WorldWideScience

Sample records for action potential initiation

  1. Action potential initiation in the hodgkin-huxley model.

    Colwell, Lucy J; Brenner, Michael P.

    2009-01-01

    A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span) and the rapidity of action potential initiation (the onset rapidity). This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in...

  2. Action potential initiation in the hodgkin-huxley model.

    Lucy J Colwell

    2009-01-01

    Full Text Available A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span and the rapidity of action potential initiation (the onset rapidity. This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in vitro. Here we apply a method from theoretical physics to derive an analytical characterization of this problem. We analytically compute the probability distribution of onset potentials and analytically derive the inverse relationship between onset span and onset rapidity. We find that the relationship between onset span and onset rapidity depends on the level of synaptic background activity. Hence we are able to elucidate the regions of parameter space for which the Hodgkin-Huxley model is able to accurately describe the behavior of this system.

  3. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    Fabián Muñoz

    Full Text Available Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  4. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    Fabián Muñoz; Pablo Fuentealba

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the th...

  5. Perturbation analysis of spontaneous action potential initiation by stochastic ion channels

    Keener, James P.

    2011-07-01

    A stochastic interpretation of spontaneous action potential initiation is developed for the Morris-Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from one of the wells of a double well potential, and we develop an asymptotic approximation of the mean exit time using a recently developed quasistationary perturbation method. Using the fact that the activating ionic channel\\'s random openings and closings are fast relative to other processes, we derive an accurate estimate for the mean time to fire an action potential (MFT), which is valid for a below-threshold applied current. Previous studies have found that for above-threshold applied current, where there is only a single stable fixed point, a diffusion approximation can be used. We also explore why different diffusion approximation techniques fail to estimate the MFT. © 2011 American Physical Society.

  6. Serotonin spillover onto the axon initial segment of motoneurons induces central fatigue by inhibiting action potential initiation

    Cotel, Florence; Exley, Richard; Cragg, Stephanie;

    2013-01-01

    --as during motor exercise--activated 5-HT1A receptors that decreased motoneuronal excitability. Electrophysiological tests combined with pharmacology showed that focal activation of 5-HT1A receptors at the axon initial segment (AIS), but not on other motoneuronal compartments, inhibited the action potential...

  7. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    Objective. The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Approach. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Main results. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. Significance. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  8. Initiation and blocking of the action potential in the axon in a weak ultrasonic field

    Shneider, M N

    2013-01-01

    It is shown that the longitudinal standing ultrasonic wave of low intensity leads to the lateral drift and to redistribution of the transmembrane ion channels in the initial segment of the myelinated axon of a neuron. The analysis is based on the Hodgkin - Huxley model of an axon. Redistribution of the density of transmembrane sodium channels, caused by ultrasound, may reduce the threshold of the action potential, up to its spontaneous initiation. At significant redistribution of sodium channels in membrane, the zones of rarefaction of the transmembrane channels density are formed blocking the propagation of the action potential. After switching the ultrasound off, the unperturbed uniform distribution of transmembrane channels in the axon recovers due to lateral diffusion. The blocking effect of the action potential can be used in anesthesia.

  9. Action potential-simulated weak electric fields can directly initiate myelination

    Lei Liu; Shifu Zhao; Haiming Wang

    2008-01-01

    BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath.OBJECTIVE: To investigate the effects of action potential-simulated weak electric fields on myelination in the central nervous system.DESIGN AND SETTING: This single-sample observation study was performed at the 324 Hospital of Chinese PLA.MATERIALS: Two 5 μm carbon fibers were provided by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. One Sprague Dawley rat, aged 1 day, was used.METHODS: Cerebral cortex was harvested from the rat to prepare a suspension [(1-2)×105/mL] containing neurons and glial cells. To simulate the axon, carbon fibers were placed at the bottom of the neuron-glial cell coculture dish, and were electrified with a single phase square wave current, 1×10-2, 1×10-3, 1×10-4, and 1×10-5 seconds, 1 Hz, 40 mV, and 10 μA, 30 minutes each, once aday for 10 consecutive days to simulate weak negative electric fields during action potential conduction.MAIN OUTCOME MEASURES: Glial cell growth and wrapping of carbon fibers were observed by phase contrast microscopy and immunohistochemistry.RESULTS: On culture day 7, cell groups were found to adhere to negative carbon fibers in the 1×10-3 seconds square wave group. Cell membrane-like substances grew out of cell groups, wrapped the carbon fibers, and stretched to the ends of carbon fibers. Only some small and round cells close to negative carbon fibers were found on culture day 12. In the 1×10-4 and 1×10-3 seconds square wave groups, the negative carbon fibers were wrapped by oligodendrocytes or their progenitor cells.CONCLUSION: The local negative electric field which is generated by action potentials at 1×(10-4-10-3)seconds, 40 mV can directly initiate and participate in myelination in the central nervous system.

  10. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    2010-01-01

    ... assessment of agricultural production losses resulting from a potential natural disaster. These councils are...) Actions to be taken. Immediately after the occurrence of a potential natural disaster: (1) When physical... Administrator will decide whether a natural disaster has occurred. If it has, the Administrator will make...

  11. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M;

    2002-01-01

    The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory glomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this transmission, we have combined dual soma and dendritic patch recordi...

  12. Perfect Actions with Chemical Potential

    Bietenholz, W

    1998-01-01

    We show how to include a chemical potential \\mu in perfect lattice actions. It turns out that the standard procedure of multiplying the quark fields \\Psi, an example, the case of free fermions with chemical potential is worked out explicitly. Even after truncation, cut-off effects in the pressure and the baryon density are small. Using a (quasi-)perfect action, numerical QCD simulations for non-zero chemical potential become more powerful, because coarse lattices are sufficient for extracting continuum physics.

  13. Action potential initial dynamical control and analysis of a minimum neuron model%最小神经元模型放电起始动态控制与分析

    金淇涛; 王江; 魏熙乐; 邓斌; 车艳秋

    2011-01-01

    本文采用最小神经元模型,从生理学角度设计wash-out滤波器,实现了不同放电起始动态机理之间的转换,并证明wash-out滤波器控制通过影响阈下电流的竞争结果改变了神经元的放电起始动态机理.%Neuron is a basic unit of information transmission in the nervous system . Neuron encodes the information input from the dendrites by generating action potential sequences of different firing patterns. The different firing patterns result from different action potential initial dynamic mechanisms for neurons to generate spikes. The result of competition between neuron ion currents with different dynamic features in the sub threshold potential determines the action potential initial dynamic mechanism. In this paper, we adopt a minimum neuron model to design the wash-out filter from a physiological view for achieving the transition between different action potential initial dynamic mechanisms and for verifying that the wash-out filter control changes the action potential initial dynamic mechanism of neuron by affecting the result of competition between currents with different dynamic features in the sub-threshold potential.

  14. Action Principle for Potential Flows

    Frønsdal, Christian

    2014-01-01

    The restriction of hydrodynamics to non-viscous, potential (gradient, irrotational) flows is a theory both simple and elegant; a favorite topic of introductory textbooks. It is known that this theory (under the stated limitations) can be formulated as an action principle. It finds its principle application to adiabatic systems and cannot account for viscosity or dissipation. However, it can be generalized to include non-potential flows, as this paper shows. The new theory is a combination of Eulerian and Lagrangian hydrodynamics, with an extension to thermodynamics. It describes adiabatic phenomena but does not account for viscosity or dissipation. Nevertheless, it is an approach within which quasi-static processes can be described. In the adiabatic context it appears to be an improvement of the Navier-Stokes equation, the principal advantage being a natural concept of energy in the form of a first integral of the motion, conserved by virtue of the Euler-Lagrange equations.

  15. Light-triggered action potentials in plants

    Kazimierz Trębacz

    2014-01-01

    Special attention is paid in this paper to the criteria of the light-triggered action potential, namely the all-or-none law, propagation, the occurrence of refractory periods. Such action potentials have been recorded in Acetabularia mediterranea, Asplenium trichomanes, Bryum pseudotriquetrum, Eremosphaera viridis and Concephalum conicum. In Acetabularia, action potentials are generated after sudden cessation of light stimuli of sufficient intensity. The depolarization phase of the action pot...

  16. Improved Lattice Actions with Chemical Potential

    Bietenholz, W

    1998-01-01

    We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.

  17. Abstract Action Potential Models for Toxin Recognition

    Peterson, James; Khan, Taufiquar

    2005-01-01

    In this paper, we present a robust methodology using mathematical pattern recognition schemes to detect and classify events in action potentials for recognizing toxins in biological cells. We focus on event detection in action potential via abstraction of information content into a low dimensional feature vector within the constrained computational environment of a biosensor. We use generated families of action potentials from a classic Hodgkin–Huxley model to verify our methodology and build...

  18. Screening action potentials: The power of light

    Lars eKaestner

    2011-07-01

    Full Text Available Action potentials reflect the concerted activity of all electrogenic constituents in the plasma membrane during the excitation of a cell. Therefore, the action potential is an integrated readout and a promising parameter to detect electrophysiological failures or modifications thereof in diagnosis as well as in drug screens. Cellular action potentials can be recorded by optical approaches. To fulfill the pre-requirements to scale up for e.g. pharmacological screens the following preparatory work has to be provided: (i model cells under investigation need to represent target cells in the best possible manner; (ii optical sensors that can be either small molecule dyes or genetically encoded potential probes need to provide a reliable readout with minimal interaction with the naive behavior of the cells and (iii devices need to be capable to stimulate the cells, read out the signals with the appropriate speed as well as provide the capacity for a sufficient throughput. Here we discuss several scenarios for all three categories in the field of cardiac physiology and pharmacology and provide a perspective to use the power of light in screening cardiac action potentials.

  19. 33 CFR 1.07-20 - Initiation of action.

    2010-07-01

    ... GENERAL PROVISIONS Enforcement; Civil and Criminal Penalty Proceedings § 1.07-20 Initiation of action. (a... Hearing Officer; (5) The right to examine all materials in the case file and have a copy of all...

  20. 76 FR 22404 - Analgesic Clinical Trials Innovation, Opportunities, and Networks (ACTION) Initiative

    2011-04-21

    ... Networks (ACTION) Initiative AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food... Analgesic Clinical Trials Innovation, Opportunities, and Networks (ACTION) Initiative. The goal of...

  1. Introducing the Action Potential to Psychology Students

    Simon-Dack, Stephanie L.

    2014-01-01

    For this simple active learning technique for teaching, students are assigned "roles" and act out the process of the action potential (AP), including the firing threshold, ion-specific channels for ions to enter and leave the cell, diffusion, and the refractory period. Pre-post test results indicated that students demonstrated increased…

  2. expression, physiological actions and therapeutic potential

    Steckelings, Ulrike

    2012-01-01

    Angiotensin II mediates its action via 2 receptor subtypes: the AT1- and AT2-receptor. The existence of more than one receptor for angiotensin II has been discovered not earlier than 1989. This "Habilitationsschrift" is based on six publications which represent mosaic stones within the growing picture of AT2-receptor expression, regulation of expression, physiological and patho-physiological function as well as potential therapeutic use. The first part is dealing with tissue specific ex...

  3. The Potential of Deweyan-Inspired Action Research

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit separation between action and reflection or theory and practice. This paper considers the potential of action research informed specifically by Deweyan pragm...

  4. Action potential broadening in a presynaptic channelopathy

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  5. Teachers in Action Research: Assumptions and Potentials

    Li, Yuen-Ling

    2008-01-01

    Research literature has long indicated that action research may stimulate practitioners themselves to actively evaluate the quality of their practice. This study is designed to report the use of action research for the development of early years professional practice by analyzing the pre-project and the post-project video-filmed teaching events.…

  6. Spectral action, Weyl anomaly and the Higgs-Dilaton potential

    Andrianov, A.A.(V.A. Fock Department of Theoretical Physics, Saint-Petersburg State University, 1 ul. Ulyanovskaya, St. Petersburg, 198504, Russia); Kurkov, M.A.; Lizzi, Fedele

    2011-01-01

    We show how the bosonic spectral action emerges from the fermionic action by the renormalization group flow in the presence of a dilaton and the Weyl anomaly. The induced action comes out to be basically the Chamseddine-Connes spectral action introduced in the context of noncommutative geometry. The entire spectral action describes gauge and Higgs fields coupled with gravity. We then consider the effective potential and show, that it has the desired features of a broken and an unbroken phase,...

  7. Action potentials reliably invade axonal arbors of rat neocortical neurons

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  8. Critical Utopian Action Research: The Potential of Action Research in the Democratization of Society

    Nielsen, Birger Steen; Nielsen, Kurt Aagaard

    The specific concept of critical utopian action research is presented and discussed, as to its origin, use and potentials. The inspiration from Robert Jungk and his future creating workshops is elaborated.......The specific concept of critical utopian action research is presented and discussed, as to its origin, use and potentials. The inspiration from Robert Jungk and his future creating workshops is elaborated....

  9. The 3D Elevation Program initiative: a call for action

    Sugarbaker, Larry J.; Constance, Eric W.; Heidemann, Hans Karl; Jason, Allyson L.; Lukas, Vicki; Saghy, David L.; Stoker, Jason M.

    2014-01-01

    The 3D Elevation Program (3DEP) initiative is accelerating the rate of three-dimensional (3D) elevation data collection in response to a call for action to address a wide range of urgent needs nationwide. It began in 2012 with the recommendation to collect (1) high-quality light detection and ranging (lidar) data for the conterminous United States (CONUS), Hawaii, and the U.S. territories and (2) interferometric synthetic aperture radar (ifsar) data for Alaska. Specifications were created for collecting 3D elevation data, and the data management and delivery systems are being modernized. The National Elevation Dataset (NED) will be completely refreshed with new elevation data products and services. The call for action requires broad support from a large partnership community committed to the achievement of national 3D elevation data coverage. The initiative is being led by the U.S. Geological Survey (USGS) and includes many partners—Federal agencies and State, Tribal, and local governments—who will work together to build on existing programs to complete the national collection of 3D elevation data in 8 years. Private sector firms, under contract to the Government, will continue to collect the data and provide essential technology solutions for the Government to manage and deliver these data and services. The 3DEP governance structure includes (1) an executive forum established in May 2013 to have oversight functions and (2) a multiagency coordinating committee based upon the committee structure already in place under the National Digital Elevation Program (NDEP). The 3DEP initiative is based on the results of the National Enhanced Elevation Assessment (NEEA) that was funded by NDEP agencies and completed in 2011. The study, led by the USGS, identified more than 600 requirements for enhanced (3D) elevation data to address mission-critical information requirements of 34 Federal agencies, all 50 States, and a sample of private sector companies and Tribal and local

  10. [Individualised medicine - potentials and need for action].

    Hüsing, Bärbel

    2010-01-01

    Individualised medicine aims to classify seemingly homogenous patient groups into smaller clinically relevant subgroups (stratification) in order to be able to treat them differently, thus contributing to the improvement of health care services, to the prevention of inappropriate treatments and to the reduction of adverse effects. This article summarises a report to the Office of Technology Assessment at the German Bundestag and points out the need for action for transferring individualised medicine from research to clinical application: significant incentives are required in order to prove the clinical validity of newly identified biomarkers of complex diseases. Sustainable business models for the joint development of new applications by research institutions, biotechnology companies, pharmaceuticals and medical devices companies are required. Instruments for transferring knowledge from bench to bedside (translational research) and the existing regulatory framework should be further developed in order to strike an appropriate balance between incentives for accelerating the transfer of innovative technology to the health care sector while, at the same time, ensuring patient safety, high quality and clinical utility. PMID:21147435

  11. Angle-action estimation in a general axisymmetric potential

    Sanders, Jason

    2012-01-01

    The usefulness of angle-action variables in galaxy dynamics is well known, but their use is limited due to the difficulty of their calculation in realistic galaxy potentials. Here we present a method for estimating angle-action variables in a realistic Milky Way axisymmetric potential by locally fitting a St\\"ackel potential over the region an orbit probes. The quality of the method is assessed by comparison with other known methods for estimating angle-action variables of a range of disc and...

  12. Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes

    Nakajima, S.; Gilai, A.

    1980-01-01

    Isolated single (Xenopus) muscle fibers were stained with a non-permeant potential-probing dye, merocyanine rhodanine (WW375) or merocyanine oxazolone (NK2367). When the fiber was massively stimulated, an absorption change (wave a), which seemed to reflect the action potential, occurred. Simultaneous recording of optical changes and intracellular action potentials revealed that the time-course of wave a was slower than the action potential: the peak of wave a was attained at 1 ms, and the pea...

  13. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells

    Liu Jinxu; Tu Huiyin; Zhang Dongze; Zheng Hong; Li Yu-Long

    2012-01-01

    Abstract Background The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Result...

  14. Intracellular recording of action potentials by nanopillar electroporation

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-03-01

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action

  15. Compound sensory action potential in normal and pathological human nerves

    Krarup, Christian

    2004-01-01

    The compound sensory nerve action potential (SNAP) is the result of phase summation and cancellation of single fiber potentials (SFAPs) with amplitudes that depend on fiber diameter, and the amplitude and shape of the SNAP is determined by the distribution of fiber diameters. Conduction velocitie...

  16. Membrane, action, and oscillatory potentials in simulated protocells

    Syren, R. M.; Fox, S. W.; Przybylski, A. T.; Stratten, W. P.

    1982-01-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  17. Theophylline-induced potentiation of the antinociceptive action of baclofen.

    Sawynok, J

    1983-01-01

    1--Theophylline (35, 50 mg/kg) potentiated the antinociceptive action of intraperitoneally administered baclofen in the tail flick and hot plate tests. Potentiation was most marked when the pretreatment time was 1 h, but some potentiation was still apparent following a 2 h pretreatment. 2--Theophylline alone (50 mg/kg) produced only slight alterations in reaction latency in the two tests. 3--When baclofen was applied directly into the spinal subarachnoid space, a 1 h pretreatment with theophy...

  18. Membrane, action, and oscillatory potentials in simulated protocells

    Przybylski, Aleksander T.; Stratten, Wilford P.; Syren, Robert M.; Fox, Sidney W.

    1982-12-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  19. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons.

