WorldWideScience

Sample records for action potential clamp

  1. Anthropomorphizing the Mouse Cardiac Action Potential via a Novel Dynamic Clamp Method

    Ahrens-Nicklas, Rebecca C.; Christini, David J.

    2009-01-01

    Abstract Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest. PMID:19917221

  2. HERG channel (dys)function revealed by dynamic action potential clamp technique

    Berecki, G; Zegers, J.G.; Verkerk, A.O.; Bhuiyan, Z.A.; Jonge, de, M.J.I.; Veldkamp, M.W.; Wilders, R; Ginneken, van, CJJM Kees

    2005-01-01

    The human ether-a-go-go-related gene (HERG) encodes the rapid component of the cardiac delayed rectifier potassium current (IKr). Per-Arnt-Sim domain mutations of the HERG channel are linked to type 2 long-QT syndrome. We studied wild-type and/or type 2 long-QT syndrome-associated mutant (R56Q) HERG current (IHERG) in HEK-293 cells, at both 23 and 36°C. Conventional voltage-clamp analysis revealed mutation-induced changes in channel kinetics. To assess functional implication(s) of the mutatio...

  3. A novel method for the description of voltage-gated ionic currents based on action potential clamp results - Application to hippocampal mossy fiber boutons

    John R Clay

    2016-01-01

    Full Text Available Action potential clamp (AP-clamp recordings of the delayed rectifier K+ current IK and the fast-activated Na+ current INa in rat hippocampal mossy fiber boutons (MFBs are analyzed using a computational technique recently reported. The method is implemented using a digitized AP from an MFB and computationally applying that that data set to published models of IK and INa. These numerical results are compared with experimental AP-clamp recordings. The INa result is consistent with experiment; the IK result is not. The difficulty with the IK model concerns the fully activated current-voltage relation, which is described here by the Goldman-Hodgkin-Katz dependence of the driving force (V-EK rather than (V-EK itself, the standard model for this aspect of ion permeation. That revision leads to the second - a much steeper voltage dependent activation curve for IK than the one obtained from normalization of a family of IK records by (V-EK. The revised model provides an improved description of the AP-clamp measurement of IK in MFBs compared with the standard approach The method described here is general. It can be used to test models of ionic currents in any excitable cell. In this way it provides a novel approach to the relationship between ionic currents and membrane excitability in neurons.

  4. Action Mechanism Research of Lanthanons to Slow Vacuolar Ion Channels in Raphanus Satirus L. (Xinlimei) Radish by Patch-Clamp

    2001-01-01

    We used whole-vacuolar patch-clamp recording mode to study the action mechanism of La3+ to Slow Vacuolar (SV) channels for the first time. We recorded SV channel currents of Xinlimei (Raphanus satirus L.) vacuolars. The minimum activation potentials of voltage-dependent SV channels lied in 25±5 mV. The increase in cytoplasmic Ca2+ led toenhancement of SV-type currents. It was found that the threshold potential of activation shifted towards more depolarized values whenever cytoplasmic Ca2+ was increased. When 10-10 mol/Lfree La3+ was added to the bath, SV-type current was suppressed by 60~75%. These data showed La3+ reduced ion permeabilities of Xinlimei root vacuolar membrane.

  5. Control of Secretion by Encodes of Action Potentials in Neuronal Cells

    Kailai Duan; Zhuan Zhou

    2003-01-01

    @@ Action potentials (APs) are principle physiological stimuli of neurotransmitter secretion or synaptic transmis sion. Most studies on stimulus-secretion-coupling have been performed under voltage clamp using artificial electric stimulations.

  6. Micro-agar salt bridge in patch-clamp electrode holder stabilizes electrode potentials

    Shao, Xuesi M; Feldman, Jack L.

    2006-01-01

    Maintaining a stable electrode potential is critical for patch-clamp measurements. The electrode potential of conventional patch electrode-holder assembly, where an Ag/AgCl wire is in direct contact with the patch pipette filling solution, is subject to drift if the pipette solution contains a low concentration of chloride ions (Cl−). We developed an agar bridge of 3 M KCl filled in a polyimide microtubing which forms an electrical connection between an Ag/AgCl wire and the pipette solution. ...

  7. Perfect Actions with Chemical Potential

    Bietenholz, W

    1998-01-01

    We show how to include a chemical potential \\mu in perfect lattice actions. It turns out that the standard procedure of multiplying the quark fields \\Psi, an example, the case of free fermions with chemical potential is worked out explicitly. Even after truncation, cut-off effects in the pressure and the baryon density are small. Using a (quasi-)perfect action, numerical QCD simulations for non-zero chemical potential become more powerful, because coarse lattices are sufficient for extracting continuum physics.

  8. Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes.

    Ibarra, J; Morley, G E; Delmar, M

    1991-01-01

    The potassium selective, inward rectifier current (IK1) is known to be responsible for maintaining the resting membrane potential of quiescent ventricular myocytes. However, the contribution of this current to the different phases of the cardiac action potential has not been adequately established. In the present study, we have used the action potential clamp (APC) technique to characterize the dynamic changes of a cesium-sensitive (i.e., Ik1) current which occur during the action potential. ...

  9. Circadian- and Light-Dependent Regulation of Resting Membrane Potential and Spontaneous Action Potential Firing of Drosophila Circadian Pacemaker Neurons

    Sheeba, Vasu; Gu, Huaiyu; Sharma, Vijay K.; O'Dowd, Diane K.; Holmes, Todd C.

    2007-01-01

    The ventral lateral neurons (LNvs) of adult Drosophila brain express oscillating clock proteins and regulate circadian behavior. Whole cell current-clamp recordings of large LNvs in freshly dissected Drosophila whole brain preparations reveal two spontaneous activity patterns that correlate with two underlying patterns of oscillating membrane potential: tonic and burst firing of sodium-dependent action potentials. Resting membrane potential and spontaneous action potential firing are rapidly ...

  10. Delayed umbilical cord clamping after childbirth: potential benefits to baby's health

    Uwins C

    2014-11-01

    Full Text Available Christina Uwins,1 David JR Hutchon2 1Department of Obstetrics and Gynaecology, Croydon University Hospital, Croydon, 2Department of Obstetrics, Darlington Memorial Hospital, Darlington, UKAbstract: Early cord clamping was initially introduced as part of the package of care known as “active management of the third stage”, which was implemented to reduce postpartum hemorrhage. It has now been shown to provide no benefit to the mother and to result in harm to the neonate. The clinical trial evidence relating to delayed cord clamping compared to immediate cord clamping is presented and the physiological rationale for delayed cord clamping is discussed in this paper. Most organizations (eg World Health Organization (WHO, Royal College of Obstetricians and Gynaecologists (RCOG, Resuscitation Council (UK,The International Federation of Gynecology and Obstetrics (FIGO, International Confederation of Midwives, International Liaison Committee on Resuscitation (ILCOR and the European Resuscitation Council now advise a delay of 1–3 minutes before clamping the cord in term and preterm infants, and clinicians need to be aware of this change. Healthy neonates benefit from a more physiological and gentle transition from placental to pulmonary respiration, and we explain why this benefit should be provided to all neonates until there is any evidence to the contrary. The harm of early cord clamping is not limited to anemia and iron deficiency, and evidence for a wide range of possible harms of early cord clamping is presented. The need for resuscitation is one of the most common concerns, and ways of overcoming these concerns are described.Keywords: transition, cord clamping, hypovolemia, intraventricular hemorrhage

  11. Sodium and potassium conductance changes during a membrane action potential.

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  12. Action potential broadening in a presynaptic channelopathy

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  13. Effects of deuterium oxide on the rate and dissociation constants for saxitoxin and tetrodotoxin action. Voltage-clamp studies on frog myelinated nerve

    The actions of tetrodotoxin (TTX) and saxitoxin (STX) in normal water and in deuterium oxide (D20) have been studied in frog myelinated nerve. Substitution of D20 for H20 in normal Ringer's solution has no effect on the potency of TTX in blocking action potentials but increases the potency of STX by approximately 50%. Under voltage clamp, the steady-state inhibition of sodium currents by 1 nM STX is doubled in D20 as a result of a halving of the rate of dissociation of STX from the sodium channel; the rate of block by STX is not measurably changed by D20. Neither steady-state inhibition nor the on- or off-rate constants of TTX are changed by D20 substitution. The isotopic effects on STX binding are observed less than 10 min after the toxin has been added to D20, thus eliminating the possibility that slow-exchange (t 1/2 greater than 10 h) hydrogen-binding sites on STX are involved. The results are consistent with a hypothesis that attributes receptor-toxin stabilization to isotopic changes of hydrogen bonding; this interpretation suggests that hydrogen bonds contribute more to the binding of STX than to that of TTX at the sodium channel

  14. Action Principle for Potential Flows

    Frønsdal, Christian

    2014-01-01

    The restriction of hydrodynamics to non-viscous, potential (gradient, irrotational) flows is a theory both simple and elegant; a favorite topic of introductory textbooks. It is known that this theory (under the stated limitations) can be formulated as an action principle. It finds its principle application to adiabatic systems and cannot account for viscosity or dissipation. However, it can be generalized to include non-potential flows, as this paper shows. The new theory is a combination of Eulerian and Lagrangian hydrodynamics, with an extension to thermodynamics. It describes adiabatic phenomena but does not account for viscosity or dissipation. Nevertheless, it is an approach within which quasi-static processes can be described. In the adiabatic context it appears to be an improvement of the Navier-Stokes equation, the principal advantage being a natural concept of energy in the form of a first integral of the motion, conserved by virtue of the Euler-Lagrange equations.

  15. Laser beam guard clamps

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  16. Dynamic clamp: a powerful tool in cardiac electrophysiology.

    Wilders, Ronald

    2006-10-15

    Dynamic clamp is a collection of closely related techniques that have been employed in cardiac electrophysiology to provide direct answers to numerous research questions regarding basic cellular mechanisms of action potential formation, action potential transfer and action potential synchronization in health and disease. Building on traditional current clamp, dynamic clamp was initially used to create virtual gap junctions between isolated myocytes. More recent applications include the embedding of a real pacemaking myocyte in a simulated network of atrial or ventricular cells and the insertion of virtual ion channels, either simulated in real time or simultaneously recorded from an expression system, into the membrane of an isolated myocyte. These applications have proven that dynamic clamp, which is characterized by the real-time evaluation and injection of simulated membrane current, is a powerful tool in cardiac electrophysiology. Here, each of the three different experimental configurations used in cardiac electrophysiology is reviewed. Also, directions are given for the implementation of dynamic clamp in the cardiac electrophysiology laboratory. With the growing interest in the application of dynamic clamp in cardiac electrophysiology, it is anticipated that dynamic clamp will also prove to be a powerful tool in basic research on biological pacemakers and in identification of specific ion channels as targets for drug development. PMID:16873403

  17. Intracellular recording of action potentials by nanopillar electroporation

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-03-01

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action

  18. Light-triggered action potentials in plants

    Kazimierz Trębacz

    2014-01-01

    Special attention is paid in this paper to the criteria of the light-triggered action potential, namely the all-or-none law, propagation, the occurrence of refractory periods. Such action potentials have been recorded in Acetabularia mediterranea, Asplenium trichomanes, Bryum pseudotriquetrum, Eremosphaera viridis and Concephalum conicum. In Acetabularia, action potentials are generated after sudden cessation of light stimuli of sufficient intensity. The depolarization phase of the action pot...

  19. Improved Lattice Actions with Chemical Potential

    Bietenholz, W

    1998-01-01

    We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.

  20. A dual potassium channel activator improves repolarization reserve and normalizes ventricular action potentials

    Calloe, Kirstine; Di Diego, José M; Hansen, Rie Schultz;

    2016-01-01

    cultured canine cardiac myocytes and determined whether a dual K(+) current activator can normalize K(+) currents and restore action potential (AP) configuration. METHODS AND RESULTS: Ventricular myocytes were isolated and cultured for up to 48h. Current and voltage clamp recordings were made using patch...... of EADs. Our results suggest a potential benefit of K(+) current activators under conditions of reduced repolarization reserve including heart failure....

  1. Abstract Action Potential Models for Toxin Recognition

    Peterson, James; Khan, Taufiquar

    2005-01-01

    In this paper, we present a robust methodology using mathematical pattern recognition schemes to detect and classify events in action potentials for recognizing toxins in biological cells. We focus on event detection in action potential via abstraction of information content into a low dimensional feature vector within the constrained computational environment of a biosensor. We use generated families of action potentials from a classic Hodgkin–Huxley model to verify our methodology and build...

  2. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the

  3. Mechanistic insight into CM18-Tat11 peptide membrane-perturbing action by whole-cell patch-clamp recording.

    Fasoli, Anna; Salomone, Fabrizio; Benedusi, Mascia; Boccardi, Claudia; Rispoli, Giorgio; Beltram, Fabio; Cardarelli, Francesco

    2014-01-01

    The membrane-destabilization properties of the recently-introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1-7 of cecropin-A, 2-12 of melittin, and 47-57 of HIV-1 Tat protein) are investigated in CHO-K1 cells by using the whole-cell configuration of the patch-clamp technique. CM18-Tat11, CM18, and Tat11 peptides are administered to the cell membrane with a computer-controlled micro-perfusion system. CM18-Tat11 induces irreversible cell-membrane permeabilization at concentrations (≥4 µM) at which CM18 triggers transient pore formation, and Tat11 does not affect membrane integrity. We argue that the addition of the Tat11 module to CM18 is able to trigger a shift in the mechanism of membrane destabilization from "toroidal" to "carpet", promoting a detergent-like membrane disruption. Collectively, these results rationalize previous observations on CM18-Tat11 delivery properties that we believe can guide the engineering of new modular peptides tailored to specific cargo-delivery applications. PMID:24991756

  4. Mechanistic Insight into CM18-Tat11 Peptide Membrane-Perturbing Action by Whole-Cell Patch-Clamp Recording

    Anna Fasoli

    2014-07-01

    Full Text Available The membrane-destabilization properties of the recently-introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1–7 of cecropin-A, 2–12 of melittin, and 47–57 of HIV-1 Tat protein are investigated in CHO-K1 cells by using the whole-cell configuration of the patch-clamp technique. CM18-Tat11, CM18, and Tat11 peptides are administered to the cell membrane with a computer-controlled micro-perfusion system. CM18-Tat11 induces irreversible cell-membrane permeabilization at concentrations (≥4 µM at which CM18 triggers transient pore formation, and Tat11 does not affect membrane integrity. We argue that the addition of the Tat11 module to CM18 is able to trigger a shift in the mechanism of membrane destabilization from “toroidal” to “carpet”, promoting a detergent-like membrane disruption. Collectively, these results rationalize previous observations on CM18-Tat11 delivery properties that we believe can guide the engineering of new modular peptides tailored to specific cargo-delivery applications.

  5. Neuronal Response Clamp

    Avner Wallach

    2011-04-01

    Full Text Available Responses of individual neurons to ongoing input are highly variable, reflecting complex threshold dynamics. Experimental access to this threshold dynamics is required in order to fully characterize neuronal input-output relationships. The challenge is practically intractable using present day experimental paradigms due to the cumulative, nonlinear interactions involved. Here we introduce the Neuronal Response Clamp, a closed-loop technique enabling control over the instantaneous response probability of the neuron. The potential of the technique is demonstrated by showing direct access to threshold dynamics of cortical neuron in-vitro using extracellular recording and stimulation, over timescales ranging from seconds to many hours. Moreover, the method allowed us to expose the sensitivity of threshold dynamics to spontaneous input from the network in which the neuron is embedded. The Response Clamp technique follows the rationale of the voltage-clamp and dynamic-clamp approaches, extending it to the neuron's spiking behavior. The general framework offered here is applicable in the study of other neural systems, beyond the single neuron level.

  6. Characterization of action potential-triggered [Ca2+]i transients in single smooth muscle cells of guinea-pig ileum

    Kohda, M.; Komori, S.; Unno, T; Ohashi, H

    1997-01-01

    To characterize increases in cytosolic free Ca2+ concentration ([Ca2+]i) associated with discharge of action potentials, membrane potential and [Ca2+]i were simultaneously recorded from single smooth muscle cells of guinea-pig ileum by use of a combination of nystatin-perforated patch clamp and fura-2 fluorimetry techniques.A single action potential in response to a depolarizing current pulse elicited a transient rise in [Ca2+]i. When the duration of the current pulse was prolonged, action po...

  7. Screening action potentials: The power of light

    Lars eKaestner

    2011-07-01

    Full Text Available Action potentials reflect the concerted activity of all electrogenic constituents in the plasma membrane during the excitation of a cell. Therefore, the action potential is an integrated readout and a promising parameter to detect electrophysiological failures or modifications thereof in diagnosis as well as in drug screens. Cellular action potentials can be recorded by optical approaches. To fulfill the pre-requirements to scale up for e.g. pharmacological screens the following preparatory work has to be provided: (i model cells under investigation need to represent target cells in the best possible manner; (ii optical sensors that can be either small molecule dyes or genetically encoded potential probes need to provide a reliable readout with minimal interaction with the naive behavior of the cells and (iii devices need to be capable to stimulate the cells, read out the signals with the appropriate speed as well as provide the capacity for a sufficient throughput. Here we discuss several scenarios for all three categories in the field of cardiac physiology and pharmacology and provide a perspective to use the power of light in screening cardiac action potentials.

  8. Modeling and simulation of ion channels and action potentials in taste receptor cells

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells, a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components, including voltage-gated Na+ currents and outward delayed rectifier K+ currents. Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants. The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed. Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  9. Modeling and simulation of ion channels and action potentials in taste receptor cells

    CHEN PeiHua; LIU Xiaodong; ZHANG Wei; ZHOU Jun; WANG Ping; YANG Wei; LUO JianHong

    2009-01-01

    Based on patch clamp data on the ionic currents of rat taste receptor cells,a mathematical model of mammalian taste receptor cells was constructed to simulate the action potentials of taste receptor cells and their corresponding ionic components,including voltage-gated Na~+ currents and outward delayed rectifier K~+ currents.Our simulations reproduced the action potentials of taste receptor cells in response to electrical stimuli or sour tastants.The kinetics of ion channels and their roles in action potentials of taste receptor cells were also analyzed.Our prototype model of single taste receptor cell and simulation results presented in this paper provide the basis for the further study of taste information processing in the gustatory system.

  10. RXP-E: a connexin43-binding peptide that prevents action potential propagation block

    Lewandowski, Rebecca; Procida, Kristina; Vaidyanathan, Ravi;

    2008-01-01

    . Separately, RXP-E was concatenated to a cytoplasmic transduction peptide (CTP) for cytoplasmic translocation (CTP-RXP-E). The effect of RXP-E on action potential propagation was assessed by high-resolution optical mapping in monolayers of neonatal rat ventricular myocytes, containing approximately 20% of...... randomly distributed myofibroblasts. In contrast to control experiments, when heptanol (2 mmol/L) was added to the superfusate of monolayers loaded with CTP-RXP-E, action potential propagation was maintained, albeit at a slower velocity. Similarly, intracellular acidification (pH(i) 6.2) caused a loss of...... action potential propagation in control monolayers; however, propagation was maintained in CTP-RXP-E-treated cells, although at a slower rate. Patch-clamp experiments revealed that RXP-E did not prevent heptanol-induced block of sodium currents, nor did it alter voltage dependence or amplitude of Kir2...

