WorldWideScience

Sample records for action investigation plan

  1. Clean slate corrective action investigation plan

    The Clean Slate sites discussed in this report are situated in the central portion of the Tonopah Test Range (TTR), north of the Nevada Test Site (NTS) on the northwest portion of the Nellis Air Force Range (NAFR) which is approximately 390 kilometers (km) (240 miles [mi]) northwest of Las Vegas, Nevada. These sites were the locations for three of the four Operation Roller Coaster experiments. These experiments evaluated the dispersal of plutonium in the environment from the chemical explosion of a plutonium-bearing device. Although it was not a nuclear explosion, Operation Roller Coaster created some surface contamination which is now the subject of a corrective action strategy being implemented by the Nevada Environmental Restoration Project (NV ERP) for the U.S. Department of Energy (DOE). Corrective Action Investigation (CAI) activities will be conducted at three of the Operation Roller Coaster sites. These are Clean Slate 1 (CS-1), Clean Slate 2 (CS-2), and Clean Slate 3 (CS-3) sites, which are located on the TTR. The document that provides or references all of the specific information relative to the various investigative processes is called the Corrective Action Investigation Plan (CAIP). This CAIP has been prepared for the DOE Nevada Operations Office (DOE/NV) by IT Corporation (IT)

  2. Clean slate corrective action investigation plan

    NONE

    1996-05-01

    The Clean Slate sites discussed in this report are situated in the central portion of the Tonopah Test Range (TTR), north of the Nevada Test Site (NTS) on the northwest portion of the Nellis Air Force Range (NAFR) which is approximately 390 kilometers (km) (240 miles [mi]) northwest of Las Vegas, Nevada. These sites were the locations for three of the four Operation Roller Coaster experiments. These experiments evaluated the dispersal of plutonium in the environment from the chemical explosion of a plutonium-bearing device. Although it was not a nuclear explosion, Operation Roller Coaster created some surface contamination which is now the subject of a corrective action strategy being implemented by the Nevada Environmental Restoration Project (NV ERP) for the U.S. Department of Energy (DOE). Corrective Action Investigation (CAI) activities will be conducted at three of the Operation Roller Coaster sites. These are Clean Slate 1 (CS-1), Clean Slate 2 (CS-2), and Clean Slate 3 (CS-3) sites, which are located on the TTR. The document that provides or references all of the specific information relative to the various investigative processes is called the Corrective Action Investigation Plan (CAIP). This CAIP has been prepared for the DOE Nevada Operations Office (DOE/NV) by IT Corporation (IT).

  3. Corrective action investigation plan: Cactus Spring Waste Trenches. Revision 2

    This Correction Action Investigation Plan (CAIP) contains environmental sample collection objectives and logic for the CAU No. 426, which includes the Cactus Spring Waste Trenches, CAS No. RG-08-001-RG-CS. The Cactus Spring Waste Trenches are located at the Tonopah Test Range (TTR) which is part of the Nellis Air Force Range, approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air. The purpose of this investigation is to generate sufficient data to establish the types of waste buried in the trenches, identify the presence and nature of contamination, determine the vertical extent of contaminant migration below the Cactus Spring Waste Trenches, and determine the appropriate course of action for the site. The potential courses of action for the site are clean closure, closure in place (with or without remediation), or no further action

  4. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  5. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the 'Federal Facility Agreement and Consent Order' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions

  6. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada

    locate previously unidentified features at CASs 03-20-07, 03-20-09, 03-20-10, 03-20-11, and 06-20-03. (4) Perform field screening. (5) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present. (6) Collect quality control samples for laboratory analyses to evaluate the performance of measurement systems and controls based on the requirements of the data quality indicators. (7) If COCs are present at the surface/near surface (< 15 feet below ground surface), collect additional step-out samples to define the extent of the contamination. (8) If COCs are present in the subsurface (i.e., base of disposal hole), collect additional samples to define the vertical extent of contamination. A conservative use restriction will be used to encompass the lateral extent of subsurface contamination. (9) Stake or flag sample locations in the field, and record coordinates through global positioning systems surveying. (10) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan

  7. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document

  8. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  9. Corrective action investigation plan: Area 2 Photo Skid 16 Wastewater Pit, Corrective Action Unit 332. Revision 1

    NONE

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) contains a detailed description and plan for an environmental investigation of the Area 2 Photo Skid 16 Wastewater Pit. The site is located in Area 2 of the Nevada Test Site. The Photo Skid Wastewater Pit was used for disposal of photochemical process waste, and there is a concern that such disposal may have released photochemicals and metals to the soil beneath the pit and adjacent to it. The purpose of this investigation is to identify the presence and nature of contamination present in and adjacent to the wastewater pit and to determine the appropriate course of environmental response action for the site. The potential courses of action for the site are clean closure through remediation, closure in place (with or without remediation), or no further action.

  10. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. No.: 0

    David A. Strand

    2004-10-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554.

  11. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  12. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to CAS 23-02-08. The scope of the corrective action investigation

  13. Corrective Action Investigation Plan for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0

    David A. Strand

    2004-09-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.

  14. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada: Revision 0

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach for collecting the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 12 on the NTS, CAU 552 consists of two Corrective Action Sites (CASs): 12-06-04, Muckpile; 12-23-05, Ponds. Corrective Action Site 12-06-04 in Area 12 consists of the G-Tunnel muckpile, which is the result of tunneling activities. Corrective Action Site 12-23-05 consists of three dry ponds adjacent to the muckpile. The toe of the muckpile extends into one of the ponds creating an overlap of two CASs. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technic ally viable corrective actions. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  15. Corrective action investigation plan for Project Shoal Area CAU No. 416

    NONE

    1996-08-01

    This Corrective Action Investigation Plan (CAIP) is part of an ongoing US Department of Energy (DOE)-funded project for the investigation of Corrective Action Unit (CAU) No. 416, Project Shoal Area (PSA). Project Shoal was conducted to determine whether seismic waves produced by underground nuclear testing could be differentiated from naturally occurring earthquakes. The PSA site is located approximately 30 miles southeast of Fallon, Nevada, in the northern portion of Sand Springs Mountains in Churchill County. This CAIP will be implemented in accordance with the Federal Facility Agreement and Consent Order, the Industrial Sites Quality Assurance Project Plan, and all applicable Nevada Division of Environmental Protection policies and regulations.

  16. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities

  17. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  18. Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada

    DOE/NV

    1999-01-25

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 240, Area 25 Vehicle Washdown, which is located on the Nevada Test Site (NTS).

  19. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  20. Corrective action investigation plan for Corrective Action Unit 340, Pesticide Release Sites, Nevada Test Site, Nye County, Nevada

    NONE

    1998-01-01

    This Correction Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. As required by the FFACO (1996), this document provides or references all of the specific information for planning investigation activities associated with three Corrective Action Sites (CASs) located at the Nevada Test Site (NTS). These CASs are collectively known as Corrective Action Unit (CAU) 340, Pesticide Release Sites. According to the FFACO, CASs are sites that may require corrective action(s) and may include solid waste management units or individual disposal or release sites. These sites are CAS 23-21-01, Area 23 Quonset Hut 800 (Q800) Pesticide Release Ditch; CAS 23-18-03, Area 23 Skid Huts Pesticide Storage; and CAS 15-18-02, Area 15 Quonset Hut 15-11 Pesticide Storage (Q15-11). The purpose of this CAIP for CAU 340 is to direct and guide the investigation for the evaluation of the nature and extent of pesticides, herbicides, and other contaminants of potential concern (COPCs) that were stored, mixed, and/or disposed of at each of the CASs.

  1. Corrective Action Investigation Plan for Corrective Action Unit 565: Stored Samples, Nevada Test Site, Nevada, Rev. No.: 0

    Wickline, Alfred; McCall, Robert

    2006-08-01

    unrestricted use. This Corrective Action Investigation has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

  2. Corrective action investigation plan for the Roller Coaster RADSAFE Area, Corrective Action Unit 407, Tonopah Test Range, Nevada

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. CAUs consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 407, the Roller Coaster RADSAFE Area (RCRSA) which is located on the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range Complex, is approximately 255 km (140 mi) northwest of Las Vegas, Nevada. CAU No. 407 is comprised of only one CAS (TA-23-001-TARC). The RCRSA was used during May and June 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. The surface and subsurface soils are likely to have been impacted by plutonium and other contaminants of potential concern (COPCs) associated with decontamination activities at this site. The purpose of the corrective action investigation described in this CAIP is to: identify the presence and nature of COPCs; determine the vertical and lateral extent of COPCs; and provide sufficient information and data to develop and evaluate appropriate corrective actions for the CAS

  3. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  4. Corrective Action Investigation Plan for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0

    Alfred Wickline

    2009-04-01

    Conduct radiological surveys. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. • Collect samples of source material to determine the potential for a release. • Collect samples of potential remediation wastes. • Collect quality control samples. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended February 2008). Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval of the plan.

  5. Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0

    David A. Strand

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). Corrective Action Unit 309 is located in Area 12 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 mi beyond the main gate to the NTS. Corrective Action Unit 309 is comprised of the three Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: CAS 12-06-09, Muckpile; CAS 12-08-02, Contaminated Waste Dump (CWD); and CAS 12-28-01, I, J, and K-Tunnel Debris. Corrective Action Sites 12-06-09 and 12-08-02 will be collectively referred to as muckpiles in this document. Corrective Action Site 12-28-01 will be referred to as the fallout plume because of the extensive lateral area of debris and fallout contamination resulting from the containment failures of the J-and K-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and media sampling, where appropriate. Data will also be obtained to support waste management decisions. The CASs in CAU 309 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and/or the environment. Existing information on the nature and extent of potential contamination at these sites are insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action

  6. Corrective Action Investigation Plan for Corrective Action Unit 214: Bunkers and Storage Areas Nevada Test Site, Nevada

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 214 under the Federal Facility Agreement and Consent Order. Located in Areas 5, 11, and 25 of the Nevada Test Site, CAU 214 consists of nine Corrective Action Sites (CASs): 05-99-01, Fallout Shelters; 11-22-03, Drum; 25-99-12, Fly Ash Storage; 25-23-01, Contaminated Materials; 25-23-19, Radioactive Material Storage; 25-99-18, Storage Area; 25-34-03, Motor Dr/Gr Assembly (Bunker); 25-34-04, Motor Dr/Gr Assembly (Bunker); and 25-34-05, Motor Dr/Gr Assembly (Bunker). These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). The suspected contaminants and critical analyte s for CAU 214 include oil (total petroleum hydrocarbons-diesel-range organics [TPH-DRO], polychlorinated biphenyls [PCBs]), pesticides (chlordane, heptachlor, 4,4-DDT), barium, cadmium, chronium, lubricants (TPH-DRO, TPH-gasoline-range organics [GRO]), and fly ash (arsenic). The land-use zones where CAU 214 CASs are located dictate that future land uses will be limited to nonresidential (i.e., industrial) activities. The results of this field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the corrective action decision document

  7. Corrective action investigation plan for Corrective Action Unit 143: Area 25 contaminated waste dumps, Nevada Test Site, Nevada, Revision 1

    This plan contains the US Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate correction action alternatives appropriate for the closure of Corrective Action Unit (CAU) 143 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 143 consists of two waste dumps used for the disposal of solid radioactive wastes. Contaminated Waste Dump No.1 (CAS 25-23-09) was used for wastes generated at the Reactor Maintenance Assembly and Disassembly (R-MAD) Facility and Contaminated Waste Dump No.2 (CAS 25-23-03) was used for wastes generated at the Engine Maintenance Assembly and Disassembly (E-MAD) Facility. Both the R-MAD and E-MAD facilities are located in Area 25 of the Nevada Test Site. Based on site history, radionuclides are the primary constituent of concern and are located in these disposal areas; vertical and lateral migration of the radionuclides is unlikely; and if migration has occurred it will be limited to the soil beneath the Contaminated Waste Disposal Dumps. The proposed investigation will involve a combination of Cone Penetrometer Testing within and near the solid waste disposal dumps, field analysis for radionuclides and volatile organic compounds, as well as sample collection from the waste dumps and surrounding areas for off-site chemical, radiological, and geotechnical analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document

  8. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0

    Robert F. Boehlecke

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.

  9. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0

    David A. Strand

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.

  10. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    Pastor, Laura

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by

  11. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS

  12. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    NONE

    1997-04-01

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  13. Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada Test Site, Nevada

    Patrick Matthews

    2010-03-01

    Corrective Action Unit (CAU) 375 is located in Areas 25 and 30 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 375 comprises the two corrective action sites (CASs) listed below: • 25-23-22, Contaminated Soils Site • 30-45-01, U-30a, b, c, d, e Craters Existing information on the nature and extent of potential contamination present at the CAU 375 CASs is insufficient to evaluate and recommend corrective action alternatives (CAAs). This document details an investigation plan that will provide for the gathering of sufficient information to evaluate and recommend CAAs. Corrective Action Site 25-23-22 is composed of the releases associated with nuclear rocket testing at Test Cell A (TCA). Test Cell A was used to test and develop nuclear rocket motors as part of the Nuclear Rocket Development Station from its construction in 1958 until 1966, when rocket testing began being conducted at Test Cell C. The rocket motors were built with an unshielded nuclear reactor that produced as much as 1,100 kilowatts (at full power) to heat liquid hydrogen to 4,000 degrees Fahrenheit, at which time the expanded gases were focused out a nozzle to produce thrust. The fuel rods in the reactor were not clad and were designed to release fission fragments to the atmosphere, but due to vibrations and loss of cooling during some operational tests, fuel fragments in excess of planned releases became entrained in the exhaust and spread in the immediate surrounding area. Cleanup efforts have been undertaken at times to collect the fuel rod fragments and other contamination. Previous environmental investigations in the TCA area have resulted in the creation of a number of use restrictions. The industrial area of TCA is encompassed by a fence and is currently posted as a radioactive material area. Corrective Action Site 30-45-01 (releases associated with the Buggy Plowshare test) is located in Area 30 on Chukar Mesa. It was a

  14. Corrective Action Investigation Plan for Corrective Action Unit 409: Other Waste Sites, Tonopah Test Range, Nevada (Rev. 0)

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 409 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 409 consists of three Corrective Action Sites (CASs): TA-53-001-TAB2, Septic Sludge Disposal Pit No.1; TA-53-002-TAB2, Septic Sludge Disposal Pit No.2; and RG-24-001-RGCR, Battery Dump Site. The Septic Sludge Disposal Pits are located near Bunker Two, close to Area 3, on the Tonopah Test Range. The Battery Dump Site is located at the abandoned Cactus Repeater Station on Cactus Peak. The Cactus Repeater Station was a remote, battery-powered, signal repeater station. The two Septic Sludge Disposal Pits were suspected to be used through the late 1980s as disposal sites for sludge from septic tanks located in Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern are the same for the disposal pits and include: volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPHs) as gasoline- and diesel-range organics, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and radionuclides (including plutonium and depleted uranium). The Battery Dump Site consists of discarded lead-acid batteries and associated construction debris, placing the site in a Housekeeping Category and, consequently, no contaminants are expected to be encountered during the cleanup process. The corrective action the at this CAU will include collection of discarded batteries and construction debris at the Battery Dump Site for proper disposal and recycling, along with photographic documentation as the process progresses. The corrective action for the remaining CASs involves the collection of background radiological data through borings drilled at

  15. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision No.:0

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted uranium

  16. Does action planning moderate the intention-habit interaction in the exercise domain? A three-way interaction analysis investigation

    G.-J. de Bruijn; R.E. Rhodes; L. van Osch

    2012-01-01

    Both habit strength and action planning have been found to moderate the intention-exercise behaviour relationship, but no research exists that has investigated how habit strength and action planning simultaneously influence this relationship. The present study was designed to explore this issue in a

  17. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed

  18. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    Grant Evenson

    2012-05-01

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed

  19. Corrective action investigation plan for Central Nevada Test Area, CAU No. 417

    This Corrective Action Investigation Plan (CAIP) is part of a US Department of Energy (DOE)-funded environmental investigation of the Central Nevada Test Area (CNTA). This CAIP addresses the surface investigation and characterization of 15 identified Corrective Action Sites (CASs). In addition, several other areas of the CNTA project area have surface expressions that may warrant investigation. These suspect areas will be characterized, if necessary, in subsequent CAIPs or addendums to this CAIP prepared to address these sites. This CAIP addresses only the 15 identified CASs as shown in Table 2-1 that are associated with the drilling and construction of a number of testing wells designed as part of an underground nuclear testing program. The purpose of the wells at the time of construction was to provide subsurface access for the emplacement, testing, and post detonation evaluations of underground nuclear devices. If contamination is found at any of the 15-surface CASs, the extent of contamination will be determined in order to develop an appropriate corrective action

  20. Corrective Action Investigation Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada, with Errata Sheet, Revision 0

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 563, Septic Systems, is located in Areas 3 and 12 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 563 is comprised of the four corrective action sites (CASs) below: • 03-04-02, Area 3 Subdock Septic Tank • 03-59-05, Area 3 Subdock Cesspool • 12-59-01, Drilling/Welding Shop Septic Tanks • 12-60-01, Drilling/Welding Shop Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  1. Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0

    Robert F. Boehlecke

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) for Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 309 is comprised of the following three corrective action sites (CASs) in Area 12 of the NTS: (1) CAS 12-06-09, Muckpile; (2) CAS 12-08-02, Contaminated Waste Dump (CWD); and (3) CAS 12-28-01, I-, J-, and K-Tunnel Debris. Corrective Action Site 12-06-09 consists of a muckpile and debris located on the hillside in front of the I-, J-, and K-Tunnels on the eastern slopes of Rainier Mesa in Area 12. The muckpile includes mining debris (muck) and debris generated during the excavation and construction of the I-, J-, and K-Tunnels. Corrective Action Site 12-08-02, CWD, consists of a muckpile and debris and is located on the hillside in front of the re-entry tunnel for K-Tunnel. For the purpose of this investigation CAS 12-28-01 is defined as debris ejected by containment failures during the Des Moines and Platte Tests and the associated contamination that is not covered in the two muckpile CASs. This site consists of debris scattered south of the I-, J-, and K-Tunnel muckpiles and extends down the hillside, across the valley, and onto the adjacent hillside to the south. In addition, the site will cover the potential contamination associated with ''ventings'' along the fault, fractures, and various boreholes on the mesa top and face. One conceptual site model was developed for all three CASs to address possible contamination migration pathways associated with CAU

  2. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada, Rev. No.: 0

    Laura Pastor

    2006-05-01

    activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to locate previously unidentified features at CASs 03-20-07, 03-20-09, 03-20-10, 03-20-11, and 06-20-03. (4) Perform field screening. (5) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present. (6) Collect quality control samples for laboratory analyses to evaluate the performance of measurement systems and controls based on the requirements of the data quality indicators. (7) If COCs are present at the surface/near surface (< 15 feet below ground surface), collect additional step-out samples to define the extent of the contamination. (8) If COCs are present in the subsurface (i.e., base of disposal hole), collect additional samples to define the vertical extent of contamination. A conservative use restriction will be used to encompass the lateral extent of subsurface contamination. (9) Stake or flag sample locations in the field, and record coordinates through global positioning systems surveying. (10) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

  3. An investigation into the relevance of action planning, theory of planned behaviour concepts, and automaticity for fruit intake action control

    G.J. de Bruijn; A. Wiedemann; R.E. Rhodes

    2014-01-01

    Objectives In the action control framework, intention-behaviour discordance is studied around public health guidelines. Although this framework has been applied to physical activity behaviours, it has only seen very limited attention regarding fruit intake. The purpose of this study was therefore to

  4. Action planning as predictor of health protective and health risk behavior: an investigation of fruit and snack consumption

    Candel Math

    2009-10-01

    Full Text Available Abstract Background Large discrepancies between people's intention to eat a healthy diet and actual dietary behavior indicate that motivation is not a sufficient instigator for healthy behavior. Research efforts to decrease this 'intention - behavior gap' have centered on aspects of self-regulation, most importantly self-regulatory planning. Most studies on the impact of self-regulatory planning in health and dietary behavior focus on the promotion of health protective behaviors. This study investigates and compares the predictive value of action planning in health protective behavior and the restriction of health risk behavior. Methods Two longitudinal observational studies were performed simultaneously, one focusing on fruit consumption (N = 572 and one on high-caloric snack consumption (N = 585 in Dutch adults. Structural equation modeling was used to investigate and compare the predictive value of action planning in both behaviors, correcting for demographics and the influence of motivational factors and past behavior. The nature of the influence of action planning was investigated by testing mediating and moderating effects. Results Action planning was a significant predictor of fruit consumption and restricted snack consumption beyond the influence of motivational factors and past behavior. The strength of the predictive value of action planning did not differ between the two behaviors. Evidence for mediation of the intention - behavior relationship was found for both behaviors. Positive moderating effects of action planning were demonstrated for fruit consumption, indicating that individuals who report high levels of action planning are significantly more likely to translate their intentions into actual behavior. Conclusion The results indicate that the planning of specific preparatory actions predicts the performance of healthy dietary behavior and support the application of self-regulatory planning in both health protective and health

  5. Remedial investigation quality assurance program plan: Weldon Spring Site Remedial Action Project: Revision 0

    The Remedial Investigations Quality Assurance Program Plan (RIQAPP) for Weldon Spring Site Remedial Action Project (WSSRAP) is distinguished by purpose from the WSSRAP overall Quality Assurance/Quality Control Program Plan (QAPP). The RIQAPP is focused only on meeting EPA requirements under CERCLA whereas the QAPP is designed to meet quality assurance program requirements for nuclear facilities. The RIQAPP specifically addresses factors, methods and criteria. Specific QC procedures are contained in existing documents incorporated into the plan by reference. These include Standard Operating Procedures, laboratory QA procedures, and activity level sampling plans. The existing procedures provide many of the required QA elements: measurement, sampling, sample and document custody and control, calibration, analysis and data reduction, validation and reporting. Addition QA elements addressed in the RIQAPP include performance and system audits, surveillance, and reporting and correction of deficiencies. System audits, on a regularly scheduled basis, will evaluate all components of measurement systems to determine capability, proper selection and use. Performance audits, on a scheduled basis, will determine adequacy and accuracy of a given measurement system and/or procedural compliance. Surveillance, both scheduled and unscheduled, of field and laboratory activities will be performed to verify conformance to specified requirements. 8 refs., 1 fig., 1 tab

  6. Corrective action investigation plan for Central Nevada Test Area CAU No. 417

    NONE

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) is part of a US Department of Energy (DOE)-funded environmental investigation of the Central Nevada Test Area (CNTA). The CNTA is located in Hot Creek Valley in Nye County, Nevada, adjacent to US Highway 6, about 15 kilometers (10 miles) northeast of Warm Springs. The CNTA was the site of Project Faultless, a nuclear device detonated in the subsurface by the US Atomic Energy Commission (AEC) in January 1968. The purpose of this test was to gauge the seismic effects of relatively large, high-yield detonations completed outside of the Nevada Test Site (NTS). The test was also used to determine the suitability of the site for future large detonations. The yield of the Faultless test was between 200 kilotons and 1 megaton (DOE, 1994c).

  7. Corrective action investigation plan for Corrective Action Unit Number 427: Area 3 septic waste system numbers 2 and 6, Tonopah Test Range, Nevada

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Compound, specifically Corrective Action Unit (CAU) Number 427, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Corrective Action Unit Work Plan, Tonopah Test Range, Nevada divides investigative activities at TTR into Source Groups. The Septic Tanks and Lagoons Group consists of seven CAUs. Corrective Action Unit Number 427 is one of three septic waste system CAUs in TTR Area 3. Corrective Action Unit Numbers 405 and 428 will be investigated at a future data. Corrective Action Unit Number 427 is comprised of Septic Waste Systems Number 2 and 6 with respective CAS Numbers 03-05-002-SW02 and 03-05-002-SW06

  8. Corrective Action Investigation Plan for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada with ROTC1, Revision 0

    Grant Evenson

    2008-05-01

    Corrective Action Unit (CAU) 560 is located in Areas 3 and 6 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 560 is comprised of the seven corrective action sites (CASs) listed below: • 03-51-01, Leach Pit • 06-04-02, Septic Tank • 06-05-03, Leach Pit • 06-05-04, Leach Bed • 06-59-03, Building CP-400 Septic System • 06-59-04, Office Trailer Complex Sewage Pond • 06-59-05, Control Point Septic System These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 22, 2008, by representatives from the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 560.

  9. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: 06-23-02, U-6a/Russet Testing Area 09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546

  10. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    Alfred Wickline

    2008-03-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: •06-23-02, U-6a/Russet Testing Area •09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546.

  11. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the

  12. Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater Nevada Test Site, Nevada, Revision 0

    Patrick Matthews

    2010-02-01

    Corrective Action Unit 374 is located in Areas 18 and 20 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 374 comprises the five corrective action sites (CASs) listed below: • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on October 20, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 374.

  13. Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    Patrick Matthews

    2010-12-01

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for the CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The site will be investigated based on the data quality objectives (DQOs) developed on July 6, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for the Baneberry site. The primary release associated with Corrective Action Unit 365 was radiological contamination from the Baneberry nuclear test. Baneberry was an underground weapons-related test that vented significant quantities of radioactive gases from a fissure located in close proximity to ground zero. A crater formed shortly after detonation, which stemmed part of the flow from the fissure. The scope of this investigation includes surface and shallow subsurface (less than 15 feet below ground surface) soils. Radionuclides from the Baneberry test with the potential to impact groundwater are included within the Underground Test Area Subproject. Investigations and corrective actions associated with the Underground Test Area Subproject include the radiological inventory resulting from the Baneberry test.

  14. Corrective Action Investigation Plan for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-02-26

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 529, Area 25 Contaminated Materials, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 529 consists of one Corrective Action Site (25-23-17). For the purpose of this investigation, the Corrective Action Site has been divided into nine parcels based on the separate and distinct releases. A conceptual site model was developed for each parcel to address the translocation of contaminants from each release. The results of this investigation will be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  15. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  16. Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Revision 1)

    USDOE/NV

    1999-07-01

    This Corrective Action Investigation Plan (CAIP) has been developed for Frenchman Flat Corrective Action Unit (CAU) 98. The Frenchman Flat CAU is located along the eastern border of the Nevada Test Site (NTS) and includes portions of Areas 5 and 11. The Frenchman Flat CAU constitutes one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. The CAIP describes the Corrective Action Investigation (CAI) to be conducted at the Frenchman Flat CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The Frenchman Flat CAI will be conducted by the Underground Test Area (UGTA) Project which is a part of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Environmental Restoration Project. The CAIP is a requirement of the Federal Facility Agreement and Consent Order (FFACO) (1996 ) agreed to by the U.S. Department of Energy (DOE), the Nevada Division of Environmental Protection (NDEP), and the U.S. Department of Defense (DoD). Based on the general definition of a CAI from Section IV.14 of the FFACO, the purpose of the CAI is ''...to gather data sufficient to characterize the nature, extent, and rate of migration or potential rate of migration from releases or discharges of pollutants or contaminants and/or potential releases or discharges from corrective action units identified at the facilities...'' (FFACO, 1996). However, for the Underground Test Area (UGTA) CAUs, ''...the objective of the CAI process is to define boundaries around each UGTA CAU that establish areas that contain water that may be unsafe for domestic and municipal use.'', as stated in Appendix VI of the FFACO (1996). According to the UGTA strategy (Appendix VI of the FFACO), the CAI of a given CAU starts with the evaluation of the existing data. New

  17. NSP Action Plans

    Department of Housing and Urban Development — NSP Action Plans, also known as Substantial Amendments, contain a description of a grantee’s intended use for NSP funds. The plans contain information on the...

  18. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    Wickline, Alfred

    2006-12-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  19. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  20. Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0

    Alfred Wickline

    2008-07-01

    Corrective Action Unit (CAU) 557 is located in Areas 1, 3, 6, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada, and is comprised of the four corrective action sites (CASs) listed below: • 01-25-02, Fuel Spill • 03-02-02, Area 3 Subdock UST • 06-99-10, Tar Spills • 25-25-18, Train Maintenance Bldg 3901 Spill Site These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 3, 2008, by representatives of the Nevada Division of Environmental Protection (NDEP); U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 557. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 557 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological survey at CAS 25-25-18. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern are present. • If contaminants of concern are present, collect additional step

  1. Corrective Action Investigation Plan for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada (Rev. 0 / June 2003), Including Record of Technical Change No. 1

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-06-27

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 536: Area 3 Release Site, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 536 consists of a single Corrective Action Site (CAS): 03-44-02, Steam Jenny Discharge. The CAU 536 site is being investigated because existing information on the nature and extent of possible contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 03-44-02. The additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating CAAs and selecting the appropriate corrective action for this CAS. The results of this field investigation are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3-2004.

  2. Corrective Action Investigation Plan for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe Nevada Test Site, Nevada, Revision 0

    Patrick Matthews

    2009-02-01

    dose rates exceed final action levels (FALs). • Collect and submit environmental samples for laboratory analysis to determine whether chemical contaminants are present at concentrations exceeding FALs. • If contamination exceeds FALs, define the extent of the contamination exceeding FALs. • Investigate waste to determine whether potential source material is present. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy; and U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval of the plan.

  3. Corrective Action Investigation Plan for Corrective Action Unit 568: Area 3 Plutonium Dispersion Sites Nevada National Security Site, Nevada, Revision 0

    Matthews, Patrick

    2014-01-01

    CAU 568 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 568, which comprises the following corrective action sites (CASs): • 03-23-17, S-3I Contamination Area • 03-23-19, T-3U Contamination Area • 03-23-20, Otero Contamination Area • 03-23-22, Platypus Contamination Area • 03-23-23, San Juan Contamination Area • 03-23-26, Shrew/Wolverine Contamination Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report.

  4. Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases

  5. Corrective Action Investigation Plan for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    David A. Strand

    2005-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  6. Asthma action plan

    Public Health Agency

    2014-01-01

    This action plans allow each child (or parent/carer) to record his or her asthma treatment to help manage their asthma when they are well, when their symptoms get worse and when they are suffering an asthma attack.

  7. Postpartum Depression Action Plan

    MENU Return to Web version Postpartum Depression | Postpartum Depression Action Plan Patient __________________________ Physician/NP/PA __________________ Clinic ____________________________ Phone Number ____________________ Choose one area and add other areas as you begin to feel ...

  8. Corrective Action Investigation Plan for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1

    U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Sites Office

    2003-04-28

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Sites Office's (NNSA/NSO's) approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 516, Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 516 consists of six Corrective Action Sites: 03-59-01, Building 3C-36 Septic System; 03-59-02, Building 3C-45 Septic System; 06-51-01, Sump Piping, 06-51-02, Clay Pipe and Debris; 06-51-03, Clean Out Box and Piping; and 22-19-04, Vehicle Decontamination Area. Located in Areas 3, 6, and 22 of the NTS, CAU 516 is being investigated because disposed waste may be present without appropriate controls, and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. Existing information and process knowledge on the expected nature and extent of contamination of CAU 516 are insufficient to select preferred corrective action alternatives; therefore, additional information will be obtained by conducting a corrective action investigation. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3/2004.