    Kress, Geraldine J; Dowling, Margaret J; Eisenman, Lawrence N; Mennerick, Steven

    2010-04-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium channels, which are dominated by the Na(V)1.6 isoform in both cell types, distribute more proximally and exhibit lower overall density in granule neurons than in CA3 neurons. To test possible contributions of sodium channel distributions to voltage threshold and to test whether morphological differences participate, we performed simulations of dentate granule neurons and of CA3 pyramidal neurons. These simulations revealed that cell morphology and sodium channel distribution combine to yield the characteristic granule neuron action potential upswing and voltage threshold. Proximal axon sodium channel distribution strongly contributes to the higher voltage threshold of dentate granule neurons for two reasons. First, action potential initiation closer to the somatodendritic current sink causes the threshold of the initiating axon compartment to rise. Second, the proximity of the action potential initiation site to the recording site causes somatic recordings to more faithfully reflect the depolarized threshold of the axon than in cells like CA3 neurons, with distally initiating action potentials. Our results suggest that the proximal location of axon sodium channels in dentate granule neurons contributes to the intrinsic excitability differences between DG and CA3 neurons and may participate in the low-pass filtering function of dentate granule neurons. PMID:19603521

  20. Numerical investigation of action potential transmission in plants

    Mariusz Pietruszka

    2014-02-01

    Full Text Available In context of a fairly concise review of recent literature and well established experimental results we reconsider the problem of action potential propagating steadily down the plant cell(s. Having adopted slightly modified Hodgkin-Huxley set of differential equations for the action potential we carried out the numerical investigation of these equations in the course of time. We argue that the Hodgkin-Huxley-Katz model for the nerve impulse can be used to describe the phenomena which take place in plants - this point of view seems to be plausible since the mechanisms involving active ionic transport across membranes from the mathematical point of view are similar. Besides, we compare in a qualitative way our theoretical outcomes with typical experimental results for the action potentials which arise as the reaction of plants to electrical, mechanical and light stimuli. Moreover, we point out the relevance of the sequence of events during the pulse with the appropriate ionic fluxes.

  1. Far-field potentials recorded from action potentials and from a tripole in a hemicylindrical volume.

    Jewett, D L; Deupree, D L

    1989-05-01

    There is growing evidence in support of the hypothesis that far-field potentials are recorded when action potentials encounter discontinuities in the surrounding volume. The present study found further support for this hypothesis using two methods of experimentation. The first method recorded potentials when the action potential from an isolated bullfrog sciatic nerve in a hemicylindrical volume (i) encountered a change in the shape of the surrounding volume, (ii) crossed a boundary between 2 volumes of differing resistivities, (iii) reached a bend in the nerve, or (iv) reached the functional end of the nerve. In the second method, potentials were recorded when an electrical tripole, constructed in a way to produce the electrical equivalent of an action potential, encountered the same discontinuities as well as when it was configured to simulate a curved nerve. These results are consistent with the hypothesis that dipole components of an action potential predominant in far-field recordings. PMID:2469568

  2. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons

    Kress, Geraldine J.; Dowling, Margaret; Eisenman, Lawrence N.; Mennerick, Steven

    2010-01-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium c...

  3. Time-Dependent Action in φ~6 Potential

    Hatem Widyan; Mashhoor Al-Wardat

    2012-01-01

    The false vacuum decay in field theory from a coherently oscillating initial state is studied for φ6 potential. An oscillating bubble solution is obtained. The instantaneous bubble nucleation rate is calculated.

  4. Action prediction based on anticipatory brain potentials during simulated driving

    Khaliliardali, Zahra; Chavarriaga, Ricardo; Gheorghe, Lucian Andrei; Millán, José del R.

    2015-12-01

    Objective. The ability of an automobile to infer the driver’s upcoming actions directly from neural signals could enrich the interaction of the car with its driver. Intelligent vehicles fitted with an on-board brain-computer interface able to decode the driver’s intentions can use this information to improve the driving experience. In this study we investigate the neural signatures of anticipation of specific actions, namely braking and accelerating. Approach. We investigated anticipatory slow cortical potentials in electroencephalogram recorded from 18 healthy participants in a driving simulator using a variant of the contingent negative variation (CNV) paradigm with Go and No-go conditions: count-down numbers followed by ‘Start’/‘Stop’ cue. We report decoding performance before the action onset using a quadratic discriminant analysis classifier based on temporal features. Main results. (i) Despite the visual and driving related cognitive distractions, we show the presence of anticipatory event related potentials locked to the stimuli onset similar to the widely reported CNV signal (with an average peak value of -8 μV at electrode Cz). (ii) We demonstrate the discrimination between cases requiring to perform an action upon imperative subsequent stimulus (Go condition, e.g. a ‘Red’ traffic light) versus events that do not require such action (No-go condition; e.g. a ‘Yellow’ light); with an average single trial classification performance of 0.83 ± 0.13 for braking and 0.79 ± 0.12 for accelerating (area under the curve). (iii) We show that the centro-medial anticipatory potentials are observed as early as 320 ± 200 ms before the action with a detection rate of 0.77 ± 0.12 in offline analysis. Significance. We show for the first time the feasibility of predicting the driver’s intention through decoding anticipatory related potentials during simulated car driving with high recognition rates.

  5. Propagation of Action Potentials: An Active Participation Exercise.

    Felsten, Gary

    1998-01-01

    Describes an active participation exercise that demonstrates the propagation of action potentials (the ability to transmit information through the neural network, dependent upon chemical interactions in the brain). Students assume the structure and function of the network by lining up around the room and communicating through hand signals and…

  6. Compound muscle action potentials in newborn infants with spina bifida.

    Geerdink, N.; Pasman, J.W.; Rotteveel, J.J.; Roeleveld, N.; Mullaart, R.A.

    2008-01-01

    The aim of this study was to investigate the relationship between compound muscle action potentials (CMAPs) and neurological impairment in newborn infants with spina bifida. Thirty-one newborn infants (17 males, 14 females, mean gestational age 39 wks [SD 2]; mean birthweight 3336 g [SD 496]) with s

  7. Sodium and potassium conductance changes during a membrane action potential.

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  8. Changes in science classrooms resulting from collaborative action research initiatives

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  9. Accelerated cleanup Initiatives Putting the Acceleration Plans into Action

    This paper describes project successes during the last year and presents strategies for accomplishing work required to accelerate waste retrieval, treatment and closure of 177 large underground waste tanks at the Hanford Site. The tanks contain approximately 53 million gallons of liquid, sludge, and solid waste resulting from decades of national defense production. The Hanford Site is a 560 square-mile area in southeastern Washington State. One of the nation's largest rivers, the Columbia River, flows through the site and within seven miles of the waste tanks. The US. Department of Energy (DOE) Office of River Protection and CH2M HILL Hanford Group, Inc. (CH2M HILL) drew upon the recommendations in the DOE's Top-To-Bottom Review and the ideas that emerged from the Cleanup Challenges and Constraints Team (C3T) when creating new initiatives last fall in accelerated tank cleanup. The initiatives reflect discussions and planning during the last year by the DOE, regulatory,agencies, Hanford stakeholders, and CH2M HILL on how to accelerate tank cleanup and closure. The initiatives focus on near-term risk reduction, deployment of proven cleanup technologies, and completing the feed delivery and waste storage systems needed to support Hanford's Waste Treatment Plant. Working with the Office of River Protection, CH2M HILL is changing the way it does business to align with the new focus on accelerated tank cleanup initiatives. A key concept of this new approach is to deploy simple, proven technologies whenever possible to accomplish program goals. Finding existing technologies and evaluating whether they can be applied to or adapted to Hanford tank cleanup provide the best chance for success in achieving treatment of all of Hanford's tank waste by 2028

  10. Key Points of the Initial Actions for the Implementation of the Joint Statement

    2007-01-01

    I. The parties held serious and productive discussions onthe actions each party will take in the initial phase for theimplementation of the Joint Statement of September 19,2005. The parties reaffirmed their common goal and will to

  11. Click- and chirp-evoked human compound action potentials

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-01-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213–2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obta...

  12. Action potentials of curved nerves in finite limbs.

    Xiao, S; McGill, K C; Hentz, V R

    1995-06-01

    Previous simulations of volume-conducted nerve-fiber action-potentials have modeled the limb as semi-infinite or circularly cylindrical, and the fibers as straight lines parallel to the limb surface. The geometry of actual nerves and limbs, however, can be considerably more complicated. This paper presents a general method for computing the potentials of fibers with arbitrary paths in arbitrary finite limbs. It involves computing the propagating point-source response (PPSR), which is the potential arising from a single point source (dipole or tripole) travelling along the fiber. The PPSR can be applied to fibers of different conduction velocities by simple dilation or compression. The method is illustrated for oblique and spiralling nerve fibers. Potentials from oblique fibers are shown to be different for orthodromic and antidromic propagation. Such results show that the straight-line models are not always adequate for nerves with anatomical amounts of curvature. PMID:7790016

  13. Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates

    Biswa Sengupta; Martin Stemmler; Simon B Laughlin; Niven, Jeremy E.

    2010-01-01

    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant ...

  14. Pilot program: NRC severe reactor accident incident response training manual: Public protective actions: Predetermined criteria and initial actions

    This pilot training manual has been written to fill the need for a general text on NRC response to reactor accidents. The manual is intended to be the foundation for a course for all NRC response personnel. Public Protective Actions - Predetermined Criteria and Initial Actions is the fourth in a series of volumes that collectively summarize the US Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume reviews public protective action criteria and objectives, their bases and implementation, and the expected public response. Each volume serves, respectively, as the text for a course of instruction in a series of courses for NRC response personnel. These materials do not provide guidance or license requirements for NRC licensees. Each volume is accompanied by an appendix of slides that can be used to present this material. The slides are called out in the text

  15. Numerical simulation of antiarrhythmic drugs effects on cardiac action potential

    Převorovská, Světlana; Maršík, František

    Brno : Brno University of Technology, 2006 - (Burša, J.; Fuis, V.), s. 170-171 ISBN 80-214-3232-2. [ Human Biomechanics 2006. Hrotovice (CZ), 13.11.2006-16.11.2006] R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z20760514 Keywords : human cardiovascular system * cardiac action potential * antiarrhytmmic drugs-cell channel interaction Subject RIV: BK - Fluid Dynamics

  16. Flexible graphene transistors for recording cell action potentials

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  17. Metabolic syndrome potentiates the cardiac action potential-prolonging action of drugs: a possible 'anti-proarrhythmic' role for amlodipine.

    Caillier, Bertrand; Pilote, Sylvie; Patoine, Dany; Levac, Xavier; Couture, Christian; Daleau, Pascal; Simard, Chantale; Drolet, Benoit

    2012-03-01

    Type II diabetes was shown to prolong the QT interval on the ECG and to promote cardiac arrhythmias. This is not so clear for metabolic syndrome, a precursor state of type II diabetes. The objectives of the present study were to generate a guinea pig model of metabolic syndrome by long-term exposure to diabetogenic diets, and to evaluate the monophasic action potential duration (MAPD)-modulating effects of drugs in these animals. Male Hartley guinea pigs were fed with either the control, the High Fat High Sucrose (HFHS) or the High Fat High Fructose (HFHF) diet for 150 days. Evolution of weight, blood cholesterol, triglycerides, urea and glucose tolerance were regularly monitored. Histopathological evolution was also evaluated in target organs such as pancreas, heart, liver and kidneys. Ex vivo experiments using the Langendorff retroperfusion technique, isolated hearts from guinea pigs either fed with the control, the HFHS or the HFHF diet were exposed to dofetilide 20 nM (D), chromanol 293B 10 μM (C) and amlodipine 100 nM (A) in different drug combinations and monophasic action potential duration was measured at 90% repolarization (MAPD₉₀). Our data show that it is possible to generate a guinea pig model of metabolic syndrome by chronic exposure to diabetogenic diets. Minor histopathological abnormalities were observed, mainly in the pancreas and the liver. Metabolic syndrome potentiates the MAPD-prolonging actions of I(Kr)-blocking (dofetilide) and I(Ks)-blocking (chromanol 293B) drugs, an effect that is reversible upon administration of the calcium channel blocker amlodipine. PMID:22154802

  18. The Potential of Deweyan-Inspired Action Research

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit…

  19. Particle motion in rapidly oscillating potentials: The role of the potential's initial phase

    Rapidly oscillating potentials with a vanishing time average have been used for a long time to trap charged particles in source-free regions. It has been argued that the motion of a particle inside such a potential can be approximately described by a time independent effective potential, which does not depend upon the initial phase of the oscillating potential. However, here we show that the motion of a particle and its trapping condition significantly depend upon this initial phase for arbitrarily high frequencies of the potential's oscillation. We explain this phenomenon by showing that the motion of a particle is determined by the effective potential stated in the literature only if its initial conditions are transformed according to a transformation which we show to significantly depend on the potential's initial phase for arbitrarily high frequencies. We confirm our theoretical findings by numerical simulations. Further, we demonstrate that the found phenomenon offers different ways to manipulate the dynamics of particles which are trapped by rapidly oscillating potentials. Finally, we propose a simple experiment to verify the theoretical findings of this work

  20. Pressure wave model for action potential propagation in excitable cells

    Rvachev, M M

    2003-01-01

    Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of myelinated and unmyelinated axons of different diameters is theoretically estimated and is found to generally agree with the action potential (AP) conduction velocities. This remarkable coincidence allows to surmise a model in which AP spread along axon is propelled not by straggling ionic currents as in the widely accepted local circuit theory, but by mechanoactivation of the membrane ion channels by a traveling pressure pulse. Hydraulic pulses propagating in the viscous axoplasm are calculated to decay over ~1 mm distances, and it is further hypothesized that it is the role of influxing during the AP calcium ions to activate membrane skeletal protein network attached to the membrane cytoplasmic side for a brief radial contraction amplifying the pressure pulse and preventing its decay. The model correctly predicts that the AP conduction velocity should vary as the one-half power of axon diameter for large unmyelinated ...

  1. Map-based model of the cardiac action potential

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  2. Compound sensory action potential in normal and pathological human nerves

    Krarup, Christian

    2004-01-01

    at different conduction distances are determined by summation of SFAPs of varying fiber diameters, and differ in this respect, also, from the compound muscle action potential (CMAP) for which conduction velocities are determined by the very fastest fibers in the nerve. The effect and extent of temporal...... dispersion over increasing conduction distance is greater for the SNAP than CMAP, and demonstration of conduction block is therefore difficult. In addition, the effect of temporal dispersion on amplitude and shape is strongly dependent on the number of conducting fibers and their distribution, and...... in different polyneuropathies. In this review, different factors that characterize sensory fibers and set the SNAP apart from the CMAP are discussed to emphasize the supplementary and complementary information that can be obtained from sensory conduction studies. Sensory conduction studies require particular...

  3. Mayan Children's Creation of Learning Ecologies by Initiative and Cooperative Action.

    de León, Lourdes

    2015-01-01

    This chapter examines Mayan children's initiatives in creating their own learning environments in collaboration with others as they engage in culturally relevant endeavors of family and community life. To this end, I carry out a fine-grained ethnographic and linguistic analysis of the interactional emergence of learning ecologies. Erickson defines learning ecology as a socioecological system where participants mutually influence one another through verbal and nonverbal actions, as well as through other forms of semiotic communication (2010, 254). In analyzing learning ecologies, I adopt a "theory of action" approach, taking into account multimodal communication (e.g., talk, gesture, gaze, body positioning), participants' sociospatial organization, embodied action, objects, tools, and other culturally relevant materials brought together to build action (Goodwin, 2000, 2013; Hutchins, 1995). I use microethnographic analysis (Erickson, 1992) to bring to the surface central aspects of children's agentive roles in learning through "cooperative actions" (Goodwin, 2013) and "hands-on" experience (Ingold, 2007) the skills of competent members of their community. I examine three distinct Learning Ecologies created by children's initiatives among the Mayan children that I observed: (i) children requesting guidance to collaborate in a task, (ii) older children working on their own initiative with subsequent monitoring and correction from competent members, and (iii) children with near competence in a task with occasional monitoring and no guidance. I argue that these findings enrich and add power to models of family- and community-based learning such as Learning by Observing and Pitching In (Rogoff, 2014). PMID:26955927

  4. 20 CFR 416.1403 - Administrative actions that are not initial determinations.

    2010-04-01

    ..., an action about— (1) Presumptive disability or presumptive blindness; (2) An emergency advance... supplementary payments due to a State-initiated mass change, as defined in § 416.1401, in the levels of such... a receipt in response to your report of a change in your earned income. (b) We send some notices...

  5. Aircraft accident investigation: the decision-making in initial action scenario.

    Barreto, Marcia M; Ribeiro, Selma L O

    2012-01-01

    In the complex aeronautical environment, the efforts in terms of operational safety involve the adoption of proactive and reactive measures. The process of investigation begins right after the occurrence of the aeronautical accident, through the initial action. Thus, it is in the crisis scenario, that the person responsible for the initial action makes decisions and gathers the necessary information for the subsequent phases of the investigation process. Within this scenario, which is a natural environment, researches have shown the fragility of rational models of decision making. The theoretical perspective of naturalistic decision making constitutes a breakthrough in the understanding of decision problems demanded by real world. The proposal of this study was to verify if the initial action, after the occurrence of an accident, and the decision-making strategies, used by the investigators responsible for this activity, are characteristic of the naturalistic decision making theoretical approach. To attend the proposed objective a descriptive research was undertaken with a sample of professionals that work in this activity. The data collected through individual interviews were analyzed and the results demonstrated that the initial action environment, which includes restricted time, dynamic conditions, the presence of multiple actors, stress and insufficient information is characteristic of the naturalistic decision making. They also demonstrated that, when the investigators make their decisions, they use their experience and the mental simulation, intuition, improvisation, metaphors and analogues cases, as strategies, all of them related to the naturalistic approach of decision making, in order to satisfy the needs of the situation and reach the objectives of the initial action in the accident scenario. PMID:22317482

  6. Dirac Equation with External Potential and Initial Data on Cauchy Surfaces

    Deckert, D -A

    2014-01-01

    With this paper we provide a mathematical review on the initial-value problem of the one-particle Dirac equation on space-like Cauchy hypersurfaces for compactly supported external potentials. We, first, discuss the physically relevant spaces of solutions and initial values in position and mass shell representation; second, review the action of the Poincar\\'e group as well as gauge transformations on those spaces; third, introduce generalized Fourier transforms between those spaces and prove convenient Paley-Wiener- and Sobolev-type estimates. These generalized Fourier transforms immediately allow the construction of a unitary evolution operator for the free Dirac equation between the Hilbert spaces of square-integrable wave functions of two respective Cauchy surfaces. With a Picard-Lindel\\"of argument this evolution map is generalized to the Dirac evolution including the external potential. For the latter we introduce a convenient interaction picture on Cauchy surfaces. These tools immediately provide anothe...