  11. Introducing the Action Potential to Psychology Students

    Simon-Dack, Stephanie L.

    2014-01-01

    For this simple active learning technique for teaching, students are assigned "roles" and act out the process of the action potential (AP), including the firing threshold, ion-specific channels for ions to enter and leave the cell, diffusion, and the refractory period. Pre-post test results indicated that students demonstrated increased…

  12. Cantilever clamp fitting

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  13. expression, physiological actions and therapeutic potential

    Steckelings, Ulrike

    2012-01-01

    Angiotensin II mediates its action via 2 receptor subtypes: the AT1- and AT2-receptor. The existence of more than one receptor for angiotensin II has been discovered not earlier than 1989. This "Habilitationsschrift" is based on six publications which represent mosaic stones within the growing picture of AT2-receptor expression, regulation of expression, physiological and patho-physiological function as well as potential therapeutic use. The first part is dealing with tissue specific ex...

  14. To clamp or not to clamp late?

    Nicoletta Iacovidou

    2013-04-01

    Full Text Available When resuscitating a neonate, one encounters controversial issues and a great deal of confusion. These issues include the question as to when should the umbilical cord be clamped. Clamping and cutting the umbilical cord at birth is the oldest intervention in humans. Even though many aspects of the timing for cord clamping have been clarified, some questions still remain unanswered. If delayed cord clamping is to become a standard approach which timing is the optimal? And depending on the mode of delivery should timing be the same or different for normal vaginal delivery or for caesarean section? What about  the compromised neonate, or the very preterm one? We have more questions than answers. More randomized controlled studies are needed in normal and pathologic neonates, in order to address these questions, before we practice delayed cord clamping with safety for the babies and the mothers.

  15. Servodrive Clamping Unit

    Štefánek, Tomáš

    2009-01-01

    Design servodrive clamping unit with pneumatic or mechanic multiplier. Unit has be instrumental to strength clamp parts in tension technical machines. Frame unit’s is complicate from massive and movable clamping board and is self-supporting. Unit has be solution like incorporated modulus. Target is proposal main driving period for movable clamping board. Work up proposal constructional solution, drawing listings, production drawing of the three engaged part of, BOM. Computational report must ...

  16. Photovoltaic panel clamp

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  17. Insulated pipe clamp design

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  18. The Potential of Deweyan-Inspired Action Research

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit separation between action and reflection or theory and practice. This paper considers the potential of action research informed specifically by Deweyan pragm...

  19. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  20. Teachers in Action Research: Assumptions and Potentials

    Li, Yuen-Ling

    2008-01-01

    Research literature has long indicated that action research may stimulate practitioners themselves to actively evaluate the quality of their practice. This study is designed to report the use of action research for the development of early years professional practice by analyzing the pre-project and the post-project video-filmed teaching events.…

  1. Action potential initiation in the hodgkin-huxley model.

    Colwell, Lucy J; Brenner, Michael P.

    2009-01-01

    A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span) and the rapidity of action potential initiation (the onset rapidity). This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in...

  2. Spectral action, Weyl anomaly and the Higgs-Dilaton potential

    Andrianov, A.A.(V.A. Fock Department of Theoretical Physics, Saint-Petersburg State University, 1 ul. Ulyanovskaya, St. Petersburg, 198504, Russia); Kurkov, M.A.; Lizzi, Fedele

    2011-01-01

    We show how the bosonic spectral action emerges from the fermionic action by the renormalization group flow in the presence of a dilaton and the Weyl anomaly. The induced action comes out to be basically the Chamseddine-Connes spectral action introduced in the context of noncommutative geometry. The entire spectral action describes gauge and Higgs fields coupled with gravity. We then consider the effective potential and show, that it has the desired features of a broken and an unbroken phase,...

  3. Action potentials reliably invade axonal arbors of rat neocortical neurons

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  4. 脊髓切片中运动神经元的膜片箝技术研究:一种分析药物作用的高效工具%Patch clamp studies of motor neurons in spinal cord slices: a toolfor high-resolution analysis of drug actions

    WANG Meng-Ya; Joan J KENDIG

    2000-01-01

    AIM: To develop a tool for detailed analysis of spinally acting anesthetic and analgesic agents. METHODS:Studies were done on visually identified motor neurons in 400 μm thick spinal cord slices from 14- 23 d old rats using patch clamp techniques. Ethanol was used as a prototype general anesthetic agent. RESULTS: Cell bodies in the ventrolateral horn identified as motor neurons by retrograde fluorescent labeling had a mean dimension of 32 ±5μm (x±s, n = 25). Mean resting potential was - 62.8 ± 2.4 mV; input resistance was 44±24MΩ (n=19). Threshold was -44±7 mV,and action potential amplitude 101 ± 9 mV from baseline.Ethanol concentrations at and below 50-200 mmol/L decreased motor neuron excitability to the injected current; there was no effect on resting potential, but a variable reversible increase in input resistance. Ethanol reversibly depressed the excitatory postsynaptic potential,with a dose-response relationship similar to that previously observed for the population excitatory postsynaptic potential in intact spinal cord in vitro. Ethanol also reversibly depressed currents evoked by glutamate, reducing total charge transfer to 40%±26% of control (x±s; n= 4). CONCLUSION: Reduction of connectivity in this relatively thick slice preparation does not significantly modify drag actions. The actions of ethanol on excitatory synaptic transmission observed in intact spinal cord are

  5. Action-potential duration and the modulation of transmitter release from the sensory neurons of Aplysia in presynaptic facilitation and behavioral sensitization

    Hochner, Binyamin; Klein, Marc; Schacher, Samuel; Kandel, Eric R.

    1986-01-01

    Presynaptic facilitation of transmitter release from Aplysia sensory neurons is an important contributor to behavioral sensitization of the gill and siphon withdrawal reflex. The enhanced release is accompanied by reduction of the serotonin-sensitive S current in the sensory neurons and a consequent increase in duration of the presynaptic action potential (ranging from 10% to 30%). We find that changes of similar magnitude in the duration of depolarizing voltage-clamp steps in sensory neurons...

  6. Critical Utopian Action Research: The Potential of Action Research in the Democratization of Society

    Nielsen, Birger Steen; Nielsen, Kurt Aagaard

    The specific concept of critical utopian action research is presented and discussed, as to its origin, use and potentials. The inspiration from Robert Jungk and his future creating workshops is elaborated.......The specific concept of critical utopian action research is presented and discussed, as to its origin, use and potentials. The inspiration from Robert Jungk and his future creating workshops is elaborated....

  7. Clamping characteristics study on different types of clamping unit

    Plastic products are becoming more and more widely used in aerospace, IT, digital electronics and many other fields. With the development of technology, the requirement of product precision is getting higher and higher. However, type and working performance of clamping unit play a decisive role in product precision. Clamping characteristics of different types of clamping unit are discussed in this article, which use finite element numerical analysis method through the software ABAQUS to study the clamping uniformity, and detect the clamping force repeatability precision. The result shows that compared with toggled three-platen clamping unit, clamping characteristics of internal circulation two-platen clamping unit are better, for instance, its mold cavity deformation and force that bars and mold parting surface suffered are more uniform, and its clamping uniformity and repeatability precision is also better

  8. [Individualised medicine - potentials and need for action].

    Hüsing, Bärbel

    2010-01-01

    Individualised medicine aims to classify seemingly homogenous patient groups into smaller clinically relevant subgroups (stratification) in order to be able to treat them differently, thus contributing to the improvement of health care services, to the prevention of inappropriate treatments and to the reduction of adverse effects. This article summarises a report to the Office of Technology Assessment at the German Bundestag and points out the need for action for transferring individualised medicine from research to clinical application: significant incentives are required in order to prove the clinical validity of newly identified biomarkers of complex diseases. Sustainable business models for the joint development of new applications by research institutions, biotechnology companies, pharmaceuticals and medical devices companies are required. Instruments for transferring knowledge from bench to bedside (translational research) and the existing regulatory framework should be further developed in order to strike an appropriate balance between incentives for accelerating the transfer of innovative technology to the health care sector while, at the same time, ensuring patient safety, high quality and clinical utility. PMID:21147435

  9. Angle-action estimation in a general axisymmetric potential

    Sanders, Jason

    2012-01-01

    The usefulness of angle-action variables in galaxy dynamics is well known, but their use is limited due to the difficulty of their calculation in realistic galaxy potentials. Here we present a method for estimating angle-action variables in a realistic Milky Way axisymmetric potential by locally fitting a St\\"ackel potential over the region an orbit probes. The quality of the method is assessed by comparison with other known methods for estimating angle-action variables of a range of disc and...

  10. Dynamic clamp with StdpC software

    2011-01-01

    Dynamic clamp is a powerful method that allows the introduction of artificial electrical components into target cells to simulate ionic conductances and synaptic inputs. This method is based on a fast cycle of measuring the membrane potential of a cell, calculating the current of a desired simulated component using an appropriate model and injecting this current into the cell. Here, we present a dynamic clamp protocol using free, fully integrated, open-source software (StdpC, Spike timing dependent plasticity Clamp). Use of this protocol does not require specialist hardware, costly commercial software, experience in real time operating systems or a strong programming background. The software enables the configuration and operation of a wide range of complex and fully automated dynamic clamp experiments via an intuitive and powerful interface with a minimal initial lead-time of a few hours. After initial configuration, experimental results can be generated within minutes of cell impalement. PMID:21372819

  11. Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes

    Nakajima, S.; Gilai, A.

    1980-01-01

    Isolated single (Xenopus) muscle fibers were stained with a non-permeant potential-probing dye, merocyanine rhodanine (WW375) or merocyanine oxazolone (NK2367). When the fiber was massively stimulated, an absorption change (wave a), which seemed to reflect the action potential, occurred. Simultaneous recording of optical changes and intracellular action potentials revealed that the time-course of wave a was slower than the action potential: the peak of wave a was attained at 1 ms, and the pea...

  12. Application of Patch-clamp Technique in Insect Toxin Action Mechanism%膜片钳技术在昆虫毒素作用机理研究中的应用

    王瑞兰

    2013-01-01

    On the basis of introducing the function of patch-clamp technique and ion channel, the insecticide action mechanism (insect Na + channel toxin) was reviewed,as well as its application in new type safety insecticides development,which can provide reference for the research and development of insecticides.%在介绍膜片钳技术和离子通道的作用的基础上,综述了膜片钳技术在杀虫作用机理(昆虫Na+通道毒素)及新型安全生物杀虫剂研发中的应用,为新型安全生物杀虫剂的研发提供了参考.

  13. Compound sensory action potential in normal and pathological human nerves

    Krarup, Christian

    2004-01-01

    The compound sensory nerve action potential (SNAP) is the result of phase summation and cancellation of single fiber potentials (SFAPs) with amplitudes that depend on fiber diameter, and the amplitude and shape of the SNAP is determined by the distribution of fiber diameters. Conduction velocitie...

  14. Membrane, action, and oscillatory potentials in simulated protocells

    Syren, R. M.; Fox, S. W.; Przybylski, A. T.; Stratten, W. P.

    1982-01-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  15. Theophylline-induced potentiation of the antinociceptive action of baclofen.

    Sawynok, J

    1983-01-01

    1--Theophylline (35, 50 mg/kg) potentiated the antinociceptive action of intraperitoneally administered baclofen in the tail flick and hot plate tests. Potentiation was most marked when the pretreatment time was 1 h, but some potentiation was still apparent following a 2 h pretreatment. 2--Theophylline alone (50 mg/kg) produced only slight alterations in reaction latency in the two tests. 3--When baclofen was applied directly into the spinal subarachnoid space, a 1 h pretreatment with theophy...

  16. Membrane, action, and oscillatory potentials in simulated protocells

    Przybylski, Aleksander T.; Stratten, Wilford P.; Syren, Robert M.; Fox, Sidney W.

    1982-12-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  17. Numerical investigation of action potential transmission in plants

    Mariusz Pietruszka

    2014-02-01

    Full Text Available In context of a fairly concise review of recent literature and well established experimental results we reconsider the problem of action potential propagating steadily down the plant cell(s. Having adopted slightly modified Hodgkin-Huxley set of differential equations for the action potential we carried out the numerical investigation of these equations in the course of time. We argue that the Hodgkin-Huxley-Katz model for the nerve impulse can be used to describe the phenomena which take place in plants - this point of view seems to be plausible since the mechanisms involving active ionic transport across membranes from the mathematical point of view are similar. Besides, we compare in a qualitative way our theoretical outcomes with typical experimental results for the action potentials which arise as the reaction of plants to electrical, mechanical and light stimuli. Moreover, we point out the relevance of the sequence of events during the pulse with the appropriate ionic fluxes.

  18. Far-field potentials recorded from action potentials and from a tripole in a hemicylindrical volume.

    Jewett, D L; Deupree, D L

    1989-05-01

    There is growing evidence in support of the hypothesis that far-field potentials are recorded when action potentials encounter discontinuities in the surrounding volume. The present study found further support for this hypothesis using two methods of experimentation. The first method recorded potentials when the action potential from an isolated bullfrog sciatic nerve in a hemicylindrical volume (i) encountered a change in the shape of the surrounding volume, (ii) crossed a boundary between 2 volumes of differing resistivities, (iii) reached a bend in the nerve, or (iv) reached the functional end of the nerve. In the second method, potentials were recorded when an electrical tripole, constructed in a way to produce the electrical equivalent of an action potential, encountered the same discontinuities as well as when it was configured to simulate a curved nerve. These results are consistent with the hypothesis that dipole components of an action potential predominant in far-field recordings. PMID:2469568

  19. Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia

    C. Ian Spencer

    2014-08-01

    Full Text Available Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP. Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM. In myocytes carrying an LQT2 mutation (HERG-A422T, APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site.

  20. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction

    Yun-Feng Lan; Yang Li; Jian-Cheng Zhang; Jin-Lao Gao; Xue-Ping Wang; Zhou Fang; Yi-Cheng Fu; Mei-Yan Chen; Min Lin; Qiao Xue

    2013-01-01

    Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Results Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (Ito), the rapidly activated omponent of delayed rectifier potassium current (IKr), the slowly activated component of delayed rectifier potassium current (IKs), and the L-type calcium current (ICaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Conclusions Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca2+ current are likely the underlying mechanism of action.

  1. Action prediction based on anticipatory brain potentials during simulated driving

    Khaliliardali, Zahra; Chavarriaga, Ricardo; Gheorghe, Lucian Andrei; Millán, José del R.

    2015-12-01

    Objective. The ability of an automobile to infer the driver’s upcoming actions directly from neural signals could enrich the interaction of the car with its driver. Intelligent vehicles fitted with an on-board brain-computer interface able to decode the driver’s intentions can use this information to improve the driving experience. In this study we investigate the neural signatures of anticipation of specific actions, namely braking and accelerating. Approach. We investigated anticipatory slow cortical potentials in electroencephalogram recorded from 18 healthy participants in a driving simulator using a variant of the contingent negative variation (CNV) paradigm with Go and No-go conditions: count-down numbers followed by ‘Start’/‘Stop’ cue. We report decoding performance before the action onset using a quadratic discriminant analysis classifier based on temporal features. Main results. (i) Despite the visual and driving related cognitive distractions, we show the presence of anticipatory event related potentials locked to the stimuli onset similar to the widely reported CNV signal (with an average peak value of -8 μV at electrode Cz). (ii) We demonstrate the discrimination between cases requiring to perform an action upon imperative subsequent stimulus (Go condition, e.g. a ‘Red’ traffic light) versus events that do not require such action (No-go condition; e.g. a ‘Yellow’ light); with an average single trial classification performance of 0.83 ± 0.13 for braking and 0.79 ± 0.12 for accelerating (area under the curve). (iii) We show that the centro-medial anticipatory potentials are observed as early as 320 ± 200 ms before the action with a detection rate of 0.77 ± 0.12 in offline analysis. Significance. We show for the first time the feasibility of predicting the driver’s intention through decoding anticipatory related potentials during simulated car driving with high recognition rates.

  2. Propagation of Action Potentials: An Active Participation Exercise.

    Felsten, Gary

    1998-01-01

    Describes an active participation exercise that demonstrates the propagation of action potentials (the ability to transmit information through the neural network, dependent upon chemical interactions in the brain). Students assume the structure and function of the network by lining up around the room and communicating through hand signals and…

  3. Compound muscle action potentials in newborn infants with spina bifida.

    Geerdink, N.; Pasman, J.W.; Rotteveel, J.J.; Roeleveld, N.; Mullaart, R.A.

    2008-01-01

    The aim of this study was to investigate the relationship between compound muscle action potentials (CMAPs) and neurological impairment in newborn infants with spina bifida. Thirty-one newborn infants (17 males, 14 females, mean gestational age 39 wks [SD 2]; mean birthweight 3336 g [SD 496]) with s

  4. Deleting the accessory subunit KChIP2 results in loss of I(to,f) and increased I(K,slow) that maintains normal action potential configuration

    Thomsen, Morten B; Sosunov, Eugene A; Anyukhovsky, Evgeny P; Ozgen, Nazira; Boyden, Penelope A; Rosen, Michael R

    2008-01-01

    potential duration (APD) is maintained in KChIP2 knockout mice. OBJECTIVE: We tested the role of KChIP2 in regulating APD and studied the underlying ionic currents. METHODS: We used microelectrode techniques, whole-cell patch clamp studies, and real-time polymerase chain reaction amplification to...... characterize ventricular repolarization and its determinants in wild-type and KChIP2(-/-) mice. RESULTS: Despite comparable baseline action potentials, APD was more markedly prolonged by 4-aminopyridine (4-AP) in KChIP2(-/-) preparations. Peak K(+) current densities were similar in wild-type and KChIP2...

  5. Action potential initiation in the hodgkin-huxley model.

    Lucy J Colwell

    2009-01-01

    Full Text Available A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span and the rapidity of action potential initiation (the onset rapidity. This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in vitro. Here we apply a method from theoretical physics to derive an analytical characterization of this problem. We analytically compute the probability distribution of onset potentials and analytically derive the inverse relationship between onset span and onset rapidity. We find that the relationship between onset span and onset rapidity depends on the level of synaptic background activity. Hence we are able to elucidate the regions of parameter space for which the Hodgkin-Huxley model is able to accurately describe the behavior of this system.

  6. Click- and chirp-evoked human compound action potentials

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-01-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213–2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obta...

