WorldWideScience

Sample records for activate trkb signaling

  1. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    Rocha-Sanchez Sonia M

    2010-10-01

    Full Text Available Abstract Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2 specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF, is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity.

  2. BDNF/TrkB Signaling as a Potential Novel Target in Pediatric Brain Tumors: Anticancer Activity of Selective TrkB Inhibition in Medulloblastoma Cells.

    Thomaz, Amanda; Jaeger, Mariane; Buendia, Marienela; Bambini-Junior, Victorio; Gregianin, Lauro José; Brunetto, Algemir Lunardi; Brunetto, André T; de Farias, Caroline Brunetto; Roesler, Rafael

    2016-07-01

    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Deregulation of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling has been associated with increased proliferative capabilities, invasiveness, and chemoresistance in several types of cancer. However, the relevance of this pathway in MB remains unknown. Here, we show that the selective TrkB inhibitor N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo[b]thiophene-2-carboxamide (ANA-12) markedly reduced the viability and survival of human cell lines representative of different MB molecular subgroups. These findings provide the first evidence supporting further investigation of TrkB inhibition as a potential novel strategy for MB treatment. PMID:26614346

  3. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons

    Postigo, Antonio; Calella, Anna Maria; Fritzsch, Bernd; Knipper, Marlies; Katz, David; Eilers, Andreas; Schimmang, Thomas; Lewin, Gary R.; Klein, Rudiger; Minichiello, Liliana

    2002-01-01

    Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

  4. TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders

    Stuart L. Graham

    2013-05-01

    Full Text Available The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF, neurotrophin-3 (NT3 and neurotrophin-4 (NT4. TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.

  5. Activation of TrkB with TAM-163 results in opposite effects on body weight in rodents and non-human primates.

    Perreault, Mylène; Feng, Guo; Will, Sarah; Gareski, Tiffany; Kubasiak, David; Marquette, Kimberly; Vugmeyster, Yulia; Unger, Thaddeus J; Jones, Juli; Qadri, Ariful; Hahm, Seung; Sun, Ying; Rohde, Cynthia M; Zwijnenberg, Raphael; Paulsen, Janet; Gimeno, Ruth E

    2013-01-01

    Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man. PMID:23700410

  6. Activation of TrkB with TAM-163 results in opposite effects on body weight in rodents and non-human primates.

    Mylène Perreault

    Full Text Available Strong genetic data link the Tyrosine kinase receptor B (TrkB and its major endogenous ligand brain-derived neurotrophic factor (BDNF to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4 profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man.

  7. Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington's Disease.

    Nguyen, Khanh Q; Rymar, Vladimir V; Sadikot, Abbas F

    2016-01-01

    The principal projection neurons of the striatum are critically dependent on an afferent supply of brain derived neurotrophic factor (BDNF) for neurotrophic support. These neurons express TrkB, the cognate receptor for BDNF, which activates signaling pathways associated with neuronal survival and phenotypic maintenance. Impairment of the BDNF-TrkB pathway is suspected to underlie the early dysfunction and prominent degeneration of striatal neurons in Huntington disease (HD). Some studies in HD models indicate that BDNF supply is reduced, while others suggest that TrkB signaling is impaired earlier in disease progression. It remains important to determine whether a primary defect in TrkB signaling underlies reduced neurotrophic support and the early vulnerability of striatal neurons in HD. Using the transgenic R6/2 mouse model of HD we found that prior to striatal degeneration there are early deficits in striatal protein levels of activated phospho-TrkB and the downstream-regulated protein DARPP-32. In contrast, total-TrkB and BDNF protein levels remained normal. Primary neurons cultured from R6/2 striatum exhibited reduced survival in response to exogenous BDNF applications. Moreover, BDNF activation of phospho-TrkB and downstream signal transduction was attenuated in R6/2 striatal cultures. These results suggest that neurotrophic support of striatal neurons is attenuated early in disease progression due to defects in TrkB signal transduction in the R6/2 model of HD. PMID:27013968

  8. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease.

    Gao, Lei; Tian, Mi; Zhao, Hong-Yun; Xu, Qian-Qian; Huang, Yu-Ming; Si, Qun-Cao; Tian, Qing; Wu, Qing-Ming; Hu, Xia-Min; Sun, Li-Bo; McClintock, Shawn M; Zeng, Yan

    2016-02-01

    We recently demonstrated that activation of tyrosine receptor kinase B (TrkB) by 7, 8-dihydroxyflavone (7, 8-DHF), the selective TrkB agonist, increased surface alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPARs) AMPA receptor subunit GluR1 (GluA1) subunit expression at the synapses of Fragile X Syndrome mutant mice. This present study investigated the effects of 7, 8-DHF on both memory function and synapse structure in relation to the synapse protein level of AMPARs in the Tg2576 Alzheimer's disease (AD) mouse model. The study found that chronic oral administration of 7, 8-DHF significantly improved spatial memory and minimized dendrite loss in the hippocampus of Tg2576 mice. A key feature of 7, 8-DHF action was the increased expression of both GluA1 and GluA2 at synapses. Interestingly, 7, 8-DHF had no effect on the attenuation of amyloid precursor protein or Aβ exhibiting in the Tg2576 AD brains, yet it activated the phosphorylation of TrkB receptors and its downstream signals including CaMKII, Akt, Erk1/2, and cAMP-response element-binding protein. Importantly, cyclotraxin B (a TrkB inhibitor), U0126 (a Ras-ERK pathway inhibitor), Wortmannin (an Akt phosphorylation inhibitor), and KN-93 (a CaMKII inhibitor) counteracted the enhanced expression and phosphorylation of AMPAR subunits induced by 7, 8-DHF. Collectively, our results demonstrated that 7, 8-DHF acted on TrkB and resolved learning and memory impairments in the absence of reduced amyloid in amyloid precursor protein transgenic mice partially through improved synaptic structure and enhanced synaptic AMPARs. The findings suggest that the application of 7, 8-DHF may be a promising new approach to improve cognitive abilities in AD. We provided extensive data demonstrating that 7, 8-dihydroflavone, the TrkB agonist, improved Tg2576 mice spatial memory. This improvement is correlated with a reversion to normal values of GluA1 and GluA2 AMPA receptor subunits and dendritic

  9. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases.

    Tejeda, Gonzalo S; Ayuso-Dolado, Sara; Arbeteta, Raquel; Esteban-Ortega, Gema M; Vidaurre, Oscar G; Díaz-Guerra, Margarita

    2016-04-01

    Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26712630

  10. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling.

    Huang, Yen-Ning; Lin, Ching-I; Liao, Hsiang; Liu, Chin-Yu; Chen, Yue-Hua; Chiu, Wan-Chun; Lin, Shyh-Hsiang

    2016-07-22

    Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients. PMID:27155148

  11. Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model

    Li, Xin; Zheng, Wei; Bai, Hongying; Wang, Jin; Wei, Ruili; Wen, Hongtao; Ning, Hanbing

    2016-01-01

    Previous studies have shown the beneficial effects of adipose-derived stem cells (ADSCs) transplantation in stroke. However, the molecular mechanism by which transplanted ADSCs promote nerve healing is not yet elucidated. In order to make clear the molecular mechanism for the neuroprotective effects of ADSCs and investigate roles of the BDNF–TrkB signaling in neuroprotection of ADSCs, we, therefore, examined the neurological function, brain water content, and the protein expression in middle cerebral artery occlusion (MCAO) rats with or without ADSCs transplantation. ADSCs were transplanted intravenously into rats at 30 minutes after MCAO. K252a, an inhibitor of TrkB, was administered into rats by intraventricular and brain stereotaxic injection. Modified neurological severity score tests were performed to measure behavioral outcomes. The results showed that ADSCs significantly alleviated neurological deficits and reduced brain water content in MCAO rats. The protein expression levels of BDNF and TrkB significantly increased in the cortex of MCAO rats with ADSCs treatment. However, K252a administration reversed the ADSCs-induced elevation of BDNF, TrkB, and Bcl-2 and reduction of Bax protein in MCAO rats. ADSCs promote BDNF expression via the TrkB signaling and improve functional neurological recovery in stroke rats.

  12. Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade.

    Tomi Rantamäki

    Full Text Available BACKGROUND: Antidepressant drugs (ADs have been shown to activate BDNF (brain-derived neurotrophic factor receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. METHODOLOGY: In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. PRINCIPAL FINDINGS: Using a chemical-genetic TrkB(F616A mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf⁻/⁻ knock-out mice (132.4±8.5% of control; P = 0.01, indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. CONCLUSIONS: The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the

  13. Vascular neuroprotection via TrkB- and Akt-dependent cell survival signaling

    Guo, Shuzhen; Som, Angel T.; Waeber, Christian; Lo, Eng H.

    2012-01-01

    The cerebral endothelium can be a vital source of signaling factors such as brain-derived neurotrophic factor (BDNF) that defend the neuronal parenchyma against stress and injury. But the underlying mechanisms remain to be fully defined. Here, we use cell models to ask how vascular neuroprotection is sustained. Human brain endothelial cells were grown in culture and conditioned media was transferred to primary rat cortical neurons. Brain endothelial cell-conditioned media activated neuronal A...

  14. Functional characterization of human cancer-derived TRKB mutations.

    Thomas R Geiger

    Full Text Available Cancer originates from cells that have acquired mutations in genes critical for controlling cell proliferation, survival and differentiation. Often, tumors continue to depend on these so-called driver mutations, providing the rationale for targeted anticancer therapies. To date, large-scale sequencing analyses have revealed hundreds of mutations in human tumors. However, without their functional validation it remains unclear which mutations correspond to driver, or rather bystander, mutations and, therefore, whether the mutated gene represents a target for therapeutic intervention. In human colorectal tumors, the neurotrophic receptor TRKB has been found mutated on two different sites in its kinase domain (TRKB(T695I and TRKB(D751N. Another site, in the extracellular part of TRKB, is mutated in a human lung adenocarcinoma cell line (TRKB(L138F. Lastly, our own analysis has identified one additional TRKB point mutation proximal to the kinase domain (TRKB(P507L in a human melanoma cell line. The functional consequences of all these point mutations, however, have so far remained elusive. Previously, we have shown that TRKB is a potent suppressor of anoikis and that TRKB-expressing cells form highly invasive and metastatic tumors in nude mice. To assess the functional consequences of these four TRKB mutations, we determined their potential to suppress anoikis and to form tumors in nude mice. Unexpectedly, both colon cancer-derived mutants, TRKB(T695I and TRKB(D751N, displayed reduced activity compared to that of wild-type TRKB. Consistently, upon stimulation with the TRKB ligand BDNF, these mutants were impaired in activating TRKB and its downstream effectors AKT and ERK. The two mutants derived from human tumor cell lines (TRKB(L138F and TRKB(P507L were functionally indistinguishable from wild-type TRKB in both in-vitro and in-vivo assays. In conclusion, we fail to detect any gain-of-function of four cancer-derived TRKB point mutations.

  15. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y

    Sakaki Yoshiyuki

    2008-10-01

    Full Text Available Abstract Background SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA, but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E, each of which show a different phenotype during RA-mediated differentiation. Findings SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF for full differentiation. After exposing cells to a PI3K inhibitor, LY294002, we identified 386 genes and categorised these genes into two clusters dependent on the PI3K signalling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster, including 158 neural genes, was greatly reduced in SK-N-SH cells and partially impaired in SH-SY5Y-E cells, which is consistent with a defect in the neuronal phenotype of these cells. Additional stimulation with BDNF induced a set of neural genes that were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in differentiated SH-SY5Y-A cells. Conclusion We identified gene clusters controlled by PI3K- and TRKB-mediated signalling pathways during the differentiation of two subtypes of SH-SY5Y cells. The TRKB-mediated bypass pathway compensates for impaired neural function generated by defects in several signalling pathways, including PI3K in SH-SY5Y-E cells. Our expression profiling data will be useful for further elucidation of the signal transduction-transcriptional network involving PI3K or TRKB.

  16. Effects of novel small compounds targeting TrkB on neuronal cell survival and depression-like behavior.

    Fukuda, Mayu; Takatori, Atsushi; Nakamura, Yohko; Suganami, Akiko; Hoshino, Tyuji; Tamura, Yutaka; Nakagawara, Akira

    2016-07-01

    Brain-derived neurotrophic factor (BDNF) and its high affinity receptor tyrosine kinase receptor B (TrkB) are involved in neuronal survival, maintenance, differentiation and synaptic plasticity. Deficiency of BDNF was reported to be associated with psychological disorders such as depression. Hence we examined proliferative effect of 11 candidate TrkB agonistic compounds in TrkB-expressing SH-SY5Y cells, via a hypothesis that some candidate compounds identified in our previous in silico screening for a small molecule targeting the BDNF binding domain of TrkB should activate TrkB signaling. In the present study, two promising compounds, 48 and 56, were identified and subsequently assessed for their ability to induce TrkB phosphorylation in vitro and in vivo. Likewise those seen in BDNF, the compounds mediated TrkB phosphorylation was blocked by the Trk inhibitor, K252a. Since BDNF-TrkB signaling deficiency is associated with the pathogenesis of depression and reactivation of this signaling by antidepressants is a cause of the pathogenic state recovery, the compounds were subjected to the assessment for forced swim test, which is a mouse model of depression. We found that compound 48 significantly reduced mouse immobility time compared with the control vehicle injection, suggesting the confirmation of hypothetical antidepressant-like efficacy of 48 compound in vivo. Thus, our present study demonstrated that compound 48, selected through in silico screening, is a novel activator of TrkB signaling and a potential antidepressant molecule. PMID:27166149

  17. A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington's disease.

    Daniel Todd

    Full Text Available Huntington's disease (HD is a devastating, genetic neurodegenerative disease caused by a tri-nucleotide expansion in exon 1 of the huntingtin gene. HD is clinically characterized by chorea, emotional and psychiatric disturbances and cognitive deficits with later symptoms including rigidity and dementia. Pathologically, the cortico-striatal pathway is severely dysfunctional as reflected by striatal and cortical atrophy in late-stage disease. Brain-derived neurotrophic factor (BDNF is a neuroprotective, secreted protein that binds with high affinity to the extracellular domain of the tropomyosin-receptor kinase B (TrkB receptor promoting neuronal cell survival by activating the receptor and down-stream signaling proteins. Reduced cortical BDNF production and transport to the striatum have been implicated in HD pathogenesis; the ability to enhance TrkB signaling using a BDNF mimetic might be beneficial in disease progression, so we explored this as a therapeutic strategy for HD. Using recombinant and native assay formats, we report here the evaluation of TrkB antibodies and a panel of reported small molecule TrkB agonists, and identify the best candidate, from those tested, for in vivo proof of concept studies in transgenic HD models.

  18. Distribution of TrkB receptor in the mouse hippocampal formation depends on sex and estrous cycle stage

    Spencer-Segal, Joanna L.; Waters, Elizabeth M.; Bath, Kevin G.; Chao, Moses V.; Bruce S McEwen; Milner, Teresa A.

    2011-01-01

    TrkB is a neurotrophin receptor important for the synaptic plasticity underlying hippocampal-dependent learning and memory. Because this receptor is widely expressed in hippocampal neurons, the precise location of TrkB activation is likely important for its specific actions. The goal of this study was to identify the precise sites of TrkB activation in the mouse hippocampal formation, and to determine any changes in the distribution of activated TrkB under conditions of enhanced BDNF expressi...

  19. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders.

    Liu, Chaoyang; Chan, Chi Bun; Ye, Keqiang

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates a variety of biological processes predominantly via binding to the transmembrane receptor tyrosine kinase TrkB. It is a potential therapeutic target in numerous neurological, mental and metabolic disorders. However, the lack of efficient means to deliver BDNF into the body imposes an insurmountable hurdle to its clinical application. To address this challenge, we initiated a cell-based drug screening to search for small molecules that act as the TrkB agonist. 7,8-Dihydroxyflavone (7,8-DHF) is our first reported small molecular TrkB agonist, which has now been extensively validated in various biochemical and cellular systems. Though binding to the extracellular domain of TrkB, 7,8-DHF triggers TrkB dimerization to induce the downstream signaling. Notably, 7,8-DHF is orally bioactive that can penetrate the brain blood barrier (BBB) to exert its neurotrophic activities in the central nervous system. Numerous reports suggest 7,8-DHF processes promising therapeutic efficacy in various animal disease models that are related to deficient BDNF signaling. In this review, we summarize our current knowledge on the binding activity and specificity, structure-activity relationship, pharmacokinetic and metabolism, and the pre-clinical efficacy of 7,8-DHF against some human diseases. PMID:26740873

  20. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems.

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-07-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF. PMID:25649277

  1. Activation of TrkB with TAM-163 Results in Opposite Effects on Body Weight in Rodents and Non-Human Primates

    Perreault, Mylène; Feng, Guo; Will, Sarah; Gareski, Tiffany; Kubasiak, David; Marquette, Kimberly; Vugmeyster, Yulia; Thaddeus J Unger; Jones, Juli; Qadri, Ariful; Hahm, Seung; Sun, Ying; Rohde, Cynthia M.; Zwijnenberg, Raphael; Paulsen, Janet

    2013-01-01

    Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same...

  2. Disruption of TrkB-Mediated Phospholipase C gamma Signaling Inhibits Limbic Epileptogenesis

    He, Xiao Ping; Pan, Enhui; Sciarretta, Carla; Minichiello, Liliana; McNamara, James O.

    2010-01-01

    The BDNF receptor, TrkB, is critical to limbic epileptogenesis, but the responsible downstream signaling pathways are unknown. We hypothesized that TrkB-dependent activation of phospholipase C gamma 1 (PLC gamma 1) signaling is the key pathway and tested this in trkB(PLC/PLC) mice carrying a mutation (Y816F) that uncouples TrkB from PLC gamma 1. Biochemical measures revealed activation of both TrkB and PLC gamma 1 in hippocampi in the pilocarpine and kindling models in wild-type mice. PLC gam...

  3. Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation.

    Jeff S Kruk

    Full Text Available High concentrations of reactive oxygen species (ROS induce cellular damage, however at lower concentrations ROS act as intracellular second messengers. In this study, we demonstrate that serotonin (5-HT transactivates the platelet-derived growth factor (PDGF type β receptor as well as the TrkB receptor in neuronal cultures and SH-SY5Y cells, and that the transactivation of both receptors is ROS-dependent. Exogenous application of H₂O₂ induced the phosphorylation of these receptors in a dose-dependent fashion, similar to that observed with 5-HT. However the same concentrations of H₂O₂ failed to increase ERK1/2 phosphorylation. Yet, the NADPH oxidase inhibitors diphenyleneiodonium chloride and apocynin blocked both 5-HT-induced PDGFβ receptor phosphorylation and ERK1/2 phosphorylation. The increases in PDGFβ receptor and ERK1/2 phosphorylation were also dependent on protein kinase C activity, likely acting upstream of NADPH oxidase. Additionally, although the ROS scavenger N-acetyl-l-cysteine abrogated 5-HT-induced PDGFβ and TrkB receptor transactivation, it was unable to prevent 5-HT-induced ERK1/2 phosphorylation. Thus, the divergence point for 5-HT-induced receptor tyrosine kinase (RTK transactivation and ERK1/2 phosphorylation occurs at the level of NADPH oxidase in this system. The ability of 5-HT to induce the production of ROS resulting in transactivation of both PDGFβ and TrkB receptors may suggest that instead of a single GPCR to single RTK pathway, a less selective, more global RTK response to GPCR activation is occurring.

  4. Stage-Specific Inhibition of TrkB Activity Leads to Long-Lasting and Sexually Dimorphic Effects on Body Weight and Hypothalamic Gene Expression

    Byerly, Mardi S.; Swanson, Roy D.; Wong, G. William; Blackshaw, Seth

    2013-01-01

    During development, prenatal and postnatal factors program homeostatic set points to regulate food intake and body weight in the adult. Combinations of genetic and environmental factors contribute to the development of neural circuitry that regulates whole-body energy homeostasis. Brain-derived neurotrophic factor (Bdnf) and its receptor, Tyrosine kinase receptor B (TrkB), are strong candidates for mediating the reshaping of hypothalamic neural circuitry, given their well-characterized role i...

  5. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling

    Stucky, Andres; Bakshi, Kalindi P.; Friedman, Eitan; Wang, Hoau-Yan

    2016-01-01

    Prenatal cocaine exposure causes profound changes in neurobehavior as well as synaptic function and structure with compromised glutamatergic transmission. Since synaptic health and glutamatergic activity are tightly regulated by brain-derived neurotrophic factor (BDNF) signaling through its cognate tyrosine receptor kinase B (TrkB), we hypothesized that prenatal cocaine exposure alters BDNF-TrkB signaling during brain development. Here we show prenatal cocaine exposure enhances BDNF-TrkB signaling in hippocampus and prefrontal cortex (PFCX) of 21-day-old rats without affecting the expression levels of TrkB, P75NTR, signaling molecules, NMDA receptor—NR1 subunit as well as proBDNF and BDNF. Prenatal cocaine exposure reduces activity-dependent proBDNF and BDNF release and elevates BDNF affinity for TrkB leading to increased tyrosine-phosphorylated TrkB, heightened Phospholipase C-γ1 and N-Shc/Shc recruitment and higher downstream PI3K and ERK activation in response to ex vivo BDNF. The augmented BDNF-TrkB signaling is accompanied by increases in association between activated TrkB and NMDARs. These data suggest that cocaine exposure during gestation upregulates BDNF-TrkB signaling and its interaction with NMDARs by increasing BDNF affinity, perhaps in an attempt to restore the diminished excitatory neurotransmission. PMID:27494324

  6. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling.

    Stucky, Andres; Bakshi, Kalindi P; Friedman, Eitan; Wang, Hoau-Yan

    2016-01-01

    Prenatal cocaine exposure causes profound changes in neurobehavior as well as synaptic function and structure with compromised glutamatergic transmission. Since synaptic health and glutamatergic activity are tightly regulated by brain-derived neurotrophic factor (BDNF) signaling through its cognate tyrosine receptor kinase B (TrkB), we hypothesized that prenatal cocaine exposure alters BDNF-TrkB signaling during brain development. Here we show prenatal cocaine exposure enhances BDNF-TrkB signaling in hippocampus and prefrontal cortex (PFCX) of 21-day-old rats without affecting the expression levels of TrkB, P75NTR, signaling molecules, NMDA receptor-NR1 subunit as well as proBDNF and BDNF. Prenatal cocaine exposure reduces activity-dependent proBDNF and BDNF release and elevates BDNF affinity for TrkB leading to increased tyrosine-phosphorylated TrkB, heightened Phospholipase C-γ1 and N-Shc/Shc recruitment and higher downstream PI3K and ERK activation in response to ex vivo BDNF. The augmented BDNF-TrkB signaling is accompanied by increases in association between activated TrkB and NMDARs. These data suggest that cocaine exposure during gestation upregulates BDNF-TrkB signaling and its interaction with NMDARs by increasing BDNF affinity, perhaps in an attempt to restore the diminished excitatory neurotransmission. PMID:27494324

  7. NeuroD1 regulation of migration accompanies the differential sensitivity of neuroendocrine carcinomas to TrkB inhibition

    Osborne, J K; Larsen, J E; Gonzales, J X; Shames, D S; Sato, M.; Wistuba, I. I.; Girard, L; Minna, J D; Cobb, M H

    2013-01-01

    The developmental transcription factor NeuroD1 is anomalously expressed in a subset of aggressive neuroendocrine tumors. Previously, we demonstrated that TrkB and neural cell adhesion molecule (NCAM) are downstream targets of NeuroD1 that contribute to the actions of neurogenic differentiation 1 (NeuroD1) in neuroendocrine lung. We found that several malignant melanoma and prostate cell lines express NeuroD1 and TrkB. Inhibition of TrkB activity decreased invasion in several neuroendocrine pi...