  7. An Initial Assessment of the GOES Microburst Windspeed Potential Index

    Pryor, Kenneth L

    2007-01-01

    A suite of products has been developed and evaluated to assess hazards presented by convective downbursts to aircraft in flight derived from the current generation of Geostationary Operational Environmental Satellite. The existing suite of GOES microburst products employs the GOES sounder to calculate risk based on conceptual models of favorable environmental profiles for convective downburst generation. Large output values of the microburst index algorithms indicate that the ambient thermodynamic structure of the troposphere fits the prototypical environment for each respective microburst type. Accordingly, a new diagnostic nowcasting product, the Microburst Windspeed Potential Index, is derived from merging existing algorithms and designed to infer the presence of sufficient positive buoyancy and a well-developed convective boundary layer. This paper provides an initial assessment of the MWPI algorithm, presents case studies demonstrating effective operational use of the MWPI product, and presents validatio...

  8. Short latency compound action potentials from mammalian gravity receptor organs

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  9. Modelling Action Potential Generation and Propagation in Fibroblastic Cells

    Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.

    2003-04-01

    Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.

  10. Pharmacological actions of statins: potential utility in COPD

    T. E. Eaton

    2009-12-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterised by minimally reversible airflow limitation and features of systemic inflammation. Current therapies for COPD have been shown to reduce symptoms and infective exacerbations and to improve quality of life. However, these drugs have little effect on the natural history of the disease (progressive decline in lung function and exercise tolerance and do not improve mortality. The anti-inflammatory effects of statins on both pulmonary and systemic inflammation through inhibition of guanosine triphosphatase and nuclear factor-B mediated activation of inflammatory and matrix remodelling pathways could have substantial benefits in patients with COPD due to the following. 1 Inhibition of cytokine production (tumour necrosis factor-, interleukin (IL-6 and IL-8 and neutrophil infiltration into the lung; 2 inhibition of the fibrotic activity in the lung leading to small airways fibrosis and irreversible airflow limitation; 3 antioxidant and anti-inflammatory (IL-6 mediated effects on skeletal muscle; 4 reduced inflammatory response to pulmonary infection; and 5 inhibition of the development (or reversal of epithelial-mesenchymal transition, a precursor event to lung cancer. This review examines the pleiotropic pharmacological action of statins which inhibit key inflammatory and remodelling pathways in COPD and concludes that statins have considerable potential as adjunct therapy in COPD.

  11. Pharmacological actions of statins: potential utility in COPD.

    Young, R P; Hopkins, R; Eaton, T E

    2009-12-01

    Chronic obstructive pulmonary disease (COPD) is characterised by minimally reversible airflow limitation and features of systemic inflammation. Current therapies for COPD have been shown to reduce symptoms and infective exacerbations and to improve quality of life. However, these drugs have little effect on the natural history of the disease (progressive decline in lung function and exercise tolerance) and do not improve mortality. The anti-inflammatory effects of statins on both pulmonary and systemic inflammation through inhibition of guanosine triphosphatase and nuclear factor-κB mediated activation of inflammatory and matrix remodelling pathways could have substantial benefits in patients with COPD due to the following. 1) Inhibition of cytokine production (tumour necrosis factor-α, interleukin (IL)-6 and IL-8) and neutrophil infiltration into the lung; 2) inhibition of the fibrotic activity in the lung leading to small airways fibrosis and irreversible airflow limitation; 3) antioxidant and anti-inflammatory (IL-6 mediated) effects on skeletal muscle; 4) reduced inflammatory response to pulmonary infection; and 5) inhibition of the development (or reversal) of epithelial-mesenchymal transition, a precursor event to lung cancer. This review examines the pleiotropic pharmacological action of statins which inhibit key inflammatory and remodelling pathways in COPD and concludes that statins have considerable potential as adjunct therapy in COPD. PMID:20956147

  12. Collective action initiatives to improve marketing performance: Lessons from farmer groups in Tanzania

    Barham, James; Chitemi, Clarence

    2008-01-01

    "The primary inquiry of this study is to identify and understand the underlying factors that enable smallholder farmer groups to improve their market situation. The specific objective of this paper is to examine to what extent certain group characteristics and asset endowments facilitate collective action initiatives to improve group marketing performance. This objective is approached through an evaluation of a government-led program in Tanzania, which is attempting to increase smallholder fa...

  13. Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes.

    Ibarra, J; Morley, G E; Delmar, M

    1991-01-01

    The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. ...

  14. Experience of Initial Symptoms of Breast Cancer and Triggers for Action in Ethiopia

    Objective. This study assessed the initial experiences, symptoms, and actions of patients in Ethiopia ultimately determined to have breast cancer. Methods. 69 participants in a comprehensive breast cancer treatment program at the main national cancer hospital in Ethiopia were interviewed using mixed qualitative and quantitative approaches. Participants narratives of their initial cancer experience were coded and analyzed for themes around their symptoms, time to seeking advice, triggers for action, and contextual factors. The assessment was approved by the Addis Ababa University Faculty of Medicine Institutional Review Board. Results. Nearly all women first noticed lumps, though few sought medical advice within the first year (average time to action: 1.5 years). Eventually, changes in their symptoms motivated most participants to seek advice. Most participants did not think the initial lump would be cancer, nor was a lump of any particular concern until symptoms changed. Conclusion. Given the frequency with which lumps are the first symptom noticed, raising awareness among participants that lumps should trigger medical consultation could contribute significantly to more rapid medical advice-seeking among women in Ethiopia. Primary care sites should be trained and equipped to offer evaluation of lumps so that women can be referred appropriately for assessment if needed

  15. Acute nerve compression and the compound muscle action potential

    Baylor Kelly

    2008-01-01

    Full Text Available Abstract Detecting acute nerve compression using neurophysiologic studies is an important part of the practice of clinical intra-operative neurophysiology. The goal of this paper was to study the changes in the compound muscle action potential (CMAP during acute mechanical compression. This is the type of injury most likely to occur during surgery. Thus, understanding the changes in the CMAP during this type of injury will be useful in the detection and prevention using intra-operative neurophysiologic monitoring. The model involved compression of the hamster sciatic nerve over a region of 1.3 mm with pressures up to 2000 mmHg for times on the order of 3 minutes. In this model CMAP amplitude dropped to 50% of its baseline value when a pressure of roughly 1000 mmHg is applied while, at the same time, nerve conduction velocities decline by only 5%. The ability to detect statistically significant changes in the CMAP at low force levels using other descriptors of the CMAP including duration, latency variation, etc alone or in conjunction with amplitude and velocity measures was investigated. However, these other parameters did not allow for earlier detection of significant changes. This study focused on a model in which nerve injury on a short time scale is purely mechanical in origin. It demonstrated that a pure compression injury produced large changes in CMAP amplitude prior to large changes in conduction velocity. On the other hand, ischemic and stretch injuries are associated with larger changes in conduction velocity for a given value of CMAP amplitude reduction.

  16. Increased Event-Related Potentials and Alpha-, Beta-, and Gamma-Activity Associated with Intentional Actions

    Karch, Susanne; Loy, Fabian; Krause, Daniela; Schwarz, Sandra; Kiesewetter, Jan; Segmiller, Felix; Chrobok, Agnieszka I.; Keeser, Daniel; Pogarell, Oliver

    2016-01-01

    Objective: Internally guided actions are defined as being purposeful, self-generated and offering choices between alternatives. Intentional actions are essential to reach individual goals. In previous empirical studies, internally guided actions were predominantly related to functional responses in frontal and parietal areas. The aim of the present study was to distinguish event-related potentials and oscillatory responses of intentional actions and externally guided actions. In addition, we ...

  17. The membrane actions of estrogens can potentiate their lordosis behavior-facilitating genomic actions

    Kow, Lee-Ming; Pfaff, Donald W.

    2004-01-01

    The membrane actions of estrogens can facilitate their genomic actions. To determine whether this facilitation bears on CNS mechanisms for estrogen-dependent behaviors, ovariectomized rats were subjected to a two-pulse treatment of estrogen directly in the hypothalamic ventromedial nucleus. Two days later, each rat was given progesterone and then tested for lordosis behavior, the induction of which requires the genomic actions of estrogen. When estrogen was given in both pulses (15 min to 2 h...

  18. Circadian- and Light-Dependent Regulation of Resting Membrane Potential and Spontaneous Action Potential Firing of Drosophila Circadian Pacemaker Neurons

    Sheeba, Vasu; Gu, Huaiyu; Sharma, Vijay K.; O'Dowd, Diane K.; Holmes, Todd C.

    2007-01-01

    The ventral lateral neurons (LNvs) of adult Drosophila brain express oscillating clock proteins and regulate circadian behavior. Whole cell current-clamp recordings of large LNvs in freshly dissected Drosophila whole brain preparations reveal two spontaneous activity patterns that correlate with two underlying patterns of oscillating membrane potential: tonic and burst firing of sodium-dependent action potentials. Resting membrane potential and spontaneous action potential firing are rapidly ...

  19. Scaling of the quark-antiquark potential and improved actions in SU(2) lattice gauge theory

    The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree-level improved action and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action have been observed. For small β Wilson's action scales differently. The string tension value chi extracted from the data corresponds to Λsub(latt) = (0.018 +- 0.001) √chi for the one-plaquette action. (orig.)

  20. Initiation of breakout of half-buried submarine pipe from sea bed due to wave action

    Law, A.W.K. [Nanyang Technological Univ. (Singapore). School of Civil and Structural Engineering; Foda, M.A. [California Univ., Berkeley, CA (United States). Dept. of Civil Engineering

    1996-12-31

    A formulation is presented for the analysis of the breakout of a half-buried submarine pipe due to wave action. The formulation accounts for the contact between the pipe and the soil due to the oscillating horizontal hydrodynamic force. Results demonstrate the existence of an initial gap in the breakout experiments. With this initial gap the gap flux dominated the influx of water into the gap throughout the breakout process. The linear pipe rise persisted although the second-order expansion of the gap should have grown to the same order of magnitude as the initial gap with the poro-rigid soil assumption. It is postulated that the persistence of the linear rise was due to the localized passive failure around the ends of the soil trench which inhibited the growth of the opening due to the pipe`s rise. (Author)

  1. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  2. Ontogeny of vestibular compound action potentials in the domestic chicken

    Jones, S. M.; Jones, T. A.

    2000-01-01

    Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of -0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately -25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6-P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 microV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ.

  3. Mathematical Distinction in Action Potential between Primo-Vessels and Smooth Muscle

    Seong-Jin Cho; Sang-Hun Lee; Wenji Zhang; Sae-Bhom Lee; Kwang-Ho Choi; Sun-Mi Choi; Yeon-Hee Ryu

    2012-01-01

    We studied the action potential of Primo-vessels in rats to determine the electrophysiological characteristics of these structures. We introduced a mathematical analysis method, a normalized Fourier transform that displays the sine and cosine components separately, to compare the action potentials of Primo-vessels with those for the smooth muscle. We found that Primo-vessels generated two types of action potential pulses that differed from those of smooth muscle: (1) Type I pulse had rapid de...

  4. Distribution of Action Potential Duration and T-wave Morphology: a Simulation Study

    Ryzhii, Elena; Ryzhii, Maxim; Wei, Daming

    2009-01-01

    The results of a simulation study of the action potential duration (APD) distribution and T-wave morphology taking into account the midmyocardial cells (M-cells) concept are described. To investigate the effect of M-cells we present a computer model in which ion channel action potential formulations are incorporated into three-dimensional whole heart model. We implemented inhomogeneous continuous action potential duration distribution based on different distributions of maximal slow delayed r...

  5. A Rabbit Ventricular Action Potential Model Replicating Cardiac Dynamics at Rapid Heart Rates

    Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G.; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N.

    2008-01-01

    Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Cai) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ven...

  6. On the excitation of action potentials by protons and its potential implications for cholinergic transmission

    Fillafer, Christian

    2014-01-01

    One of the most conserved mechanisms for transmission of a nerve pulse across a synapse relies on acetylcholine. Ever since the Nobel-prize winning works of Dale and Loewi, it has been assumed that acetylcholine - subsequent to its action on a postsynaptic cell - is split into inactive by-products by acetylcholinesterase. Herein, this widespread assumption is falsified. Excitable cells (Chara australis internodes), which had previously been unresponsive to acetylcholine, became acetylcholine-sensitive in presence of acetylcholinesterase. The latter was evidenced by a striking difference in cell membrane depolarisation upon exposure to 10 mM intact acetylcholine (deltaV=-2plus/minus5 mV) and its hydrolysate respectively (deltaV=81plus/minus19 mV) for 60 sec. This pronounced depolarization, which also triggered action potentials, was clearly attributed to one of the hydrolysis products: acetic acid (deltaV=87plus/minus9 mV at pH 4.0; choline ineffective in range 1-10 mM). In agreement with our findings, numerou...

  7. How initial confirmatory experience potentiates the detrimental influence of bad advice.

    Staudinger, Markus R; Büchel, Christian

    2013-08-01

    In everyday life, expert advice has a great impact on individual decision making. Although often beneficial, advice may sometimes be misleading and cause people to pursue actions that entail suboptimal outcomes. This detrimental effect may diminish over time, when individuals have gathered sufficient contradicting evidence. Given the strong influence initial information has on opinion and personality impression formation, we aimed to investigate whether initial advice-confirmatory experience potentiates the rigidity with which persons stick to misleading advice. Furthermore, we intended to characterize the neuronal basis of such putative primacy effect. While undergoing functional magnetic resonance imaging (fMRI), participants selected between probabilistically reinforced symbols and were given the misleading tip that two low-probability symbols had a high reinforcement probability. One of these symbols initially received manipulated advice-congruent positive feedback (PF), the other one advice-incongruent negative feedback. Behaviorally, participants were impaired at learning to avoid advice-receiving symbols and overvalued them in terms of willingness to pay (WTP) in an auction market. Crucially, initial PF potentiated all effects. Greater ventral pallidal response to initial but not later PF during learning predicted higher behavioral WTP. Our results demonstrate that the nature of the very first advice-related experience already determines how strongly misleading advice will influence learning and ensuing decision making-an effect that is mediated by the ventral pallidum. Thus, in contrast to conventional reinforcement learning, learning under the influence of advice is susceptible to primacy effects. The present findings advance our understanding of why false beliefs are particularly difficult to change once they have been reinforced. PMID:23507392

  8. Potential involvement of serotonergic signaling in ketamine's antidepressant actions

    du Jardin, Kristian Gaarn; Müller, Heidi Kaastrup; Elfving, Betina;

    2016-01-01

    A single i.v. infusion of ketamine, classified as an N-methyl-D-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic...... properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5......-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms...

  9. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the

  10. Analysis of toxin induced changes in action potential shape for drug development

    Akanda, Nesar; Molnar, Peter; Stancescu, Maria; Hickman, James J.

    2009-01-01

    The generation of an action potential is a complex process in excitable cells which involves the temporal opening and closing of several voltage-dependent ion channels in the cell membrane. The shape of an action potential can carry information concerning the state of the involved ion channels and their relationship to cellular processes. Alteration of these ion channels by the administration of toxins, drugs, and biochemicals can change the action potential’s shape in a specific way which ca...

  11. The characteristics of action potential and nonselective cation current of cardiomyocytes in rabbit superior vena cava

    WANG Pan; YANG XinChun; LIU XiuLan; BAO RongFeng; LIU TaiFeng

    2008-01-01

    As s special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cavs (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of INs in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may increase or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can increase or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyocytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.

  12. Fish oil curtails the human action potential dome in a heterogeneous manner: Implication for arrhythmogenesis

    A.O. Verkerk; H.M. den Ruijter; N. de Jonge; R. Coronel

    2009-01-01

    Omega-3 polyunsaturated fatty acids (omega3-PUFAs) from fish oil modulate various ion channels, including the L-type calcium current (I(Ca,L)). As a result, fish oil shortens the cardiac action potential and may cause a loss of the dome of the action potential (AP). Under conditions of increased pre

  13. Triangulation of the monophasic action potential causes flattening of the electrocardiographic T-wave

    Bhuiyan, Tanveer Ahmed; Graff, Claus; Thomsen, Morten Bækgaard;

    2012-01-01

    It has been proposed that triangulation on the cardiac action potential manifests as a broadened, more flat and notched T-wave on the ECG but to what extent such morphology characteristics are indicative of triangulation is more unclear. In this paper, we have analyzed the morphological changes of...... the action potential under the effect of the IKr blocker sertindole and associated these changes to concurrent changes in the morphology of electrocardiographic T-waves in dogs. We show that, under the effect of sertindole, the peak changes in the morphology of action potentials occur at time points...... similar to those observed for the peak changes in T-wave morphology on the ECG. We further show that the association between action potential shape and ECG shape is dose-dependent and most prominent at the time corresponding to phase 3 of the action potential. © 2012 CCAL....

  14. Closing the Civic Engagement Gap: The Potential of Action Civics

    Pope, Alexander; Stolte, Laurel; Cohen, Alison K.

    2011-01-01

    When taught in an engaging manner, civic education can help stimulate and motivate students to excel in other academic areas, while simultaneously preparing them to be active citizens in the democracy. As an initial attempt to more systematically analyze civic education practice, this article presents four case studies of projects in one action…

  15. Consumer-Related Food Waste: Causes and Potential for Action

    Jessica Aschemann-Witzel

    2015-05-01

    Full Text Available In the past decade, food waste has received increased attention on both academic and societal levels. As a cause of negative economic, environmental and social effects, food waste is considered to be one of the sustainability issues that needs to be addressed. In developed countries, consumers are one of the biggest sources of food waste. To successfully reduce consumer-related food waste, it is necessary to have a clear understanding of the factors influencing food waste-related consumer perceptions and behaviors. The present paper presents the results of a literature review and expert interviews on factors causing consumer-related food waste in households and supply chains. Results show that consumers’ motivation to avoid food waste, their management skills of food provisioning and food handling and their trade-offs between priorities have an extensive influence on their food waste behaviors. We identify actions that governments, societal stakeholders and retailers can undertake to reduce consumer-related food waste, highlighting that synergistic actions between all parties are most promising. Further research should focus on exploring specific food waste contexts and interactions more in-depth. Experiments and interventions in particular can contribute to a shift from analysis to solutions.