  7. Action potentials of curved nerves in finite limbs.

    Xiao, S; McGill, K C; Hentz, V R

    1995-06-01

    Previous simulations of volume-conducted nerve-fiber action-potentials have modeled the limb as semi-infinite or circularly cylindrical, and the fibers as straight lines parallel to the limb surface. The geometry of actual nerves and limbs, however, can be considerably more complicated. This paper presents a general method for computing the potentials of fibers with arbitrary paths in arbitrary finite limbs. It involves computing the propagating point-source response (PPSR), which is the potential arising from a single point source (dipole or tripole) travelling along the fiber. The PPSR can be applied to fibers of different conduction velocities by simple dilation or compression. The method is illustrated for oblique and spiralling nerve fibers. Potentials from oblique fibers are shown to be different for orthodromic and antidromic propagation. Such results show that the straight-line models are not always adequate for nerves with anatomical amounts of curvature. PMID:7790016

  8. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M.

    2012-03-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be

  9. MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro

    F Woodward Hopf

    2013-04-01

    Full Text Available The MCH and dopamine receptor systems have been shown to modulate a number of behaviors related to reward processing, addiction, and neuropsychiatric conditions such as schizophrenia and depression. In addition, MCH and dopamine receptors can interact in a positive manner, for example in the expression of cocaine self-administration. A recent report (Chung et al., 2011a showed that the DA1/DA2 dopamine receptor activator apomorphine suppresses pre-pulse inhibition, a preclinical model for some aspects of schizophrenia. Importantly, MCH can enhance the effects of lower doses of apomorphine, suggesting that co-modulation of dopamine and MCH receptors might alleviate some symptoms of schizophrenia with a lower dose of dopamine receptor modulator and thus fewer potential side effects. Here, we investigated whether MCH and apomorphine could enhance action potential firing in vitro in the nucleus accumbens shell (NAshell, a region which has previously been shown to mediate some behavioral effects of MCH. Using whole-cell patch-clamp electrophysiology, we found that MCH, which has no effect on firing on its own, was able to increase NAshell firing when combined with a subthreshold dose of apomorphine. Further, this MCH/apomorphine increase in firing was prevented by an antagonist of either a DA1 or a DA2 receptor, suggesting that apomorphine acts through both receptor types to enhance NAshell firing. The MCH/apomorphine-mediated firing increase was also prevented by an MCH receptor antagonist or a PKA inhibitor. Taken together, our results suggest that MCH can interact with lower doses of apomorphine to enhance NAshell firing, and thus that MCH and apomorphine might interact in vivo within the NAshell to suppress pre-pulse inhibition.

  10. Simultaneous recording of the action potential and its whole-cell associated ion current on NG108-15 cells cultured over a MWCNT electrode

    Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.

    2016-08-01

    It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.

  11. Numerical simulation of antiarrhythmic drugs effects on cardiac action potential

    Převorovská, Světlana; Maršík, František

    Brno : Brno University of Technology, 2006 - (Burša, J.; Fuis, V.), s. 170-171 ISBN 80-214-3232-2. [ Human Biomechanics 2006. Hrotovice (CZ), 13.11.2006-16.11.2006] R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z20760514 Keywords : human cardiovascular system * cardiac action potential * antiarrhytmmic drugs-cell channel interaction Subject RIV: BK - Fluid Dynamics

  12. Flexible graphene transistors for recording cell action potentials

    Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.

    2016-06-01

    Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.

  13. PKM Mechatronic Clamping Adaptive Device

    Alberto Borboni; Francesco Aggogeri; Angelo Merlo; Nicola Pellegrini; Cinzia Amici

    2015-01-01

    This study proposes a novel adaptive fixturing device based on active clamping systems for smart micropositioning of thin-walled precision parts. The modular architecture and the structure flexibility make the system suitable for various industrial applications. The proposed device is realized as a Parallel Kinematic Machine (PKM), opportunely sensorized and controlled, able to perform automatic error-free workpiece clamping procedures, drastically reducing the overall fixturing set-up time. ...

  14. Metabolic syndrome potentiates the cardiac action potential-prolonging action of drugs: a possible 'anti-proarrhythmic' role for amlodipine.

    Caillier, Bertrand; Pilote, Sylvie; Patoine, Dany; Levac, Xavier; Couture, Christian; Daleau, Pascal; Simard, Chantale; Drolet, Benoit

    2012-03-01

    Type II diabetes was shown to prolong the QT interval on the ECG and to promote cardiac arrhythmias. This is not so clear for metabolic syndrome, a precursor state of type II diabetes. The objectives of the present study were to generate a guinea pig model of metabolic syndrome by long-term exposure to diabetogenic diets, and to evaluate the monophasic action potential duration (MAPD)-modulating effects of drugs in these animals. Male Hartley guinea pigs were fed with either the control, the High Fat High Sucrose (HFHS) or the High Fat High Fructose (HFHF) diet for 150 days. Evolution of weight, blood cholesterol, triglycerides, urea and glucose tolerance were regularly monitored. Histopathological evolution was also evaluated in target organs such as pancreas, heart, liver and kidneys. Ex vivo experiments using the Langendorff retroperfusion technique, isolated hearts from guinea pigs either fed with the control, the HFHS or the HFHF diet were exposed to dofetilide 20 nM (D), chromanol 293B 10 μM (C) and amlodipine 100 nM (A) in different drug combinations and monophasic action potential duration was measured at 90% repolarization (MAPD₉₀). Our data show that it is possible to generate a guinea pig model of metabolic syndrome by chronic exposure to diabetogenic diets. Minor histopathological abnormalities were observed, mainly in the pancreas and the liver. Metabolic syndrome potentiates the MAPD-prolonging actions of I(Kr)-blocking (dofetilide) and I(Ks)-blocking (chromanol 293B) drugs, an effect that is reversible upon administration of the calcium channel blocker amlodipine. PMID:22154802

  15. Effects of Ginkgolide B on action potential and calcium,potassium current in guinea pig ventricular myocytes

    Xiao-yan QI; Zhi-xiong ZHANG; You-qiu XU

    2004-01-01

    AIM: To investigate the effect of Ginkgolide B (GB) on action potential (AP), delayed rectifier potassium current (IK), and L-type calcium current (ICa-L) in guinea pig ventricular myocytes. METHODS: Single ventricular myocytes were isolated by an enzymatic dissociation method. AP, IK, ICa-L were recorded by whole-cell patch-clamp technique in either current or voltage clamp mode. RESULTS: GB shortened APD in a concentration-dependent manner. GB 0.1, 1, and 10 μmol/L shortened APD50 by 7.9 % (n=5, P>0.05), 18.4 % (n=5, P<0.01), and 28.9 % (n=6, P<0.01), respectively; APD90 by 12.4 % (n=5, P>0.05), 17.6 % (n=5, P<0.01), 26.4 % (n=5, P<0.01),respectively. GB increased IK in a concentration-dependent manner. GB 0.1, 1, and l0 μmol/L increased IK by 20.1% (n=6, P<0.05), 43.1% (n=6, P<0.01), 55.6 % (n=6, P<0.05); increased IKtail by 10.7 % (n=6, P<0.05),25.1% (n=6, P<0.05), and 37.7 % (n=6, P<0.05), respectively at testing potential of +50 mV and shift the I-V curve of Ik upward. But GB had no significant effect on ICa-L at above concentrations. CONCLUSION: GB significantly shortened APD in a concentration-dependent manner which mainly due to increase of IK.

  16. Effects of imidapril on heterogeneity of action potential and calcium current of ventriclar myocytes in infarcted rabbits

    YangLI; QiaoXUE; JieMA; Cun-taiZHANG; PingQIU; LinWANG; WeiGAO; ReiCHENG; Zai-yinLU; Shi-wenWANG

    2004-01-01

    AIM: To investigate the effects of chronic treatment with imidapril on the electrophysiologic heterogeneous change of the noninfarcted myocardium of rabbits after myocardial infarction and the mechanism of its antiarrhythmic efficacy. METHODS: Rabbits with left coronary artery ligation were prepared and allowed to recover for 8 weeks. Myocytes were isolated from subendocardial, midmyocardial, and subepicardial regions of the noninfarcted left ventricular wall. Action potentials and calcium current were recorded using whole-cell patch clamp technique. RESULTS: The action potential duration of repolarization 90 % (APD90) was more prolonged in midmyocardium rather than in subepicardium and subendocardium with healed myocardial infarction. The transmural dispersion of repolarization (TDR) was increased in the three ventricular regions. The amplitude of/Ca-L was enhanced but its density was decreased in noninfarcted ventricular myocytes due to increased cell membrane capacitance. The increased differences of calcium currents among subepicardium, midmyocardium, and subendocardium were also discovered. Normalization of heterogeneous changes in repolarization after treatment with imidapril was observed and decrease of TDR in noninfarcted area was measured. Early after depolarization (EAD) events of noninfarcted midmyocardium were markedly decreased by imidapril. CONCLUSION: Imidapril reduced the electrophysiologic heterogeneities in noninfarcted area in rabbits after myocardial infarction. This ability of imidapril may contribute to its antiarrhythmic efficacy.

  17. Effects of imidapril on heterogeneity of action potential and calcium current of ventriclar myocytes in infarcted rabbits

    Yang LI; Shi-wen WANG; Qiao XUE; Jie MA; Cun-tai ZHANG; Ping QIU; Lin WANG; Wei GAO; Rei CHENG; Zai-ying LU

    2004-01-01

    AIM: To investigate the effects of chronic treatment with imidapril on the electrophysiologic heterogeneous change of the noninfarcted myocardium of rabbits after myocardial infarction and the mechanism of its antiarrhythmic efficacy. METHODS: Rabbits with left coronary artery ligation were prepared and allowed to recover for 8 weeks.Myocytes were isolated from subendocardial, midmyocardial, and subepicardial regions of the noninfarcted left ventricular wall. Action potentials and calcium current were recorded using whole-cell patch clamp technique.RESULTS: The action potential duration of repolarization 90 % (APD90)was more prolonged in midmyocardium rather than in subepicardium and subendocardium with healed myocardial infarction. The transmural dispersion of repolarization (TDR) was increased in the three ventricular regions. The amplitude of ICa-L was enhanced but its density was decreased in noninfarcted ventricular myocytes due to increased cell membrane capacitance. The increased differences of calcium currents among subepicardium, midmyocardium, and subendocardium were also discovered. Normalization of heterogeneous changes in repolarization after treatment with imidapril was observed and decrease of TDR in noninfarcted area was measvred. Early after depolarization (EAD) events of noninfarcted midmyocardium were markedly decreased by imidapril. CONCLUSION: Imidapril reduced the electrophysiologic heterogeneities in noninfarcted area in rabbits after myocardial infarction. This ability of imidapril may contribute to its antiarrhythmic efficacy.

  18. The Potential of Deweyan-Inspired Action Research

    Stark, Jody L.

    2014-01-01

    In its broadest sense, pragmatism could be said to be the philosophical orientation of all action research. Action research is characterized by research, action, and participation grounded in democratic principles and guided by the aim of social improvement. Furthermore, action research is an active process of inquiry that does not admit…

  19. Pressure wave model for action potential propagation in excitable cells

    Rvachev, M M

    2003-01-01

    Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of myelinated and unmyelinated axons of different diameters is theoretically estimated and is found to generally agree with the action potential (AP) conduction velocities. This remarkable coincidence allows to surmise a model in which AP spread along axon is propelled not by straggling ionic currents as in the widely accepted local circuit theory, but by mechanoactivation of the membrane ion channels by a traveling pressure pulse. Hydraulic pulses propagating in the viscous axoplasm are calculated to decay over ~1 mm distances, and it is further hypothesized that it is the role of influxing during the AP calcium ions to activate membrane skeletal protein network attached to the membrane cytoplasmic side for a brief radial contraction amplifying the pressure pulse and preventing its decay. The model correctly predicts that the AP conduction velocity should vary as the one-half power of axon diameter for large unmyelinated ...

  20. Map-based model of the cardiac action potential

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  1. Compound sensory action potential in normal and pathological human nerves

    Krarup, Christian

    2004-01-01

    at different conduction distances are determined by summation of SFAPs of varying fiber diameters, and differ in this respect, also, from the compound muscle action potential (CMAP) for which conduction velocities are determined by the very fastest fibers in the nerve. The effect and extent of temporal...... dispersion over increasing conduction distance is greater for the SNAP than CMAP, and demonstration of conduction block is therefore difficult. In addition, the effect of temporal dispersion on amplitude and shape is strongly dependent on the number of conducting fibers and their distribution, and...... in different polyneuropathies. In this review, different factors that characterize sensory fibers and set the SNAP apart from the CMAP are discussed to emphasize the supplementary and complementary information that can be obtained from sensory conduction studies. Sensory conduction studies require particular...

  2. Temperature compensating stiff pipe clamp

    A new type of non-integral pipe attachment for nuclear piping seismic restraint that allows the pipe free thermal diametric expansion without constraint when using dissimilar pipe and clamp material is described. The clamp has a high spring rate that can be controlled by variable stiffness parameters in the design. Described in detail are thermal constraint stress, load stress distribution, spring rates, load angles and design philosophy. Analytical methods of code design, fabrication techniques, cost benefits and lead time reduction techniques are presented. 5 refs

  3. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    MENG Yan; ZHAO ChunYan; ZHANG XueXin; ZHAO HuaShan; GUO LiRong; Lü Bin; ZHAO XueJian; YANG BaoXue

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead Ⅱ) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by float-ing microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5±4.2), (45.5±6.9) and (43.8±7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6±2.9), (38.7±5.6) and (38.2±7.3) ms, P<0.05). The atrial ventricular heart block type Ⅱ and Ⅲ only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17±10.56) and (101.89±9.54) mV/s) vs those in wild-type mice (vs (110.51±10.38) and (109.53±10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83±11.17) and (195.43±16.41) ms) vs that in wild-type mice ((108.27±10.85) and (171.00±15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80±0.92) nA vs that in wild-type mice ((-5.98±1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  4. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 ± 4.2), (45.5 ± 6.9) and (43.8 ± 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 ± 2.9), (38.7 ± 5.6) and (38.2 ± 7.3) ms, P<0.05). The atrial ventricular heart block type II and III only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17 ± 10.56) and (101.89 ± 9.54) mV/s) vs those in wild-type mice (vs (110.51 ± 10.38) and (109.53 ± 10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83 ± 11.17) and (195.43 ± 16.41) ms) vs that in wild-type mice ((108.27 ± 10.85) and (171.00 ± 15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80 ± 0.92) nA vs that in wild-type mice ((-5.98 ± 1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  5. Short latency compound action potentials from mammalian gravity receptor organs

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  6. Modelling Action Potential Generation and Propagation in Fibroblastic Cells

    Torres, J. J.; Cornelisse, L. N.; Harks, E. G. A.; Theuvenet, A. P. R.; Ypey, D. L.

    2003-04-01

    Using a standard Hodgkin-Huxley (HH) formalism, we present a mathematical model for action potential (AP) generation and intercellular AP propagation in quiescent (serum-deprived) normal rat kidney (NRK) fibroblasts [1], based on the recent experimental identification of the ion channels involved [2]. The principal ion channels described are those of an inwardly rectifying K+ conductance (GKIR), an L-type calcium conductance (GCaL), an intracellular calcium activated Cl- conductance (GCl(Ca)), a residual leak conductance Gleak, and gap junctional channels between the cells (Ggj). The role of each one of these components in the particular shape of the AP wave-form has been analyzed and compared with experimental observations. In addition, we have studied the role of subcellular processes like intracellular calcium dynamics and calcium buffering in AP generation. AP propagation between cells was reconstructed in a hexagonal model of cells coupled by Ggj with physiological conductance values. The model revealed an excitability mechanism of quiescent NRK cells with a particular role of intracellular calcium dynamics. It allows further explorations of the mechanism of signal generation and transmission in NRK cell cultures and its dependence on growth conditions.

  7. Pharmacological actions of statins: potential utility in COPD

    T. E. Eaton

    2009-12-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterised by minimally reversible airflow limitation and features of systemic inflammation. Current therapies for COPD have been shown to reduce symptoms and infective exacerbations and to improve quality of life. However, these drugs have little effect on the natural history of the disease (progressive decline in lung function and exercise tolerance and do not improve mortality. The anti-inflammatory effects of statins on both pulmonary and systemic inflammation through inhibition of guanosine triphosphatase and nuclear factor-B mediated activation of inflammatory and matrix remodelling pathways could have substantial benefits in patients with COPD due to the following. 1 Inhibition of cytokine production (tumour necrosis factor-, interleukin (IL-6 and IL-8 and neutrophil infiltration into the lung; 2 inhibition of the fibrotic activity in the lung leading to small airways fibrosis and irreversible airflow limitation; 3 antioxidant and anti-inflammatory (IL-6 mediated effects on skeletal muscle; 4 reduced inflammatory response to pulmonary infection; and 5 inhibition of the development (or reversal of epithelial-mesenchymal transition, a precursor event to lung cancer. This review examines the pleiotropic pharmacological action of statins which inhibit key inflammatory and remodelling pathways in COPD and concludes that statins have considerable potential as adjunct therapy in COPD.

  8. Pharmacological actions of statins: potential utility in COPD.

    Young, R P; Hopkins, R; Eaton, T E

    2009-12-01

    Chronic obstructive pulmonary disease (COPD) is characterised by minimally reversible airflow limitation and features of systemic inflammation. Current therapies for COPD have been shown to reduce symptoms and infective exacerbations and to improve quality of life. However, these drugs have little effect on the natural history of the disease (progressive decline in lung function and exercise tolerance) and do not improve mortality. The anti-inflammatory effects of statins on both pulmonary and systemic inflammation through inhibition of guanosine triphosphatase and nuclear factor-κB mediated activation of inflammatory and matrix remodelling pathways could have substantial benefits in patients with COPD due to the following. 1) Inhibition of cytokine production (tumour necrosis factor-α, interleukin (IL)-6 and IL-8) and neutrophil infiltration into the lung; 2) inhibition of the fibrotic activity in the lung leading to small airways fibrosis and irreversible airflow limitation; 3) antioxidant and anti-inflammatory (IL-6 mediated) effects on skeletal muscle; 4) reduced inflammatory response to pulmonary infection; and 5) inhibition of the development (or reversal) of epithelial-mesenchymal transition, a precursor event to lung cancer. This review examines the pleiotropic pharmacological action of statins which inhibit key inflammatory and remodelling pathways in COPD and concludes that statins have considerable potential as adjunct therapy in COPD. PMID:20956147

  9. Clamp wins pipe repair prize

    Anon.

    2001-04-01

    This paper describes the permanent pipeline repair system, developed by Tekmar, which is powered by seawater hydraulics and is easily installed and tested by any workclass remotely operated vehicle (rov). Details are given of the two main components of the system, namely, the diverless high pressure split repair clamp and the rov-operated tool to install it.