  8. Deoxygedunin, a natural product with potent neurotrophic activity in mice.

    Sung-Wuk Jang

    Full Text Available Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF -/- pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases.

  9. Expression of BDNF and TrkB Phosphorylation in the Rat Frontal Cortex During Morphine Withdrawal are NO Dependent.

    Peregud, Danil I; Yakovlev, Alexander A; Stepanichev, Mikhail Yu; Onufriev, Mikhail V; Panchenko, Leonid F; Gulyaeva, Natalia V

    2016-08-01

    Nitric oxide (NO) mediates pharmacological effects of opiates including dependence and abstinence. Modulation of NO synthesis during the induction phase of morphine dependence affects manifestations of morphine withdrawal syndrome, though little is known about mechanisms underlying this phenomenon. Neurotrophic and growth factors are involved in neuronal adaptation during opiate dependence. NO-dependent modulation of morphine dependence may be mediated by changes in expression and activity of neurotrophic and/or growth factors in the brain. Here, we studied the effects of NO synthesis inhibition during the induction phase of morphine dependence on the expression of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and insulin-like growth factor 1 (IGF1) as well as their receptors in rat brain regions after spontaneous morphine withdrawal in dependent animals. Morphine dependence in rats was induced within 6 days by 12 injections of morphine in increasing doses (10-100 mg/kg), and NO synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) (10 mg/kg) was given 1 h before each morphine injection. The expression of the BDNF, GDNF, NGF, IGF1, and their receptors in the frontal cortex, striatum, hippocampus, and midbrain was assessed 40 h after morphine withdrawal. L-NAME treatment during morphine intoxication resulted in an aggravation of the spontaneous morphine withdrawal severity. Morphine withdrawal was accompanied by upregulation of BDNF, IGF1, and their receptors TrkB and IGF1R, respectively, on the mRNA level in the frontal cortex, and only BDNF in hippocampus and midbrain. L-NAME administration during morphine intoxication decreased abstinence-induced upregulation of these mRNAs in the frontal cortex, hippocampus and midbrain. L-NAME prevented from abstinence-induced elevation of mature but not pro-form of BDNF polypeptide in the frontal cortex. While morphine abstinence did not affect TrkB

  10. Cysteamine Attenuates the Decreases in TrkB Protein Levels and the Anxiety/Depression-Like Behaviors in Mice Induced by Corticosterone Treatment

    Ammar Kutiyanawalla; Alvin V Terry; Anilkumar Pillai

    2011-01-01

    OBJECTIVE: Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of anxiety-like behaviors observed in many neuropsychiatric disorders. Brain-derived neurotrophic factor (BDNF) signaling through its receptor TrkB plays an important role in stress-mediated changes in structural as well as functional neuroplasticity. Studies designed to elucidate the mechanisms whereby TrkB si...

  11. Identification of novel candidate compounds targeting TrkB to induce apoptosis in neuroblastoma

    Neuroblastoma (NB) is one of the most frequent solid tumors in children and its prognosis is still poor. The neurotrophin receptor TrkB and its ligand brain-derived neurotrophic factor (BDNF) are expressed at high levels in high-risk NBs and are involved in defining the poor prognosis of the patients. However, the TrkB targeting therapy has never been realized in the clinic. We performed an in silico screening procedure utilizing an AutoDock/grid computing technology in order to identify novel small chemical compounds targeting the BDNF-binding domain of TrkB. For the first screening, a library of three million synthetic compounds was screened in silico and was ranked according to the Docking energy. The top-ranked 37 compounds were further functionally screened for cytotoxicity by using NB cell lines. We have finally identified seven compounds that kill NB cells with the IC50 values of 0.07–4.6 μmol/L. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that these molecules induce apoptosis accompanied by p53 activation in NB cell lines. The candidate compounds and BDNF demonstrated an antagonistic effect on cell growth, invasion, and colony formation, possibly suggesting competition at the BDNF-binding site of TrkB. The candidate compounds had tumor-suppressive activity in xenograft and in vivo toxicity tests (oral and intravenous administrations) using mice, and did not show any abnormal signs. Using in silico Docking screening we have found new candidate TrkB inhibitors against high-risk NBs, which could lead to new anti-cancer drugs

  12. Effect of Chronic Restraint Stress on HPA Axis Activity and Expression of BDNF and Trkb in the Hippocampus of Pregnant Rats: Possible Contribution in Depression during Pregnancy and Postpartum Period

    Maghsoudi, Nader; Ghasemi, Rasoul; Ghaempanah, Zahra; Ardekani, Ali M.; Nooshinfar, Elahe; Tahzibi, Abbas

    2014-01-01

    Introduction Brain-Derived Neurotrophic Factor (BDNF) and its receptor, TrkB, in the hippocampus are targets for adverse effects of stress paradigms; in addition, BDNF and its receptor play key role in the pathology of brain diseases like depression. In the present study, we evaluated the possible role of hippocampal BDNF in depression during pregnancy, Methods To achieve the purpose, repeated restrain stress (1 or 3 hours daily for 7 days) during the last week of pregnancy was used and alter...

  13. Role of TrkB in the anxiolytic-like and antidepressant-like effects of vagal nerve stimulation: Comparison with desipramine.

    Shah, A P; Carreno, F R; Wu, H; Chung, Y A; Frazer, A

    2016-05-13

    A current hypothesis regarding the mechanism of antidepressant (AD) action suggests the involvement of brain-derived neurotrophic factor (BDNF). Consistent with this hypothesis, the receptor for BDNF (and neurotrophin 4/5 (NT-4/5)), Tropomyosin-related kinase B (TrkB), is activated in rodents by treatment with classical AD drugs. Vagal nerve stimulation (VNS), a therapy for treatment resistant depression (TRD), also activates TrkB in rodents. However, the role of this receptor in the therapeutic effects of VNS is unclear. In the current study, the involvement of TrkB in the effects of VNS was investigated in rats using its inhibitor, K252a. Anxiolytic-like and AD-like effects were analyzed using the novelty suppressed feeding test (NSFT) and forced swim test (FST), respectively. K252a blocked the anxiolytic-like effect of chronic VNS treatment and the AD-like effect of acute VNS treatment. By contrast, blocking TrkB did not prevent either the anxiolytic-like or AD-like effect of chronic treatment with desipramine (DMI), a selective noradrenergic reuptake inhibitor; it did, however, block the acute effect of DMI in the FST. To examine whether the activation of TrkB caused by either VNS or DMI is ligand-dependent, use was made of TrkB-Fc, a molecular scavenger for ligands of TrkB. Intraventricular administration of TrkB-Fc blocked the acute activation of TrkB induced by either treatment, indicating that treatment-induced activation of this receptor is ligand-dependent. The behavioral results highlight differences in the involvement of TrkB in the chronic effects of an AD drug and a stimulation therapy as well as its role in acute versus chronic effects of DMI. PMID:26899129

  14. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling.

    Neis, Vivian Binder; Moretti, Morgana; Bettio, Luis Eduardo B; Ribeiro, Camille M; Rosa, Priscila Batista; Gonçalves, Filipe Marques; Lopes, Mark William; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2016-06-01

    The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5μg/site, i.c.v.), BDNF antibody (1μg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1μg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3β inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01μg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3β, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses. PMID:27061850

  15. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexi...

  16. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    Gupta, Vivek, E-mail: vivek.gupta@mq.edu.au [Australian School of Advanced Medicine, Macquarie University (Australia); Chitranshi, Nitin; You, Yuyi [Australian School of Advanced Medicine, Macquarie University (Australia); Gupta, Veer [School of Medical Sciences, Edith Cowan University, Perth (Australia); Klistorner, Alexander; Graham, Stuart [Australian School of Advanced Medicine, Macquarie University (Australia); Save Sight Institute, Sydney University, Sydney (Australia)

    2014-11-21

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF{sup +/−} animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling.

  17. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF+/− animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling

  18. Cysteamine attenuates the decreases in TrkB protein levels and the anxiety/depression-like behaviors in mice induced by corticosterone treatment.

    Ammar Kutiyanawalla

    Full Text Available OBJECTIVE: Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of anxiety-like behaviors observed in many neuropsychiatric disorders. Brain-derived neurotrophic factor (BDNF signaling through its receptor TrkB plays an important role in stress-mediated changes in structural as well as functional neuroplasticity. Studies designed to elucidate the mechanisms whereby TrkB signaling is regulated in chronic stress might provide valuable information for the development of new therapeutic strategies for several stress-related psychiatric disorders. MATERIALS AND METHODS: We examined the potential of cysteamine, a neuroprotective compound to attenuate anxiety and depression like behaviors in a mouse model of anxiety/depression induced by chronic corticosterone exposure. RESULTS: Cysteamine administration (150 mg/kg/day, through drinking water for 21 days significantly ameliorated chronic corticosterone-induced decreases in TrkB protein levels in frontal cortex and hippocampus. Furthermore, cysteamine treatment reversed the anxiety and depression like behavioral abnormalities induced by chronic corticosterone treatment. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in behavioral tests, suggesting that TrkB signaling plays an important role in the antidepressant effects of cysteamine. CONCLUSIONS: The animal studies described here highlight the potential use of cysteamine as a novel therapeutic strategy for glucocorticoid-related symptoms of psychiatric disorders.

  19. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y

    Sakaki Yoshiyuki; Maeda Aasami; Ozawa Ritsuko; Adati Naoki; Nishida Yuichiro; Takeda Tadayuki

    2008-01-01

    Abstract Background SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which show a different phenotype during RA-mediated differentiation. Findings SH-SY5Y-A cells diffe...

  20. Signal Processing under Active Monitoring

    Mostovyi, Oleksii

    2005-01-01

    This paper describes a method of signal preprocessing under active monitoring. Suppose we want to solve the inverse problem of getting the response of a medium to one powerful signal, which is equivalent to obtaining the transmission function of the medium, but do not have an opportunity to conduct such an experiment (it might be too expensive or harmful for the environment). Practically the problem can be reduced to obtaining the transmission function of the medium. In this case ...

  1. BDNF Meditated trkB and Synapsin I Changes within the Hippocampus after Mild Traumatic Brain Injury in Rat:Reflections of Injury-induced Neuroplasticity

    2005-01-01

    1 IntroductionTraumatic brain injury (TBI) can produce chronic cognitive learning/memory deficits that are thought to be mediated, in part, by impaired hippocampal function. Brain-derived neurotrophic factor (BDNF), its signal transduction receptor trkB and its downstream effector synapsin I are involved in this period. BDNF, trkB and the slope of field excitatory post-synaptic potential(fEPSP) were measured in the hippocampus of rat after fluid percussion brain injury (FPI). Isofluorane anaesthe- tizeed 50...

  2. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    HarishBabu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  3. Expression and localisation of BDNF, NT4 and TrkB in proliferative vitreoretinopathy.

    Ghazi-Nouri, Seyed M S; Ellis, James S; Moss, Stephen; Limb, G Astrid; Charteris, David G

    2008-05-01

    Exogenous brain derived neurotrophic factor (BDNF) is known to rescue ganglion cell death after optic nerve injury. Its mechanism of action is believed to be indirect via glial cells in the retina. In this study we investigated the changes in expression and localisation of BDNF, neurotrophin-4 (NT4) and their common receptor (TrkB) in retinectomy sections of patients with proliferative vitreoretinopathy (PVR). Nine full-thickness retinectomy specimens obtained at retinal reattachment surgery for PVR were fixed in 4% paraformaldehyde immediately after excision and compared to similarly processed normal donor retinas (4 eyes). Agarose-embedded sections (100 microm thick) were double labelled for immunohistochemistry by confocal microscopy, with antibodies against BDNF, NT4, TrkB, rod opsin, glial fibrillary acidic protein (GFAP), cellular retinaldehyde binding protein (CRALBP) and Brn3. This study demonstrates expression of NT4 by ganglion cells and shows expression of BDNF and NT4 in the outer photoreceptor segments is downregulated during PVR, whilst NT4 is markedly upregulated throughout the retina during this condition. The findings here suggest that NT4 may play a neural protective role during the development of PVR. It also shows that upregulation of NT4 in PVR is localised to Müller glial cells, indicating either over-expression of this factor by Müller cells or that Müller cells internalise NT4 for trafficking across the retina. TrkB expression was not observed in PVR retina. The observations that Müller glia demonstrate upregulation of NT4 suggests that retinal injury may lead to activation of this neurotrophin by Müller cells as part of their neuroprotective functions. PMID:18405896

  4. TrkB overexpression in mice buffers against memory deficits and depression-like behavior but not all anxiety- and stress-related symptoms induced by developmental exposure to methylmercury

    Nina N Karpova

    2014-09-01

    Full Text Available Developmental exposure to low dose of methylmercury (MeHg has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnfin mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic animals, here we analyzed the effect of the full-length TrkB overexpression (TK+ on behavior impairments induced by perinatal MeHg. TK overexpression in the MeHg-exposed mice enhanced generalized anxiety and cue memory in the fear conditioning test. Early exposure to MeHg induced deficits in reversal spatial memory in the Morris water maze test and depression-like behavior in the forced swim test in only wild-type mice but did not affect these parameters in TK+ mice. These changes were associated with TK+ effect on the increase in Bdnf 2, 3, 4 and 6 transcription in the hippocampus as well as with interaction of TK+ and MeHg factors for Bdnf 1, 9a and truncated TrkB.T1 transcripts in the prefrontal cortex. However, the MeHg-induced anxiety-like behavior in the elevated plus maze and open field tests was ameliorated by TK+ background only in the open field test. Moreover, TK overexpression in the MeHg mice did not prevent significant stress-induced weight loss during the period of adaptation to individual housing in metabolic cages. These TK genotype-independent changes were primarily accompanied by the MeHg-induced hippocampal deficits in the activity-dependent Bdnf 1, 4 and 9a variants, TrkB.T1, and transcripts for important antioxidant enzymes glyoxalases Glo1 and Glo2 and glutathione reductase Gsr. Our data suggest a role of full-length TrkB in buffering against memory deficits and depression-like behavior in the MeHg mice but propose the involvement of additional pathways, such as the antioxidant system or TrkB.T1 signaling, in stress- or anxiety-related responses induced by developmental MeHg exposure.

  5. Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.

    Gill, Luther C; Gransee, Heather M; Sieck, Gary C; Mantilla, Carlos B

    2016-06-01

    Cervical spinal cord injury (SCI) interrupts descending neural drive to phrenic motoneurons causing diaphragm muscle (DIAm) paralysis. Recent studies using a well-established model of SCI, unilateral spinal hemisection of the C2 segment of the cervical spinal cord (SH), provide novel information regarding the molecular and cellular mechanisms of functional recovery after SCI. Over time post-SH, gradual recovery of rhythmic ipsilateral DIAm activity occurs. Recovery of ipsilateral DIAm electromyogram (EMG) activity following SH is enhanced by increasing brain-derived neurotrophic factor (BDNF) in the region of the phrenic motoneuron pool. Delivery of exogenous BDNF either via intrathecal infusion or via mesenchymal stem cells engineered to release BDNF similarly enhance recovery. Conversely, recovery after SH is blunted by quenching endogenous BDNF with the fusion-protein TrkB-Fc in the region of the phrenic motoneuron pool or by selective inhibition of TrkB kinase activity using a chemical-genetic approach in TrkB(F616A) mice. Furthermore, the importance of BDNF signaling via TrkB receptors at phrenic motoneurons is highlighted by the blunting of recovery by siRNA-mediated downregulation of TrkB receptor expression in phrenic motoneurons and by the enhancement of recovery evident following virally-induced increases in TrkB expression specifically in phrenic motoneurons. BDNF/TrkB signaling regulates synaptic plasticity in various neuronal systems, including glutamatergic pathways. Glutamatergic neurotransmission constitutes the main inspiratory-related, excitatory drive to motoneurons, and following SH, spontaneous neuroplasticity is associated with increased expression of ionotropic N-methyl-d-aspartate (NMDA) receptors in phrenic motoneurons. Evidence for the role of BDNF/TrkB and glutamatergic signaling in recovery of DIAm activity following cervical SCI is reviewed. PMID:26506253

  6. Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway.

    Mao, Xiao-Yuan; Zhou, Hong-Hao; Li, Xi; Liu, Zhao-Qian

    2016-08-01

    Oxidative glutamate toxicity is involved in diverse neurological disorders including epilepsy and ischemic stroke. Our present work aimed to assess protective effects of huperzine A (HupA) against oxidative glutamate toxicity in a mouse-derived hippocampal HT22 cells and explore its potential mechanisms. Cell survival and cell injury were analyzed by MTT method and LDH release assay, respectively. The production of ROS was measured by detection kits. Protein expressions of BDNF, phosphor-TrkB (p-TrkB), TrkB, phosphor-Akt (p-Akt), Akt, phosphor-mTOR (p-mTOR), mTOR, phosphor-p70s6 (p-p70s6) kinase, p70s6 kinase, Bcl-2, Bax, and β-actin were assayed via Western blot analysis. Enzyme-linked immunosorbent assay was employed to measure the contents of nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Our findings illustrated 10 μM HupA for 24 h significantly protected HT22 from cellular damage and suppressed the generation of ROS. Additionally, after treating with LY294002 or wortmannin [the selective inhibitors of phosphatidylinositol 3 kinase (PI3K)], HupA dramatically prevented the down-regulations of p-Akt, p-mTOR, and p-p70s6 kinase in HT22 cells under oxidative toxicity. Furthermore, it was observed that the protein levels of BDNF and p-TrkB were evidently enhanced after co-treatment with HupA and glutamate in HT22 cells. The elevations of p-Akt and p-mTOR were abrogated under toxic conditions after blockade of TrkB by TrkB IgG. Cellular apoptosis was significantly suppressed (decreased caspase-3 activity and enhanced Bcl-2 protein level) after HupA treatment. It was concluded that HupA attenuated oxidative glutamate toxicity in murine hippocampal HT22 cells via activating BDNF/TrkB-dependent PI3K/Akt/mTOR signaling pathway. PMID:26440805

  7. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma.

    Wei Bao

    Full Text Available Mechanisms governing the metastasis of endometrial carcinoma (EC are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF, are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05 and lymphovascular space involvement (p<0.05 in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT. RNA interference (RNAi-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC.

  8. The 5' leader of the mRNA encoding the mouse neurotrophin receptor TrkB contains two internal ribosomal entry sites that are differentially regulated.

    Stephanie L Timmerman

    Full Text Available A single internal ribosomal entry site (IRES in conjunction with IRES transactivating factors (ITAFs is sufficient to recruit the translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 5' leaders (1428 nt and 448 nt, both of which include the common 3' exon (Ex2, 344 nt. Dicistronic RNA transfections and in vitro translation of monocistronic RNA demonstrated that both full-length 5' leaders, as well as Ex2, exhibit IRES activity indicating the IRES is located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a also contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis of the ITAF polypyrimidine tract binding protein (PTB1. Correspondingly, addition or knock-down of PTB1 altered Ex2, but not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent IRESes within the mouse TrkB 5' leader are differentially regulated, in part by PTB1.

  9. The 5' leader of the mRNA encoding the mouse neurotrophin receptor TrkB contains two internal ribosomal entry sites that are differentially regulated.

    Timmerman, Stephanie L; Pfingsten, Jennifer S; Kieft, Jeffrey S; Krushel, Les A

    2008-01-01

    A single internal ribosomal entry site (IRES) in conjunction with IRES transactivating factors (ITAFs) is sufficient to recruit the translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 5' leaders (1428 nt and 448 nt), both of which include the common 3' exon (Ex2, 344 nt). Dicistronic RNA transfections and in vitro translation of monocistronic RNA demonstrated that both full-length 5' leaders, as well as Ex2, exhibit IRES activity indicating the IRES is located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a) also contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis of the ITAF polypyrimidine tract binding protein (PTB1). Correspondingly, addition or knock-down of PTB1 altered Ex2, but not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent IRESes within the mouse TrkB 5' leader are differentially regulated, in part by PTB1. PMID:18779873

  10. Effect of 8 weeks Resistance Training on BDNF and TrkB in the Hippocampus of Adult Male Rats

    S Mojtahedi

    2014-08-01

    Full Text Available Background & aim: Exercise enhances the synaptic plasticity and neuroprotective effects in the adult brain. However, it remains unknown that how plasticity molecules change following types of training. The purpose of this study was to determine the effect of eight weeks resistance training on protein levels of Brain Derived Neurotrophic Factor(BDNF and receptor of TrkB, in the hippocampus of adult male rats. Methods: In this experimental study, twelve adult male rats, 8 weeks of age, with an average weight of 200 to 225 grams were randomly divided into two groups, control and exercise respectively. The exercise was to increase the weight on the ladder. 24 hours after their last training session. The animals were killed and the hippocampus was removed for further testing. ELISA determined changes in protein levels. Data were analyzed by independent t test. Results: There was a significant difference between train and control groups In protein level of variables statically (p≤0.05. In addition, protein levels of BDNF and TrkB in the hippocampus of rats increased. Conclusion: Resistance training is beneficial for promoting hippocampal plasticity associated with BDNF signaling and consequently functional and cognitive benefits.

  11. BDNF-induced presynaptic facilitation of GABAergic transmission in the hippocampus of young adults is dependent of TrkB and adenosine A2A receptors.

    Colino-Oliveira, Mariana; Rombo, Diogo M; Dias, Raquel B; Ribeiro, Joaquim A; Sebastião, Ana M

    2016-06-01

    Brain-derived neurotrophic factor (BDNF) and adenosine are widely recognized as neuromodulators of glutamatergic transmission in the adult brain. Most BDNF actions upon excitatory plasticity phenomena are under control of adenosine A2A receptors (A2ARs). Concerning gamma-aminobutyric acid (GABA)-mediated transmission, the available information refers to the control of GABA transporters. We now focused on the influence of BDNF and the interplay with adenosine on phasic GABAergic transmission. To assess this, we evaluated evoked and spontaneous synaptic currents recorded from CA1 pyramidal cells in acute hippocampal slices from adult rat brains (6 to 10 weeks old). BDNF (10-100 ng/mL) increased miniature inhibitory postsynaptic current (mIPSC) frequency, but not amplitude, as well as increased the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by afferent stimulation. The facilitatory action of BDNF upon GABAergic transmission was lost in the presence of a Trk inhibitor (K252a, 200 nM), but not upon p75(NTR) blockade (anti-p75(NTR) IgG, 50 μg/mL). Moreover, the facilitatory action of BDNF onto GABAergic transmission was also prevented upon A2AR antagonism (SCH 58261, 50 nM). We conclude that BDNF facilitates GABAergic signaling at the adult hippocampus via a presynaptic mechanism that depends on TrkB and adenosine A2AR activation. PMID:26897393

  12. Biased Signaling of Protease-activated Receptors

    PeishenZhao; NigelWilliamBunnett

    2014-01-01

    In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an e...