  16. Impedance and electrically evoked compound action potential (ECAP drop within 24 hours after cochlear implantation.

    Joshua Kuang-Chao Chen

    Full Text Available Previous animal study revealed that post-implantation electrical detection levels significantly declined within days. The impact of cochlear implant (CI insertion on human auditory pathway in terms of impedance and electrically evoked compound action potential (ECAP variation within hours after surgery remains unclear, since at this time frequency mapping can only commence weeks after implantation due to factors associated with wound conditions. The study presented our experiences with regards to initial switch-on within 24 hours, and thus the findings about the milieus inside cochlea within the first few hours after cochlear implantation in terms of impedance/ECAP fluctuations. The charts of fifty-four subjects with profound hearing impairment were studied. A minimal invasive approach was used for cochlear implantation, characterized by a small skin incision (≈ 2.5 cm and soft techniques for cochleostomy. Impedance/ECAP was measured intro-operatively and within 24 hours post-operatively. Initial mapping within 24 hours post-operatively was performed in all patients without major complications. Impedance/ECAP became significantly lower measured within 24 hours post-operatively as compared with intra-operatively (p<0.001. There were no differences between pre-operative and post-operative threshold for air-conduction hearing. A significant drop of impedance/ECAP in one day after cochlear implantation was revealed for the first time in human beings. Mechanisms could be related to the restoration of neuronal sensitivity to the electrical stimulation, and/or the interaction between the matrix enveloping the electrodes and the electrical stimulation of the initial switch-on. Less wound pain/swelling and soft techniques both contributed to the success of immediate initial mapping, which implied a stable micro-environment inside the cochlea despite electrodes insertion. Our research invites further studies to correlate initial impedance/ECAP changes

  17. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    Crago, Patrick E.; Makowski, Nathaniel S.

    2014-10-01

    Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  18. A model for thermal exchange in axons during action potential propagation.

    Masson, Jean-Baptiste; Gallot, Guilhem

    2008-01-01

    International audience Several experiments have shown that during propagation of the action potential in axons, thermal energy is locally exchanged. In this paper, we use a simple model based on statistical physics to show that an important part of this exchange comes from the physics of the effusion. We evaluate, during the action potential propagation, the variation of internal energy and of the energy associated with the chemical potential of the effusion of water and ions to extract th...

  19. Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition.

    Miller, Oliver H; Moran, Jacqueline T; Hall, Benjamin J

    2016-01-01

    A single, low dose of ketamine evokes antidepressant actions in depressed patients and in patients with treatment-resistant depression (TRD). Unlike classic antidepressants, which regulate monoamine neurotransmitter systems, ketamine is an antagonist of the N-methyl-D-aspartate (NMDA) family of glutamate receptors. The effectiveness of NMDAR antagonists in TRD unveils a new set of targets for therapeutic intervention in major depressive disorder (MDD) and TRD. However, a better understanding of the cellular mechanisms underlying these effects is required for guiding future therapeutic strategies, in order to minimize side effects and prolong duration of efficacy. Here we review the evidence for and against two hypotheses that have been proposed to explain how NMDAR antagonism initiates protein synthesis and increases excitatory synaptic drive in corticolimbic brain regions, either through selective antagonism of inhibitory interneurons and cortical disinhibition, or by direct inhibition of cortical pyramidal neurons. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:26211972

  20. Biofuel initiatives in Japan: Strategies, policies, and future potential

    Japan has developed a variety of national strategies and plans related to biofuels which address four main policy objectives, including reduction of greenhouse gas (GHG) emissions, energy security, rural development, and realisation of a recycle-based society. This paper reviews these national strategies and plans as well as associated implementing policies, and discusses the extent to which these objectives may be achieved. This paper found that the long-term potential of biofuels to contribute to GHG reduction goals will depend not only on the rates of technological development of the second generation biofuels but also on the development of other advanced vehicles. In the medium term, the potential contribution of biofuels to rural development and realising a recycle-based society could become significant depending on the progress of technology for both second generation biofuel production and the collection and transportation of their feedstocks. The potential contribution of biofuels to Japan's energy security is constrained by the availability of imports and the potential of domestic production.

  1. Action Research’s Potential to Foster Institutional Change for Urban Water Management

    Dimitrios Zikos; Andreas Thiel

    2013-01-01

    The paper discusses the potential of action research to meet the challenges entailed in institutional design for urban water management. Our overall aim is to briefly present action research and discuss its methodological merits with regard to the challenges posed by the different conceptual bases for extrapolating the effects of institutional design on institutional change. Thus, our aim is to explore how Action Research meets the challenge of scoping the field in an open fashion for determi...

  2. Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision

    Schaefer, Andreas T; Angelo, Kamilla; Spors, Hartwig;

    2006-01-01

    Although oscillations in membrane potential are a prominent feature of sensory, motor, and cognitive function, their precise role in signal processing remains elusive. Here we show, using a combination of in vivo, in vitro, and theoretical approaches, that both synaptically and intrinsically......--permitted accurate discernment of up to 1,000 different stimuli. At low oscillation frequencies, stimulus discrimination showed a clear phase dependence whereby inputs arriving during the trough and the early rising phase of an oscillation cycle were most robustly discriminated. Thus, by ensuring AP precision...

  3. More evidence for a refined Gribov-Zwanziger action based on an effective potential approach

    Vandersickel, N.; Dudal, D.; Sorella, S.P.

    2011-01-01

    The purpose of this proceeding is twofold. Firstly, we shall make the refining of the Gribov-Zwanziger action more complete by taking into account more condensates than considered so far. Secondly, we shall provide more evidence for the refined Gribov-Zwanziger action based on an effective potential approach.

  4. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons.

    Schwindt, P C; Crill, W E

    1998-05-01

    In a previous study iontophoresis of glutamate on the apical dendrite of layer 5 pyramidal neurons from rat neocortex was used to identify sites at which dendritic depolarization evoked small, prolonged Ca2+ spikes and/or low-threshold Na+ spikes recorded by an intracellular microelectrode in the soma. These spikes were identified as originating in the dendrite. Here we evoke similar dendritic responses by electrical stimulation of presynaptic elements near the tip of the iontophoretic electrode with the use of a second extracellular electrode. In 9 of 12 recorded cells, electrically evoked excitatory postsynaptic potentials (EPSPs) above a minimum size triggered all-or-none postsynaptic responses similar to those evoked by dendritic glutamate iontophoresis at the same site. Both the synaptically evoked and the iontophoretically evoked depolarizations were abolished reversibly by blockade of glutamate receptors. In all recorded cells, the combination of iontophoresis and an EPSP, each of which was subthreshold for the dendritic spike when given alone, evoked a dendritic spike similar to that evoked by a sufficiently large iontophoresis. In one cell tested, dendritic spikes could be evoked by the summation of two independent subthreshold EPSPs evoked by stimulation at two different locations. We conclude that the dendritic spikes are not unique to the use of glutamate iontophoresis because similar spikes can be evoked by EPSPs. We discuss the implications of these results for synaptic integration and for the interpretation of recorded synaptic potentials. PMID:9582218

  5. Distinct electrophysiological potentials for intention in action and prior intention for action

    Vinding, Mikkel Christoffer; Jensen, Mads; Overgaard, Morten

    2014-01-01

    The role of conscious intention in relation to motoric movements has become a major topic of investigation in neuroscience. Traditionally, reports of conscious intention have been compared to various features of the readiness-potential (RP) – an electrophysiological signal that appears before...... electrophysiological “intention potential” above the mid-frontal areas at the time participants formed a distal intention. This potential was only found when the distal intention was self-paced and not when the intention was formed in response to an external cue....

  6. Action potential detection by non-linear microscopy

    Sacconi, Leonardo; Lotti, Jacopo; O'Connor, Rodney P.; Mapelli, Jonathan; Gandolfi, Daniela; D'Angelo, Egidio; Pavone, Francesco S.

    2009-02-01

    In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RA-SHG) capable of optically recording fast membrane potential events occurring in a wide-field configuration. The RA-SHG microscope in combination with a bulk staining method with FM4-64 was used to simultaneously record electrical activity from clusters of Purkinje cells (PCs) in acute cerebellar slices. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where APs were recorded in a single trial without averaging. These results show the strength of this technique to describe the temporal dynamics of neuronal assemblies.

  7. Control of Secretion by Encodes of Action Potentials in Neuronal Cells

    Kailai Duan; Zhuan Zhou

    2003-01-01

    @@ Action potentials (APs) are principle physiological stimuli of neurotransmitter secretion or synaptic transmis sion. Most studies on stimulus-secretion-coupling have been performed under voltage clamp using artificial electric stimulations.

  8. NeuroGrid: recording action potentials from the surface of the brain

    Khodagholy, Dion; Gelinas, Jennifer N.; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G.; Buzsáki, György

    2014-01-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultra-conformable, biocompatible and scalable neural interface array (the ‘NeuroGrid’) that can record both LFP and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneous...

  9. Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics

    Yu, Yuguo; Shu, Yousheng; McCormick, David A.

    2008-01-01

    Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous ax...

  10. Pharmacological actions and potential uses of Momordica charantia: a review.

    Grover, J K; Yadav, S P

    2004-07-01

    Since ancient times, plants and herbal preparations have been used as medicine. Research carried out in last few decades has certified several such claims of use of several plants of traditional medicine. Popularity of Momordica charantia (MC) in various systems of traditional medicine for several ailments (antidiabetic, abortifacient, anthelmintic, contraceptive, dysmenorrhea, eczema, emmenagogue, antimalarial, galactagogue, gout, jaundice, abdominal pain, kidney (stone), laxative, leprosy, leucorrhea, piles, pneumonia, psoriasis, purgative, rheumatism, fever and scabies) focused the investigator's attention on this plant. Over 100 studies using modern techniques have authenticated its use in diabetes and its complications (nephropathy, cataract, insulin resistance), as antibacterial as well as antiviral agent (including HIV infection), as anthelmintic and abortifacient. Traditionally it has also been used in treating peptic ulcers, interestingly in a recent experimental studies have exhibited its potential against Helicobacter pylori. Most importantly, the studies have shown its efficacy in various cancers (lymphoid leukemia, lymphoma, choriocarcinoma, melanoma, breast cancer, skin tumor, prostatic cancer, squamous carcinoma of tongue and larynx, human bladder carcinomas and Hodgkin's disease). There are few reports available on clinical use of MC in diabetes and cancer patients that have shown promising results. PMID:15182917

  11. Detection of Variability of the Motor Unit Action Potential Shape by Means of the Firing Patterns

    Krarup, Christian; Nikolic, Mile; Dahl, Kristian;

    1997-01-01

    The motor unit action potential is a summation of the potentials of the individual muscle fibers from the same motor unit.By using a newly developed automatic EMG decomposition system, variability of the firing patterns of the muscle fibers are analyzed.......The motor unit action potential is a summation of the potentials of the individual muscle fibers from the same motor unit.By using a newly developed automatic EMG decomposition system, variability of the firing patterns of the muscle fibers are analyzed....

  12. 76 FR 21938 - Potential Environmental Impacts of the Proposed Runway 13 Extension and Associated Actions for...

    2011-04-19

    ... Federal Aviation Administration Potential Environmental Impacts of the Proposed Runway 13 Extension and... Administration (FAA), Department of Transportation (DOT). ACTION: Notice of availability of a final EA and FONSI/ROD for the evaluation of the potential environmental impacts associated with the proposed Runway...

  13. Preparing Social Justice Oriented Teachers: The Potential Role of Action Research in the PDS

    Dodman, Stephanie L.; Lai, Kerri; Campet, Melissa; Cavallero-Lotocki, Renee; Hopkins, Aaron; Onidi, Christine

    2014-01-01

    Deliberate investigation into practice is an essential of the National Association for Professional Development Schools' defining elements of a Professional Development School (PDS). This article reports on the pilot efforts of one PDS as it initiated deliberate investigation through action research with a small group of teacher candidates.…

  14. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    Biswa Sengupta

    Full Text Available The initiation and propagation of action potentials (APs places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na(+ and K(+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin-Huxley model of the squid axon, optimizing the kinetics or number of Na(+ and K(+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost.

  15. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    Sengupta, Biswa; Stemmler, Martin; Laughlin, Simon B; Niven, Jeremy E

    2010-01-01

    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na(+) and K(+) currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin-Huxley model of the squid axon, optimizing the kinetics or number of Na(+) and K(+) channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost. PMID:20617202

  16. Phase lagging model of brain response to external stimuli - modeling of single action potential

    Seetharaman, Karthik; Kulish, Vladimir V

    2012-01-01

    In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.

  17. DBI potential, DBI inflation action and general Lagrangian relative to phantom, K-essence and quintessence

    We derive a Dirac-Born-Infeld (DBI) potential and DBI inflation action by rescaling the metric. The determinant of the induced metric naturally includes the kinetic energy and the potential energy. In particular, the potential energy and kinetic energy can convert into each other in any order, which is in agreement with the limit of classical physics. This is quite different from the usual DBI action. We show that the Taylor expansion of the DBI action can be reduced into the form in the non-linear classical physics. These investigations are the support for the statement that the results of string theory are consistent with quantum mechanics and classical physics. We deduce the Phantom, K-essence, Quintessence and Generalized Klein-Gordon Equation from the DBI model

  18. Modeling and simulation of ion channels and action potentials in taste receptor cells

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  19. Modeling and simulation of ion channels and action potentials in taste receptor cells

    CHEN PeiHua; LIU Xiaodong; ZHANG Wei; ZHOU Jun; WANG Ping; YANG Wei; LUO JianHong

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells,a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components,including voltage-gated Na~+ currents and outward delayed rectifier K~+ currents.Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants.The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed.Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  20. RXP-E: a connexin43-binding peptide that prevents action potential propagation block

    Lewandowski, Rebecca; Procida, Kristina; Vaidyanathan, Ravi;

    2008-01-01

    . Separately, RXP-E was concatenated to a cytoplasmic transduction peptide (CTP) for cytoplasmic translocation (CTP-RXP-E). The effect of RXP-E on action potential propagation was assessed by high-resolution optical mapping in monolayers of neonatal rat ventricular myocytes, containing approximately 20% of...... randomly distributed myofibroblasts. In contrast to control experiments, when heptanol (2 mmol/L) was added to the superfusate of monolayers loaded with CTP-RXP-E, action potential propagation was maintained, albeit at a slower velocity. Similarly, intracellular acidification (pH(i) 6.2) caused a loss of...... action potential propagation in control monolayers; however, propagation was maintained in CTP-RXP-E-treated cells, although at a slower rate. Patch-clamp experiments revealed that RXP-E did not prevent heptanol-induced block of sodium currents, nor did it alter voltage dependence or amplitude of Kir2...

  1. Optical magnetic detection of single-neuron action potentials using NV-diamond

    Turner, Matthew; Barry, John; Schloss, Jennifer; Glenn, David; Walsworth, Ron

    2016-05-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential dynamics in whole organisms with single-neuron resolution. Here, we report a new approach to this problem: using nitrogen-vacancy (NV) color centers in diamond to measure the time-dependent magnetic fields produced by single-neuron action potentials. We demonstrate our method using excised single neurons from two invertebrate species, marine worm and squid; and then by single-neuron action potential magnetic sensing exterior to whole, live, opaque marine worms for extended periods with no adverse effect. The results lay the groundwork for real-time, noninvasive 3D magnetic mapping of functional mammalian neuronal networks.

  2. A phantom axon setup for validating models of action potential recordings.

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %. PMID:27016364

  3. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  4. The action spectrum for vitamin D3: initial skin reaction and prolonged exposure.

    van Dijk, Arjan; den Outer, Peter; van Kranen, Henk; Slaper, Harry

    2016-07-01

    Vitamin D3 photosynthesis in the skin is formulated as a set of reaction equations, including side-reactions to lumisterol, tachysterol and toxisterols, and the accompanying reverse reactions, isomerisation of previtamin D3 to vitamin D3 and photodegradation of vitamin D3. The solution of this set is given for the stationary irradiance spectrum. The effective action spectrum for the instantaneous vitamin D3 production changes shape as a function of exposure, and therefore, no single action spectrum can be used. We assessed the action spectrum for unexposed skin and for skin that has been exposed to 7.5 Standard Erythemal Doses (SED). We constructed two new estimates: (1) the RIVM action spectrum, based on absorption spectra, quantum yields and skin transmission spectra, and (2) the modified QUT action spectrum, which is adjusted for self-absorption and skin transmission. For previously unexposed skin, the modified QUT action spectrum gives a qualitatively similar, but larger estimate than the RIVM action spectrum. We have not been able to solve the lack of quantitative agreement between the vitamin D production estimates from the three action spectrum estimates (RIVM, modified QUT and CIE). All new action spectra have stronger emphasis on the short wavelengths than the CIE action spectrum. We showed that, for wavelengths larger than 300 nm, the bandwidth that was used in the experiment that formed the basis of the CIE action spectrum, gives a red-shift of about 1 nm. Generally, with the formation of previtamin D3, the return reaction to provitamin D3 limits the production of vitamin D3. After some exposure, the new action spectrum has negative values for the longer wavelengths in the UVB. For the RIVM action spectrum, this happens after 7.5 SED, for the modified QUT action spectrum already after 1.25 SED, and after 7.5 SED the net production rate is largely cancelled. Thus prolonged exposure of previously unexposed skin saturates vitamin D3 formation. For maximum

  5. Differential effects of thioridazine enantiomers on action potential duration in rabbit papillary muscle

    Jensen, Ask Schou; Pennisi, Cristian Pablo; Sevcencu, Cristian;

    2015-01-01

    (+)-thioridazine. In this study we for the first time investigate the cardiotoxicity of the isolated thioridazine enantiomers and show their effects on ventricular repolarization. The effects of (+)-thioridazine, (-)-thioridazine, and racemate on the rabbit ventricular action potential duration (APD) were...... investigated in a randomized controlled blinded experiment. Action potentials were measured in papillary muscles isolated from 21 female rabbits, and the drug effect on 90% APD in comparison with control (DeltaDelta-APD90) was evaluated. Increasing concentrations of (+)-thioridazine and the racemate caused...

  6. Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects.