  9. Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1

    David A. Strand

    2004-08-01

    This Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select viable corrective actions. This Corrective Action Investigation Plan provides investigative details for CAU 511, whereas programmatic aspects of this project are discussed in the ''Project Management Plan'' (DOE/NV, 1994). General field and laboratory quality assurance and quality control issues are presented in the ''Industrial Sites Quality Assurance Project Plan'' (NNSA/NV, 2002). Health and safety aspects of the project are documented in the current version of the Environmental Engineering Services Contractor's Health and Safety Plan and will be supplemented with a site-specific safety basis document. Corrective Action Unit 511 is comprised of the following nine corrective action sites in Nevada Test Site Areas 3, 4, 6, 7, 18, and 19: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). Corrective Action Sites 18-99-10 and 19-19-03 were identified after a review of the ''1992 RCRA Part B Permit Application for Waste Management Activities at the Nevada Test Site, Volume IV, Section L Potential Solid Waste Management Unit'' (DOE/NV, 1992). The remaining seven sites were first identified in the 1991 Reynolds

  10. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev.1

    Corrective Action Unit 552 is being investigated because man-made radionuclides and chemical contaminants may be present in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. The CAI will be conducted following the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQOs are used to identify the type, amount, and quality of data needed to define the nature and extent of contamination and identify and evaluate the most appropriate corrective action alternatives for CAU 552. The primary problem statement for the investigation is: 'Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 12-23-05.' To address this problem statement, the resolution of the following two decision statements is required: (1) The Decision I statement is: 'Is a contaminant present within the CAU at a concentration that could pose an unacceptable risk to human health and the environment?' Any site-related contaminant detected at a concentration exceeding the corresponding preliminary action level (PAL), as defined in Section A.1.4.2, will be considered a contaminant of concern (COC). A COC is defined as a site-related constituent that exceeds the screening criteria (PAL). The presence of a contaminant within each CAS is defined as the analytical detection of a COC. (2) The Decision II statement is: 'Determine the extent of contamination identified above PALs.' This decision will be achieved by the collection of data that are adequate to define the extent of COCs. Decision II samples are used to determine the lateral and vertical extent of the contamination as well as the likelihood of COCs to migrate outside of the site boundaries. The migration pattern can be derived from the Decision II

  11. Addendum to the Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada (Rev. 0, November 2000)

    DOE/NV

    2000-11-03

    This addendum to the Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to determine the extent of contamination existing at Corrective Action Unit (CAU) 321. This addendum was required when the extent of contamination exceeded the estimate in the original Corrective Action Decision Document (CADD). Located in Area 22 on the Nevada Test Site, Corrective Action Unit 321, Weather Station Fuel Storage, consists of Corrective Action Site 22-99-05, Fuel Storage Area, was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility. This facility was operational from 1951 to 1958 and dismantled after 1958. Based on site history and earlier investigation activities at CAU 321, the contaminant of potential concern (COPC) was previously identified as total petroleum hydrocarbons (diesel-range organics). The scope of this corrective action investigation for the Fuel Storage Area will include the selection of biased sample locations to determine the vertical and lateral extent of contamination, collection of soil samples using rotary sonic drilling techniques, and the utilization of field-screening methods to accurately determine the extent of COPC contamination. The results of this field investigation will support a defensible evaluation of corrective action alternatives and be included in the revised CADD.

  12. Corrective Action Investigation Plan for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada (December 2002, Revision No.: 0), Including Record of Technical Change No. 1

    NNSA/NSO

    2002-12-12

    The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations

  13. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. 1

    Robert F. Boehlecke

    2005-01-01

    Corrective Action Unit 552 is being investigated because man-made radionuclides and chemical contaminants may be present in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. The CAI will be conducted following the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQOs are used to identify the type, amount, and quality of data needed to define the nature and extent of contamination and identify and evaluate the most appropriate corrective action alternatives for CAU 552. The primary problem statement for the investigation is: ''Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 12-23-05.'' To address this problem statement, the resolution of the following two decision statements is required: (1) The Decision I statement is: ''Is a contaminant present within the CAU at a concentration that could pose an unacceptable risk to human health and the environment?'' Any site-related contaminant detected at a concentration exceeding the corresponding preliminary action level (PAL), as defined in Section A.1.4.2, will be considered a contaminant of concern (COC). A COC is defined as a site-related constituent that exceeds the screening criteria (PAL). The presence of a contaminant within each CAS is defined as the analytical detection of a COC. (2) The Decision II statement is: ''Determine the extent of contamination identified above PALs.'' This decision will be achieved by the collection of data that are adequate to define the extent of COCs. Decision II samples are used to determine the lateral and vertical extent of the contamination as well as the likelihood of COCs to migrate outside of the site

  14. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Patrick Matthews

    2012-09-01

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU

  15. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. No.: 1 with ROTC 1 and 2

    David A. Strand

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 552 is comprised of the one Corrective Action Site which is 12-23-05, Ponds. One additional CAS, 12-06-04, Muckpile (G-Tunnel Muckpile), was removed from this CAU when it was determined that the muckpile is an active site. A modification to the FFACO to remove CAS 12-06-04 was approved by the Nevada Division of Environmental Protection (NDEP) on December 16, 2004. The G-Tunnel ponds were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada Test Site Inventory of Inactive and Abandoned Facilities and Waste Sites'' (REECo, 1991). Corrective Action Unit 552 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Therefore, additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating and selecting the corrective action alternatives for the site. The CAI will include field inspections, radiological surveys, and sampling of appropriate media. Data will also be obtained to support investigation-derived waste (IDW) disposal and potential future waste management decisions.

  16. Corrective Action Investigation Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada

    The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation

  17. Corrective Action Investigation Plan for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    Bailey, Bernadine; Matthews, Patrick

    2013-07-01

    CAU 571 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 571, which comprises the following corrective action sites (CASs): • 09-23-03, Atmospheric Test Site S-9F • 09-23-04, Atmospheric Test Site T9-C • 09-23-12, Atmospheric Test Site S-9E • 09-23-13, Atmospheric Test Site T-9D • 09-45-01, Windrows Crater These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on March 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (now the Nevada Field Office). The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 571. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 571 CASs are from nuclear testing activities. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default

  18. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    Matthews, Patrick

    2014-09-01

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): • 05-23-04, Atmospheric Tests (6) - BFa Site • 05-45-03, Atmospheric Test Site - Small Boy These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of

  19. Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP

  20. RPII Action Plan

    This document outlines RPII's committments under the Public Service Action Plan 2010 to 2014, otherwise known as the Croke Park Agreement. The document describes the proposed changes to the workplan, the benefits arising from the changes and the timeframe for implementing the committments

  1. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. 0 with ROTC No. 1 and ROTC No. 2

    Robert F. Boehlecke

    2004-10-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to CAS 23-02-08. The scope of the corrective action investigation

  2. Corrective Action Investigation Plan for Corrective Action Unit No. 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    DOE/NV

    1997-10-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV), the State of Nevada Division of Environmental Protection (NDEP), and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUS) or Corrective Action Sites (CASs) (FFACO, 1996). As per the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figures 1-1 and 1-2). Corrective Action Unit No. 423 is comprised of only one CAS (No. 03-02-002-0308), which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (m) (240 feet [ft]) northwest as shown on Figure 1-3.

  3. Corrective Action Investigation Plan for Corrective Action Unit 224: Decon Pad and Septic Systems Nevada Test Site, Nevada, Rev. No.: 0, with ROTC 1 and 2

    David A. Strand

    2004-04-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 224: Decon Pad and Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 224 is comprised of the nine Corrective Action Sites (CASs) listed below: 02-04-01, Septic Tank (Buried); 03-05-01, Leachfield; 05-04-01, Septic Tanks (4)/Discharge Area; 06-03-01, Sewage Lagoons (3); 06-05-01, Leachfield; 06-17-04, Decon Pad and Wastewater Catch; 06-23-01, Decon Pad Discharge Piping; 11-04-01, Sewage Lagoon; and 23-05-02, Leachfield. Corrective Action Sites 06-05-01, 06-23-01, and 23-05-02 were identified in the 1991 Reynolds Electrical & Engineering Co., Inc. (REECo) inventory (1991). The remaining sites were identified during review of various historical documents. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating and selecting a corrective action alternative for each CAS. The CAI will include field inspections, radiological and geological surveys, and sample collection. Data will also be obtained to support investigation-derived waste (IDW) disposal and potential future waste management decisions.

  4. Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e valuation

  5. Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Patrick Matthews

    2012-08-01

    CAU 570 comprises the following six corrective action sites (CASs): • 02-23-07, Atmospheric Test Site - Tesla • 09-23-10, Atmospheric Test Site T-9 • 09-23-11, Atmospheric Test Site S-9G • 09-23-14, Atmospheric Test Site - Rushmore • 09-23-15, Eagle Contamination Area • 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological

  6. Corrective Action Investigation Plan for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada, Revision 1, February 1999

    U.S. Department Of Energy, Nevada Operations Office

    1999-02-24

    The Corrective Action Investigation Plan for Corrective Action Unit 266, Area 25 Building 3124 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U.S. Department of Defense. Corrective Action Unit 266 consists of the Corrective Action Site 25-05-09 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 266. Corrective Action Unit 266 is located southwest of Building 3124 which is located southwest and adjacent to Test Cell A. Test Cell A was operational during the 1960s to test nuclear rocket reactors in support of the Nuclear Rocket Development Station. Operations within Building 3124 from 1962 through the early 1990s resulted in effluent releases to the leachfield and associated collection system. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with Test Cell A reactor testing operations, various laboratories including a high-level radioactivity environmental sample handling laboratory, and possibly the Treatability Test Facility. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include radionuclides, oil/diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. Samples will also be analyzed for radionuclides and polychlorinated biphenyls not

  7. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Wickline, Alfred

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  8. Corrective Action Investigation Plan for Corrective Action Unit 34: Area 3 Contaminated Waste Site, Nevada Test Site, Nevada (Rev. 0, March 2001); FINAL

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 34 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 34 consists of four Corrective Action Sites (CASs). The CAU is located within the Area 3 Compound at the Nevada Test Site (NTS) in the vicinity of the Mud Plant Facility in Yucca Valley. Historically, CAS 03-09-07, Mud Pit, was used for disposal of excess mud from washing drilling equipment from 1968 to 1974, at which time it began to be used for excess mud disposal (currently inactive); CAS 03-44-01, Chromium Contamination Spill, was used to store additives used in the formulation of drilling mud from the early 1960s to the mid-1990s; CAS 03-47-02, Area 3 Mud Plant Pond, was used as a freshwater storage reservoir for the mud plant as well as supplied water for a number of activities including the mixing of mud, the rinsing and cleaning of tanks, and various washdowns from the 1960s through 1990s; and CAS 03-09-06, Mud Disposal Crater, was created in 1962 by an underground nuclear detonation (i.e., Chinchilla test) and was used to mix and store mud, dispose of receiving waste from the mud plant floor drains and excess drilling mud, and clean/flush mix tanks through the mid-1990s. Based on site history, the scope of this plan is to identify potentially contaminated ground soil at each of the four CASs and determine the quantity, nature, and extent of contaminants of potential concern (COPCs). The investigation will include systematic and biased surface and subsurface soil and mud sampling using hand-auguring and direct-push techniques; visual, video, and/or electromagnetic surveys of pipes; field screening for volatile organic compounds (VOCs) and alpha/beta-emitting radionuclides; and laboratory

  9. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2

    David A. Strand

    2004-05-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543

  10. Corrective Action Investigation Plan for Corrective Action Unit 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada, with ROTC 1 Revision 0

    Matthews, Patrick K.

    2013-07-01

    Corrective Action Unit (CAU) 567 is located in Areas 1, 3, 5, 20, and 25 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 567 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 567, which comprises the following corrective action sites (CASs): • 01-23-03, Atmospheric Test Site T-1 • 03-23-25, Seaweed E Contamination Area • 05-23-07, A5b RMA • 20-23-08, Colby Mud Spill • 25-23-23, J-11 Soil RMA These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on May 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 567. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 567 releases are nuclear test operations and other NNSS operations. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary

  11. Corrective Action Investigation Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada, Rev. No.: 0

    David A. Strand

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental corrective action alternatives. Corrective Action Unit 151 is located in Areas 2, 12, 18, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 151 is comprised of the nine Corrective Action Sites (CAS) listed below: (1) 02-05-01, UE-2ce Pond; (2) 12-03-01, Sewage Lagoons (6); (3) 12-04-01, Septic Tanks; (4) 12-04-02, Septic Tanks; (5) 12-04-03, Septic Tank; (6) 12-47-01, Wastewater Pond; (7) 18-03-01, Sewage Lagoon; (8) 18-99-09, Sewer Line (Exposed); and (9) 20-19-02, Photochemical Drain. The CASs within CAU 151 are discharge and collection systems. Corrective Action Site 02-05-01 is located in Area 2 and is a well-water collection pond used as a part of the Nash test. Corrective Action Sites 12-03-01, 12-04-01, 12-04-02, 12-04-03, and 12-47-01 are located in Area 12 and are comprised of sewage lagoons, septic tanks, associated piping, and two sumps. The features are a part of the Area 12 Camp housing and administrative septic systems. Corrective Action Sites 18-03-01 and 18-99-09 are located in the Area 17 Camp in Area 18. These sites are sewage lagoons and associated piping. The origin and terminus of CAS 18-99-09 are unknown; however, the type and configuration of the pipe indicates that it may be a part of the septic systems in Area 18. Corrective Action Site 20-19-02 is located in the Area 20 Camp. This site is comprised of a surface discharge of photoprocessing chemicals.

  12. Corrective Action Investigation Plan for Corrective Action Unit 487: Thunderwell Site, Tonopah Test Range, Nevada (Rev. No.: 0, January 2001); TOPICAL

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 487, Thunderwell Site, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 487 consists of a single Corrective Action Site (CAS), RG 26-001-RGRV, Thunderwell Site. The site is located in the northwest portion of the TTR, Nevada, approximately five miles northwest of the Area 3 Control Point and closest to the Cactus Flats broad basin. Historically, Sandia National Laboratories in New Mexico used CAU 487 in the early to mid-1960s for a series of high explosive tests detonated at the bottom of large cylindrical steel tubes. Historical photographs indicate that debris from these tests and subsequent operations may have been scattered and buried throughout the site. A March 2000 walk-over survey and a July 2000 geophysical survey indicated evidence of buried and surface debris in dirt mounds and areas throughout the site; however, a radiological drive-over survey also performed in July 2000 indicated that no radiological hazards were identified at this site. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that detonation activities at this CAU site may have resulted in the release of contaminants of concern into the surface/subsurface soil including total volatile and total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, radionuclides, total petroleum hydrocarbons, and high explosives. Therefore, the scope of corrective action field investigation will involve excavation, drilling, and extensive soil sampling and analysis activities to determine the extent (if any) of both the lateral and vertical contamination and whether

  13. Ontario's energy action plan

    In the fall of 2002, the government of Ontario announced an action plan designed to ensure stable electricity prices while additional electricity generating capacity is built. The action plan included a strategy for encouraging major private sector investments in wind, solar and other renewable energy sources. The strategies for new renewable energy projects include: property tax incentives, business income tax incentives, and sales tax rebates. Initiatives to increase supply include: Toronto's Portland 550 megawatt, natural gas-fired generating station, Niagara Falls' Beck Tunnel Project, and Windsor's 580 megawatt natural gas-fired generating station. The government is promoting energy conservation by reducing its electricity consumption by 10 per cent, and setting a target where 20 per cent of electricity consumed in the province must be from renewable energy sources. The use of interval meters by Ontario residents is being encouraged. A provincial sales tax rebate is being offered to customers buying select energy efficient appliances. In its commitment to environmental protection, the Ontario government is phasing out coal, offering rebates for solar energy systems, implementing measures to reduce acid rain, and investing $3.25 billion over ten years to renew and expand public transit. In Chatham, Ontario, a plant producing ethanol from corn was built, and others are planned for other parts of the province. Tax incentives are also offered for alternative fuel users. 1 ref., 1 tab

  14. Customer Service Action Plan

    Department of Health (Ireland)

    2003-01-01

    Customer Service Action Plan One of the fundamental themes of Delivering Better Government (1996) is the â?oachievement of an excellent service for the Government and for the public as customers and clients at all levelsâ?Âù. In 2000, the Quality Customer Service (QCS) Working Group reviewed and revised the 1997 Principles of Quality Customer Service to take account of changes in the environment since 1997, such as the equality agenda. In July 2000, the Government decided that: Click ...

  15. Guam Energy Action Plan

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    Describes the four near-term strategies selected by the Guam Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. Each strategy addresses one of the energy sectors identified in the earlier Guam strategic energy plan as being an essential component of diversifying Guam's fuel sources and reducing fossil energy consumption 20% by 2020. The four energy strategies selected are: (1) expanding public outreach on energy efficiency and conservation, (2) establishing a demand-side management revolving loan program, (3) exploring waste-to-energy options, and (4) influencing the transportation sector via anti-idling legislation, vehicle registration fees, and electric vehicles.

  16. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve

  17. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the

  18. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision 0 (includes ROTCs 1, 2, and 3)

    NNSA/NV

    2002-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted

  19. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues

  20. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    NNSA/NV

    2002-07-18

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive

  1. Corrective Action Investigation Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    This corrective action investigation plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 262 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 262 consists of nine Corrective Action Sites (CASs): Underground Storage Tank (25-02-06), Septic Systems A and B (25-04-06), Septic System (25-04-07), Leachfield (25-05-03), Leachfield (25-05-05), Leachfield (25-05-06), Radioactive Leachfield (25-05-08), Leachfield (25-05-12), and Dry Well (25-51-01). Situated in Area 25 at the Nevada Test Site (NTS), sites addressed by CAU 262 are located at the Reactor-Maintenance, Assembly, and Disassembly (R-MAD); Test Cell C; and Engine-Maintenance, Assembly, and Disassembly (E-MAD) facilities. The R-MAD, Test Cell C, and E-MAD facilities supported nuclear rocket reactor and engine testing as part of the Nuclear Rocket Development Station. The activities associated with the testing program were conducted between 1958 and 1973. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern (COPCs) for the site include oil/diesel-range total petroleum hydrocarbons, volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, strontium-90, and tritium. The scope of the corrective action field investigation at the CAU will include the inspection of portions of the collection systems, sampling the contents of collection system features in situ of leachfield logging materials, surface soil sampling, collection of samples of soil underlying the base of inlet and outfall ends of septic tanks and outfall ends of diversion structures and distribution boxes, collection of soil samples from biased or a combination of

  2. Corrective Action Investigation Plan for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada (Rev. 0, April 2001); FINAL

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 271 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 271 consists of 15 Corrective Action Sites (CASs) including: thirteen Septic Systems (25-04-01, 25-04-03, 25-04-04, 25-04-08, 25-04-09, 25-04-10, 25-04-11, 26-04-01, 26-04-02, 26-05-03, 26-05-04, 26-05-05, and 27-05-02), one Contaminated Water Reservoir (26-03-01), and one Radioactive Leachfield (26-05-01). The CASs addressed by CAU 271 are located at Guard Station 500, the Reactor Control Point (RCP), Bare Reactor Experiment - Nevada Tower, and Engine Test State-1 (ETS-1) facilities in Area 25; the Port Gaston and Project Pluto facilities in Area 26; and the Baker Site in Area 27 of the Nevada Test Site. Between 1 958 and 1973, the RCP and ETS-1 facilities supported the development and testing of nuclear reactors for space propulsion as part of the Nuclear Rocket Development Station. The Project Pluto facilities supported nuclear reactor testing for use as a ramjet propulsion system between 1961 and 1964, followed by similar use for other projects through the early 1980s. The Baker Site facilities were constructed in the 1960s to serve as the staging point where the manufactured components of nuclear devices were assembled, disassembled, and modified. The scope of the investigation strategy at these sites will involve biased and random soil sampling in leachfields using excavation (with drilling as a contingency), collection of soil samples underlying the base of proximal and distal ends of septic tanks and distal ends of distribution structures, defining the lateral and vertical extent of contamination through discrete field and possible stepout location sampling, collection system line

  3. Corrective Action Investigation Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada, Revision No. 1 (9/2001)

    This corrective action investigation plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 262 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 262 consists of nine Corrective Action Sites (CASs): Underground Storage Tank (25-02-06), Septic Systems A and B (25-04-06), Septic System (25-04-07), Leachfield (25-05-03), Leachfield (25-05-05), Leachfield (25-05-06), Radioactive Leachfield (25-05-08), Leachfield (25-05-12), and Dry Well (25-51-01). Situated in Area 25 at the Nevada Test Site (NTS), sites addressed by CAU 262 are located at the Reactor-Maintenance, Assembly, and Disassembly (R-MAD); Test Cell C; and Engine-Maintenance, Assembly, and Disassembly (E-MAD) facilities. The R-MAD, Test Cell C, and E-MAD facilities supported nuclear rocket reactor and engine testing as part of the Nuclear Rocket Development Station. The activities associated with the testing program were conducted between 1958 and 1973. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern (COPCs) for the site include oil/diesel-range total petroleum hydrocarbons, volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, strontium-90, and tritium. The scope of the corrective action field investigation at the CAU will include the inspection of portions of the collection systems, sampling the contents of collection system features in situ of leachfield logging materials, surface soil sampling, collection of samples of soil underlying the base of inlet and outfall ends of septic tanks and outfall ends of diversion structures and distribution boxes, collection of soil samples from biased or a combination of

  4. Corrective Action Investigation Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada, Revision No. 1 (9/2001)

    NNSA/NV

    2000-07-20

    This corrective action investigation plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 262 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 262 consists of nine Corrective Action Sites (CASs): Underground Storage Tank (25-02-06), Septic Systems A and B (25-04-06), Septic System (25-04-07), Leachfield (25-05-03), Leachfield (25-05-05), Leachfield (25-05-06), Radioactive Leachfield (25-05-08), Leachfield (25-05-12), and Dry Well (25-51-01). Situated in Area 25 at the Nevada Test Site (NTS), sites addressed by CAU 262 are located at the Reactor-Maintenance, Assembly, and Disassembly (R-MAD); Test Cell C; and Engine-Maintenance, Assembly, and Disassembly (E-MAD) facilities. The R-MAD, Test Cell C, and E-MAD facilities supported nuclear rocket reactor and engine testing as part of the Nuclear Rocket Development Station. The activities associated with the testing program were conducted between 1958 and 1973. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern (COPCs) for the site include oil/diesel-range total petroleum hydrocarbons, volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, strontium-90, and tritium. The scope of the corrective action field investigation at the CAU will include the inspection of portions of the collection systems, sampling the contents of collection system features in situ of leachfield logging materials, surface soil sampling, collection of samples of soil underlying the base of inlet and outfall ends of septic tanks and outfall ends of diversion structures and distribution boxes, collection of soil samples from biased or a combination of

  5. Corrective Action Investigation Plan for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada (Rev. 0, April 2001)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-04-09

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 271 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 271 consists of 15 Corrective Action Sites (CASs) including: thirteen Septic Systems (25-04-01, 25-04-03, 25-04-04, 25-04-08, 25-04-09, 25-04-10, 25-04-11, 26-04-01, 26-04-02, 26-05-03, 26-05-04, 26-05-05, and 27-05-02), one Contaminated Water Reservoir (26-03-01), and one Radioactive Leachfield (26-05-01). The CASs addressed by CAU 271 are located at Guard Station 500, the Reactor Control Point (RCP), Bare Reactor Experiment - Nevada Tower, and Engine Test State-1 (ETS-1) facilities in Area 25; the Port Gaston and Project Pluto facilities in Area 26; and the Baker Site in Area 27 of the Nevada Test Site. Between 1 958 and 1973, the RCP and ETS-1 facilities supported the development and testing of nuclear reactors for space propulsion as part of the Nuclear Rocket Development Station. The Project Pluto facilities supported nuclear reactor testing for use as a ramjet propulsion system between 1961 and 1964, followed by similar use for other projects through the early 1980s. The Baker Site facilities were constructed in the 1960s to serve as the staging point where the manufactured components of nuclear devices were assembled, disassembled, and modified. The scope of the investigation strategy at these sites will involve biased and random soil sampling in leachfields using excavation (with drilling as a contingency), collection of soil samples underlying the base of proximal and distal ends of septic tanks and distal ends of distribution structures, defining the lateral and vertical extent of contamination through discrete field and possible stepout location sampling, collection system line

  6. Corrective Action Investigation Plan for Corrective Action Unit 556: Dry Wells and Surface Release Points Nevada Test Site, Nevada (Draft), Revision 0

    Grant Evenson

    2007-02-01

    Corrective Action Unit  (CAU) 556, Dry Wells and Surface Release Points, is located in Areas 6 and 25 of the Nevada Test Site, 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 556 is comprised of four corrective action sites (CASs) listed below: •06-20-04, National Cementers Dry Well •06-99-09, Birdwell Test Hole •25-60-03, E-MAD Stormwater Discharge and Piping •25-64-01, Vehicle Washdown and Drainage Pit These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  7. Action Plan for Jobs 2012

    2012-01-01

    The Action Plan for jobs provides the blueprint for action which aligns all Government departments and agencies around an enterprise growth and jobs objective. The plan contains over 270 actions to be implemented in 2012 by all 15 Government Departments as well as 36 State agencies. The publication of the Action Plan for Jobs marks the commencement of an annual process to produce an Action Plan focused on jobs and the enterprise economy. Forfás worked closely with the Minister for Jobs, Enter...

  8. Corrective Action Investigation Plan for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada (Rev. No.: 0, August 2002)

    NNSA/NV

    2002-08-27

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Offices's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 127 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 127 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of 12 Corrective Action Sites (CASs) located at Test Cell C; the Engine Maintenance, Assembly, and Disassembly (E-MAD) Facility; the X-Tunnel in Area 25; the Pluto Disassembly Facility; the Pluto Check Station; and the Port Gaston Training Facility in Area 26. These CASs include: CAS 25-01-05, Aboveground Storage Tank (AST); CAS 25-02-02, Underground Storage Tank (UST); CAS 25-23-11, Contaminated Materials; CAS 25-12-01, Boiler; CAS 25-01-06, AST; CAS 25-01-07, AST; CAS 25-02-13, UST; CAS 26- 01-01, Filter Tank (Rad) and Piping; CAS 26-01-02, Filter Tank (Rad); CAS 26-99-01, Radioactively Contaminated Filters; CAS 26-02-01, UST; CAS 26-23-01, Contaminated Liquids Spreader. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for CAU 127 include radionuclides, metals, total petroleum hydrocarbons, volatile organic compounds, asbestos, and polychlorinated biphenyls. Additionally, beryllium may be present at some locations. The sources of potential releases are varied, but releases of contaminated liquids may have occurred and may have migrated into and impacted soil below and surrounding storage vessels at some of the CASs. Also, at several CASs, asbestos-containing materials may be present on the aboveground structures and may be friable. Exposure pathways are limited to ingestion, inhalation, and dermal contact (adsorption) of soils/sediments or liquids, or inhalation of contaminants by site workers due to disturbance of

  9. Corrective Action Investigation Plan for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada (Rev. No.: 0, August 2002)

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Offices's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 127 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 127 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of 12 Corrective Action Sites (CASs) located at Test Cell C; the Engine Maintenance, Assembly, and Disassembly (E-MAD) Facility; the X-Tunnel in Area 25; the Pluto Disassembly Facility; the Pluto Check Station; and the Port Gaston Training Facility in Area 26. These CASs include: CAS 25-01-05, Aboveground Storage Tank (AST); CAS 25-02-02, Underground Storage Tank (UST); CAS 25-23-11, Contaminated Materials; CAS 25-12-01, Boiler; CAS 25-01-06, AST; CAS 25-01-07, AST; CAS 25-02-13, UST; CAS 26- 01-01, Filter Tank (Rad) and Piping; CAS 26-01-02, Filter Tank (Rad); CAS 26-99-01, Radioactively Contaminated Filters; CAS 26-02-01, UST; CAS 26-23-01, Contaminated Liquids Spreader. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for CAU 127 include radionuclides, metals, total petroleum hydrocarbons, volatile organic compounds, asbestos, and polychlorinated biphenyls. Additionally, beryllium may be present at some locations. The sources of potential releases are varied, but releases of contaminated liquids may have occurred and may have migrated into and impacted soil below and surrounding storage vessels at some of the CASs. Also, at several CASs, asbestos-containing materials may be present on the aboveground structures and may be friable. Exposure pathways are limited to ingestion, inhalation, and dermal contact (adsorption) of soils/sediments or liquids, or inhalation of contaminants by site workers due to disturbance of

  10. Corrective Action Investigation Plan for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters Nevada Test Site, Nevada, Revision 0

    Patrick Matthews

    2009-06-01

    Corrective Action Unit (CAU) 372 is located in Areas 18 and 20 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 372 is comprised of the four corrective action sites (CASs) listed below: • 18-45-02, Little Feller I Surface Crater • 18-45-03, Little Feller II Surface Crater • 20-23-01, U-20k Contamination Area • 20-45-01, U-20L Crater (Cabriolet) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 10, 2009, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; Desert Research Institute, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 372.

  11. Corrective Action Investigation Plan for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box, Nevada Test Site, Nevada

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operation Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 230/320 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 230 consists of Corrective Action Site (CAS) 22-03-01, Sewage Lagoon; while CAU 320 consists of CAS 22-99-01, Strainer Box. These CAUs are referred to as CAU 230/320 or the Sewage Lagoons Site. The Sewage Lagoons Site also includes an Imhoff tank, sludge bed, and associated buried sewer piping. Located in Area 22, the site was used between 1951 to 1958 for disposal of sanitary sewage effluent from the historic Camp Desert Rock Facility at the Nevada Test Site in Nevada. Based on site history, the contaminants of potential concern include volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPH), and radionuclides. Vertical migration is estimated to be less than 12 feet below ground surface, and lateral migration is limited to the soil immediately adjacent to or within areas of concern. The proposed investigation will involve a combination of field screening for VOCs and TPH using the direct-push method and excavation using a backhoe to gather soil samples for analysis. Gamma spectroscopy will also be conducted for waste management purposes. Sampling locations will be biased to suspected worst-case areas including the nearby sludge bed, sewage lagoon inlet(s) and outlet(s), disturbed soil surrounding the lagoons, surface drainage channel south of the lagoons, and the area near the Imhoff tank. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document

  12. 'Action 2016': AREVA's strategic action plan

    On December 13, 2011, Luc Oursel, CEO, and Pierre Aubouin, Chief Financial Officer presented the group's strategic plan for the period 2012-2016. The plan has been drawn up collectively and is based on a thorough-going analysis and a realistic assessment of perspectives for all group activities and associated resources. Development of nuclear and renewable energies: the fundamentals are unchanged. In this context, the German decision remains an isolated case and the great majority of nuclear programs around the world have been confirmed. More conservative in its projections than the International Energy Agency, the group expects growth of 2.2% annually, reaching 583 GW of installed nuclear capacity by 2030, against 378 GW today. However, the Fukushima accident will lead to delays in launching new programs. 'Action 2016' plan aims to consolidate AREVA's leadership in nuclear energy and become a leading player in renewable energy. The group's strategic action plan 'Action 2016' is based on the following strategic choices: - commercial priority given to value creation, - selectivity in investments, - strengthening of the financial structure. These demand an improvement in the group's performance by 2015. This plan makes nuclear safety a strategic priority for the industrial and commercial performance of the group. This ambitious performance plan for the period 2012-2016 will give the group the wherewithal to withstand a temporary slowdown in the market resulting from the Fukushima accident and to deliver safe and sustainable growth of the business. The plan sets out the strategic direction for the group's employees for the years ahead: taking advantage of the expected growth in nuclear and renewable energies, targeted investment programs, and return to self-financing as of 2014

  13. Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    Patrick Matthews

    2011-07-01

    Corrective Action Unit 106 comprises the four corrective action sites (CASs) listed below: • 05-20-02, Evaporation Pond • 05-23-05, Atmospheric Test Site - Able • 05-45-04, 306 GZ Rad Contaminated Area • 05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from groundwater pumping during the Radionuclide Migration study program (CAS 05-20-02), a weapons-related airdrop test (CAS 05-23-05), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). The presence and nature of contamination from surface-deposited radiological contamination from CAS 05-23-05, Atmospheric Test Site - Able, and other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) from the remaining three CASs will be evaluated using soil samples collected from the locations

  14. What's an Asthma Action Plan?

    ... asthma action plan is to reduce or prevent flare-ups and emergency department visits through day-to-day ... can: avoid triggers identify early symptoms of a flare-up and treat them to prevent the flare-up ...

  15. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0

    Grant Evenson

    2008-07-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: • 01-19-01, Waste Dump • 02-08-02, Waste Dump and Burn Area • 03-19-02, Debris Pile • 05-62-01, Radioactive Gravel Pile • 12-23-09, Radioactive Waste Dump • 22-19-06, Buried Waste Disposal Site • 23-21-04, Waste Disposal Trenches • 25-08-02, Waste Dump • 25-23-21, Radioactive Waste Dump • 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys

  16. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    McCord, John; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of

  17. American Samoa Energy Action Plan

    Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States); Herdrich, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bodell, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Visser, Charles [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-08-01

    Describes the five near-term strategies selected by the American Samoa Renewable Energy Committee (ASREC) during action planning workshops conducted in May 2013, and outlines the actions being taken to implement those strategies. Each option is tied to a priority identified in the earlier draft American Samoa Strategic Energy Plan as being an essential component of reducing American Samoa'spetroleum energy consumption. The actions described for each strategy provide a roadmap to facilitate the implementation of each strategy. This document is intended to evolve along with the advancement of the projects, and will be updated to reflect progress.