  13. Effects of chronic multiple stress on learning and memory and the expression of Fyn, BDNF, TrkB in the hippocampus of rats

    LI Xiao-heng; LIU Neng-bao; ZHANG Min-hai; ZHOU Yan-ling; LIAO Jia-wan; LIU Xiang-qian; CHEN Hong-wei

    2007-01-01

    Background The effect of chronic stress on cognitive functions has been one of the hot topics in neuroscience. But there has been much controversy over its mechanism. The aim of this study was to investigate the effects of chronic multiple stress on spatial learning and memory as well as the expression of Fyn, BDNF and TrkB in the hippocampus of rats.Methods Adult rats were randomly divided into control and chronic multiple stressed groups. Rats in the multiple stressed group were irregularly and alternatively exposed to situations of vertical revolution, sleep expropriation and restraint lasting for 6 weeks, 6 hours per day with night illumination for 6 weeks. Before and after the period of chronic multiple stresses, the performance of spatial learning and memory of all rats was measured using the Morris Water Maze (MWM). The expression of Fyn, BDNF and TrkB proteins in the hippocampus was assayed by Western blotting and immunohistochemical methods. The levels of Fyn and TrkB mRNAs in the hippocampus of rats were detected by RT-PCR technique.Results The escape latency in the control group and the stressed group were 15.63 and 8.27 seconds respectively.The performance of spatial learning and memory of rats was increased in chronic multiple stressed group (P<0.05). The levels of Fyn, BDNF and TrkB proteins in the stressed group were higher than those of the control group (P<0.05). The results of immunoreactivity showed that Fyn was present in the CA3 region of the hippocampus and BDNF positive particles were distributed in the nuclei of CA1 and CA3 pyramidal cells as well as DG granular cells. Quantitative analysis indicated that level of Fyn mRNA was also upregulated in the hippocampus of the stressed group (P<0.05).Conclusions Chronic multiple stress can enhance spatial learning and memory function of rats. The expression of Fyn,BDNF and TrkB proteins and the level of Fyn mRNA are increased in the stessed rat hippocampus. These suggest that Fyn and BDNF

  14. BDNF and its TrkB receptor in human fracture healing.

    Kilian, Olaf; Hartmann, Sonja; Dongowski, Nicole; Karnati, Srikanth; Baumgart-Vogt, Eveline; Härtel, Frauke V; Noll, Thomas; Schnettler, Reinhard; Lips, Katrin Susanne

    2014-09-01

    Fracture healing is a physiological process of repair which proceeds in stages, each characterized by a different predominant tissue in the fracture gap. Matrix reorganization is regulated by cytokines and growth factors. Neurotrophins and their receptors might be of importance to osteoblasts and endothelial cells during fracture healing. The aim of this study was to examine the presence of brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B receptor (TrkB) during human fracture healing. BDNF and TrkB were investigated in samples from human fracture gaps and cultured cells using RT-PCR, Western blot, and immunohistochemistry. Endothelial cells and osteoblastic cell lines demonstrated a cytoplasmic staining pattern of BDNF and TrkB in vitro. At the mRNA level, BDNF and TrkB were expressed in the initial and osteoid formation phase of human fracture healing. In the granulation tissue of fracture gap, both proteins--BDNF and TrkB--are concentrated in endothelial and osteoblastic cells at the margins of woven bone suggesting their involvement in the formation of new vessels. There was no evidence of BDNF or TrkB during fracture healing in chondrocytes of human enchondral tissue. Furthermore, BDNF is absent in mature bone. Taken together, BDNF and TrkB are involved in vessel formation and osteogenic processes during human fracture healing. The detection of BDNF and its TrkB receptor during various stages of the bone formation process in human fracture gap tissue were shown for the first time. The current study reveals that both proteins are up-regulated in human osteoblasts and endothelial cells in fracture healing. PMID:24984919

  15. Lung carcinoma signaling pathways activated by smoking

    Jing Wen; Jian-Hua Fu; Wei Zhang; Ming Guo

    2011-01-01

    Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.

  16. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice.

    Yao, Wei; Zhang, Ji-Chun; Ishima, Tamaki; Dong, Chao; Yang, Chun; Ren, Qian; Ma, Min; Han, Mei; Wu, Jin; Suganuma, Hiroyuki; Ushida, Yusuke; Yamamoto, Masayuki; Hashimoto, Kenji

    2016-01-01

    The transcription factor Keap1-Nrf2 system plays a key role in inflammation which is involved in depression. We found lower expression of Keap1 and Nrf2 proteins in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of hippocampus in mice with depression-like phenotype compared to control mice. Serum levels of pro-inflammatory cytokines in Nrf2 knock-out (KO) mice were higher than those of wild-type mice, suggestive of enhanced inflammation in KO mice. Decreased brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-receptor-kinase B (TrkB) signaling in the PFC, CA3 and DG plays a role in the depression-like phenotype of Nrf2 KO mice. TrkB agonist 7,8-dihydroxyflavone, but not antagonist ANA-12, produced antidepressant effects in Nrf2 KO mice, by stimulating TrkB in the PFC, CA3 and DG. Pretreatment with Nrf2 activator sulforaphane (SFN) prevented the depression-like phenotype induced after repeated social defeat stress. Interestingly, dietary intake of 0.1% glucoraphanin (a precursor of SFN) containing food during juvenile and adolescent stages also prevented the depression-like phenotype evoked in adulthood, after repeated social defeat stress. These findings suggest that Keap1-Nrf2 system plays a key role in depression and that dietary intake of SFN-rich food during juvenile stages and adolescence can confer stress resilience in adulthood. PMID:27470577

  17. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice

    Yao, Wei; Zhang, Ji-chun; Ishima, Tamaki; Dong, Chao; Yang, Chun; Ren, Qian; Ma, Min; Han, Mei; Wu, Jin; Suganuma, Hiroyuki; Ushida, Yusuke; Yamamoto, Masayuki; Hashimoto, Kenji

    2016-01-01

    The transcription factor Keap1-Nrf2 system plays a key role in inflammation which is involved in depression. We found lower expression of Keap1 and Nrf2 proteins in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of hippocampus in mice with depression-like phenotype compared to control mice. Serum levels of pro-inflammatory cytokines in Nrf2 knock-out (KO) mice were higher than those of wild-type mice, suggestive of enhanced inflammation in KO mice. Decreased brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-receptor-kinase B (TrkB) signaling in the PFC, CA3 and DG plays a role in the depression-like phenotype of Nrf2 KO mice. TrkB agonist 7,8-dihydroxyflavone, but not antagonist ANA-12, produced antidepressant effects in Nrf2 KO mice, by stimulating TrkB in the PFC, CA3 and DG. Pretreatment with Nrf2 activator sulforaphane (SFN) prevented the depression-like phenotype induced after repeated social defeat stress. Interestingly, dietary intake of 0.1% glucoraphanin (a precursor of SFN) containing food during juvenile and adolescent stages also prevented the depression-like phenotype evoked in adulthood, after repeated social defeat stress. These findings suggest that Keap1-Nrf2 system plays a key role in depression and that dietary intake of SFN-rich food during juvenile stages and adolescence can confer stress resilience in adulthood. PMID:27470577

  18. Disentangling stellar activity and planetary signals

    Santos N.C.

    2011-02-01

    Full Text Available Photospheric stellar activity (i.e. dark spots or bright plages might be an important source of noise and confusion in the radial-velocity (RV measurements. Radial-velocimetry planet search surveys as well as follow-up of photometric transit surveys require a deep understanding and precise characterization of the effects of stellar activity, in order to disentangle it from planetary signals. We simulate dark spots on a rotating stellar photosphere. The variations of the RV are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at the fundamental period and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD 189733, GJ 674, CoRoT-7 and ι Hor.

  19. Heat dissipation guides activation in signaling proteins.

    Weber, Jeffrey K; Shukla, Diwakar; Pande, Vijay S

    2015-08-18

    Life is fundamentally a nonequilibrium phenomenon. At the expense of dissipated energy, living things perform irreversible processes that allow them to propagate and reproduce. Within cells, evolution has designed nanoscale machines to do meaningful work with energy harnessed from a continuous flux of heat and particles. As dictated by the Second Law of Thermodynamics and its fluctuation theorem corollaries, irreversibility in nonequilibrium processes can be quantified in terms of how much entropy such dynamics produce. In this work, we seek to address a fundamental question linking biology and nonequilibrium physics: can the evolved dissipative pathways that facilitate biomolecular function be identified by their extent of entropy production in general relaxation processes? We here synthesize massive molecular dynamics simulations, Markov state models (MSMs), and nonequilibrium statistical mechanical theory to probe dissipation in two key classes of signaling proteins: kinases and G-protein-coupled receptors (GPCRs). Applying machinery from large deviation theory, we use MSMs constructed from protein simulations to generate dynamics conforming to positive levels of entropy production. We note the emergence of an array of peaks in the dynamical response (transient analogs of phase transitions) that draw the proteins between distinct levels of dissipation, and we see that the binding of ATP and agonist molecules modifies the observed dissipative landscapes. Overall, we find that dissipation is tightly coupled to activation in these signaling systems: dominant entropy-producing trajectories become localized near important barriers along known biological activation pathways. We go on to classify an array of equilibrium and nonequilibrium molecular switches that harmonize to promote functional dynamics. PMID:26240354

  20. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity.

    Jeong, A-Reum; Lee, Si-Seok; Han, Yun-Jeong; Shin, Ah-Young; Baek, Ayoung; Ahn, Taeho; Kim, Min-Gon; Kim, Young Soon; Lee, Keun Woo; Nagatani, Akira; Kim, Jeong-Il

    2016-08-01

    Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation. PMID:27325667

  1. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade

  2. Activation of endothelial β-catenin signaling induces heart failure

    Nakagawa, Akito; Naito, Atsuhiko T.; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-cat...

  3. Human ECG signal parameters estimation during controlled physical activity

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  4. Mitogen-activated protein kinase signaling in plants

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of...... substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  5. Heat dissipation guides activation in signaling proteins

    Weber, Jeffrey K.; Shukla, Diwakar; Pande, Vijay S.

    2015-01-01

    As with their macroscopic counterparts, the moving parts of nanoscale protein machines grow hot while in operation. A portion of the energy biomolecules harness to perform meaningful work is always dissipated as heat into the surroundings. Here, we feature a methodology by which dominant dissipative trajectories can be extracted from detailed models of protein dynamics. In two important classes of signaling proteins [kinases and G-protein–coupled receptors (GPCRs)], we find that the regions o...

  6. Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK

    Debabrata Panja

    2014-11-01

    Full Text Available BDNF signaling contributes to protein-synthesis-dependent synaptic plasticity, but the dynamics of TrkB signaling and mechanisms of translation have not been defined. Here, we show that long-term potentiation (LTP consolidation in the dentate gyrus of live rodents requires sustained (hours BDNF-TrkB signaling. Surprisingly, this sustained activation maintains an otherwise labile signaling pathway from TrkB to MAP-kinase-interacting kinase (MNK. MNK activity promotes eIF4F translation initiation complex formation and protein synthesis in mechanistically distinct early and late stages. In early-stage translation, MNK triggers release of the CYFIP1/FMRP repressor complex from the 5′-mRNA cap. In late-stage translation, MNK regulates the canonical translational repressor 4E-BP2 in a synapse-compartment-specific manner. This late stage is coupled to MNK-dependent enhanced dendritic mRNA translation. We conclude that LTP consolidation in the dentate gyrus is mediated by sustained BDNF signaling to MNK and MNK-dependent regulation of translation in two functionally and mechanistically distinct stages.

  7. Wnt Signaling in Neurogenesis during Aging and Physical Activity

    Michael Chen

    2012-12-01

    Full Text Available Over the past decade, much progress has been made regarding our understanding of neurogenesis in both young and old animals and where it occurs throughout the lifespan, although the growth of new neurons declines with increasing age. In addition, physical activity can reverse this age-dependent decline in neurogenesis. Highly correlated with this decline is the degree of inter and intracellular Wnt signaling, the molecular mechanisms of which have only recently started to be elucidated. So far, most of what we know about intracellular signaling during/following exercise centers around the CREB/CRE initiated transcriptional events. Relatively little is known, however, about how aging and physical activity affect the Wnt signaling pathway. Herein, we briefly review the salient features of neurogenesis in young and then in old adult animals. Then, we discuss Wnt signaling and review the very few in vitro and in vivo studies that have examined the Wnt signaling pathways in aging and physical activity.

  8. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. PMID:27246301

  9. Activation of endothelial β-catenin signaling induces heart failure.

    Nakagawa, Akito; Naito, Atsuhiko T; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P; Adams, Ralf H; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  10. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Marina Pasca di Magliano

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  11. Sorafenib Inhibits Signal Transducer and Activator of Transcription-3 Signaling in Cholangiocarcinoma Cells by Activating the Phosphatase Shatterproof 2

    Blechacz, Boris R. A.; Smoot, Rory L.; Bronk, Steven F; Werneburg, Nathan W.; Sirica, Alphonse E.; Gores, Gregory J.

    2009-01-01

    The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is one of the key signaling cascades in cholangiocarcinoma (CCA) cells, mediating their resistance to apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit JAK/STAT signaling and, therefore, be efficacious for CCA. Sorafenib treatment of three human CCA cell lines resulted in Tyr705 phospho-STAT3 dephosphorylation. Similar results were obtained with the Raf-kinase inhibit...

  12. TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation

    Kaneko, Megumi; Hanover, Jessica L; England, Pamela M.; Stryker, Michael P.

    2008-01-01

    Changes in visual cortical responses that are induced by monocular visual deprivation are a widely studied example of competitive, experience-dependent neural plasticity. It has been thought that the deprived-eye pathway will fail to compete against the open-eye pathway for limited amounts of brain-derived neurotrophic factor, which acts on TrkB and is needed to sustain effective synaptic connections. We tested this model by using a chemical-genetic approach in mice to inhibit TrkB kinase act...

  13. Insulin-like growth factor induced signals activate mitochondrial respiration

    Hütter, E.; Unterluggauer, H.; Viertler, H.P.; Jansen-Dürr, P

    2008-01-01

    From experiments with lower eukaryotes it is known that the metabolic rate and also the rate of aging are tightly controlled by the IGF / insulin signal transduction pathway. The mitochondrial theory of aging implies that an increased metabolic rate leads to increased mitochondrial activity; increased production of reactive oxygen species due to these alterations would speed up the aging process. To address the question if mitochondrial activity is influenced by insulin / IGF signalling, we h...

  14. Wnt signaling and the activation of myogenesis in mammals.

    Cossu, G.; Borello, U

    1999-01-01

    In the amniote embryos, specification of skeletal myoblasts occurs in the paraxial mesoderm in response to a number of signaling molecules produced by neighboring tissues such as neural tube, notochord and dorsal ectoderm. Candidate molecules for this complex signaling activity include Sonic hedgehog, Wnts and Noggin as positive activators and BMP4 as a possible inhibitor. Recently, the receptors and the post-receptor pathways for Sonic hedgehog and Wnts have been characterized, and this has ...

  15. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes

    Choudhary, Chuna Ram; Olsen, Jesper V; Brandts, Christian;

    2009-01-01

    Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrant...... patterns of the receptor itself. Thus, intracellular activation of RTKs by oncogenic mutations in the biosynthetic route may exploit cellular architecture to initiate aberrant signaling cascades, thus evading negative regulation....

  16. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs. PMID:25556853

  17. G protein activation stimulates phospholipase D signaling in plants

    Munnik, T.; Arisz, S.A.; Vrije, de T.; Musgrave, A.

    1995-01-01

    We provide direct evidence for phospholipase D (PLD) signaling in plants by showing that this enzyme is stimulated by the G protein activators mastoparan, ethanol, and cholera toxin. An in vivo assay for PLD activity in plant cells was developed based on the use of a "reporter alcohol" rather than w

  18. Modulation of β-catenin signaling by glucagon receptor activation.

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  19. Adipocyte activation of cancer stem cell signaling in breast cancer

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  20. Glucose Enhances Leptin Signaling through Modulation of AMPK Activity

    Haoran Su; Lin Jiang; Christin Carter-Su; Liangyou Rui

    2012-01-01

    Leptin exerts its action by binding to and activating the long form of leptin receptors (LEPRb). LEPRb activates JAK2 that subsequently phosphorylates and activates STAT3. The JAK2/STAT3 pathway is required for leptin control of energy balance and body weight. Defects in leptin signaling lead to leptin resistance, a primary risk factor for obesity. Body weight is also regulated by nutrients, including glucose. Defects in glucose sensing also contribute to obesity. Here we report crosstalk bet...

  1. Activity-dependent neuronal signalling and autism spectrum disorder

    Ebert, Daniel H.; Greenberg, Michael E.

    2013-01-01

    Neuronal activity induces the post-translational modification of synaptic molecules, promotes localized protein synthesis within dendrites and activates gene transcription, thereby regulating synaptic function and allowing neuronal circuits to respond dynamically to experience. Evidence indicates that many of the genes that are mutated in autism spectrum disorders are crucial components of the activity-dependent signalling networks that regulate synapse development and plasticity. Dysregulati...

  2. WNT signaling in activated microglia is pro-inflammatory: WNT/β-catenin signaling in microglia

    Halleskog, Carina; Mulder, Jan; Dahlström, Jenny; Mackie, Ken; Hortobágyi, Tibor; Tanila, Heikki; Puli, Lakshman Kumar; Färber, Katrin; Harkany, Tibor; Schulte, Gunnar

    2010-01-01

    Microglia activation is central to the neuroinflammation associated with neurological and neurodegenerative diseases, particularly since activated microglia are often a source of pro-inflammatory cytokines. Despite decades-long research, the molecular cascade of pro-inflammatory transformation of microglia in vivo remains largely elusive. Here, we report increased β–catenin expression, a central intracellular component of WNT signaling, in microglia undergoing a pro-inflammatory morphogenic t...

  3. Wnt signaling and the activation of myogenesis in mammals.

    Cossu, G; Borello, U

    1999-12-15

    In the amniote embryos, specification of skeletal myoblasts occurs in the paraxial mesoderm in response to a number of signaling molecules produced by neighboring tissues such as neural tube, notochord and dorsal ectoderm. Candidate molecules for this complex signaling activity include Sonic hedgehog, Wnts and Noggin as positive activators and BMP4 as a possible inhibitor. Recently, the receptors and the post-receptor pathways for Sonic hedgehog and Wnts have been characterized, and this has opened up the possibility of linking these signaling events to the activation of myogenic regulatory factor genes such as Myf5 and MyoD and functionally related genes such as Pax3. Here we focus on the role of Wnts, their putative receptors Frizzled and the soluble antagonist Frzb1 in regulating mammalian myogenesis. Although it is becoming evident that the signaling downstream of Frizzled receptors is much more complex than anticipated, it is conceivable that it may lead to transcriptional activation of Myf5 and MyoD and to initiation of myogenesis. However, the fact that both Wnts and Sonic hedgehog have a strong effect on cell proliferation and survival suggests that they may contribute to the overall process of myogenesis by a combination of these different biological activities. PMID:10601008

  4. Distinction Between Cell Proliferation and Apoptosis Signals Regulated by Brain-Derived Neurotrophic Factor in Human Periodontal Ligament Cells and Gingival Epithelial Cells.

    Kashiwai, Kei; Kajiya, Mikihito; Matsuda, Shinji; Ouhara, Kazuhisa; Takeda, Katsuhiro; Takata, Takashi; Kitagawa, Masae; Fujita, Tsuyoshi; Shiba, Hideki; Kurihara, Hidemi

    2016-07-01

    Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc. PMID:26581032

  5. MEKK1/JNK signaling stabilizes and activates p53

    Fuchs, Serge Y.; Adler, Victor; Pincus, Matthew R.; Ronai, Ze’ev

    1998-01-01

    Activation of the tumor suppressor p53 by stress and damage stimuli often correlates with induction of stress kinases, Jun-NH2 kinase (JNK). As JNK association with p53 plays an important role in p53 stability, in the present study we have elucidated the relationship between the JNK-signaling pathway and p53 stability and activity. Expression of a constitutively active form of JNKK upstream kinase, mitogen-activated protein kinase kinase kinase (ΔMEKK1), increased the level of the exogenously...

  6. Identification of small molecule activators of BMP signaling.

    Karen Vrijens

    Full Text Available Bone Morphogenetic Proteins (BMPs are morphogens that play a major role in regulating development and homeostasis. Although BMPs are used for the treatment of bone and kidney disorders, their clinical use is limited due to the supra-physiological doses required for therapeutic efficacy causing severe side effects. Because recombinant BMPs are expensive to produce, small molecule activators of BMP signaling would be a cost-effective alternative with the added benefit of being potentially more easily deliverable. Here, we report our efforts to identify small molecule activators of BMP signaling. We have developed a cell-based assay to monitor BMP signaling by stably transfecting a BMP-responsive human cervical carcinoma cell line (C33A with a reporter construct in which the expression of luciferase is driven by a multimerized BMP-responsive element from the Id1 promoter. A BMP-responsive clone C33A-2D2 was used to screen a bioactive library containing ∼5,600 small molecules. We identified four small molecules of the family of flavonoids all of which induced luciferase activity in a dose-dependent manner and ventralized zebrafish embryos. Two of the identified compounds induced Smad1, 5 phosphorylation (P-Smad, Id1 and Id2 expression in a dose-dependent manner demonstrating that our assays identified small molecule activators of BMP signaling.

  7. Active Harmonic Load–Pull With Realistic Wideband Communications Signals

    Marchetti, M.; Pelk, M.J.; Buisman, K.; Neo, W.C.E.; Spirito, M.; De Vreede, L.C.N.

    2008-01-01

    A new wideband open-loop active harmonic load–pull measurement approach is presented. The proposed method is based on wideband data-acquisition and wideband signal-injection of the incident and device generated power waves at the frequencies of interest. The system provides full, user defined, in-ba

  8. Steroid signaling activation and intracellular localization of sex steroid receptors

    Giraldi, Tiziana; Giovannelli, Pia; Di Donato, Marzia; Castoria, Gabriella; Migliaccio, Antimo; Auricchio, Ferdinando

    2010-01-01

    In addition to stimulating gene transcription, sex steroids trigger rapid, non-genomic responses in the extra-nuclear compartment of target cells. These events take place within seconds or minutes after hormone administration and do not require transcriptional activity of sex steroid receptors. Depending on cell systems, activation of extra-nuclear signaling pathways by sex steroids fosters cell cycle progression, prevents apoptosis, leads to epigenetic modifications and increases cell migrat...

  9. Survey of activated FLT3 signaling in leukemia.

    Ting-lei Gu

    Full Text Available Activating mutations of FMS-like tyrosine kinase-3 (FLT3 are found in approximately 30% of patients with acute myeloid leukemia (AML. FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3 and B cell acute lymphoblastic leukemia (normal and amplification of FLT3 cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC, we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia.