  10. Acute nerve compression and the compound muscle action potential

    Baylor Kelly

    2008-01-01

    Full Text Available Abstract Detecting acute nerve compression using neurophysiologic studies is an important part of the practice of clinical intra-operative neurophysiology. The goal of this paper was to study the changes in the compound muscle action potential (CMAP during acute mechanical compression. This is the type of injury most likely to occur during surgery. Thus, understanding the changes in the CMAP during this type of injury will be useful in the detection and prevention using intra-operative neurophysiologic monitoring. The model involved compression of the hamster sciatic nerve over a region of 1.3 mm with pressures up to 2000 mmHg for times on the order of 3 minutes. In this model CMAP amplitude dropped to 50% of its baseline value when a pressure of roughly 1000 mmHg is applied while, at the same time, nerve conduction velocities decline by only 5%. The ability to detect statistically significant changes in the CMAP at low force levels using other descriptors of the CMAP including duration, latency variation, etc alone or in conjunction with amplitude and velocity measures was investigated. However, these other parameters did not allow for earlier detection of significant changes. This study focused on a model in which nerve injury on a short time scale is purely mechanical in origin. It demonstrated that a pure compression injury produced large changes in CMAP amplitude prior to large changes in conduction velocity. On the other hand, ischemic and stretch injuries are associated with larger changes in conduction velocity for a given value of CMAP amplitude reduction.

  11. Increased Event-Related Potentials and Alpha-, Beta-, and Gamma-Activity Associated with Intentional Actions

    Karch, Susanne; Loy, Fabian; Krause, Daniela; Schwarz, Sandra; Kiesewetter, Jan; Segmiller, Felix; Chrobok, Agnieszka I.; Keeser, Daniel; Pogarell, Oliver

    2016-01-01

    Objective: Internally guided actions are defined as being purposeful, self-generated and offering choices between alternatives. Intentional actions are essential to reach individual goals. In previous empirical studies, internally guided actions were predominantly related to functional responses in frontal and parietal areas. The aim of the present study was to distinguish event-related potentials and oscillatory responses of intentional actions and externally guided actions. In addition, we ...

  12. The membrane actions of estrogens can potentiate their lordosis behavior-facilitating genomic actions

    Kow, Lee-Ming; Pfaff, Donald W.

    2004-01-01

    The membrane actions of estrogens can facilitate their genomic actions. To determine whether this facilitation bears on CNS mechanisms for estrogen-dependent behaviors, ovariectomized rats were subjected to a two-pulse treatment of estrogen directly in the hypothalamic ventromedial nucleus. Two days later, each rat was given progesterone and then tested for lordosis behavior, the induction of which requires the genomic actions of estrogen. When estrogen was given in both pulses (15 min to 2 h...

  13. Scaling of the quark-antiquark potential and improved actions in SU(2) lattice gauge theory

    The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree-level improved action and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action have been observed. For small β Wilson's action scales differently. The string tension value chi extracted from the data corresponds to Λsub(latt) = (0.018 +- 0.001) √chi for the one-plaquette action. (orig.)

  14. Analysis list: Clamp [Chip-atlas[Archive

    Full Text Available Clamp Cell line + dm3 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/Clamp.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/Clamp.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/Cla...mp.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Clamp.Cell_line.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Cell_line.gml ...

  15. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  16. Ontogeny of vestibular compound action potentials in the domestic chicken

    Jones, S. M.; Jones, T. A.

    2000-01-01

    Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of -0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately -25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6-P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 microV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ.

  17. Mathematical Distinction in Action Potential between Primo-Vessels and Smooth Muscle

    Seong-Jin Cho; Sang-Hun Lee; Wenji Zhang; Sae-Bhom Lee; Kwang-Ho Choi; Sun-Mi Choi; Yeon-Hee Ryu

    2012-01-01

    We studied the action potential of Primo-vessels in rats to determine the electrophysiological characteristics of these structures. We introduced a mathematical analysis method, a normalized Fourier transform that displays the sine and cosine components separately, to compare the action potentials of Primo-vessels with those for the smooth muscle. We found that Primo-vessels generated two types of action potential pulses that differed from those of smooth muscle: (1) Type I pulse had rapid de...

  18. Distribution of Action Potential Duration and T-wave Morphology: a Simulation Study

    Ryzhii, Elena; Ryzhii, Maxim; Wei, Daming

    2009-01-01

    The results of a simulation study of the action potential duration (APD) distribution and T-wave morphology taking into account the midmyocardial cells (M-cells) concept are described. To investigate the effect of M-cells we present a computer model in which ion channel action potential formulations are incorporated into three-dimensional whole heart model. We implemented inhomogeneous continuous action potential duration distribution based on different distributions of maximal slow delayed r...

  19. A Rabbit Ventricular Action Potential Model Replicating Cardiac Dynamics at Rapid Heart Rates

    Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G.; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N.

    2008-01-01

    Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Cai) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ven...

  20. Loading dynamics of a sliding DNA clamp.

    Cho, Won-Ki

    2014-05-22

    Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli β clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the γ clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single-molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 8° during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.

  1. Dynamics of Open DNA Sliding Clamps.

    Aaron J Oakley

    Full Text Available A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage and eukaryotes (PCNAs are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders.

  2. On the excitation of action potentials by protons and its potential implications for cholinergic transmission

    Fillafer, Christian

    2014-01-01

    One of the most conserved mechanisms for transmission of a nerve pulse across a synapse relies on acetylcholine. Ever since the Nobel-prize winning works of Dale and Loewi, it has been assumed that acetylcholine - subsequent to its action on a postsynaptic cell - is split into inactive by-products by acetylcholinesterase. Herein, this widespread assumption is falsified. Excitable cells (Chara australis internodes), which had previously been unresponsive to acetylcholine, became acetylcholine-sensitive in presence of acetylcholinesterase. The latter was evidenced by a striking difference in cell membrane depolarisation upon exposure to 10 mM intact acetylcholine (deltaV=-2plus/minus5 mV) and its hydrolysate respectively (deltaV=81plus/minus19 mV) for 60 sec. This pronounced depolarization, which also triggered action potentials, was clearly attributed to one of the hydrolysis products: acetic acid (deltaV=87plus/minus9 mV at pH 4.0; choline ineffective in range 1-10 mM). In agreement with our findings, numerou...

  3. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    Fabián Muñoz

    Full Text Available Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  4. Potential involvement of serotonergic signaling in ketamine's antidepressant actions

    du Jardin, Kristian Gaarn; Müller, Heidi Kaastrup; Elfving, Betina;

    2016-01-01

    A single i.v. infusion of ketamine, classified as an N-methyl-D-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic...... properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5......-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms...

  5. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  6. Analysis of toxin induced changes in action potential shape for drug development

    Akanda, Nesar; Molnar, Peter; Stancescu, Maria; Hickman, James J.

    2009-01-01

    The generation of an action potential is a complex process in excitable cells which involves the temporal opening and closing of several voltage-dependent ion channels in the cell membrane. The shape of an action potential can carry information concerning the state of the involved ion channels and their relationship to cellular processes. Alteration of these ion channels by the administration of toxins, drugs, and biochemicals can change the action potential’s shape in a specific way which ca...

  7. Fish oil curtails the human action potential dome in a heterogeneous manner: Implication for arrhythmogenesis

    A.O. Verkerk; H.M. den Ruijter; N. de Jonge; R. Coronel

    2009-01-01

    Omega-3 polyunsaturated fatty acids (omega3-PUFAs) from fish oil modulate various ion channels, including the L-type calcium current (I(Ca,L)). As a result, fish oil shortens the cardiac action potential and may cause a loss of the dome of the action potential (AP). Under conditions of increased pre

  8. Triangulation of the monophasic action potential causes flattening of the electrocardiographic T-wave

    Bhuiyan, Tanveer Ahmed; Graff, Claus; Thomsen, Morten Bækgaard;

    2012-01-01

    It has been proposed that triangulation on the cardiac action potential manifests as a broadened, more flat and notched T-wave on the ECG but to what extent such morphology characteristics are indicative of triangulation is more unclear. In this paper, we have analyzed the morphological changes of...... the action potential under the effect of the IKr blocker sertindole and associated these changes to concurrent changes in the morphology of electrocardiographic T-waves in dogs. We show that, under the effect of sertindole, the peak changes in the morphology of action potentials occur at time points...... similar to those observed for the peak changes in T-wave morphology on the ECG. We further show that the association between action potential shape and ECG shape is dose-dependent and most prominent at the time corresponding to phase 3 of the action potential. © 2012 CCAL....

  9. Consumer-Related Food Waste: Causes and Potential for Action

    Jessica Aschemann-Witzel

    2015-05-01

    Full Text Available In the past decade, food waste has received increased attention on both academic and societal levels. As a cause of negative economic, environmental and social effects, food waste is considered to be one of the sustainability issues that needs to be addressed. In developed countries, consumers are one of the biggest sources of food waste. To successfully reduce consumer-related food waste, it is necessary to have a clear understanding of the factors influencing food waste-related consumer perceptions and behaviors. The present paper presents the results of a literature review and expert interviews on factors causing consumer-related food waste in households and supply chains. Results show that consumers’ motivation to avoid food waste, their management skills of food provisioning and food handling and their trade-offs between priorities have an extensive influence on their food waste behaviors. We identify actions that governments, societal stakeholders and retailers can undertake to reduce consumer-related food waste, highlighting that synergistic actions between all parties are most promising. Further research should focus on exploring specific food waste contexts and interactions more in-depth. Experiments and interventions in particular can contribute to a shift from analysis to solutions.

  10. Time-Dependent Action in φ~6 Potential

    Hatem Widyan; Mashhoor Al-Wardat

    2012-01-01

    The false vacuum decay in field theory from a coherently oscillating initial state is studied for φ6 potential. An oscillating bubble solution is obtained. The instantaneous bubble nucleation rate is calculated.

  11. How Does Patch Clamp Work?--An easy approach to understanding patch clamp mechanism

    关兵才; 李之望

    2003-01-01

    In order to help patch clamp users,most of whom are not good enough at electrics and electronics,to understandthe complicated principles of patch clamp technique,we present a readily accessible explanation of patch clamp mechanism,in-cluding basic analysis of membrane currents under voltage clamp,achievement of voltage clamp and current recording,capaci-tance compensation,series resistance compensation,voltage offset correction,leak subtraction and current clamp,based on ourworking and teaching experience and with the aid of some useful formulae.

  12. Alteration of neural action potential patterns by axonal stimulation: the importance of stimulus location

    Crago, Patrick E.; Makowski, Nathaniel S.

    2014-10-01

    Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic

  13. A model for thermal exchange in axons during action potential propagation.

    Masson, Jean-Baptiste; Gallot, Guilhem

    2008-01-01

    International audience Several experiments have shown that during propagation of the action potential in axons, thermal energy is locally exchanged. In this paper, we use a simple model based on statistical physics to show that an important part of this exchange comes from the physics of the effusion. We evaluate, during the action potential propagation, the variation of internal energy and of the energy associated with the chemical potential of the effusion of water and ions to extract th...

  14. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    Objective. The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Approach. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Main results. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. Significance. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  15. Action Research’s Potential to Foster Institutional Change for Urban Water Management

    Dimitrios Zikos; Andreas Thiel

    2013-01-01

    The paper discusses the potential of action research to meet the challenges entailed in institutional design for urban water management. Our overall aim is to briefly present action research and discuss its methodological merits with regard to the challenges posed by the different conceptual bases for extrapolating the effects of institutional design on institutional change. Thus, our aim is to explore how Action Research meets the challenge of scoping the field in an open fashion for determi...

  16. Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision

    Schaefer, Andreas T; Angelo, Kamilla; Spors, Hartwig;

    2006-01-01

    Although oscillations in membrane potential are a prominent feature of sensory, motor, and cognitive function, their precise role in signal processing remains elusive. Here we show, using a combination of in vivo, in vitro, and theoretical approaches, that both synaptically and intrinsically......--permitted accurate discernment of up to 1,000 different stimuli. At low oscillation frequencies, stimulus discrimination showed a clear phase dependence whereby inputs arriving during the trough and the early rising phase of an oscillation cycle were most robustly discriminated. Thus, by ensuring AP precision...

  17. More evidence for a refined Gribov-Zwanziger action based on an effective potential approach

    Vandersickel, N.; Dudal, D.; Sorella, S.P.

    2011-01-01

    The purpose of this proceeding is twofold. Firstly, we shall make the refining of the Gribov-Zwanziger action more complete by taking into account more condensates than considered so far. Secondly, we shall provide more evidence for the refined Gribov-Zwanziger action based on an effective potential approach.

  18. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons.

    Schwindt, P C; Crill, W E

    1998-05-01

    In a previous study iontophoresis of glutamate on the apical dendrite of layer 5 pyramidal neurons from rat neocortex was used to identify sites at which dendritic depolarization evoked small, prolonged Ca2+ spikes and/or low-threshold Na+ spikes recorded by an intracellular microelectrode in the soma. These spikes were identified as originating in the dendrite. Here we evoke similar dendritic responses by electrical stimulation of presynaptic elements near the tip of the iontophoretic electrode with the use of a second extracellular electrode. In 9 of 12 recorded cells, electrically evoked excitatory postsynaptic potentials (EPSPs) above a minimum size triggered all-or-none postsynaptic responses similar to those evoked by dendritic glutamate iontophoresis at the same site. Both the synaptically evoked and the iontophoretically evoked depolarizations were abolished reversibly by blockade of glutamate receptors. In all recorded cells, the combination of iontophoresis and an EPSP, each of which was subthreshold for the dendritic spike when given alone, evoked a dendritic spike similar to that evoked by a sufficiently large iontophoresis. In one cell tested, dendritic spikes could be evoked by the summation of two independent subthreshold EPSPs evoked by stimulation at two different locations. We conclude that the dendritic spikes are not unique to the use of glutamate iontophoresis because similar spikes can be evoked by EPSPs. We discuss the implications of these results for synaptic integration and for the interpretation of recorded synaptic potentials. PMID:9582218

  19. Distinct electrophysiological potentials for intention in action and prior intention for action

    Vinding, Mikkel Christoffer; Jensen, Mads; Overgaard, Morten

    2014-01-01

    The role of conscious intention in relation to motoric movements has become a major topic of investigation in neuroscience. Traditionally, reports of conscious intention have been compared to various features of the readiness-potential (RP) – an electrophysiological signal that appears before...... electrophysiological “intention potential” above the mid-frontal areas at the time participants formed a distal intention. This potential was only found when the distal intention was self-paced and not when the intention was formed in response to an external cue....

  20. Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity.

    Natarajan, A; Molnar, P; Sieverdes, K; Jamshidi, A; Hickman, J J

    2006-04-01

    The threat of environmental pollution, biological warfare agent dissemination and new diseases in recent decades has increased research into cell-based biosensors. The creation of this class of sensors could specifically aid the detection of toxic chemicals and their effects in the environment, such as pyrethroid pesticides. Pyrethroids are synthetic pesticides that have been used increasingly over the last decade to replace other pesticides like DDT. In this study we used a high-throughput method to detect pyrethroids by using multielectrode extracellular recordings from cardiac cells. The data from this cell-electrode hybrid system was compared to published results obtained with patch-clamp electrophysiology and also used as an alternative method to further understand pyrethroid effects. Our biosensor consisted of a confluent monolayer of cardiac myocytes cultured on microelectrode arrays (MEA) composed of 60 substrate-integrated electrodes. Spontaneous activity of these beating cells produced extracellular field potentials in the range of 100 microV to nearly 1200 microV with a beating frequency of 0.5-4 Hz. All of the tested pyrethroids; alpha-Cypermethrin, Tetramethrin and Tefluthrin, produced similar changes in the electrophysiological properties of the cardiac myocytes, namely reduced beating frequency and amplitude. The sensitivity of our toxin detection method was comparable to earlier patch-clamp studies, which indicates that, in specific applications, high-throughput extracellular methods can replace single-cell studies. Moreover, the similar effect of all three pyrethroids on the measured parameters suggests, that not only detection of the toxins but, their classification might also be possible with this method. Overall our results support the idea that whole cell biosensors might be viable alternatives when compared to current toxin detection methods. PMID:16198528

  1. Action potential detection by non-linear microscopy

    Sacconi, Leonardo; Lotti, Jacopo; O'Connor, Rodney P.; Mapelli, Jonathan; Gandolfi, Daniela; D'Angelo, Egidio; Pavone, Francesco S.

    2009-02-01

    In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RA-SHG) capable of optically recording fast membrane potential events occurring in a wide-field configuration. The RA-SHG microscope in combination with a bulk staining method with FM4-64 was used to simultaneously record electrical activity from clusters of Purkinje cells (PCs) in acute cerebellar slices. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where APs were recorded in a single trial without averaging. These results show the strength of this technique to describe the temporal dynamics of neuronal assemblies.

  2. Elevated heart rate triggers action potential alternans and sudden death. translational study of a homozygous KCNH2 mutation.

    Ulrich Schweigmann

    Full Text Available BACKGROUND: Long QT syndrome (LQTS leads to arrhythmic events and increased risk for sudden cardiac death (SCD. Homozygous KCNH2 mutations underlying LQTS-2 have previously been termed "human HERG knockout" and typically express severe phenotypes. We studied genotype-phenotype correlations of an LQTS type 2 mutation identified in the homozygous index patient from a consanguineous Turkish family after his brother died suddenly during febrile illness. METHODS AND RESULTS: Clinical work-up, DNA sequencing, mutagenesis, cell culture, patch-clamp, in silico mathematical modelling, protein biochemistry, confocal microscopy were performed. Genetic analysis revealed a homozygous C-terminal KCNH2 mutation (p.R835Q in the index patient (QTc ∼506 ms with notched T waves. Parents were I° cousins - both heterozygous for the mutation and clinically unremarkable (QTc ∼447 ms, father and ∼396 ms, mother. Heterologous expression of KCNH2-R835Q showed mildly reduced current amplitudes. Biophysical properties of ionic currents were also only nominally changed with slight acceleration of deactivation and more negative V50 in R835Q-currents. Protein biochemistry and confocal microscopy revealed similar expression patterns and trafficking of WT and R835Q, even at elevated temperature. In silico analysis demonstrated mildly prolonged ventricular action potential duration (APD compared to WT at a cycle length of 1000 ms. At a cycle length of 350 ms M-cell APD remained stable in WT, but displayed APD alternans in R835Q. CONCLUSION: Kv11.1 channels affected by the C-terminal R835Q mutation display mildly modified biophysical properties, but leads to M-cell APD alternans with elevated heart rate and could precipitate SCD under specific clinical circumstances associated with high heart rates.

  3. Protein folding in a force clamp

    Cieplak, Marek; Szymczak, P.

    2006-05-01

    Kinetics of folding of a protein held in a force clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed variations in the end-to-end distance reflect microscopic events during folding. However, the folding scenarios in and out of the force clamp are distinct.

  4. NeuroGrid: recording action potentials from the surface of the brain

    Khodagholy, Dion; Gelinas, Jennifer N.; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G.; Buzsáki, György

    2014-01-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultra-conformable, biocompatible and scalable neural interface array (the ‘NeuroGrid’) that can record both LFP and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneous...

  5. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    Fabián Muñoz; Pablo Fuentealba

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the th...

  6. Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics

    Yu, Yuguo; Shu, Yousheng; McCormick, David A.

    2008-01-01

    Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous ax...