  18. Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites, Nevada Test Site, Nevada, Revision 0

    Patrick Matthews

    2010-04-01

    Corrective Action Unit (CAU) 106 is located in Area 5 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 106 comprises the five corrective action sites (CASs) listed below: •05-23-02, GMX Alpha Contaminated Area •05-23-05, Atmospheric Test Site - Able •05-45-01, Atmospheric Test Site - Hamilton •05-45-04, 306 GZ Rad Contaminated Area •05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from a weapons-effect tower test (CAS 05-45-01), a weapons-related airdrop test (CAS 05-23-05), “equation of state” experiments (CAS 05-23-02), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). Surface-deposited radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample plot locations to the dose

  19. Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada Test Site, Nevada, Revision 0

    Patrick Matthews

    2009-12-01

    Corrective Action Unit 367 is located in Area 10 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 367 comprises the four corrective action sites (CASs) listed below: • 10-45-01, U-10h Crater (Sedan) • 10-45-02, Ess Crater Site • 10-09-03, Mud Pit • 10-45-03, Uncle Crater Site The CASs in CAU 367 are being investigated because hazardous and/or radioactive contaminants may be present in concentrations that exceed risk-based corrective action (RBCA) levels. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend CAAs for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting CAAs. The scope of the corrective action investigation for CAU 367 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Collect and submit environmental samples for laboratory analysis to determine the area where TED at the site exceeds FALs (i.e., corrective action boundary). • Evaluate TED to potential receptors in areas along Mercury Highway that have been impacted by a release of radionuclides from the Sedan test. • Collect and submit environmental samples for laboratory analysis related to the drilling mud within CAS 10-09-03, Mud Pit, and any encountered stains or waste as necessary to determine whether COCs are present. • If COCs are present, collect additional step-out samples to define the extent of the contamination. • Collect samples of investigation-derived waste, as needed, for waste management purposes.

  20. Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    Patrick Matthews

    2011-09-01

    Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases

  1. Corrective Action Investigation Plan for Corrective Action Unit 234: Mud Pits, Cellars, and Mud Spills, Nevada Test Site, Nevada, Revision 0

    Corrective Action Unit 234, Mud Pits, Cellars, and Mud Spills, consists of 12 inactive sites located in the north and northeast section of the NTS. The 12 CAU 234 sites consist of mud pits, mud spills, mud sumps, and an open post-test cellar. The CAU 234 sites were all used to support nuclear testing conducted in the Yucca Flat and Rainier Mesa areas during the 1950s through the 1970s. The CASs in CAU 234 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting appropriate corrective action alternatives

  2. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  3. Corrective Action Investigation Plan for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Patrick Matthews; Christy Sloop

    2012-02-01

    Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred to as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO

  4. Corrective Action Investigation Plan for Corrective Action Unit 413: Clean Slate II Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    Matthews, Patrick; Burmeister, Mark; Gallo, Patricia

    2016-04-21

    Corrective Action Unit (CAU) 413 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 413 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate II (CSII) storage–transportation test conducted on May 31, 1963. CAU 413 includes one corrective action site (CAS), TA-23-02CS (Pu Contaminated Soil). The known releases at CAU 413 are the result of the atmospheric deposition of contamination from the 1963 CSII test. The CSII test was a non-nuclear detonation of a nuclear device located inside a reinforced concrete bunker covered with 2 feet of soil. This test dispersed radionuclides, primarily plutonium, on the ground surface. The presence and nature of contamination at CAU 413 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 17, 2015, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 413. The CAI will include radiological surveys, geophysical surveys, collection and analyses of soil samples, and assessment of investigation results. The collection of soil samples will be accomplished using both probabilistic and judgmental sampling approaches. To facilitate site investigation and the evaluation of DQO decisions, the releases at CAU 413 have been divided into seven study groups.

  5. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison

  6. Hungarian climate change action plan

    Molnar, S.; Takacs, T. [Systemexpert Consulting Ltd., Budapest (Hungary); Arpasi, M. [MOL, Budapest (Hungary); Farago, T.; Palvoelgyi, T. [Ministry for Environment and Regional Policy, Budapest (Hungary); Harnos, Z. [Univ. of Horticulture, Budapest (Hungary); Lontay, Z. [EGI-Contracting Engineering Co. Ltd., Budapest (Hungary); Somogyi, Z. [Forest Research Inst., Budapest (Hungary); Tajthy, T. [Univ. of Technology, Budapest (Hungary)

    1998-12-31

    In 1994--1996, within the framework of the US Country Studies Program, the Hungarian Country Study Team developed the national greenhouse gas emission inventory, and elaborated the mitigation options for the different sectors of the economy. In 1997, the development of a National Action Plan was begun as the continuation of this work. Results of the inventory study showed that greenhouse gas emissions decreased from the selected base level (i.e., from the yearly average emissions of 1985--1987) until 1994 by cca. 25%. However, this decrease was primarily caused by the deep economic recession. Therefore the policy makers have to face the problem of economic recovery without a relevant increase of greenhouse gas emissions in the near future. This is the main focus of the mitigation analysis and the National Action Plan.

  7. Corrective Action Investigation Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada (includes ROTC No. 1, date 01/25/1999)

    DOE/NV

    1999-07-29

    This Corrective Action Investigation Plan contains the US Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 254 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 254 consists of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. Located in Area 25 at the Nevada Test Site (NTS), CAU 254 was used between 1963 through 1973 for the decontamination of test-car hardware and tooling used in the Nuclear Rocket Development Station program. The CAS is composed of a fenced area measuring approximately 119 feet by 158 feet that includes Building 3126, an associated aboveground storage tank, a potential underground storage area, two concrete decontamination pads, a generator, two sumps, and a storage yard. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that decontamination activities at this CAU site may have resulted in the release of contaminants of concern (COCs) onto building surfaces, down building drains to associated leachfields, and to soils associated with two concrete decontamination pads located outside the building. Therefore, the scope of the corrective action field investigation will involve soil sampling at biased and random locations in the yard using a direct-push method, scanning and static radiological surveys, and laboratory analyses of all soil/building samples. Historical information provided by former NTS employees indicates that solvents and degreasers may have been used in the decontamination processes; therefore, potential COCs include volatile/semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, asbestos, gamma-emitting radionuclides, plutonium, uranium, and strontium-90. The results of this

  8. ICDF Complex Remedial Action Work Plan

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  9. Corrective Action Investigation Plan for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nevada with ROTCs 1, 2, and 3 (Revision 0, September 2000)

    Andrews, Robert; Marutzky, Sam

    2000-09-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate Corrective Action Alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 97 under the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 97, collectively known as the Yucca Flat/Climax Mine CAU, consists of 720 Corrective Action Sites (CASs). The Yucca Flat/Climax Mine CAU extends over several areas of the NTS and constitutes one of several areas used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. Based on site history, the Yucca Flat underground nuclear tests were conducted in alluvial, volcanic, and carbonate rocks; whereas, the Climax Mine tests were conducted in an igneous intrusion located in northern Yucca Flat. Particle-tracking simulations performed during the regional evaluation indicate that the local Climax Mine groundwater flow system merges into the much larger Yucca Flat groundwater flow systems during the 1,000-year time period of interest. Addressing these two areas jointly and simultaneously investigating them as a combined CAU has been determined the best way to proceed with corrective action investigation (CAI) activities. The purpose and scope of the CAI includes characterization activities and model development conducted in five major sequential steps designed to be consistent with FFACO Underground Test Area Project's strategy to predict the location of the contaminant boundary, develop and implement a corrective action, and close each CAU. The results of this field investigation will support a defensible evaluation of CAAs in the subsequent corrective action decision document.

  10. Semantic activation in action planning

    Lindemann, Oliver; Stenneken, Prisca; van Schie, Hein T.; Bekkering, Harold

    2006-01-01

    Four experiments investigated activation of semantic information in action preparation. Participants either prepared to grasp and use an object (e.g., to drink from a cup) or to lift a finger in association with the object's position following a go/no-go lexical-decision task. Word stimuli were cons

  11. Corrective Action Investigation Plan for Corrective Action Unit 214: Bunkers and Storage Areas Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1 and No. 2

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 214 under the Federal Facility Agreement and Consent Order. Located in Areas 5, 11, and 25 of the Nevada Test Site, CAU 214 consists of nine Corrective Action Sites (CASs): 05-99-01, Fallout Shelters; 11-22-03, Drum; 25-99-12, Fly Ash Storage; 25-23-01, Contaminated Materials; 25-23-19, Radioactive Material Storage; 25-99-18, Storage Area; 25-34-03, Motor Dr/Gr Assembly (Bunker); 25-34-04, Motor Dr/Gr Assembly (Bunker); and 25-34-05, Motor Dr/Gr Assembly (Bunker). These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). The suspected contaminants and critical analyte s for CAU 214 include oil (total petroleum hydrocarbons-diesel-range organics [TPH-DRO], polychlorinated biphenyls [PCBs]), pesticides (chlordane, heptachlor, 4,4-DDT), barium, cadmium, chronium, lubricants (TPH-DRO, TPH-gasoline-range organics [GRO]), and fly ash (arsenic). The land-use zones where CAU 214 CASs are located dictate that future land uses will be limited to nonresidential (i.e., industrial) activities. The results of this field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the corrective action decision document.

  12. Corrective Action Investigation Plan for Corrective Action Unit 527: Horn Silver Mine, Nevada Test Site, Nevada: Revision 1 (Including Records of Technical Change No.1, 2, 3, and 4)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-12-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 527, Horn Silver Mine, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 527 consists of one Corrective Action Site (CAS): 26-20-01, Contaminated Waste Dump No.1. The site is located in an abandoned mine site in Area 26 (which is the most arid part of the NTS) approximately 65 miles northwest of Las Vegas. Historical documents may refer to this site as CAU 168, CWD-1, the Wingfield mine (or shaft), and the Wahmonie mine (or shaft). Historical documentation indicates that between 1959 and the 1970s, nonliquid classified material and unclassified waste was placed in the Horn Silver Mine's shaft. Some of the waste is known to be radioactive. Documentation indicates that the waste is present from 150 feet to the bottom of the mine (500 ft below ground surface). This CAU is being investigated because hazardous constituents migrating from materials and/or wastes disposed of in the Horn Silver Mine may pose a threat to human health and the environment as well as to assess the potential impacts associated with any potential releases from the waste. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  13. Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2002-01-09

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASs are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the

  14. ECOWindS Joint Action Plan

    2014-01-01

    The Joint Action Plan (JAP) is a deliverable of the ECOWindS project Work Package 4 (WP4) “Joint Action Plan”. It presents a plan of action or a roadmap for research, development, and innovation (RDI) for the Offshore Wind Service (OWS) industry. The objective of the JAP is to be an international...

  15. Clean Slate 1 Corrective Action Plan, Revision 0

    NONE

    1997-04-01

    This Corrective Action Plan (CAP) has been prepared to meet the requirements specified in the Federal Facility Agreement and Consent Order (FFACO, 1996). A Corrective Action Decision Document (CADD) (DOE, 1997) was submitted to the Nevada Department of Environmental Protection (NDEP) January 31, 1997 for the Clean Slate 1 (CS-1) Site in accordance with the Corrective Action Investigation Plan (CAIP) (DOE, 1996) and the Soils Media Operable Unit Quality Assurance Project Plan (DOE, 1995). The FFACO lists CS-1 as Corrective Action Unit (CAU) number 412.

  16. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution

  17. The Development of Action Planning in a Joint Action Context

    Paulus, Markus

    2016-01-01

    The ability to act jointly with another person is a fundamental requirement for participation in social life. The current study examines the development of action planning in a joint action context. In 4 experiments, 3-, 5-, and 7-year-old children as well as a group of adults (n = 196) interacted with another person to operate a novel apparatus.…

  18. 'Action 2016': AREVA's strategic action plan to improve performance

    On December 12, 2011, Luc Oursel, Executive Officer of AREVA, and Pierre Aubouin, Chief Financial Executive Officer, presented the group's 'Action 2016' strategic action plan based on an in-depth analysis of the market's outlook. This document makes, first, a Detailed presentation of the 'Action 2016' plan and then presents the group's financial outlook: - Full-year 2011 immediate accounting consequences of the new market environment: operating losses expected in 2011; - 2012-2013 transition period Objective: self-finance capex in cumulative terms; - 2014-2016: safe growth and cash generation, free operating cash flow at break-even beginning in 2013, above euro 1 bn per year beginning in 2015

  19. Planning my actions to accommodate yours: joint action development during early childhood.

    Meyer, Marlene; van der Wel, Robrecht P R D; Hunnius, Sabine

    2016-05-01

    The planning and adjusting of one's actions in relation to an action partner is fundamental to smooth joint action. During their first years of life, children gradually become more engaged in joint actions. Here, we investigated whether and at what age children take their partner into account in their action plans to accommodate the other's actions. We focused on children's proactive planning (without prior experience) and flexible adjustment of action plans over time. In a behavioural study, we tested 96 children from four age groups (2½, 3, 3½ and 5 years) in a joint cup-stacking task. Children passed cups to their partner who had only one hand available (alternating over time) to build a tower. Children's response choices were assessed (i.e. passing the cup on the free or occupied side to their partner). The study yielded two major findings. At all ages, children proactively planned their actions in a way that accommodated their partner's actions. However, only by 3½ years did children start to flexibly integrate their partner into their action plans. Even at age 5, children only showed minimal adjustments to their action partner. Candidate processes underlying these developmental changes (e.g. inhibitory control, cognitive flexibility, perspective taking) are discussed. PMID:27069048

  20. The development of action planning in a joint action context.

    Paulus, Markus

    2016-07-01

    The ability to act jointly with another person is a fundamental requirement for participation in social life. The current study examines the development of action planning in a joint action context. In 4 experiments, 3-, 5-, and 7-year-old children as well as a group of adults (n = 196) interacted with another person to operate a novel apparatus. Their task was to hand the experimenter a tool with which she could activate 1 of 2 different effects on the apparatus. The elicitation of each effect required participants to grasp and insert the tool in a particular orientation. We assessed whether participants planned their grasping and reaching action in such a way that it enabled the partner to efficiently handle the tool, that is, anticipating the final end state of the joint activity. We found that 3-year-old children did not adjust their behavior to accommodate the other's action and that they did not increase their performance over multiple trials. Five- and 7-year-old children initially showed a tendency to plan their action in an egocentric manner (i.e., showed a form of egocentrism), but improved their joint action performance over time. Adult participants demonstrated joint action planning from the beginning. Interestingly, 3- and 5-year-old children were able to plan their grasp efficiently when acting alone on the apparatus. Yet, having first-hand experience with the task before acting with a partner did not facilitate performance in the joint action task for younger children. Overall, the study informs current approaches on the psychological basis and ontogenetic origins of joint action in childhood. (PsycINFO Database Record PMID:27337512

  1. The Climate Change Action Plan: Technical supplement

    1994-03-01

    This Technical Annex documents the assumptions and parameters used in developing the supporting analysis for the Climate Change Action Plan (the Plan) issued by President Clinton on October 19, 1993. The Annex is intended to meet the needs of independent energy and environmental analysts who wish to better understand the Plan, its analytical underpinnings, and the events that need to transpire for the emissions reductions called for in the Plan to be realized. The Plan documented in this Annex reflects the outcome of a wide-ranging effort by Government agencies and interested members of the public to develop and implement actions that can reduce net greenhouse gas emissions in the year 2000 to their aggregate 1990 level. Based on agency and public input, the Climate Change Mitigation Group, chaired by the White House Office on Environmental Policy, developed the Plan`s content. Many of the actions called for in the Plan are now underway, while others are in advanced planning pending congressional action on the fiscal year 1995 budget. The analysis supporting the Plan represents the results of an interagency effort. The US Department of Energy (DOE) was responsible for the integrated analysis of energy-related options, based on the analysis of individual energy-related options by DOE, the US Environmental Protection Agency (EPA), and the US Department of Transportation (DOT). EPA led in providing analysis for actions related to methane, hydrofluorocarbons, and perfluorocarbons. The US Department of Agriculture (USDA) led the analysis of carbon sequestration actions and cooperated with EPA in the analysis of actions to reduce nitrous oxide emissions.

  2. Russian River Interim Action Management Plan

    US Fish and Wildlife Service, Department of the Interior — An interim action plan is presented to guide the 1979 management of the Kenai National Moose Ranges portion of the lower Russian River and its confluence with the...

  3. Environmental health action plan for Europe

    This Environmental Health Action Plan for Europe was endorsed by the second European Conference on Environment and Health, held in Helsinki, 20 to 22 June 1994. It sets out directions for the attainment of long term environment and health policy objectives define in the European Charter on Environment and Health. The Action Plan is primarily addressed at the public health and environmental protection sectors. 10 refs, 4 figs, 2 tabs

  4. Friends Partnership Mentoring Program Action Plan

    US Fish and Wildlife Service, Department of the Interior — This Action Plan has been prepared to support Recommendation 11 of the U.S. Fish and Wildlife Service Refuge System’s “Conserving the Future”. The plan outlines a...

  5. Remedial action planning for Trench 1

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site

  6. Pakistan's nuclear security action plan

    Full text: Introduction: The Government of Pakistan approved a five year plan to strengthen the nuclear security regime in the country which is being implemented since July 2006 . The objective of this Project is to strengthen and enhance the existing regulatory capabilities of PNRA to discharge its responsibilities towards safety and security of nuclear/radioactive materials and facilities. Areas of Focus: The project covers following five areas: Area-1: Management of Radioactive Sources in Category 1-3. evaluation of vulnerable facilities and supporting their efforts: The outcome of the area would be Assessment of security levels at the licensed facilities, identification of weaknesses, propagation of the security culture, up-gradation of the security effort and strengthening of PNRA effectiveness and vigilance . Area-2: Establishment of PNRA Nuclear Safety/Security Training Center: The outcome of this area would be a permanent training facility for sustainable system at national level for providing training in nuclear safety and security to manpower in PNRA and other national organizations. Area-3: National Nuclear Security Emergency Co-ordination Center (NuSECC): The outcome of this area would be the capability to assess, control, and respond and co-ordinate in case of an emergency pertaining to nuclear security. Area-4: Locating and Securing Orphan Radioactive Sources: The outcome of this area would be the establishment or restoration of regulatory control over orphan sources, disposing and putting these sources out of reach of perpetrators and saboteurs. Provision of clean metal and environment to the public. Area-5: Provision of Detection Equipment at Strategic Points: The outcome of this area would be better control of illicit trafficking of nuclear/radioactive material and prompt response to radiological emergency. (author)

  7. Final Action Plan to Tiger Team

    This document presents planned actions, and their associated costs, for addressing the findings in the Environmental, Safety and Health Tiger Team Assessment of the Sandia National Laboratories, Albuquerque, May 1991, hereafter called the Assessment. This Final Action Plan should be read in conjunction with the Assessment to ensure full understanding of the findings addressed herein. The Assessment presented 353 findings in four general categories: (1)Environmental (82 findings); (2) Safety and Health (243 findings); (3) Management and Organization (18 findings); and (4) Self-Assessment (10 findings). Additionally, 436 noncompliance items with Occupational Safety and Health Administration (OSHA) standards were addressed during and immediately after the Tiger Team visit

  8. 7 CFR 275.16 - Corrective action planning.

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Corrective action planning. 275.16 Section 275.16... Corrective action planning. (a) Corrective action planning is the process by which State agencies shall...)/management unit(s) in the planning, development, and implementation of corrective action are those which:...

  9. Emergency Action Plans in Physical Education

    Tanis, Cindy J.; Hebel, Susan L.

    2016-01-01

    Emergency Action Plans (EAP) are essential to properly manage injuries and illnesses in physical education and sport. However, most literature discusses EAP's in the athletic arena instead of physical education. The purpose of this study was to examine physical education instructors' experiences of student illness and injury, discuss the steps of…

  10. Driving change : sustainable development action plans Guidance

    Sustainable Development Commission

    2008-01-01

    This guidance builds upon the Sustainable Development Commission’s previous guidance, Getting Started (August 2005), which set out the basic elements that the Sustainable Development Commission would expect to see in a good Sustainable Development Action Plan. Publisher PDF Original published August 2005.

  11. Wetland Resources Action Planning (WRAP) toolkit

    Bunting, Stuart W.; Smith, Kevin G.; Lund, Søren;

    2013-01-01

    The Wetland Resources Action Planning (WRAP) toolkit is a toolkit of research methods and better management practices used in HighARCS (Highland Aquatic Resources Conservation and Sustainable Development), an EU-funded project with field experiences in China, Vietnam and India. It aims to...

  12. NPP Krsko fire protection action plan

    This paper describes the Fire Protection Action Plan which prioritized proposed fire protection modifications from recommendations reported in the NPP Krsko Fire Hazards Analysis - Safe-Shutdown Separation Analysis (SSSA), the ICISA Analysis of Core Damage Frequency Due to Fire at the Krsko Nuclear Power Plant, and the Operational Safety Review Team (OSART) reports using a risk-based cost/benefit methodology. (author)

  13. Planning for Sustainability through Action Research

    Egmose, Jonas; Andersen, John

    This paper elaborates how action research can make methodological contributions to sustainability planning by strengthening civic orientations across citizens’ everyday life and institutionalised contexts. Taking into account an emerging number of civic sustainability initiatives, the paper addre...... transformative orientations towards future sustainability across citizens’ everyday life and institutional domains....

  14. The ANSTO waste management action plan

    Levins, D. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)

    1997-12-31

    ANSTO`s Waste Management Action Plan is a five-year program which addresses legacy issues that have arisen from the accumulation of radioactive wastes at Lucas Heights over the last forty years. Following an extensive review of waste management practices, a detailed Action Plan was prepared involving seventeen projects in the areas of solid wastes, liquid wastes, control of effluents and emissions, spent reactor fuel and organisational issues. The first year of the Waste Management Action Plan has resulted in significant achievements, especially in the areas of improved storage of solid wastes, stabilisation of uranium scrap, commissioning and operation of a scanning system for low-level waste drums, treatment of intermediate-level liquid wastes and improvements in the methods for monitoring of spent fuel storage facilities. The main goal of the Waste Management Action Plan is to achieve consistency, by the year 2000, with best practice as identified in the Radioactive Waste Safety Standards and Guidelines currently under development by the IAEA. 3 refs., 2 tabs., 2 figs.

  15. Do Written Asthma Action Plans Improve Outcomes?

    Kelso, John M.

    2016-01-01

    With appropriate management, children with asthma should expect few symptoms, no limits on activity, rare exacerbations, and normal lung function. Appropriate education of parents and other caregivers of children with asthma has clearly been shown to help achieve these goals. Although recommended in asthma guidelines, providing written asthma action plans does not improve outcomes beyond asthma education alone.

  16. The ANSTO waste management action plan

    ANSTO's Waste Management Action Plan is a five-year program which addresses legacy issues that have arisen from the accumulation of radioactive wastes at Lucas Heights over the last forty years. Following an extensive review of waste management practices, a detailed Action Plan was prepared involving seventeen projects in the areas of solid wastes, liquid wastes, control of effluents and emissions, spent reactor fuel and organisational issues. The first year of the Waste Management Action Plan has resulted in significant achievements, especially in the areas of improved storage of solid wastes, stabilisation of uranium scrap, commissioning and operation of a scanning system for low-level waste drums, treatment of intermediate-level liquid wastes and improvements in the methods for monitoring of spent fuel storage facilities. The main goal of the Waste Management Action Plan is to achieve consistency, by the year 2000, with best practice as identified in the Radioactive Waste Safety Standards and Guidelines currently under development by the IAEA

  17. Housekeeping category corrective action unit work plan

    The purpose of this Corrective Action Unit (CAU) Work Plan is to provide a strategy to be used by the US Department of Energy Nevada Operations Office (DOE/NV), the US Department of Defense (DoD) Defense Special Weapons Agency (DSWA) (formerly the Defense Nuclear Agency), and contractor personnel for conducting corrective actions at the Nevada Test Site (NTS) and Nevada off-site locations including the Tonopah Test Range (TTR), the Project Shoal Area, and the Central Nevada Test Area. This Work Plan applies to housekeeping category CAUs already listed in the Federal Facility Agreement and Consent Order (FFACO) Appendices (FFACO, 1996) as well as newly identified Corrective Action Sites (CASs) that will follow the housekeeping process

  18. Action plan for the Tiger Team assessment report

    1990-08-30

    This document contains responses and planned actions that address the findings of the Tiger Team Assessment of Brookhaven National Laboratory, June 1990. In addition, the document contains descriptions of the management and organizational structure to be used in conducting planned actions, root causes for the problems identified in the findings, responses, planned actions, schedules and milestones for completing planned actions, and, where known, costs associated with planned actions.

  19. Hydrogeologic investigations sampling plan: Revision 0

    The goal of this sampling plan is to identify and develop specific plans for those investigative actions necessary to: (1) characterize the hydrologic regime; (2) define the extent and impact of contamination; and (3) predict future contaminant migration for the Weldon Spring Site (WSS) and vicinity. The plan is part of the Weldon Spring Site Remedial Action Project (WSSRAP) sponsored by the US Department of Energy (DOE) and has been developed in accordance with US EPA Remedial Investigation (RI) and Data Quality Objective (DQO) guidelines. The plan consists of a sequence of activities including the evaluation of data, development of a conceptual model, identification of data uses and needs, and the design and implementation of a data collection program. Data will be obtained to: (1) confirm the presence or absence of contaminants; (2) define contaminant sources and modes of transport; (3) delineate extent of contaminant migration and predict future migration; and (4) provide information to support the evaluation and selection of remedial actions. 81 refs., 62 figs., 26 tabs

  20. NPP Krsko Periodic Safety Review action plan

    In the current, internationally accepted, safety philosophy Periodic Safety Reviews (PSRs) are comprehensive reviews aimed at the verification that an operating NPP remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain an acceptable level of safety. These reviews are complementary to the routine and special safety reviews. They are long time-scale reviews intended to deal with the cumulative effects of plant ageing, modifications, operating experience and technical developments, which are not so easily comprehended over the shorter time-scale routine of safety reviews. The review was completed in 2005 and the next period will see the implementation of the action plan including some plant upgrades. The action plan lists issues that should be implemented at NPP Krsko together with associated milestones. The milestones were assumed based on best estimate resource availability and their ends can be potentially floated. In some cases, multiple corrective measures may be postulated to provide resolution for a given safety issue. The Slovenian Nuclear Safety Administration by decree approved the first periodic safety review and the implementation plan of activities arising from it. The entire implementation plan must be carried out by 15 October 2010. Report on the second periodic safety review must be submitted by the NEK not later than 15 December 2013. (author)

  1. Joint action without and beyond planning

    Blomberg, Olle

    2013-01-01

    Leading philosophical accounts of joint activity, such as Michael Bratman’s account of ‘shared intentional activity’, take joint activity to be the outcome of two or more agents having a ‘shared intention’, where this is a certain pattern of mutually known prior intentions (plans) that are directed...... toward a common goal. With Bratman’s account as a foil, I address two lacunas that are relatively unexplored in the philosophical literature. The first lacuna concerns how to make sense of the apparently joint cooperative activities of agents that lack the capacities for planning and “mindreading” that...... “online”—that is, during action execution as a joint activity unfolds—without recourse to plans that specify in advance what they should do (consider the coordination involved when two friends meet and do a “high five”). Chapters 2 and 3 focus on the first lacuna, while chapters 4 and 5 focus on the...

  2. Action plan for renewable energy sources

    NONE

    2000-03-01

    In the Finnish Energy Strategy, approved by the Finnish Government in 1997, the emphasis is laid on the importance of bioenergy and other renewable energy sources for the creation of such prerequisites for the Finnish energy economy that the supply of energy can be secured, the price on energy is competitive and the emissions from energy generation are within the limits set by the international commitments made by Finland. In 1998, the European Union Meeting of the Ministers of Energy adopted a resolution taking a positive attitude to the Communication from the Commission 'Energy for the future: Renewable sources of energy' - White Paper for a Community Strategy and Action Plan. National measures play a key role in the achievement of the objectives set in the White Paper. This Action Plan for Renewable Energy Sources is a national programme in line with the EU's White Paper. It comprises all renewable sources of energy available in Finland. It encompasses even peat, which in Finland has traditionally been considered to be a solid biofuel but is internationally classified as one of the non-renewable sources of energy. In the Action Plan, objectives are set for the volume of renewable energy sources used in the year 2010 including a prognosis on the development by the year 2025. The goal is that by the year 2010 the volume of energy generated using renewable energy sources has increased by 50% compared with the year 1995. This would mean an increase by 3 Mtoe, which is about 1 Mtoe more than anticipated in the outlook based on the Finnish Energy Strategy. A further goal is to double the use of renewable energy sources by the year 2025. The aggregate use of renewable energy sources depends to a large extent both on the development of the price on energy produced using other energy sources and on possible changes in the production volume of the Finnish forest industry. The most important objective stated in the Action Plan is to improve the

  3. Action plan for renewable energy sources

    In the Finnish Energy Strategy, approved by the Finnish Government in 1997, the emphasis is laid on the importance of bioenergy and other renewable energy sources for the creation of such prerequisites for the Finnish energy economy that the supply of energy can be secured, the price on energy is competitive and the emissions from energy generation are within the limits set by the international commitments made by Finland. In 1998, the European Union Meeting of the Ministers of Energy adopted a resolution taking a positive attitude to the Communication from the Commission 'Energy for the future: Renewable sources of energy' - White Paper for a Community Strategy and Action Plan. National measures play a key role in the achievement of the objectives set in the White Paper. This Action Plan for Renewable Energy Sources is a national programme in line with the EU's White Paper. It comprises all renewable sources of energy available in Finland. It encompasses even peat, which in Finland has traditionally been considered to be a solid biofuel but is internationally classified as one of the non-renewable sources of energy. In the Action Plan, objectives are set for the volume of renewable energy sources used in the year 2010 including a prognosis on the development by the year 2025. The goal is that by the year 2010 the volume of energy generated using renewable energy sources has increased by 50% compared with the year 1995. This would mean an increase by 3 Mtoe, which is about 1 Mtoe more than anticipated in the outlook based on the Finnish Energy Strategy. A further goal is to double the use of renewable energy sources by the year 2025. The aggregate use of renewable energy sources depends to a large extent both on the development of the price on energy produced using other energy sources and on possible changes in the production volume of the Finnish forest industry. The most important objective stated in the Action Plan is to improve the competitiveness of renewable

  4. Effects of action planning and coping planning within the theory of planned behaviour

    Pakpour, Amir H.; Zedi, Isa mohammadi; Chatzisarantis, Nikos;

    2011-01-01

    Objective: Patients on dialysis have low physical activity levels. The aim of the study was to examine the validity of action planning and coping planning within the theory of planned behaviour framework, for predicting physical activity behaviour of patients on hemodialysis. Methods: One hundred...... and forty four patients who were undergoing emodialysis were selected from dialysis centers. The mean age of the patients was 56.61 (SD= 11.38) years. The patients completed a questionnaire including variables from the theory of planned behaviour, action planning and coping planning. Physical activity...