  10. Immunohistochemical detection of tyrosine kinase B (TrkB in the enteric nervous system of the small intestine in pigeon (Columba livia

    A Germanà

    2009-06-01

    Full Text Available The presence and cell localization of TrkB, the main receptor for the neurotrophins (NTs, was investigated immunohistochemically in the small intestine of adult pigeons, with special reference to the enteric nervous system (ENS. Several neuronal (neurofilament proteins and PGP 9.5 and glial cell (S100 protein markers were studied in parallel. TrkB immunoreactivity (TrkB-IR was found to be restricted to immunohistochemically-identified glial cells present in the enteric plexuses, and to Schwann cells forming the perivascular plexus. Also, TrkB-IR was detected in enterochromaffin cells and in unidentified dendritic cells within the gut-associated lymphoid tissue. The present results demonstrate that as for mammals, TrkB in the ENS is restricted to the glial cells. The possible function of the TrkB ligands, however, remains to be established.

  11. Signaling mechanisms involved in the acute effects of estradiol on 5-HT clearance.

    Benmansour, Saloua; Privratsky, Anthony A; Adeniji, Opeyemi S; Frazer, Alan

    2014-05-01

    Estradiol was found previously to have an antidepressant-like effect and to block the ability of selective serotonin reuptake inhibitors (SSRIs) to have an antidepressant-like effect. The antidepressant-like effect of estradiol was due to estrogen receptor β (ERβ) and/or GPR30 activation, whereas estradiol's blockade of the effect of an SSRI was mediated by ERα. This study focuses on investigating signaling pathways as well as interacting receptors associated with these two effects of estradiol. In vivo chronoamperometry was used to measure serotonin transporter (SERT) function. The effect of local application of estradiol or selective agonists for ERα (PPT) or ERβ (DPN) into the CA3 region of the hippocampus of ovariectomized (OVX) rats on 5-hydroxytryptamine (5-HT) clearance as well as on the ability of fluvoxamine to slow 5-HT clearance was examined after selective blockade of signaling pathways or that of interacting receptors. Estradiol- or DPN-induced slowing of 5-HT clearance mediated by ERβ was blocked after inhibition of MAPK/ERK1/2 but not of PI3K/Akt signaling pathways. This effect also involved interactions with TrkB, and IGF-1 receptors. Estradiol's or PPT's inhibition of the fluvoxamine-induced slowing of 5-HT clearance mediated by ERα, was blocked after inhibition of either MAPK/ERK1/2 or PI3K/Akt signaling pathways. This effect involved interactions with the IGF-1 receptor and with the metabotropic glutamate receptor 1, but not with TrkB. This study illustrates some of the signaling pathways required for the effects of estradiol on SERT function, and particularly shows that ER subtypes elicit different as well as common signaling pathways for their actions. PMID:24423185

  12. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells. PMID:27306974

  13. ATP release and purinergic signaling in NLRP3 inflammasome activation

    Isabelle eCOUILLIN

    2013-01-01

    Full Text Available The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing that senses pathogen- and danger-associated molecular patterns. One step- or two step- models have been proposed to explain the tight regulation of IL-1β production during inflammation. Moreover, cellular stimulation triggers ATP release and subsequent activation of purinergic receptors at the cell surface. Importantly some studies have reported roles for extracellular ATP (eATP, in NLRP3 inflammasome activation in response to PAMPs and DAMPs. In this mini review, we will discuss the link between active ATP release, purinergic signaling and NLRP3 inflammasome activation. We will focus on the role of autocrine or paracrine ATP export in particle-induced NLRP3 inflammasome activation and discuss how particle activators are competent to induce maturation and secretion of IL-1β through a process that involves, as a first event, extracellular release of endogenous ATP through hemichannel opening, and as a second event, signaling through purinergic receptors that trigger NLRP3 inflammasome activation. Finally, we will review the evidence for ATP as a key proinflammatory mediator released by dying cells. In particular we will discuss how cancer cells dying via autophagy trigger ATP-dependent NLRP3 inflammasome activation in the macrophages engulfing them, eliciting an immunogenic response against tumors.

  14. Chemokines: a new dendritic cell signal for T cell activation

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  15. Angiotensin II activates different calcium signaling pathways in adipocytes.

    Dolgacheva, Lyudmila P; Turovskaya, Maria V; Dynnik, Vladimir V; Zinchenko, Valery P; Goncharov, Nikolay V; Davletov, Bazbek; Turovsky, Egor A

    2016-03-01

    Angiotensin II (Ang II) is an important mammalian neurohormone involved in reninangiotensin system. Ang II is produced both constitutively and locally by RAS systems, including white fat adipocytes. The influence of Ang II on adipocytes is complex, affecting different systems of signal transduction from early Са(2+) responses to cell proliferation and differentiation, triglyceride accumulation, expression of adipokine-encoding genes and adipokine secretion. It is known that white fat adipocytes express all RAS components and Ang II receptors (АТ1 and АТ2). The current work was carried out with the primary white adipocytes culture, and Са(2+) signaling pathways activated by Ang II were investigated using fluorescent microscopy. Са(2+)-oscillations and transient responses of differentiated adipocytes to Ang II were registered in cells with both small and multiple lipid inclusions. Using inhibitory analysis and selective antagonists, we now show that Ang II initiates periodic Са(2+)-oscillations and transient responses by activating АТ1 and АТ2 receptors and involving branched signaling cascades:In these cascades, AT1 receptors play the leading role. The results of the present work open a perspective of using Ang II for correction of signal resistance of adipocytes often observed during obesity and type 2diabetes. PMID:26850364

  16. Activation and signaling of the p38 MAP kinase pathway

    Tyler ZARUBIN; Jiahuai HAN

    2005-01-01

    The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

  17. Artifact suppression and analysis of brain activities with electroencephalography signals

    Md. Rashed-Al-Mahfuz; Md. Rabiul Islam; Keikichi Hirose; Md. Khademul Islam Molla

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  18. Intrinsic optical signals of the nervous tissue during neuronal activation

    Konopková, Renata; Otáhal, Jakub

    Brno : Brno University of Technology, 2006 - (Burša, J.; Fuis, V.). s. 124-125 ISBN 80-214-3232-2. [Human Biomechanics 2006 : international conference /11./. 13.11.2006-16.11.2006, Hrotovice] R&D Projects: GA AV ČR(CZ) 1QS501210509 Institutional research plan: CEZ:AV0Z50110509 Keywords : intrinsic optical signals * neuronal activation * light transmission Subject RIV: ED - Physiology

  19. Chemical Signaling and Functional Activation in Colloidosome-Based Protocells.

    Sun, Shiyong; Li, Mei; Dong, Faqin; Wang, Shengjie; Tian, Liangfei; Mann, Stephen

    2016-04-01

    An aqueous-based microcompartmentalized model involving the integration of partially hydrophobic Fe(III)-rich montmorillonite (FeM) clay particles as structural and catalytic building blocks for colloidosome membrane assembly, self-directed membrane remodeling, and signal-induced protocell communication is described. The clay colloidosomes exhibit size- and charge-selective permeability, and show dual catalytic functions involving spatially confined enzyme-mediated dephosphorylation and peroxidase-like membrane activity. The latter is used for the colloidosome-mediated synthesis and assembly of a temperature-responsive poly(N-isopropylacrylamide)(PNIPAM)/clay-integrated hybrid membrane. In situ PNIPAM elaboration of the membrane is coupled to a glucose oxidase (GOx)-mediated signaling pathway to establish a primitive model of chemical communication and functional activation within a synthetic "protocell community" comprising a mixed population of GOx-containing silica colloidosomes and alkaline phosphatase (ALP)-containing FeM-clay colloidosomes. Triggering the enzyme reaction in the silica colloidosomes gives a hydrogen peroxide signal that induces polymer wall formation in a coexistent population of the FeM-clay colloidosomes, which in turn generates self-regulated membrane-gated ALP-activity within the clay microcompartments. The emergence of new functionalities in inorganic colloidosomes via chemical communication between different protocell populations provides a first step toward the realization of interacting communities of synthetic functional microcompartments. PMID:26923794

  20. TTIP is a novel protein that interacts with the truncated T1 TrkB neurotrophin receptor.

    Kryl, D; Barker, P A

    2000-12-29

    Alternative splicing of the TrkB gene produces a full length tyrosine kinase receptor as well as two truncated isoforms that contain extracellular and transmembrane domains but lack the kinase domain and have unique C terminal tails. The function of the truncated TrkB isoforms is unclear and to gain insights into their function, we have isolated a protein from 15N neuroblastoma cells that specifically binds the TrkB.T1 isoform. Pulldown experiments using a GST fusion protein containing the TrkB.T1 intracellular domain identified a 61 kDa protein from radiolabeled 15N lysates. Coimmunoprecipitation experiments showed that the 61 kDa protein interacted with epitope-tagged TrkB.T1 overexpressed in 15N cells as well as with TrkB.T1 which was endogenously expressed. Peptide competition experiments revealed that the protein, designated TTIP (for Truncated TrkB Interacting Protein), showed specific binding to the TrkB.T1 tail. MALDI MS and MS/MS analysis has revealed that TTIP is a novel protein not yet listed in the current databases. PMID:11162451

  1. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC, BDNF, and TrkB mRNA expression in the rat tongue

    Stähler Frauke

    2009-03-01

    Full Text Available Abstract Background In rodents, dietary Na+ deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na+ stimulation. However, in the rat taste bud cells Na+ deprivation increases the number of amiloride sensitive epithelial Na+ channels (ENaC, which are considered as the "receptor" of the Na+ component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ in taste buds were observed from rats fed with diets containing either 0.03% (Na+ deprivation or 1% (control NaCl for 15 days, by using in situ hybridization and real-time quantitative RT-PCR (qRT-PCR. Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na+ deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined. Results In situ hybridization analysis showed that all three ENaC subunit mRNAs were found in the rat fungiform taste buds and lingual epithelia, but in the vallate and foliate taste buds, only α ENaC mRNA was easily detected, while β and γ ENaC mRNAs were much less than those in the fungiform taste buds. Between control and low Na+ fed animals, the numbers of taste bud cells expressing α, β and γ ENaC subunits were not significantly different in the fungiform, vallate and foliate taste buds, respectively. Similarly, qRT-PCR also indicated that Na+ deprivation had no effect on any ENaC subunit expression in the three types of taste buds. However, Na+ deprivation reduced BDNF mRNA expression by 50% in the fungiform taste buds, but not in the vallate and foliate taste buds. The expression of TrkB was not different between control and Na+ deprived rats, irrespective of the taste papillae type. Conclusion The findings demonstrate that dietary Na+ deprivation does not change ENaC mRNA expression in rat taste buds, but reduces BDNF mRNA expression in the fungiform taste buds. Given the roles of BDNF in survival of

  2. Cell Signaling and Differential Protein Expression in Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells with Hypermethylated Salvador/Warts/Hippo (SWH Pathway Genes.

    Hui-Hung Tzeng

    Full Text Available Human mesenchymal stem cells (MSCs modified by targeting DNA hypermethylation of genes in the Salvador/Warts/Hippo pathway were induced to differentiate into neuronal cells in vitro. The differentiated cells secreted a significant level of brain-derived neurotrophy factor (BDNF and the expression of BDNF receptor tyrosine receptor kinase B (TrkB correlated well with the secretion of BDNF. In the differentiating cells, CREB was active after the binding of growth factors to induce phosphorylation of ERK in the MAPK/ERK pathway. Downstream of phosphorylated CREB led to the functional maturation of differentiated cells and secretion of BDNF, which contributed to the sustained expression of pERK and pCREB. In summary, both PI3K/Akt and MAPK/ERK signaling pathways play important roles in the neuronal differentiation of MSCs. The main function of the PI3K/Akt pathway is to maintain cell survival during neural differentiation; whereas the role of the MAPK/ERK pathway is probably to promote the maturation of differentiated MSCs. Further, cellular levels of protein kinase C epsilon type (PKC-ε and kinesin heavy chain (KIF5B increased with time of induction, whereas the level of NME/NM23 nucleoside diphosphate kinase 1 (Nm23-H1 decreased during the time course of differentiation. The correlation between PKC-ε and TrkB suggested that there is cross-talk between PKC-ε and the PI3K/Akt signaling pathway.

  3. Disentangling stellar activity from exoplanetary signals with interferometry

    Ligi Roxanne

    2015-01-01

    Full Text Available Stellar activity can express as many forms at stellar surfaces: dark spots, convective cells, bright plages. Particularly, dark spots and bright plages add noise on photometric data or radial velocity measurements used to detect exoplanets, and thus lead to false detection or disrupt their derived parameters. Since interferometry provides a very high angular resolution, it may constitute an interesting solution to distinguish the signal of a transiting exoplanet and that of stellar activity. It has also been shown that granulation adds bias in visibility and closure phase measurements, affecting in turn the derived stellar parameters. We analyze the noises generated by dark spots on interferometric observables and compare them to exoplanet signals. We investigate the current interferometric instruments able to measure and disentangle these signals, and show that there is a lack in spatial resolution. We thus give a prospective of the improvements to be brought on future interferometers, which would also significantly extend the number of available targets.

  4. Role of Calcium Signaling in B Cell Activation and Biology.

    Baba, Yoshihiro; Kurosaki, Tomohiro

    2016-01-01

    Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases. PMID:26369772

  5. Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

    Magdalena Druszczynska

    2013-01-01

    Full Text Available The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms.

  6. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathwa...ys activated by microorganisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  7. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity.

    Sanz-García, Ancor; Knafo, Shira; Pereda-Pérez, Inmaculada; Esteban, José A; Venero, César; Armario, Antonio

    2016-09-01

    Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc. PMID:27068341

  8. Changes in expression of BDNF and its receptors TrkB and p75NTR in the hippocampus of a dog model of chronic alcoholism and abstinence

    Chronic ethanol consumption can produce learning and memory deficits. Brain-derived neurotrophic factor (BDNF) and its receptors affect the pathogenesis of alcoholism. In this study, we examined the expression of BDNF, tropomyosin receptor kinase B (TrkB) and p75 neurotrophin receptor (p75NTR) in the hippocampus of a dog model of chronic alcoholism and abstinence. Twenty domestic dogs (9-10 months old, 15-20 kg; 10 males and 10 females) were obtained from Harbin Medical University. A stable alcoholism model was established through ad libitum feeding, and anti-alcohol drug treatment (Zhong Yao Jie Jiu Ling, the main ingredient was the stems of watermelon; developed in our laboratory), at low- and high-doses, was carried out. The Zhong Yao Jie Jiu Ling was effective for the alcoholism in dogs. The morphology of hippocampal neurons was evaluated using hematoxylin-eosin staining. The number and morphological features of BDNF, TrkB and p75NTR-positive neurons in the dentate gyrus (DG), and the CA1, CA3 and CA4 regions of the hippocampus were observed using immunohistochemistry. One-way ANOVA was used to determine differences in BDNF, TrkB and p75NTR expression. BDNF, TrkB and p75NTR-positive cells were mainly localized in the granular cell layer of the DG and in the pyramidal cell layer of the CA1, CA3 and CA4 regions (DG>CA1>CA3>CA4). Expression levels of both BDNF and TrkB were decreased in chronic alcoholism, and increased after abstinence. The CA4 region appeared to show the greatest differences. Changes in p75NTR expression were the opposite of those of BDNF and TrkB, with the greatest differences observed in the DG and CA4 regions

  9. Changes in expression of BDNF and its receptors TrkB and p75NTR in the hippocampus of a dog model of chronic alcoholism and abstinence

    Xu, R.; Duan, S.R.; Zhao, J.W.; Wang, C.Y. [Neurology Ward of Internal Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province (China)

    2015-06-23

    Chronic ethanol consumption can produce learning and memory deficits. Brain-derived neurotrophic factor (BDNF) and its receptors affect the pathogenesis of alcoholism. In this study, we examined the expression of BDNF, tropomyosin receptor kinase B (TrkB) and p75 neurotrophin receptor (p75NTR) in the hippocampus of a dog model of chronic alcoholism and abstinence. Twenty domestic dogs (9-10 months old, 15-20 kg; 10 males and 10 females) were obtained from Harbin Medical University. A stable alcoholism model was established through ad libitum feeding, and anti-alcohol drug treatment (Zhong Yao Jie Jiu Ling, the main ingredient was the stems of watermelon; developed in our laboratory), at low- and high-doses, was carried out. The Zhong Yao Jie Jiu Ling was effective for the alcoholism in dogs. The morphology of hippocampal neurons was evaluated using hematoxylin-eosin staining. The number and morphological features of BDNF, TrkB and p75NTR-positive neurons in the dentate gyrus (DG), and the CA1, CA3 and CA4 regions of the hippocampus were observed using immunohistochemistry. One-way ANOVA was used to determine differences in BDNF, TrkB and p75NTR expression. BDNF, TrkB and p75NTR-positive cells were mainly localized in the granular cell layer of the DG and in the pyramidal cell layer of the CA1, CA3 and CA4 regions (DG>CA1>CA3>CA4). Expression levels of both BDNF and TrkB were decreased in chronic alcoholism, and increased after abstinence. The CA4 region appeared to show the greatest differences. Changes in p75NTR expression were the opposite of those of BDNF and TrkB, with the greatest differences observed in the DG and CA4 regions.

  10. Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction

    Gleason, Julie E.; Korswagen, Hendrik C.; Eisenmann, David M

    2002-01-01

    During Caenorhabditis elegans vulval development, activation of receptor tyrosine kinase/Ras and Notch signaling pathways causes three vulval precursor cells (VPCs) to adopt induced cell fates. A Wnt signaling pathway also acts in cell fate specification by the VPCs, via regulation of the Hox gene lin-39. We show here that either mutation of pry-1 or expression of an activated BAR-1 β-catenin protein causes an Overinduced phenotype, in which greater than three VPCs adopt induced cell fates. T...

  11. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons.

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-05-01

    Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons.The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation.Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation.Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG. PMID:27149473

  12. Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats

    Bahi, Amine; Boyer, Frederic; Vijay, Chandrasekar; Dreyer, Jean-Luc

    2008-01-01

    Background Brain-derived neurotrophic factor (BDNF) is involved in the survival and function of midbrain DA neurons. BDNF action is mediated by the TrkB receptor–tyrosine kinase, and both BDNF and TrkB transcripts are widely expressed in the rat mesolimbic pathway, including the nucleus accumbens (NAc) and the ventral tegmentum area (VTA). Objective BDNF was previously shown to be involved in cocaine reward and relapse, as assessed in rat models. The goal of this study is to explore the role ...

  13. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling.

    Hong, Qian; Ma, Zeng-Chun; Huang, Hao; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Zhang, Han-Ting; Gao, Yue

    2016-04-15

    Ferulic acid (FA) produces protective effects against cardiovascular dysfunctions. However, the mechanisms of FA is still not known. Here we examined the antithrombotic effects of FA and its potential mechanisms. Anticoagulation assays and platelet aggregation was evaluated in vitro and in vivo. Thromboxane B2 (TXB2), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate (cGMP) was determined using enzyme immunoassay kits. Nitric oxide (NO) production was measured using the Griess reaction. Protein expression was detected by Western blotting analysis. Oral administration of FA prevented death caused by pulmonary thrombosis and prolonged the tail bleeding and clotting time in mice,while, it did not alter the coagulation parameters, including the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). In addition, FA (50-200µM) dose-dependently inhibited platelet aggregation induced by various platelet agonists, including adenosine diphosphate (ADP), thrombin, collagen, arachidonic acid (AA), and U46619. Further, FA attenuated intracellular Ca(2)(+) mobilization and TXB2 production induced by the platelet agonists. FA increased the levels of cAMP and cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP) while decreased phospho-MAPK (mitogen-activated protein kinase) and phosphodiesterase (PDE) in washed rat platelets, VASP is a substrate of cyclic nucleotide and PDE is an enzyme family responsible for hydrolysis of cAMP/cGMP. These results suggest that antithrombotic activities of FA may be regulated by inhibition of platelet aggregation, rather than through inhibiting the release of thromboplastin or formation of thrombin. The mechanism of this action may involve activation of cAMP and cGMP signaling. PMID:26948317

  14. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity.

    Wicher, Dieter; Derst, Christian; Gautier, Hélène; Lapied, Bruno; Heinemann, Stefan H; Agricola, Hans-Jürgen

    2007-01-01

    The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK) in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK) in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR), we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM) neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC(50)=11pM) due to reduction of a pacemaker Ca(2+) current through cAMP-inhibited pTRPgamma channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca(2+) concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH): PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPgamma channel that is activated by AKH under conditions of food shortage. PMID:18946521

  15. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  16. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    Brunetto de Farias, Caroline [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Heinen, Tiago Elias; Pereira dos Santos, Rafael [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Abujamra, Ana Lucia [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Schwartsmann, Gilberto [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); and others

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  17. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    Highlights: ► BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. ► TrkB inhibition potentiated the antitumor effect of cetuximab. ► BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  18. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: A cellular signal for hypertrophy in cardiac muscle

    Mascareno, Eduardo; Dhar, Manya; M.A.Q. SIDDIQUI

    1998-01-01

    The role of the peptide hormone angiotensin (AngII) in promoting myocardial hypertrophy is well documented. Our studies demonstrate that AngII uses a signaling pathway in cardiac myocytes in which the promoter of the gene encoding its prohormone, angiotensinogen, serves as the target site for activated signal transduction and activator of transcription (STAT) proteins. Gel mobility-shift assay revealed that STAT3 and STAT6 are selectively activated by AngII treatment of cardiomyocytes in cult...

  19. Unique catalytic activities and scaffolding of p21 activated kinase-1 in cardiovascular signaling

    YunboKe

    2013-09-01

    Full Text Available P21 activated kinase-1 has diverse functions in mammalian cells. Although a large number of phosphoproteins have been designated as Pak1 substrates from in vitro studies,emerging evidence has indicated that Pak1 may function as a signaling molecule through a unique molecular mechanism—scaffolding. By scaffolding, Pak1 delivers signals through an auto-phosphorylation-induced conformational change without transfer of a phosphate group to its immediate downstream effector(s. Here we review evidence for this regulatory mechanism based on structural and functional studies of Pak1 in different cell types and research models as well as in vitro biochemical assays. We also discuss the implications of Pak1 scaffolding in disease-related signaling processes and the potential in cardiovascular drug development.

  20. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT.

    Ashish Misra

    Full Text Available Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT. EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor. Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.

  1. Activation of hedgehog signaling is not a frequent event in ovarian cancers

    Zhang Xiaoli; Huang Shuhong; He Jing; Yang Ling; Bian Yuehong; He Nonggao; Zhang Hongwei; Xie Jingwu

    2009-01-01

    Abstract The hedgehog (Hh) signaling pathway regulates many processes of development and tissue homeostasis. Activation of hedgehog signaling has been reported in about 30% of human cancer including ovarian cancer. Inhibition of hedgehog signaling has been pursued as an effective strategy for cancer treatment including an ongoing phase II clinical trial in ovarian cancer. However, the rate of hedgehog signaling activation in ovarian cancer was reported differently by different groups. To pred...