  7. Pharmacological actions and potential uses of Momordica charantia: a review.

    Grover, J K; Yadav, S P

    2004-07-01

    Since ancient times, plants and herbal preparations have been used as medicine. Research carried out in last few decades has certified several such claims of use of several plants of traditional medicine. Popularity of Momordica charantia (MC) in various systems of traditional medicine for several ailments (antidiabetic, abortifacient, anthelmintic, contraceptive, dysmenorrhea, eczema, emmenagogue, antimalarial, galactagogue, gout, jaundice, abdominal pain, kidney (stone), laxative, leprosy, leucorrhea, piles, pneumonia, psoriasis, purgative, rheumatism, fever and scabies) focused the investigator's attention on this plant. Over 100 studies using modern techniques have authenticated its use in diabetes and its complications (nephropathy, cataract, insulin resistance), as antibacterial as well as antiviral agent (including HIV infection), as anthelmintic and abortifacient. Traditionally it has also been used in treating peptic ulcers, interestingly in a recent experimental studies have exhibited its potential against Helicobacter pylori. Most importantly, the studies have shown its efficacy in various cancers (lymphoid leukemia, lymphoma, choriocarcinoma, melanoma, breast cancer, skin tumor, prostatic cancer, squamous carcinoma of tongue and larynx, human bladder carcinomas and Hodgkin's disease). There are few reports available on clinical use of MC in diabetes and cancer patients that have shown promising results. PMID:15182917

  8. Detection of Variability of the Motor Unit Action Potential Shape by Means of the Firing Patterns

    Krarup, Christian; Nikolic, Mile; Dahl, Kristian;

    1997-01-01

    The motor unit action potential is a summation of the potentials of the individual muscle fibers from the same motor unit.By using a newly developed automatic EMG decomposition system, variability of the firing patterns of the muscle fibers are analyzed.......The motor unit action potential is a summation of the potentials of the individual muscle fibers from the same motor unit.By using a newly developed automatic EMG decomposition system, variability of the firing patterns of the muscle fibers are analyzed....

  9. 76 FR 21938 - Potential Environmental Impacts of the Proposed Runway 13 Extension and Associated Actions for...

    2011-04-19

    ... Federal Aviation Administration Potential Environmental Impacts of the Proposed Runway 13 Extension and... Administration (FAA), Department of Transportation (DOT). ACTION: Notice of availability of a final EA and FONSI/ROD for the evaluation of the potential environmental impacts associated with the proposed Runway...

  10. 7 CFR 1945.19 - Reporting potential natural disasters and initial actions.

    2010-01-01

    ... assessment of agricultural production losses resulting from a potential natural disaster. These councils are...) Actions to be taken. Immediately after the occurrence of a potential natural disaster: (1) When physical... Administrator will decide whether a natural disaster has occurred. If it has, the Administrator will make...

  11. Perturbation analysis of spontaneous action potential initiation by stochastic ion channels

    Keener, James P.

    2011-07-01

    A stochastic interpretation of spontaneous action potential initiation is developed for the Morris-Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from one of the wells of a double well potential, and we develop an asymptotic approximation of the mean exit time using a recently developed quasistationary perturbation method. Using the fact that the activating ionic channel\\'s random openings and closings are fast relative to other processes, we derive an accurate estimate for the mean time to fire an action potential (MFT), which is valid for a below-threshold applied current. Previous studies have found that for above-threshold applied current, where there is only a single stable fixed point, a diffusion approximation can be used. We also explore why different diffusion approximation techniques fail to estimate the MFT. © 2011 American Physical Society.

  12. Inequalities for the Vibrating Clamped Plate Problem

    MCHALE, K.P.

    2001-01-01

    We study the eigenvalues of the vibrating clamped plate problem. We have made improvements on the bounds of the ratios of the eigenvalues of the biharmonic operator (clamped plate) using the methods of Payne, Polya, and Weinberger. The difference in our proof lies mainly with the trial functions and the orthogonality arguments. While Payne, Polya, and Weinberger and Hile and Yeh project away components along u1,u2,...,uk to meet the orthogonality conditions,we use a translation/rotation ...

  13. Protein folding in a force-clamp

    Cieplak, Marek; Szymczak, Piotr

    2006-03-01

    Kinetics of folding of a protein held in a force-clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed rapid changes in the end-to-end distance mirror microscopic events during folding. However, the folding scenarios in and out of the force-clamp are distinct.

  14. Protein folding in a force-clamp

    Cieplak, Marek; Szymczak, Piotr

    2006-01-01

    Kinetics of folding of a protein held in a force-clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed variations in the end-to-end distance reflect microscopic events during folding. However, the folding scenarios in and out of the force-clamp are distinct.

  15. Phase lagging model of brain response to external stimuli - modeling of single action potential

    Seetharaman, Karthik; Kulish, Vladimir V

    2012-01-01

    In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.

  16. Initiation and blocking of the action potential in the axon in a weak ultrasonic field

    Shneider, M N

    2013-01-01

    It is shown that the longitudinal standing ultrasonic wave of low intensity leads to the lateral drift and to redistribution of the transmembrane ion channels in the initial segment of the myelinated axon of a neuron. The analysis is based on the Hodgkin - Huxley model of an axon. Redistribution of the density of transmembrane sodium channels, caused by ultrasound, may reduce the threshold of the action potential, up to its spontaneous initiation. At significant redistribution of sodium channels in membrane, the zones of rarefaction of the transmembrane channels density are formed blocking the propagation of the action potential. After switching the ultrasound off, the unperturbed uniform distribution of transmembrane channels in the axon recovers due to lateral diffusion. The blocking effect of the action potential can be used in anesthesia.

  17. DBI potential, DBI inflation action and general Lagrangian relative to phantom, K-essence and quintessence

    We derive a Dirac-Born-Infeld (DBI) potential and DBI inflation action by rescaling the metric. The determinant of the induced metric naturally includes the kinetic energy and the potential energy. In particular, the potential energy and kinetic energy can convert into each other in any order, which is in agreement with the limit of classical physics. This is quite different from the usual DBI action. We show that the Taylor expansion of the DBI action can be reduced into the form in the non-linear classical physics. These investigations are the support for the statement that the results of string theory are consistent with quantum mechanics and classical physics. We deduce the Phantom, K-essence, Quintessence and Generalized Klein-Gordon Equation from the DBI model

  18. Optical magnetic detection of single-neuron action potentials using NV-diamond

    Turner, Matthew; Barry, John; Schloss, Jennifer; Glenn, David; Walsworth, Ron

    2016-05-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential dynamics in whole organisms with single-neuron resolution. Here, we report a new approach to this problem: using nitrogen-vacancy (NV) color centers in diamond to measure the time-dependent magnetic fields produced by single-neuron action potentials. We demonstrate our method using excised single neurons from two invertebrate species, marine worm and squid; and then by single-neuron action potential magnetic sensing exterior to whole, live, opaque marine worms for extended periods with no adverse effect. The results lay the groundwork for real-time, noninvasive 3D magnetic mapping of functional mammalian neuronal networks.

  19. A phantom axon setup for validating models of action potential recordings.

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %. PMID:27016364

  20. Design of Voltage-clamp-controlled Current-clamp%电压钳控制电流钳的设计

    熊俊; 樊枫; 瞿安连

    2008-01-01

    研究证明,传统膜片钳放大器在电流钳模式下记录到的快速电压信号会存在失真,且造成失真的根本原因是由于膜片钳的探头电路设计.为了克服这些缺陷重新设计了一种探头,新探头电路不仅能像传统的电压跟随器一样测量瞬态电压,而且适用于传统的电压钳工作模式.此外,一种命名为电压钳控制的电流钳技术被应用来改进传统的膜片钳放大器.用可变的低通滤波器来调整电压钳模块的响应速度,从而在实现膜电位钳位的同时准确记录快速电压信号.桥平衡电路用来消除命令电流流过串联电阻时带来的电压误差.而传统膜片钳中的快电容补偿环节则被改进用来补偿电极分布电容和探头放大器输入电容并提高电流钳模式下系统的响应速度.细胞模型实验结果表明,改进后的膜片钳放大器能够满足电生理研究中快速电位变化测量的需要.%Previous research rcvealed that distortion is detected in transient voltage signal recorded with traditional patch clamp amplifier under current clamp mode, which is essentially resulted by electronic design of the headstage of the patch clamp. A new kind of headstage is designed to modify the defect, the circuit of which not only measures the transient potentials as the classical voltage follower does but also is quite suitable for the standard voltage-clamp mode. Furthermore, the technique of voltage-clamp-controlled current-clamp is applied for modifying the conventional patch-clamp amplifier, the variable low-pass filter is added into the circuit to reduce the response speed of voltage-clamp module, thus the transient potentials changes can be measured while membrane potential is kept at a constant value. Bridge balance circuitry is designed to eliminate the voltage drop while the variable current injected into the electrode. And fast capacitance compensation stage of conventional PCA is modified to nentralize the

  1. Differential effects of thioridazine enantiomers on action potential duration in rabbit papillary muscle

    Jensen, Ask Schou; Pennisi, Cristian Pablo; Sevcencu, Cristian;

    2015-01-01

    (+)-thioridazine. In this study we for the first time investigate the cardiotoxicity of the isolated thioridazine enantiomers and show their effects on ventricular repolarization. The effects of (+)-thioridazine, (-)-thioridazine, and racemate on the rabbit ventricular action potential duration (APD) were...... investigated in a randomized controlled blinded experiment. Action potentials were measured in papillary muscles isolated from 21 female rabbits, and the drug effect on 90% APD in comparison with control (DeltaDelta-APD90) was evaluated. Increasing concentrations of (+)-thioridazine and the racemate caused...

  2. Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects.

    Enomoto, Riyo; Koshiba, Chika; Suzuki, Chie; Lee, Eibai

    2011-05-01

    Wogonin, a flavone in the roots of Scutellaria baicalensis, reduced etoposide-induced apoptotic cell death in normal cells, such as bone marrow cells and thymocytes. On the other hand, wogonin potentiated the proapoptotic or cytotoxic action of etoposide in tumor cells, such as Jurkat, HL-60, A549, and NCI-H226. These contradictory actions of wogonin on apoptosis are distinguished by normal or cancer cell types. Wogonin had no effect on apoptosis induced by other anticancer agents in the tumor cells. Thus, the potentiation effect of wogonin was observed only in etoposide-induced apoptosis in tumor cells. In a functional assay for P-glycoprotein (P-gp), wogonin suppressed excretion of calcein, a substrate for P-gp, in these tumor cells. Moreover, wogonin decreased the excretion of radiolabeled etoposide and accordingly increased intracellular content of this agent in the cells. P-gp inhibitors showed a similar potentiation effect on etoposide-induced apoptosis in these tumor cells. Thus, wogonin is likely to potentiate the anticancer action of etoposide due to P-gp inhibition and accumulation of this agent. These findings suggest that wogonin may be a useful chemotherapeutic adjuvant to potentiate the pharmacological action of etoposide and ameliorate its adverse effects. PMID:20658136

  3. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected. PMID:26686984

  4. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC50 values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC50 = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other

  5. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi, E-mail: kumamote@cc.saga-u.ac.jp

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  6. Youth Participatory Action Research and Educational Transformation: The Potential of Intertextuality as a Methodological Tool

    Bertrand, Melanie

    2016-01-01

    In this article, Melanie Bertrand explores the potential of using the concept of intertextuality--which captures the way snippets of written or spoken text from one source become incorporated into other sources--in the study and practice of youth participatory action research (YPAR). Though this collective and youth-centered form of research…

  7. Quantitative analysis of single muscle fibre action potentials recorded at known distances

    Albers, B.A.; Put, J.H.M.; Wallinga, W.; Wirtz, P.

    1989-01-01

    In vivo records of single fibre action potentials (SFAPs) have always been obtained at unknown distance from the active muscle fibre. A new experimental method has been developed enabling the derivation of the recording distance in animal experiments. A single fibre is stimulated with an intracellu

  8. ACTION OF PROGESTERONE ON THE DEPOLARIZATION OF THE MEMBRANE POTENTIAL IN TOAD OOCYTES INDUCED BY LEUCINE

    WANGYu-Feng

    1989-01-01

    The depolarization of the membrane potential in toad oocytes induced by leucine was found in our previous experiment. In this paper, a possible action or progesterone in the process was further investigated. After oocytes had been incubated for 16 to 24 hours with

  9. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T;

    2015-01-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with...

  10. Effect of ethanol on action potential in ventricular cardiomyocytes: experimental and computational approach

    Pásek, Michal; Bébarová, M.; Christé, G.; Šimurdová, M.; Šimurda, J.

    London: The Physiological Society, 2014. 208P. [Physiology 2014. 30.06.2014-02.07.2014, London] R&D Projects: GA MZd(CZ) NT14301-3/2013 Institutional support: RVO:61388998 Keywords : rat ventricular cardiomyocyte * action potential * ethanol * rat ventricular cell model Subject RIV: BO - Biophysics

  11. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle.

    Wing-Chiu Tong

    Full Text Available Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C coupling of uterine smooth muscle cells (USMC. Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: Ca2+ currents (L- and T-type, Na+ current, an hyperpolarization-activated current, three voltage-gated K+ currents, two Ca2+-activated K+ current, Ca2+-activated Cl current, non-specific cation current, Na+-Ca2+ exchanger, Na+-K+ pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area:volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular Ca2+ computed from known Ca2+ fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing [Ca2+]i. This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes, the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, [Ca2+]i and phasic force. In summary, our advanced mathematical model provides a powerful tool to

  12. Piezoresistive cantilever force-clamp system

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  13. An Ultrasonic Clamp for Bloodless Partial Nephrectomy

    Lafon, Cyril; Bouchoux, Guillaume; Murat, François Joseph; Birer, Alain; Theillère, Yves; Chapelon, Jean Yves; Cathignol, Dominique

    2007-05-01

    Maximum conservation of the kidney is preferable through partial nephrectomy for patients at risk of disease recurrence of renal cancers. Haemostatic tools are needed in order to achieve bloodless surgery and reduce post surgery morbidity. Two piezo-ceramic transducers operating at a frequency of 4 MHz were mounted on each arm of a clamp. When used for coagulation purposes, two transducers situated on opposite arms of the clamp were driven simultaneously. Heat delivery was optimized as each transducers mirrored back to targeted tissues the wave generated by the opposite transducer. Real-time treatment monitoring with an echo-based technique was also envisaged with this clamp. Therapy was periodically interrupted so one transducer could generate a pulse. The echo returning from the opposite transducer was treated. Coagulation necroses were obtained in vitro on substantial thicknesses (23-38mm) of pig liver over exposure durations ranging from 30s to 130s, and with acoustic intensities of less than 15W/cm2 per transducer. Both kidneys of two pigs were treated in vivo with the clamp (14.5W/cm2 for 90s), and the partial nephrectomies performed proved to be bloodless. In vitro and in vivo, wide transfixing lesions corresponded to an echo energy decrease superior to -10dB and parabolic form of the time of flight versus treatment time. In conclusion, this ultrasound clamp has proven to be an excellent mean for achieving monitored haemostasis in kidney.

  14. Effects of benactyzine on action potentials and contractile force of guinea pig papillary muscles

    2000-01-01

    Aim:To explore the effects of benactyzine (BEN) on the action potential and contractile force in guinea pig papillary muscles.Methods:Conventional microelectrode technique was used to record the fast action potentials (FAP) and slow action potentials (SAP) of guinea pig papillary muscles.Results:Benactyzine 5,10,50 μmol·L-1 suppressed the maximal upstroke velocity (vmax) of FAP and contractile force (Fc) concentration-dependently while prolonged the action potential duration at 50%,90% repolarization (APD50,APD90) and effective refractory period (ERP) of FAP.The suppression on the vmax was frequency-dependent.Benactyzine 5,10,50μmol·L-1 lengthened the APD50,APD90 of SAP induced by isoprenaline or histamine when perfused with KCl 22 mmol·L-1 Tyrode's solution.The vmax of the SAP was not decreased by benactyzine 5,10 μmol·L-1 but by 50 μmol·L-1.The effects on the SAP were antagonized by elevation of the extracellular calcium from 2.0 to 5.6 mmol·L-1.The effects of benactyzine on SAP elicited by tetrodotoxin resembled that by isoprenaline or histamine except the more pronounced suppression on vmax and action potential amplitude (APA).The persistent rapid spontaneous activity and triggered tachyarrhythmia induced by ouabain were also abolished immediately by benactyzine 5 μmol·L-1.Conclusion:Benactyzine can inhibit Na+,K+,Ca2+ transmembrane movement and intracellular Ca2+ mobilization in the myocardium,and this may be the electrophysiological basis of its effects against experimental arrhythmias.

  15. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons.

    Kress, Geraldine J; Dowling, Margaret J; Eisenman, Lawrence N; Mennerick, Steven

    2010-04-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium channels, which are dominated by the Na(V)1.6 isoform in both cell types, distribute more proximally and exhibit lower overall density in granule neurons than in CA3 neurons. To test possible contributions of sodium channel distributions to voltage threshold and to test whether morphological differences participate, we performed simulations of dentate granule neurons and of CA3 pyramidal neurons. These simulations revealed that cell morphology and sodium channel distribution combine to yield the characteristic granule neuron action potential upswing and voltage threshold. Proximal axon sodium channel distribution strongly contributes to the higher voltage threshold of dentate granule neurons for two reasons. First, action potential initiation closer to the somatodendritic current sink causes the threshold of the initiating axon compartment to rise. Second, the proximity of the action potential initiation site to the recording site causes somatic recordings to more faithfully reflect the depolarized threshold of the axon than in cells like CA3 neurons, with distally initiating action potentials. Our results suggest that the proximal location of axon sodium channels in dentate granule neurons contributes to the intrinsic excitability differences between DG and CA3 neurons and may participate in the low-pass filtering function of dentate granule neurons. PMID:19603521

  16. The DBI action, higher-derivative supergravity, and flattening inflaton potentials

    Bielleman, Sjoerd; Ibáñez, Luis E.; Pedro, Francisco G.; Valenzuela, Irene; Wieck, Clemens

    2016-05-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II D p-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the Kähler potential. We identify the supersymmetric dimension-eight operators describing the α' corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an {N}=1 supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomial potentials.

  17. Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex.

    Leonardo A Molina

    Full Text Available Antagonists of N-methyl-D-aspartate receptors (NMDAR have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801 on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists.

  18. IMPORTANT: Fluke is recalling Digital Clamp Meters

    2013-01-01

    Fluke is voluntarily recalling four models of Digital Clamp Meters: Fluke 373, 374, 375 and 376. If you own one of these clamp meters, please stop using it and send it back to Fluke for repair even if you have not experienced problems.   Description of the problem: "The printed circuit assembly may not be properly fastened to the test lead input jack. This may result in inaccurate voltage readings, including a low or no-voltage reading on a circuit energised with a hazardous voltage, presenting a shock, electrocution or thermal burn hazard." To determine if your clamp meter is affected by this recall notice, and for more information, click here.