  5. Westcoast Energy Inc. VCR action plan

    Westcoast Energy Inc. comprises a group of 14 major natural gas and petroleum companies from Canada and the United States. Climate change is a key strategic issue for the group. This paper represents their first consolidated Voluntary Challenge and Registry (VCR) action plan and includes updated information for the seven Westcoast companies which have previously filed individual action plans with the VCR office. Westcoast is involved in gathering and distribution of natural gas to more than one million consumers in Canada, and strongly supports a voluntary approach to meet Canada's commitment to reduce greenhouse gas emissions. Westcoast believes that market-based measures are the most effective and least-expensive way of addressing climate change issues. Key actions undertaken by Westcoast in 1996 were: (1) the creation of a climate change employee awareness program, (2) the development of greenhouse gas emissions inventories, (3) the use of new technologies and methods to reduce greenhouse gas emissions, (4) the development and use of end-user energy efficiency programs, and (5) support for research and pilot scale projects aimed at market-based approaches. In 1996, Westcoast emission from operational sources were 8,201 kt CO2 equivalent. Emissions from operational sources represent an increase of 42 per cent over 1990 emissions. The main reason for these higher emissions is the increased market demand for natural gas which has resulted in the expansion of Westcoast operations. The demand for natural gas is expected to remain high because natural gas offers low carbon intensity compared to other fossil fuels. Future actions to reduce greenhouse gas emissions include gas storage in abandoned pipelines, a corporation-wide greenhouse gas emission reduction workshop, use of dry low NOx turbine combustion technology, advanced pipeline technology, acid gas reinjection, improvements in data tracking and capture, co-generation, recovery of landfill methane, and support

  6. Affirmative Action Plan, October 1991--September 1992

    1991-10-01

    This report documents Reynolds Electrical Engineering Co., Inc., analysis of all major job groups with explanations if minorities and females are underutilized in any one or more job group. Goals and timetables have been developed and good faith efforts are directed to correct any deficiencies. In addition, Affirmative Action Plans for the Handicapped, Vietnam Era Veterans, and Disabled Veterans are included which set forth policies, practices, and procedures in accordance with Department of Labor regulations. All personnel decisions are made at the Company level. Decisions regarding the General Manager or Deputy General Manager are made at the corporate level.

  7. The Danish Organic Action Plan 2020

    Sørensen, Nina Nørgaard; Lassen, Anne Dahl; Løje, Hanne;

    2015-01-01

    procurement measurements by two methods and to collect and discuss baseline organic food procurement measurements from public kitchens participating in the Danish Organic Action Plan 2020. Design Comparison study measuring organic food procurement by applying two different methods, one based on the use of...... procurement invoices (the Organic Cuisine Label method) and the other on self-reported procurement (the Dogme method). Baseline organic food procurement status was based on organic food procurement measurements and background information from public kitchens. Setting Public kitchens participating in the six...

  8. 77 FR 28883 - Draft Public Health Action Plan-A National Public Health Action Plan for the Detection...

    2012-05-16

    ... HUMAN SERVICES Centers for Disease Control and Prevention Draft Public Health Action Plan--A National Public Health Action Plan for the Detection, Prevention, and Management of Infertility AGENCY: Centers... requesting public comment on the draft National Public Health Action Plan for the Detection, Prevention,...

  9. SADC establishes a regional action plan.

    Klouda, T

    1997-02-01

    The regional meeting held on AIDS strategy in Lilongwe, Malawi, in December, 1996, made important advances. The 12 countries of the SADC (Southern Africa Development Community) joined the European Union to institute a regional action plan for the reduction of susceptibility of people to HIV because of social, cultural, and environmental factors; the vulnerability of people with HIV infection to social and other difficulties; and the vulnerability of institutions because of the foregoing impacts. At the conference the issues explored were employment, mining, medical drugs, education, and tourism. An employment charter was seen as crucial for the success of AIDS and workplace activities. Facilitation of travel across borders was important for the reduction of susceptibility to HIV infection. Enhancement of regional policies for essential drugs was vital for drugs for the treatment of AIDS. The clarification of the regional role was critical for regional support of national action (strengthening technical and institutional capacities) and for regional joint action such as studies on research, harmonization of data collection on HIV/AIDS; organization of training; development of information and education on HIV/AIDS; facilitation of manufacturing of drugs and condoms; and the development of a regional information and education program about HIV/AIDS. The conference also clarified HIV/AIDS programs in relation to other health and socioeconomic problems. PMID:12292055

  10. Emergency team and action plan; Brigada de emergencia y plan de accion de emergencia

    Jimenez Gorgerino, Ruben Dario [Central Hidroelectrica Itaipu, Hernandarias (Paraguay)]. E-mail: jimenez@itaipu.gov.br

    1998-07-01

    This work reports the various activities developed by a commission designated for the investigation of the fire occurred in the excitation panel of the generator unit 16, for the execution of two tasks: short term creation of plant emergency team, and a long term implementation of emergency action plan.

  11. ECOWindS Joint Action Plan - Guidelines for Implementation

    2015-01-01

    The Joint Action Plan (JAP) is a deliverable of the European Clusters for Offshore Wind Servicing (ECOWindS) project Work Package 4 (WP4) “Joint Action Plan”. It presents a plan of action or a roadmap for research, development, and innovation (RDI) for the Offshore Wind Service (OWS) industry. The...

  12. The Olympia Proceedings. Section VI: Analysis of the Action Plans.

    Meyers, Joel; And Others

    1982-01-01

    Within legislative, practice, and professional issues in school psychology, examples of action plans for hypothetical events are presented. These were produced by groups of conference participants to stimulate development of detailed plans for local, state and national use by school psychologists. Action plan resources and implementation and…

  13. How You Move Is What You See: Action Planning Biases Selection in Visual Search

    Wykowska, Agnieszka; Schubo, Anna; Hommel, Bernhard

    2009-01-01

    Three experiments investigated the impact of planning and preparing a manual grasping or pointing movement on feature detection in a visual search task. The authors hypothesized that action planning may prime perceptual dimensions that provide information for the open parameters of that action. Indeed, preparing for grasping facilitated detection…

  14. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  15. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  16. Smart Buildings: Business Case and Action Plan

    Ehrlich, Paul; Diamond, Rick

    2009-04-01

    General Services Administration (GSA) has been a pioneer in using Smart Building technologies but it has yet to achieve the full benefits of an integrated, enterprise-wide Smart Building strategy. In July 2008, GSA developed an initial briefing memorandum that identified five actions for a Smart Buildings feasibility study: (1) Identify and cluster the major building systems under consideration for a Smart Buildings initiative; (2) Identify GSA priorities for these clusters; (3) Plan for future adoption of Smart Building strategies by identifying compatible hardware; (4) Develop a framework for implementing and testing Smart Building strategies and converged networks; and (5) Document relevant GSA and industry initiatives in this arena. Based on this briefing memorandum, PBS and FAS retained consultants from Lawrence Berkeley National Laboratory, Noblis, and the Building Intelligence Group to evaluate the potential for Smart Buildings within GSA, and to develop this report. The project has included extensive interviews with GSA staff (See Appendix A), a review of existing GSA standards and documents, and an examination of relevant GSA and industry initiatives. Based on interviews with GSA staff and a review of GSA standards and documents, the project team focused on four goals for evaluating how Smart Building technology can benefit GSA: (1) Achieve Energy Efficiency Mandates--Use Smart Building technology as a tool to meet EISA 2007 and EO 13423 goals for energy efficiency. (2) Enhance Property Management--Deploy enterprise tools for improved Operations and Maintenance (O&M) performance and verification. (3) Implement Network as the Fourth Utility--Utilize a converged broadband network to support Smart Building systems and provide GSA clients with connectivity for voice, data and video. (4) Enhance Safety and Security--Harmonize Physical Access Control Systems (PACS) with Smart Building Systems.

  17. Improving Contract Performance by Corrective Actions Plans

    Corrective Action Plans (CAPs) are required to be developed, submitted, and reported upon by the prime contractors for the U.S. Department of Energy (U.S. DOE) Management and Operations (M and O) contracts. The best known CAP ''type,'' and there are many, is for Price-Anderson Amendments Act (PAAA) ''potential noncompliances.'' The M and O contractor fines for PAAA problems have increased from approximately $100,000 in 1996 to almost $2,000,000 in 2000. In order to improve CAP performance at the National Nuclear Security Administration (NNSA) site at Y-12 in Oak Ridge, Tennessee, the contractor chose to centralize the company-wide processes of problem identification and reporting with the PAAA (and other) CAP processes. This directly integrates these functional reports to the contractor General Manager. The functions contained in the M and O contractor central organization, called ''Performance Assurance,'' are: PAAA; Defense Nuclear Facilities Safety Board (DNFSB) Liaison; Contract Requirements Management; Issues Management (including the CAP processes); Lessons Learned; Independent and Management Assessments; Internal Audits; and Ethics. By centrally locating and managing these problem identification and problem correction functions, the contractor, BWXT Y-12, L.L.C., has improved PAAA (and other) CAP performance more than 200 percent in the first year of the contract. Much of this improvement (see Table 1 for examples) has been achieved by increasing the knowledge and experience of management and workers in the specific contract and company requirements for CAPs. The remainder of this paper will describe some of the many CAP processes at Y-12 to show the reader the non-trivial scope of the CAP process. Improvements in CAP management will be discussed. In addition, a specific recommendation for CAP management, in a major capital construction project, will be presented

  18. Participant satisfaction with Wellness Recovery Action Plan (WRAP).

    Wilson, Jessica M; Hutson, Sadie P; Holston, Ezra C

    2013-12-01

    Outpatient programs are often promoted as vehicles for mental health recovery. Yet, few programs include patients' perspectives about their satisfaction with these programs. This descriptive, cross-sectional survey investigated patients' satisfaction with Wellness Recovery Action Plan (WRAP). Participants completed the Mental Health Statistics Improvement Program instrument (n = 26) and qualitative interviews (n = 18). Data were analyzed using multivariate statistics (α = .05) and content analysis. Three composite variables explained 48% of the variance (p = .00) in patient satisfaction. Four themes emerged: Retrospective Desire for Early WRAP Introduction, Pay It Forward, Unconditional Relational Support, and It Takes Time. Future research is warranted to promote WRAP's use in broader settings. PMID:24274240

  19. 29 CFR 30.4 - Affirmative action plans.

    2010-07-01

    ... these regulations, sponsors are expected to make appropriate adjustments in goal levels. See 29 CFR 30.8... affirmative action plan. (b) Definition of affirmative action. Affirmative action is not mere passive..., training, and motivation of present and potential minority and female (minority and...

  20. PREPARATION OF ACTION PLAN FOR PROTECTION OF LAND IN ALBANIA

    Bockheim, James G.

    1997-01-01

    The degradation of Albania's land resources is a serious impediment to the welfare of the people of Albania as well as that of future generations. Resolving land degradation requires the concerted action of governmental and nongovernmental agencies. The purpose of this paper is to describe how a Land Protection Action Plan could be developed. There are three general types of land degradation which this Land Protection Action Plan would attempt to solve: excessive soil erosion, contamination o...

  1. K basins interim remedial action health and safety plan

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  2. 77 FR 38296 - Draft Public Health Action Plan-A National Public Health Action Plan for the Detection...

    2012-06-27

    ... Detection, Prevention, and Management of Infertility (77 FR 28883). Written and electronic comments were to... male and female infertility, the plan outlines and summarizes actions needed to promote, preserve, and... Public Health Action Plan for the Detection, Prevention, and Management of Infertility AGENCY:...

  3. Electric driving accelerated. Action Plan 2011-2015. Annex 2

    The Dutch Action Plan for Electric Driving gives form and substance to the ambition of the Dutch government to accelerate the market introduction of electric cars in the Netherlands. This plan is not only focused on the electric passenger car. To promote the electrification of transport, also electric garbage trucks, buses, scooters and possibly pleasure boats are included in the plan.

  4. National Action Plan for Energy Efficiency Report

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  5. VERSIONS AND PLANNING OF INVESTIGATION OBSTRUCTION ADMINISTRATION OF JUSTICE

    P. V. Abramova

    2016-03-01

    Full Text Available This article deals with the problems of nomination investigative leads and planning investigation of obstruction of justice. The basis for building a version of the data is the initial information about the crime event and the person who committed the act. One of the main challenges of the investigation is to overcome the administrative pressure. General and particular versions can both detect and refute the direction of the investigation of the crime chosen by the investigator. Starting material for the investigation of the crime is of importance in the construction of investigative leads. First of all in the investigation of obstruction of justice one should check the consistency of the overall investigative leads. The article describes a group of circumstances which provide the investigation versions, based on the materials of obstruction of justice. The basis for the work of the investigator is planning the investigation of a crime. The planning determines logically verified and scientifically valid scope of the inquiry and organizes the work of the investigator. Planning includes planning the overall direction of the investigation and certain investigative actions. This article describes the four planning stages of the investigation and its main components that are included in its structure.

  6. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  7. Government of Canada Action Plan 2000 on Climate Change

    In this first National Climate Change Business Plan the Government of Canada affirms its intention to invest up to $500 million over five years on specific actions to reduce greenhouse gas emissions. This sum is in addition to the action plans being put forward by the provincial and territorial governments and in addition to the $625 million investment over five years announced in Budget 2000. Action Plan 2000 targets key sectors, and the measures announced are expected to take Canada one third of the way to achieving the target established in the Kyoto Protocol by reducing Canada's GHG emissions by 65 megatonnes per year during the 2008-2012 commitment period. The key sectors targeted include the areas of transportation, oil, gas and electricity production, industry, buildings, forestry and agriculture, i. e. sectors that together account for over 90 per cent of Canada's GHG emissions.The Action Plan focuses on reducing GHG emissions in a cost effective way; draws extensively on the best ideas put forward by the provinces, territories and other stakeholders; encourages action by industry and consumers; complements measures and actions by the provinces and territories to address regional issues; and sets the stage for long-term behavioural, technological and economic changes. The remainder of Canada's Kyoto commitments will be addressed by actions in future plans which are currently in the process of being developed, together with the development of further details of this first National Climate Change Business Plan

  8. Heart Truth for Women: An Action Plan

    ... care provider, a registered dietitian, or a qualified nutritionist to help you develop a sensible plan for ... exercise specialists, physical and occupational therapists, dietitians or nutritionists, and psychologists or other mental health specialists. Rehab ...

  9. Sport Fishing Plan : Meredosia National Wildlife Refuge : Environmental Action Memorandum

    US Fish and Wildlife Service, Department of the Interior — This Environmental Action Memorandum states that the Meredosia NWR Sport Fishing Plan is found not to have significant environmental effects.

  10. On the way to an Austrian radon action plan

    According to the draft of the new European Basic Safety Standards (EU-BSS) all member states are obliged to develop a national radon action plan, to control the long term risks from radon exposure in dwellings, public buildings and workplaces. The National Radon Centre, embedded in the Austrian Agency for Health and Food Safety (AGES), was assigned by the Ministry for Environment (BMLFUW) to develop this Austrian action plan and the strategy behind. This conference contribution discusses where we still have a need for actions and how the new BSS will influence the Austrian radon legislation (reference levels, responsibilities, standards, building law). Currently running and planned projects regarding the radon action plan like developing a national radon data base, definition of radon prone areas by improving the radon map and strategies to increase public radon awareness and involve the building sector are presented. (orig.)

  11. Learning through Participatory Action Research for Community Ecotourism Planning.

    Guevara, Jose Roberto Q.

    1996-01-01

    Ecologically sound tourism planning and policy require an empowering community participation. The participatory action research model helps a community gain understanding of its social reality, learn how to learn, initiate dialog, and discover new possibilities for addressing its situation. (SK)

  12. An Action Plan for the Conservation of Otters

    Stuart S.

    1987-03-01

    Full Text Available The Species Survival Commission recommend that the Otter Specialist Group prepare species action plans to enable information to be shared, raise the profile of otter species in conservation organisations and encourage coordination of joint proposals for funding.

  13. Differentiation between deviant trajectory planning, action planning, and reduced psychomotor speed in schizophrenia

    Houthoofd, S.; Morrens, M.; Hulstijn, W.; Sabbe, B.G.C.C.

    2013-01-01

    Introduction. Abnormal psychomotor behaviour in schizophrenia might be based on separate deficits. Here we studied the relationship between trajectory planning, action planning, psychomotor speed, and indices of cognitive functioning in a large group of stabilised patients with schizophrenia. Method

  14. The Norwegian Plan of Action for nuclear safety issues

    The Plan of Action underlies Norwegian activities in the field of international co-operation to enhance nuclear safety and prevent radioactive contamination from activities in Eastern Europe and the former Soviet Union. Geographically the highest priority has been given to support for safety measures in north-west Russia. This information brochure outlines the main content of the Plan of Action for nuclear safety issues and lists a number of associated measures and projects

  15. The Norwegian Plan of Action for nuclear safety issues

    NONE

    1997-07-01

    The Plan of Action underlies Norwegian activities in the field of international co-operation to enhance nuclear safety and prevent radioactive contamination from activities in Eastern Europe and the former Soviet Union. Geographically the highest priority has been given to support for safety measures in north-west Russia. This information brochure outlines the main content of the Plan of Action for nuclear safety issues and lists a number of associated measures and projects.

  16. NRC action plan developed as a result of the TMI-2 accident. Volume 2

    The Action Plan provides a comprehensive and integrated plan for all actions judged necessary by the Nuclear Regulatory Commission to correct or improve the regulation and operation of nuclear facilities based on the experience from the accident at the Three Mile Island, Unit 2, nuclear facility and the official studies and investigations of the accident. The tables included in this volume list the recommendations from the various organizations and task forces investigating the accident at Three Mile Island. The tables are annotated to provide easy references to the associated parts of the Action Plan in Volume 1. The tables are also annotated to provide a shorthand indication of how the various recommendations are treated in the Action Plan

  17. 24 Command Fire Improvement Action Program Plan

    GRIFFIN, G.B.

    2000-12-01

    Fluor Hanford (FH) is responsible for providing support to the Department of Energy Richland Operations Office (RL) in the implementation of the Hanford Emergency Preparedness (EP) program. During fiscal year 2000, a number of program improvements were identified from various sources including a major range fire (24 Command Fire). Evaluations of the emergency preparedness program have confirmed that it currently meets all requirements and that performance of personnel involved is good, however the desire to effect continuous improvement resulted in the development of this improvement program plan. This program plan defines the activities that will be performed in order to achieve the desired performance improvements.

  18. 24 Command Fire Improvement Action Program Plan

    Fluor Hanford (FH) is responsible for providing support to the Department of Energy Richland Operations Office (RL) in the implementation of the Hanford Emergency Preparedness (EP) program. During fiscal year 2000, a number of program improvements were identified from various sources including a major range fire (24 Command Fire). Evaluations of the emergency preparedness program have confirmed that it currently meets all requirements and that performance of personnel involved is good, however the desire to effect continuous improvement resulted in the development of this improvement program plan. This program plan defines the activities that will be performed in order to achieve the desired performance improvements

  19. Preventive plan of action for the Republic of Macedonia

    Nanev, Lazar; Mrkev, Petre

    2000-01-01

    Both the overall and individual approach towards the preparation of the Plan of Action on Prevention of Juvenile Delinquency are based on the conception that prevention of juvenile delinquency is a set of ideas, scientifically confirmed and verified theories and standpoints on the ethology and phenomenology of this phenomenon as well as the actions and measures for its prevention and suppression. The prevention of juvenile delinquency is considered to be a system of actions and measures of th...

  20. Action Planning: Rowing in the Same Direction

    Hewson, Kurtis; Adrian, Lorna

    2008-01-01

    Two years ago, as Claresholm Elementary School prepared for a new year with a new principal, it had the usual shopping list of ambitions--focus on student learning, support the staff, empower parents, and more. However, in examining the school's improvement plan it became apparent that the school staff had a unique opportunity to develop solid…

  1. Plan Puebla-Panama: Actions and results of an administration

    The author of the article explains the main actions and results of the Plan Puebla Panama, also describes the interconnected power systems of Central America with Mexico, the financial plans given by the Banco Interamericano de Desarrollo and the Japan Bank of International Cooperation for the projects of geothermal energy, and the infraestructure to be built with the differents projects of energy

  2. Uranium Mill Tailings Remedial Action Project surface project management plan

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials

  3. Voluntary Challenge and Registry action plan: Gulf Canada Resources Limited

    The overall paper deals with: a company overview, Gulf's approach to the Action Plan, emissions inventory and indices, goals and objectives, progress report on actions, emission projection, domestic offsets and joint implementation, and summary. Gulf Canada Resources Ltd. is a publicly traded, Canadian oil and gas company that explores, produces and markets conventional, heavy and synthetic crude oil, natural gas liquids, natural gas and sulfur around the world. Gulf's Action Plan goal is to attain GHG emissions at or below 1990 levels. By maintaining a record of actions taken and the results produced, Gulf will better be able to adapt to more stringent protocols that may be adopted post-Kyoto. Gulf's goals are: to maintain or reduce emission rates per unit of energy equivalent production over the long term, focus on GHG reduction actions and measures that meet the company's economic objectives, and remain abreast of current and projected directions of international emissions protocol. A status report is included on the actions that have been completed since the last report and those that are planned. Completed or planned actions are summarized on: energy efficiency, gas capture, acid gas injection, and others. Observations and conclusions are offered by Gulf regarding their inventory and analysis. 1 tab

  4. NEAP - National Environmental Action Plan (Republic of Macedonia)

    The Republic of Macedonia, like other Central and East European countries in transition, has started the process of reform towards a market economy. As a part of the economic development program, the Republic of Macedonia is shaping its environmental polices and identifying priority actions to protect human health and the environment and to utilize its natural resources in a sustainable manner. These polices and actions are consistent with the 'Environmental Action Programme for Central and Eastern Europe' (EAP), the document adopted at the Ministerial Conference in Lucerne in 1993. In meeting the goals towards protecting the environment, The Government of the Republic of Macedonia has prepared the National Environmental Action Plan (NEAP) with the support of the World Bank group. The Ministry of Urban Planning, Construction and Environment was the key agency involved in the preparation of the NEAP. The NEAP highlights the environmental problems and recommends actions related to policy, institutions and priority investments. (author)

  5. The neural basis of predicting the outcomes of planned actions

    Andrew Jahn

    2011-11-01

    Full Text Available A key feature of human intelligence is the ability to predict the outcomes of one’s own actions prior to executing them. Action values are thought to be represented in part in the dorsal and ventral medial prefrontal cortex, yet current studies have focused on the value of executed actions rather than the anticipated value of a planned action. Thus, little is known about the neural basis of how individuals think (or fail to think about their actions and the potential consequences before they act. We scanned individuals with fMRI while they thought about performing actions that they knew would likely be correct or incorrect. Here we show that merely imagining an error, as opposed to imagining a correct outcome, increases activity in the dorsal anterior cingulate cortex, independently of subsequent actions. This activity overlaps with regions that respond to actual error commission. The findings show a distinct network that signals the prospective outcomes of one’s planned actions. A number of clinical disorders such as schizophrenia and drug abuse involve a failure to take the potential consequences of an action into account prior to acting. Our results thus suggest how dysfunctions of the medial prefrontal cortex may contribute to such failures.

  6. Assessment of Evacuation Protective Action Strategies For Emergency Preparedness Plan

    This report which studies about evacuation formation suggests some considerable factors to reduce damage of radiological accidents. Additional details would be required to study in depth and more elements should be considered for updating emergency preparedness. However, this methodology with sensitivity analysis could adapt to specific plant which has total information such as geological data, weather data and population data. In this point of view the evacuation study could be contribute to set up emergency preparedness plan and propose the direction to enhance protective action strategies. In radiological emergency, residents nearby nuclear power plant should perform protective action that is suggested by emergency preparedness plan. The objective of emergency preparedness plan is that damages, such as casualties and environmental damages, due to radioactive accident should be minimized. The recent PAR study includes a number of subjects to improve the quality of protective action strategies. For enhancing protective action strategies, researches that evaluate many factors related with emergency response scenario are essential parts to update emergency preparedness plan. Evacuation is very important response action as protective action strategy

  7. Public acceptance action plan for transportation

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently evaluating the Yucca Mountain site in Nevada for the potential development of a high-level radioactive waste (HLW) repository. Identification of the site for evaluation as a potential HLW disposal site sparked intense opposition by the state of Nevada. This opposition affects every aspect of dealing with the public, making treatment of transportation issues in isolation difficult. Unsafe transportation is often cited as one reason of opposition of the site. However, the excellent safety record and the well-defined transportation system (relative to the site) means transportation issues can be addressed as site evaluations progress. Transportation items raised by the public in Nevada include items that are encountered in essentially every public discussion of spent-fuel transportation and unique items as a result of negative imaging by opponents, errors in government reports, and gaps in public information efforts. A number of actions have been taken to build public acceptance of HLW transportation in Nevada. Some technical and institutional staff approaches that have been used are described

  8. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC

  9. Action plan for electric mobility in Canada

    Electric mobility is an important emerging industry in Canada, where there is significant expertise in electric and hybrid vehicles, batteries, hybrid technologies, grid-connected technologies and fuel cell vehicles. This paper presented a case for the formation of Electric Mobility Canada, a proposed network of private companies and public sector agencies that aims to stimulate industry and provide support to government agencies involved with meeting Canada's obligations under the Kyoto Protocol, as well as in new industry sectors. The environmental, health, economic and industrial benefits of electric mobility were outlined. Current programs for electric mobility were reviewed, and details of financial incentives and initiatives were presented. An overview of electric mobility programs in the United States and Europe was provided. Research and development needs were evaluated. The former Electric Vehicle Association of Canada was discussed. An organizational structure for the proposed network was presented, along with a mission statement and outline of future goals. Recommendations for the future of the network included identifying short and long-term market opportunities for electric mobility technologies for all surface transport modes in Canada; determining research and development needs and appropriate funding and investment opportunities; determining other actions necessary to allow the electric mobility industry to play a growing role in meeting Canada's transport needs; and raising public awareness of the importance of electric mobility trends. It was concluded that the federal government should be approached for start-up funds for the network, which will be followed by further investment from provincial and business interests once the network is in place and functioning. 84 refs

  10. Scales, strategies and actions for effective energy planning: A review

    This paper is a review of the most recent literature on the interaction between climate change, land-use and energy, based on the analysis of papers collected through the most relevant scientific literature databases. A total of 114 papers published between 2000 and 2011 were reviewed. The aims of this review are: in general (1) to identify the different research topics that have been developed related to the interaction between climate change, land-use and energy; more specifically, (2) to analyze what are the most suitable spatial and temporal scales of investigation to focus on for actions and strategies to reduce critical issues in the field of energy and environment; (3) to identify which actions and strategies are deemed as the most appropriate to mitigate critical issues in energy and environment; and given the research gaps found in the review, (4) to propose research recommendations in the context of effective climate-energy planning. We argue that there are certain gaps and needs for a “nested” environmental governance. It is necessary to understand how different environmental policies overlap and how they can be integrated in order to verify whether there are conflicting targets that may negate each other in the long term. - Highlights: • Energy production and consumption can directly or indirectly affect climate change. • Energy sector is influenced directly and indirectly by changes in climate conditions. • Energy sector and climate change affect and limit alternative uses of land, causing land-use changes. • The most suitable spatial scale for energy planning is the municipal level requiring short-term perspectives. • Several research recommendations to deal with the complexity of energy-land-use-climate change issue are proposed

  11. Building planning action models using activity recognition

    Ortiz Laguna, Javier

    2014-01-01

    Activity recognition is receiving a special attention because it can be used in many areas. This field of artificial intelligence has been widely investigated lately for tasks such as following the behavior of people with some kind of cognitive impairment. For instance, elderly people with dementia. The recognition of the activities that these people carry on permits to offer assistance in case they need it while they are performing the activities. Currently, there are many systems capable of...

  12. Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0

    Susan Evans

    2004-11-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a

  13. Task Group on Safety Margins Action Plan (SMAP). Safety Margins Action Plan - Final Report

    The international nuclear community has expressed concern that some changes in existing plants could challenge safety margins while fulfilling all the regulatory requirements. In 1998, NEA published a report by the Committee on Nuclear Regulatory Activities on Future Nuclear Regulatory Challenges. The report recognized 'Safety margins during more exacting operating modes' as a technical issue with potential regulatory impact. Examples of plant changes that can cause such exacting operating modes include power up-rates, life extension or increased fuel burnup. In addition, the community recognized that the cumulative effects of simultaneous changes in a plant could be larger than the accumulation of the individual effects of each change. In response to these concerns, CSNI constituted the safety margins action plan (SMAP) task group with the following objectives: 'To agree on a framework for integrated assessments of the changes to the overall safety of the plant as a result of simultaneous changes in plant operation / condition; To develop a CSNI document which can be used by member countries to assess the effect of plant change on the overall safety of the plant; To share information and experience.' The two approaches to safety analysis, deterministic and probabilistic, use different methods and have been developed mostly independently of each other. This makes it difficult to assure consistency between them. As the trend to use information on risk (where the term risk means results of the PSA/PRA analysis) to support regulatory decisions is growing in many countries, it is necessary to develop a method of evaluating safety margin sufficiency that is applicable to both approaches and, whenever possible, integrated in a consistent way. Chapter 2 elaborates on the traditional view of safety margins and the means by which they are currently treated in deterministic analyses. This chapter also discusses the technical basis for safety limits as they are used today

  14. United Nations Decade on Biodiversity: Strategies, targets and action plans

    Oana Popescu

    2015-01-01

    Nowadays, the loss of biodiversity is one of the most serious environmental threats on a global scale, requiring joint international actions for its conservation and sustainable use. Convention on Biological Diversity represents the basis of all strategies, projects and action plans aimed at protecting biodiversity. Within the Sustainable Development Strategy from 2001, European Union has set the target to stop the loss of biodiversity and restoring the habitats and natural systems by 2010. B...

  15. Action plan for environmental technologies in connection to Lisbon strategy

    The European Commission on 28 January 2004 adopted an ambitious Action Plan to improve the development and wider use of environmental technologies as a tool for performing of targets of the Lisbon strategy. One of the priorities of the Environmental Technologies Action Plan is the climate change and related decrease of green-house gases emissions from energetics. This target can be achieved by the use of new energy sources (hydrogen and fuel cells, photovoltaic, alternative energy sources as wind energy). In the European Union the technological platforms were established and new financial tools are formed for research, development and dissemination of new energy sources. (author)

  16. Preparing US community greenhouse gas inventories for climate action plans

    Blackhurst, Michael [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station C1752, Austin, TX 78712-0276 (United States); Scott Matthews, H; Hendrickson, Chris T [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Sharrard, Aurora L [Green Building Alliance, 333 East Carson Street, Suite 331, Pittsburgh, PA 15219 (United States); Azevedo, Ines Lima, E-mail: mblackhurst@gmail.com, E-mail: hsm@cmu.edu, E-mail: auroras@gbapgh.org, E-mail: cth@andrew.cmu.edu, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-07-15

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  17. Preparing US community greenhouse gas inventories for climate action plans

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  18. Promoting action control and coping planning to improve hand hygiene

    Reyes Fernández, Benjamín; Lippke, Sonia; Knoll, Nina; Blanca Moya, Emanuel; Schwarzer, Ralf

    2015-01-01

    Background We examined a brief educational intervention addressing hand hygiene self-regulatory mechanisms, and evaluated which psychological mechanisms may lead to hand hygiene behaviours. Methods Two hundred forty two students (mean age = 21 years, SD = 3.9) received either an experimental (n = 149) or a control condition on action control and planning (n = 93). Hand hygiene, coping planning, and action control were measured at baseline and six weeks later. By applying repeated measures ANO...