  2. Complement C1q Activates Canonical Wnt Signaling and Promotes Aging-Related Phenotypes

    Atsuhiko T. Naito; Sumida, Tomokazu; Nomura, Seitaro; Liu, Mei-Lan; Higo, Tomoaki; NAKAGAWA, AKITO; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Hara, Yurina; Shimizu, Ippei; Zhu, Weidong; Toko, Haruhiro; Katada, Akemi; Akazawa, Hiroshi

    2012-01-01

    Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice,...

  3. DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma

    Research highlights: → Expression of TrkA, TrkB, and TrkC is significantly elevated in human hepatocellular carcinoma. → Downregulation of Trks is correlated with their promoter hypermethylation. → Inhibiting DNA methylation restored expression of Trks in normal liver cell lines. → Trks promote the proliferation of hepatocellular carcinoma. → Trks induce expression of the metastatic regulator, Twist. -- Abstract: The tropomyosin-related kinase (Trk) family of neurotrophin receptors, TrkA, TrkB and TrkC, has been implicated in the growth and survival of human cancers. Here we report that Trks are frequently overexpressed in hepatocellular carcinoma (HCC) from patients and human liver cancer cell lines. To unravel the underlying molecular mechanism(s) for this phenomenon, DNA methylation patterns of CpG islands in TrkA, TrkB, and TrkC genes were examined in normal and cancer cell lines derived from liver. A good correlation was observed between promoter hypermethylation and lower expression of TrkA, TrkB, and TrkC genes, which was supported by the data that inhibiting DNA methylation with 5-azacytidine restored expression of those genes in normal liver cell lines. Furthermore, Trks promoted the proliferation of HepG2 and induced expression of the metastatic regulator, Twist. These results suggest that Trks may contribute to growth and metastasis of liver cancer.

  4. Sunitinib activates Axl signaling in renal cell cancer.

    van der Mijn, Johannes C; Broxterman, Henk J; Knol, Jaco C; Piersma, Sander R; De Haas, Richard R; Dekker, Henk; Pham, Thang V; Van Beusechem, Victor W; Halmos, Balazs; Mier, James W; Jiménez, Connie R; Verheul, Henk M W

    2016-06-15

    Mass spectrometry-based phosphoproteomics provides a unique unbiased approach to evaluate signaling network in cancer cells. The tyrosine kinase inhibitor sunitinib is registered as treatment for patients with renal cell cancer (RCC). We investigated the effect of sunitinib on tyrosine phosphorylation in RCC tumor cells to get more insight in its mechanism of action and thereby to find potential leads for combination treatment strategies. Sunitinib inhibitory concentrations of proliferation (IC50) of 786-O, 769-p and A498 RCC cells were determined by MTT-assays. Global tyrosine phosphorylation was measured by LC-MS/MS after immunoprecipitation with the antiphosphotyrosine antibody p-TYR-100. Phosphoproteomic profiling of 786-O cells yielded 1519 phosphopeptides, corresponding to 675 unique proteins including 57 different phosphorylated protein kinases. Compared to control, incubation with sunitinib at its IC50 of 2 µM resulted in downregulation of 86 phosphopeptides including CDK5, DYRK3, DYRK4, G6PD, PKM and LDH-A, while 94 phosphopeptides including Axl, FAK, EPHA2 and p38α were upregulated. Axl- (y702), FAK- (y576) and p38α (y182) upregulation was confirmed by Western Blot in 786-O and A498 cells. Subsequent proliferation assays revealed that inhibition of Axl with a small molecule inhibitor (R428) sensitized 786-O RCC cells and immortalized endothelial cells to sunitinib up to 3 fold. In conclusion, incubation with sunitinib of RCC cells causes significant upregulation of multiple phosphopeptides including Axl. Simultaneous inhibition of Axl improves the antitumor activity of sunitinib. We envision that evaluation of phosphoproteomic changes by TKI treatment enables identification of new targets for combination treatment strategies. PMID:26815723

  5. A third-order active-R filter with feedforward input signal

    G N Shinde; P B Patil; P R Mirkute

    2003-12-01

    A realization of voltage-mode transfer functions with feedforward input signal for third-order active-R filter using an oprational amplifier has been presented. This filter is useful for high frequency operation, monolithic IC implementation and is easy to design. The single circuit gives three filter functions, low pass, high pass and band pass. This filter circuit can be used for different and f0 with high passband gain. This gives better stop band attenuation and sharper cut-off at the edge of the passband.

  6. Conformational transition in signal transduction: metastable states and transition pathways in the activation of a signaling protein.

    Banerjee, Rahul; Yan, Honggao; Cukier, Robert I

    2015-06-01

    Signal transduction is of vital importance to the growth and adaptation of living organisms. The key to understand mechanisms of biological signal transduction is elucidation of the conformational dynamics of its signaling proteins, as the activation of a signaling protein is fundamentally a process of conformational transition from an inactive to an active state. A predominant form of signal transduction for bacterial sensing of environmental changes in the wild or inside their hosts is a variety of two-component systems, in which the conformational transition of a response regulator (RR) from an inactive to an active state initiates responses to the environmental changes. Here, RR activation has been investigated using RR468 as a model system by extensive unbiased all-atom molecular dynamics (MD) simulations in explicit solvent, starting from snapshots along a targeted MD trajectory that covers the conformational transition. Markov state modeling, transition path theory, and geometric analyses of the wealth of the MD data have provided a comprehensive description of the RR activation. It involves a network of metastable states, with one metastable state essentially the same as the inactive state and another very similar to the active state that are connected via a small set of intermediates. Five major pathways account for >75% of the fluxes of the conformational transition from the inactive to the active-like state. The thermodynamic stability of the states and the activation barriers between states are found, to identify rate-limiting steps. The conformal transition is initiated predominantly by movements of the β3α3 loop, followed by movements of the β4α4-loop and neighboring α4 helix region, and capped by additional movements of the β3α3 loop. A number of transient hydrophobic and hydrogen bond interactions are revealed, and they may be important for the conformational transition. PMID:25945797

  7. Inhibition of cytokines and JAK-STAT activation by distinct signaling pathways.

    Sengupta, T K; Schmitt, E M; Ivashkiv, L B

    1996-01-01

    An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals ...

  8. Crosstalk between signaling pathways of adrenoreceptors and signal transducers and activators of transcription 3 (STAT3) in heart

    Kai-zheng GONG; Hui ZHANG; Jian-hai DU; You-yi ZHANG

    2007-01-01

    Recently, there have been important advancements in our understanding of the signaling mechanisms of adrenoreceptors (AR) and signal transducers and activators of transcription 3 (STAT3). While their crucial roles in the pathological processes of the heart are well established, accumulating evidence suggests there is a complex pattern of crosstalk between these 2 signaling pathways. Moreover, the potential for crosstalk occurs at multiple levels in each signaling cascade and involves receptor transactivation, G proteins, small GTPases, cyclic adenosine 3',5'-monophosphate/protein kinase A, protein kinase C, scaffold/adaptor proteins, protein tyrosine kinases, and mitogen-activated protein kinases. In addition, post-translational modification (eg acetylation) of STAT3 may provide a link betweenSTAT3 and AR signaling. In particular, crosstalk between these 2 systems in the heart would appear to be dependent upon the species/tissue studied, develop-mental stage, and eliciting stimulus. This at least partly accounts for the epigenetic effects on biological function that is mediated by the 2 signaling pathways. Elucidation of these mechanisms will provide new targets in the development of novel clinical strategies for heart disorders.

  9. Understanding disease mechanisms with models of signaling pathway activities

    Sebastian-Leon, Patricia; Vidal, Enrique; Minguez, Pablo; Conesa, Ana; Tarazona, Sonia; Amadoz, Alicia; Armero, Carmen; Salavert, Francisco; VIDAL-PUIG, Antonio; Montaner, David; Dopazo, Joaquín

    2014-01-01

    Background Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine. Results Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements in...

  10. The Search for signals of technological activities in the galaxy

    Lemarchand, Guillermo A

    2010-01-01

    In this article an analysis of the fundamentals used to search for extraterrestrial artificial signals in the galaxy, which have been developing for more than five decades, is presented. It is shown that the key factor for the success of these research projects is given by the technological civilizations lifetimes. Assuming the Principle of Mediocrity, estimations are made to determine the minimum number of civilizations that may co-exist in the galaxy and the probability of detecting a signal from them.

  11. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    Joanna Pyczek; Rolf Buslei; David Schult; Annett Hölsken; Michael Buchfelder; Ina Heß; Heidi Hahn; Anja Uhmann

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox...

  12. A Transcriptional Mechanism Integrating Inputs from Extracellular Signals to Activate Hippocampal Stem Cells

    Andersen, Jimena; Urbán, Noelia; Achimastou, Angeliki; Ito, Ayako; Simic, Milesa; Ullom, Kristy; Martynoga, Ben; Lebel, Mélanie; Göritz, Christian; Frisén, Jonas; Nakafuku, Masato; Guillemot, François

    2014-01-01

    Summary The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate...

  13. Active transport improves the precision of linear long distance molecular signalling

    Godec, Aljaz; Metzler, Ralf

    2016-01-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficia...

  14. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  15. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou, E-mail: xinzhou_yang@hotmail.com

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  16. A Gaussian process framework for modelling stellar activity signals in radial velocity data

    Rajpaul, Vinesh; Osborne, Michael A; Reece, Steven; Roberts, Stephen J

    2015-01-01

    To date, the radial velocity (RV) method has been one of the most productive techniques for detecting and confirming extrasolar planetary candidates. Unfortunately, stellar activity can induce RV variations which can drown out or even mimic planetary signals - and it is notoriously difficult to model and thus mitigate the effects of these activity-induced nuisance signals. This is expected to be a major obstacle to using next-generation spectrographs to detect lower mass planets, planets with longer periods, and planets around more active stars. Enter Gaussian processes (GPs) which, we note, have a number of attractive features that make them very well suited to disentangling stellar activity signals from planetary signals. We present here a GP framework we developed to model RV time series jointly with ancillary activity indicators (e.g. bisector velocity spans, line widths, chromospheric activity indices), allowing the activity component of RV time series to be constrained and disentangled from e.g. planeta...

  17. Danger Signals Activating the Immune Response after Trauma

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  18. Artifact suppression and analysis of brain activities with electroencephalography signals

    Rashed-Al-Mahfuz, Md.; Islam, Md. Rabiul; Hirose, Keikichi; Molla, Md. Khademul Islam

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional bra...

  19. Determination of Sphingosine Kinase Activity for Cellular Signaling Studies

    Lee, Katherine J.; Mwongela, Simon M.; Kottegoda, Sumith; Borland, Laura; Nelson, Allison R.; Sims, Christopher E.; Allbritton, Nancy L.

    2008-01-01

    Regulation of sphingosine and sphingosine-1-phosphate concentrations is of growing interest due to their importance in cellular signal transduction. Furthermore, new pharmaceutical agents moderating the intracellular and extracellular levels of sphingosine metabolites are showing promise in preclinical and clinical trials. In the present work, a quantitative assay relying on capillary electrophoresis with laser-induced fluorescence detection was developed to measure the interconversion of sph...

  20. Danger signals activating the immune response after trauma

    Stefanie Hirsiger; Hans-Peter Simmen; Werner, Clément M. L.; Wanner, Guido A; Daniel Rittirsch

    2012-01-01

    Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins) as well as exogenous pathogen-associated molecular patterns (PAMPs) play a crucial role in the initiation of the immun...

  1. Human ZCCHC12 activates AP-1 and CREB signaling as a transcriptional co-activator

    Hong Li; Qian Liu; Xiang Hu; Du Feng; Shuanglin Xiang; Zhicheng He; Xingwang Hu; Jianlin Zhou; Xiaofeng Ding; Chang Zhou; Jian Zhang

    2009-01-01

    Mouse zinc finger CCHC domain containing 12 gene (ZCCHC12) has been identified as a transcriptional co-activator of bone morphogenetic protein (BMP) sig-naling,and human ZCCHC12 was reported to be related to non-syndromic X-linked mental retardation (NS-XLMR).However,the details of how human ZCCHCI2 involve in the NS-XLMR still remain unclear.In this study,we identified a novel nuclear localization signal (NLS) in the middle of human ZCCHC12 protein which is responsible for the nuclear localization.Multiple-tissue northern blot analysis indi-cated that ZCCHC12 is highly expressed in human brain.Furthermore,in situ hybridization showed that ZCCHC12 is specifically expressed in neuroepithelium of forebrain,midbrain,and diencephalon regions of mouse E10.5 embryos.Luciferase reporter assays demonstrated that ZCCHC12 enhanced the transcrip-tional activities of activator protein 1 (AP-1) and cAMP response element binding protein (CREB) as a co-activator.In conclusion,we identified a new NLS in ZCCHC12 and figured out that ZCCHC12 functions as a transcriptional co-activator of AP-1 and CREB.

  2. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

    Kolarow, Richard; Kuhlmann, Christoph R. W.; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J.; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling. PMID:25426021

  3. Angiogenic activity of sesamin through the activation of multiple signal pathways

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125FAK-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  4. Surfactant Protein A integrates activation signal strength to differentially modulate T cell proliferation

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; GOTO, HISATSUGU; Ledford, Julie G.; Hsia, Bethany; Pastva, Amy M.; Wright, Jo Rae

    2012-01-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar:airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A mediated modulation of T cell activation depends upon the strength, duration and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex and in vivo in different mouse models, ...

  5. Suppression of epithelial signal transducer and activator of transcription 1 activation by extracts of Aspergillus fumigatus.

    Bhushan, Bharat; Homma, Tetsuya; Norton, James E; Sha, Quan; Siebert, Jason; Gupta, Dave S; Schroeder, James W; Schleimer, Robert P

    2015-07-01

    Aspergillus fumigatus (AF) is often pathogenic in immune-deficient individuals and can cause life-threatening infections such as invasive aspergillosis. The pulmonary epithelial response to AF infection and the signaling pathways associated with it have not been completely studied. BEAS-2B cells or primary human bronchial epithelial cells were exposed to extracts of AF and challenged with IFN-β or the Toll-like receptor 3 agonist double-stranded RNA (dsRNA). Cytokine release (B-cell activating factor of the TNF family [BAFF], IFN-γ-induced protein-10 [IP-10], etc.) was assessed. AF extract was separated into low-molecular-weight (LMW) and high-molecular-weight (HMW) fractions using ultra 4 centrifugal force filters to characterize the activity. Real-time PCR was performed with a TaqMan method, and protein estimation was performed using ELISA techniques. Western blot was performed to assess phosphorylation of signal transducer and activator of transcription 1 (STAT1). IFN-β and dsRNA induced messenger RNA (mRNA) expression of BAFF (350- and 452-fold, respectively [n = 3]) and IP-10 (1,081- and 3,044-fold, respectively [n = 3]) in BEAS-2B cells. When cells were pretreated with AF extract for 1 hour and then stimulated with IFN-β or dsRNA for 6 hours, induction of BAFF and IP-10 mRNA was strongly suppressed relative to levels produced by IFN-β and dsRNA alone. When compared with control, soluble BAFF and IP-10 protein levels were maximally suppressed in dsRNA-stimulated wells treated with 1:320 wt/vol AF extract (P < 0.005). Upon molecular size fractionation, a LMW fraction of AF extract had no measurable suppressive effect on IP-10 mRNA expression. However, a HMW fraction of the AF extract significantly suppressed IP-10 expression in BEAS-2B cells that were stimulated with dsRNA or IFN-β. When BEAS-2B cells were pretreated with AF extract and then stimulated with IFN-β, reduced levels of pSTAT1 were observed, with maximum suppression at 4 and 6

  6. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders

    Liu, Chaoyang; Chan, Chi Bun; Ye, Keqiang

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates a variety of biological processes predominantly via binding to the transmembrane receptor tyrosine kinase TrkB. It is a potential therapeutic target in numerous neurological, mental and metabolic disorders. However, the lack of efficient means to deliver BDNF into the body imposes an insurmountable hurdle to its clinical application. To address this challenge, we initiated a cell-based drug screening to search for small molecules that act as ...

  7. Extracellular signal-regulated kinase 1/2 signalling in SLE T cells is influenced by oestrogen and disease activity.

    Gorjestani, S; Rider, V; Kimler, B F; Greenwell, C; Abdou, N I

    2008-06-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs primarily in women of reproductive age. The disease is characterized by exaggerated T-cell activity and abnormal T-cell signalling. The mitogen-activated protein kinase (MAPK) pathway is involved in the maintenance of T-cell tolerance that fails in patients with SLE. Oestrogen is a female sex hormone that binds to nuclear receptors and alters the rate of gene transcription. Oestrogen can also act through the plasma membrane and rapidly stimulate second messengers including calcium flux and kinase activation. In this study, we investigated whether oestrogen influences the activation of MAPK signalling through the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in activated SLE T cells. SLE and control T cells were cultured in serum-free medium without and with oestradiol (10(-7) M) for 18 h. The T cells were activated with phorbol 12 myristate 13-acetate and ionomycin for various time points (0-60 min), and the amount of phosphorylated ERK1/2 was measured by immunoblotting. There were no differences in ERK1/2 phosphorylation between SLE and control T cells at 5 and 15 min after the activation stimulus. However, comparison between the amount of phosphorylated ERK1/2 in SLE T cells from the same patients cultured without and with oestradiol showed a significant oestrogen-dependent suppression (P=0.48) of ERK1/2 in patients with inactive/mild systemic lupus erythematosus disease activity index (SLEDAI) (0-2) compared with patients with moderate (4-6) or active (8-12) SLEDAI scores. These results suggest that the suppression of MAPK through ERK1/2 phosphorylation is sensitive to oestradiol in patients with inactive or mild disease, but the sensitivity is not maintained when disease activity increases. Furthermore, studies are now necessary to understand the mechanisms by which oestrogen influences MAPK activation in SLE T cells. PMID:18539708

  8. Sunlight UV-induced skin cancer relies upon activation of the p38α signaling pathway

    LIU, KANGDONG; Yu, Donghoon; Cho, Yong-Yeon; Ann M Bode; Ma, Weiya; Yao, Ke; Li, Shengqing; Li, Jixia; Bowden, G. Tim; Dong, Ziming; Dong, Zigang

    2013-01-01

    The activation of cellular signal transduction pathways by solar ultraviolet (SUV) irradiation plays a vital role in skin tumorigenesis. Although many pathways have been studied using pure ultraviolet A (UVA) or ultraviolet B (UVB) irradiation, the signaling pathways induced by SUV (i.e., sunlight) are not understood well enough to permit improvements for prevention, prognosis and treatment. Here we report parallel protein kinase array studies aimed at determining the dominant signaling pathw...

  9. An Apodized Kepler Periodogram for Separating Planetary and Stellar Activity Signals

    Gregory, Philip C

    2016-01-01

    A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and center can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for $m$ apodized Keplerian signals includes a linear regression term between RV and the stellar activity diagnostic $\\log(R'hk)$, as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion MCMC code. A differential version of the Generalized Lomb-Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state of the art simulated data sets supported by a variety of stellar activity diagnostics. ...

  10. Discovery of novel small molecule activators of β-catenin signaling.

    Folkert Verkaar

    Full Text Available Wnt/β-catenin signaling plays a major role in embryonic development and adult stem cell maintenance. Reduced activation of the Wnt/β-catenin pathway underlies neurodegenerative disorders and aberrations in bone formation. Screening of a small molecule compound library with a β-galactosidase fragment complementation assay measuring β-catenin nuclear entry revealed bona fide activators of β-catenin signaling. The compounds stabilized cytoplasmic β-catenin and activated β-catenin-dependent reporter gene activity. Although the mechanism through which the compounds activate β-catenin signaling has yet to be determined, several key regulators of Wnt/β-catenin signaling, including glycogen synthase kinase 3 and Frizzled receptors, were excluded as the molecular target. The compounds displayed remarkable selectivity, as they only induced β-catenin signaling in a human osteosarcoma U2OS cell line and not in a variety of other cell lines examined. Our data indicate that differences in cellular Wnt/β-catenin signaling machinery can be exploited to identify cell type-specific activators of Wnt/β-catenin signaling.

  11. Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

    Michael Rotherham

    Full Text Available Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP. A commercially available oscillating magnetic bioreactor (MICA Biosystems was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate

  12. Hemodynamic activation of β-catenin and TCF signaling in vascular endothelium regulates fibronectin expression

    Gelfand, Bradley D.; Meller, Julia; Pryor, Andrew W.; Kahn, Michael; Schoppee Bortz, Pamela D.; Wamhoff, Brian R.; Blackman, Brett R.

    2011-01-01

    β-catenin/TCF signaling regulates a varied set of cellular functions including development and remodeling. Fibronectin is a TCF-regulated gene that is highly expressed in arterial endothelium during atherosclerosis development and contributes to the pathophysiology of the disease. However, the activation of endothelial β-catenin/TCF signaling and its role in fibronectin expression in atherosclerosis are not currently known.

  13. Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling

    Hanselman Keaton B

    2006-10-01

    Full Text Available Abstract Background In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109 animals. Results This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C phenotype of age-1(mg109. Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109;akt-1(mg247 animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109;pdk-1(mg261 animals was dependent on akt-1. However, reproductive development in age-1(mg109; mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109 animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247 and pdk-1(mg261 did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these

  14. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Highlights: → Nerve transection increased Notch signaling in paralyzed muscle. → Nandrolone prevented denervation-induced Notch signaling. → Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. → Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  15. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  16. Bi-Static Active Microwave Remote Sensing of Reflected Signals-of-Opportunity Project

    National Aeronautics and Space Administration — We propose to demonstrate the use of these so-called signals-of-opportunity (SOP) to perform bi-static active microwave remote sensing of land surfaces. Specially,...