  19. Design and application of multifunctional stomach clamp

    Yun Fu Lu; Pi Wu Li; Xir Xin Zhang

    2000-01-01

    AIM Pylorus and pyloric vagus preserving gastrectomy (PPVPG) is an efficient operation mode for treatinggastric and duodenal ulcers. For its better application and popularization, we have designed andmanufactured a special multifunctional stomach clamp.METHODS The clamp has been designed carefully in view of the different sizes of the patients' stomachsand the different starting points of Latarjer nerves so as to facilitate the execution of the present operationmode, which requires the preservation of the vagus innervated pyloric region so as to make the remnantstomach maintain its normal physiological function and the vagus branches clinging antral seromuscular flapkept in proper size so that avoiding too much remaining antral mucosa is removed to cause greater difficultyin operation. With this in view, we observed and measured the distance between the Latarjer nerves distribution and the pyloric rings of 42 patients' stomachs in the course of operations. We bent an aluminumstring 3 mm thick for each stomach according to the size of antral seromuecular flap and chose an optimalcurvature from the 42 sizes for manufacturing the clamp. The clamp is made of 3 Cr13 stainless steel,consisting of three parts, the curved head, the fastening ring and the handle. The curved head is shapedalmost exactly like the remained antral seromuscular flap. The ring at its tip when in place fastens the twosides of the clamp so that the tissue of the stomach between will be clutched by an even force. On one sideare three cuts for moving the ring upwards, each cut representing 1 mm for fastening and adjustments can bemade in view of the thickness or thinness of the tissue. The handles bend backward for fighting shy of thecuts so as to facilitate the operation.RESULTS With the stomach disassociated in the light of PPVPG procedures, the clamp may easily beapplied from the upper part of the Latarjer nerves. The following merits can be noted. ① The curving line ofthe flap can be precisely

  20. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells

    Liu Jinxu; Tu Huiyin; Zhang Dongze; Zheng Hong; Li Yu-Long

    2012-01-01

    Abstract Background The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Result...

  1. Simulation and calculation of the contribution of hyperpolarization-activated cyclic nucleotide-gated channels to action potentials

    Liao Liping; Lin Xianguang; Hu Jielin; Wu Xin; Yang Xiaofei; Wang Wei; Li Chenhong

    2016-01-01

    The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel, which mediates the influx of cations, has an important role in action potential generation. In this article, we describe the contribution of the HCN channel to action potential generation. We simulated several common ion channels in neuron membranes based on data from rat dorsal root ganglion cells and modeled the action potential. The ion channel models employed in this paper were based...

  2. The DBI Action, Higher-derivative Supergravity, and Flattening Inflaton Potentials

    Bielleman, Sjoerd; Pedro, Francisco G; Valenzuela, Irene; Wieck, Clemens

    2016-01-01

    In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II D$p$-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the K\\"ahler potential. We identify the supersymmetric dimension-eight operators describing the $\\alpha'$ corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an $\\mathcal N = 1$ supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomia...

  3. Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action.

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph A; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2015-10-01

    Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action. PMID:26245207

  4. Spatial and frequency domain ring source models for the single muscle fiber action potential

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... examples including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  5. Application of Emergency Action Levels from Potential Release at Research Reactor HANARO

    Execution of the protective action promptly is possible that Emergency Action Levels (EALs) must be established for a radiological release from nuclear facility. The EALs for electric power reactor are already developed and applied to recognize an emergency situation rapidly. Recently the IAEA published the safety report including the EALs for research reactor. This paper describes the EALs to apply for a potential release pathway at the research reactor HANARO. The results of table 1 and 2 will be higher than actual because the weather condition in real situation is difference. However, the EALs applying the potential stack release, ground release and site can be useful for research reactor HANARO making the emergency declaration. The EALs at the site boundary of the table 3 can be applied to protect the off-site public

  6. Real-time imaging of action potentials in nerves using changes in birefringence.

    Badreddine, Ali H; Jordan, Tomas; Bigio, Irving J

    2016-05-01

    Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time "movies". This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue. PMID:27231635

  7. Application of Emergency Action Levels from Potential Release at Research Reactor HANARO

    Kim, Jongsoo; Lee, Goan Yub; Lee, Hae Choi; Kim, Bong Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Execution of the protective action promptly is possible that Emergency Action Levels (EALs) must be established for a radiological release from nuclear facility. The EALs for electric power reactor are already developed and applied to recognize an emergency situation rapidly. Recently the IAEA published the safety report including the EALs for research reactor. This paper describes the EALs to apply for a potential release pathway at the research reactor HANARO. The results of table 1 and 2 will be higher than actual because the weather condition in real situation is difference. However, the EALs applying the potential stack release, ground release and site can be useful for research reactor HANARO making the emergency declaration. The EALs at the site boundary of the table 3 can be applied to protect the off-site public.

  8. Prolonged penile strangulation with metal clamps

    Chirag Patel; Richard Kim; Michael Delterzo; Run Wang

    2006-01-01

    Various different objects have been reported to strangulate the penis. We reported on a patient who used metal radiator clamps for an extended period of time. Workup included history, physical examination and urinalysis. The patient was taken to the operating room for further evaluation with cystourethroscopy and orthopedic wire cutters were used to break the metal bands.

  9. Bimodal action of menthol on the transient receptor potential channel TRPA1

    Karashima, Yuji; Damann, Nils; Prenen, Jean; Talavera Pérez, Karel; Segal Stanciu, Andrei; Voets, Thomas; Nilius, Bernd

    2007-01-01

    TRPA1 is a calcium-permeable nonselective cation transient receptor potential (TRP) channel that functions as an excitatory ionotropic receptor in nociceptive neurons. TRPA1 is robustly activated by pungent substances in mustard oil, cinnamon, and garlic and mediates the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate a bimodal sensitivity of TRPA1 to menthol, a widely used cooling agent and known activator of the related cold receptor TRPM8. In who...

  10. Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells

    Renjun Zhu; Millrod, Michal A.; Zambidis, Elias T.; Leslie Tung

    2016-01-01

    Electrophysiological variability in cardiomyocytes derived from pluripotent stem cells continues to be an impediment for their scientific and translational applications. We studied the variability of action potentials (APs) recorded from clusters of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using high-resolution optical mapping. Over 23,000 APs were analyzed through four parameters: APD30, APD80, triangulation and fractional repolarization. Although measures were taken to re...

  11. Action Potential Energy Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates

    Biswa Sengupta; Martin Stemmler; Simon B Laughlin; Niven, Jeremy E.

    2010-01-01

    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant ...

  12. Correlation of compound action potential and electromyography with facial muscle tension

    Goodnight, J W; Dulguerov, Pavel; Berke, G S; Lesavoy, M; Hoffman, L. F.

    1995-01-01

    Functional electric stimulation is a new method for dynamic rehabilitation of paralyzed muscles. The output of such prosthetic devices needs to be modulated by some index of the muscle movement. In facial paralysis a measure of the muscle contractions of the normal contralateral side seems to be an appropriate input. In the rabbit, we simultaneously measured the compound action potential of the buccal branch of the facial nerve, the electromyogram of the zygomaticus major muscle, and the musc...

  13. Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation

    Akkin, T.; Joo, C.; Boer

    2007-01-01

    We report noncontact optical measurement of fast transient structural changes in the crustacean nerve during action potential propagation without the need for exogenous chemicals or reflection coatings. The technique, spectral domain optical coherence tomography, provides real-time cross-sectional images of the nerve with micron-scale resolution to select a specific region for functional assessment and interferometric phase sensitivity for subnanometer-scale motion detection. Noncontact optic...

  14. Variety of the Wave Change in Compound Muscle Action Potential in an Animal Model

    ITO, ZENYA; Imagama, Shiro; Ando, Kei; Muramoto, Akio; Kobayashi, Kazuyoshi; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Matsumoto, Akiyuki; Tanaka, Satoshi; Morozumi, Masayoshi; Matsuyama, Yukihiro; Ishiguro, Naoki

    2015-01-01

    Study Design Animal study. Purpose To review the present warning point criteria of the compound muscle action potential (CMAP) and investigate new criteria for spinal surgery safety using an animal model. Overview of Literature Little is known about correlation palesis and amplitude of spinal cord monitoring. Methods After laminectomy of the tenth thoracic spinal lamina, 2-140 g force was delivered to the spinal cord with a tension gage to create a bilateral contusion injury. The study morpho...

  15. Action Potential Morphology Influences Intracellular Calcium Handling Stability and the Occurrence of Alternans

    Jordan, Peter N; Christini, David J

    2005-01-01

    Instability in the intracellular Ca2+ handling system leading to Ca2+ alternans is hypothesized to be an underlying cause of electrical alternans. The highly coupled nature of membrane voltage and Ca2+ regulation suggests that there should be reciprocal effects of membrane voltage on the stability of the Ca2+ handling system. We investigated such effects using a mathematical model of the cardiac intracellular Ca2+ handling system. We found that the morphology of the action potential has a sig...

  16. Relation of recurrent laryngeal nerve compound action potential to laryngeal biomechanics

    Nasri, S.; Dulguerov, Pavel; Damrose, E J; Ye, M.; Kreiman, J; Berke, G S

    1995-01-01

    This study was designed to investigate the compound action potential (CAP) of the recurrent laryngeal nerve (RLN) and to correlate this electrophysiologic signal to laryngeal biomechanics and phonatory function. Four adult mongrel canines were anesthetized. The RLN was isolated and stimulated, and recording electrodes were applied. The electromyographic (EMG) electrode was placed in the thyroarytenoid (TA) muscle. The RLN CAP and the EMG of the TA muscle were recorded and compared to the stim...

  17. Human sensory nerve compound action potential amplitude: variation with sex and finger circumference.

    Bolton, C F; Carter, K M

    1980-01-01

    The amplitude of human, antidromic, sensory compound action potentials (CAP) recorded from median and ulnar digital nerves is greater in females than males. This sex difference is probably due entirely to females having digits of smaller circumference, resulting in digital nerves being closer to the recording ring electrode enclosing the digit. The negative linear correlation between CAP amplitude and circumference holds true for persons of the same sex.

  18. Effect of ethanol on action potential and ionic membrane currents in rat ventricular myocytes

    Bébarová, M.; Matejovič, P.; Pásek, Michal; Ohlídalová, D.; Jansová, D.; Šimurdová, M.; Šimurda, J.

    2010-01-01

    Roč. 200, č. 4 (2010), s. 301-314. ISSN 1748-1708 Institutional research plan: CEZ:AV0Z20760514 Keywords : action potential * ethanol * rat ventricular myocyte Subject RIV: BO - Biophysics Impact factor: 3.138, year: 2010 http:// apps .isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=15&SID=Y1pmpi@7k2HPEc8ehEE&page=1&doc=1&colname=WOS

  19. Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs.

    Rieger, R; Taylor, J; Comi, E; Donaldson, N; Russold, M; Mahony, C M O; McLaughlin, J A; McAdams, E; Demosthenous, A; Jarvis, J C

    2004-07-01

    Information extracted from whole-nerve electroneurograms, recorded using electrode cuffs, can provide signals to neuroprostheses. However, the amount of information that can be extracted from a single tripole is limited. This communication demonstrates how previously unavailable information about the direction of action potential propagation and velocity can be obtained using a multi-electrode cuff and that the arrangement acts as a velocity-selective filter. Results from in vitro experiments on frog nerves are presented. PMID:15234689

  20. Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons

    Kress, Geraldine J.; Dowling, Margaret; Eisenman, Lawrence N.; Mennerick, Steven

    2010-01-01

    Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium c...

  1. Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools

    Frey, Scott H.; POVINELLI, DANIEL J.

    2012-01-01

    The ability to adjust one's ongoing actions in the anticipation of forthcoming task demands is considered as strong evidence for the existence of internal action representations. Studies of action selection in tool use reveal that the behaviours that we choose in the present moment differ depending on what we intend to do next. Further, they point to a specialized role for mechanisms within the human cerebellum and dominant left cerebral hemisphere in representing the likely sensory costs of ...

  2. Ethanol inhibition of N-methyl-D-aspartate-activated current in mouse hippocampal neurones: whole-cell patch-clamp analysis

    Peoples, Robert W.; White, Geoffrey; Lovinger, David M.; Weight, Forrest F

    1997-01-01

    The action of ethanol on N-methyl-D-aspartate (NMDA)-activated ion current was studied in mouse hippocampal neurones in culture using whole-cell patch-clamp recording.Ethanol inhibited NMDA-activated current in a voltage-independent manner, and did not alter the reversal potential of NMDA-activated current.Concentration–response analysis of NMDA- and glycine-activated current revealed that ethanol decreased the maximal response to both agonists without affecting their EC50 values.The polyamin...

  3. Action Research’s Potential to Foster Institutional Change for Urban Water Management

    Dimitrios Zikos

    2013-04-01

    Full Text Available The paper discusses the potential of action research to meet the challenges entailed in institutional design for urban water management. Our overall aim is to briefly present action research and discuss its methodological merits with regard to the challenges posed by the different conceptual bases for extrapolating the effects of institutional design on institutional change. Thus, our aim is to explore how Action Research meets the challenge of scoping the field in an open fashion for determining the appropriate mechanisms of institutional change and supporting the emerging of new water institutions. To accomplish this aim, we select the Water Framework Directive (WFD as an illustrative driving force requiring changes in water management practices and implying the need for the emergence of new institutions. We employ a case of urban water management in the Volos Metropolitan Area, part of the Thessaly region in Greece, where a Pilot River Basin Plan was implemented. By applying action research and being involved in a long process of interaction between stakeholders, we examine the emergence of new institutions dealing with urban water management under the general principles of the major driving force for change: the WFD.

  4. Early identification of hERG liability in drug discovery programs by automated patch clamp

    Timm eDanker

    2014-09-01

    Full Text Available Blockade of the cardiac ion channel coded by hERG can lead to cardiac arrhythmia, which has become a major concern in drug discovery and development. Automated electrophysiological patch clamp allows assessment of hERG channel effects early in drug development to aid medicinal chemistry programs and has become routine in pharmaceutical companies. However, a number of potential sources of errors in setting up hERG channel assays by automated patch clamp can lead to misinterpretation of data or false effects being reported. This article describes protocols for automated electrophysiology screening of compound effects on the hERG channel current. Protocol details and the translation of criteria known from manual patch clamp experiments to automated patch clamp experiments to achieve good quality data are emphasized. Typical pitfalls and artifacts that may lead to misinterpretation of data are discussed. While this article focuses on hERG channel recordings using the QPatch (Sophion A/S, Copenhagen, Denmark technology, many of the assay and protocol details given in this article can be transferred for setting up different ion channel assays by automated patch clamp and are similar on other planar patch clamp platforms.

  5. Intracellular Recordings of Action Potentials by an Extracellular Nanoscale Field-Effect Transistor

    Duan, Xiaojie; Gao, Ruixuan; Xie, Ping; Cohen-Karni, Tzahi; Qing, Quan; Choe, Hwan Sung; Tian, Bozhi; Jiang, Xiaocheng; Lieber, Charles M.

    2012-01-01

    The ability to make electrical measurements inside cells has led to many important advances in electrophysiology 1-6 . The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution 1,2 . Ideally the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impe...

  6. Multilevel-clamped multilevel converters (MLC2)

    Rodriguez, Pedro; Bellar, Maria Dias; Muñoz-Aguliar, Raúl Santiago; Busquets-Monge, Sergio; Blaabjerg, Frede

    2012-01-01

    This letter introduces a new series of multilevel (ML) converters based on the ML clamping concept. By applying this technique, a ML clamping unit (MCU) conveys additional levels for synthesizing the output waveforms of a diode-clampedML dc– ac power converter. The basic building block of the ML ...

  7. Γ-source Neutral Point Clamped Inverter

    Mo, Wei; Loh, Poh Chiang; Blaabjerg, Frede

    Transformer based Z-source inverters are recently proposed to achieve promising buck-boost capability. They have improved higher buck-boost capability, smaller size and less components count over Z-source inverters. On the other hand, neutral point clamped inverters have less switching stress and...... better output performance comparing with traditional two-level inverters. Integrating these two types of configurations can help neutral point inverters achieve enhanced votlage buck-boost capability....

  8. Population of Computational Rabbit-Specific Ventricular Action Potential Models for Investigating Sources of Variability in Cellular Repolarisation

    Philip Gemmell; Kevin Burrage; Blanca Rodriguez; T Alexander Quinn

    2014-01-01

    Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A s...

  9. π-Clamp-mediated cysteine conjugation

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  10. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  11. On modelling of physical effects accompanying the propagation of action potentials in nerve fibres

    Engelbrecht, Jüri; Tamm, Kert; Laasmaa, Martin; Vendelin, Marko

    2016-01-01

    The recent theoretical and experimental studies have revealed many details of signal propagation in nervous systems. In this paper an attempt is made to unify various mathematical models which describe the signal propagation in nerve fibres. The analysis of existing single models permits to select the leading physiological effects. As a result, a more general mathematical model is described based on the coupling of action potentials with mechanical waves in a nerve fibre. The crucial issue is how to model coupling effects which are strongly linked to the ion currents through biomembranes.

  12. Effects of terpineol on the compound action potential of the rat sciatic nerve

    M.R. Moreira; G.M.P. Cruz; Lopes, M S; A.A.C. Albuquerque; J.H. Leal-Cardoso

    2001-01-01

    Terpineol, a volatile terpenoid alcohol of low toxicity, is widely used in the perfumery industry. It is an important chemical constituent of the essential oil of many plants with widespread applications in folk medicine and in aromatherapy. The effects of terpineol on the compound action potential (CAP) of rat sciatic nerve were studied. Terpineol induced a dose-dependent blockade of the CAP. At 100 µM, terpineol had no demonstrable effect. At 300 µM terpineol, peak-to-peak amplitude and con...

  13. Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells

    Strege, Peter; Beyder, Arthur; Bernard, Cheryl; Crespo-Diaz, Ruben; Behfar, Atta; Terzic, Andre; Ackerman, Michael; Farrugia, Gianrico

    2012-01-01

    NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomy...

  14. The optimal distance between two electrode tips during recording of compound nerve action potentials in the rat median nerve

    Yongping Li; Jie Lao; Xin Zhao; Dong Tian; Yi Zhu; Xiaochun Wei

    2014-01-01

    The distance between the two electrode tips can greatly inlfuence the parameters used for record-ing compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spac-ings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance be-tween two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed signiifcantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no signiifcant change. Different distances between recording and stimulating sites did not produce signiifcant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential.