  19. Interaction in planning movement direction for articulatory gestures and manual actions.

    Vainio, Lari; Tiainen, Mikko; Tiippana, Kaisa; Komeilipoor, Naeem; Vainio, Martti

    2015-10-01

    Some theories concerning speech mechanisms assume that overlapping representations are involved in programming certain articulatory gestures and hand actions. The present study investigated whether planning of movement direction for articulatory gestures and manual actions could interact. The participants were presented with written vowels (Experiment 1) or syllables (Experiment 2) that were associated with forward or backward movement of tongue (e.g., [i] vs. [ɑ] or [te] vs. [ke], respectively). They were required to pronounce the speech unit and simultaneously move the joystick forward or backward according to the color of the stimulus. Manual and vocal responses were performed relatively rapidly when the articulation and the hand action required movement into the same direction. The study suggests that planning horizontal tongue movements for articulation shares overlapping neural mechanisms with planning horizontal movement direction of hand actions. PMID:26126804

  20. Action plans for motor-operated valves and check valves

    The proper performance of motor-operated valves (MOVs) and check valves is necessary for the safety operation of a nuclear power plant. Problems have been experienced, however, with these valves for many years. Currently, the US Nuclear Regulatory Commission (NRC) and the nuclear industry have a number of activities under way to provide assurance that MOVs and check valves will successfully perform their safety functions when needed. The Mechanical Engineering Branch (EMEB) of the NRC Office of Nuclear Reactor Regulation has been assigned the responsibility of coordinating NRC activities and monitoring industry activities regarding MOVs and check valves. To meet this responsibility, EMEB has prepared action plans to provide assurance of the proper performance of these valves. Among the staff activities described in the action plans is the consideration of the need to revise the regulations to clarify the inservice testing (IST) requirements for these valves. The need for regulatory guidance for the development of acceptable IST programs, as well as for other licensee activities relating to the performance of MOVs and check valves, will also be evaluated. In addition, NRC personnel will have to verify, in a consistent manner, implementation of licensee commitments in response to NRC generic letters and bulletins. Another important aspect of the action plans is the provision for the NRC staff to provide assistance, where appropriate, to the industry in its efforts to address MOV and check valve issues. Finally, the action plans include a tentative schedule for accomplishing the described staff activities

  1. Algeria : National Environmental Action Plan for Sustainable Development

    World Bank

    2002-01-01

    This staff sector assessment note accompanies the recently completed national environmental action plan for sustainable development (NEAP-SD), which, as an output of the Industrial Pollution Control Project in Algeria, focused on charting a new course for environmental management in the country, based on an objective assessment of past policy, and institutional failures, on a new consensus...

  2. Awarding Educational Credit for CETA Training: A Plan of Action.

    Sullins, W. Robert; And Others

    A project was conducted to determine problems or barriers prohibiting awarding credit for Comprehensive Employment and Training Act (CETA) training in Virginia. Potential solutions and strategies for their implementation were to be identified. A variety of methods were used to obtain information required to produce a Plan of Action that presents…

  3. 14 CFR 152.409 - Affirmative action plan standards.

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Affirmative action plan standards. 152.409 Section 152.409 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... selection rate for any race, sex, or ethnic group is less than 80 percent of the rate for the race, sex,...

  4. Projects of Strategic Action Plan of S&T Innovation

    2002-01-01

    @@ In July 2001, CAS decided to shift the focus of the current Knowledge Innovation Program (KIP) onto research projects designed to meet the country's strategic needs, and Iaunched the strategic action plan of innovation (SAPI). Under the SAPI, CAS organized the implementation of seven major projects in 2001.The followings are their profiles.

  5. Action Plan for the Development of Civic Morality

    Chinese Education and Society, 2006

    2006-01-01

    This paper discusses the action plan for the development of civic morality. Here, the importance, substance, ideology and policy principles guiding the development of civic morality is elaborated. In order to strengthen the development of civic morality, it is a must to adapt to the requirements of the developing situation; seize good…

  6. Development and verification for review plan of emergency action level (EAL)

    Emergency action levels (EALs) are used as the trigger in order to implement the precautionary protective actions at the nuclear emergency. In this study the framework for applying the EAL in Japan and the process for developing the review plan, such as procedures to review the basis of EAL submitted by the licensee, have been investigated based on the survey for EAL review executed in the United States. In addition, issues to reflect the EAL framework in enhancement of the local government emergency planning and emergency response support system have been investigated. (author)

  7. Evaluation criteria for communications-related corrective action plans

    This document provides guidance and criteria for US Nuclear Regulatory Commission (NRC) personnel to use in evaluating corrective action plans for nuclear power plant communications. The document begins by describing the purpose, scope, and applicability of the evaluation criteria. Next, it presents background information concerning the communication process, root causes of communication errors, and development and implementation of corrective actions. The document then defines specific criteria for evaluating the effectiveness of the corrective action plan, interview protocols, and an observation protocol related to communication processes. This document is intended only as guidance. It is not intended to have the effect of a regulation, and it does not establish any binding requirements or interpretations of NRC regulations

  8. Renewable energy action plan. Policy action plan for promotion of renewable energy in the Czech Republic to 2010

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply; and environmental protection. Therefore, the Czech government promotes these two sustainable options. The Energy Policy White Paper, which is being developed at the time of writing (June 1999), will provide the general framework for the future role of energy efficiency and renewable energy in the Czech Republic. However, in addition, it is necessary to develop specific policies. The National Energy Efficiency Study aimed to support the Czech government in the formula tion of energy efficiency and renewable energy policy. The National Energy Efficiency Study has resulted in the following documents: (1) The Renewable Energy Action Plan (this report) addresses renewable energy production. The Energy Efficiency Action Plan focuses on the promotion of energy efficiency in end use (separate report; ECN-C--99-065). These two Action Plans provide policy makers in the Czech government with information on potentials, targets, budgets and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation; (2) The National Energy Efficiency Study NEES (separate report; ECN-C--99-063). This report is the background document to the two Action Plans. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy. Also, it includes recommendations for financing schemes to overcome the invest ment constraints in the Czech Republic. Finally, a list of concrete projects is included to support project identification

  9. Energy efficiency action plan. Policy action plan for promotion of energy efficiency in the Czech Republic to 2010

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply and environmental protection. Therefore, the Czech government aims to promote these two sustainable options. The Energy Policy White Paper, which is being developed at the time of writing (June 1999), will provide the general framework for the future role of energy efficiency and renewable energy in the Czech Republic. In addition, it is necessary to develop specific policies. The National Energy Efficiency Study aimed to support the Czech government in the formulation of energy efficiency and renewable energy policy. The National Energy Efficiency Study has resulted in the following documents: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (this report); The Renewable Energy Action Plan (separate report; ECN-C--99-064) deals with policy on promotion of renewable energy production. These two Action Plans provide policy makers in the Czech government with essential information on potentials, targets, budgets and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation; and (2) The National Energy Efficiency Study NEES (separate report; ECN-C--99-063). This report is the background document to the two Action Plans. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is included to support project identification

  10. Predicting Changes in Physical Activity among Adolescents: The Role of Self-Efficacy, Intention, Action Planning and Coping Planning

    Araujo-Soares, Vera; McIntyre, Teresa; Sniehotta, Falko F.

    2009-01-01

    This paper aims to test the direct predictors of the theory of planned behaviour (TPB), action planning and coping planning as predictors of changes in physical activity (PA) in 157 adolescents (mean age: 12). TPB measures, the Action Planning and Coping Planning Scales (APCPS) and the International Physical Activity Questionnaires were measured…

  11. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    D. L. Gustafason

    2001-02-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

  12. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential

  13. 300-FF-1 remedial design report/remedial action work plan

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  14. 29 CFR Appendix to Subpart E of... - Exit Routes, Emergency Action Plans, and Fire Prevention Plans

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Exit Routes, Emergency Action Plans, and Fire Prevention..., and Fire Prevention Plans This appendix serves as a nonmandatory guideline to assist employers in.... Fire prevention housekeeping. The standard calls for the control of accumulations of flammable...

  15. Action Planning Mediates Guidance of Visual Attention from Working Memory

    Tobias Feldmann-Wüstefeld

    2015-01-01

    Full Text Available Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles, thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences.

  16. Action Planning Mediates Guidance of Visual Attention from Working Memory.

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2015-01-01

    Visual search is impaired when a salient task-irrelevant stimulus is presented together with the target. Recent research has shown that this attentional capture effect is enhanced when the salient stimulus matches working memory (WM) content, arguing in favor of attention guidance from WM. Visual attention was also shown to be closely coupled with action planning. Preparing a movement renders action-relevant perceptual dimensions more salient and thus increases search efficiency for stimuli sharing that dimension. The present study aimed at revealing common underlying mechanisms for selective attention, WM, and action planning. Participants both prepared a specific movement (grasping or pointing) and memorized a color hue. Before the movement was executed towards an object of the memorized color, a visual search task (additional singleton) was performed. Results showed that distraction from target was more pronounced when the additional singleton had a memorized color. This WM-guided attention deployment was more pronounced when participants prepared a grasping movement. We argue that preparing a grasping movement mediates attention guidance from WM content by enhancing representations of memory content that matches the distractor shape (i.e., circles), thus encouraging attentional capture by circle distractors of the memorized color. We conclude that templates for visual search, action planning, and WM compete for resources and thus cause interferences. PMID:26171241

  17. Affirmative Action Plans, January 1, 1994--December 31, 1994. Revision

    1994-02-16

    This document is the Affirmative Action Plan for January 1, 1994 through December 31, 1994 for the Lawrence Berkeley Laboratory, University of California (``LBL`` or ``the Laboratory.``) This is an official document that will be presented upon request to the Office of Federal Contract Compliance Programs, US Department of Labor. The plan is prepared in accordance with the Executive Order 11246 and 41 CFR Section 60-1 et seq. covering equal employment opportunity and will be updated during the year, if appropriate. Analyses included in this volume as required by government regulations are based on statistical comparisons. All statistical comparisons involve the use of geographic areas and various sources of statistics. The geographic areas and sources of statistics used here are in compliance with the government regulations, as interpreted. The use of any geographic area or statistic does not indicate agreement that the geographic area is the most appropriate or that the statistic is the most relevant. The use of such geographic areas and statistics is intended to have no significance outside the context of this Affirmative Action Plan, although, of course, such statistics and geographic areas will be used in good faith with respect to this Affirmative Action Plan.

  18. Emergency action plan in the Comahue region, Argentina

    The first Emergency Action Plan (EAP) developed in Argentina for the major hydro basins in the country was described. The guidelines for the EAP came from the United States, but the criteria were adapted to the characteristics of the hydro projects and the rivers under study. The plan allowed, with an adequate degree of precision, the determination of the permissible levels that the rivers could reach, all along the region under study, in case an emergency was detected in one of the dams. It was possible to elaborate the flood maps at two different scales which, in turn, allowed visualization of the scope of each emergency. The plan was said to represent a major landmark in flood control in Argentina, and will serve as the basis of all future emergency planning. 11 ills

  19. Updated action plan for the implementation of measures as a consequence of the Fukushima reactor accident

    The action plan of the German government concerning the measures following the Fukushima reactor accident include the decision on the future of nuclear power in Germany, safety analyses, investigations and measures for nuclear power plants in a national frame, investigations in an international frame, planning for the implementation of CNS (Convention on nuclear safety) topics 1-3, i.e. measures to increase the robustness in German nuclear power plants, and the planning of implementation of further measures (CNS topics 4-6).

  20. Implementing Environmental Policies in EU – Action Plans and Programs

    Monica Patricia ARDELEANU

    2011-08-01

    Full Text Available The main objectives of the EU environmental policy are environmental and public health protection, prudent and rational use of natural resources, and promoting international actions to solve the regional and global environmental problems. The EU policies implementation is performed by using specific tools as legislation, - notably Directives setting environmental quality standards (levels of pollution, rules for industrial procedures (emission standards, design and operational standards, products standards (concentration or emission limits for a product - environmental protectionaction plans, and financial aid programs. This paper reviews some of the most important policies and actions promoted at European level in order to protect the environment and ensuring sustainable development.

  1. 7 CFR 275.18 - Project area/management unit corrective action plan.

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Project area/management unit corrective action plan... SYSTEM Corrective Action § 275.18 Project area/management unit corrective action plan. (a) The State agency shall ensure that corrective action plans are prepared at the project area/management unit...

  2. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada, Revision 0

    Matthews, Patrick [Nevada Site Office, Las Vegas, NV (United States)

    2016-02-01

    CAU 573 comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These two CASs include the release at the Hamilton weapons-related tower test and a series of 29 atmospheric experiments conducted at GMX. The two CASs are located in two distinctly separate areas within Area 5. To facilitate site investigation and data quality objective (DQO) decisions, all identified releases (i.e., CAS components) were organized into study groups. The reporting of investigation results and the evaluation of DQO decisions are at the release level. The corrective action alternatives (CAAs) were evaluated at the FFACO CAS level. The purpose of this CADD/CAP is to evaluate potential CAAs, provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 573. Corrective action investigation (CAI) activities were performed from January 2015 through November 2015, as set forth in the CAU 573 Corrective Action Investigation Plan (CAIP). Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern. Assessment of the data generated from investigation activities conducted at CAU 573 revealed the following: • Radiological contamination within CAU 573 does not exceed the FALs (based on the Occasional Use Area exposure scenario). • Chemical contamination within CAU 573 does not exceed the FALs. • Potential source material—including lead plates, lead bricks, and lead-shielded cables—was removed during the investigation and requires no additional corrective action.

  3. Commonwealth of the Northern Mariana Islands Energy Action Plan

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    This document describes the three near-term energy strategies selected by the CNMI Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. The three energy strategies selected by the task force are (1) designing a demand-side management program focusing on utility, residential and commercial sectors, (2) developing an outreach and education plan focused on energy conservation in government agencies and businesses, including workplace rules, and (3) exploring waste-to-energy options. The task force also discussed several other medium- and long-term energy strategies that could be explored at a future date.

  4. China Attains Targets in National Human Rights Action Plan

    Wang Chen

    2011-01-01

    In April 2009,after receiving approval from the State Council,the Information Office of the State Counc pub shed the National Human Rights Action Plan of China (2009-2010).It is China's first national plan on the theme of human rights,and serves as a policy document of the current stage for advancing China's human fights in a comprehensive way.It is an important move to implement the constitutional principle of respecting and safeguarding human rights,and to promote sustainable development and social harmony.It is also a solemn commitment to the world made by the Chinese government on human rights.

  5. Belfast Active Travel Action Plan 2014-2020

    Public Health Agency

    2014-01-01

    The Belfast Strategic Partnership, which is led by the Public Health Agency, Belfast Health and Social Care Trust and Belfast City Council, is launching the�Belfast Active Travel Action Plan 2014-2020 which aims to build a healthier city by encouraging people to incorporate walking and/or cycling into their daily travel.The travel plan aims to try to make Belfast a more vibrant city where people are healthy, fit, well-connected with one another, and use physical activity as part of their ever...

  6. 49 CFR 234.11 - State highway-rail grade crossing action plans.

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false State highway-rail grade crossing action plans... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY AND STATE ACTION PLANS Reports and Plans § 234.11 State highway-rail grade crossing action plans. (a) Purpose....

  7. 2011-2015 National action plan for the management of radon-related risk

    After an assessment of the 2005-2008 action plan, this report presents the 2011-2015 plan. It comprises five main axis: the implementation of a policy regarding the management of the radon-related risk in existing dwellings, the implementation of a regulation for new dwellings, the follow-up of the regulation regarding public places and that applicable to workers, the development and the implementation of new management tools for the diagnosis of buildings and works performed by professionals, and the coordination of policy regarding investigation and research. Each axis comprises several actions which are defined and presented. Eight key measures are also defined

  8. Paediatric investigation plans for pain: painfully slow!

    Davies, Elin H.; Ollivier, Cecile M.; Saint Raymond, Agnes

    2010-01-01

    Abstract Purpose To examine the early impact of the Paediatric Regulation, which entered into force in Europe on 27 January 2007, on the development of pharmaceutical drugs in the therapeutic field of pain submitted to the Paediatric Committee (PDCO) and to the European Medicines Agency (EMA). Methods Paediatric Investigations Plans (PIPs) submitted with a Decision (outcome) reached between September 2007 ...

  9. Academic Misconduct: A Goals-Plans-Action Approach to Peer Confrontation and Whistle-Blowing

    Henningsen, Mary Lynn Miller; Valde, Kathleen S.; Denbow, Jessica

    2013-01-01

    Academic misconduct is a serious, pervasive, communication phenomenon on college campuses. In this study, the goals-plans-action model (Dillard, 1990) was used as a theoretical framework to investigate peer confrontation of cheating and whistle-blowing to a course instructor. In an experiment, participants were asked to respond to measures of…

  10. Clarification of TMI action plan requirements. Technical report

    This document, NUREG-0737, is a letter from D.G. Eisenhut, Director of the Division of Licensing, NRR, to licensees of operating power reactors and applicants for operating licenses forwarding post-TMI requirements which have been approved for implementation. Following the accident at Three Mile Island Unit 2, the NRC staff developed the Action Plan, NUREG-0660, to provide a comprehensive and integrated plan to improve safety at power reactors. Specific items from NUREG-0660 have been approved by the Commission for implementation at reactors. In this NRC report, these specific items comprise a single document which includes additional information about schedules, applicability, method of implementation review, submittal dates, and clarification of technical positions. It should be noted that the total set of TMI-related actions have been collected in NUREG-0660, but only those items that the Commission has approved for implementation to date are included in this document, NUREG-0737

  11. Sustainable ICT: Action Planning for the New Economy

    Upton, Sheila

    2011-01-01

    The global economy is showing promising signs of recovery, and the 16th Conference of the Parties (COP 16) to the UN Framework Convention on Climate Change, in Cancun, Mexico at the end of 2010, concluded with an approach to addressing climate change that is based on national action plans and reporting of progress against national targets. In the current economic environment, both sustainability and IT will play pivotal roles in any recovery. When these two powerful components come togethe...

  12. Uranium mill tailings remedial action project real estate management plan

    This plan summarizes the real estate requirements of the US Department of Energy's (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence

  13. Motivations for self-regulation: The clean air action plan

    In the fall of 2006 the Ports of Long Beach and Los Angeles announced the Clean Air Action Plan (CAAP). Its intent was to greatly accelerate emissions reductions from port activities. The CAAP was unprecedented in several ways: it was a voluntary agreement between two competing ports; it was achieved with the cooperation of local, state and federal agencies; it promised large particulate emissions reductions along with continued port growth, and it had a price tag of $2.1 billion. What explains the Ports’ decision to implement the CAAP? We conduct a case study to explore alternative explanations for the CAAP. Using data from interviews, media, and the history of events leading up to the CAAP, we find that the CAAP was a strategic response to social and political pressures that had built up over the previous decade. Its intent was to respond to local concerns and reduce opposition to port growth. The CAAP represents an example of the potential of voluntary efforts to solve environmental problems. - Highlights: • We conduct a case study of self-regulation for emissions reduction at seaports in Southern California. • We examine motivations for implementing the Clean Air Action Plan. • We find that social and political pressures were the main motivators, with regulatory threats a contributing factor. • The Clean Air Action Plan is a powerful example of the potential of voluntary strategies

  14. Conservation Action Planning: Lessons learned from the St. Marys River watershed biodiversity conservation planning process

    Patterson, Tamatha A.; Grundel, Ralph

    2014-01-01

    Conservation Action Planning (CAP) is an adaptive management planning process refined by The Nature Conservancy (TNC) and embraced worldwide as the Open Standards for the Practice of Conservation. The CAP process facilitates open, multi-institutional collaboration on a common conservation agenda through organized actions and quantified results. While specifically designed for conservation efforts, the framework is adaptable and flexible to multiple scales and can be used for any collaborative planning effort. The CAP framework addresses inception; design and development of goals, measures, and strategies; and plan implementation and evaluation. The specific components of the CAP include defining the project scope and conservation targets; assessing the ecological viability; ascertaining threats and surrounding situation; identifying opportunities and designing strategies for action; and implementing actions and monitoring results. In 2007, TNC and a multidisciplinary graduate student team from the University of Michigan's School of Natural Resources and Environment initiated a CAP for the St. Marys River, the connecting channel between Lake Superior and Lake Huron, and its local watershed. The students not only gained experience in conservation planning, but also learned lessons that notably benefited the CAP process and were valuable for any successful collaborative effort—a dedicated core team improved product quality, accelerated the timeline, and provided necessary support for ongoing efforts; an academic approach in preparation for engagement in the planning process brought applicable scientific research to the forefront, enhanced workshop facilitation, and improved stakeholder participation; and early and continuous interactions with regional stakeholders improved cooperation and built a supportive network for collaboration.

  15. Workshop on the preparation of climate change action plans. Workshop summary

    NONE

    1999-05-24

    Over 130 participants from more than 27 countries shared experiences of developing and transition countries in preparation and development of their climate change national action plans. International experts guided countries in preparation of their climate change national action plans.

  16. Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada

    Bechtel Nevada

    1998-09-30

    This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

  17. Clean Energy for Development Investment Framework : Progress Report on the World Bank Group Action Plan

    World Bank

    2007-01-01

    During the 2007 spring meetings, the development committee endorsed the World Bank Group's action plan on the Clean Energy Investment Framework (CEIF). This progress report is a response to the committee's request for an update on the implementation of the action plan for the annual meetings in October 2007. It summarizes accomplishments in the three areas of the action plan: 1) energy for...

  18. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies

  19. Quality Assurance Plan, N springs expedited response action

    This document is the Quality Assurance Plan (QAP) to be followed during the definitive design, construction, and operational phases for activities associated with the N Springs Expedited Response Action (ERA) for the 100-NR-2 Operable Unit (OU). Westinghouse Hanford Company (WHC) will comply with the US Department of Energy (DOE) Order 5700.6C, Quality Assurance (DOE 1989), and the US Environmental Protection Agency (EPA), EPA/530-SW-86-031, Technical Guidance Document: Construction Quality Assurance for Hazardous Waste Land Disposal Facilities (EPA 1986)

  20. The Canada economic action plan as electoral tool

    Chandler, Vincent

    2011-01-01

    This paper models the distribution of pork barrel when the electoral benefit of pork does not accrue to the party in power but to the incumbent of the district where the pork was directed. The model shows that, under certain parametres, more pork goes to core support districts. To verify this claim empirically, I first study the distribution of projects undertaken in the scope of the 2009-2011 Canada Economic Action Plan, and find that districts supporting the party in power received more por...

  1. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references

  2. Asthma Education, Action Plans, Psychosocial Issues and Adherence

    John Kolbe

    1999-01-01

    Full Text Available This article deals with four separate but not disparate topics. The first section discusses asthma education, reviews the current literature and attempts to challenge some of the dogma that is associated with this area. Knowledge alone does not guarantee appropriate behaviour, due to a variety of adverse socioeconomic and psychological factors that need to be considered for each patient. Action plans and peak flow monitoring have both been disappointing in terms of reducing asthma morbidity; the former needs to be individualized, and the latter may be useful in specific situations. Space precludes an in-depth discussion of psychological issues and adherence, but an attempt has been made to address salient issues, particularly related to the first two topics. Psychological factors, especially anxiety, play an important role in asthma outcome. Adherence to medication prescriptions and other management strategies need to be taken into account when an individual’s treatment program is planned.

  3. Hanford Action Tracking System release planning support documents

    Keasling, R.

    1995-05-05

    This document contains impacts, plans, resource requirements, schedules, and documents to ensure the conduct of activities for the operation of the Hanford Action Tracking System (HATS). Each discrete topic in this document applies to a specific area of management and team interaction. These formally establish the planning, resources, documentation, and training responsibilities for the system management team. This document is composed of four appendices. These include the following: (1) organization impacts and implementation plan--expected organizational impacts resulting from setting up the new support system for the HATS, the plan to address each of these impacts and other system implementation requirements; (2) training and information requirements--training and information needed to use and operate the HATS; (3) operation/maintenance resources--resources required to maintain and operate the HATS once the system becomes operations; (4) training package--HATS implementation training needs, includes a training procedure, the environment for training users (tools and materials required for the facility, trainer, and trainee); schedule, and handout materials and forms to be completed at the time of training.

  4. Introduction of Action Plan of Forestry Sustainable Development of Qinzhou-Fangchenggang area, Guangxi Zhuang Autonomous Region, China

    2003-01-01

    Guanngxi Autonomous Region is an important tropical forestry region in south of China. The main purpose of this research supported by FAO is to generate action plan for sustainable forestry development of this region. Through two-year broad and deep investigation, the programme of the action plant has been made, which includes 12 fields, 38 projects, with duration of 5 years.

  5. Corrective Action Plan for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada

    T. M. Fitzmaurice

    2000-05-01

    This Corrective Action Plan (CAP) has been prepared for the Roller Coaster RADSAFE Area Corrective Action Unit 407 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved Corrective Action Alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. The Constituents of Concern (COCs) identified during the site characterization include plutonium, uranium, and americium. No other COCS were identified. The following closure actions will be implemented under this plan: (1) Remove and dispose of surface soils which are over three times background for the area. Soils identified for removal will be disposed of at an approved disposal facility. Excavated areas will be backfilled with clean borrow soil fi-om a nearby location. (2) An engineered cover will be constructed over the waste disposal pit area where subsurface COCS will remain. (3) Upon completion of the closure and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site. Barbed wire fencing will be installed along the perimeter of this unit. Post closure monitoring will consist of site inspections to determine the condition of the engineered cover. Any identified maintenance and repair requirements will be remedied within 90 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP.

  6. Biodiversity in School Grounds: Auditing, Monitoring and Managing an Action Plan

    Mansell, Michelle

    2010-01-01

    The idea of using site biodiversity action plans to introduce biodiversity management initiatives into school grounds is outlined. Selected parts of a case study, involving the use of such an action plan to record, monitor and plan for biodiversity on a university campus, are described and ideas for applying a similar plan to a school setting are…

  7. Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    NSTec Environmental Restoration

    2009-03-31

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document. The scope of work required to implement the recommended closure alternatives is summarized below. CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. CAS 12

  8. Investigating Geosparql Requirements for Participatory Urban Planning

    Mohammadi, E.; Hunter, A. J. S.

    2015-06-01

    We propose that participatory GIS (PGIS) activities including participatory urban planning can be made more efficient and effective if spatial reasoning rules are integrated with PGIS tools to simplify engagement for public contributors. Spatial reasoning is used to describe relationships between spatial entities. These relationships can be evaluated quantitatively or qualitatively using geometrical algorithms, ontological relations, and topological methods. Semantic web services utilize tools and methods that can facilitate spatial reasoning. GeoSPARQL, introduced by OGC, is a spatial reasoning standard used to make declarations about entities (graphical contributions) that take the form of a subject-predicate-object triple or statement. GeoSPARQL uses three basic methods to infer topological relationships between spatial entities, including: OGC's simple feature topology, RCC8, and the DE-9IM model. While these methods are comprehensive in their ability to define topological relationships between spatial entities, they are often inadequate for defining complex relationships that exist in the spatial realm. Particularly relationships between urban entities, such as those between a bus route, the collection of associated bus stops and their overall surroundings as an urban planning pattern. In this paper we investigate common qualitative spatial reasoning methods as a preliminary step to enhancing the capabilities of GeoSPARQL in an online participatory GIS framework in which reasoning is used to validate plans based on standard patterns that can be found in an efficient/effective urban environment.

  9. North Slope (Wahluke Slope) expedited response action cleanup plan

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  10. North Slope (Wahluke Slope) expedited response action cleanup plan

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi2 (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives

  11. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    DOE/NV

    2001-04-05

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  12. Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada

    D. S. Tobiason

    2000-08-01

    Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1 [SWS 1]), and 03-05-002-SW05 (Septic Waste System 5 [SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ({micro}g/kg). The benzo(a)pyrene was found in the soil under the

  13. What Works Scotland & West Dunbartonshire Community Planning Partnership – Community-Led Action Planning Report

    Bynner, Claire

    2015-01-01

    At the heart of the What Works Scotland initiative is a programme of Collaborative Action Research (CAR) that is being taken forward with representatives from four case study Community Planning Partnerships (CPPs). The aim of this work is to build capacity and capability in the use of evidence to support local improvement projects and to capture evidence from practice as to what works in achieving public service reform. West Dunbartonshire is one of four WWS national case study...

  14. [International and Israeli physicians' health--information and action plan].

    Reis, Shmuel; Sayag, Shlomit; Karkabi, Khalid; Alroi, Gideon

    2008-03-01

    Physician health is a matter of interest for patients' physicians and their teams, managers and policy-makers. It has an impact on public health, physician impairment, patient safety, resource allocation and malpractice litigation. International medical literature, unlike Israel publications, is extensively preoccupied with the domain. Based on 2 MD thesis dissertations, Ministry of Health data and a literature search, the present review addresses many issues. It deals with: physicians' physical and mental health internationally and in Israel, prevention and health promotion, burn-out, the professional lifespan and career, health services utilization, legal and administrative aspects, boundaries, physicians' characteristics and vulnerability, interpersonal relations, care provided by physicians, physicians as patients and finally the impaired physician. International recommendations as well as a proposal for a local action plan are presented. PMID:18488866

  15. Implementation plan: Quality assurance requirements: Hazardous Waste Remedial Actions Program

    This document establishes the Quality Assurance (QA) Program requirements for the Hazards Waste remedial Actions Program (HASWRAP) for ensuring, with a high degree of confidence, that program objectives will be achieved as planned. The QA Program is introduced in Sect. 1. The HAZWRAP Support Contractor Office (SCO) functional organization and QA responsibilities are shown in Sect. 2. QA program requirements are contained in Sect. 3. These requiremens are pased on the American national Standard, American National Standards Institute/American Society of Mechanical Engineers NQA-1 Quality Assurance Program Requirements for Nuclear Facilities. The 18 elements defined in the standard are tailored to HAZWRAP's needs. The QA program requirements are delineated under the major headings: Quality Assurance Program, Organization, and Control of Quality;two additional program requirements, Software Quality Assurance and Problem Prevention, are included. Definitions of QA terms and the list of formal reports published by the HAZWRAP SCO are included as appendixes. 8 refs., 1 fig

  16. PROSPECTIVE ACTION PLAN FOR DEVELOPING PRODUCT CONTAINING MICROENCAPSULATED PROBIOTICS

    Saikh Mahammed Athar Alli

    2013-08-01

    Full Text Available Probiotic micro-organisms explored for delivering associated proclaimed valuable benefits and its market is expanding in diverse sphere. Probiotics (PRs are presented as pharmaceutical, dairy, non-dairy, and personal care products. To improve performances and marketplace survival of these products, diverse methods and technology devised. Amongst them microencapsulation (MEC is widely explored to get product with wished and improved performances. Interest evoke for marketing of product containing microencapsulated probiotics (PCEP to upkeep performance, reproducible, throughout its life cycle. The review features on prospective action plan for evolution of PCEP including method for combating issues. Presented information will be a helping hand for developers to get PCEP, with excellent feature and performance, and improved marketability.

  17. Reducing greenhouse gas emissions: Lessons from state climate action plans

    Pollak, Melisa, E-mail: mpollak@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States); Meyer, Bryn, E-mail: meye1058@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States); Wilson, Elizabeth, E-mail: ewilson@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States)

    2011-09-15

    We examine how state-level factors affect greenhouse gas (GHG) reduction policy preference across the United States by analyzing climate action plans (CAPs) developed in 11 states and surveying the CAP advisory group members. This research offers insights into how states approach the problem of choosing emissions-abatement options that maximize benefits and minimize costs, given their unique circumstances and the constellation of interest groups with power to influence state policy. The state CAPs recommended ten popular GHG reduction strategies to accomplish approximately 90% of emissions reductions, but they recommended these popular strategies in different proportions: a strategy that is heavily relied on in one state's overall portfolio may play a negligible role in another state. This suggests that any national policy to limit GHG emissions should encompass these key strategies, but with flexibility to allow states to balance their implementation for the state's unique geographic, economic, and political circumstances. Survey results strongly support the conclusion that decisions regarding GHG reductions are influenced by the mix of actors at the table. Risk perception is associated with job type for all strategies, and physical and/or geographic factors may underlie the varying reliance on certain GHG reduction strategies across states. - Highlights: > This study analyzed climate action plans from 12 states and surveyed the advisory group members. > Ten strategies supply 90% of recommended emission reductions, but states weigh them differently. > Advisory group members perceived different opportunities and risks in the top-ten strategies. > Both geographic and socio-political factors may underlie the varying reliance on certain strategies. > Cost, business practices and consumer behavior were ranked as the top barriers to reducing emissions.