  17. Active transport improves the precision of linear long distance molecular signalling

    Godec, Aljaž; Metzler, Ralf

    2016-09-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

  18. Mitogen-activated protein kinase signaling in plants under abiotic stress.

    Sinha, Alok Krishna; Jaggi, Monika; Raghuram, Badmi; Tuteja, Narendra

    2011-02-01

    Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants. PMID:21512321

  19. Active regulation of receptor ratios controls integration of quorum-sensing signals in Vibrio harveyi

    Teng, Shu-Wen; Schaffer, Jessica N; Tu, Kimberly C; Mehta, Pankaj; Lu, Wenyun; Ong, N P; Bassler, Bonnie L; Wingreen, Ned S

    2011-01-01

    Quorum sensing is a chemical signaling mechanism used by bacteria to communicate and orchestrate group behaviors. Multiple feedback loops exist in the quorum-sensing circuit of the model bacterium Vibrio harveyi. Using fluorescence microscopy of individual cells, we assayed the activity of the quorum-sensing circuit, with a focus on defining the functions of the feedback loops. We quantitatively investigated the signaling input–output relation both in cells with all feedback loops present as well as in mutants with specific feedback loops disrupted. We found that one of the feedback loops regulates receptor ratios to control the integration of multiple signals. Together, the feedback loops affect the input–output dynamic range of signal transmission and the noise in the output. We conclude that V. harveyi employs multiple feedback loops to simultaneously control quorum-sensing signal integration and to ensure signal transmission fidelity. PMID:21613980

  20. Active control of shocks and sonic boom ground signal

    Yagiz, Bedri

    The manipulation of a flow field to obtain a desired change is a much heightened subject. Active flow control has been the subject of the major research areas in fluid mechanics for the past two decades. It offers new solutions for mitigation of shock strength, sonic boom alleviation, drag minimization, reducing blade-vortex interaction noise in helicopters, stall control and the performance maximization of existing designs to meet the increasing requirements of the aircraft industries. Despite the wide variety of the potential applications of active flow control, the majority of studies have been performed at subsonic speeds. The active flow control cases were investigated in transonic speed in this study. Although the active flow control provides significant improvements, the sensibility of aerodynamic performance to design parameters makes it a nontrivial and expensive problem, so the designer has to optimize a number of different parameters. For the purpose of gaining understanding of the active flow control concepts, an automated optimization cycle process was generated. Also, the optimization cycle reduces cost and turnaround time. The mass flow coefficient, location, width and angle were chosen as design parameters to maximize the aerodynamic performance of an aircraft. As the main contribution of this study, a detailed parametric study and optimization process were presented. The second step is to appraise the practicability of weakening the shock wave and thereby reducing the wave drag in transonic flight regime using flow control devices such as two dimensional contour bump, individual jet actuator, and also the hybrid control which includes both control devices together, thereby gaining the desired improvements in aerodynamic performance of the air-vehicle. After this study, to improve the aerodynamic performance, the flow control and shape parameters are optimized separately, combined, and in a serial combination. The remarkable part of all these

  1. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regulatoryfactor...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of... interferon regulatoryfactor 3. Authors Servant MJ, Grandvaux N, Hiscott J. Publication Biochem Pharmacol. 2

  2. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    Hirose, Yoshikazu [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Itoh, Tohru, E-mail: itohru@iam.u-tokyo.ac.jp [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Miyajima, Atsushi [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-09-10

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk{sup +} hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk{sup +} hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk{sup +} hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  3. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities.

    Zhang, Tianyi; Liao, Yang; Hsu, Fu-Ning; Zhang, Robin; Searle, Jennifer S; Pei, Xun; Li, Xuan; Ryoo, Hyung Don; Ji, Jun-Yuan; Du, Wei

    2014-05-01

    Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. PMID:24809668

  4. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival

    Hsieh Fu-Chuan

    2008-10-01

    Full Text Available Abstract Background Constitutive activation of signal transducer and activator of transcription 3 (Stat3 signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer. Results We found that elevated Stat3 phosphorylation in 19 of 100 (19% bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC. The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin and a cell cycle regulating gene (cyclin D1 was associated with the cell growth inhibition and apoptosis. Conclusion These results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.

  5. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    von Essen, Marina Rode; Kongsbak, Martin; Schjerling, Peter;

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  6. Prediction of vehicle activity for emissions estimation under oversaturated conditions along signalized arterials

    Skabardonis, Alexander; Geroliminis, Nikolaos; Christofa, Eleni

    2013-01-01

    The traditional methodology for estimating vehicle emissions based on vehicle miles traveled and average speed is not reliable because it does not consider the effects of congestion, control devices, and driving mode (cruise, acceleration, deceleration, and idle). We developed an analytical model to predict vehicle activity on signalized arterials with emphasis on oversaturated traffic conditions. The model depends only on loop detector data and signal settings as inputs and provides estimate...

  7. The functional activity of hypothalamic signaling systems in rats with neonatal diabetes mellitus treated with metformin.

    Derkach, K V; Sukhov, I B; Kuznetsova, L A; Buzanakov, D M; Shpakov, A O

    2016-03-01

    The effect of the two-month metformin treatment (200 mg/kg/day) of rats with the neonatal model of type 2 diabetes mellitus on the functional activity of hypothalamic signaling systems was studied. It was shown that metformin treatment restored the sensitivity of hypothalamic adenylyl cyclase signaling system to agonists of the type 4 melanocortin receptor and the type 2 dopamine receptor but did not influence significantly the functions of the insulin signaling system. These data suggest new targets and mechanisms of metformin action in the CNS, which may mediate its restoring effect on energy homeostasis impaired in diabetic pathology. PMID:27193707

  8. Biased signalling from the glucocorticoid receptor: Renewed opportunity for tailoring glucocorticoid activity.

    Keenan, Christine R; Lew, Michael J; Stewart, Alastair G

    2016-07-15

    Recent landmark studies applying analytical pharmacology approaches to the glucocorticoid receptor (GR) have demonstrated that different ligands can cause differential activation of distinct GR-regulated genes. Drawing on concepts of signalling bias from the field of G protein-coupled receptor (GPCR) biology, we speculate that ligand-dependent differences in GR signalling can be considered analogous to GPCR biased signalling, and thus can be quantitatively analysed in a similar way. This type of approach opens up the possibility of using rational structure-based drug optimisation strategies to improve the therapeutic selectivity of glucocorticoid drugs to maximise their efficacy and minimise adverse effects. PMID:26898958

  9. A Gaussian process framework for modelling stellar activity signals in radial velocity data

    Rajpaul, V.; Aigrain, S.; Osborne, M. A.; Reece, S.; Roberts, S.

    2015-09-01

    To date, the radial velocity (RV) method has been one of the most productive techniques for detecting and confirming extrasolar planetary candidates. Unfortunately, stellar activity can induce RV variations which can drown out or even mimic planetary signals - and it is notoriously difficult to model and thus mitigate the effects of these activity-induced nuisance signals. This is expected to be a major obstacle to using next-generation spectrographs to detect lower mass planets, planets with longer periods, and planets around more active stars. Enter Gaussian processes (GPs) which, we note, have a number of attractive features that make them very well suited to disentangling stellar activity signals from planetary signals. We present here a GP framework we developed to model RV time series jointly with ancillary activity indicators (e.g. bisector velocity spans, line widths, chromospheric activity indices), allowing the activity component of RV time series to be constrained and disentangled from e.g. planetary components. We discuss the mathematical details of our GP framework, and present results illustrating its encouraging performance on both synthetic and real RV data sets, including the publicly available Alpha Centauri B data set.

  10. Task control signals in pediatric Tourette syndrome show evidence of immature and anomalous functional activity

    Francis M Miezin

    2009-11-01

    Full Text Available Tourette Syndrome (TS is a pediatric movement disorder that may affect control signaling in the brain. Previous work has proposed a dual-networks architecture of control processing involving a task-maintenance network and an adaptive control network (Dosenbach et al., 2008. A prior resting-state functional connectivity MRI (rs-fcMRI analysis in TS has revealed functional immaturity in both putative control networks, with “anomalous” correlations (i.e. correlations outside the typical developmental range limited to the adaptive control network (Church et al., 2009. The present study used functional MRI (fMRI to study brain activity related to adaptive control (by studying start-cues signals, and to task-maintenance (by studying signals sustained across a task set. Two hypotheses from the previous rs-fcMRI results were tested. First, adaptive control (i.e., start-cue activity will be altered in TS, including activity inconsistent with typical development (“anomalous”. Second, group differences found in task maintenance (i.e., sustained activity will be consistent with functional immaturity in TS. We examined regions found through a direct comparison of adolescents with and without TS, as well as regions derived from a previous investigation that showed differences between unaffected children and adults. The TS group showed decreased start-cue signal magnitude in regions where start-cue activity is unchanged over typical development, consistent with anomalous adaptive control. The TS group also had higher magnitude sustained signals in frontal cortex regions that overlapped with regions showing differences over typical development, consistent with immature task maintenance in TS. The results demonstrate task-related fMRI signal differences anticipated by the atypical functional connectivity found previously in adolescents with TS, strengthening the evidence for functional immaturity and anomalous signaling in control networks in adolescents

  11. Activation of PERK signaling through fluoride-mediated endoplasmic reticulum stress in OS732 cells

    Our proteomical analysis of osteoblasts exposed to fluoride revealed a distinctive upregulation of proteins in osteoblast. These upregulated proteins play key roles in the protein folding. The PRK-like ER kinase (PERK) signaling, one branch of unfolded protein response (UPR) to combat ER stress, is a transcription factor needed for osteoblast proliferation and differentiation. The mechanism of skeletal fluorosis by which fluoride regulates osteoblast is not fully defined. Here we studied the effect of fluoride on PERK signaling genes and x-box binding protein 1 (xbp-1) in OS7232 cells (human osteoblast-like cell line). Meantime, genes associated with bone turnover were examined in this study. We found that early and continuous fluoride exposure increased the binding immunoglobulin protein (BiP) expression and activated the PERK signaling pathway, resulting in activation of transcription factor 4 (ATF4) and nuclear factor erythroid 2-related factor 2 (Nrf2). The altered expression of cbfa1, osteoprotegerin (OPG)/nuclear factor kappa B ligand (RANKL) were viewed in this study. These results showed fluoride impelled a distinctive ER stress response in OS732 cells, primarily by activating PERK and PERK-dependent signaling. Little effects were viewed for activating xbp-1, a common target of the other two canonical sensors of ER stress, ATF6 and IRE1. In this study the altered expression of bone turnover genes were consistent with activation of ER stress and PERK signaling. This study proved that PERK signaling play major roles in action of fluoride on osteoblast, and suggested that bone response in skeletal fluorosis may be due in part to PERK signaling pathway.

  12. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    Highlights: ► H2O2 activates the insulin signaling pathway and glucose uptake in podocytes. ► H2O2 induces time-dependent changes in AMPK phosphorylation. ► H2O2 enhances insulin signaling pathways via AMPK activation. ► H2O2 stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H2O2) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H2O2-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H2O2 (100 μM) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min (Δ 183%, P 2O2>. Furthermore, H2O2 inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; Δ −32%, P 2O2 on IR phosphorylation by about 40% (from 2.07 ± 0.28 to 1.28 ± 0.12, P 2O2 increased glucose uptake in podocytes (from 0.88 ± 0.04 to 1.29 ± 0.12 nmol/min/mg protein, P 2O2 activated the insulin signaling pathway and glucose uptake via AMPK in cultured rat podocytes. This signaling may play a potential role in the prevention of insulin resistance under conditions associated with oxidative stress.

  13. Recombinant TCR ligand induces early TCR signaling and a unique pattern of downstream activation.

    Wang, Chunhe; Mooney, Jeffery L; Meza-Romero, Roberto; Chou, Yuan K; Huan, Jianya; Vandenbark, Arthur A; Offner, Halina; Burrows, Gregory G

    2003-08-15

    Recombinant TCR ligands (RTLs) consisting of covalently linked alpha(1) and beta(1) domains of MHC class II molecules tethered to specific antigenic peptides represent minimal TCR ligands. In a previous study we reported that the rat RTL201 construct, containing RT1.B MHC class II domains covalently coupled to the encephalitogenic guinea pig myelin basic protein (Gp-MBP(72-89)) peptide, could prevent and treat actively and passively induced experimental autoimmune encephalomyelitis in vivo by selectively inhibiting Gp-MBP(72-89) peptide-specific CD4(+) T cells. To evaluate the inhibitory signaling pathway, we tested the effects of immobilized RTL201 on T cell activation of the Gp-MBP(72-89)-specific A1 T cell hybridoma. Activation was exquisitely Ag-specific and could not be induced by RTL200 containing the rat MBP(72-89) peptide that differed by a threonine for serine substitution at position 80. Partial activation by RTL201 included a CD3zeta p23/p21 ratio shift, ZAP-70 phosphorylation, calcium mobilization, NFAT activation, and transient IL-2 production. In comparison, anti-CD3epsilon treatment produced stronger activation of these cellular events with additional activation of NF-kappaB and extracellular signal-regulated kinases as well as long term increased IL-2 production. These results demonstrate that RTLs can bind directly to the TCR and modify T cell behavior through a partial activation mechanism, triggering specific downstream signaling events that deplete intracellular calcium stores without fully activating T cells. The resulting Ag-specific activation of the transcription factor NFAT uncoupled from the activation of NF-kappaB or extracellular signal-regulated kinases constitutes a unique downstream activation pattern that accounts for the inhibitory effects of RTL on encephalitogenic CD4(+) T cells. PMID:12902496

  14. Mammary cells with active Wnt signaling resist ErbB2-induced tumorigenesis.

    Wen Bu

    Full Text Available Aberrant activation of Wnt signaling is frequent in human malignancies. In normal epithelial tissues, including the breast, Wnt signaling is active only in a subset of cells, but it is unknown whether this subset of Wnt signaling-active cells is at increased risk of carcinogenesis. We created transgenic mice (TOP-tva in which the synthetic Wnt-responsive promoter TOP controlled the gene encoding TVA, which confers susceptibility to infection by the retroviral vector RCAS. Thus, only cells in which Wnt signaling is active will express tva and be targeted by RCAS. Surprisingly, we found that RCAS-mediated delivery of cDNA encoding a constitutively activated version of ErbB2 (HER2/Neu into the small number of TVA+ mammary epithelial cells in TOP-tva mice failed to induce tumor, while the same virus readily induced mammary tumors after it was delivered into a comparable number of cells in our previously reported mouse line MMTV-tva, whose tva is broadly expressed in mammary epithelium. Furthermore, we could not even detect any early lesions or infected cells in TOP-tva mice at the time of necropsy. Therefore, we conclude that the Wnt pathway-active cell subset in the normal mammary epithelium does not evolve into tumors following ErbB2 activation-rather, they apparently die due to apoptosis, an anticancer "barrier" that we have reported to be erected in some mammary cells followed ErbB2 activation. In accord with these mouse model data, we found that unlike the basal subtype, ErbB2+ human breast cancers rarely involve aberrant activation of Wnt signaling. This is the first report of a defined sub-population of mammalian cells that is "protected" from tumorigenesis by a potent oncogene, and provides direct in vivo evidence that mammary epithelial cells are not equal in their response to oncogene-initiated transformation.

  15. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution.

    Luo, Bangwei; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Shi, Rongchen; Liu, Yu-Qi; Liu, Yu; Jiang, Man; Wu, Yuzhang; Zhang, Zhiren

    2016-01-01

    Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions. PMID:27397585

  16. Signal intensity, clinical activity and cross-sectional areas on MRI scans in thyroid eye disease

    The signal intensity from inflamed extra-ocular muscles on short tau inversion recovery (STIR)-sequence magnetic resonance imaging (MRI) is known to correlate with clinical scores of thyroid eye disease (TED) severity. Twenty-one patients who had undergone repeated MRI scanning for TED were studied retrospectively. Signal intensity of extra-ocular muscles (from STIR-sequence MRI) and cross-sectional area (from STIR and T1 MRI) were correlated with Mourits' clinical activity score (CAS). The area of highest signal intensity within the most inflamed extra-ocular muscle, and the average cross-sectional signal intensity of the most inflamed extra-ocular muscle reliably correlated with CAS, and this was maintained as disease activity changed over time. In contrast, isolated measures of muscle cross-sectional area did not correlate with CAS. The extra-ocular muscle cross-sectional area calculated from STIR-sequence MR images was greater than that measured on T1 images. This suggests that muscle area from STIR-sequence MRI may also detect peri-muscular inflammation. We conclude that the peak signal intensity from the most inflamed extra-ocular muscle remains the most reliable correlate of clinical disease activity obtained from these images. STIR-sequence MRI scans provide a number of useful measures of disease activity in TED

  17. Investigations on Inhibitors of Hedgehog Signal Pathway: A Quantitative Structure-Activity Relationship Study

    Zhiwei Cao

    2011-05-01

    Full Text Available The hedgehog signal pathway is an essential agent in developmental patterning, wherein the local concentration of the Hedgehog morphogens directs cellular differentiation and expansion. Furthermore, the Hedgehog pathway has been implicated in tumor/stromal interaction and cancer stem cell. Nowadays searching novel inhibitors for Hedgehog Signal Pathway is drawing much more attention by biological, chemical and pharmological scientists. In our study, a solid computational model is proposed which incorporates various statistical analysis methods to perform a Quantitative Structure-Activity Relationship (QSAR study on the inhibitors of Hedgehog signaling. The whole QSAR data contain 93 cyclopamine derivatives as well as their activities against four different cell lines (NCI-H446, BxPC-3, SW1990 and NCI-H157. Our extensive testing indicated that the binary classification model is a better choice for building the QSAR model of inhibitors of Hedgehog signaling compared with other statistical methods and the corresponding in silico analysis provides three possible ways to improve the activity of inhibitors by demethylation, methylation and hydroxylation at specific positions of the compound scaffold respectively. From these, demethylation is the best choice for inhibitor structure modifications. Our investigation also revealed that NCI-H466 served as the best cell line for testing the activities of inhibitors of Hedgehog signal pathway among others.

  18. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  19. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  20. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells

    Meininger, Isabel; Griesbach, Richard A.; Hu, Desheng; Gehring, Torben; Seeholzer, Thomas; Bertossi, Arianna; Kranich, Jan; Oeckinghaus, Andrea; Eitelhuber, Andrea C; Greczmiel, Ute; Gewies, Andreas; Schmidt-Supprian, Marc; Ruland, Jürgen; Brocker, Thomas; Heissmeyer, Vigo

    2016-01-01

    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify...

  1. Active Elements for Analog Signal Processing: Classification, Review, and New Proposals

    Z. Kolka

    2008-12-01

    Full Text Available In the paper, an analysis of the state-of-the-art of active elements for analog signal processing is presented which support – in contrast to the conventional operational amplifiers – not only the voltage-mode but also the current- and mixed-mode operations. Several problems are addressed which are associated with the utilization of these elements in linear applications, particularly in frequency filters. A methodology is proposed which generates a number of fundamentally new active elements with their potential utilization in various areas of signal processing.

  2. Aurora A drives early signalling and vesicle dynamics during T-cell activation

    Blas-Rus, Noelia; Bustos-Morán, Eugenio; Pérez de Castro, Ignacio; de Cárcer, Guillermo; Borroto, Aldo; Camafeita, Emilio; Jorge, Inmaculada; Vázquez, Jesús; Alarcón, Balbino; Malumbres, Marcos; Martín-Cófreces, Noa B.; Sánchez-Madrid, Francisco

    2016-01-01

    Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal. PMID:27091106

  3. Activation of aryl hydrocarbon receptor signaling by extracts of teak and other wood dusts.

    Wilson, Mark J; Sabbioni, Gabriele; Rando, Roy; Miller, Charles A

    2015-12-01

    Wood dusts, as a group, are categorized as known human carcinogens, but the risks of exposure to specific types of wood dusts and the carcinogenic chemicals they contain are not well studied. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is linked to the carcinogenic action of specific classes of chemicals. Here we examined whether chemicals in various wood dusts had the potential to activate AhR signaling as a potential toxic mechanism of action. We found that methanol extracts of teak, walnut, mahogany, and poplar dusts contained a wide range of AhR ligand activity, whereas extracts of oak, pine, and other softwoods did not contain appreciable activity. Teak dust extract, being particularly potent, was subjected to chemical analysis. The 2-methylanthraquinone (2-MAQ) accounted for the AhR ligand activity and was present at an average concentration of 0.27 parts per hundred in teak dust. Pure 2-MAQ potently induced AhR signaling (EC50 115 nM), confirming that this was the active ligand. Aqueous extracts of teak dust made using yeast or mammalian cell culture medium also contained robust AhR activity, suggesting the 2-MAQ ligand is soluble at bioactive concentrations in physiologically relevant fluids. The high concentration and potency of 2-MAQ in teak wood suggest it may mediate toxic effects through activation of AhR signaling in exposed wood workers. PMID:24898320

  4. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  5. Clicks, whistles and pulses: Passive and active signal use in dolphin communication

    Herzing, Denise L.

    2014-12-01

    The search for signals out of noise is a problem not only with radio signals from the sky but in the study of animal communication. Dolphins use multiple modalities to communicate including body postures, touch, vision, and most elaborately sound. Like SETI radio signal searches, dolphin sound analysis includes the detection, recognition, analysis, and interpretation of signals. Dolphins use both passive listening and active production to communicate. Dolphins use three main types of acoustic signals: frequency modulated whistles (narrowband with harmonics), echolocation (broadband clicks) and burst pulsed sounds (packets of closely spaced broadband clicks). Dolphin sound analysis has focused on frequency-modulated whistles, yet the most commonly used signals are burst-pulsed sounds which, due to their graded and overlapping nature and bimodal inter-click interval (ICI) rates are hard to categorize. We will look at: 1) the mechanism of sound production and categories of sound types, 2) sound analysis techniques and information content, and 3) examples of lessons learned in the study of dolphin acoustics. The goal of this paper is to provide perspective on how animal communication studies might provide insight to both passive and active SETI in the larger context of searching for life signatures.

  6. False Alarm Reduction in BSN-Based Cardiac Monitoring Using Signal Quality and Activity Type Information

    Tanatorn Tanantong

    2015-02-01

    Full Text Available False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs, the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  7. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex.

    Aksenov, Daniil P; Li, Limin; Miller, Michael J; Iordanescu, Gheorghe; Wyrwicz, Alice M

    2015-11-01

    Most functional magnetic resonance imaging (fMRI) animal studies rely on anesthesia, which can induce a variety of drug-dependent physiological changes, including depression of neuronal activity and cerebral metabolism as well as direct effects on the vasculature. The goal of this study was to characterize the effects of anesthesia on the BOLD signal and neuronal activity. Simultaneous fMRI and electrophysiology were used to measure changes in single units (SU), multi-unit activity (MUA), local field potentials (LFP), and the blood oxygenation level-dependent (BOLD) response in the somatosensory cortex during whisker stimulation of rabbits before, during and after anesthesia with fentanyl or isoflurane. Our results indicate that anesthesia modulates the BOLD signal as well as both baseline and stimulus-evoked neuronal activity, and, most significantly, that the relationship between the BOLD and electrophysiological signals depends on the type of anesthetic. Specifically, the behavior of LFP observed under isoflurane did not parallel the behavior of BOLD, SU, or MUA. These findings suggest that the relationship between these signals may not be straightforward. BOLD may scale more closely with the best measure of the excitatory subcomponents of the underlying neuronal activity, which may vary according to experimental conditions that alter the excitatory/inhibitory balance in the cortex. PMID:26104288

  8. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation.

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; Goto, Hisatsugu; Ledford, Julie G; Hsia, Bethany; Pastva, Amy M; Wright, Jo Rae

    2012-02-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar-airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A-mediated modulation of T cell activation depends upon the strength, duration, and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex vivo and in vivo in different mouse models and in vitro with human T cells shows a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific Abs, APCs, or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A(-/-) mice stimulated with a strong signal also resulted in suppression of T cell proliferation while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A-dependent effects are mediated by changes in intracellular Ca(2+) levels over time, involving extrinsic Ca(2+)-activated channels late during activation. These effects are intrinsic to the global T cell population and are manifested in vivo in naive as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation. PMID:22219327

  9. Opposing Activities of Notch and Wnt Signaling Regulate Intestinal Stem Cells and Gut Homeostasis

    Hua Tian

    2015-04-01

    Full Text Available Proper organ homeostasis requires tight control of adult stem cells and differentiation through the integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a derepression of the Wnt signaling pathway, leading to misexpression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology.

