronal contact in the CNS and is rapidly induced by injury. Here, we defined an inhibitory integrin signaling pathway. Results The integrin substrates laminin, fibronectin and vitronectin, but not collagen, thrombospondin or fibrinogen, reduced CNTF expression in C6 astroglioma cells. Antibodies against αv and β5, but not α6 or β1, integrin induced CNTF. Together, the ligand and antibody specificity sugge...

  10. Polarized Integrin Mediates Human Keratinocyte Adhesion to Basal Lamina

    de Luca, Michele; Tamura, Richard N.; Kajiji, Shama; Bondanza, Sergio; Rossino, Paola; Cancedda, Ranieri; Carlo Marchisio, Pier; Quaranta, Vito

    1990-09-01

    Epithelial cell interactions with matrices are critical to tissue organization. Indirect immunofluorescence and immunoprecipitations of cell lysates prepared from stratified cultures of human epidermal cells showed that the major integrins expressed by keratinocytes are α_Eβ_4 (also called α_6β_4) and α_2β_1/α_3β_1. The α_Eβ_4 integrin is localized at the surface of basal cells in contact with the basement membrane, whereas α_2β_1/ α_3β_1 integrins are absent from the basal surface and are localized only on the lateral surface of basal and spinous keratinocytes. Anti-β_4 antibodies potently inhibited keratinocyte adhesion to matrigel or purified laminin, whereas anti-β_1 antibodies were ineffective. Only anti-β_4 antibodies were able to detach established keratinocyte colonies. These data suggest that α_Eβ_4 mediates keratinocyte adhesion to basal lamina, whereas the β_1 subfamily is involved in cell-cell adhesion of keratinocytes.