  15. Hyperinsulinemic Euglycemic clamp for cardiac PET

    The aim of this study was to assess the adequacy of Hyperinsulinemic Euglycaemic clamp to yield technically adequate and clinically meaningful cardiac scans. The F- 18 Fluorodeoxyglucose scans obtained in diabetic patients are of sub-optimal quality as high level of glucose competes with radioactive Fluorodeoxyglucose for cardiac uptake. Thus to allow quick stabilization of metabolic environment and to get superior quality images, insulin clamp is an accepted technique. Thirty patients (20 males and 5 females) with ages ranging from 43 to 69 years, who were referred for post-myocardial infarction estimation of myocardial viability, were evaluated in this study. All patients reported for the test after 6 hours of fasting. At first myocardial perfusion studies were carried out in all patients with Tc-99m Tetrofosmin on a GE dual head gamma camera. Blood glucose levels were checked. The blood sugar levels in the patients were in the range of 130 - 190 mg%. Insulin clamp was applied depending upon the glucose level obtained, according to ASNC guidelines for PET Myocardial Glucose Metabolism and Perfusion Imaging. On stabilization of blood glucose levels, 10 mCi of F-18 FDG was injected and imaging was performed at 1 hour on a dedicated 16 slice STE GE PET -- CT scanner. Three patients had incidence of hypoglycemia as a side effect during the procedure, their blood sugar falling to 40 mg%. They were treated with 25ml of 25% dextrose intravenously following which there was stabilization of blood sugar. Entire procedure including Tetrofosmin imaging took approximately 4-6 hours. Good quality images were obtained after the use of insulin clamp. Infusion of insulin and glucose gives stable plasma glucose levels during imaging. The insulin clamp technique makes it possible to adjust and maintain a metabolic steady state during the PET study. It does not alter F-18 FDG uptake patterns in different myocardial areas and gives superior quality images. The technique is safe and

  16. Nonlinear vibrations of fluid-filled clamped circular cylindrical shells

    Karagiozis, K. N.; Amabili, M.; Païdoussis, M. P.; Misra, A. K.

    2005-12-01

    In this study, the nonlinear vibrations are investigated of circular cylindrical shells, empty or fluid-filled, clamped at both ends and subjected to a radial harmonic force excitation. Two different theoretical models are developed. In the first model, the standard form of the Donnell's nonlinear shallow-shell equations is used; in the second, the equations of motion are derived by a variational approach which permits the inclusion of constraining springs at the shell extremities and taking in-plane inertial terms into account. In both cases, the solution includes both driven and companion modes, thus allowing for a travelling wave in the circumferential direction; they also include axisymmetric modes to capture the nonlinear inward shell contraction and the correct type (softening) nonlinear behaviour observed in experiments. In the first model, the clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions, leading to a 7 degree-of-freedom (dof) expansion for the solution. In the second model, rotational springs are used at the ends of the shell, which when large enough reproduce a clamped end; the solution involves a sine series for axial variations of the shell deformation, leading to a 54 dof expansion for the solution. In both cases the modal expansions satisfy the boundary conditions and the circumferential continuity condition exactly. The Galerkin method is used to discretize the equations of motion, and AUTO to integrate the discretized equations numerically. When the shells are fluid-filled, the fluid is assumed to be incompressible and inviscid, and the fluid structure interaction is described by linear potential flow theory. The results from the two theoretical models are compared with existing experimental data, and in all cases good qualitative and quantitative agreement is observed.

  17. Condition of chromic acid anodized aluminum clamps flown

    Plagemann, W. L.

    1991-01-01

    A survey of the condition of the chromic acid anodized (CAA) coating on selected LDEF tray clamps was carried out. Measurements of solar absorptance and thermal emittance were carried out at multiple locations on both the space exposed and spacecraft facing sides of the clamps. Multiple clamps from each available angle relative to the ram direction were examined. The diffuse component of the reflectance spectrum was measured for a selected subset of the clamps. The thickness of the CAA was determined for a small set of clamps. Examples of variation in integrity of the coatings from leading to trailing edge will be shown.

  18. Action of hallucinogens on raphe-evoked dorsal root potentials (DRPs) in the cat.

    Larson, A A; Anderson, E G

    1986-02-01

    The dorsal root potential (DRP) evoked by stimulation of the inferior central nucleus (ICN) of the cat is affected by administration of a variety of hallucinogenic agents. It has been previously shown that a single low dose of LSD is unique in that it potentiates this DRP, while injections of 5-methoxy-N,N- dimethyltryptamine (5-MeODMT), ketamine or phencyclidine (PCP) inhibit its production. Tolerance develops to the facilitatory effect of low doses of LSD on the DRP, but not to the inhibitory action of 5-MeODMT. Repeated injections of ketamine every 30 minutes also fail to produce tachyphylaxis to the inhibitory effect of this dissociative anesthetic. The raphe-evoked DRP is a long latency potential that is inhibited by a wide variety of putative serotonin antagonists and has therefore been traditionally thought to be mediated by serotonin. However, in light of the inability of either tryptophan or fluoxetine to potentiate this DRP, and the resistance of this DRP to blockade by parachlorophenylalanine, reserpine or intrathecally administered 5,7-dihydroxytryptamine, it appears that this potential may in fact be mediated, at least in part, by a non-serotonergic transmitter. PMID:3952125

  19. Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites.

    Acker, Corey D; Antic, Srdjan D

    2009-03-01

    Basal dendrites of prefrontal cortical neurons receive strong synaptic drive from recurrent excitatory synaptic inputs. Synaptic integration within basal dendrites is therefore likely to play an important role in cortical information processing. Both synaptic integration and synaptic plasticity depend crucially on dendritic membrane excitability and the backpropagation of action potentials. We carried out multisite voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium, or I(h) conductance had little effect on dendritic AP propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a nonuniform sodium channel distribution with decreasing conductance with distance from the soma, together with a nonuniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high-frequency trains of APs and the local generation of sodium spikelets. We also explored the conditions under which I(A) down-regulation would produce branch strength potentiation in the proposed model. Finally, we discuss the hypothesis that a fraction of basal branches may have different membrane properties compared with sister branches in the same dendritic tree. PMID:19118105

  20. The characteristics of action potential and nonselective cation current of cardiomyocytes in rabbit superior vena cava

    WANG Pan; YANG XinChun; LIU XiuLan; BAO RongFeng; LIU TaiFeng

    2008-01-01

    As s special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cavs (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of INs in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may increase or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can increase or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyocytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.

  1. Biophysical foundations for the study of the electrical excitability and action potential propagation in myocardium

    The electric current flow in the heterogeneous and anysotropic volume conductor of the myocardium is studied. The equations of bidomain theory are derived using an approach framed in the theory of averaged fields, introducing microscopic, mesoscopic and macroscopic spatial scales. However, the procedure, compatible with the histological and the anatomical details of the organ, is different from the multiple scale asymptotic expansions usually applied in homogeneization problems. A probabilistic approach framed in large numbers theorems is used to derive the equation for membrane ionic current from the stochastic activity of the channels at the microscopic level. An operational procedure suitable to define a sharp bidomain boundary from the fuzzy distribution of structural details and physical properties at the histological level is given. The problem of threshold is studied. The sizes and shapes of critical masses of cardiac cells that must be depolarized above threshold in order to produce a propagated action potential are determined by an approximate analytical procedure. The concept of family of threshold patterns for the emergence of action potentials in the heart is introduced. This concept is applied to discuss the conditions of emergence of ectopic focus. Analytical formulae are derived, for the time constant and the rheobase for electrical stimulation of the myocardium. These formulae are in good agreement with known experimental results. New experiments that could be done to confirm or reject them are suggested

  2. Sevoflurane postconditioning alleviates action potential duration shortening and L-type calcium current suppression induced by ischemia/reperfusion injury in rat epicardial myocytes

    GONG Jun-song; YAO Yun-tai; FANG Neng-xin; HUANG Jian; LI Li-huan

    2012-01-01

    Background It has been proved that sevoflurane postconditioning (SpostC) could protect the heart against myocardial ischemia/reperfusion injury,however,there has been few research focused on the electrophysiological effects of SpostC.The objective of the study was to investigate the effects of SpostC on action potential duration (APD) and L-type calcium current (ICa,L) in isolated cardiomyocytes.Methods Langendorff perfused SD rat hearts were randomly assigned to one of the time control (TC),ischemia/reperfusion (I/R,25 minutes of ischemia followed by 30 minutes of reperfusion),and SpostC (postconditioned with 3% sevoflurane) groups.At the end of reperfusion,epicardial myocytes were dissociated enzymatically for patch clamp studies.Results Sevoflurane directly prolonged APD and decreased peak Ica,L densities in epicardial myocytes of the TC group (P<0.05).I/R injury shortened APD and decreased peak Ica,L densities in epicardial myocytes of the I/R group (P<0.05).SpostC prolonged APD and increased peak Ica,L densities in epicardial myocytes exposed to I/R injury (P<0.05).SpostC decreased intracellular reactive oxygen species (ROS) levels,reduced the incidence of ventricular tachycardia and ventricular fibrillation,and decreased reperfusion arrhythmia scores compared with the I/R group (all P<0.05).Conclusions SpostC attenuates APDshortening and ICa,L suppression induced by I/R injury.The regulation of APD and Ica,L by SpostC might be related with intracellular ROS modulation,which contributes to the alleviation of reperfusion ventricular arrhythmia.Chin Med J 2012;125(19):3485-3491

  3. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  4. The Belem Framework for Action: Harnessing the Power and Potential of Adult Learning and Education for a Viable Future

    Adult Learning, 2012

    2012-01-01

    This article presents the Belem Framework for Action. This framework focuses on harnessing the power and potential of adult learning and education for a viable future. This framework begins with a preamble on adult education and towards lifelong learning.

  5. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    Yang Xia

    Full Text Available GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors.

  6. Biological cell controllable patch-clamp microchip

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  7. Action potential-simulated weak electric fields can directly initiate myelination

    Lei Liu; Shifu Zhao; Haiming Wang

    2008-01-01

    BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath.OBJECTIVE: To investigate the effects of action potential-simulated weak electric fields on myelination in the central nervous system.DESIGN AND SETTING: This single-sample observation study was performed at the 324 Hospital of Chinese PLA.MATERIALS: Two 5 μm carbon fibers were provided by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. One Sprague Dawley rat, aged 1 day, was used.METHODS: Cerebral cortex was harvested from the rat to prepare a suspension [(1-2)×105/mL] containing neurons and glial cells. To simulate the axon, carbon fibers were placed at the bottom of the neuron-glial cell coculture dish, and were electrified with a single phase square wave current, 1×10-2, 1×10-3, 1×10-4, and 1×10-5 seconds, 1 Hz, 40 mV, and 10 μA, 30 minutes each, once aday for 10 consecutive days to simulate weak negative electric fields during action potential conduction.MAIN OUTCOME MEASURES: Glial cell growth and wrapping of carbon fibers were observed by phase contrast microscopy and immunohistochemistry.RESULTS: On culture day 7, cell groups were found to adhere to negative carbon fibers in the 1×10-3 seconds square wave group. Cell membrane-like substances grew out of cell groups, wrapped the carbon fibers, and stretched to the ends of carbon fibers. Only some small and round cells close to negative carbon fibers were found on culture day 12. In the 1×10-4 and 1×10-3 seconds square wave groups, the negative carbon fibers were wrapped by oligodendrocytes or their progenitor cells.CONCLUSION: The local negative electric field which is generated by action potentials at 1×(10-4-10-3)seconds, 40 mV can directly initiate and participate in myelination in the central nervous system.

  8. Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience

    Yi Zhou

    2015-05-01

    Full Text Available Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.

  9. Cancer Driver Log (CanDL): Catalog of Potentially Actionable Cancer Mutations.

    Damodaran, Senthilkumar; Miya, Jharna; Kautto, Esko; Zhu, Eliot; Samorodnitsky, Eric; Datta, Jharna; Reeser, Julie W; Roychowdhury, Sameek

    2015-09-01

    Massively parallel sequencing technologies have enabled characterization of genomic alterations across multiple tumor types. Efforts have focused on identifying driver mutations because they represent potential targets for therapy. However, because of the presence of driver and passenger mutations, it is often challenging to assign the clinical relevance of specific mutations observed in patients. Currently, there are multiple databases and tools that provide in silico assessment for potential drivers; however, there is no comprehensive resource for mutations with functional characterization. Therefore, we created an expert-curated database of potentially actionable driver mutations for molecular pathologists to facilitate annotation of cancer genomic testing. We reviewed scientific literature to identify variants that have been functionally characterized in vitro or in vivo as driver mutations. We obtained the chromosome location and all possible nucleotide positions for each amino acid change and uploaded them to the Cancer Driver Log (CanDL) database with associated literature reference indicating functional driver evidence. In addition to a simple interface, the database allows users to download all or selected genes as a comma-separated values file for incorporation into their own analysis pipeline. Furthermore, the database includes a mechanism for third-party contributions to support updates for novel driver mutations. Overall, this freely available database will facilitate rapid annotation of cancer genomic testing in molecular pathology laboratories for mutations. PMID:26320871

  10. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  11. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond

    Barry, J F; Schloss, J M; Glenn, D R; Song, Y; Lukin, M D; Park, H; Walsworth, R L

    2016-01-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential (AP) dynamics in whole organisms with single-neuron resolution. Here, we present a new approach to this problem: using nitrogen-vacancy (NV) quantum defects in diamond to measure the time-dependent magnetic fields produced by single-neuron APs. Our technique has a unique combination of features: (i) it is noninvasive, as the light that probes the NV sensors stays within the biocompatible diamond chip and does not enter the organism, enabling activity monitoring over extended periods; (ii) it is label-free and should be widely applicable to most organisms; (iii) it provides high spatial and temporal resolution, allowing precise measurement of the AP waveforms and conduction velocities of individual neurons; (iv) it directly determines AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector; (v) it is applicable to neurons located within optically opaque tissue or whole org...

  12. Effect of sampling frequency on the measurement of phase-locked action potentials.

    Go eAshida

    2010-09-01

    Full Text Available Phase-locked spikes in various types of neurons encode temporal information. To quantify the degree of phase-locking, the metric called vector strength (VS has been most widely used. Since VS is derived from spike timing information, error in measurement of spike occurrence should result in errors in VS calculation. In electrophysiological experiments, the timing of an action potential is detected with finite temporal precision, which is determined by the sampling frequency. In order to evaluate the effects of the sampling frequency on the measurement of VS, we derive theoretical upper and lower bounds of VS from spikes collected with finite sampling rates. We next estimate errors in VS assuming random sampling effects, and show that our theoretical calculation agrees with data from electrophysiological recordings in vivo. Our results provide a practical guide for choosing the appropriate sampling frequency in measuring VS.

  13. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  14. Delayed cord clamping in red blood cell alloimmunization: safe, effective, and free?

    McAdams, Ryan M

    2016-04-01

    Hemolytic disease of the newborn (HDN), an alloimmune disorder due to maternal and fetal blood type incompatibility, is associated with fetal and neonatal complications related to red blood cell (RBC) hemolysis. After delivery, without placental clearance, neonatal hyperbilirubinemia may develop from ongoing maternal antibody-mediated RBC hemolysis. In cases refractory to intensive phototherapy treatment, exchange transfusions (ET) may be performed to prevent central nervous system damage by reducing circulating bilirubin levels and to replace antibody-coated red blood cells with antigen-negative RBCs. The risks and costs of treating HDN are significant, but appear to be decreased by delayed umbilical cord clamping at birth, a strategy that promotes placental transfusion to the newborn. Compared to immediate cord clamping (ICC), safe and beneficial short-term outcomes have been demonstrated in preterm and term neonates receiving delayed cord clamping (DCC), a practice that may potentially be effective in cases RBC alloimmunization. PMID:27186530

  15. Design of a hot clamp for small diameter LMFBR piping

    In order to evaluate the feasibility of using a strap-type clamp on breeder reactor small diameter piping, a series of analyses were conducted to determine the thermal and mechanical stresses induced in the pipe by the clamp. The effect of using a thin layer of insulation of varying thickness between the pipe and clamp was also investigated. A thermal analysis of the pipe and clamp was conducted for each thermal transient rate. Various insulation values ranging from metal-to-metal condition to perfect insulation between the pipe and clamp were analyzed to determine the effect of insulating the pipe from the clamp. An axisymmetric finite element model was used to determine the axial thermal and stress patterns

  16. Role of the α Clamp in the Protein Translocation Mechanism of Anthrax Toxin.

    Brown, Michael J; Thoren, Katie L; Krantz, Bryan A

    2015-10-01

    Membrane-embedded molecular machines are utilized to move water-soluble proteins across these barriers. Anthrax toxin forms one such machine through the self-assembly of its three component proteins--protective antigen (PA), lethal factor, and edema factor. Upon endocytosis into host cells, acidification of the endosome induces PA to form a membrane-inserted channel, which unfolds lethal factor and edema factor and translocates them into the host cytosol. Translocation is driven by the proton motive force, composed of the chemical potential, the proton gradient (ΔpH), and the membrane potential (Δψ). A crystal structure of the lethal toxin core complex revealed an "α clamp" structure that binds to substrate helices nonspecifically. Here, we test the hypothesis that, through the recognition of unfolding helical structure, the α clamp can accelerate the rate of translocation. We produced a synthetic PA mutant in which an α helix was crosslinked into the α clamp to block its function. This synthetic construct impairs translocation by raising a yet uncharacterized translocation barrier shown to be much less force dependent than the known unfolding barrier. We also report that the α clamp more stably binds substrates that can form helices than those, such as polyproline, that cannot. Hence, the α clamp recognizes substrates by a general shape-complementarity mechanism. Substrates that are incapable of forming compact secondary structure (due to the introduction of a polyproline track) are severely deficient for translocation. Therefore, the α clamp and its recognition of helical structure in the translocating substrate play key roles in the molecular mechanism of protein translocation. PMID:26344833

  17. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  18. Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells.

    Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie

    2016-01-01

    Electrophysiological variability in cardiomyocytes derived from pluripotent stem cells continues to be an impediment for their scientific and translational applications. We studied the variability of action potentials (APs) recorded from clusters of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using high-resolution optical mapping. Over 23,000 APs were analyzed through four parameters: APD30, APD80, triangulation and fractional repolarization. Although measures were taken to reduce variability due to cell culture conditions and rate-dependency of APs, we still observed significant variability in APs among and within the clusters. However, similar APs were found in spatial locations with close proximity, and in some clusters formed distinct regions having different AP characteristics that were reflected as separate peaks in the AP parameter distributions, suggesting multiple electrophysiological phenotypes. Using a recently developed automated method to group cells based on their entire AP shape, we identified distinct regions of different phenotypes within single clusters and common phenotypes across different clusters when separating APs into 2 or 3 subpopulations. The systematic analysis of the heterogeneity and potential phenotypes of large populations of hESC-CMs can be used to evaluate strategies to improve the quality of pluripotent stem cell-derived cardiomyocytes for use in diagnostic and therapeutic applications and in drug screening. PMID:26729331

  19. Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons

    Stephane ePages

    2011-10-01

    Full Text Available Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm. Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (> 10 % of fluorescence change for 100 mV depolarization and time response (submillisecond of the dye allows the robust detection of action potentials (APs even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms resolution and high spatial (µm resolution.

  20. Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling

    Amr Al Abed

    2013-01-01

    Full Text Available A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN, intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue.

  1. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria

    Skibsbye, Lasse; Poulet, Claire; Diness, Jonas Goldin;

    2014-01-01

    (+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential...