  10. Sleep loss activates cellular inflammation and signal transducer and activator of transcription (STAT) family proteins in humans

    Irwin, DE; Witarama, T; Caudill, M; Olmstead, R; Breen, EC

    2015-01-01

    © 2014 Elsevier Inc.. Sleep disturbance and short sleep duration are associated with inflammation and related disorders including cardiovascular disease, arthritis, diabetes mellitus, and certain cancers. This study was undertaken to test the effects of experimental sleep loss on spontaneous cellular inflammation and activation of signal transducer and activator of transcription (STAT) family proteins, which together promote an inflammatory microenvironment. In 24 healthy adults (16 females; ...

  11. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells

    Lee, Joomin; Hahm, Eun-Ryeong; Singh, Shivendra V

    2010-01-01

    We have shown previously that withaferin A (WA), a promising anticancer constituent of Ayurvedic medicine plant Withania somnifera, inhibits growth of human breast cancer cells in culture and in vivo in association with apoptosis induction. The present study builds on these observations and demonstrates that WA inhibits constitutive as well as interleukin-6 (IL-6)-inducible activation of signal transducer and activator of transcription 3 (STAT3), which is an oncogenic transcription factor act...

  12. Activation of the wnt/β-Catenin Signaling Pathway in Polymyositis, Dermatomyositis and Duchenne Muscular Dystrophy

    Liu, Fuchen; Liang, Zonglai; Xu, Jingwen; Li, Wei; Zhao, Dandan; Zhao, Yuying

    2016-01-01

    Background and Purpose The wnt/β-catenin signaling pathway plays a critical role in embryonic development and adult-tissue homeostasis. Recent investigations implicate the importance of wnt/β-catenin signaling in normal wound healing and its sustained activation being associated with fibrogenesis. We investigated the immunolocalization and activation of wnt/β-catenin in polymyositis (PM), dermatomyositis (DM), and Duchenne muscular dystrophy (DMD). Methods Immunofluorescence staining and Western blot analysis of β-catenin were performed in muscle specimens from 6 PM, 8 DM, and 6 DMD subjects. The β-catenin/Tcf4 DNA-binding activity in muscle was studied using an electrophoretic mobility shift assay (EMSA), and serum wnt/β-catenin/Tcf transcriptional activity was measured using a luciferase reporter gene assay. Results Immunoreactivity for β-catenin was found in the cytoplasm and nuclei of muscle fibers in PM, DM, and DMD. The protein level of β-catenin was elevated, and EMSA analysis confirmed the activation of wnt/β-catenin signaling. The transcriptional activities of β-catenin/Tcf in the circulation were increased in patients with PM, DM, and DMD, especially in those with interstitial lung disease, and these transcriptional activities decreased when PM or DM patients exhibited obvious clinical improvements. Conclusions Our findings indicate that wnt/β-catenin signaling is activated in PM, DM, and DMD. Its activation in muscle tissue and the circulation may play a role in modulating muscle regeneration and be at least partly involved in the process of muscle and pulmonary fibrosis. PMID:27165423

  13. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.

    Donyo, Maya; Hollander, Dror; Abramovitch, Ziv; Naftelberg, Shiran; Ast, Gil

    2016-04-01

    Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD. PMID:26769675

  14. Signal transducer and activator of transcription 5 is implicated in disease activity in adult and juvenile onset systemic lupus erythematosus.

    Meshaal, Safa; El Refai, Rasha; El Saie, Ahmed; El Hawary, Rabab

    2016-06-01

    The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is one of a handful of pleiotropic cascades used to transduce a multitude of signals for development and homeostasis in humans. It is the principal signaling mechanism for a wide array of cytokines and growth factors. Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE). In this study, we tried to assess the role of STAT5 in systemic lupus erythematosus and correlate its phosphorylation level with the disease activity. The activation of the STAT5 was assessed by measuring the level of expression of phosphorylated STAT5 (pSTAT5) using flow cytometry on the peripheral blood T and B cells in 58 SLE patients (40 adult and 18 juvenile onset) and on 23 healthy age- and sex-matched controls for both groups. Serum prolactin level was also assessed in the patients and control by ELISA. The study revealed that the level of pSTAT5 was higher in adult SLE patients than in healthy control (p = 0.001) and in juvenile-onset SLE patients versus age-matched control (p = 0.031). A positive correlation existed between the pSTAT5 levels and Systemic Lupus Activity Measure (SLAM) score and also with multiple clinical manifestations indicating a potential role of STAT5 signaling in pathogenesis SLE. The pSTAT5 signaling is implicated in the disease activity of SLE and may be a useful target of therapy by correcting the dysregulation of cytokines involved in the disease pathogenesis. PMID:27041383

  15. Chemical Signals of Synthetic Disaccharide Derivatives Dominate Rhamnolipids at Controlling Multiple Bacterial Activities.

    Singh, Nischal; Shetye, Gauri S; Zheng, Hewen; Sun, Jiayue; Luk, Yan-Yeung

    2016-01-01

    Microbes secrete molecules that modify their environment. Here, we demonstrate a class of synthetic disaccharide derivatives (DSDs) that mimics and dominates the activity of naturally secreted rhamnolipids by Pseudomonas aeruginosa. The DSDs exhibit the dual function of activating and inhibiting the swarming motility through a concentration-dependent activity reversal that is characteristic of signaling molecules. Whereas DSDs tethered with a saturated farnesyl group exhibit inhibition of both biofilm formation and swarming motility, with higher activities than rhamnolipids, a saturated farnesyl tethered with a sulfonate group only inhibits swarming motility but promote biofilm formation. These results identified important structural elements for controlling swarming motility, biofilm formation, and bacterial adhesion and suggest an effective chemical approach to control intertwined signaling processes that are important for biofilm formation and motilities. PMID:26511780

  16. Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns

    Yusely RUIZ; Guang LI; Walter J. FREEMAN; Eduardo GONZALEZ

    2009-01-01

    Obtaining an electrocorticograms (ECoG) signal requires an invasive procedure in which brain activity is recorded from the cortical surface. In contrast, obtaining electroencephalograms (EEG) recordings requires the non-invasive procedure of recording the brain activity from the scalp surface, which allows EEG recordings to be performed more easily on healthy humans. In this work, a technique previously used to study spatial-temporal patterns of brain activity on animal ECoG was adapted for use on EEG. The main issues are centered on solving the problems introduced by the increment on the interelectrode distance and the procedure to detect stable frames. The results showed that spatial patterns of beta and gamma activity can also be extracted from the EEG signal by using stable frames as time markers for feature extraction. This adapted technique makes it possible to take advantage of the cognitive and phenomenological awareness of a normal healthy subject.

  17. Identification of key residues involved in the activation and signaling properties of dopamine D3 receptor.

    Kota, Kokila; Kuzhikandathil, Eldo V; Afrasiabi, Milad; Lacy, Brett; Kontoyianni, Maria; Crider, A Michael; Song, Daniel

    2015-09-01

    The dopamine D3 receptor exhibits agonist-dependent tolerance and slow response termination (SRT) signaling properties that distinguish it from the closely-related D2 receptors. While amino acid residues important for D3 receptor ligand binding have been identified, the residues involved in activation of D3 receptor signaling and induction of signaling properties have not been determined. In this paper, we used cis and trans isomers of a novel D3 receptor agonist, 8-OH-PBZI, and site-directed mutagenesis to identify key residues involved in D3 receptor signaling function. Our results show that trans-8-OH-PBZI, but not cis-8-OH-PBZI, elicit the D3 receptor tolerance and SRT properties. We show that while both agonists require a subset of residues in the orthosteric binding site of D3 receptors for activation of the receptor, the ability of the two isomers to differentially induce tolerance and SRT is mediated by interactions with specific residues in the sixth transmembrane helix and third extracellular loop of the D3 receptor. We also show that unlike cis-8-OH-PBZI, which is a partial agonist at the dopamine D2S receptor and full agonist at dopamine D2L receptor, trans-8-OH-PBZI is a full agonist at both D2S and D2L receptors. The different effect of the two isomers on D3 receptor signaling properties and D2S receptor activation correlated with differential effects of the isomers on agonist-induced mouse locomotor activity. The two isomers of 8-OH-PBZI represent novel pharmacological tools for in silico D3 and D2 receptor homology modeling and for determining the role of D3 receptor tolerance and SRT properties in signaling and behavior. PMID:26116441

  18. NF-kB activation by ultraviolet light not dependent on a nuclear signal

    Devary, Y.; Rosette, C.; DiDonato, J.A.; Karin, M. (Univ. of California, San Diego, CA (United States))

    1993-09-10

    Exposure of mammalian cells to radiation triggers the ultraviolet (UV) response, which includes activation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-kB). This was postulated to occur by induction of a nuclear signaling cascade by damaged DNA. Recently, induction of AP-1 by UV was shown to be mediated by a pathway involving Src tyrosine kinases and the Ha-Ras small guanosine triphosphate-binding protein, proteins located at the plasma membrane. It is demonstrated here that the same pathway mediates induction of NF-kB by UV. Because inactive NF-kB is stored in the cytosol, analysis of its activation directly tests the involvement of a nuclear-initiated signaling cascade. Enucleated cells are fully responsive to UV both in NF-kB induction and in activation of another key signaling event. Therefore, the UV response does not require a signal generated in the nucleus and is likely to be initiated at or near the plasma membrane.

  19. NF-kB activation by ultraviolet light not dependent on a nuclear signal

    Exposure of mammalian cells to radiation triggers the ultraviolet (UV) response, which includes activation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-kB). This was postulated to occur by induction of a nuclear signaling cascade by damaged DNA. Recently, induction of AP-1 by UV was shown to be mediated by a pathway involving Src tyrosine kinases and the Ha-Ras small guanosine triphosphate-binding protein, proteins located at the plasma membrane. It is demonstrated here that the same pathway mediates induction of NF-kB by UV. Because inactive NF-kB is stored in the cytosol, analysis of its activation directly tests the involvement of a nuclear-initiated signaling cascade. Enucleated cells are fully responsive to UV both in NF-kB induction and in activation of another key signaling event. Therefore, the UV response does not require a signal generated in the nucleus and is likely to be initiated at or near the plasma membrane

  20. Jasmonate signaling in plant stress responses and development - active and inactive compounds.

    Wasternack, Claus; Strnad, Miroslav

    2016-09-25

    Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment. PMID:26581489

  1. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-06-01

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca(2+) signals, which are confined in their spatiotemporal extent by endogenous Ca(2+) buffers. However, it remains elusive how rapid and reliable Ca(2+) signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca(2+) imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca(2+)-binding ratio (∼ 15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca(2+) from the active zone during repetitive firing. Measuring Ca(2+) signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca(2+) buffering enables fast active zone Ca(2+) signaling, suggesting that the strength of endogenous Ca(2+) buffering limits the rate of synchronous synaptic transmission. PMID:26015575

  2. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  3. Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis

    Zheng, Wenjing; Gorre, Nagaraju; Shen, Yan; Noda, Tetsuo; Ogawa, Wataru; Lundin, Eva; Liu, Kui

    2010-01-01

    Maternal effect factors derived from oocytes are important for sustaining early embryonic development. This report shows that PI3K/PTEN-PDK1-AKT signaling in oocytes, as a novel maternal effect factor, is crucial for embryonic genome activation and preimplantation embryogenesis in mice.

  4. Development of response activation and inhibition in a selective stop-signal task

    M.C. van de Laar; W.P.M. van den Wildenberg; G.J.M. van Boxtel; M.W. van der Molen

    2014-01-01

    To gain more insight into the development of action control, the current brain potential study examined response selection, activation, and selective inhibition during choice- and stop-signal processing in three age groups (8-, 12-, and 21-year-olds). Results revealed that age groups differed in the

  5. A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway

    Zheng, Ying; Qin, Hongwei; Frank, Stuart J.; Deng, Luqin; Litchfield, David W.; Tefferi, Ayalew; Pardanani, Animesh; Lin, Fang-Tsyr; Li, Jingzhi; Sha, Bingdong; Benveniste, Etty N.

    2011-01-01

    JAK-STAT signaling is involved in the regulation of cell survival, proliferation, and differentiation. JAK tyrosine kinases can be transiently activated by cytokines or growth factors in normal cells, whereas they become constitutively activated as a result of mutations that affect their function in tumors. Specifically, the JAK2V617F mutation is present in the majority of patients with myeloproliferative disorders (MPDs) and is implicated in the pathogenesis of these diseases. In the present...

  6. Activation of MAP kinase signaling pathway in the mussel Mytilus galloprovincialis as biomarker of environmental pollution.

    Châtel, A; Hamer, B; Talarmin, H; Dorange, G; Schröder, H C; Müller, W E G

    2010-03-01

    Stimulation of MAP kinase signal transduction pathway by various stressful stimuli was investigated in the marine bivalve Mytilus galloprovincialis. Analyses were performed in animals exposed in laboratory to selected pollutants and in mussels collected in winter and summer along the eastern Adriatic coast (Croatia). Effects of oxidative stress, induced by tributyltin, hydrogen peroxide and water soluble fraction of diesel fuel on the activation/phosphorylation of the three Mitogen-Activated Protein Kinases (MAPKs) p38, JNK and ERK using a newly developed ELISA procedure were evaluated. MAP kinase activation was analyzed 1h after exposure of mussels to chemical agents, and after recovery periods of 6 and 24h. Our results clearly indicated that pollutants generated different patterns of induction of the MAPK phosphorylation. Indeed, only pp38 and pJNK were activated with 11, 33 and 100 microg/L TBT, reaching a maximum activation after 6h in seawater following treatment of mussels with 11 microg/L TBT. Treatment with 0.074 and 0.222 mM H2O2 enhanced activation of both p38 and ERK. These two kinases were activated after 1h exposure, followed by a diminution after 6h of recovery in seawater and a reactivation after 24h. The levels of phosphorylated P38 and JNK were increased after mussel exposure with 7.5, 15 and 30% of water soluble fraction of diesel oil. P38 was activated concentration dependently at 1h exposure. Additionally, field study pointed out seasonal differences in MAP kinases activation as mussels collected during summer had a higher enzyme activation state than in winter, as well as sampling site differences which could be correlated to the industrial/tourism activity and environmental stresses (salinity). All the results converge towards MAP kinase signaling pathway being induced by various pollutants in M. galloprovincialis. This signaling cascade should be considered as a possible biomarker of environmental stress and pollution. PMID:19948362

  7. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling.

    Krishnamurthy, Srinath; Moorthy, Balakrishnan Shenbaga; Xin Xiang, Lim; Xin Shan, Lim; Bharatham, Kavitha; Tulsian, Nikhil Kumar; Mihalek, Ivana; Anand, Ganesh S

    2014-09-16

    Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and

  8. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. PMID:25609845

  9. An apodized Kepler periodogram for separating planetary and stellar activity signals

    Gregory, Philip C.

    2016-05-01

    A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and centre can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for m AK signals includes a linear regression term between RV and the SA diagnostic log (R'hk), as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion Markov chain Monte Carlo code. A differential version of the generalized Lomb-Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state-of-the-art simulated data sets supported by a variety of SA diagnostics. In the current implementation, the AK method achieved a reduction in SA noise by a factor of approximately 6. Final parameter estimates for the planetary candidates are derived from fits that include AK signals to model the SA components and simple Keplerians to model the planetary candidates. Preliminary results are also reported for AK models augmented by a moving average component that allows for correlations in the residuals.

  10. Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal

    Dilanji, Gabriel; Langebrake, Jessica; Deleenheer, Patrick; Hagen, Stephen J.

    2012-02-01

    Bacteria in colonies coordinate gene regulation through the exchange of diffusible signal molecules known as autoinducers (AI). This ``quorum signaling'' often occurs in physically heterogeneous and spatially extended environments such as biofilms. Under these conditions the space and time scales for diffusion of the signal limit the range and timing of effective gene regulation. We expect that spatial and temporal patterns of gene expression will reflect physical environmental constraints as well as nonlinear transcriptional activation and feedback within the gene regulatory system. We have combined experiments and modeling to investigate how these spatiotemporal patterns develop. We embed engineered plasmid/GFP quorum sensor strains or wild type strains in a long narrow agar lane, and then introduce AI signal at one terminus of the lane. Diffusion of the AI initiates reporter expression along the length of the lane, extending to macroscopic distances of mm-cm. Resulting patterns are captured quantitatively by a mathematical model that incorporates logistic growth of the population, diffusion of AI, and nonlinear transcriptional activation. Our results show that a diffusing quorum signal can coordinate gene expression over distances of order 1cm on time scales of order 10 hrs.

  11. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  12. FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB.

    Zhao, Jia; Zheng, Xifu; Fu, Chongyang; Qu, Wei; Wei, Guoqiang; Zhang, Weiguo

    2014-09-15

    FK506 has been shown to exert neurotrophic and neuroprotective effects, but its long-term application for nerve regeneration is limited. This study evaluated the potential application of a novel FK506-loaded chitosan conduit for peripheral nerve repair, and explored the underlying mechanism. A sciatic nerve injury model was created in male Wistar rats, which were then randomly divided into three treatment groups (n=40, each): chitosan-only, chitosan+FK506 injection, and FK506-loaded chitosan. We found significant recovery of normal morphology of sciatic nerves and higher density of myelinated nerve fibers in rats treated with FK506-loaded chitosan. Similarly, the total number of myelinated nerve fibers, myelin sheath thickness, and axon diameters were significantly higher in this group compared with the others, and the compound muscle action potentials and motor nerve conduction velocity values of sciatic nerves were significantly higher. BDNF and TrkB levels in motor neurons were highest in rats treated with FK506-loaded chitosan. In conclusion, FK506-loaded chitosan promoted peripheral nerve repair and regeneration in a rat model of sciatic nerve injury. These effects are correlated with increased BDNF and TrkB expression in motor neurons. PMID:24954089

  13. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  14. Convergence of dopamine and glutamate signalling onto striatal ERK activation in response to drugs of abuse.

    JocelyneCaboche

    2014-01-01

    Full Text Available Despite their distinct targets, all addictive drugs commonly abused by humans evoke increases in dopamine (DA concentration within the striatum. The main DA G-Protein Coupled Receptors (GPCRs expressed by medium-sized spiny neurons (MSNs of the striatum are the D1R and D2R, which are positively and negatively coupled to cAMP/protein kinase A (PKA signalling, respectively. These two DA GPCRs are largely segregated into distinct neuronal populations, where they are co-expressed with glutamate receptors in dendritic spines. Direct and indirect interactions between DA GPCRs and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behaviour induced by drugs of abuse. A major downstream target of striatal D1R is the Extracellular signal-Regulated Kinase (ERK kinase pathway. ERK activation by drugs of abuse behaves as a key integrator of D1R and glutamate NMDAR signalling. Once activated, ERK can trigger chromatin remodelling and induce gene expression that permits long-term cellular alterations and drug-induced morphological and behavioural changes. Besides the classical cAMP/PKA pathway, downstream of D1R, recent evidence implicates a cAMP-independent crosstalk mechanism by which the D1R potentiates NMDAR-mediated calcium influx and ERK activation. The mounting evidence of reciprocal modulation of DA and glutamate receptors adds further intricacy to striatal synaptic signalling and is liable to prove relevant for addictive drug-induced signalling, plasticity and behaviour. Herein, we review the evidence that built our understanding of the consequences of this synergistic signalling for the actions of drugs of abuse.

  15. Resistance of Cancer Cells to Targeted Therapies Through the Activation of Compensating Signaling Loops.

    von Manstein, Viktoria; Yang, Chul Min; Richter, Diane; Delis, Natalia; Vafaizadeh, Vida; Groner, Bernd

    2013-12-01

    The emergence of low molecular weight kinase inhibitors as "targeted" drugs has led to remarkable advances in the treatment of cancer patients. The clinical benefits of these tumor therapies, however, vary widely in patient populations and with duration of treatment. Intrinsic and acquired resistance against such drugs limits their efficacy. In addition to the well studied mechanisms of resistance based upon drug transport and metabolism, genetic alterations in drug target structures and the activation of compensatory cell signaling have received recent attention. Adaptive responses can be triggered which counteract the initial dependence of tumor cells upon a particular signaling molecule and allow only a transient inhibition of tumor cell growth. These compensating signaling mechanisms are often based upon the relief of repression of regulatory feedback loops. They might involve cell autonomous, intracellular events or they can be mediated via the secretion of growth factor receptor ligands into the tumor microenvironment and signal induction in an auto- or paracrine fashion. The transcription factors Stat3 and Stat5 mediate the biological functions of cytokines, interleukins and growth factors and can be considered as endpoints of multiple signaling pathways. In normal cells this activation is transient and the Stat molecules return to their non-phosphorylated state within a short time period. In tumor cells the balance between activating and de-activating signals is disturbed resulting in the persistent activation of Stat3 or Stat5. The constant activation of Stat3 induces the expression of target genes, which cause the proliferation and survival of cancer cells, as well as their migration and invasive behavior. Activating components of the Jak-Stat pathway have been recognized as potentially valuable drug targets and important principles of compensatory signaling circuit induction during targeted drug treatment have been discovered in the context of kinase

  16. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and tran...

  17. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis

    Tian, Yuan; Mok, Myth T.S.; Yang, Pengyuan; Cheng, Alfred S.L.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein) or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients. PMID:27556491

  18. Periostin Responds to Mechanical Stress and Tension by Activating the MTOR Signaling Pathway

    Rosselli-Murai, Luciana K.; Galindo-Moreno, Pablo; Padial-Molina, Miguel; Volk, Sarah L.; Murai, Marcelo J.; Rios, Hector F.; Squarize, Cristiane H.; Castilho, Rogerio M.

    2013-01-01

    Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade. PMID:24349533

  19. Periostin responds to mechanical stress and tension by activating the MTOR signaling pathway.

    Luciana K Rosselli-Murai

    Full Text Available Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade.

  20. Personalizing energy expenditure estimation using physiological signals normalization during activities of daily living

    In this paper we propose a generic approach to reduce inter-individual variability of different physiological signals (HR, GSR and respiration) by automatically estimating normalization parameters (e.g. baseline and range). The proposed normalization procedure does not require a dedicated personal calibration during system setup. On the other hand, normalization parameters are estimated at system runtime from sedentary and low intensity activities of daily living (ADLs), such as lying and walking. When combined with activity-specific energy expenditure (EE) models, our normalization procedure improved EE estimation by 15 to 33% in a study group of 18 participants, compared to state of the art activity-specific EE models combining accelerometer and non-normalized physiological signals. (paper)

  1. [Review on the associations of signal transducer and activators of transcription 3 with hepatocellular carcinoma].