  18. Reducing greenhouse gas emissions: Lessons from state climate action plans

    We examine how state-level factors affect greenhouse gas (GHG) reduction policy preference across the United States by analyzing climate action plans (CAPs) developed in 11 states and surveying the CAP advisory group members. This research offers insights into how states approach the problem of choosing emissions-abatement options that maximize benefits and minimize costs, given their unique circumstances and the constellation of interest groups with power to influence state policy. The state CAPs recommended ten popular GHG reduction strategies to accomplish approximately 90% of emissions reductions, but they recommended these popular strategies in different proportions: a strategy that is heavily relied on in one state's overall portfolio may play a negligible role in another state. This suggests that any national policy to limit GHG emissions should encompass these key strategies, but with flexibility to allow states to balance their implementation for the state's unique geographic, economic, and political circumstances. Survey results strongly support the conclusion that decisions regarding GHG reductions are influenced by the mix of actors at the table. Risk perception is associated with job type for all strategies, and physical and/or geographic factors may underlie the varying reliance on certain GHG reduction strategies across states. - Highlights: → This study analyzed climate action plans from 12 states and surveyed the advisory group members. → Ten strategies supply 90% of recommended emission reductions, but states weigh them differently. → Advisory group members perceived different opportunities and risks in the top-ten strategies. → Both geographic and socio-political factors may underlie the varying reliance on certain strategies. → Cost, business practices and consumer behavior were ranked as the top barriers to reducing emissions.

  19. Model-based action planning involves cortico-cerebellar and basal ganglia networks

    Fermin, Alan S. R.; Yoshida, Takehiko; Yoshimoto, Junichiro; Ito, Makoto; Tanaka, Saori C.; Doya, Kenji

    2016-01-01

    Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement Learning (RL) associates these processes with three major classes of strategies for action selection: exploratory RL learns state-action values by exploration, model-based RL uses internal models to simulate future states reached by hypothetical actions, and motor-memory RL selects past successful state-action mapping. In order to investigate the neural substrates that implement these strategies, we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a sequential action selection task under conditions that promoted the use of a specific RL strategy. The ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network implements the model-based RL action selection strategy. PMID:27539554

  20. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    Tim Echelard

    2006-03-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort

  1. Water Planning and Climate Change: Actionable Intelligence Yet?

    Milly, P.

    2008-05-01

    alternative. What is to be done? Is climate-change information of sufficient strength to justify making decisions that differ from those that would be optimal under stationarity? I.e., does climate science provide "actionable intelligence" to water planners? A conservative approach to planning in the presence of climate change would begin with stationarity as a base and then superpose, with quantitative estimates of uncertainties, those model-projected changes that appear to be qualitatively robust. The current state of science suggests that the following changes could be considered robust: (1) reduction in the fraction of precipitation falling as snow and earlier seasonal melting of snow, with consequent seasonal redistribution of runoff and streamflow; (2) gradual sea-level rise with heightened risk of encroachment of saline water into coastal surface- and ground-water-supply sources; and (3) global redistribution of precipitation and resultant runoff, with regional focal points ("hot spots") of desiccation and moistening. Even considering the attendant uncertainties, the available information about these changes can significantly affect the cost-benefit-risk tradeoffs of existing and prospective water projects and, therefore, can rationally inform decisions about future courses of action or inaction.

  2. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  3. Using Action Research to Investigate Social Networking Technologies

    Worrall, Lisa; Harris, Katy

    2013-01-01

    This article outlines the first cycle of an Action Research (AR) investigation into why professional learners are not using the Social Networking Technologies (SNTs) of their bespoke website. It presents the rationale of how this study came about, the ontological and epistemological stance of the authors and how this led to the particular choice…

  4. 14 CFR 415.41 - Accident investigation plan.

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Accident investigation plan. 415.41 Section... Launch Range § 415.41 Accident investigation plan. An applicant must file an accident investigation plan... reporting and responding to launch accidents, launch incidents, or other mishaps, as defined by § 401.5...

  5. The sequential encoding of competing action goals involves dynamic restructuring of motor plans in working memory.

    Gallivan, Jason P; Bowman, Natasha A R; Chapman, Craig S; Wolpert, Daniel M; Flanagan, J Randall

    2016-06-01

    Recent neural and behavioral findings provide support for the influential idea that in situations in which multiple action options are presented simultaneously, we prepare action plans for each competing option before deciding between and executing one of those plans. However, in natural, everyday environments, our available action options frequently change from one moment to the next, and there is often uncertainty as to whether additional options will become available before having to select a particular course of action. Here, with the use of a target-directed reaching task, we show that in this situation, the brain specifies a competing action for each new, sequentially presented potential target and that recently formed action plans can be revisited and updated so as to conform with separate, more newly developed, plans. These findings indicate that the brain forms labile motor plans for sequentially arising target options that can be flexibly restructured to accommodate new motor plans. PMID:27030738

  6. A novel test of planning ability: great apes can plan step-by-step but not in advance of action.

    Tecwyn, Emma C; Thorpe, Susannah K S; Chappell, Jackie

    2013-11-01

    The ability to identify an appropriate sequence of actions or to consider alternative possible action sequences might be particularly useful during problem solving in the physical domain. We developed a new 'paddle-box' task to test the ability of different ape species to plan an appropriate sequence of physical actions (rotating paddles) to retrieve a reward from a goal location. The task had an adjustable difficulty level and was not dependent on species-specific behaviours (e.g. complex tool use). We investigated the planning abilities of captive orangutans (Pongo pygmaeus) and bonobos (Pan paniscus) using the paddle-box. In experiment 1, subjects had to rotate one or two paddles before rotating the paddle with the reward on. Subjects of both species performed poorly, though orangutans rotated more non-food paddles, which may be related to their greater exploratory tendencies and bolder temperament compared with bonobos. In experiment 2 subjects could always rotate the paddle with the reward on first and still succeed, and most subjects of both species performed appropriate sequences of up to three paddle rotations to retrieve the reward. Poor performance in experiment 1 may have been related to subjects' difficulty in inhibiting the prepotent response to act on the reward immediately. PMID:24153327

  7. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    Mark Krauss

    2011-09-01

    The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclear explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of

  8. Preliminary rock mechanics laboratory: Investigation plan

    This document presents the rationale for rock mechanics laboratory testing (including the supporting analysis and numerical modeling) planned for the site characterization of a nuclear waste repository in salt. This plan first identifies what information is required for regulatory and design purposes, and then presents the rationale for the testing that satisfies the required information needs. A preliminary estimate of the minimum sampling requirements for rock laboratory testing during site characterization is also presented. Periodic revision of this document is planned

  9. ERRATA SHEET for Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada; TOPICAL

    Section 2.1.1.3 of the Table of Contents reference on Page v and on Page 12 of the Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada erroneously refers to the Nevada Environmental Policy Act Determination. The correct title of the referenced document is the National Environmental Policy Act Determination

  10. Numerical investigation of action potential transmission in plants

    Mariusz Pietruszka

    2014-02-01

    Full Text Available In context of a fairly concise review of recent literature and well established experimental results we reconsider the problem of action potential propagating steadily down the plant cell(s. Having adopted slightly modified Hodgkin-Huxley set of differential equations for the action potential we carried out the numerical investigation of these equations in the course of time. We argue that the Hodgkin-Huxley-Katz model for the nerve impulse can be used to describe the phenomena which take place in plants - this point of view seems to be plausible since the mechanisms involving active ionic transport across membranes from the mathematical point of view are similar. Besides, we compare in a qualitative way our theoretical outcomes with typical experimental results for the action potentials which arise as the reaction of plants to electrical, mechanical and light stimuli. Moreover, we point out the relevance of the sequence of events during the pulse with the appropriate ionic fluxes.

  11. A novel task for the investigation of action acquisition.

    Tom Stafford

    Full Text Available We present a behavioural task designed for the investigation of how novel instrumental actions are discovered and learnt. The task consists of free movement with a manipulandum, during which the full range of possible movements can be explored by the participant and recorded. A subset of these movements, the 'target', is set to trigger a reinforcing signal. The task is to discover what movements of the manipulandum evoke the reinforcement signal. Targets can be defined in spatial, temporal, or kinematic terms, can be a combination of these aspects, or can represent the concatenation of actions into a larger gesture. The task allows the study of how the specific elements of behaviour which cause the reinforcing signal are identified, refined and stored by the participant. The task provides a paradigm where the exploratory motive drives learning and as such we view it as in the tradition of Thorndike [1]. Most importantly it allows for repeated measures, since when a novel action is acquired the criterion for triggering reinforcement can be changed requiring a new action to be discovered. Here, we present data using both humans and rats as subjects, showing that our task is easily scalable in difficulty, adaptable across species, and produces a rich set of behavioural measures offering new and valuable insight into the action learning process.

  12. Environmental Action Memorandum : [Ottawa National Wildlife Refuge White-tailed Deer Hunting Plan

    US Fish and Wildlife Service, Department of the Interior — This Environmental Action Memorandum for the proposed Ottawa NWR White-tailed Deer Hunting Plan states that the plan is found not to have significant environmental...

  13. Investigation plan for infiltration experiment in Olkiluoto

    modelling to investigate the process of infiltration. The experiment makes it possible to extend the understanding of hydrogeology in the upper part of the bedrock, which will also help in future predictions. This report describes the plans on the experimental site, field investigations, data acquisition and interpretation, and modelling approaches. (orig.)

  14. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    K. B. Campbell

    2002-06-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are

  15. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are

  16. Nantucket, Ma. Climate Protection Action Plan: A Public Outreach Strategy

    Petrik, C.; Stephenson, A.; Petsch, S.

    2009-12-01

    As communities and municipalities gain a better understanding of climate change, they are exploring the ways in which to work towards adaptation and mitigation. One strategy that the Island of Nantucket, Massachusetts turned toward is the drafting of a Climate Protection Action Plan (CPAP). The CPAP was developed during the summer of 2009 to meet three goals: (1) assist the Town of Nantucket in creating a framework to help them reduce CO2 emissions; (2) educate the municipality and community in techniques that promote energy efficiency and sustainability on the island; and (3) document past, present and future approaches adopted by the Town towards emissions reduction and energy sustainability. In particular, this project focused on using local strengths and natural resources identified by island stakeholders that may help the island to mitigate carbon emissions and adapt to climate change.. Drafting the CPAP provided community members and politicians with an opportunity to become better educated in the science of climate change and to learn how climate change will affect their community. On the island of Nantucket, leaders in the religious, civic, and political communities were brought into a conversation about how each group could contribute to reducing greenhouse gas emissions. A geosciences graduate student was brought into the CPAP team as a climate fellow to facilitate this conversation. This provided the foundation for stakeholder recommendations incorporated into the CPAP. This capacity-building model served as an effective way to create an informal learning environment about climate change that allowed members of the island community to directly participate in developing their locally appropriate climate protection strategy. The draft CPAP developed through this study and presented to the Town of Nantucket comprises assessments and recommendations in public research and education; building and energy efficiency; transportation; renewable energy; and carbon

  17. ECONOMIC AND LEGAL ASPECTS OF THE PLANNED DAMAGES ACTIONS FOR THE BREACHES OF EC ANTITRUST LAW

    Elena Isac

    2010-09-01

    Full Text Available This paper investigates the planned damages actions for breaches of EC antitrust law in order to assess their impact on consumer welfare. It first examines the current legal situation and concurs that the European Union needs to regulate damages actions for breaches of EC antitrust law so that a higher number of consumers could be compensated for their losses. This paper then discusses the main legal provisions proposed by the Commission in the Green and in the White paper on damages actions for breaches of EC antitrust law. The analysis of these proposed legal provisions is done using arguments specific to the economic analysis of law. It is demonstrated that most of these proposed legal provisions will enhance consumer welfare but that there are also proposed legal provisions which will damage consumer welfare. The paper concludes that the planned damages actions for breaches of the EC law will be an improvement compared to the current situation. However, the Commission should amend some of the proposed legal provisions in order to help consumers further.

  18. LEAP: local environmental action plan. Municipality of Sopishte

    The establishment of the Municipality of Sopishte was preceded by the development of a kind of suburban settlement of Skopje, basically composed of illegally constructed individual houses for living. As a result from economic activities in the Municipality and the impacts from human factor, there are problems related to the disturbance of the quality of the basic environmental quality factors (water, air and soil), as well as threat to biological diversity and natural values and rarities. The Municipality of Sopishte is situated in hilly-mountain area. Significant sources of air pollution have not been recorded (in terms of industrial facilities) caused by the household neglectible air pollution caused by traffic. The Municipality is very poor in water resources. Almost 90% of the Municipality's territory are without river or stream. A potential source of water supply in this area is the river of Patishka, which is currently not used for water supply purposes. The solid waste, generated basically by the households, is not properly disposed (most frequently dumped on illegal dumping sites on the territory of the Municipality) and represents a serious problem making impacts on the quality of the environment. On the basis of the evaluation of identified environmental problems, priority activities required to be undertaken in short and medium term have been set up. Financial constrains have been taken into account in this regard. The proposed Action Plan reflects the observed needs of the population of the Municipality of Sopishte and the perception of the key problems

  19. Nuclear energy and global governance to 2030 : an action plan

    This document presented the key findings of the Nuclear Energy Futures project that was initiated in May 2006 to consider global governance of nuclear energy. The five-point action plan presented in this document included: (1) nuclear safety whereby all nuclear states are committed to and capable of implementing the highest nuclear safety standards, (2) nuclear security whereby all nuclear material and facilities are secure from unauthorized access or terrorist seizure or attack, (3) nuclear nonproliferation whereby a nuclear revival does not contribute to the proliferation of nuclear weapons, (4) the re-enforcement of the International Atomic Energy Agency's centrality through increased funding, modernization and reform, and (5) stakeholder involvement whereby all partners, especially industry, participate in judiciously managing a nuclear revival. This document suggested that despite some powerful drivers, the revival of nuclear energy faces too many barriers compared to other means of electricity production. These barriers include high costs; fewer subsidies; too slow for meeting the threat of climate change; inadequate power grids; unresolved nuclear waste issue; and fears about safety, security and nuclear weapons.

  20. Integrated action planning for biodiversity conservation and sustainable use of highland aquatic resources: evaluating outcomes for the Beijiang River, China

    Bunting, Stuart W.; Cai, K.; Luo, S.;

    2016-01-01

    The need for enhanced environmental planning and management for highland aquatic resources is described and rationale for integrated action planning presented. Past action planning initiatives for biodiversity conservation and wetland management are reviewed. A reflective account is given of inte...

  1. How One Middle School Began to Plan for Instruction - an Action Research Journey

    Bengier, Andrea L.

    2000-01-01

    This study documented the initial planning process of a group of sixth grade teachers on a collaborative team over a six-month period. Using action research, this team of teachers examined their own practices of planning and implementing instruction. The teachers identified a focus area, planned for instruction, implemented the plan, observed the results of their plan, reflected upon the results and revised the plan (Kemmis and Wilkinson, 1998) to map their instruction. The teachers used arc...

  2. Standard review plan for the review of environmental restoration remedial action quality assurance program plans

    This plan establishes both the scope of the review and the acceptance criteria to be utilized for the review of Quality Assurance Program Plans (QAPPs) developed in accordance with the requirements of DOE/RL-90-28. DOE/RL-90-28, the Environmental Restoration Remedial Action Quality Assurance Requirements Document (QARD) defines all quality assurance (QA) requirements governing activities that affect the quality of the Environmental Restoration Remedial Action (ERRA) program at the Hanford Site. These requirements are defined in three parts, Part 1 of Quality Management and Administration tasks, Part 2 for Environmental Data Operations, and Part 3 of the Design and Construction of items, systems, and facilities. The purpose of this document is to identify the scope of the review by the DOE Field Office, Richland staff, and establish the acceptance criteria (Parts 1, 2, and 3) that the DOE Field Office, Richland staff will utilize to evaluate the participant QAPPs. Use of the standard review plan will (1) help ensure that participant QAPPs contain the information required by DOE/RL-90-28, (2) aid program participant and DOE Field Office, Richland staff is ensuring that the information describing the participant's QAPP is complete, (3) help persons regarding DOE/RL- 90-28 to locate information, and (4) contribute to decreasing the time needed for the review process. In addition, the Standard Review Plan (SRP) ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate compliance of participant quality programs against DOE/RL-90-28

  3. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work

  4. The application of decision analysis techniques to remedial action planning

    As an illustration of a simple but powerful quantitative tool in geohydrology and waste management, alternatives for remedial action at a generic radioactive waste disposal facility have been evaluated using decision analysis. In addition to imposing a structured approach to alternative selection, decision analysis provides a rational basis for assessing the real value of further site investigations which might reduce uncertainties in site data, and for assessing the real value of developing and improving the performance of engineering controls or in decision analysis terminology--clairvoyance and wizardry, respectively. The quantitative interplay between site characterization, engineering, and institutional factors are examined for remediation of the same facility at two sites differing only in geohydrology. Alternatives considered include leaving in place and capping, in situ grouting, engineered barriers and removal. The following variables appear as uncertainties in the study: release, groundwater velocity, soil Kd, mean barrier life, and a wasteform factor

  5. Action Mapping: A Planning Tool for Change. HSLA Monograph.

    Matsui, Bruce

    Future leaders will have to rely upon skills that are far different from those used in the past. Action mapping serves as a meta-process for moving schools toward desired ends; it calls upon school leaders to move into action, to reflect upon such actions, and to collect stories for future reflections. This process could be helpful to a school…

  6. Gathering Strength: Canada's Aboriginal Action Plan. A Progress Report = Rassembler nos forces: Le plan d'action du Canada pour les questions autochtones. Rapport d'etape.

    Department of Indian Affairs and Northern Development, Ottawa (Ontario).

    Gathering Strength is an integrated government-wide plan to address the key challenges facing Canada's Aboriginal people. Following an initial section on reconciliation of historic grievances, this report describes initiatives in the four areas addressed by the action plan: (1) partnerships (all schools received public awareness materials;…

  7. Toward a Theoretical Framework for Understanding the Relationship between Situated Action and Planned Action Models of Behavior in Information Retrieval Contexts: Contributions from Phenomenology.

    Ng, Kwong Bor

    2002-01-01

    Discussion of human-computer interaction and planned action focuses on the belief that it is impossible to consider an action without an a priori plan, even according to the phenomenological position taken for granted by the situated action theory. Reports results of a quasi-experiment that focused on plan deviation within an information seeking…

  8. A Global Action Plan for Electronic Commerce: Prepared by Business with Recommendations for Governments

    OECD

    1999-01-01

    This second edition of the Global Action Plan for Electronic Commerce published by the Alliance for Global Business (AGB) reflects a number of developments in the global discussions about electronic commerce since the first Global Action Plan was submitted on behalf of business to the OECD Ministerial in Ottawa, Canada, in October 1998.

  9. Measurement of action planning in children, adolescents, and adults: A comparison between 3 tasks

    Jongbloed-Pereboom, M.; Spruijt, S.; Nijhuis-Van der Sanden, M.W.G.; Steenbergen, B.

    2016-01-01

    Purpose: To compare age-related action planning performance on 3 different tasks, focusing on differences in task complexity. Methods: A total of 119 participants were divided across 6 age groups (4-5, 6-7, 8-9, 10-12,14-16, and 20-22 years). Participants performed 3 action planning tasks: the overt

  10. Using Action Plans to Support Communication Programming for Children Who Are Deafblind

    Bruce, Susan M.

    2008-01-01

    The author describes the use of action plans to support 2 teachers' post-in-service implementation of communication strategies with 3 children who are deafblind. In the action plans, the teachers recorded changes in thinking and instructional practices under the 4 aspects of communication: form, function, content, and context. They also recorded…

  11. Local Climate Action Plans in climate change mitigation - examining the case of Denmark

    Damsø, Tue Noa Jacques; Kjær, Tyge; Christensen, Thomas Budde

    2016-01-01

    The article examines the climate action plans (CAPs) of local governments (LGs) in Denmark. Applying a quantitative content analysis approach, all available Danish LG action plans within the climate and energy field has been collected and coded, giving insight into the extent of LG CAPs. We asses...

  12. Canceling planned action: an FMRI study of countermanding saccades.

    Curtis, Clayton E; Cole, Michael W; Rao, Vikas Y; D'Esposito, Mark

    2005-09-01

    We investigated the voluntary control of motor behavior by studying the process of deciding whether or not to execute a movement. We imaged the human dorsal cortex while subjects performed a countermanding task that allowed us to manipulate the probability that subjects would be able to cancel a planned saccade in response to an imperative stop signal. We modeled the behavioral data as a race between gaze-shifting mechanisms and gaze-holding mechanisms towards a finish line where a saccade is generated or canceled, and estimated that saccade cancelation took approximately 160 ms. The frontal eye fields showed greater activation on stop signal trials regardless of successful cancelation, suggesting coactivation of saccade and fixation mechanisms. The supplementary eye fields, however, distinguished between successful and unsuccessful cancelation, suggesting a role in monitoring performance. These oculomotor regions play distinct roles in the decision processes mediating saccadic choice. PMID:15616130

  13. 2011-2015 National action plan for the management of radon-related risk; Plan national d'actions 2011-2015 pour la gestion du risque lie au radon

    NONE

    2011-11-15

    After an assessment of the 2005-2008 action plan, this report presents the 2011-2015 plan. It comprises five main axis: the implementation of a policy regarding the management of the radon-related risk in existing dwellings, the implementation of a regulation for new dwellings, the follow-up of the regulation regarding public places and that applicable to workers, the development and the implementation of new management tools for the diagnosis of buildings and works performed by professionals, and the coordination of policy regarding investigation and research. Each axis comprises several actions which are defined and presented. Eight key measures are also defined

  14. Will is not enough: coping planning and action control as mediators in the prediction of fruit and vegetable intake

    Godinho, C. A.; Alvarez, M. J.; Lima, M. L.; Schwarzer, R

    2014-01-01

    Objectives This study investigates the joint role of coping planning and action control as volitional predictors of changes in the daily consumption of fruit and vegetables. Design In a longitudinal online survey, 203 participants completed assessments at baseline (Time 1), 1 week (Time 2), and 2 weeks later (Time 3). Methods Structural equation modelling was used to test a series of three nested models. In Model 1, only intention predicted behaviour; in Model 2, both coping planning and acti...

  15. Interim Action Proposed Plan for the Chemicals, Metals, and Pesticides (CMP) Pits Operable Unit; FINAL

    The purpose of this Interim Action Proposed Plan (IAPP) is to describe the preferred interim remedial action for addressing the Chemicals, Metals, and Pesticides (CMP) Pits Operable Unit and to provide an opportunity for public input into the remedial action selection process

  16. Corrective action plan for CAU Number 339: Area 12 Fleet Operations, Steam Cleaning Discharge Area, Nevada Test Site

    The purpose of this Corrective Action Plan (CAP) is to provide the method for implementing the corrective action alternative as provided in the Corrective Action Decision Document (CADD). Detailed information of the site history and results of previous characterizations can be found in the Work Plan, the Preliminary Investigation Report, and the Phase 2 Characterization Report. Previous characterization investigations were completed as a condition of the Temporary Water Pollution Control Permit issued by the Nevada Division of Environmental Protection (NDEP) on July 14, 1992. The scope of this report is to prepare a CAP based upon the selected remedial alternative for closure of the Area 12, Building 12-16 Fleet Operations steam cleaning discharge area. The effluent discharge area has been impacted by volatile organic compounds (VOCs) and total petroleum hydrocarbons (TPH) as oil. The maximum hydrocarbon and VOC concentrations detected in the Preliminary and Phase 2 Site Characterization Investigations are summarized

  17. From Collaboration to Knowledge: Planning for Remedial Action in the Great LAkes

    Keuhl, David

    1998-01-01

    The goal of planning is to use knowledge to determine action. Planning theory has focused specifically on how the process of achieving this occurs. Two dominant theories prevail: rational comprehensive and communicative planning theory. The former relies heavily on the scientific method as a model for acquiring knowledge from which the correct action can be determined. The latter suggests that collaborative processes that engage stakeholders in decision-making offer distinct advantages to ach...

  18. ASCAD: Approved standard corrective action design-an innovative one-step remedial action plan

    This paper will describe an innovative environmental restoration approach being developed at the Savannah River Site to group sites, define characterization parameters, and match those conditions with standard environmental restoration designs. The package is called the Approved Standardized Corrective Action Design (ASCAD). The purpose of developing this package is to obtain regulator approval of standard technologies and designs for any waste site documented as meeting bounded characterization conditions. For instance, the grouping might be labeled open-quotes radioactive basinsclose quotes. The ASCAD package would contain one design for expected (ABC) conditions defined by characterization. A second design also would be included for DEF conditions should they be encountered. The concept is a next generation of the Streamlined Approach for Environmental Restoration, SAFER where limited characterization and technology selections are conducted in parallel with the processes supporting each other. The impact of ASCAD is to reach remediation faster and lower costs on remedial investigation and design

  19. PLANNING PROCESS, BETWEEN EXPERT PROJECT AND COLLECTIVE ACTION

    Thibault, Serge; Verdelli, Laura

    2009-01-01

    texte présenté au colloque annuel de l'AESOP Foundations, planning theory and method, planning and complexity - 24th AESOP Annual Conference, Finland The content of this paper concerns some recent evolutions of the planning process in France. Analyzing two study cases, we'll show that today, two types of process are coexisting and, in a way, confronting. The first one corresponds to the "classic" plan for which the project is the principal stage of a linear process. This linear plan is org...

  20. Final work plan : environmental site investigation at Sylvan Grove, Kansas.

    LaFreniere, L. M. (Environmental Science Division)

    2012-07-15

    what future CCC/USDA actions may be necessary, with the ultimate goal of achieving classification of the Sylvan Grove site at no further action status. The proposed activities are to be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory, a nonprofit, multidisciplinary research center operated by the UChicago Argonne, LLC, for the U.S. Department of Energy. Argonne provides technical assistance to the CCC/USDA concerning environmental site characterization and remediation at former grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. That document should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Sylvan Grove.

  1. Uranium Mill Tailings Remedial Action Project Environmental Line Management Audit Action Plan. Final report. Audit, October 26, 1992--November 6, 1992

    This Action Plan contains responses, planned actions, and estimated costs for addressing the findings discovered in the Environmental Management Audit conducted for the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRA), October 26 through November 6, 1992. This document should be read in conjunction with the Audit Report to ensure the findings addressed in this document are fully understood. The scope of the UMTRA Environmental Management Audit was comprehensive and encompassed all areas of environmental management except environmental programs pertaining to the National Environmental Policy Act (NEPA) compliance. The Audit Report listed 18 findings: 11 were identified as compliance findings, and the remaining 7 were best management practice findings. Root cause analysis was performed on all the findings. The results of the analysis as well as planned corrective actions are summarized in Section 5.0. All planned actions were prioritized using the Tiger Team Assessment Corrective Action Plan system. Based on assigned priorities, all planned actions were costed by fiscal year. This Action Plan contains a description of the organizational and management structures to be used to implement the Action Plan, a brief discussion of root cause analysis and funding, followed by the responses and planned actions for each finding. A member of the UMTRA Project Office (PO) has been assigned responsibility for tracking the progress on each of the findings. The UMTRA PO staff wrote and/or approved all of the corrective actions recorded in this Action Plan

  2. A soil plan of action to awaken society beyond 2015

    Jones, Arwyn; Bampa, Francesca; Towers, Willie; Broll, Gabrielle; Vargas, Ronald

    2014-05-01

    suite of positive examples offered by soil enthusiasts is to provide a common platform appropriate to all parts of the world, with a common consensus on soil issues to be covered and be brought to the table of consumers. The Global Soil Partnership (GSP) is an interactive, responsive and voluntary partnership, open to governments, regional organizations, institutions and other stakeholders. One of the pillars of action aims to "Encourage investment, technical cooperation, policy, education awareness and extension in soil". In order to achieve this goal, a small regionally balanced committee was formed following the 3rd European Network on Soil Awareness conference in Aberdeen and the 2nd Global Soil Week in Berlin. This group produced a draft plan of action that will be submitted to the Intergovernmental technical Panel on Soils (ITPS) of the GSP. Some key points that we need to address are: finding new soil communicators to awake and engage the society and the political arena (e.g. actors, poets, artists, etc.); focusing on a harmonised public perception of soil and their importance for environment and society; re-introducing soil science into the school curricula as a cross-cutting discipline designing a coherent but flexible structure and ensuring a proper and logical constructive transition between each learning stage (e.g. training teachers, web-based courses/ web-based platform, etc.). REFERENCES Bouma J, Broll G, Crane TA, Dewitte O, Gardi C, Schulte RPO, Towers W (2012) Soil information in support of policy making and awareness raising. Current Opinion in Environmental Sustainability, 4, 552-558. EC (2006) (COM(2006)231 final) Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee of the Regions, Thematic Strategy for Soil Protection. (ed Commission E), Brussels, Belgium.

  3. Alternatives/action plan report for outfall 17

    This Document contains information pertaining to alternatives/action associated with controlling ammonia entering through outfall 17. This document identifies the location of contaminate source, the ammonia concentration levels entering East Fork Poplar Creek, and the action taken to reduce/eliminate the toxicity problem

  4. Alternatives/action plan report for outfall 17

    NONE

    1994-11-01

    This Document contains information pertaining to alternatives/action associated with controlling ammonia entering through outfall 17. This document identifies the location of contaminate source, the ammonia concentration levels entering East Fork Poplar Creek, and the action taken to reduce/eliminate the toxicity problem.

  5. Connecting the Dots--From Planning to Implementation: Translating Commitments into Action in a Strategic Planning Process

    Mieso, Rob Roba

    2010-01-01

    This study examines the implementation of the Commitments to Action (CTAs) that were developed for the Outreach Institutional Initiative (OII) as part of the 2006 strategic planning process at De Anza College. Although the strategic planning process identified four Institutional Initiatives (IIs) [Outreach, Individualized Attention to Student…

  6. Climatic Action Plan Project for the state of Veracruz (Mexico)

    Tejeda, A.; Ochoa, C.

    2007-05-01

    With financing of the British Government and support of the National Institute of Ecology, from April of 2006 to March of 2008 an action plan which intends variability effects and climatic change for the state of Veracruz will be made. This plan will be taken to the state government and will be spread out to manufacturers, industrialists and population. Throughout the Gulf of Mexico, the state of Veracruz is a 745 km coast in length with a width that goes from 156 km in the center to 47 km in the north. The state has large mountains, forests, plains, rivers, cascades, lagoons and coasts. Veracruz is the 10th largest state in Mexico with a 72,420 km2 surface, it is located between 17°00' and 22°28' north latitude and between 93°95' and 98°38' west longitude. Because of the orographic effect, the Sierra Madre Oriental causes the existence of many types of climate, from dry to tropical forest, going through snow on the top of the Pico de Orizaba (5747m of altitude). The wind affects the coasts by not allowing to fish during a hundred days a year (particularly in winter), and on summer tropical waves and occasionally hurricanes affect rivers causing overflow and urban floods in fields. These phenomena do not have a regular affectation; they are subject to climate variability effects. Veracruz is the third state with most population in the country (7.1 million people in 2005), only surpassed by the state of Mexico and Mexico City. Although it occupies 3.7% of the national territory, Veracruz has 6.9% of human population in the country, and is the 6th state of PIB national contribution (240 thousands of millions pesos approximately). Of the possible effects of the climatic change the following can be expected: , , : Most of the coasts of the Gulf of Mexico, low and sandy, less of a meter on the sea level, represent the most vulnerable territory of Veracruz. Towns will be affected, the saline water will infiltrate until the phreatic mantles and the coast electrical

  7. Action of personal planning in the mining firm

    Antoová Mária

    2004-01-01

    Planning in the personal area is systematically performed by the way of forcasting of future needs and reserves in human resources in every organization. By evaluating the number and the kind of employees, the organization will need, the department of human resources management can plan their obtaining, education and development, or the working process.The paper is dealing with the neccessity for the personal planning in every organization, irrespective of to its volume or tasks and area of p...