    Enomoto, Riyo; Koshiba, Chika; Suzuki, Chie; Lee, Eibai

    2011-05-01

    Wogonin, a flavone in the roots of Scutellaria baicalensis, reduced etoposide-induced apoptotic cell death in normal cells, such as bone marrow cells and thymocytes. On the other hand, wogonin potentiated the proapoptotic or cytotoxic action of etoposide in tumor cells, such as Jurkat, HL-60, A549, and NCI-H226. These contradictory actions of wogonin on apoptosis are distinguished by normal or cancer cell types. Wogonin had no effect on apoptosis induced by other anticancer agents in the tumor cells. Thus, the potentiation effect of wogonin was observed only in etoposide-induced apoptosis in tumor cells. In a functional assay for P-glycoprotein (P-gp), wogonin suppressed excretion of calcein, a substrate for P-gp, in these tumor cells. Moreover, wogonin decreased the excretion of radiolabeled etoposide and accordingly increased intracellular content of this agent in the cells. P-gp inhibitors showed a similar potentiation effect on etoposide-induced apoptosis in these tumor cells. Thus, wogonin is likely to potentiate the anticancer action of etoposide due to P-gp inhibition and accumulation of this agent. These findings suggest that wogonin may be a useful chemotherapeutic adjuvant to potentiate the pharmacological action of etoposide and ameliorate its adverse effects. PMID:20658136

  7. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected. PMID:26686984

  8. South Africa's national REDD+ initiative: assessing the potential of the forestry sector on climate change mitigation

    Reducing emissions from deforestation and forest degradation in developing countries (REDD+) is regarded by its proponents as one of the more efficient and cost effective ways to mitigate climate change. There was further progress toward the implementation of this mechanism at the 16th Conference of Parties (COP) in Cancun in December 2010. Many countries in southern African, including South Africa, have not been integrated (do not participate) into the UN-REDD+ programme, probably due to their low forest cover and national rates of deforestation. This paper discusses the potential contribution of REDD+ activities to the South African Government's pledge of reducing national greenhouse gas (GHG) emissions by 34% below business as usual by 2020. A number of issues such as complex land tenure system, limited forest cover and other conflicting environmental issues present challenges for REDD+ in South Africa. Despite these genuine concerns, REDD+ remains a practical strategy to contribute to climate change mitigation for South Africa. The paper raises the need for development of a variety of emission reduction programmes – not only in the energy sector. The paper also assesses several national options and opportunities towards a working REDD+ mechanism. It concludes by identifying key mechanisms for moving forward to prepare for REDD+ actions in South Africa and raises the urgent need for national dialogue between stakeholders and institutions to evaluate the feasibility of making use of the mechanism in South Africa and the Southern African Development Cooperation (SADC) region. The paper further addresses possible synergies and conflicts between the national climate change and forestry policies towards REDD+ development. It suggests that REDD+ should be part of the national dialogue on policy to respond to climate change and should be integrated into the national flagship programmes that the national climate change white paper seeks to implement. A multiple

  9. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC50 values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC50 = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other

  10. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi, E-mail: kumamote@cc.saga-u.ac.jp

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  11. A dual potassium channel activator improves repolarization reserve and normalizes ventricular action potentials

    Calloe, Kirstine; Di Diego, José M; Hansen, Rie Schultz;

    2016-01-01

    cultured canine cardiac myocytes and determined whether a dual K(+) current activator can normalize K(+) currents and restore action potential (AP) configuration. METHODS AND RESULTS: Ventricular myocytes were isolated and cultured for up to 48h. Current and voltage clamp recordings were made using patch...... of EADs. Our results suggest a potential benefit of K(+) current activators under conditions of reduced repolarization reserve including heart failure....

  12. Youth Participatory Action Research and Educational Transformation: The Potential of Intertextuality as a Methodological Tool

    Bertrand, Melanie

    2016-01-01

    In this article, Melanie Bertrand explores the potential of using the concept of intertextuality--which captures the way snippets of written or spoken text from one source become incorporated into other sources--in the study and practice of youth participatory action research (YPAR). Though this collective and youth-centered form of research…

  13. Quantitative analysis of single muscle fibre action potentials recorded at known distances

    Albers, B.A.; Put, J.H.M.; Wallinga, W.; Wirtz, P.

    1989-01-01

    In vivo records of single fibre action potentials (SFAPs) have always been obtained at unknown distance from the active muscle fibre. A new experimental method has been developed enabling the derivation of the recording distance in animal experiments. A single fibre is stimulated with an intracellu

  14. ACTION OF PROGESTERONE ON THE DEPOLARIZATION OF THE MEMBRANE POTENTIAL IN TOAD OOCYTES INDUCED BY LEUCINE

    WANGYu-Feng

    1989-01-01

    The depolarization of the membrane potential in toad oocytes induced by leucine was found in our previous experiment. In this paper, a possible action or progesterone in the process was further investigated. After oocytes had been incubated for 16 to 24 hours with

  15. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T;

    2015-01-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with...

  16. Effect of ethanol on action potential in ventricular cardiomyocytes: experimental and computational approach

    Pásek, Michal; Bébarová, M.; Christé, G.; Šimurdová, M.; Šimurda, J.

    London: The Physiological Society, 2014. 208P. [Physiology 2014. 30.06.2014-02.07.2014, London] R&D Projects: GA MZd(CZ) NT14301-3/2013 Institutional support: RVO:61388998 Keywords : rat ventricular cardiomyocyte * action potential * ethanol * rat ventricular cell model Subject RIV: BO - Biophysics

  17. Phenobarbital but not diazepam reduces AMPA/Kainate receptor mediated currents and exerts opposite actions on initial seizures in the neonatal rat hippocampus

    Romain Nardou

    2011-07-01

    Full Text Available Diazepam (DZP and phenobarbital (PB are extensively used as first and second line drugs to treat acute seizures in neonates and their actions are thought to be mediated by increasing the actions of GABAergic signals. Yet, their efficacy is variable with occasional failure or even aggravation of recurrent seizures questioning whether other mechanisms are not involved in their actions. We have now compared the effects of DZP and PB on ictal-like events (ILEs in an in vitro model of mirror focus (MF. Using the three-compartment chamber with the two immature hippocampi and their commissural fibers placed in 3 different compartments, kainate was applied to one hippocampus and PB or DZP to the contralateral one, either after one ILE or after many recurrent ILEs that produce an epileptogenic MF. We report that in contrast to PB, DZP aggravated propagating ILEs from the start and did not prevent the formation of MF. PB reduced and DZP increased the network driven Giant Depolarising Potentials suggesting that PB may exert additional actions that are not mediated by GABA signalling. In keeping with this, PB but not DZP reduced field potentials recorded in the presence of GABA and NMDA receptor antagonists. These effects are mediated by a direct action on AMPA/Kainate receptors since PB: i reduced AMPA/Kainate receptor mediated currents induced by focal applications of glutamate ; ii reduced the amplitude and the frequency of AMPA but not NMDA receptor mediated miniature EPSCs; iii augmented the number of AMPA receptor mediated EPSCs failures evoked by minimal stimulation. These effects persisted in MF. Therefore, PB exerts its anticonvulsive actions partly by reducing AMPA/Kainate receptors mediated EPSCs in addition to the pro-GABA effects. We suggest that PB may have advantage over DZP in the treatment of initial neonatal seizures since the additional reduction of glutamate receptors mediated signals may reduce the severity of neonatal seizures.

  18. Effects of benactyzine on action potentials and contractile force of guinea pig papillary muscles

    2000-01-01

    Aim:To explore the effects of benactyzine (BEN) on the action potential and contractile force in guinea pig papillary muscles.Methods:Conventional microelectrode technique was used to record the fast action potentials (FAP) and slow action potentials (SAP) of guinea pig papillary muscles.Results:Benactyzine 5,10,50 μmol·L-1 suppressed the maximal upstroke velocity (vmax) of FAP and contractile force (Fc) concentration-dependently while prolonged the action potential duration at 50%,90% repolarization (APD50,APD90) and effective refractory period (ERP) of FAP.The suppression on the vmax was frequency-dependent.Benactyzine 5,10,50μmol·L-1 lengthened the APD50,APD90 of SAP induced by isoprenaline or histamine when perfused with KCl 22 mmol·L-1 Tyrode's solution.The vmax of the SAP was not decreased by benactyzine 5,10 μmol·L-1 but by 50 μmol·L-1.The effects on the SAP were antagonized by elevation of the extracellular calcium from 2.0 to 5.6 mmol·L-1.The effects of benactyzine on SAP elicited by tetrodotoxin resembled that by isoprenaline or histamine except the more pronounced suppression on vmax and action potential amplitude (APA).The persistent rapid spontaneous activity and triggered tachyarrhythmia induced by ouabain were also abolished immediately by benactyzine 5 μmol·L-1.Conclusion:Benactyzine can inhibit Na+,K+,Ca2+ transmembrane movement and intracellular Ca2+ mobilization in the myocardium,and this may be the electrophysiological basis of its effects against experimental arrhythmias.

  19. The DBI action, higher-derivative supergravity, and flattening inflaton potentials

    Bielleman, Sjoerd; Ibáñez, Luis E.; Pedro, Francisco G.; Valenzuela, Irene; Wieck, Clemens

    2016-05-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II D p-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the Kähler potential. We identify the supersymmetric dimension-eight operators describing the α' corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an {N}=1 supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomial potentials.

  20. Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex.

    Leonardo A Molina

    Full Text Available Antagonists of N-methyl-D-aspartate receptors (NMDAR have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801 on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists.

  1. Simulation and calculation of the contribution of hyperpolarization-activated cyclic nucleotide-gated channels to action potentials

    Liao Liping; Lin Xianguang; Hu Jielin; Wu Xin; Yang Xiaofei; Wang Wei; Li Chenhong

    2016-01-01

    The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel, which mediates the influx of cations, has an important role in action potential generation. In this article, we describe the contribution of the HCN channel to action potential generation. We simulated several common ion channels in neuron membranes based on data from rat dorsal root ganglion cells and modeled the action potential. The ion channel models employed in this paper were based...

  2. Governance issues, potentials and failures of participative collective action in the Kafue Flats, Zambia

    Harry Nixon Chabwela

    2010-09-01

    2004 for creating by-laws based on initiatives of local staff of the Department of Fisheries, local interest groups and researchers. A broad local debate on how to manage the fisheries in a sustainable way and develop locally based by-laws for joint management of fisheries gives good potential for success and appears promising for the future of fisheries in Kafue Flats. Despite many difficulties it is an example of local collective action in order to scale up governance of common-pool resources.

  3. Meeting the Information Needs of the American People: Past Actions and Future Initiatives

    Davenport, Nancy; Russell, Judith

    2008-01-01

    In the FY2007 and FY2008 Budgets, the President recommended that the National Commission on Libraries and Information Sciences (NCLIS) be consolidated with the Institute of Museum and Library Services (IMLS). In FY2007, while waiting for Congressional action on the proposal in the President's FY2008 Budget, the Commission recognized the need to…

  4. Development of the table of initial isolation distances and protective action distances for the 2004 emergency response guidebook.

    Brown, D. F.; Freeman, W. A.; Carhart, R. A.; Krumpolc, M.; Decision and Information Sciences; Univ. of Illinois at Chicago

    2005-09-23

    This report provides technical documentation for values in the Table of Initial Isolation and Protective Action Distances (PADs) in the 2004 Emergency Response Guidebook (ERG2004). The objective for choosing the PADs specified in the ERG2004 is to balance the need to adequately protect the public from exposure to potentially harmful substances against the risks and expenses that could result from overreacting to a spill. To quantify this balance, a statistical approach is adopted, whereby the best available information is used to conduct an accident scenario analysis and develop a set of up to 1,000,000 hypothetical incidents. The set accounts for differences in containers types, incident types, accident severity (i.e., amounts released), locations, times of day, times of year, and meteorological conditions. Each scenario is analyzed using detailed emission rate and atmospheric dispersion models to calculate the downwind chemical concentrations from which a 'safe distance' is determined. The safe distance is defined as the distance downwind from the source at which the chemical concentration falls below health protection criteria. The American Industrial Hygiene Association's Emergency Response Planning Guideline Level 2 (ERPG-2) or equivalent is the health criteria used. The statistical sample of safe distance values for all incidents considered in the analysis are separated into four categories: small spill/daytime release, small spill/nighttime release, large spill/daytime release, and large spill/nighttime release. The 90th-percentile safe distance values for each of these groups became the PADs that appear in the ERG2004.

  5. The DBI Action, Higher-derivative Supergravity, and Flattening Inflaton Potentials

    Bielleman, Sjoerd; Pedro, Francisco G; Valenzuela, Irene; Wieck, Clemens

    2016-01-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II D$p$-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the K\\"ahler potential. We identify the supersymmetric dimension-eight operators describing the $\\alpha'$ corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an $\\mathcal N = 1$ supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomia...

  6. Initial Condition Model from Imaginary Part of Action and the Information Loss

    Nielsen, H B

    2009-01-01

    We review slightly a work by Horowitz and Maldecena solving the information loss problem for black holes by having inside the blackhole - near to the singularity - a boundary condition, as e.g the no boundary proposal by Hartle and Hawking. Here we propose to make this boundary condition come out of our imaginary action model (together with Masao Ninomiya). This model naturally begins effectively to set up boundaries - whether it be in future or past! - especially strongly whenever we reach to high energy physics regimes, such as near the black hole singularity, or in Higgs producing machines as LHC or SSC. In such cases one can say our model predicts miracles. The point is that you may say that the information loss problem, unless you solve it in other ways, call for such a violation of time causality as in our imaginary action model!

  7. Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action.

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph A; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2015-10-01

    Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action. PMID:26245207

  8. Spatial and frequency domain ring source models for the single muscle fiber action potential

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... examples including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  9. Application of Emergency Action Levels from Potential Release at Research Reactor HANARO

    Execution of the protective action promptly is possible that Emergency Action Levels (EALs) must be established for a radiological release from nuclear facility. The EALs for electric power reactor are already developed and applied to recognize an emergency situation rapidly. Recently the IAEA published the safety report including the EALs for research reactor. This paper describes the EALs to apply for a potential release pathway at the research reactor HANARO. The results of table 1 and 2 will be higher than actual because the weather condition in real situation is difference. However, the EALs applying the potential stack release, ground release and site can be useful for research reactor HANARO making the emergency declaration. The EALs at the site boundary of the table 3 can be applied to protect the off-site public

  10. Real-time imaging of action potentials in nerves using changes in birefringence.

    Badreddine, Ali H; Jordan, Tomas; Bigio, Irving J

    2016-05-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time "movies". This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  11. Application of Emergency Action Levels from Potential Release at Research Reactor HANARO

    Kim, Jongsoo; Lee, Goan Yub; Lee, Hae Choi; Kim, Bong Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Execution of the protective action promptly is possible that Emergency Action Levels (EALs) must be established for a radiological release from nuclear facility. The EALs for electric power reactor are already developed and applied to recognize an emergency situation rapidly. Recently the IAEA published the safety report including the EALs for research reactor. This paper describes the EALs to apply for a potential release pathway at the research reactor HANARO. The results of table 1 and 2 will be higher than actual because the weather condition in real situation is difference. However, the EALs applying the potential stack release, ground release and site can be useful for research reactor HANARO making the emergency declaration. The EALs at the site boundary of the table 3 can be applied to protect the off-site public.

  12. Bimodal action of menthol on the transient receptor potential channel TRPA1

    Karashima, Yuji; Damann, Nils; Prenen, Jean; Talavera Pérez, Karel; Segal Stanciu, Andrei; Voets, Thomas; Nilius, Bernd

    2007-01-01

    TRPA1 is a calcium-permeable nonselective cation transient receptor potential (TRP) channel that functions as an excitatory ionotropic receptor in nociceptive neurons. TRPA1 is robustly activated by pungent substances in mustard oil, cinnamon, and garlic and mediates the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate a bimodal sensitivity of TRPA1 to menthol, a widely used cooling agent and known activator of the related cold receptor TRPM8. In who...

  13. Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells

    Renjun Zhu; Millrod, Michal A.; Zambidis, Elias T.; Leslie Tung

    2016-01-01

    Electrophysiological variability in cardiomyocytes derived from pluripotent stem cells continues to be an impediment for their scientific and translational applications. We studied the variability of action potentials (APs) recorded from clusters of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using high-resolution optical mapping. Over 23,000 APs were analyzed through four parameters: APD30, APD80, triangulation and fractional repolarization. Although measures were taken to re...

  14. Correlation of compound action potential and electromyography with facial muscle tension

    Goodnight, J W; Dulguerov, Pavel; Berke, G S; Lesavoy, M; Hoffman, L. F.

    1995-01-01

    Functional electric stimulation is a new method for dynamic rehabilitation of paralyzed muscles. The output of such prosthetic devices needs to be modulated by some index of the muscle movement. In facial paralysis a measure of the muscle contractions of the normal contralateral side seems to be an appropriate input. In the rabbit, we simultaneously measured the compound action potential of the buccal branch of the facial nerve, the electromyogram of the zygomaticus major muscle, and the musc...

  15. Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation

    Akkin, T.; Joo, C.; Boer

    2007-01-01

    We report noncontact optical measurement of fast transient structural changes in the crustacean nerve during action potential propagation without the need for exogenous chemicals or reflection coatings. The technique, spectral domain optical coherence tomography, provides real-time cross-sectional images of the nerve with micron-scale resolution to select a specific region for functional assessment and interferometric phase sensitivity for subnanometer-scale motion detection. Noncontact optic...

  16. Variety of the Wave Change in Compound Muscle Action Potential in an Animal Model

    ITO, ZENYA; Imagama, Shiro; Ando, Kei; Muramoto, Akio; Kobayashi, Kazuyoshi; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Matsumoto, Akiyuki; Tanaka, Satoshi; Morozumi, Masayoshi; Matsuyama, Yukihiro; Ishiguro, Naoki

    2015-01-01

    Study Design Animal study. Purpose To review the present warning point criteria of the compound muscle action potential (CMAP) and investigate new criteria for spinal surgery safety using an animal model. Overview of Literature Little is known about correlation palesis and amplitude of spinal cord monitoring. Methods After laminectomy of the tenth thoracic spinal lamina, 2-140 g force was delivered to the spinal cord with a tension gage to create a bilateral contusion injury. The study morpho...

  17. Action Potential Morphology Influences Intracellular Calcium Handling Stability and the Occurrence of Alternans

    Jordan, Peter N; Christini, David J

    2005-01-01

    Instability in the intracellular Ca2+ handling system leading to Ca2+ alternans is hypothesized to be an underlying cause of electrical alternans. The highly coupled nature of membrane voltage and Ca2+ regulation suggests that there should be reciprocal effects of membrane voltage on the stability of the Ca2+ handling system. We investigated such effects using a mathematical model of the cardiac intracellular Ca2+ handling system. We found that the morphology of the action potential has a sig...

  18. Relation of recurrent laryngeal nerve compound action potential to laryngeal biomechanics

    Nasri, S.; Dulguerov, Pavel; Damrose, E J; Ye, M.; Kreiman, J; Berke, G S

    1995-01-01

    This study was designed to investigate the compound action potential (CAP) of the recurrent laryngeal nerve (RLN) and to correlate this electrophysiologic signal to laryngeal biomechanics and phonatory function. Four adult mongrel canines were anesthetized. The RLN was isolated and stimulated, and recording electrodes were applied. The electromyographic (EMG) electrode was placed in the thyroarytenoid (TA) muscle. The RLN CAP and the EMG of the TA muscle were recorded and compared to the stim...