    Xie, J X; Gao, Q J

    2016-05-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies with high fatality rate in China. To investigate the related risk factors and therapeutic targets, and actively carry out the prevention and early treatment is of great public health value. Signal transducer and activators of transcription 3 (STAT3) is the key molecule of multiple inflammation-associated signaling pathways. Recent studies have found that HCC patients have high expressing levels of STAT3 in tumor tissues, and aberrant activation of STAT3 is closely associated with the occurrence, development, invasion, metastasis, and prognosis of HCC. In this paper, we reviewed the researches on the associations of STAT3 with the occurrence and prognosis of HCC and prospected on the issues of causal prophylaxis and targeted therapy for HCC which could offer reference for the protection strategy of HCC. PMID:27141908

  2. An adaptive synchronization strategy based on active control for demodulating message hidden in chaotic signals

    In the field of secure communication, it is very important to demodulate the message hidden in chaotic signals. In this paper, an adaptive synchronization strategy based on active control is proposed, which is used to design an active controller and an appropriate adaptive demodulator at the receiver to recover the transmitted message hidden in chaotic signals of a drive system. Based on Lyapunov stability theory, it is shown that the transmitted message can be theoretically recovered by using the proposed strategy. Numerical simulations based on the Chua's circuit are also presented to verify the effectiveness of the proposed strategy. In addition, it is shown via simulations that, by increasing the gain of the active controller the message error caused by the external noise and the discontinuous property of the message can be reduced

  3. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy.

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment. PMID:26899873

  4. Notch Activation of Ca(2+) Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension.

    Smith, Kimberly A; Voiriot, Guillaume; Tang, Haiyang; Fraidenburg, Dustin R; Song, Shanshan; Yamamura, Hisao; Yamamura, Aya; Guo, Qiang; Wan, Jun; Pohl, Nicole M; Tauseef, Mohammad; Bodmer, Rolf; Ocorr, Karen; Thistlethwaite, Patricia A; Haddad, Gabriel G; Powell, Frank L; Makino, Ayako; Mehta, Dolly; Yuan, Jason X-J

    2015-09-01

    Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca(2+) entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6(-/-) mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca(2+) concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia. PMID:25569851

  5. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes.

    Han, Shuxin; Li, Tiangang; Ellis, Ewa; Strom, Stephen; Chiang, John Y L

    2010-06-01

    Vitamin D receptor (VDR) is activated by natural ligands, 1alpha, 25-dihydroxy-vitamin D(3) [1alpha,25(OH)(2)-D(3)] and lithocholic acid (LCA). Our previous study shows that VDR is expressed in human hepatocytes, and VDR ligands inhibit bile acid synthesis and transcription of the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1). Primary human hepatocytes were used to study LCA and 1alpha,25(OH)(2)-D(3) activation of VDR signaling. Confocal immunofluorescent microscopy imaging and immunoblot analysis showed that LCA and 1alpha, 25(OH)(2)-D(3) induced intracellular translocation of VDR from the cytosol to the nucleus and also plasma membrane where VDR colocalized with caveolin-1. VDR ligands induced tyrosine phosphorylation of c-Src and VDR and their interaction. Inhibition of c-Src abrogated VDR ligand-dependent inhibition of CYP7A1 mRNA expression. Kinase assays showed that VDR ligands specifically activated the c-Raf/MEK1/2/extracellular signal-regulated kinase (ERK) 1/2 pathway, which stimulates serine phosphorylation of VDR and hepatocyte nuclear factor-4alpha, and their interaction. Mammalian two-hybrid assays showed a VDR ligand-dependent interaction of nuclear receptor corepressor-1 and silencing mediator of retinoid and thyroid with VDR/retinoid X receptor-alpha (RXRalpha). Chromatin immunoprecipitation assays revealed that an ERK1/2 inhibitor reversed VDR ligand-induced recruitment of VDR, RXRalpha, and corepressors to human CYP7A1 promoter. In conclusion, VDR ligands activate membrane VDR signaling to activate the MEK1/2/ERK1/2 pathway, which stimulates nuclear VDR/RXRalpha recruitment of corepressors to inhibit CYP7A1 gene transcription in human hepatocytes. This membrane VDR-signaling pathway may be activated by bile acids to inhibit bile acid synthesis as a rapid response to protect hepatocytes from cholestatic liver injury. PMID:20371703

  6. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  7. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways. PMID:26985027

  8. The Effects of the Active Hypoxia to the Speech Signal Inharmonicity

    Z. N. Milivojevic

    2014-06-01

    Full Text Available When the people are climbing on the mountain, they are exposed to decreased oxygen concentration in the tissue, which is commonly called the active hypoxia. This paper addressed the problem of an acute hypoxia that affects the speech signal at the altitude up to 2500 m. For the experiment, the speech signal database that contains the articulation of vowels was recorded at different alti¬tudes. This speech signal was processed by the originally developed algorithm, which extracted the fundamental frequency and the inharmonicity coefficient. Then, they were subjected to the analysis in order to derive the effects of the acute hypoxia. The results showed that the hypoxia level can be determined by the change of the inharmonicity coefficient. Accordingly, the degree of hypoxia can be estimated.

  9. Activation of Signal Transducer and Activator of Transcription 5 (STAT5) in Splenocyte Proliferation of Asthma Mice Induced by Ovalbumin

    Guoping Li; Zhigang Liu; Peixing Ran; Jing Qiu; Nanshan Zhong

    2004-01-01

    To investigate the role of signal transducer and transcriptional activator 5 (STAT5) activated in ovalbumin (OVA)-induced splenocyte proliferation of asthma mice, an asthma mouse model was set up by intraperitoneal injection and aspiration of OVA with nebulizer. The proliferation of splenocytes isolated from the asthma mice was detected by [3H] thymidine incorporation. The phosphorytation of STAT5 was examined by Western blotting and STAT5-DNA binding was measured by electrophoretic mobility shift assay (EMSA). OVA could pronouncedly induce the splenocyte proliferation of asthma mice in a dose-dependent manner compared with control groups. Phosphorylation of STAT5 and STAT5-DNA binding were observed in splenocytes from asthma mice induced by OVA at 1 h and 3 h. These results indicated that STAT5 signal pathway played an important role in lymphocyte proliferation of asthma mice induced by OVA. Cellular & Molecular Immunology.2004;1(6):471-474.

  10. Signal Transducer and Activator of Transcription (Stat)-Induced Stat Inhibitor 1 (Ssi-1)/Suppressor of Cytokine Signaling 1 (Socs1) Inhibits Insulin Signal Transduction Pathway through Modulating Insulin Receptor Substrate 1 (Irs-1) Phosphorylation

    Kawazoe, Yoshinori; Naka, Tetsuji; Fujimoto, Minoru; Kohzaki, Hidetsugu; Morita, Yoshiaki; Narazaki, Masashi; Okumura, Kohichi; Saitoh, Hiroshi; Nakagawa, Reiko; Uchiyama, Yasuo; Akira, Shizuo; Kishimoto, Tadamitsu

    2001-01-01

    Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1) is known to function as a negative feedback regulator of cytokine signaling, but it is unclear whether it is involved in other biological events. Here, we show that SSI-1 participates and plays an important role in the insulin signal transduction pathway. SSI-1–deficient mice showed a significantly low level of blood sugar. While the forced expression of SSI-1 reduced the phosphorylation level of insulin ...

  11. Apoptotic Signaling Pathway Activated by Helicobacter pylori Infection and Increase of Apoptosis-Inducing Activity under Serum-Starved Conditions

    Shibayama, Keigo; Doi, Yohei; Shibata, Naohiro; Yagi, Tetsuya; Nada, Toshi; Iinuma, Yoshitsugu; Arakawa, Yoshichika

    2001-01-01

    The enhanced gastric epithelial cell apoptosis observed during infection with Helicobacter pylori has been suggested to be of significance in the etiology of gastritis, peptic ulcers, and neoplasia. To investigate the cell death signaling induced by H. pylori infection, human gastric epithelial cells were incubated with H. pylori for up to 72 h. H. pylori infection induced the activation of caspase -8, -9, and -3 and the expression of the proapoptotic Bcl-2 family proteins Bad and Bid. The pe...

  12. Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling

    Irvine Kenneth D

    2008-01-01

    Full Text Available Abstract Background O-fucosyltransferase1 (OFUT1 is a conserved ER protein essential for Notch signaling. OFUT1 glycosylates EGF domains, which can then be further modified by the N-acetylglucosaminyltransferase Fringe. OFUT1 also possesses a chaperone activity that promotes the folding and secretion of Notch. Here, we investigate the respective contributions of these activities to Notch signaling in Drosophila. Results We show that expression of an isoform lacking fucosyltransferase activity, Ofut1R245A, rescues the requirement for Ofut1 in embryonic neurogenesis. Lack of requirement for O-fucosylation is further supported by the absence of embryonic phenotypes in Gmd mutants, which lack all forms of fucosylation. Requirements for O-fucose during imaginal development were evaluated by characterizing clones of cells expressing only Ofut1R245A. These clones phenocopy fringe mutant clones, indicating that the absence of O-fucose is functionally equivalent to the absence of elongated O-fucose. Conclusion Our results establish that Notch does not need to be O-fucosylated for fringe-independent Notch signaling in Drosophila; the chaperone activity of OFUT1 is sufficient for the generation of functional Notch.

  13. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  14. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  15. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  16. Postprandial activation of metabolic and inflammatory signalling pathways in human peripheral mononuclear cells.

    Ehlers, Kerstin; Brand, Tina; Bangert, Adina; Hauner, Hans; Laumen, Helmut

    2014-06-28

    High-fat, high-carbohydrate (HFHC) meals induce an inflammatory response in mononuclear cells (MNC). Here, we studied the interaction between metabolic and inflammatory signalling pathways by the measurement of postprandial effects of three different test meals on intracellular Akt, S6 kinase (S6K)/mammalian target of rapamycin and NF-κB signalling in human MNC. We recruited six healthy, lean individuals. Each individual ingested three different meals in the morning separated by at least 3 d: a HFHC meal; an oral lipid-tolerance test meal; a healthy breakfast. Blood samples were obtained before and 1, 2, 4, 6 and 8 h after ingestion. Plasma insulin and IL-6 levels were measured. Intracellular metabolic and inflammatory signalling pathways were assessed by measuring the phosphorylation of Akt kinase and S6K, the degradation of inhibitory κB-α (IκB-α) protein and the DNA binding activity of NF-κB in MNC. mRNA expression levels of the Akt and NF-κB target genes Mn superoxide dismutase (MnSOD), CC-chemokine-receptor 5 (CCR5), intercellular adhesion molecule 1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1) were measured by quantitative RT-PCR. We found a positive correlation of Akt phosphorylation with NF-κB activation (NF-κB binding activity: r 0·4500, P= 0·0003; IκB-α protein levels: r -0·5435, PMNC. PMID:24576401

  17. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  18. Toxoplasma gondii Induces B7-2 Expression through Activation of JNK Signal Transduction▿

    Morgado, Pedro; Ong, Yi-Ching; Boothroyd, John C.; Lodoen, Melissa B.

    2011-01-01

    Toxoplasma gondii is a globally distributed parasite pathogen that infects virtually all warm-blooded animals. A hallmark of immunity to acute infection is the production of gamma interferon (IFN-γ) and interleukin-12 (IL-12), followed by a protective T cell response that is critical for parasite control. Naïve T cell activation requires both T-cell receptor (TCR) stimulation and the engagement of costimulatory receptors. Because of their important function in activating T cells, the expression of costimulatory ligands is believed to be under tight control. The molecular mechanisms governing their induction during microbial stimulation, however, are not well understood. We found that all three strains of T. gondii (types I, II, and III) upregulated the expression of B7-2, but not B7-1, on the surface of mouse bone marrow-derived macrophages. Additionally, intraperitoneal infection of mice with green fluorescent protein (GFP)-expressing parasites resulted in enhanced B7-2 levels specifically on infected, GFP+ CD11b+ cells. B7-2 induction occurred at the transcript level, required active parasite invasion, and was not dependent on MyD88 or TRIF. Functional assays demonstrated that T. gondii-infected macrophages stimulated naïve T cell proliferation in a B7-2-dependent manner. Genome-wide transcriptional analysis comparing infected and uninfected macrophages revealed the activation of mitogen-activated protein kinase (MAPK) signaling in infected cells. Using specific inhibitors against MAPKs, we determined that parasite-induced B7-2 is dependent on Jun N-terminal protein kinase (JNK) but not extracellular signal-regulated kinase (ERK) or p38 signaling. We also observed that T. gondii-induced B7-2 expression on human peripheral blood monocytes is dependent on JNK signaling, indicating that a common mechanism of B7-2 regulation by T. gondii may exist in both humans and mice. PMID:21911468

  19. Characterizing the Activation of the Wnt Signaling Pathway in Hilar Cholangiocarcinoma Using a Tissue Microarray Approach

    Chen, W.; Huang, L.; Liang, J.; Cai, J.; Lei, Y.; Lai, J.; Liang, L.; Zhang, K.

    2016-01-01

    Hilar cholangiocarcinoma (HCCA) is an invasive hepatic malignancy that is difficult to biopsy; therefore, novel markers of HCCA prognosis are needed. Here, the level of canonical Wnt activation in patients with HCCA, intrahepatic cholangiocarcinoma (IHCC), and congenital choledochal cysts (CCC) was compared to understand the role of Wnt signaling in HCCA. Pathology specimens from HCCA (n=129), IHCC (n=31), and CCC (n=45) patients were used to construct tissue microarrays. Wnt2, Wnt3, β-catenin, TCF4, c-Myc, and cyclin D1 were detected by immunohistochemistry. Parallel correlation analysis was used to analyze differences in protein levels between the HCCA, IHCC, and CCC groups. Univariate and multivariate analyses were used to determine independent predictors of successful resection and prognosis in the HCCA group. The protein levels of Wnt2, β-catenin, TCF4, c-Myc, and cyclin D1 were significantly higher in HCCA compared to IHHC or CCC. Wnt signaling activation (Wnt2+, Wnt3+, nuclear β-catenin+, nuclear TCF4+) was significantly greater in HCCA tissues than CCC tissues. Univariable analyses indicated that expression of cyclin D1 as well as Wnt signaling activation, and partial Wnt activation (Wnt2+ or Wnt3+ and nuclear β-catenin+ or nuclear TCF4+) predicted successful resection, but only cyclin D1 expression remained significant in multivariable analyses. Only partial Wnt activation was an independent predictor of survival time. Proteins in the canonical Wnt signaling pathway were present at higher levels in HCCA and correlated with tumor resecility and patient prognosis. These results suggest that Wnt pathway analysis may be a useful marker for clinical outcome in HCCA. PMID:26972709

  20. Internal {alpha} activity: localisation, compositional associations and effects on OSL signals in quartz approaching {beta} saturation

    Burbidge, C.I. [Instituto Tecnologico e Nuclear, Sacavem (Portugal)], E-mail: christoph@itn.pt; Dias, M.I.; Prudencio, M.I. [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Rebelo, L.P. [DGM, INETI, Departamento de Geologia Marinha, Alfragide (Portugal); Cardoso, G. [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Brito, P. [DGM, INETI, Departamento de Geologia Marinha, Alfragide (Portugal)

    2009-05-15

    Luminescence signals from hydrofluoric acid etched grains of quartz from Mozambican dunes were investigated in terms of elemental impurities, structural defects, and their relationship to internal {alpha} activity, to examine the potential for this to cause differences in signal levels obtainable from natural and laboratory irradiated samples. Optical and scanning electron microscopy (SEM), X-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) indicated the presence of various types of quartz and mineralogical inclusions. A spatial association of Th and U with Fe in structural defects was observed. Fe concentrations and inclusion sizes indicated that internal {alpha} dose rate would affect the defects that contained these impurities, but would be insignificant to the bulk quartz. A broad range of optically sensitive thermoluminescence (TL) peaks were observed from this material, and indicated a preheating regime of 260 deg. C for 30 s to minimise effects of the observed inclusions and defects on absorbed dose determinations by optically stimulated luminescence (OSL). Growth in OSL with dose from etched coarse grains preheated in this way approached saturation by 332 Gy of {beta} irradiation ({sup 90}Sr/{sup 90}Y) and by 4 kGy of {alpha} irradiation (E {approx} 3.5 MeV: approximate natural soil spectrum average, using converted dose rate from {sup 241}Am). This indicated {alpha}-efficiency (k{sub eff}) at saturation of less than 0.08. However, the OSL decay curves contained a small 'medium' component. Structural defects introduced by milling the grains produced a larger 'medium' component with a similar decay rate under optical stimulation, which exhibited high saturation doses (>32 kGy{alpha}, >8.4 kGy{beta}) and {alpha}-efficiency (k{sub eff} = 0.34). Maximum dose normalised OSL signals from the milled material greatly exceeded those obtainable from the whole etched grains. It is inferred that the presence of structural

  1. Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages

    Lichtenberger, Beate M.; Mastrogiannaki, Maria; Watt, Fiona M.

    2016-01-01

    Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals. PMID:26837596

  2. A turn-key Concept for active cancellation of Global Positioning System L3 Signal

    Nigra, Lou; Edgar, Clyde; Perillat, Phil; Quintero, Luis; Stanimirovic, Snezana; Gallagher, J S

    2010-01-01

    We present a concept, developed at the National Astronomy and Ionosphere Center (NAIC) at Arecibo, Puerto Rico, for active suppression of Global Positioning System (GPS) signals in the 305 m dish radio receiver path prior to backend processing. The subsystem does not require an auxiliary antenna and is intended for easy integration with radio telescope systems with a goal of being a turnkey addition to virtually any facility. Working with actual sampled signal data, we have focused on the detection and cancellation of the GPS L3 signal at 1381.05 MHz which, during periodic test modes and particularly during system-wide tests, interfere with observations of objects in a range of redshifts that includes the Coma supercluster, for example. This signal can dynamically change modulation modes and our scheme is capable of detecting these changes and applying cancellation or sending a blanking signal, as appropriate. The subsystem can also be adapted to GPS L1 (1575.42 MHz), L2C (1227.6 MHz), and others. A follow-up...

  3. Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease

    Natalie Sampson

    2014-01-01

    Full Text Available Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4-derived hydrogen peroxide (H2O2 supported by concomitant decreases in nitric oxide (NO signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.

  4. AMPK activators suppress cervical cancer cell growth through inhibition of DVL3 mediated Wnt/β-catenin signaling activity.

    H T Kwan

    Full Text Available Recent evidence has suggested that AMPK activators may be applied as therapeutic drugs in suppressing cancer cell growth. However, the molecular mechanism of their suppressive function in cancer cells is still unclear. Here we show that AMPK activators impair cervical cancer cell growth through the reduction of DVL3, a positive regulator in Wnt/β-catenin signaling and an oncogenic player in cervical cancer tumorigenesis. By western blot and immunohistochemical analyses, we demonstrated that DVL3 was frequently upregulated and significantly associated with elevated β-catenin (P = 0.009 and CyclinD1 (P = 0.009 expressions in cervical cancer. Enforced expression of DVL3 elevated β-catenin and augmented cervical cancer cell growth, verifying that DVL3-mediated Wnt/β-catenin activation is involved in cervical cancer oncogenesis. On the other aspect, we noted that the cervical cancer cell growth was remarkably suppressed by AMPK activators and such cell growth inhibition was in concomitant with the reduction of DVL3 protein level in dose- and time-dependent manners. Besides, impaired mTOR signaling activity also reduced DVL3 expression. In contrast, co-treatment with Compound C (AMPK inhibitor could significantly abrogate metformin induced DVL3 reduction. In addition, co-treatment with AM114 or MG132 (proteosomal inhibitors could partially restore DVL3 expression under the treatment of metformin. Further in vivo ubiquitination assay revealed that metformin could reduce DVL3 by ubiquitin/proteasomal degradation. To our knowledge, this is the first report showing the probable molecular mechanisms of that the AMPK activators suppress cervical cancer cell growth by impairing DVL3 protein synthesis via AMPK/mTOR signaling and/or partially promoting the proteasomal degradation of DVL3.

  5. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling1[OPEN

    Zhou, Xin; Zhang, Zhong-Lin; Tyler, Ludmila; Yusuke, Jikumaru; Qiu, Kai; Lumba, Shelley; Desveaux, Darrell; McCourt, Peter; Sun, Tai-ping

    2016-01-01

    The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6. AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways. PMID:27255484

  6. Polysaccharides Purified from Wild Cordyceps Activate FGF2/FGFR1c Signaling

    ZENG Yangyang; HAN Zhangrun; YU Guangli; HAO Jiejie; ZHANG Lijuan

    2015-01-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when ex-posed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chi-nese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also fromCordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccha-rides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  7. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  8. Activation of the chicken gonadotropin-inhibitory hormone receptor reduces gonadotropin releasing hormone receptor signaling.

    Shimizu, Mamiko; Bédécarrats, Grégoy Y

    2010-06-01

    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic peptide from the RFamide peptide family that has been identified in multiple avian species. Although GnIH has clearly been shown to reduce LH release from the anterior pituitary gland, its mechanism of action remains to be determined. The overall objectives of this study were (1) to characterize the GnIH receptor (GnIH-R) signaling pathway, (2) to evaluate potential interactions with gonadotropin releasing hormone type III receptor (GnRH-R-III) signaling, and (3) to determine the molecular mechanisms by which GnIH and GnRH regulate pituitary gonadotrope function during a reproductive cycle in the chicken. Using real-time PCR, we showed that in the chicken pituitary gland, GnIH-R mRNA levels fluctuate in an opposite manner to GnRH-R-III, with higher and lower levels observed during inactive and active reproductive stages, respectively. We demonstrated that the chicken GnIH-R signals by inhibiting adenylyl cyclase cAMP production, most likely by coupling to G(alphai). We also showed that this inhibition is sufficient to significantly reduce GnRH-induced cAMP responsive element (CRE) activation in a dose-dependent manner, and that the ratio of GnRH/GnIH receptors is a significant factor. We propose that in avian species, sexual maturation is characterized by a change in GnIH/GnRH receptor ratio, resulting in a switch in pituitary sensitivity from inhibitory (involving GnIH) to stimulatory (involving GnRH). In turn, decreasing GnIH-R signaling, combined with increasing GnRH-R-III signaling, results in significant increases in CRE activation, possibly initiating gonadotropin synthesis. PMID:20350548

  9. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    Masaki Matsushita

    Full Text Available Achondroplasia (ACH is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8 cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias.

  10. Translocated signals regulating root meristem activity in lupins (Lupinus albus and L. angustifolius)

    Pluripotent stem cells in flowering plants occur at the root and shoot apices, at the cambium of shoot organs and the root pericycle. These meristematic cells provide sites for cell division and postembryonic organ differentiation. Their activity responds to environmental and endogenous cues that determine rate and direction of growth, developmental pattern and change in organ function. Recent analysis of gene expression in the shoot apical meristem (SAM) of Arabidopsis has revealed close cell/cell interactions and an exchange of signals between differentiating cell types. However, it is clear that the long distance translocation channels of vascular plants, phloem and xylem, also provide regulatory signals that influence the course of events in the SAM, such as the transition from vegetative to floral development. These channels serve as pathways for translocation of assimilates providing the vascular link between 'sources' and 'sinks' on the plant. Similarly, the below ground meristems responsible for root growth, lateral root initiation and branching as well as the initiation of nodules on legumes receive translocated shoot-derived 'signals' as well as assimilates in phloem. Physiological studies have established that such signals are integral components of meristem activity but their nature has not been clearly established. (author)