  8. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nevada, Revision 1

    Irene Farnham and Sam Marutzky

    2011-07-01

    This CADD/CAP follows the Corrective Action Investigation (CAI) stage, which results in development of a set of contaminant boundary forecasts produced from groundwater flow and contaminant transport modeling of the Frenchman Flat CAU. The Frenchman Flat CAU is located in the southeastern portion of the NNSS and comprises 10 underground nuclear tests. The tests were conducted between 1965 and 1971 and resulted in the release of radionuclides in the subsurface in the vicinity of the test cavities. Two important aspects of the corrective action process are presented within this CADD/CAP. The CADD portion describes the results of the Frenchman Flat CAU data-collection and modeling activities completed during the CAI stage. The corrective action objectives and the actions recommended to meet the objectives are also described. The CAP portion describes the corrective action implementation plan. The CAP begins with the presentation of CAU regulatory boundary objectives and initial use restriction boundaries that are identified and negotiated by NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The CAP also presents the model evaluation process designed to build confidence that the flow and contaminant transport modeling results can be used for the regulatory decisions required for CAU closure. The first two stages of the strategy have been completed for the Frenchman Flat CAU. A value of information analysis and a CAIP were developed during the CAIP stage. During the CAI stage, a CAIP addendum was developed, and the activities proposed in the CAIP and addendum were completed. These activities included hydrogeologic investigation of the underground testing areas, aquifer testing, isotopic and geochemistry-based investigations, and integrated geophysical investigations. After these investigations, a groundwater flow and contaminant transport model was developed to forecast contaminant boundaries that enclose areas potentially exceeding the Safe Drinking

  9. Planning, preparation, execution, and imagery of volitional action.

    Deecke, L

    1996-03-01

    There are different motor sets, which a human subject can be in or act from: he or she can be in a self-initiated voluntary movement set (action) or in a response set (re-action). Also, imagery sets are available that are necessary for the acquisition and practice of skill. Most important are such imagery sets for rehearsal in theatre, dance, music, sports, combat, etc. PMID:8713545

  10. Planning, preparation, execution, and imagery of volitional action

    Deecke, Lüder

    1996-01-01

    There are different motor sets, which a human subject can be in or act from: He or she can be in a self-initiated voluntary movement set (action) or in a response set (re-action). Also, imagery sets are available that are necessary for the acquisition and practice of skill. Most important are such imagery sets for rehearsal in theatre, dance, music, sports, combat, etc.

  11. Putting Yourself in Action: Individual Professional Development Plans

    Sugarman, Nancy A.

    2011-01-01

    An individual professional development plan (IPDP) is a document early childhood educators create, review regularly, and update as needed to guide their future professional development. The plan includes personal and professional goals guided by professional standards and strategies for meeting them. Educators learn and grow continuously by…

  12. A Social-Action Approach for Planning Education.

    Bolan, Richard S.; And Others

    The growing complexity of urban industrial society necessitates adequate planning techniques to insure future livability, but traditional methods of training planners have emphasized technology and ignored the human element. To remedy this deficiency, training programs should be expanded to include the social and political aspects of planning.…

  13. The Action Plan Against Repetitive Work - An Industrial Relation Strategy for Improving the Working Environment

    Hasle, Peter; Møller, Niels

    2001-01-01

    indicates that a measurable reduction of repetitive work has been achieved, while recognizing the the new management strategies focusing on human resources development have also played an important role. These results are used to suggest that - under certain conditions - a combination of state regulation......The Danish Action Plan against Repetitive Work is presented and discussed as a possible new strategy for regulating repetitive work as well as other complicated working environment problems. The article is based on an empirical evaluation ot the Action Plan. The asseessment of the Action Plan...

  14. Development of criteria and procedures for the evaluation of the European Action Plan for Organic Agriculture

    Schmid, Otto; Lampkin, Nicolas; Dabbert, Stephan; Zanoli, Raffaele; Michelsen, Johannes; Gonzalvez, Victor

    2008-01-01

    This final report provides a synthesis of the results of the EU-funded ORGAP project, with the title “European Action Plan of Organic Food and Farming - Development of criteria and procedures for the evaluation of the EU Action Plan for Organic Agriculture”. This project started in May 2005 and was completed in April 2008. The overall objective of this project was to give scientific support to the implementation of the EU Organic Action Plan (EUOAP) by the development of an evaluation toolbox...

  15. Taking action: A cross-modal investigation of discourse structure

    Elsi eKaiser

    2012-06-01

    Full Text Available Segmenting stimuli into events and understanding the relations between those events is crucial for understanding the world. For example, on the linguistic level, successful language use requires the ability to recognize semantic coherence relations between events (e.g. causality, similarity. However, relatively little is known about the mental representation of discourse structure. We report two experiments that used a cross-modal priming paradigm to investigate how humans represent the relations between events. Participants repeated a motor action modeled by the experimenter (e.g. rolled a ball towards mini bowling pins to knock them over, and then completed an unrelated sentence-continuation task (e.g. provided a continuation for Peter scratched John. …. In two experiments, we tested whether and how the coherence relations represented by the motor actions (e.g., causal events vs. non-causal events influence participants’ performance in the linguistic task. Our analyses focused on the coherence relations between the prompt sentences and participants’ continuations, as well as the referential shifts in the continuations. As a whole, the results suggest that the mental representations activated by motor actions overlap with the mental representations used during linguistic discourse-level processing, but nevertheless contain fine-grained information about sub-types of causality (reaction vs. consequence. In addition, the findings point to parallels between shifting one’s attention from one event to another and shifting one’s attention from one referent to another, and indicate that the event structure of causal sequences is conceptualized more like single events than like two distinct events. As a whole, the results point towards common representations activated by motor sequences and discourse-semantic relations, and further our understanding of the mental representation of discourse structure, an area that is still not yet well-understood.

  16. Quadrant I RCRA Facility Investigation Work Plan

    The objective of this Facility Investigation (FRI) at the Portsmouth Gaseous Diffusion Plant (PORTS) is to acquire, analyze and interpret data which will: (1) characterize the environmental setting including ground water, surface water and sediment, soil and air; (2) define and characterize sources of contamination; (3) characterize the vertical and horizontal extent and degree of contamination of the environment; (4) assess the risk to human health and the environment resulting from possible exposure to contaminants; and, (5) support the Corrective Measures Study (CMS) which will follow the RFI. Investigations to characterize the environmental setting, sources of contamination, and vertical and horizontal extent and degree of contamination will be conducted relative to individual potential sources which have been identified in the Quadrant I Description of Current Conditions. These unit investigations will follow the systematic approach which is outlined below

  17. Furocoumarins, biophysical investigations on their modes of action

    Investigation of the combined effect of furocoumarins and ultraviolet light of 365 nm wavelength (UV light) on cellular constituents are important for they have clearly increased the knowledge on basic processes involved in PUVA therapy. Studies of the action on nucleic acids both in isolated state and in situ led to the following conclusions, when 8-methoxypsoralen (8-MOP) and angelicin were used as sensitizers: Crosslinking between the drug and the nucleic acid bases is preferred in A-T rich or A-U rich sites with the nucleic acid being in B conformation. In situ crosslinked DNA does not influence the adsorption of phage lambda on the surface of E. coli. There are probably three types of furocoumarins mediated crosslinks inside the phage: Type I, corresponding to crosslinking between complementary strands of the DNA duplex, type II, corresponding to crosslinks between adjacent sites in the folded DNA structure (hair pin crosslinks) and DNA protein crosslinks. Type I does not prevent the DNA from getting into the host cell, while the two latter do. PUVA treatment of human lymphocyte cultures is manifested by chromosomal aberrations such as premature centromere division and major coiling. However, treatment with 8-MOP or UV light alone do produce the same kind of aberrations. Under the action of UV light, 8-MOP or trimethylpsoralen become covalently bound to unsaturated fatty acids. The photoreaction preceeds without essential contribution of singlet oxygen and hydroperoxides. (author)

  18. Fiscal Year 2013 Trails Management Program Mitigation Action Plan Annual Report, October 2013

    Pava, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-25

    This Trails Management Program Mitigation Action Plan Annual Report (Trails MAPAR) has been prepared for the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) as part of implementing the 2003 Final Environmental Assessment for the Proposed Los Alamos National Laboratory Trails Management Program (DOE 2003). The Trails Mitigation Action Plan (MAP) is now a part of the Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS 0380) Mitigation Action Plan (2008 SWEIS MAP) (DOE 2008). The MAP provides guidance for the continued implementation of the Trails Management Program at Los Alamos National Laboratory (LANL) and integration of future mitigation actions into the 2008 SWEIS MAP to decrease impacts associated with recreational trails use at LANL. This eighth MAPAR includes a summary of Trails Management Program activities and actions during Fiscal Year (FY) 2013, from October 2012 through September 2013.

  19. Sustainable Development Action Plans (SDAPs) : support and scrutiny from the Sustainable Development Commission

    Sustainable Development Commission

    2008-01-01

    This paper details the guidance, support and scrutiny that the SDC will provide on Sustainable Development Action Plans (SDAPs), to government departments, executive agencies, and other government bodies. Publisher PDF

  20. Big Oaks National Wildlife Refuge : Environmental Action Statement, Environmental Assessment, Interim Hunting and Fishing Plan : 2004

    US Fish and Wildlife Service, Department of the Interior — This document contains the Environmental Action Statement, Environmental Assessment, and Interim Hunting and Fishing Plan for Big Oaks National Wildlife Refuge from...

  1. On the way to an Austrian radon action plan; Auf dem Weg zum oesterreichischen Radonaktionsplan

    Gruber, V.; Ringer, W.; Wurm, G. [Oesterreichische Agentur fuer Gesundheit und Ernaehrungssicherheit (AGES), Linz (Austria). Oesterreichische Fachstelle fuer Radon; Haider, W. [Bundesministerium fuer Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW), Wien (Austria). Abt. Strahlenschutz

    2013-07-01

    According to the draft of the new European Basic Safety Standards (EU-BSS) all member states are obliged to develop a national radon action plan, to control the long term risks from radon exposure in dwellings, public buildings and workplaces. The National Radon Centre, embedded in the Austrian Agency for Health and Food Safety (AGES), was assigned by the Ministry for Environment (BMLFUW) to develop this Austrian action plan and the strategy behind. This conference contribution discusses where we still have a need for actions and how the new BSS will influence the Austrian radon legislation (reference levels, responsibilities, standards, building law). Currently running and planned projects regarding the radon action plan like developing a national radon data base, definition of radon prone areas by improving the radon map and strategies to increase public radon awareness and involve the building sector are presented. (orig.)

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 538: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Alfred Wickline

    2006-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the closure of Corrective Action Unit (CAU) 538: Spill Sites, Nevada Test Site, Nevada. It has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. A SAFER may be performed when the following criteria are met: (1) Conceptual corrective actions are clearly identified (although some degree of investigation may be necessary to select a specific corrective action before completion of the Corrective Action Investigation [CAI]). (2) Uncertainty of the nature, extent, and corrective action must be limited to an acceptable level of risk. (3) The SAFER Plan includes decision points and criteria for making data quality objective (DQO) decisions. The purpose of the investigation will be to document and verify the adequacy of existing information; to affirm the decision for either clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action. The actual corrective action selected will be based on characterization activities implemented under this SAFER Plan. This SAFER Plan identifies decision points developed in cooperation with the Nevada Division of Environmental Protection (NDEP) and where DOE will reach consensus with NDEP before beginning the next phase of work.

  3. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site: • 25-41-03, EMAD Facility This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 25-41-03. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for CAS 25-41-03. It is anticipated that the results of the field investigation and implementation of corrective actions will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The CAS will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAS 25-41-03. The following text summarizes the SAFER

  4. Measuring the quality of Patients’ goals and action plans: development and validation of a novel tool

    Teal Cayla R

    2012-12-01

    Full Text Available Abstract Background The purpose of this study is to develop and test reliability, validity, and utility of the Goal-Setting Evaluation Tool for Diabetes (GET-D. The effectiveness of diabetes self-management is predicated on goal-setting and action planning strategies. Evaluation of self-management interventions is hampered by the absence of tools to assess quality of goals and action plans. To address this gap, we developed the GET-D, a criteria-based, observer rating scale that measures the quality of patients’ diabetes goals and action plans. Methods We conducted 3-stage development of GET-D, including identification of criteria for observer ratings of goals and action plans, rater training and pilot testing; and then performed psychometric testing of the GET-D. Results Trained raters could effectively rate the quality of patient-generated goals and action plans using the GET-D. Ratings performed by trained evaluators demonstrated good raw agreement (94.4% and inter-rater reliability (Kappa = 0.66. Scores on the GET-D correlated well with measures theoretically associated with goal-setting, including patient activation (r=.252, P Conclusions The GET-D can reliably and validly rate the quality of goals and action plans. It holds promise as a measure of intervention fidelity for clinical interventions that promote diabetes self-management behaviors to improve clinical outcomes. Trial registration Clinicaltrials.gov Identifier: NCT00481286

  5. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    This report presents a complete response to the Tiger Team assessment that was conducted to Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 2, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root cause of the findings identified during the assessment. This report is concerned with reactors safety and health findings, responses, and planned actions. Specific areas include: organization and administration; quality verification; operations; maintenance; training and certification; auxiliary systems; emergency preparedness; technical support; nuclear criticality safety; security/safety interface; experimental activities; site/facility safety review; radiological protection; personnel protection; fire protection; management findings, responses, and planned actions; self-assessment findings, responses, and planned actions; and summary of planned actions, schedules, and costs

  6. 78 FR 23740 - Notice of Availability of a Swine Brucellosis and Pseudorabies Proposed Action Plan

    2013-04-22

    ... Register (78 FR 9028-9029, Docket No. APHIS-2010-0086) a notice that made a proposed action plan describing... Animal and Plant Health Inspection Service Notice of Availability of a Swine Brucellosis and Pseudorabies... swine brucellosis and pseudorabies available for public review and comment. This action will...

  7. Too much talk and not enough action over obesity plan.

    2016-09-12

    After all the build-up and delays, it was probably no surprise that the government's eagerly-awaited childhood obesity plan has been derided for being too timid. The 13-page document - relatively light considering the severity of the posed threat - fails to mention tighter controls on advertising unhealthy food and drinks to children and families. Without these controls it is hard to see how the plan's stated aim of reducing childhood obesity in England over the next ten years can be met. PMID:27615563

  8. National climate change action plans: Interim report for developing and transition countries

    Benioff, R.; Ness, E.; Hirst, J. [eds.

    1997-10-01

    Under its Support for National Action Plans (SNAP) initiative, the U.S. Country Studies Program is providing financial and technical assistance to 18 countries for the development of climate change action plans. Although most of the countries have not yet completed their plans, the important lessons learned thus far are valuable and should be shared with other countries and international institutions that have an interest in the process of action plan development. This interim report describes the experience of 11 countries that are the furthest along in their planning activity and who have offered to share their results to date with the larger community of interested nations. These action plans delineate specific mitigation and adaptation measures that the countries will implement and integrate into their ongoing development programs. This report focuses on the measures the countries have selected and the methods they used to prepare their action plans. This executive summary presents key lessons and common themes using a structure similar to that used in the individual country chapters.

  9. The New Morbidity: A National Plan of Action.

    Baumeister, Alfred A.; And Others

    1991-01-01

    Discusses child morbidity, suggesting solutions can be found at the community level. Argues the federal government's role is essential in articulating policy and providing resources. Generates a new morbidity model emphasizing poverty and social factors as crucial influences. Lists priorities for effective, preventive, intervention planning. (NL)

  10. Proposals for the National Environmental Health Action Plan

    José María Ordóñez Iriarte

    2008-12-01

    Full Text Available According to international strategies for environment and health, the spanish administration of Health and Environment launched in 2007 the necessary mechanisms for developing the National Plan for Health and Environment. The first step was an agreement with the Carlos III Health Institute for designing the basis on which to sus- tain the plan. The scientific committee established for that purpose has drafted a basis-report with the participation of a large group of experts. This work is an abstract of the proposals contained in that report. The proposals refer to the items considered as a priority in the European environment and health strategy, ie, cancer, endocrine disruption, neuro-developmental disorders and respiratory diseases and are organized around the major environmental risk factors for health: water, persistent toxic chemicals, electromagnetic fields, ionizing radiation, noise and climate change and extreme temperatures. To give consistency to the plan, the report identifies some essential measures to ensure its administrative, political, technical and financial feasibility. To give it coherence, the report point to some common priorities and methodological strategies. To give a shape to the plan, the report finally identifies programs to be implemented.

  11. An Action Research Plan for Developing and Implementing the Students' Listening Comprehension Skills

    Luo, Chunpin

    2008-01-01

    This is a proposal for an action research plan designed to find out how to improve students' listening comprehension skills, enhance their performance and help to promote better learning. This plan is focused on the minority students who major in English in our University. Listening comprehension is one of the most difficult courses for them. As…

  12. National Wildlife Refuge System Action Plan : Response to Independent Evaluation of the Effectiveness of the Refuge System

    US Fish and Wildlife Service, Department of the Interior — This action plan is the first in what the Leadership Team intends to be a recurring annual plan to monitor and address overall Refuge System effectiveness. The plan...

  13. 19 CFR 206.54 - Investigations with respect to extension of action.

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Investigations with respect to extension of action..., Modification, or Termination of Relief Action § 206.54 Investigations with respect to extension of action. (a... at any time during an investigation under this section with respect to an article that was...

  14. Final work plan : investigation of potential contamination at the former USDA facility in Powhattan, Kansas.

    LaFreniere, L. M.; Environmental Science Division

    2007-02-02

    This Work Plan outlines the scope of work to be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Powhattan, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential contaminant source areas on the property; (2) determine the vertical and horizontal extent of potential contamination; and (3) provide recommendations for future action, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the U.S. Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. It should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Powhattan.

  15. ORGDP RCRA facility investigation program: plans and content

    Preparation of RCRA Facility Investigation (RFI) plans for thirty four 3004(u) sites at the ORGDP will be accomplished during FY-87 and FY-88. The plans will be written to guide the sampling and analyses of the sites to determine the extent, if any, of contamination. This investigation will then be the cornerstone for design of corrective measures for site remediation. The RFI plans at the ORGDP are being prepared by two Martin Marietta Energy Systems, Inc., project teams. The organization of the teams, the schedules, and the costs associated with preparation of the documents will be discussed. The contents of the general RFI plan document and a typical site-specific plan will be shown and the contents and methodology of each section will be highlighted

  16. Analysis of Energy Saving and Efficiency Action Plan 2008-2012 in Spain for the

    Fernández, Yolanda; A. J. Gutiérrez; Paredes, J.P. (José); Xiberta, Jorge

    2016-01-01

    Energy efficiency is considered one of the most cost effective ways to enhance security of energy supply and reduce greenhouse gas emissions. According to Europe’s Energy Efficiency Plan, the biggest energy saving potential in the EU lies in the built environment. Spanish authorities, aiming to guarantee the energy supply and also to abide with the environmental restrictions, have established the National Energy Efficiency Action Plans (NEEAP), the 2008-2012 Plan is the first one and the 2011...

  17. Uranium Mill Tailings remedial action project waste minimization and pollution prevention awareness program plan

    The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases

  18. Remedial action and waste disposal project - ERDF readiness evaluation plan

    This Readiness Evaluation Report presents the results of the project readiness evaluation to assess the readiness of the Environmental Restoration and Disposal Facility. The evaluation was conducted at the conclusion of a series of readiness activities that began in January 1996. These activities included completion of the physical plant; preparation, review, and approval of operating procedures; definition and assembly of the necessary project and operational organizations; and activities leading to regulatory approval of the plant and operating plans

  19. Harmonisation in WENRA and the CSN action plan

    The Western European Nuclear Regulators Association (WENRA) is undertaking a process of harmonisation of the regulations of its different member countries, the aim being to homogenise criteria and achieve a high degree of nuclear safety throughout the European Union. The CSN implemented a plan, updated in November last, to at least incorporate the WENRA reference levels in the Spanish system of standards through the issuing of instructions published in the Official State Gazette. (Author)

  20. Office of River Protection Integrated Safety Management System Phase 1 Verification Corrective Action Plan

    The purpose of this Corrective Action Plan is to demonstrate the OW planned and/or completed actions to implement ISMS as well as prepare for the RPP ISMS Phase II Verification scheduled for August, 1999. This Plan collates implied or explicit ORP actions identified in several key ISMS documents and aligns those actions and responsibilities perceived necessary to appropriately disposition all ISM Phase II preparation activities specific to the ORP. The objective will be to complete or disposition the corrective actions prior to the commencement of the ISMS Phase II Verification. Improvement products/tasks not slated for completion prior to the RPP Phase II verification will be incorporated as corrective actions into the Strategic System Execution Plan (SSEP) Gap Analysis. Many of the business and management systems that were reviewed in the ISMS Phase I verification are being modified to support the ORP transition and are being assessed through the SSEP. The actions and processes identified in the SSEP will support the development of the ORP and continued ISMS implementation as committed to be complete by end of FY-2000

  1. Representation and Integration: Combining Robot Control, High-Level Planning, and Action Learning

    Petrick, Ronald; Kraft, Dirk; Mourao, Kira; Geib, Christopher; Pugeault, Nicolas; Krüger, Norbert; Steedman, Mark

    We describe an approach to integrated robot control, high-level planning, and action effect learning that attempts to overcome the representational difficulties that exist between these diverse areas. Our approach combines ideas from robot vision, knowledgelevel planning, and connectionist machine......-level action specifications, suitable for planning, from a robot’s interactions with the world. We present a detailed overview of our approach and show how it supports the learning of certain aspects of a high-level lepresentation from low-level world state information....

  2. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems

  3. Removal Action Plan for the Accelerated Retrieval Project for a Described Area within Pit 4

    A. M. Tyson

    2006-08-01

    This Removal Action Plan documents the plan for implementation of the Comprehensive Environmental Response, Compenstion, and Liability Act non-time-critical removal action to be performed by the Accelerated Retrieval Project. The focus of the action is the limited excavation and retrieval of selected waste streams from a designated portion of the Radioactive Waste Management Complex Subsurface Disposal Area that are contaminated with volatile organic compounds, isotopes of uranium, or transuranic radionuclides. The selected retrieval area is approximately 0.2 ha (1/2 acre) and is located in the eastern portion of Pit 4. The proposed project is referred to as the Accelerated Retrieval Project. This Removal Action Plan details the major work elements, operations approach, and schedule, and summarizes the environmental, safety and health, and waste management considerations associated with the project.

  4. Removal Action Plan for the Accelerated Retrieval Project for a Described Area within Pit 4

    This Removal Action Plan documents the plan for implementation of the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action to be performed by the Accelerated Retrieval Project. The focus of the action is the limited excavation and retrieval of selected waste streams from a designated portion of the Radioactive Waste Management Complex Subsurface Disposal Area that are contaminated with volatile organic compounds, isotopes of uranium, or transuranic radionuclides. The selected retrieval area is approximately 0.2 ha (1/2 acre) and is located in the eastern portion of Pit 4. The proposed project is referred to as the Accelerated Retrieval Project. This Removal Action Plan details the major work elements, operations approach, and schedule, and summarizes the environmental, safety and health, and waste management considerations associated with the project

  5. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems.

  6. Action plan for Canada's Voluntary Challenge and Registry Program on Climate Change: 1998 Update

    This update marks the fourth year of Canadian Western's participation in Canada's Voluntary Challenge and Registry Program. The company continues to make substantial progress towards the goal of reducing greenhouse gas emissions to 1990 levels by the year 2000. New emission targets will be reviewed and reported on in future submissions based on the Kyoto Protocol. In Sept. of 1995, Canadian Western submitted an Action Plan to the federal government detailing how the company planned to limit greenhouse gas emissions. That plan described the inventory of emissions from company sources, detailed the activities that Canadian Western has undertaken to reduce emissions, and described a course of action the company would take in an attempt to the national target of returning to 1990 levels of emission by the year 2000. This report is the third annual update of the company's Action Plan covering: inventory methodology and emission reduction activities

  7. Fluid Management Plan Central Nevada Test Area Corrective Action Unit 443

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing at sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. Responsibility for environmental restoration of the sites that constitute the Offsites Project was transferred from the DOE Office of Environmental Management to the DOE Office of Legacy Management (LM) on October 1, 2006. The scope of this Fluid Management Plan (FMP) is to support subsurface investigations at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996). The subsurface CAU 443 is associated with the underground nuclear testing conducted at UC-1 and is located approximately 30 miles north of Warm Springs in Nye County, Nevada.

  8. Implementation of UMTRA Project Environmental Audit Action Plan status report for period ending September 30, 1992

    This report provides the status of implementation of corrective actions for findings made in an Environmental Audit conducted by DOE Headquarters, Office of Environmental Audit, in June 1991. An Action Plan, dated December 1991, was developed to address the findings. The Action Plan was approved by DOE Headquarters, Office of Environment, Safety and Health, in July 1992. This report provides status for each activity listed in the approved Action Plan. Of 48 findings identified in the August 1991 Environmental Audit Report, 4 required no action, 5 were combined with others and actions to correct 19 are complete. Although it appears no progress has been made since the last status report was issued, UMTRA has completed 89% of the findings identified, compared to 72% identified in the last status report. The table below lists the 20 findings where actions are still underway, the current projected completion date, the organization(s) responsible for taking action on the finding, and the UMTRA Project Off ice staff member assigned responsibility for the finding

  9. DOUBLE TRACKS Test Site interim corrective action plan

    NONE

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  10. Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site

    This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7)

  11. Population attributable fraction: planning of diseases prevention actions in Brazil

    de Rezende, Leandro Fórnias Machado; Eluf, José

    2016-01-01

    ABSTRACT Epidemiology is the study of occurrence, distribution and determinants of health-related events, including the application of that knowledge to the prevention and control of health problems. However, epidemiological studies, in most cases, have limited their research questions to determinants of health outcomes. Research related to the application of knowledge for prevention and control of diseases have been neglected. In this comment, we present a description of how population attributable fraction estimates can provide important elements for planning of prevention and control of diseases in Brazil. PMID:27305404

  12. N Springs expedited response action performance monitoring plan. Revision 1

    Groundwater contained in the 100-NR-2 Operable Unit is contaminated with various radionuclides derived from waste water disposal practices and spills associated with 100-N Reactor operations. Of primary concern is the presence of high levels of 90Sr in the groundwater and the discharge of 90Sr-contaminated groundwater to the nearby Columbia River through historic river bank seeps known as ''N Springs.'' A pump-and-treat system is being installed to remove 90Sr contamination from the groundwater as part of the N Springs expedited response action (ERA). The groundwater extraction system will consist of four extraction and two injection wells with a proposed initial treatment capacity of 50 gal/min. The proposed location of the groundwater extraction system relative to the 90Sr groundwater plume is presented

  13. Plan of action for solar energy 1995-97

    As part of Denmark's energy policy of utilizing renewable energy sources this plan of management covering 3 years (1995-97) has been produced by the Committee for Solar Energy (Solenergiudvalget) at the request of the Danish Energy Agency. It is stated that during 1992-94 the use of solar energy has developed satisfactorily. Supported by state subsidies, local and national information dissemination campaigns have stimulated sales which have increased from 200 to ca. 2500 solar heating systems annually during the past 7 years. The total number of these systems established in Denmark is 16.000. Resulting energy savings are 0.25% of total energy consumption for space and water heating. Yet some goals have been not yet been reached, the development of passive solar heating integrated in buildings and photovoltaic conversion has not been satisfactory. Attention should now be concentrated on these latter aspects but priority should still be given to active solar heating systems. Traditional suppliers should now be included in information dissemination activities. It is reckoned that state subsidies should no longer be necessary for solar energy promotion shortly after 1997, but this form of economical aid should be withdrawn gradually as development within this field continues. Standard subsidies should not be donated regionally. More details are given of plans for each of the 3 years, and of the the status, potentials and barriers for usage of solar energy in Denmark. Detailed lists are offered of available authorized Danish solar heating systems in relation to manufacturers. (AB)

  14. An Ontological Model of Behaviour Theory to Generate Personalized Action Plans to Modify Behaviours.

    Baig, Wasif; Abidi, Samina; Abidi, Syed Sibte Raza

    2016-01-01

    Behavior change approaches aim to assist patients in achieving self-efficacy in managing their condition. Social cognitive theory (SCT) stipulates self-efficacy as a central element to behavior change and provides constructs to achieve self-efficacy guided by person-specific action plans. In our work, to administer behaviour change in patient with chronic conditions, our approach entails the computerization of SCT-based self-efficacy constructs in order to generate personalized action plans that are suitable to an individual's current care scenario. We have taken a knowledge management approach, whereby we have computerized the SCT-based self-efficacy constructs in terms of a high-level SCT knowledge model that can be operationalized to generate personalized behaviour change action plans. We have collected and computerized behavior change content targeting healthy living and physical activity. Semantic web technologies have been used to develop the SCT knowledge model, represented in terms of an ontology and SWRL rules. The ontological SCT model can inferred to generate personalized self-management action plans for a given patient profile. We present formative evaluation of the clinical correctness and relevance of the generated personalized action plans for a range of test patient profiles. PMID:27577412

  15. Renewable energy plan of action for American Samoa

    Shupe, J.W. (USDOE San Francisco Operations Office, Honolulu, HI (USA). Pacific Site Office); Stevens, J.W. (Sandia National Labs., Albuquerque, NM (USA))

    1990-11-01

    American Samoa has no indigenous fossil fuels and is almost totally dependent for energy on seaborne petroleum. However, the seven Pacific Islands located at 14 degrees south latitude that constitute American Samoa have a wide variety of renewable resources with the potential for substituting for imported oil. Included as possible renewable energy conversion technologies are solar thermal, photovoltaics, wind, geothermal, ocean thermal, and waste-to-energy recovery. This report evaluates the potential of each of these renewable energy alternatives and establishes recommended priorities for their development in American Samoa. Rough cost estimates are also included. Although renewable energy planning is highly site specific, information in this report should find some general application to other tropical insular areas.

  16. Hydro Tasmania - renewable energy drivers, action and plans

    In Tasmania, the island state of Australia, the generator, Hydro Tasmania, is pushing technical, environmental and business boundaries in its plans to integrate a relatively high proportion (up to 20 percent) of large wind generators into its current complex mix of large and small hydropower plants. Its plans include projects to increase the efficiency of its older hydropower equipment as it prepares to supply much needed peaking capacity to the market in southern Australia via the groundbreaking Basslink undersea cable, which is due for completion in November 2005. Taken as a package these developments are creating a globally significant reference site for renewable energy systems. The paper will describe what is happening, and more importantly what is underpinning the developments, including: the harnessing of Tasmania's world-class wind resource, where recently constructed 1.75 MW wind turbines are achieving capacity factors of over 45 percent - some of the best productivity in the world today; the application of leading environmental science measures to ensure the sustainability of both the new wind farm developments and the transformation of the hydropower system to meet peak capacity demands; the relevance of the existing large hydropower storages that can operate in synergy with the wind resource; the contribution of Australia's renewable energy certificate scheme, which is effectively doubling the value of new renewable energy developments compared with existing generation sources; the application of the latest technology in hydropower turbines, combined with power system expertise from the world's leading manufacturers, to increase the efficiency of older hydropower generators, thereby more effectively harnessing the existing environmental footprint; and the transformation of Hydro Tasmania's business into a significant supplier and trader of premium value peak energy into the sophisticated Australian National Electricity Market. (author)

  17. An Investigation of Earnings Management Through Marketing Actions

    Craig J. Chapman; Thomas J. Steenburgh

    2008-01-01

    Prior research hypothesizes managers use 'real actions,' including the reduction of discretionary expenditures, to manage earnings to meet or beat key benchmarks. This paper examines this hypothesis by testing how different types of marketing expenditures are used to boost earnings for a durable commodity consumer product which can be easily stockpiled by end-consumers as well as who, within the firm, is responsible for these actions. Combining supermarket scanner data with firm-level financi...

  18. Shell Canada Limited 2001 Voluntary climate change : Action plan update

    Climate change is an important issue and Shell Canada Limited (Shell), as one of the largest integrated petroleum companies in Canada, is committed to continue its efforts with governments and other sectors of society in policy debate toward implementing responsible initiatives to achieve greenhouse gas emissions reductions. For the period 2001 to 2008, Shell is striving to achieve a further reduction of six per cent of 1990 levels through the development and implementation of energy efficiency projects. The latest technologies will be implemented in the case of new business ventures. Low sulphur synthetic crude oil with six per cent fewer greenhouse gas emissions than the imported crude oil mix that will be displaced by this source is targeted for the Athabasca Oil Sands Project. Funding to various groups concerned with improving the environment will be provided. An important performance element will continue to be greenhouse gas management. Efforts will be expanded toward the development and promotion of of emission accounting, trading and recognition for early action. Shell will participate in research specifically related to the petroleum industry. The major initiatives were highlighted in this document. 7 figs

  19. Oral medicines for children in the European paediatric investigation plans

    van Riet-Nales, Diana A; Römkens, Erwin G A W; Saint-Raymond, Agnes; Kozarewicz, Piotr; Schobben, Alfred F A M; Egberts, Toine C G; Rademaker, Carin M. A.