  19. Human sensory nerve compound action potential amplitude: variation with sex and finger circumference.

    Bolton, C F; Carter, K M

    1980-01-01

    The amplitude of human, antidromic, sensory compound action potentials (CAP) recorded from median and ulnar digital nerves is greater in females than males. This sex difference is probably due entirely to females having digits of smaller circumference, resulting in digital nerves being closer to the recording ring electrode enclosing the digit. The negative linear correlation between CAP amplitude and circumference holds true for persons of the same sex.

  20. Effect of ethanol on action potential and ionic membrane currents in rat ventricular myocytes

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Ohlídalová, D.; Jansová, D.; Šimurdová, M.; Šimurda, J.

    2010-01-01

    Roč. 200, č. 4 (2010), s. 301-314. ISSN 1748-1708 Institutional research plan: CEZ:AV0Z20760514 Keywords : action potential * ethanol * rat ventricular myocyte Subject RIV: BO - Biophysics Impact factor: 3.138, year: 2010 http:// apps .isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=15&SID=Y1pmpi@7k2HPEc8ehEE&page=1&doc=1&colname=WOS

  1. Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs.

    Rieger, R; Taylor, J; Comi, E; Donaldson, N; Russold, M; Mahony, C M O; McLaughlin, J A; McAdams, E; Demosthenous, A; Jarvis, J C

    2004-07-01

    Information extracted from whole-nerve electroneurograms, recorded using electrode cuffs, can provide signals to neuroprostheses. However, the amount of information that can be extracted from a single tripole is limited. This communication demonstrates how previously unavailable information about the direction of action potential propagation and velocity can be obtained using a multi-electrode cuff and that the arrangement acts as a velocity-selective filter. Results from in vitro experiments on frog nerves are presented. PMID:15234689

  2. Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools

    Frey, Scott H.; POVINELLI, DANIEL J.

    2012-01-01

    The ability to adjust one's ongoing actions in the anticipation of forthcoming task demands is considered as strong evidence for the existence of internal action representations. Studies of action selection in tool use reveal that the behaviours that we choose in the present moment differ depending on what we intend to do next. Further, they point to a specialized role for mechanisms within the human cerebellum and dominant left cerebral hemisphere in representing the likely sensory costs of ...

  3. The National Higher Education and Workforce Initiative: Strategy in Action: Building the Cybersecurity Workforce in Maryland

    Business-Higher Education Forum, 2014

    2014-01-01

    The Business-Higher Education Forum (BHEF) has achieved particular success in operationalizing the National Higher Education and Workforce Initiative (HEWI) in Maryland around cybersecurity. Leveraging its membership of corporate CEOs, university presidents, and government agency leaders, BHEF partnered with the University System of Maryland to…

  4. The characteristics of action potential and nonselec-tive cation current of cardiomyocytes in rabbit superior vena cava

    2008-01-01

    As a special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cava (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of INs in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may in-crease or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can in-crease or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyo-cytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.

  5. Action Research’s Potential to Foster Institutional Change for Urban Water Management

    Dimitrios Zikos

    2013-04-01

    Full Text Available The paper discusses the potential of action research to meet the challenges entailed in institutional design for urban water management. Our overall aim is to briefly present action research and discuss its methodological merits with regard to the challenges posed by the different conceptual bases for extrapolating the effects of institutional design on institutional change. Thus, our aim is to explore how Action Research meets the challenge of scoping the field in an open fashion for determining the appropriate mechanisms of institutional change and supporting the emerging of new water institutions. To accomplish this aim, we select the Water Framework Directive (WFD as an illustrative driving force requiring changes in water management practices and implying the need for the emergence of new institutions. We employ a case of urban water management in the Volos Metropolitan Area, part of the Thessaly region in Greece, where a Pilot River Basin Plan was implemented. By applying action research and being involved in a long process of interaction between stakeholders, we examine the emergence of new institutions dealing with urban water management under the general principles of the major driving force for change: the WFD.

  6. Participatory GIS in action, a public health initiative from Kerala, India

    Soman, B.

    2014-01-01

    Community ownership is essential for sustainable public health initiatives. The advantages of getting active involvement of homebound village women in a public health campaign to establish community health surveillance are being reported in this paper. With the support of the local self government authorities, we had selected 120 village women, and they were given extensive training on various healthcare schemes, home based management of local ailments, leadership skills and survey t...

  7. 40 CFR 300.305 - Phase II-Preliminary assessment and initiation of action.

    2010-07-01

    ... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS..., identify potentially responsible parties. (c) Where practicable, the framework for the response management... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Phase II-Preliminary assessment...

  8. Initial Study on the Antibacterial Action of Mentha spicata Linn Extract in Vitro

    ZHANG Hong-ying; WANG Xue-bing; HAN Wei-li; CUI Bao-an

    2010-01-01

    [Objective] The research aimed to study the antibacterial action of Mentha spicata Linn extract in vitro.[Method] The cylinder-plate method was used to measure the inhibitory zone size of Mentha spicata Linn extract.The test-tube double dilution method was used to measure the minimal inhibitory concentration(MIC)of Mentha spicata Linn extract on the four kinds of animal pathogenic bacteria,which could determine the antibacterial effect.[Result] The decoction,alcohol extract and volatile oil of Mentha spicata Linn had the different antibacterial effects on the four kinds of animal pathogenic bacteria.Especially the inhibition effect on the pig staphylococcus was comparatively obvious.MIC of Mentha spicata Linn decoction I,alcohol extract III,volatile oil V and volatile oil VI were respectively 31.25,62.5,2.32 and 2.31 mg/ml.[Conclusion] The decoction,alcohol extract and volatile oil of Mentha spicata Linn had the certain antibacterial effect in vitro,and the extracts which were gained by the different extraction methods had the different inhibition effects on the experimental bacteria.

  9. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    Philip Gemmell; Kevin Burrage; Blanca Rodriguez; T Alexander Quinn

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A s...

  10. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  11. On modelling of physical effects accompanying the propagation of action potentials in nerve fibres

    Engelbrecht, Jüri; Tamm, Kert; Laasmaa, Martin; Vendelin, Marko

    2016-01-01

    The recent theoretical and experimental studies have revealed many details of signal propagation in nervous systems. In this paper an attempt is made to unify various mathematical models which describe the signal propagation in nerve fibres. The analysis of existing single models permits to select the leading physiological effects. As a result, a more general mathematical model is described based on the coupling of action potentials with mechanical waves in a nerve fibre. The crucial issue is how to model coupling effects which are strongly linked to the ion currents through biomembranes.

  12. Effects of terpineol on the compound action potential of the rat sciatic nerve

    M.R. Moreira; G.M.P. Cruz; Lopes, M S; A.A.C. Albuquerque; J.H. Leal-Cardoso

    2001-01-01

    Terpineol, a volatile terpenoid alcohol of low toxicity, is widely used in the perfumery industry. It is an important chemical constituent of the essential oil of many plants with widespread applications in folk medicine and in aromatherapy. The effects of terpineol on the compound action potential (CAP) of rat sciatic nerve were studied. Terpineol induced a dose-dependent blockade of the CAP. At 100 µM, terpineol had no demonstrable effect. At 300 µM terpineol, peak-to-peak amplitude and con...

  13. Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells

    Strege, Peter; Beyder, Arthur; Bernard, Cheryl; Crespo-Diaz, Ruben; Behfar, Atta; Terzic, Andre; Ackerman, Michael; Farrugia, Gianrico

    2012-01-01

    NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomy...

  14. The optimal distance between two electrode tips during recording of compound nerve action potentials in the rat median nerve

    Yongping Li; Jie Lao; Xin Zhao; Dong Tian; Yi Zhu; Xiaochun Wei

    2014-01-01

    The distance between the two electrode tips can greatly inlfuence the parameters used for record-ing compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spac-ings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance be-tween two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed signiifcantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no signiifcant change. Different distances between recording and stimulating sites did not produce signiifcant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential.

  15. Cues-to-Action in Initiating Lesbian, Gay, Bisexual, and Transgender-Related Policies Among Magnet Hospital Chief Nursing Officers: A Demographic Assessment.

    Klotzbaugh, Ralph; Spencer, Gale

    2015-01-01

    This study explored Magnet Chief Nursing Officers' cues-to-action initiating lesbian, gay, bisexual, or transgender (LGBT)-specific policies. Homonegativity has a negative effect on employee recruitment and retention and patient satisfaction. Little has been known about what cues-to-action might initiate LGBT inclusive training. Surveys were mailed to 343 Chief Nursing Officers. Cues-to-action survey was used to assess what inspires initiation of LGBT training. Demographic surveys were used to assess what impact variables might have on cues-to-action. Age, sex, religiosity, location, and region had significant effect on cues-to-action. Developing demographically informed training and policies for LGBT equality in health care is suggestive of greater employee and patient satisfaction. PMID:25932818

  16. Participatory GIS in action, a public health initiative from Kerala, India

    Soman, B.

    2014-11-01

    Community ownership is essential for sustainable public health initiatives. The advantages of getting active involvement of homebound village women in a public health campaign to establish community health surveillance are being reported in this paper. With the support of the local self government authorities, we had selected 120 village women, and they were given extensive training on various healthcare schemes, home based management of local ailments, leadership skills and survey techniques. Afterwards, they had been asked to share their knowledge with at least 10-15 women in their neighbourhood. This had improved their status in the neighbourhood, as more and more people started getting their advice on healthcare and social services related matters. Subsequently, they had collected the socio-demographic and morbidity details of the entire households, including the geometric coordinates (longitude and latitude) of the households and public offices. In this process, they began to use the geographic position system (GPS) machines, dismissing the myth that women are not that techno savvy, further improving their acceptability in the community. Many among them were seen proudly describing the implications of the thematic maps to the village people and line department staff in the monthly subcentre meetings. Many were offered seats in the local body elections by leading political parties, a few of them did stand in the elections and three of them had won the elections. This experience reinforces our belief that the empowerment of villagers with newer technology could be a public health tool with much wider positive implications.

  17. Characterization of action potential-triggered [Ca2+]i transients in single smooth muscle cells of guinea-pig ileum

    Kohda, M.; Komori, S.; Unno, T; Ohashi, H

    1997-01-01

    To characterize increases in cytosolic free Ca2+ concentration ([Ca2+]i) associated with discharge of action potentials, membrane potential and [Ca2+]i were simultaneously recorded from single smooth muscle cells of guinea-pig ileum by use of a combination of nystatin-perforated patch clamp and fura-2 fluorimetry techniques.A single action potential in response to a depolarizing current pulse elicited a transient rise in [Ca2+]i. When the duration of the current pulse was prolonged, action po...

  18. Action of hallucinogens on raphe-evoked dorsal root potentials (DRPs) in the cat.

    Larson, A A; Anderson, E G

    1986-02-01

    The dorsal root potential (DRP) evoked by stimulation of the inferior central nucleus (ICN) of the cat is affected by administration of a variety of hallucinogenic agents. It has been previously shown that a single low dose of LSD is unique in that it potentiates this DRP, while injections of 5-methoxy-N,N- dimethyltryptamine (5-MeODMT), ketamine or phencyclidine (PCP) inhibit its production. Tolerance develops to the facilitatory effect of low doses of LSD on the DRP, but not to the inhibitory action of 5-MeODMT. Repeated injections of ketamine every 30 minutes also fail to produce tachyphylaxis to the inhibitory effect of this dissociative anesthetic. The raphe-evoked DRP is a long latency potential that is inhibited by a wide variety of putative serotonin antagonists and has therefore been traditionally thought to be mediated by serotonin. However, in light of the inability of either tryptophan or fluoxetine to potentiate this DRP, and the resistance of this DRP to blockade by parachlorophenylalanine, reserpine or intrathecally administered 5,7-dihydroxytryptamine, it appears that this potential may in fact be mediated, at least in part, by a non-serotonergic transmitter. PMID:3952125

  19. Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites.

    Acker, Corey D; Antic, Srdjan D

    2009-03-01

    Basal dendrites of prefrontal cortical neurons receive strong synaptic drive from recurrent excitatory synaptic inputs. Synaptic integration within basal dendrites is therefore likely to play an important role in cortical information processing. Both synaptic integration and synaptic plasticity depend crucially on dendritic membrane excitability and the backpropagation of action potentials. We carried out multisite voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium, or I(h) conductance had little effect on dendritic AP propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a nonuniform sodium channel distribution with decreasing conductance with distance from the soma, together with a nonuniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high-frequency trains of APs and the local generation of sodium spikelets. We also explored the conditions under which I(A) down-regulation would produce branch strength potentiation in the proposed model. Finally, we discuss the hypothesis that a fraction of basal branches may have different membrane properties compared with sister branches in the same dendritic tree. PMID:19118105

  20. Biophysical foundations for the study of the electrical excitability and action potential propagation in myocardium

    The electric current flow in the heterogeneous and anysotropic volume conductor of the myocardium is studied. The equations of bidomain theory are derived using an approach framed in the theory of averaged fields, introducing microscopic, mesoscopic and macroscopic spatial scales. However, the procedure, compatible with the histological and the anatomical details of the organ, is different from the multiple scale asymptotic expansions usually applied in homogeneization problems. A probabilistic approach framed in large numbers theorems is used to derive the equation for membrane ionic current from the stochastic activity of the channels at the microscopic level. An operational procedure suitable to define a sharp bidomain boundary from the fuzzy distribution of structural details and physical properties at the histological level is given. The problem of threshold is studied. The sizes and shapes of critical masses of cardiac cells that must be depolarized above threshold in order to produce a propagated action potential are determined by an approximate analytical procedure. The concept of family of threshold patterns for the emergence of action potentials in the heart is introduced. This concept is applied to discuss the conditions of emergence of ectopic focus. Analytical formulae are derived, for the time constant and the rheobase for electrical stimulation of the myocardium. These formulae are in good agreement with known experimental results. New experiments that could be done to confirm or reject them are suggested

  1. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  2. The Belem Framework for Action: Harnessing the Power and Potential of Adult Learning and Education for a Viable Future

    Adult Learning, 2012

    2012-01-01

    This article presents the Belem Framework for Action. This framework focuses on harnessing the power and potential of adult learning and education for a viable future. This framework begins with a preamble on adult education and towards lifelong learning.

  3. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  4. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy

  5. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    Kim, Yoo-Shin; Lee, Tae Hoon; O' Neill, Brian E., E-mail: BEOneill@houstonmethodist.org

    2015-08-14

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.

  6. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M.

    2012-03-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  7. Cancer Driver Log (CanDL): Catalog of Potentially Actionable Cancer Mutations.

    Damodaran, Senthilkumar; Miya, Jharna; Kautto, Esko; Zhu, Eliot; Samorodnitsky, Eric; Datta, Jharna; Reeser, Julie W; Roychowdhury, Sameek

    2015-09-01

    Massively parallel sequencing technologies have enabled characterization of genomic alterations across multiple tumor types. Efforts have focused on identifying driver mutations because they represent potential targets for therapy. However, because of the presence of driver and passenger mutations, it is often challenging to assign the clinical relevance of specific mutations observed in patients. Currently, there are multiple databases and tools that provide in silico assessment for potential drivers; however, there is no comprehensive resource for mutations with functional characterization. Therefore, we created an expert-curated database of potentially actionable driver mutations for molecular pathologists to facilitate annotation of cancer genomic testing. We reviewed scientific literature to identify variants that have been functionally characterized in vitro or in vivo as driver mutations. We obtained the chromosome location and all possible nucleotide positions for each amino acid change and uploaded them to the Cancer Driver Log (CanDL) database with associated literature reference indicating functional driver evidence. In addition to a simple interface, the database allows users to download all or selected genes as a comma-separated values file for incorporation into their own analysis pipeline. Furthermore, the database includes a mechanism for third-party contributions to support updates for novel driver mutations. Overall, this freely available database will facilitate rapid annotation of cancer genomic testing in molecular pathology laboratories for mutations. PMID:26320871

  8. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  9. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond

    Barry, J F; Schloss, J M; Glenn, D R; Song, Y; Lukin, M D; Park, H; Walsworth, R L

    2016-01-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential (AP) dynamics in whole organisms with single-neuron resolution. Here, we present a new approach to this problem: using nitrogen-vacancy (NV) quantum defects in diamond to measure the time-dependent magnetic fields produced by single-neuron APs. Our technique has a unique combination of features: (i) it is noninvasive, as the light that probes the NV sensors stays within the biocompatible diamond chip and does not enter the organism, enabling activity monitoring over extended periods; (ii) it is label-free and should be widely applicable to most organisms; (iii) it provides high spatial and temporal resolution, allowing precise measurement of the AP waveforms and conduction velocities of individual neurons; (iv) it directly determines AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector; (v) it is applicable to neurons located within optically opaque tissue or whole org...

  10. Anthropomorphizing the Mouse Cardiac Action Potential via a Novel Dynamic Clamp Method

    Ahrens-Nicklas, Rebecca C.; Christini, David J.

    2009-01-01

    Abstract Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest. PMID:19917221

  11. Effect of sampling frequency on the measurement of phase-locked action potentials.

    Go eAshida

    2010-09-01

    Full Text Available Phase-locked spikes in various types of neurons encode temporal information. To quantify the degree of phase-locking, the metric called vector strength (VS has been most widely used. Since VS is derived from spike timing information, error in measurement of spike occurrence should result in errors in VS calculation. In electrophysiological experiments, the timing of an action potential is detected with finite temporal precision, which is determined by the sampling frequency. In order to evaluate the effects of the sampling frequency on the measurement of VS, we derive theoretical upper and lower bounds of VS from spikes collected with finite sampling rates. We next estimate errors in VS assuming random sampling effects, and show that our theoretical calculation agrees with data from electrophysiological recordings in vivo. Our results provide a practical guide for choosing the appropriate sampling frequency in measuring VS.

  12. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  13. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  14. Sensitivity of Cyclone Tracks to the Initial Moisture Distribution: A Moist Potential Vorticity Perspective

    2005-01-01

    In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes are investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.

  15. Post Closure Long Term Safely of the Initial Container Failure Scenario for a Potential HLW Repository

    A waste container, one of the key components of a multi-barrier system in a potential high level radioactive waste (HLW) repository in Korea ensures the mechanical stability against the lithostatic pressure of a deep geologic medium and the swelling pressure of the bentonite buffer. Also, it delays potential release of radionuclides for a certain period of time, before it is corroded by intruding impurities. Even though the material of a waste container is carefully chosen and its manufacturing processes are under quality assurance processes, there is a possibility of initial defects in a waste container during manufacturing. Also, during the deposition of a waste container in a repository, there is a chance of an incident affecting the integrity of a waste container. In this study, the appropriate Features, Events, and Processes (FEP's) to describe these incidents and the associated scenario on radionuclide release from a container to the biosphere are developed. Then the total system performance assessment on the Initial waste Container Failure (ICF) scenario was carried out by the MASCOT-K, one of the probabilistic safety assessment tools KAERI has developed. Results show that for the data set used in this paper, the annual individual dose for the ICF scenario meets the Korean regulation on the post closure radiological safety of a repository.