  2. Late umbilical cord-clamping as an intervention for reducing iron deficiency anaemia in term infants in developing and industrialised countries : a systematic review

    van Rheenen, Patrick; Brabin, Bernard J

    2004-01-01

    This review evaluates the potential of delayed cord-clamping for improving iron status and reducing anaemia in term infants and for increasing the risk of polycythaemia and hyperbilirubinaemia. We applied a strict search protocol to identify controlled trials of early vs late cord-clamping. Four tri

  3. Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review.

    du Jardin, Kristian Gaarn; Müller, Heidi Kaastrup; Elfving, Betina; Dale, Elena; Wegener, Gregers; Sanchez, Connie

    2016-11-01

    A single i.v. infusion of ketamine, classified as an N-methyl-d-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms responsible for ketamine's antidepressant activity do not appear to preclude the possibility that non-glutamate neurotransmitters are involved in the antidepressant effects. At multiple levels, the serotonergic and glutamatergic systems interact, and such crosstalk could support the notion that changes in serotonergic neurotransmission may impact ketamine's antidepressant potential. In line with these prospects, ketamine may increase 5-HT levels in the prefrontal cortex of rats, plausibly via hippocampal NMDA receptor inhibition and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In addition, a number of preclinical studies suggest that the antidepressant-like effects of ketamine may depend on endogenous activation of 5-HT receptors. Recent imaging and behavioral data predominantly support a role for 5-HT1A or 5-HT1B receptors, but the full range of 5-HT receptors has currently not been systematically investigated in this context. Furthermore, the nature of any 5-HT dependent mechanism in ketamine's antidepressant effect is currently not

  4. CLINICAL AND EXPERIMENTAL STUDIES OF LARGE AMPLITUDE ACTION POTENTIAL OF THE SUFFERED FACIAL MUSCLES IN INTRATEMPORAL FACIAL NERVE PARALYSIS

    1999-01-01

    Ojective. To testify the phenomenon that large amplitude action potential appears at the early stage of facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(animals) and methods. The action potentials of the orbicular ocular and oral muscles were recorded in 34 normal persons by electromyogram instruments. The normal range of amplitude percentage was found out according to he normal distribution. One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded in 17 guinea pigs before and after the facial nerve was compressed and the facial nerve was examined under electromicroscope before and after the compression.Results. The amplitude percentage of the suffered ide to the healthy side was more than 153 percent in 6 of the 100 patients. Lare amplitude action potential ocured in 35 per cent guinea pigs which were performed the experiment of facial nrve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve's myelin sheath in the guinea pigs which exhibited large amplitude action potential.Conclusion. The facial nerve exhibited a temporary over-exciability at the early stage of facial nerve injury in some patients and guinea pigs. If the injury waslimited in the myelin sheath, te prognosis was relatively good.

  5. CLINICAL AND EXPERIMENTAL STUDIES OF LARGE AMPLITUDE ACTION POTENTIAL OF THE SUFFERED FACIAL MUSCLES IN INTRATEMPORAL FACIAL NERVE PARALYSIS

    任重; 惠莲

    1999-01-01

    Objctive. To testify the phenomenon that large amplitude action potential appears at the early stage oil facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(aninmls) and methods. The action potentials of the orbicular ocular and oral museles were recorded in 34 normal persons by electromyogram instrtiments. The normal range of amplitude percentage was found out according to the normal distribution, One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded ia 17 guinea pigs before and after the facial nerve was comp~ and the facial nerve was examined under electromicroscope before and after the compression.Results. The amplitude percentage of the suffered side to the healthy side was more than 153 percent in 6 of the 100 patients. Large amplitude action potential occured in 35 per cent guinea pigs which were performed the experiment of facial nerve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve's myelin sheath in the guinea pigs which exhibited large amplitude action potential Conclusion. The facial nerve exhibited a temporary over-excitability at the early stage of facial nerve injury in scane patients and guinea pigs. If the injury was limited in the myelin sheath, the prognods was relatively good.

  6. Delayed cord clamping for prevention of iron deficiency anemia in term infants

    Olga Rasiyanti Siregar

    2012-07-01

    Full Text Available Background Iron deficiency anemia (IDA during infancy and childhood is a concern due to its potentially detrimental effects on development, some of which may be irreversible even after iron treatment. Delayed cord clamping may prevent IDA by increasing an infant’s iron reserve at birth. Objective We aimed to evaluate the effect of delayed umbilical cord clamping at birth on the iron status in newborns at age 24 hours of life. Methods This randomized, single-blind study was conducted from March to May 2009, at two general hospitals in Medan, North Sumatera Province. Eligible newborn infants were randomly assigned to one of two groups: early cord clamping (ECC performed 15 seconds after delivery or delayed cord clamping (DCC performed 2 minutes after delivery. Infants were placed on their mothers’ abdomens before the umbilical cords were clamped. Hematologic status was determined from umbilical cord blood. Results Sixty-three subjects were included in our study, consisting of 31 infants in the ECC group and 32 infants in the DCC group. We found that mean neonatal hemoglobin level was higher in the DCC group than in the ECC group (18.4 g% and 16.2 g%, respectively, P=0.0001. Also, mean ferritin level was higher in the DCC group than in the ECC group (556 mg/dL and 329 mg/dL, respectively, P=0.015. Other hematological status indicators, including mean hematocrit and mean corpuscular volume (MCV level, were also higher in the DCC group. However, mean red blood cell levels were not significantly different between the two groups. Nor was there a significant difference in mean bilirubin level between the DCC and ECC groups. Conclusion Delayed cord clamping may improve iron status and prevent IDA in term infants.

  7. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D.; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A.S.; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-01-01

    Summary Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract PMID:26804557

  8. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

    Fikret Emre eKapucu

    2012-06-01

    Full Text Available In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC, exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI histograms. Moreover, the algorithm calculates interspike interval thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  9. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-01

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant. PMID:26804557

  10. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    Biswa Sengupta

    Full Text Available The initiation and propagation of action potentials (APs places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na(+ and K(+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin-Huxley model of the squid axon, optimizing the kinetics or number of Na(+ and K(+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost.

  11. Sensitivity analysis of potential events affecting the double-shell tank system and fallback actions

    Knutson, B.J.

    1996-09-27

    Sensitivity analyses were performed for fall-back positions (i.e., management actions) to accommodate potential off-normal and programmatic change events overlaid on the waste volume projections and their uncertainties. These sensitivity analyses allowed determining and ranking tank system high-risk parameters and fall- back positions that will accommodate the respective impacts. This quantification of tank system impacts shows periods where tank capacity is sensitive to certain variables that must be carefully managed and/or evaluated. Identifying these sensitive variables and quantifying their impact will allow decision makers to prepare fall-back positions and focus available resources on the highest impact parameters where technical data are needed to reduce waste projection uncertainties. For noncomplexed waste, the period of capacity vulnerability occurs during the years of single-shell tank (SST) retrieval (after approximately 2009) due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate and 200-East SST solids transfer volume. For complexed waste, the period of capacity vulnerability occurs during the period after approximately 2005 due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate. 200-East SST solids transfer volume. complexed waste reduction factor using evaporation, and 200-west saltwell liquid porosity.

  12. Effects of terpineol on the compound action potential of the rat sciatic nerve

    M.R. Moreira

    2001-10-01

    Full Text Available Terpineol, a volatile terpenoid alcohol of low toxicity, is widely used in the perfumery industry. It is an important chemical constituent of the essential oil of many plants with widespread applications in folk medicine and in aromatherapy. The effects of terpineol on the compound action potential (CAP of rat sciatic nerve were studied. Terpineol induced a dose-dependent blockade of the CAP. At 100 µM, terpineol had no demonstrable effect. At 300 µM terpineol, peak-to-peak amplitude and conduction velocity of CAP were significantly reduced at the end of 180-min exposure of the nerve to the drug, from 3.28 ± 0.22 mV and 33.5 ± 7.05 m/s, respectively, to 1.91 ± 0.51 mV and 26.2 ± 4.55 m/s. At 600 µM, terpineol significantly reduced peak-to-peak amplitude and conduction velocity from 2.97 ± 0.55 mV and 32.8 ± 3.91 m/s to 0.24 ± 0.23 mV and 2.72 ± 2.72 m/s, respectively (N = 5. All these effects developed slowly and were reversible upon 180-min washout.

  13. Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    Sengupta, Biswa; Stemmler, Martin; Laughlin, Simon B; Niven, Jeremy E

    2010-01-01

    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na(+) and K(+) currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin-Huxley model of the squid axon, optimizing the kinetics or number of Na(+) and K(+) channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost. PMID:20617202

  14. The transformative potential of action research and ICT in the Second Language (L2 classroom

    Farren Margaret

    2015-12-01

    Full Text Available This study shows the transformative potential of action research and information and communications technology (ICT in the second language (L2 classroom. Two enquiries from teacher-researchers are detailed in the article. Their engagement in a collaborative professional development Masters programme was pivotal in designing and implementing ICT creatively in their classroom. Gee (2008 advocates the use of the preferred media of our classroom students in order to address their learning. Prensky (2001 urges us to feel the fear and do it anyway with our digital native classes. A post-primary teacher and a primary teacher show us how they felt the fear, did it and transformed aspects of their own teaching in the process. The Masters programme required the teachers to engage with innovative practices, informed by their own values, and integrate technologies that were new to them into their repertoire of classroom strategies. Peer validation meetings with colleagues enabled meaningful insights to emerge from the research. The teachers improve and transform their second language (L2 practice in collaboration and validation with others.

  15. Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy

    Florian eKirchheim

    2013-12-01

    Full Text Available Action potential (AP responses of dentate gyrus granule (DG cells have to be tightly regulated to maintain hippocampal function. However, which ion channels control the response delay of DG cells is not known. In some neuron types, spike latency is influenced by a dendrotoxin (DTX-sensitive delay current (ID mediated by unidentified combinations of voltage-gated K+ (Kv channels of the Kv1 family Kv1.1-6. In DG cells, the ID has not been characterized and its molecular basis is unknown. The response phenotype of mature DG cells is usually considered homogenous but intrinsic adaptations likely occur in particular in conditions of hyperexcitability, for example during temporal lobe epilepsy (TLE. In this study, we examined response delays of DG cells and underlying ion channel molecules by employing a new combination of gramicidin-perforated patch-clamp recordings in acute brain slices and single-cell reverse transcriptase quantitative polymerase chain reaction (SC RT-qPCR experiments. An in vivo mouse model of TLE consisting of intrahippocampal kainate (KA injection was used to examine epilepsy-related plasticity. Response delays of DG cells were DTX-sensitive and strongly increased in KA-injected hippocampi; Kv1.1 mRNA was elevated 10-fold, and the response delays correlated with Kv1.1 mRNA abundance on the single cell level. Other Kv1 subunits did not show overt changes in mRNA levels. Kv1.1 immunolabeling was enhanced in KA DG cells. The biophysical properties of ID and the delay heterogeneity between inner and outer DG cell layer were characterized. Using organotypic hippocampal slice cultures (OHCs, where KA incubation also induced ID upregulation, reversibility and neuroprotective potential for DG cells were tested. In summary, the AP timing of DG cells is effectively controlled via scaling of Kv1.1 subunit transcription. With this antiepileptic mechanism, DG cells delay their

  16. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  17. Analysis of Contact Characteristic of Overhead Line and Suspension Clamp

    Zhao Xinze

    2013-01-01

    Full Text Available In this paper, a LGJ150/25 type ACSR transmission line and a CGU-3 type suspension clamp are taken as research objects. A contact model of the conductor and the clamp was established by using finite element method. The effects of sag angle of the conductor, holding force and tension force in section are analyzed. The results showed that the contact area in the middle of the clamp is of belt-like type. The extreme values of tress were observed on the edge of the contact area and near the edge of keeper. In clamp section, suspension angle had the greatest influence on contact stress, and then the clamp force. The tension force in section played a most important role in these affecting factors. In the exit section of clamp, the biggest impact factor was tension force in this section, then the suspension angle, the third was clamp force. The results provide theoretical basis on reducing corona loss, optimization the clamp. Doubtlessly, the conclusion has important theoretical significance and application value.

  18. 21 CFR 876.5160 - Urological clamp for males.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urological clamp for males. 876.5160 Section 876.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5160 Urological clamp for...

  19. Applications of alcohol clamping in early drug development

    Zoethout, Remco Wiebe Martijn

    2012-01-01

    This thesis describes the development of a novel alcohol clamp, a new method to obtain stable plasma levels of alcohol and its application in CNS-research. The method might have several advantages that were explored in subsequent studies described in this thesis. The stability of the alcohol clamp w

  20. Combination Space Station Handrail Clamp and Pointing Device

    Hughes, Stephen J. (Inventor)

    1999-01-01

    A device for attaching an experiment carrier to a space station handrail is provided. The device has two major components, a clamping mechanism for attachment to a space station handrail, and a pointing carrier on which an experiment package can be mounted and oriented. The handrail clamp uses an overcenter mechanism and the carrier mechanism uses an adjustable preload ball and socket for carrier positioning. The handrail clamp uses a stack of disk springs to provide a spring loaded button. This configuration provides consistent clamping force over a range of possible handrail thicknesses. Three load points are incorporated in the clamping mechanism thereby spreading the clamping load onto three separate points on the handrail. A four bar linkage is used to provide for a single actuation lever for all three load points. For additional safety, a secondary lock consisting of a capture plate and push lock keeps the clamp attached to the handrail in the event of main clamp failure. For the carrier positioning mechanism, a ball in a spring loaded socket uses friction to provide locking torque; however. the ball and socket are torque limited so that the ball ran slip under kick loads (125 pounds or greater). A lead screw attached to disk spring stacks is used to provide an adjustable spring force on the socket. A locking knob is attached to the lead screw to allow for hand manipulation of the lead screw.

  1. New active load voltage clamp for HF-link converters

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper proposes a new active clamp for HF-link converters, which features very high efficiency by returning the clamped energy back to the primary side through a small auxiliary converter. It also increases the reliability of HF-link converters by providing an alternative load current path...

  2. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to

  3. In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin

    Nasu Masanori

    2010-05-01

    Full Text Available Abstract Background Although it has been widely accepted that the primary somatosensory (SI cortex plays an important role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique. Results In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV. Twenty-seven out of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive field and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22% and nociceptive neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11% and nociceptive-specific neurons (18/27, 67%. In the majority of these neurons, a proportion of the excitatory postsynaptic potentials (EPSPs reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were usually associated with potentiated EPSP amplitudes. Conclusions The present study provides evidence that SI neurons in deep layers III-V respond to the temporal summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these neurons may contribute to the processing of nociceptive information, including hyperalgesia.

  4. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  5. Facilitating Youth to Take Sustainability Actions: The Potential of Peer Education

    de Vreede, Catherine; Warner, Alan; Pitter, Robert

    2014-01-01

    Peer education is an understudied yet valuable strategy for sustainability educators in shifting youth to take action for sustainability. This case study conceptualizes the change process in facilitating youth to take sustainability actions, and explores the benefits, dynamics, and challenges of peer education as a strategy in facilitating change.…

  6. Vasopressin stimulates action potential firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat aortic smooth muscle cells

    Brueggemann, Lioubov I.; Moran, Christopher J.; Barakat, John A.; Yeh, Jay Z.; Cribbs, Leanne L.; Byron, Kenneth L.

    2006-01-01

    [Arg8]-vasopressin (AVP), at low concentrations (10–500 pM), stimulates oscillations in intracellular Ca2+ concentration (Ca2+ spikes) in A7r5 rat aortic smooth muscle cells. Our previous studies provided biochemical evidence that protein kinase C (PKC) activation and phosphorylation of voltage-sensitive K+ (Kv) channels are crucial steps in this process. In the present study, Kv currents (IKv) and membrane potential were measured using patch clamp techniques. Treatment of A7r5 cells with 100...

  7. Use-dependent block of Ca2+ current by moricizine in guinea-pig ventricular myocytes: a possible ionic mechanism of action potential shortening.

    Yamane, T; Sunami, A.; Sawanobori, T.; Hiraoka, M

    1993-01-01

    1. Whole cell patch clamp techniques were used to study the effects of moricizine on membrane currents in guinea-pig ventricular myocytes. 2. Application of moricizine caused reversible depression of the time-dependent outward K+ current. 3. The Na+/Ca2+ exchange current was not directly affected by moricizine. 4. Although moricizine hardly affected the L-type Ca2+ current when cells were stimulated at a frequency of 0.1 Hz, it suppressed the current at depolarized holding potentials in a use...

  8. Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp.

    Brown, Tashalee R; Krogh-Madsen, Trine; Christini, David J

    2016-08-23

    Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however, the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa that slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes, resulting in a substrate for cardiac arrhythmia. An emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junction (GJ) channels. In the heart, three major connexin (Cx) isoforms, Cx40, Cx43, and Cx45, form GJ channels in cell-type-specific combinations. Because each Cx is characterized by a unique time- and transjunctional voltage-dependent profile, we investigated whether the electrophysiological contributions of fibroblasts would vary with the specific composition of the myocyte-fibroblast (M-F) GJ channel. Due to the challenges of systematically modifying Cxs in vitro, we coupled native cardiomyocytes with in silico fibroblast and GJ channel electrophysiology models using the dynamic-clamp technique. We found that there is a reduction in the early peak of the junctional current during the upstroke of the action potential (AP) due to GJ channel gating. However, effects on the cardiomyocyte AP morphology were similar regardless of the specific type of GJ channel (homotypic Cx43 and Cx45, and heterotypic Cx43/Cx45 and Cx45/Cx43). To illuminate effects at the tissue level, we performed multiscale simulations of M-F coupling. First, we developed a cell-specific model of our dynamic-clamp experiments and investigated changes in the underlying membrane currents during M-F coupling. Second, we performed two-dimensional tissue sheet simulations of cardiac fibrosis and incorporated GJ channels in a cell type-specific manner. We determined that although GJ channel gating reduces junctional current, it does not

  9. Effect of temperature on isoprenaline- and barium-induced slow action potentials in guinea-pig ventricular strips.

    Manzini, S; Parlani, M; Martucci, E; Maggi, C A; Meli, A

    1986-01-01

    The effect of variation in temperature (37-32 and 27 degrees C) on electrical and mechanical activity of depolarized and isoprenaline- or barium-reactivated guinea pig ventricular strips was studied. Lowering the temperature brings a marked prolongation of isoprenaline-induced slow action potentials. In addition the maximal rate of depolarization was strongly reduced at lower temperatures. These effects were observed at an extracellular Ca2+ concentration of either 0.9 or 2.5 mM. The accompanying mechanical activities was significantly increased by reduction in temperature. Barium-induced slow action potentials were similarly affected by temperature variations. These observations suggest that hypothermia exert a sort of calcium antagonistic action probably coupled to a reduction of repolarizing outward potassium currents. PMID:2430855

  10. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.

    Bourien, Jérôme; Tang, Yong; Batrel, Charlène; Huet, Antoine; Lenoir, Marc; Ladrech, Sabine; Desmadryl, Gilles; Nouvian, Régis; Puel, Jean-Luc; Wang, Jing

    2014-09-01

    Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude. PMID:24848461