  16. Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells.

    Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie

    2016-01-01

    Electrophysiological variability in cardiomyocytes derived from pluripotent stem cells continues to be an impediment for their scientific and translational applications. We studied the variability of action potentials (APs) recorded from clusters of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using high-resolution optical mapping. Over 23,000 APs were analyzed through four parameters: APD30, APD80, triangulation and fractional repolarization. Although measures were taken to reduce variability due to cell culture conditions and rate-dependency of APs, we still observed significant variability in APs among and within the clusters. However, similar APs were found in spatial locations with close proximity, and in some clusters formed distinct regions having different AP characteristics that were reflected as separate peaks in the AP parameter distributions, suggesting multiple electrophysiological phenotypes. Using a recently developed automated method to group cells based on their entire AP shape, we identified distinct regions of different phenotypes within single clusters and common phenotypes across different clusters when separating APs into 2 or 3 subpopulations. The systematic analysis of the heterogeneity and potential phenotypes of large populations of hESC-CMs can be used to evaluate strategies to improve the quality of pluripotent stem cell-derived cardiomyocytes for use in diagnostic and therapeutic applications and in drug screening. PMID:26729331

  17. Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia

    C. Ian Spencer

    2014-08-01

    Full Text Available Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP. Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM. In myocytes carrying an LQT2 mutation (HERG-A422T, APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site.

  18. Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons

    Stephane ePages

    2011-10-01

    Full Text Available Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm. Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (> 10 % of fluorescence change for 100 mV depolarization and time response (submillisecond of the dye allows the robust detection of action potentials (APs even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms resolution and high spatial (µm resolution.

  19. Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling

    Amr Al Abed

    2013-01-01

    Full Text Available A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN, intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue.

  20. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria

    Skibsbye, Lasse; Poulet, Claire; Diness, Jonas Goldin;

    2014-01-01

    (+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential...

  1. Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review.

    du Jardin, Kristian Gaarn; Müller, Heidi Kaastrup; Elfving, Betina; Dale, Elena; Wegener, Gregers; Sanchez, Connie

    2016-11-01

    A single i.v. infusion of ketamine, classified as an N-methyl-d-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms responsible for ketamine's antidepressant activity do not appear to preclude the possibility that non-glutamate neurotransmitters are involved in the antidepressant effects. At multiple levels, the serotonergic and glutamatergic systems interact, and such crosstalk could support the notion that changes in serotonergic neurotransmission may impact ketamine's antidepressant potential. In line with these prospects, ketamine may increase 5-HT levels in the prefrontal cortex of rats, plausibly via hippocampal NMDA receptor inhibition and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In addition, a number of preclinical studies suggest that the antidepressant-like effects of ketamine may depend on endogenous activation of 5-HT receptors. Recent imaging and behavioral data predominantly support a role for 5-HT1A or 5-HT1B receptors, but the full range of 5-HT receptors has currently not been systematically investigated in this context. Furthermore, the nature of any 5-HT dependent mechanism in ketamine's antidepressant effect is currently not

  2. CLINICAL AND EXPERIMENTAL STUDIES OF LARGE AMPLITUDE ACTION POTENTIAL OF THE SUFFERED FACIAL MUSCLES IN INTRATEMPORAL FACIAL NERVE PARALYSIS

    1999-01-01

    Ojective. To testify the phenomenon that large amplitude action potential appears at the early stage of facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(animals) and methods. The action potentials of the orbicular ocular and oral muscles were recorded in 34 normal persons by electromyogram instruments. The normal range of amplitude percentage was found out according to he normal distribution. One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded in 17 guinea pigs before and after the facial nerve was compressed and the facial nerve was examined under electromicroscope before and after the compression.Results. The amplitude percentage of the suffered ide to the healthy side was more than 153 percent in 6 of the 100 patients. Lare amplitude action potential ocured in 35 per cent guinea pigs which were performed the experiment of facial nrve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve's myelin sheath in the guinea pigs which exhibited large amplitude action potential.Conclusion. The facial nerve exhibited a temporary over-exciability at the early stage of facial nerve injury in some patients and guinea pigs. If the injury waslimited in the myelin sheath, te prognosis was relatively good.

  3. CLINICAL AND EXPERIMENTAL STUDIES OF LARGE AMPLITUDE ACTION POTENTIAL OF THE SUFFERED FACIAL MUSCLES IN INTRATEMPORAL FACIAL NERVE PARALYSIS

    任重; 惠莲

    1999-01-01

    Objctive. To testify the phenomenon that large amplitude action potential appears at the early stage oil facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(aninmls) and methods. The action potentials of the orbicular ocular and oral museles were recorded in 34 normal persons by electromyogram instrtiments. The normal range of amplitude percentage was found out according to the normal distribution, One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded ia 17 guinea pigs before and after the facial nerve was comp~ and the facial nerve was examined under electromicroscope before and after the compression.Results. The amplitude percentage of the suffered side to the healthy side was more than 153 percent in 6 of the 100 patients. Large amplitude action potential occured in 35 per cent guinea pigs which were performed the experiment of facial nerve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve's myelin sheath in the guinea pigs which exhibited large amplitude action potential Conclusion. The facial nerve exhibited a temporary over-excitability at the early stage of facial nerve injury in scane patients and guinea pigs. If the injury was limited in the myelin sheath, the prognods was relatively good.

  4. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    MENG Yan; ZHAO ChunYan; ZHANG XueXin; ZHAO HuaShan; GUO LiRong; Lü Bin; ZHAO XueJian; YANG BaoXue

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead Ⅱ) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by float-ing microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5±4.2), (45.5±6.9) and (43.8±7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6±2.9), (38.7±5.6) and (38.2±7.3) ms, P<0.05). The atrial ventricular heart block type Ⅱ and Ⅲ only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17±10.56) and (101.89±9.54) mV/s) vs those in wild-type mice (vs (110.51±10.38) and (109.53±10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83±11.17) and (195.43±16.41) ms) vs that in wild-type mice ((108.27±10.85) and (171.00±15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80±0.92) nA vs that in wild-type mice ((-5.98±1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  5. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 ± 4.2), (45.5 ± 6.9) and (43.8 ± 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 ± 2.9), (38.7 ± 5.6) and (38.2 ± 7.3) ms, P<0.05). The atrial ventricular heart block type II and III only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17 ± 10.56) and (101.89 ± 9.54) mV/s) vs those in wild-type mice (vs (110.51 ± 10.38) and (109.53 ± 10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83 ± 11.17) and (195.43 ± 16.41) ms) vs that in wild-type mice ((108.27 ± 10.85) and (171.00 ± 15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80 ± 0.92) nA vs that in wild-type mice ((-5.98 ± 1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  6. Theoretical study of L-type Ca(2+) current inactivation kinetics during action potential repolarization and early afterdepolarizations.

    Morotti, Stefano; Grandi, Eleonora; Summa, Aurora; Ginsburg, Kenneth S; Bers, Donald M

    2012-09-15

    Sarcoplasmic reticulum (SR) Ca(2+) release mediates excitation–contraction coupling (ECC) in cardiac myocytes. It is triggered upon membrane depolarization by entry of Ca(2+) via L-type Ca(2+) channels (LTCCs), which undergo both voltage- and Ca(2+)-dependent inactivation (VDI and CDI, respectively). We developed improved models of L-type Ca(2+) current and SR Ca(2+) release within the framework of the Shannon-Bers rabbit ventricular action potential (AP) model. The formulation of SR Ca(2+) release was modified to reproduce high ECC gain at negative membrane voltages. An existing LTCC model was extended to reflect more faithfully contributions of CDI and VDI to total inactivation. Ba(2+) current inactivation included an ion-dependent component (albeit small compared with CDI), in addition to pure VDI. Under physiological conditions (during an AP) LTCC inactivates predominantly via CDI, which is controlled mostly by SR Ca(2+) release during the initial AP phase, but by Ca(2+) through LTCCs for the remaining part. Simulations of decreased CDI or K(+) channel block predicted the occurrence of early and delayed after depolarizations. Our model accurately describes ECC and allows dissection of the relative contributions of different Ca(2+) sources to total CDI, and the relative roles of CDI and VDI, during normal and abnormal repolarization. PMID:22586219

  7. A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: translation initiation [corrected] factor eIF4AI.

    Kenji Hashimoto

    Full Text Available BACKGROUND: Minocycline, a second-generation tetracycline antibiotic, has potential activity for the treatment of several neurodegenerative and psychiatric disorders. However, its mechanisms of action remain to be determined. METHODOLOGY/PRINCIPAL FINDINGS: We found that minocycline, but not tetracycline, significantly potentiated nerve growth factor (NGF-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. Furthermore, we found that the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP3 receptors and several common signaling molecules (PLC-γ, PI3K, Akt, p38 MAPK, c-Jun N-terminal kinase (JNK, mammalian target of rapamycin (mTOR, and Ras/Raf/ERK/MAPK pathways might be involved in the active mechanism of minocycline. Moreover, we found that a marked increase of the eukaryotic translation initiation factor eIF4AI protein by minocycline, but not tetracycline, might be involved in the active mechanism for NGF-induced neurite outgrowth. CONCLUSIONS/SIGNIFICANCE: These findings suggest that eIF4AI might play a role in the novel mechanism of minocycline. Therefore, agents that can increase eIF4AI protein would be novel therapeutic drugs for certain neurodegenerative and psychiatric diseases.

  8. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    Barefield Ii, James E [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Browne, Mike [Los Alamos National Laboratory; Lopez, Leon [Los Alamos National Laboratory; Martinez, Ron [Los Alamos National Laboratory; Le, Loan [Los Alamos National Laboratory; Lamontagne, Stephen A [DOE/NNSA/NA241; Veal, Kevin [NN/ADTR

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as

  9. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as

  10. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  11. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D.; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A.S.; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-01-01

    Summary Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract PMID:26804557

  12. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

    Fikret Emre eKapucu

    2012-06-01

    Full Text Available In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC, exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI histograms. Moreover, the algorithm calculates interspike interval thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  13. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-01

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant. PMID:26804557

  14. Sensitivity analysis of potential events affecting the double-shell tank system and fallback actions

    Knutson, B.J.

    1996-09-27

    Sensitivity analyses were performed for fall-back positions (i.e., management actions) to accommodate potential off-normal and programmatic change events overlaid on the waste volume projections and their uncertainties. These sensitivity analyses allowed determining and ranking tank system high-risk parameters and fall- back positions that will accommodate the respective impacts. This quantification of tank system impacts shows periods where tank capacity is sensitive to certain variables that must be carefully managed and/or evaluated. Identifying these sensitive variables and quantifying their impact will allow decision makers to prepare fall-back positions and focus available resources on the highest impact parameters where technical data are needed to reduce waste projection uncertainties. For noncomplexed waste, the period of capacity vulnerability occurs during the years of single-shell tank (SST) retrieval (after approximately 2009) due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate and 200-East SST solids transfer volume. For complexed waste, the period of capacity vulnerability occurs during the period after approximately 2005 due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate. 200-East SST solids transfer volume. complexed waste reduction factor using evaporation, and 200-west saltwell liquid porosity.

  15. Effects of terpineol on the compound action potential of the rat sciatic nerve

    M.R. Moreira

    2001-10-01

    Full Text Available Terpineol, a volatile terpenoid alcohol of low toxicity, is widely used in the perfumery industry. It is an important chemical constituent of the essential oil of many plants with widespread applications in folk medicine and in aromatherapy. The effects of terpineol on the compound action potential (CAP of rat sciatic nerve were studied. Terpineol induced a dose-dependent blockade of the CAP. At 100 µM, terpineol had no demonstrable effect. At 300 µM terpineol, peak-to-peak amplitude and conduction velocity of CAP were significantly reduced at the end of 180-min exposure of the nerve to the drug, from 3.28 ± 0.22 mV and 33.5 ± 7.05 m/s, respectively, to 1.91 ± 0.51 mV and 26.2 ± 4.55 m/s. At 600 µM, terpineol significantly reduced peak-to-peak amplitude and conduction velocity from 2.97 ± 0.55 mV and 32.8 ± 3.91 m/s to 0.24 ± 0.23 mV and 2.72 ± 2.72 m/s, respectively (N = 5. All these effects developed slowly and were reversible upon 180-min washout.

  16. The transformative potential of action research and ICT in the Second Language (L2 classroom

    Farren Margaret

    2015-12-01

    Full Text Available This study shows the transformative potential of action research and information and communications technology (ICT in the second language (L2 classroom. Two enquiries from teacher-researchers are detailed in the article. Their engagement in a collaborative professional development Masters programme was pivotal in designing and implementing ICT creatively in their classroom. Gee (2008 advocates the use of the preferred media of our classroom students in order to address their learning. Prensky (2001 urges us to feel the fear and do it anyway with our digital native classes. A post-primary teacher and a primary teacher show us how they felt the fear, did it and transformed aspects of their own teaching in the process. The Masters programme required the teachers to engage with innovative practices, informed by their own values, and integrate technologies that were new to them into their repertoire of classroom strategies. Peer validation meetings with colleagues enabled meaningful insights to emerge from the research. The teachers improve and transform their second language (L2 practice in collaboration and validation with others.

  17. Study of crotoxin mechanism of action to mammary carcinomas and evaluation of its potential as a radiopharmaceutical

    Crotoxin, the main component of Crotalus durissus terrificus snake venom, has been studied since 1938. It is a natural polypeptidic complex with pharmacological potential because of its antitumoral properties which has attracted great interest for diagnosis and therapy of oncological diseases. However, Crotoxin mechanism of action and sites of specific interaction on tumor cells are still misunderstood. Breast cancer is the second most frequent type in the world and the most common cancer in women. About 30 to 60% of mammary tumors overexpress epidermal growth factor receptor (EGFR), a transmembrane protein related to cell proliferation. Since literature has reported that Crotoxin antitumoral effect is more potent on cells with EGFR overexpression the objectives of this work were to evaluate Crotoxin cytotoxic effects on mammary tumor cells human breast carcinoma (MCF-7) and Ehrlich tumor cells (murine ascitics carcinoma), and to investigate the specific molecular interaction of Crotoxin on Ehrlich tumor cells. Initially, Crotoxin was radiolabelled with iodine-125 (125I-Crotoxin) and iodine-131 (131I-Crotoxin). Saturation and competition assay were carried out to characterize Crotoxin in vitro interaction; Crotoxin biodistribution studies and singlephoton emission computed tomography (SPECT) of mice bearing Ehrlich tumor have been evaluated to describe in vivo interaction. Our results showed that Crotoxin presented cytotoxic effect against Ehrlich with DL50 in vitro (concentration of compound which is lethal for 50% of cells) of about one micromolar, but did not present significant effect against MCF-7. Morphological alterations characteristic of apoptosis suggests programmed cell death. 125I-Crotoxin interaction with Ehrlich tumor cells was saturable with approximately 70% specificity, and presented Kd=24.98 nmol/L and Bmax=16,570 sites/cell for low affinity binding sites and Kd=0.06 nmol/L and Bmax=210 sites/cell high affinity binding sites; moreover, the

  18. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  19. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to

  20. Initial scoping of GHG emissions trading potential in Alberta : CABREE discussion paper

    The past five years have seen the emergence of the concept of emissions trading for greenhouse gases, which would make possible a reduction of the costs required to meet emissions targets agreed upon under the Kyoto Protocol. Emissions trading potential and initial scoping in Alberta is examined in this document, with a special emphasis placed on greenhouse gases. The design of a system, encompassing the theory underlying the mechanism, the current developments, issues of importance in this context, as well as the potential for inclusion of other sectors in Alberta were also discussed. For the purpose of this document, emissions trading was defined as one party reducing its emissions levels then transferring the ownership of that reduction to another party who can then purchase this reduction to assist in meeting its own emissions target. Emission trading can be divided into two basic types called Cap and Trade, and Baseline and Credit. Market creation and behaviour, and regulatory behaviour are factors that can render a trading system more feasible. It is important to analyze the goals before designing the specifics of the system. The incorporation of the various sectors of the economy of Alberta would be affected by their unique features. The greatest promise for emissions trading in Alberta is shown by the energy sector. The percentage of emissions covered, the number of participants, the economic effectiveness are all criteria that affect the performance of any system. figs

  1. The analysis of events initiating potential accidents in heavy water plants

    The paper presents an analysis of potential dangerous events (hazards) that can occur in heavy water plants. This analysis is made by hazard and operability studies (HAZOP). The purpose is to detect any undesirable event foreseeable in the plant's operation. Such purpose is achieved by a systematic study of the operations to be carried out for each process step involved and also of the way in which the various involved components interact. The hazard and operability study started by collecting data about the plant's construction and operation. Unwanted events were identified from the deviations from the normal operation, establishing the possible causes of these deviations, the probability of occurrence assessed by the probability level and their consequences for the process and the environment by qualitative terms. After identification of deviations and estimation of consequences, the necessary measures were determined. The HAZOP methodology was applied to heavy water by isotopic H2O-H2S exchange which circulates high quantities of hydrogen sulphide. The data regarding the technological process, the hydrogen sulphide properties, the constructive characteristics of each type of components, as well as the operating mode of the installations permitted the identification of the main types of undesirable events in initiating potential dangerous situations. The HAZOP studies are carried out periodically in order to analyze the efficiency of the proposed measures. (authors)

  2. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  3. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  4. Facilitating Youth to Take Sustainability Actions: The Potential of Peer Education

    de Vreede, Catherine; Warner, Alan; Pitter, Robert

    2014-01-01

    Peer education is an understudied yet valuable strategy for sustainability educators in shifting youth to take action for sustainability. This case study conceptualizes the change process in facilitating youth to take sustainability actions, and explores the benefits, dynamics, and challenges of peer education as a strategy in facilitating change.…

  5. Assessment of a large break loss of coolant accident scenario requiring operator action to initiate safety injection

    As part of the licensing basis for a nuclear power plant, the acceptability of the Emergency Core Cooling Systems (ECCS) following a postulated Loss-of-Coolant Accident (LOCA) as described in the Code of Federal Regulations (CFR), Title 10, Chapter 1, Part 50.46, must be verified. The LOCA analysis is performed with an acceptable ECCS Evaluation Model and results must show compliance with the 10 CFR 50.46 acceptance criteria. Westinghouse Electric Corporation performs Large and Small Break LOCA and LOCA-related analyses to support the licensing basis of various nuclear power plants and also performs evaluations against the licensing basis analyses as required. Occasionally, the need arises for the holder of an operating license of a nuclear power plant to submit a Licensee Event Report (LER) to the US Nuclear Regulatory Commission (USNRC) for any event of the type described in the Code of Federal Regulations, Title 10, Chapter 1, Part 50.73. To support the LER, a Justification for Past Operation (JPO) may be performed to assess the safety consequences and implications of the event based on previous operating conditions. This paper describes the work performed for the Large Break LOCA to assess the impact of an event discovered by Florida Power and Light and reported in LER-94-005-02. For this event, it was determined that under certain circumstances, operator action would have been required to initiate safety injection (SI), thus challenging the acceptability of the ECCS. This event was specifically addressed for the Large Break LOCA by using an advanced thermal hydraulic analysis methodology with realistic input assumptions

  6. Effect of temperature on isoprenaline- and barium-induced slow action potentials in guinea-pig ventricular strips.

    Manzini, S; Parlani, M; Martucci, E; Maggi, C A; Meli, A

    1986-01-01

    The effect of variation in temperature (37-32 and 27 degrees C) on electrical and mechanical activity of depolarized and isoprenaline- or barium-reactivated guinea pig ventricular strips was studied. Lowering the temperature brings a marked prolongation of isoprenaline-induced slow action potentials. In addition the maximal rate of depolarization was strongly reduced at lower temperatures. These effects were observed at an extracellular Ca2+ concentration of either 0.9 or 2.5 mM. The accompanying mechanical activities was significantly increased by reduction in temperature. Barium-induced slow action potentials were similarly affected by temperature variations. These observations suggest that hypothermia exert a sort of calcium antagonistic action probably coupled to a reduction of repolarizing outward potassium currents. PMID:2430855

  7. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.

    Bourien, Jérôme; Tang, Yong; Batrel, Charlène; Huet, Antoine; Lenoir, Marc; Ladrech, Sabine; Desmadryl, Gilles; Nouvian, Régis; Puel, Jean-Luc; Wang, Jing

    2014-09-01

    Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude. PMID:24848461

  8. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons.

    Margas, Wojciech; Ferron, Laurent; Nieto-Rostro, Manuela; Schwartz, Arnold; Dolphin, Annette C

    2016-08-01

    Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca(2+) entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca(2+) buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca(2+)-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca(2+) elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377724

  9. Effects of estragole on the compound action potential of the rat sciatic nerve

    J.H. Leal-Cardoso

    2004-08-01

    Full Text Available Estragole, a relatively nontoxic terpenoid ether, is an important constituent of many essential oils with widespread applications in folk medicine and aromatherapy and known to have potent local anesthetic activity. We investigated the effects of estragole on the compound action potential (CAP of the rat sciatic nerve. The experiments were carried out on sciatic nerves dissected from Wistar rats. Nerves, mounted in a moist chamber, were stimulated at a frequency of 0.2 Hz, with electric pulses of 50-100-µs duration at 10-20 V, and evoked CAP were monitored on an oscilloscope and recorded on a computer. CAP control parameters were: peak-to-peak amplitude (PPA, 9.9 ± 0.55 mV (N = 15, conduction velocity, 92.2 ± 4.36 m/s (N = 15, chronaxy, 45.6 ± 3.74 µs (N = 5, and rheobase, 3.9 ± 0.78 V (N = 5. Estragole induced a dose-dependent blockade of the CAP. At 0.6 mM, estragole had no demonstrable effect. At 2.0 and 6.0 mM estragole, PPA was significantly reduced at the end of 180-min exposure of the nerve to the drug to 85.6 ± 3.96 and 13.04 ± 1.80% of control, respectively. At 4.0 mM, estragole significantly altered PPA, conduction velocity, chronaxy, and rheobase (P <= 0.05, ANOVA; N = 5 to 49.3 ± 6.21 and 77.7 ± 3.84, 125.9 ± 10.43 and 116.7 ± 4.59%, of control, respectively. All of these effects developed slowly and were reversible upon a 300-min wash-out. The data show that estragole dose-dependently blocks nerve excitability.

  10. Natural cures for type 1 diabetes: a review of phytochemicals, biological actions, and clinical potential.

    Chang, C L T; Chen, Yi-Ching; Chen, Hui-Ming; Yang, Ning-Sun; Yang, Wen-Chin

    2013-01-01

    Autoimmune diseases are the third largest category of illness in the industrialized world, following cardiovascular diseases and cancers. Among them, type 1 diabetes, also named autoimmune diabetes, afflicts 10 million people worldwide. This disease is caused by autoimmunity-mediated destruction of pancreatic β-cells, leading to insulin deficiency, hyperglycemia and complications. Currently, there is no cure for type 1 diabetes. Insulin injection is the only medication; however, it accompanies serious medical complications. Current strategies to cure type 1 diabetes include immunotherapy, replacement therapy, and combination therapy. Despite recent advances in anti-diabetic strategies, no strategy is clinically successful. How to cure type 1 diabetes without undesirable side effects still remains a formidable challenge in drug research and development. Plants provide an extraordinary source of natural medicines for different diseases. Moreover, secondary metabolites of plant origin serve as an invaluable chemical library for drug discovery and current medicinal chemistry in the pharmaceutical industry. Over the past 25 years, 50% of prescription drugs have been developed from natural products and their derivatives. In this article, we review more than 20 plant compounds and extracts reported in the literature to prevent and treat type-1 diabetes. Emphasis is placed on their chemistry and biology in terms of regulation of immune cells and pancreatic β-cells. We summarize recent progress in understanding the biological actions, mechanisms and therapeutic potential of the compounds and extracts of plant origin in type 1 diabetes. New views on phytocompound-based strategies for prevention and treatment of type 1 diabetes are also discussed. PMID:23210779

  11. Synthesis of a dendritic estrogen cluster: A potential tool for studies of nuclear versus extranuclear pathways of estrogen actions

    Jian Chen; Hu Zheng; Yan Song; Yu Feng Liang; Qing Rong Qi

    2012-01-01

    A novel estrogen dendrimer has been synthesized through a combination of divergent and convergent approaches in 9 practical steps and in good yields.It was characterized and confirmed by elemental analysis,FT-IR,MS,1H NMR,13C NMR.The dendrimer contains 16 estrone units and is potentially a useful tool for the studies of estrogen actions.

  12. Flattening of the electrocardiographic T-wave is a sign of proarrhythmic risk and a reflection of action potential triangulation

    Bhuiyan, Tanveer Ahmed; Graff, Claus; Kanters, J.K.;

    2013-01-01

    Drug-induced triangulation of the cardiac action potential is associated with increased risk of arrhythmic events. It has been suggested that triangulation causes a flattening of the electrocardiographic T-wave but the relationship between triangulation, T-wave flattening and onset of arrhythmia...

  13. Anthocyanins in obesity-associated thrombogenesis: a review of the potential mechanism of action.

    Thompson, Kiara; Pederick, Wayne; Santhakumar, Abishek Bommannan

    2016-05-18

    Platelet dysfunction, oxidative stress and dyslipidemia are important contributors to pro-thrombotic progression particularly in obese and hyper-cholesterolemic populations. Becoming an increasingly widespread endemic, obesity causes a dysfunction in the metabolic system by initiating endothelial dysfunction; increasing free radical production; lipid peroxidation; platelet hyperactivity and aggregation; thereby accelerating thrombogenesis. In the event of increased free radical generation under pro-thrombotic conditions, antioxidants act as scavengers in reducing physiological oxidative stress; free radical-mediated thrombosis and hemostatic function. Anthocyanin, a subclass of the polyphenol family flavonoids has been shown to exhibit anti-dyslipidemic and anti-thrombotic properties by virtue of its antioxidant activity. Current anti-platelet/coagulant therapeutics target specific receptor pathways to relieve the extent of dysfunction and plaque acceleration in pro-thrombotic individuals. Though effective, they have been associated with high bleeding risk and increased response variability. The following review focuses on the potential role of natural dietary anthocyanins in targeting simultaneous mechanistic pathways in alleviating platelet activation, dyslipidemia, and oxidative stress-associated thrombus acceleration in obese pro-thrombotic populations. PMID:27043127

  14. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control

    Bravo, Alejandra; Gill, Sarjeet S.; Soberón, Mario

    2006-01-01

    Bacillus thuringiensis Cry and Cyt protein families are a diverse group of proteins with activity against insects of different orders - Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some...

  15. Assessing the Potential Impact of a Nationwide Class-Based Affirmative Action System

    Xiang, Alice; Rubin, Donald B.

    2015-01-01

    We examine the possible consequences of a change in law school admissions in the United States from an affirmative action system based on race to one based on socioeconomic class. Using data from the 1991-1996 Law School Admission Council Bar Passage Study, students were reassigned attendance by simulation to law school tiers by transferring the affirmative action advantage for black students to students from low socioeconomic backgrounds. The hypothetical academic outcomes for the students w...

  16. Antibacterial free fatty acids : activities, mechanisms of action and biotechnological potential

    Desbois, Andrew Paul; Smith, Valerie Jane

    2010-01-01

    Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy ...

  17. Problems, Prescriptions and Potential in Actionable Climate Change Science - A Case Study from California Coastal Marsh Research

    MacDonald, G. M.; Ambrose, R. F.; Thorne, K.; Takekawa, J.; Brown, L. N.; Fejtek, S.; Gold, M.; Rosencranz, J.

    2015-12-01

    Frustrations regarding the provision of actionable science extend to both producers and consumers. Scientists decry the lack of application of their research in shaping policy and practices while decision makers bemoan the lack of applicability of scientific research to the specific problems at hand or its narrow focus relative to the plethora of engineering, economic and social considerations that they must also consider. Incorporating climate change adds additional complexity due to uncertainties in estimating many facets of future climate, the inherent variability of climate and the decadal scales over which significant changes will develop. Recently a set of guidelines for successful science-policy interaction was derived from the analysis of transboundary water management. These are; 1 recognizing that science is a crucial but bounded input into the decision-making processes, 2 early establishment of conditions for collaboration and shared commitment among participants, 3 understanding that science-policy interactions are enhanced through greater collaboration and social or group-learning processes, 4 accepting that the collaborative production of knowledge is essential to build legitimate decision-making processes, and 5 engaging boundary organizations and informal networks as well as formal stakeholders. Here we present as a case study research on California coastal marshes, climate change and sea-level that is being conducted by university and USGS scientists under the auspices of the Southwest Climate Science Center. We also present research needs identified by a seperate analysis of best practices for coastal marsh restoration in the face of climate change that was conducted in extensive consultation with planners and managers. The initial communication, scientific research and outreach-dissemination of the marsh scientfic study are outlined and compared to best practices needs identified by planners and the science-policy guidelines outlined above

  18. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction

    Yun-Feng Lan; Yang Li; Jian-Cheng Zhang; Jin-Lao Gao; Xue-Ping Wang; Zhou Fang; Yi-Cheng Fu; Mei-Yan Chen; Min Lin; Qiao Xue

    2013-01-01

    Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Results Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (Ito), the rapidly activated omponent of delayed rectifier potassium current (IKr), the slowly activated component of delayed rectifier potassium current (IKs), and the L-type calcium current (ICaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Conclusions Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca2+ current are likely the underlying mechanism of action.

  19. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.

    Bravo, Alejandra; Gill, Sarjeet S; Soberón, Mario

    2007-03-15

    Bacillus thuringiensis Crystal (Cry) and Cytolitic (Cyt) protein families are a diverse group of proteins with activity against insects of different orders--Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some detail. Phylogenetic analyses established that the diversity of the 3-Domain Cry family evolved by the independent evolution of the three domains and by swapping of domain III among toxins. Like other pore-forming toxins (PFT) that affect mammals, Cry toxins interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in the formation of a pre-pore oligomeric structure that is insertion competent. In contrast, Cyt toxins directly interact with membrane lipids and insert into the membrane. Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor. In this review we summarize recent findings on the mode of action of Cry and Cyt toxins, and compare them to the mode of action of other bacterial PFT. Also, we discuss their use in the control of agricultural insect pests and insect vectors of human diseases. PMID:17198720

  20. The Potential of General Classroom Observation: Turkish EFL Teachers' Perceptions, Sentiments, and Readiness for Action

    Merç, Ali

    2015-01-01

    The purpose of this study was to determine Turkish EFL teachers' attitudes towards classroom observation. 204 teachers from different school settings responded to an online questionnaire. Data were analyzed according to three types of attitudes towards classroom observation: perceptions, sentiments, and readiness for action. The findings revealed…

  1. Potentiating action of propofol at GABAA receptors of retinal bipolar cells

    Yue, Lan; Xie, An; Bruzik, Karol S;

    2011-01-01

    specific retinal neurons. The authors investigated the action of propofol on GABA-elicited membrane current responses of retinal bipolar cells, which have both GABA(A) and GABA(C) receptors. Methods. Single, enzymatically dissociated bipolar cells obtained from rat retina were treated with propofol...

  2. Doubts about actions and flanker incongruity-related potentials and performance

    Tops, Mattie; Wijers, Albertus A.

    2012-01-01

    The brain networks that are involved in flanker incongruity and error processing are also consistently implicated in mental disorders such as obsessive compulsive disorder (OCD) that feature increased "Doubts about Actions" (DaA) scores. In the present study we investigated whether DaA scores, simil

  3. Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals

    He, Pengyu; Yang, Yue

    2016-03-01

    We report a systematic study on the construction of the explicit, general form of vortex-surface fields (VSFs) and Clebsch potentials in the initial fields with the zero helicity density and high symmetry. The construction methodology is based on finding independent first integrals of the characteristic equation of a given three-dimensional velocity-vorticity field. In particular, we derive the analytical VSFs and Clebsch potentials for the initial field with the Kida-Pelz symmetry. These analytical results can be useful for the evolution of VSFs to study vortical structures in transitional flows. Moreover, the generality of the construction method is discussed with the synthetic initial fields and the initial Taylor-Green field with multiple wavenumbers.

  4. Neural Networks for Template Matching: Application to Real-Time Classification of the Action Potentials of Real Neurons

    Wong, Yiu-fai; Banik, Jashojiban; Bower, James M.

    1988-01-01

    Much experimental study of real neural networks relies on the proper classification of extracellulary sampled neural signals (i .e. action potentials) recorded from the brains of experimental animals. In most neurophysiology laboratories this classification task is simplified by limiting investigations to single, electrically well-isolated neurons recorded one at a time. However, for those interested in sampling the activities of many single neurons simultaneously, waveform cla...

  5. Back-propagation of physiological action potential output in dendrites of slender-tufted L5A pyramidal neurons

    Grewe, Benjamin F.; Audrey Bonnan; Andreas Frick

    2010-01-01

    Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signalling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related &...

  6. An Inquiry into the Theory of Action of School Development Planning constituted within the Professional Culture of the School Development Planning Initiative 1999-2010

    Fennell, Mark

    2011-01-01

    This study is a qualitative inquiry into the theory of action of school development planning (SDP) constituted within the professional culture of the School Development Planning Initiative (SDPI). SDP is delineated as an historically contingent term of art most influential in scholarly and policy discourse under the auspices of the Education Reform Act (1988) in the United Kingdom and the Education Act (1998) in Ireland. SDP in Ireland reflects national policy aspiration and...

  7. Amplitude of sensory nerve action potential in early stage diabetic peripheral neuropathy:an analysis of 500 cases

    Yunqian Zhang; Jintao Li; Tingjuan Wang; Jianlin Wang

    2014-01-01

    Early diagnosis of diabetic peripheral neuropathy is important for the successful treatment of diabetes mellitus. In the present study, we recruited 500 diabetic patients from the Fourth Afifl-iated Hospital of Kunming Medical University in China from June 2008 to September 2013: 221 cases showed symptoms of peripheral neuropathy (symptomatic group) and 279 cases had no symptoms of peripheral impairment (asymptomatic group). One hundred healthy control sub-jects were also recruited. Nerve conduction studies revealed that distal motor latency was longer, sensory nerve conduction velocity was slower, and sensory nerve action potential and amplitude of compound muscle action potential were signiifcantly lower in the median, ulnar, posterior tibial and common peroneal nerve in the diabetic groups compared with control subjects. More-over, the alterations were more obvious in patients with symptoms of peripheral neuropathy. Of the 500 diabetic patients, neural conduction abnormalities were detected in 358 cases (71.6%), among which impairment of the common peroneal nerve was most prominent. Sensory nerve abnormality was more obvious than motor nerve abnormality in the diabetic groups. The ampli-tude of sensory nerve action potential was the most sensitive measure of peripheral neuropathy. Our results reveal that varying degrees of nerve conduction changes are present in the early, as-ymptomatic stage of diabetic peripheral neuropathy.

  8. Potential pathways of pesticide action on erectile function-a contributory factor in male infertility

    RP Kaur; V Gupta; AF Christopher; P Bansal

    2015-01-01

    One of the important objectives of this manuscript is to focus on the place of erectile dysfunction as an important factor for infertility. The review is about correlating the indiscriminate use of pesticides and to find out and highlight the evidences for mechanism of action of these pesticides for erectile dysfunction and find out the most used and most dangerous pesticide from erectile dysfunction point of view. The review suggests that erectile dysfunction is having a significant place as a causal factor for infertility. Study infers that pesticides are having multiple mechanisms of action through which these cause erectile dysfunction. It also reflects that acetamiprid is having most devastating effect causing erectile dysfunction as it acts through multiple inhibitory pathways. The review successfully highlights the indiscriminate regional use of pesticides.

  9. How a Small Family Run Business Adopted Critical Reflection Action Learning Using Hand Drawn Images to Initiate Organisational Change

    Shepherd, Gary

    2016-01-01

    In this account of practice I would like to share my experiences of facilitating a Critical Reflection Action Learning (CRAL) set with a small family run business, struggling to make change and expand their services due to the problems they encountered in separating their business lives from their family lives. The account I present here is based…

  10. Evaluation of the potential carcinogenic action of radiocalcium internal irradiation in Swiss albino mice

    The carcinogenic action of 45Ca on inducing hepatocelluar carcinoma (HCC) in Swiss albino mice has been statistically evaluated. HCC proved to be radiation-induced and not due to spontaneous origin. Also, the higher incidence of male hepatocarcinogenesis due to internal irradiation has been found to be significant. The precise possible mechanism regarding the higher male susceptibility to liver cancer has been discussed in the light of available literature. (author)