    2014-01-01

    INTRODUCTION: Pharmaceutical industry is no longer allowed to develop new medicines for use in adults only, as the 2007 Paediatric Regulation requires children to be considered also. The plans for such paediatric development called Paediatric Investigation Plans (PIPs) are subject to agreement by the European Medicines Agency (EMA) and its Paediatric Committee (PDCO). The aim of this study was to evaluate the key characteristics of oral paediatric medicines in the PIPs and the changes impleme...

  20. Geodiversity action plans for the enhancement of geoheritage in the Piemonte region (north-western Italy

    Elena Ferrero

    2012-07-01

    Full Text Available A geoethical approach to geodiversity allows better understanding of the value of abiotic nature and enhances its conservation and development. Our basic assumption is that even during an economical crisis, geoheritage sites can serve both public and private interests. A set of nine strategic geothematic areas were chosen to represent the geodiversity of the Piemonte region, north-western Italy, each of which is characterized by great potential for scientific studies, enhancement of public understanding of science, recreational activities, and economic support to the local communities. Specialized research teams individuated critical aspects to advance our knowledge of the geological history of the Piemonte region, through climate and environmental changes, natural hazards, soil processes, and georesources. The scientific concepts and techniques were coupled with geodiffusion actions and products: not only geosites, but also museum collections, evidence of mining and quarrying activities, science exhibitions, and nature trails. The preliminary results have allowed action plans to be developed with local partners, to assess the geoheritage management requirements. A series of investigations were carried out to improve the visual representation of the geological processes and the evolutionary scenarios. Further outcomes of the project will include didactic tools for educators, schools, and the public in general.

  1. Task action plans for unresolved safety issues related to nuclear power plants. Technical report

    This document contains Task Action Plans for generic tasks addressing 'Unresolved Safety Issues' related to nuclear power plants. The Task Action Plans in this document include a description of the issue, a description of the NRC staff's approach to resolving the issue, a general discussion of the basis for continued operation and licensing pending resolution of the issue, a discussion of the technical organizations involved in the task, and the requirements for manpower and program support funding. This document does not include Task Action Plans for generic tasks addressing 'Unresolved Safety Issues' for which reports providing the NRC staff resolution of the issue have been published. Those tasks for which reports have been published are identified and the reports are referenced

  2. LEAP: local environmental action plan. Municipality of Dolneni

    The Municipality of Dolneni is situated in the northern part of the Pelagonia Valley, at about 600 meters above the sea level. It is surrounded on three sides (north, northeast, east and northwest) by the mountain massifs of Dautica, Babuna and Busova Planina. The assesment of the state of the environment in the Municipality of Dolneni presented in this document is based on several principles, including, before all, human health, as well as impacts from human activities on urban and natural environment, social and economic development, etc. The impacts from environmental pollution on human health in the Municipality of Dolneni are evident. Major problem is the lack of sewerage system to collect wastewater and absence of organized landfill(s) for solid waste disposal. In addition, the improper drinking water supply in most of the settlements contributes to the increased human health risk in the Municipality. The absence of urban planning has lead to developments and uncontrolled use of natural resources that cause degradation of the environment and consequently decrease in quality of living for the population. The above problems affect the quality of living conditions and human health both directly and indirectly. In recent years, incidence of epidemics of communicable hepatitis was recovered (Debreste, Desovo), and there is a concern for a high risk of appearance of intestinal and other infectious diseases. There are no indicators of the soil quality of surface running water resources with regard to pollution. In any case, on the basis of the manner of land use and specific human activities on the territory of the Municipality, as well as on the basis of the above mentioned solid waste and waste water related problems, it may be concluded that these resources are in a rather poor condition. Other aspects of determining the quality of the environment (atmosphere, noise, natural ecosystems and biodiversity in general) are not under serious human pressure at present

  3. Accelerated cleanup Initiatives Putting the Acceleration Plans into Action

    This paper describes project successes during the last year and presents strategies for accomplishing work required to accelerate waste retrieval, treatment and closure of 177 large underground waste tanks at the Hanford Site. The tanks contain approximately 53 million gallons of liquid, sludge, and solid waste resulting from decades of national defense production. The Hanford Site is a 560 square-mile area in southeastern Washington State. One of the nation's largest rivers, the Columbia River, flows through the site and within seven miles of the waste tanks. The US. Department of Energy (DOE) Office of River Protection and CH2M HILL Hanford Group, Inc. (CH2M HILL) drew upon the recommendations in the DOE's Top-To-Bottom Review and the ideas that emerged from the Cleanup Challenges and Constraints Team (C3T) when creating new initiatives last fall in accelerated tank cleanup. The initiatives reflect discussions and planning during the last year by the DOE, regulatory,agencies, Hanford stakeholders, and CH2M HILL on how to accelerate tank cleanup and closure. The initiatives focus on near-term risk reduction, deployment of proven cleanup technologies, and completing the feed delivery and waste storage systems needed to support Hanford's Waste Treatment Plant. Working with the Office of River Protection, CH2M HILL is changing the way it does business to align with the new focus on accelerated tank cleanup initiatives. A key concept of this new approach is to deploy simple, proven technologies whenever possible to accomplish program goals. Finding existing technologies and evaluating whether they can be applied to or adapted to Hanford tank cleanup provide the best chance for success in achieving treatment of all of Hanford's tank waste by 2028

  4. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiments)

    undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities

  5. Do Bans on Affirmative Action Hurt Minority Students? Evidence from the Texas Top 10% Plan

    Kalena E. Cortes

    2010-01-01

    In light of the recent bans on affirmative action in higher education, this paper provides new evidence on the effects of alternative admissions policies on the persistence and college completion of minority students. I find that the change from affirmative action to the Top 10% Plan in Texas decreased both retention and graduation rates of lower-ranked minority students. Results show that both fall-to-fall freshmen retention and six-year college graduation of seconddecile minority students d...

  6. Inventory and action plan for greenhouse gas emissions and capture in the Lower Saint Lawrence

    The authors reported on a project designed to provide farmers with concrete information based on data from their enterprise to develop an action plan for the reduction of greenhouse gas emissions. This project involved completing an inventory of greenhouse gas emissions and capture for seven farms located in the Lower Saint Lawrence region of Quebec. The authors presented a balance sheet and action plan for the region under study. A total of six priorities were identified. They encompassed measures such as the optimization of nitrogen management in agricultural soils, to increasing the capture rate of carbon dioxide, and reducing the use of fossil fuels. 6 refs., 6 figs

  7. A Resiliency Action Plan for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    Vogel, J [Abt Environmental Research, Boulder, CO (United States); Wagner, C. [Abt Environmental Research, Boulder, CO (United States); Renfrow, S. [Abt Environmental Research, Boulder, CO (United States)

    2015-09-03

    The second stage in a two-stage project called the National Renewable Energy Laboratory (NREL) Climate Change Resiliency and Preparedness (CCRP) project is summarized in this resiliency action plan. This CCRP pilot project was funded by the U.S. Department of Energy's Sustainability Performance Office and launched in winter 2014. The resiliency action plan begins where the previous stage of the project -- the vulnerability assessment -- ended. This report discusses resiliency options to reduce the risk of the highest risk vulnerabilities that were identified in the NREL vulnerability assessment.

  8. Preservation of information about the repository for spent nuclear fuels - proposal for action plan

    This report is a proposal for an action plan with the ultimate aim of ensuring that information about the repository for spent nuclear fuel can be preserved and transferred for future generations. The purpose of the proposal for an action plan is to present ideas on tangible measures and guidelines for information preservation and transfer, in the short and long term. The report deals with a number of aspects relating to information preservation as well as risks that can lead to the loss of important information. The proposal for an action plan is based on reasoning about these subjects. The main emphasis is on measures that need to be implemented in the near future to ensure that successive and direct information transfer is handled in a suitable manner. It is suggested that the following measures should be implemented within a five-year period: - Designate a person responsible for information preservation. - Work out guidelines for information preservation and transfer. - Form a network with other organizations in Sweden. - Initiate a dialogue with other countries, especially USA and France. - Participate in seminars, conferences and workgroups on an international level within the IAEA and NEA. In a longer time perspective the following measures should also be implemented: - Implement guidelines for information preservation and transfer. - Document the archiving system. - Establish a communication plan. - Archive information about the repository. - Keep the action plan up to date

  9. Analysis of the CNSC Staffs Action Plan to Reflect Lessons Learned from Fukushima Accident

    On September 30, 2011, the Task Force completed its review and presented the public with the findings and recommendations in the CNSC Fukushima Task Force Report. The Task Force made 13 recommendations to further enhance the safety of nuclear power plants in Canada. After that, the CNSC established the CNSC Staffs Action Plan based on the Fukushima Task Force's recommendations. In Canada, 19 nuclear power reactor units are currently producing electric power, and all of them are pressurized heavy water-reactor (PHWR) types. Also, considering 2 power reactor units in Korea, Wolsung unit 1 and 2, are the same reactor type, the analysis of the CNSC Staffs Action Plan will be of benefit to determining recommendations of Korea to address lessons learned from the Fukushima Daiichi nuclear power plant. Therefore, the CNSC Staffs Action Plan was introduced and analyzed in this study. From the results of the above analysis, it is recognized that the strengthening of defense in depth, emergency preparedness and the regulatory oversight of nuclear power plants in Canada were emphasized and much similar to practices of other countries. Public consultation process establishing the CNSC Staffs action plan has been carried out several times, in order to ensure regulatory transparency, by the CNSC staffs, and this is comparable with other countries. It is expected that the detail analysis results of the above plan will be helpful to enhance the safety of domestic operating nuclear power plants

  10. Fire protection action plan, status summary report. Data for decisions, management by objectives

    This management report, ''Fire Protection Action Plan, Status Summary Report'' was established by the Executive Director for Operations, to provide information for monitoring and dsplaying the progress of NRC activities related to fire prevention and protection. It utilizes data pertaining to project plans, schedules, and status which have been integrated into a network-based management information system. As part of this system's initial development, information has been collected and analyzed by the Office of Planning and Analysis from the Offices of Standards Development Inspection and Enforcement, Nuclear Reactor Regulation, Regulatory Research and International and State Programs. The purpose of this publication is to provide a vehicle for review of the current status and overall progress of the fire protection action plan from a managerial point of view

  11. Corrective Action Plan for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada

    R. B. Jackson

    2003-05-01

    The Areas 25, 26 and 27 Septic Systems are in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 271. This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for CAU 271. CAU 271 is located on the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada, and consists of the following 15 Corrective Action Sites (CAS): CAS 25-04-1, Septic System; CAS 25-04-03, Septic System; CAS25-04-04, Septic System; CAS 25-04-08, Septic System; CAS 25-04-09, Septic System; CAS 25-04-10, Septic System; CAS 25-04-11, Septic System; CAS 26-03-01, Contaminated Water Reservoir; CAS 26-04-1, Septic System; CAS 26-04-02, Septic System; CAS 26-05-01, Radioactive Leachfield; CAS-26-05-03, Septic System; CAS 26-05-04, Septic System; CAS 26-05-05, Septic System; and CAS 27-05-02, Leachfield.

  12. The Biodiversity Community Action Project: An STS Investigation

    Aidin, Amirshokoohi; Mahsa, Kazempour

    2010-01-01

    The Biodiversity Community Action Project is a stimulating and vigorous project that allows students to gain an in-depth understanding of the interconnection between organisms and their environments as well as the connection of science to their lives and society. It addresses key content standards in the National Science Education Standards and…

  13. Investigating the Benefits of Participatory Action Research for Environmental Education

    Bywater, Krista

    2014-01-01

    Environmental education (EE) continues to focus on enhancing people's ecological knowledge to encourage sustainable actions. This deficit approach presumes that once informed about environmental harms, people will work towards sustainable solutions for healthy societies. Yet research overwhelmingly demonstrates that knowledge of environmental…

  14. Phase II -- Photovoltaics for Utility Scale Applications (PVUSA): Safety and health action plan

    Berg, K.

    1994-09-01

    To establish guidelines for the implementation and administration of an injury and illness prevention program for PVUSA and to assign specific responsibilities for the execution of the program. To provide a basic Safety and Health Action Plan (hereinafter referred to as Plan) that assists management, supervision, and project personnel in the recognition, evaluation, and control of hazardous activities and/or conditions within their respective areas of responsibility.

  15. Creating a digital marketing communications action plan for an e-organization

    Kauppinen, Juliana

    2016-01-01

    This product-oriented thesis focused on researching marketing communications and more specifically digital marketing planning in the context of the e-business environment. The topic is important for successful marketing communications implementation in the continuously changing market environment. The thesis project was commissioned by a European Commission funded open data e-organization, WeLive. The objective was to create an action plan for WeLive’s marketing communications. The purpose of...

  16. Applicability of children’s environment and health action plan in Serbia

    Kristoforović-Ilić Miroslava

    2010-01-01

    The Children’s Environment and Health Action Plan for Europe was adopted at the 4th Ministry Conference on Environment (the World Health Organization, 2004). It is focused on children health care against hazards originating from the human environment. In its conclusion, the need is expressed for the development of national plans in the field of Environmental and Children Health for European region by 2007. Mutual activities would be obligatory for each country and their realization shou...

  17. HighARCS Integrated Action Planning for the Phu Yen District study site, Son La Province, Vietnam

    Nguyen, Thi Dieu Phuong; Lund, Søren

    The report presents action plans elaborated to preserve aquatic resources and local livelihoods in the Phu Yen District, including methodologies and procedures applied for the selection and assessment of the actions....

  18. Protecting drinkable water: an analysis of action plans and stakeholders' networks

    Gascuel-Odoux, Chantal; Menard, Marjorie

    2015-04-01

    Since WFD the policy for protecting drinkable water has been enhanced in France. This policy establish the main components and the different steps for protecting drinkable water, and ask for defining and implementing an action plan for each contributing catchment. Despite ambitious objectives, the local implementation is difficult. Firstly there is a high diversity of stakeholders involved with local authorities, which are mainly: water agencies, agricultural chambers and consultants, authorities at regional and departmental levels. Most of the local authorities do not feel qualified enough for carrying out such a policy, as they are not really used to deal with technical and political issues related to agricultural diffuse pollutions. As a consequence assessed action plans are based on regulation and/or agri-environmental measures. More ambitious and complementary measures can be included, but without any support measure nor accurate objectives for their implementation. In the end, action plans reflect more a formal implementation of protection approaches than a search for efficiency by defining ambitious measures and the setting-up a consistent support scheme. The way stakeholders' networks mobilize knowledge have been analyzed based on ten case studies located in three different regions. Three local authorities profiles are defined: (1) the "passive" ones, not really convinced of the necessity to undertake actions against diffuse pollutions and/or having low level of knowledge to support local reflexion, that delegate project management; (2) the local authorities that support local protection approach but that, for different reasons, do not search for an effective action plan, and that only consider an improvement approach; (3) the local authorities that more rarely, aim at efficient actions, motivated by the urgent need of action for preserving threatened resources. According to these profiles, local authorities and their project coordinators will be looking

  19. Investigation-Derived Waste Management Plan. Revision 2

    SRS has implemented a comprehensive environmental program to maintain compliance with environmental regulations and mitigate impacts to the environment. One element of the environmental program is the investigation of inactive waste units. Environmental Investigation-Derived Waste (IDW). IDW may include purge water , soil cuttings, drilling fluids, well pumping test and development water, decontamination solutions, contaminated equipment, and personal protection equipment (PPE). In cases where investigations confirm the presence of contamination and the IDW contains waste constituents in concentrations high enough to be of environmental or health concern, special management procedures are warranted. This IDW Management Plan describes specific SRS initiatives for IDW management. The goal is the development of a plan for prudent management of IDW from environmental investigations that is protective of human health and the environment

  20. Kenya's Climate Change Action Plan. Low Carbon Climate Resilient Development Pathway

    Murphy, D.; Sawyer, D.; Stiebert, S.; McFatridge, S. [International Institute for Sustainable Development IISD, Winnipeg, Manitoba (Canada); Wuertenberger, L.; Van Tilburg, X.; Hekkenberg, M. [Energy research Centre of the Netherlands ECN, Policy Studies, Amsterdam (Netherlands); Owino, T.; Battye, W. [ClimateCare, Nairobi (Kenya); Mutia, T. [Regional Institute for Social Enterprise Kenya RISE, Nairobi (Kenya); Olum, P. [Climate Change Consultant (Kenya)

    2012-12-15

    Kenya Vision 2030 - the long-term development blueprint for the country - aims to transform Kenya into 'a newly industrialising, middle-income country providing a high quality of life to all its citizens in a clean and secure environment'. A low carbon climate resilient development pathway, as set out in this Climate Change Action Plan, can help meet Vision 2030 goals through actions that address both sustainable development and climate change. This pathway can also help the Government achieve the Millennium Development Goals and other internationally agreed development goals without compromising the environment and its natural resources. As Kenya realizes its development aspirations, there will be gains and risks. A growing population and economy with migration to cities will mean increases in greenhouse gas (GHG) emissions. Resulting environmental and social conditions, including increased competition over resources, could intensify vulnerability to climate risks. Transitioning to a low carbon climate resilient development pathway can address future risks thereby improving Kenya's ability to prosper under a changing climate while reducing the emissions intensity of a growing economy. Moving forward on the 2010 National Climate Change Response Strategy will help Kenya transition to a low carbon climate resilient development pathway that puts people and livelihoods at the forefront. The strategy recognized the importance of climate change and development, and this Climate Change Action Plan is the logical next step. A yearlong multistakeholder participatory process involving the public sector, private sector and civil society resulted in this Action Plan that identifies priority climate change actions for Kenya for the short, medium and long term. The Government of Kenya takes climate change and its impact on development seriously. Climate change is considered a crosscutting issue that will be mainstreamed in the planning process both at the national

  1. Action plan for energy efficiency 2003-2006. A Working Group Proposal

    The updating of the Action Plan for Energy Efficiency is closely related to the need to further intensify measures for promoting energy conservation that was highlighted in the debate in Parliament on the National Climate Strategy and building of a new nuclear power plant. The Working Group with responsibility for the preparation of the updating has made an assessment of the implementation and impact of the previous Action Plan for Energy Efficiency and sought to come up with new measures and ways of increasing the effect of the actions in the previous action plan. The main instruments presented in the updated action plan are developing new technologies, economic instruments, energy conservation agreements, laws and regulations and information and training. The action plan comprises proposals for increasing the budget for energy subsidies for companies and bodies and finding new formulas for the funding of energy saving investments. Further, the aid for the renovation of buildings is proposed to be enhanced. More effort is also needed as concerns disseminating information on energy saving. The development of new technologies requires that the funding from the National Technology Agency (Tekes) for energy efficiency is kept at least at the level of 1999. An implementation of the measures proposed would require a contribution from the state amounting to about E 80 million per year. The system of Energy Conservation Agreements is proposed to be further extended and developed. The agreements could to a larger extent than before cover research and product development processes and processes for purchasing of goods and services. The Working Group proposes further examination of the possibility of imposing binding targets and applying sanctions. Energy taxation is proposed to be developed further in order to promote energy saving and co- generation with the impact of the future Directive on emission allowance trading in mind. New research and development projects are

  2. Local actions to reduce greenhouse gas emissions in the context of national action plans

    Municipalities can play a number of important roles to complement national actions to limit greenhouse gas emissions: (i) by facilitating comprehensive, city-wide building retrofit activities; (ii) by facilitating the development and/or expansion of community integrated energy systems involving district heating, district cooling, and cogeneration of electricity; and (iii) by promoting urban intensification to reduce the need to use the private automobile. Innovative institutional and financial mechanism are needed to overcome some of the persistent barriers to more efficient energy use in buildings and a number of concepts, which are currently being considered by the City of Toronto as part of its programme to reduce CO2 emissions by 20% from the 1988 level by 2005, are discussed here. These concepts involve using public securitization funds to leverage private sector funds for energy efficiency retrofits and a number of measures to reduce financing and retrofit transaction costs. Even where surplus electricity generating capacity exists at the regional scale, reduced electricity demand can still result in avoided utility system costs if transmission bottlenecks and future transmission and transformer upgrade costs are reduced. Finally, given the need to replace or modify many of the existing commercial chillers due to the phase out of CFC's, a window of opportunity exists during the next few years to provide alternative, chlorocarbon-free district cooling systems based on absorption chillers using waste heat from electricity generation, with significant (30-65%) CO2 emission savings. (au)

  3. Intentional Action in Folk Psychology: An Experimental Investigation

    Knobe, Joshua

    2003-01-01

    Four experiments examined people’s folk-psychological concept of intentional action. The chief question was whether or not evaluative considerations — considerations of good and bad, right and wrong, praise and blame — played any role in that concept. The results indicated that the moral qualities of a behavior strongly influence people’s judgements as to whether or not that behavior should be considered ‘intentional.’ After eliminating a number of alternative explanations, the author conclud...

  4. Bridging the gap:a review of dose investigations in paediatric investigation plans

    Hampson, Lisa; Herold, Ralf; Posch, Martin; Saperia, Julia; Whitehead, Anne

    2014-01-01

    Aims In the EU, development of new medicines for children should follow a prospectively agreed paediatric investigation plan (PIP). Finding the right dose for children is crucial but challenging due to the variability of pharmacokinetics across age groups and the limited sample sizes available. We examined strategies adopted in PIPs to support paediatric dosing recommendations to identify common assumptions underlying dose investigations and the attempts planned to verify them in children. Me...

  5. Fire protection action plan. Status summary report: data for decisions, management by objectives

    The report provides information for monitoring and displaying the progress of NRC activities related to fire prevention and protection. The report utilizes data pertaining to project plans, schedules, and status which have been integrated into a network-based management information system. As part of this system's initial development, information has been collected and analyzed by the Office of Planning and Analysis from the offices of Standards Development Inspection and Enforcement, Nuclear Reactor Regulation, Regulatory Research and international and state programs. The purpose of the publication is to provide a vehicle for review of the current status and overall progress of the fire protection action plan from a managerial point of view

  6. AN INVESTIGATION ON THE FOREST ROAD PLANNING AND ROAD GROUND

    Hafız Hulusi ACAR

    2001-01-01

    Full Text Available It is required that the capital used for construction of road must be technical, economical and used in its location. For this reason, the projects must be prepared for forest roads and all operations belong to roads must be guided according to these projects. In this investigation, available forest road network plan and constructed forest roads were investigated at the point of view technical and forest transportation. After this, it were studied to reach the highest exploitation rate as can as possible. Available forest road density were found as 11.9 m/ha in forest areas for Yesiltepe District. In this condition, exploitation rate was 78 %. After that, optimum forest road network were planned and road density were reached to 22 m/ha and exploitation rate to 86 %. Directed sample method were used from taking soil sample methods and samples were took in mixed system. According to results of the experiments, available forest roads were found in a good degree at the point of view endurance, pressing and transportation capacity. With these results, it is aimed to reach higher exploitation rate with given attention to landslide areas during planning of forest roads on the mountain areas such as Black Sea Region. For this reason, required importance must be given to planning of truck and logging roads. Ground analysis must be done and took care before during planning process of forest road network.

  7. Final work plan : investigation of potential contamination at the former USDA facility in Ramona, Kansas.

    LaFreniere, L. M.

    2006-01-27

    This Work Plan outlines the scope of work that will be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Ramona, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential source areas on the property, (2) determine the vertical and horizontal extent of potential contamination, and (3) provide recommendations for future actions, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the United States Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy. Under the Intergovernmental Agreement, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne has issued a Master Work Plan (Argonne 2002) that describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. The Master Work Plan was approved by the KDHE. It contains materials common to investigations at locations in Kansas and should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Ramona.

  8. The technical approach: The IAEA action plan on the safety of radiation sources

    As part of the measures to strengthen international co-operation in nuclear, radiation and waste safety, the report refers to the implementation of the Action Plan for the Safety of Radiation Sources and the Security of Radioactive Materials. Starting with background information, the report references the main results of the Dijon Conference and of General Conference resolution GC(42)/RES/12 in September 1998, describing the actions taken by the Secretariat pursuant such resolution and also by the Board of Governors, in its sessions of March and September 1999, as well as by the General Conference, in October 1999 when by resolution GC(43)/RES/10 the Action Plan was endorsed and the Secretariat was urged to implement it. Finally, the report provides information on the status of implementation of the seven areas covered by the Action Plan and on the suggested further actions to be carried out for its implementation taking into account the decisions of the Board in its meeting of 11 September 2000 and the resolutions GC(44)/RES/11, GC(44)/RES/13 and GC(44)/RES/16 of the forty-fourth regular session of the General Conference. (author)

  9. Enhancing School Asthma Action Plans: Qualitative Results from Southeast Minnesota Beacon Stakeholder Groups

    Egginton, Jason S.; Textor, Lauren; Knoebel, Erin; McWilliams, Deborah; Aleman, Marty; Yawn, Barbara

    2013-01-01

    Background: This study explores ways southeast Minnesota schools currently address asthma problems, identifies areas for improvement, and assesses the potential value of asthma action plans (AAPs) in schools. Methods: Focus groups were used to query stakeholder groups on asthma care in schools. Groups were held separately for elementary school…

  10. Action Planning for Prevention and Recovery: A Self-Help Guide. Recovering Your Mental Health Series.

    Copeland, Mary Ellen

    Many people who have troubling emotional, psychiatric, or physical symptoms have made great advances in learning how to do things to help themselves get well and stay well. The action plans for prevention and recovery described in this booklet were devised by people who experience emotional or psychiatric symptoms. They developed ways to deal with…

  11. Follow-up of the results of the nuclear power plant stress tests and action plan

    The results of the stress tests carried out by the European nuclear power plants in the wake of the Fukushima Daiichi accident, subsequently subjected to peer reviews, have made it possible to identify the measures to be applied to improve safety. Action plans have been put in place to implement these measures within appropriate time frames. (Author)

  12. Knowledge Transfer Plan of Action for Biomass. Working Group Technology and Knowledge August 2003 - August 2004

    As part of the title Plan of Action six working groups are involved in finding solutions to the most important bottlenecks in the market introduction of bio-energy systems. In the working group on Technology and Knowledge an overview is given of the best biomass technology/product combinations

  13. International action plan for the safety of radiation sources and the security of radioactive materials

    In recent years there has been a growing awareness of the potential for accidents involving radiation sources, some accidents having had serious, even fatal, consequences. More recently still, concern has been raised by the problems associated with radiation sources that for one reason or another are not subject to regulatory control or over which regulatory control has been lost. An International Conference held in Dijon, in September 1998 summarized a number of conclusions aiming at a global improvement of source control. These conclusions were taken by the IAEA immediately after, and an Action Plan was developed and approved one year later. The Action Plan aims at assisting Member States in maintaining and, where necessary, improving the safety of radiation sources and the security of radioactive materials over their life cycle. The Plan consists of seven groups of actions, namely; regulatory infrastructures, management of disused sources, categorization of sources, response to abnormal events, information exchange, education and training and international undertakings. The implementation of the Action Plan was initiated the last quarter of 1999. (author)

  14. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    1994-09-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  15. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado

  16. Exercise habit strength, planning and the theory of planned behaviour: an action control approach

    G.-J. de Bruijn

    2011-01-01

    Objectives Action control refers to the successful translation of intention into behaviour. The purpose of this study was to explore the potential usefulness of extending intention-exercise profiles with past exercise behaviour and exercise habit strength and the potential discriminative effect of a

  17. Mid/Long-Term Action Plan to Mitigate SEE related Risks at the LHC (and required actions)

    Brugger, M; Kramer, Daniel; Losito, R; Myers, S; Perrot, A L; Pojer, M; Røed, K; Roesler, S; Solfaroli, M; Vergara, A; Weisz, S; Wijnands, T; Zanetti, M

    2009-01-01

    Modifications of the LHC schedule and the needed planning for future shutdowns requires an approach compatible with all operational scenarios in order to reduce the failures due to SEE around the machine. The R2E study group recommends a list of short-term actions, to plan, analyse and prepare mid/long-term activities and to assign additional resources. The aim is to maximize the use of available time slots and to allow for a coherent decision on mid/long-term actions to be taken in 2009/10. This decision might be required before measurements during early operation and ongoing radiation tests can allow for a complete analysis of the situation. It is important to note, that the detailed review and analysis of equipments and areas, as well as early measurements and continued radiation tests remain important requirements to be able to make the appropriate future decisions in the coming year(s). The aim of the following approach is to keep during the coming months as many options open as possible and have as many...

  18. An Italian Action Plan For The Eurasian Otter (Lutra lutra: Preliminary Contents

    Loy A.

    2006-10-01

    Full Text Available Only a few populations of otters survive in the southern regions of the Italian peninsula. Following the decisions taken at the European Otter Workshop, the Italian Ministry for the Environment established a technical and institutional team tasked with the production and application of an Italian National Action Plan for Lutra lutra. The Ministry promoted a first meeting of the technical commission in June 2006 to define the structure of a technical report containing a proposal for the contents of the action plan and collections of all data and information available on different topics related to otter biology, status, conservation and threats. Two workshops will be specifically organised to discuss the priority areas for conservation actions and the threats for otter population in Italy.

  19. The Removal Action Work Plan for CPP-603A Basin Facility

    B. T. Richards

    2006-06-05

    This revised Removal Action Work Plan describes the actions to be taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The regulatory framework outlined in this Removal Action Work Plan has been modified from the description provided in the Engineering Evaluation/Cost Analysis (DOE/NE-ID-11140, Rev. 1, August 2004). The modification affects regulation of sludge removal, treatment, and disposal, but the end state and technical approaches have not changed. Revision of this document had been delayed until the basin sludge was successfully managed. This revision (Rev. 1) has been prepared to provide information that was not previously identified in Rev. 0 to describe the removal, treatment, and disposal of the basin water at the Idaho National Laboratory (INL) CERCLA Disposal Facility evaporation ponds and fill the basins with grout/controlled low strength material (CLSM) was developed. The Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center - conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act - evaluated risks associated with deactivation of the basins and alternatives for addressing those risks. The decision to remove and dispose of the basin water debris not containing uranium grouted in place after the sludge has been removed and managed under the Hazardous Waste Management Act/Resource Conservation and Recovery Act has been documented in the Act Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center.

  20. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    NSTec Environmental Restoration

    2011-08-31

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  1. Using wellness recovery action plan and sensory-based intervention: a case example.

    Gardner, Jennifer; Dong-Olson, Valerie; Castronovo, Anthony; Hess, Megan; Lawless, Kelly

    2012-01-01

    ABSTRACT The Wellness Recovery Action Plan (WRAP) is a tool used by persons living with psychiatric disabilities, which guides the development of an individualized plan of action to help achieve and/or maintain wellness and recovery. Through use of sensory-based treatment, the clients are able to explore sensory preferences and use this information when developing their plan. The WRAP and sensory-based treatment are complementary in nature and can be successfully blended to promote wellness and recovery for this population. As the occupational therapists are equipped to educate the clients on the link between sensory preferences and obtainment of wellness and recovery, this paper describes how the occupational therapy practitioners developed a program that used both for implementation of services. PMID:23899140

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 130: Storage Tanks, Nevada Test Site, Nevada, Revision 0

    Alfred Wickline

    2008-07-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 130, Storage Tanks, identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008). Corrective Action Unit 130 consists of the seven following corrective action sites (CASs) located in Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 130 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) finalized on April 3, 2008, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 130. The DQO process developed for this CAU

  3. Action plan

    A case is put forward for including mini and micro hydro electric schemes in the World Bank's promotion of local stand-alone systems for rural communities in the developing countries. The five main principles on which the Bank's rural energy programme is based are described briefly. The Bank's responsibilities also include recruitment and training of personnel for working on rural energy issues. In the target areas, the Bank will conduct seminars and sponsor technical assistance and training to develop local policies for promotion of rural energy. Intermediate Technology's experience with providing small hydro plants over many years is discussed with particular reference to a 100 person co-operative in Bolivia; details such as capital cost, operating cost and power generated are compared with those of the diesel generation used earlier. (UK)

  4. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    Bainer, R.; Duarte, J.

    1993-07-01

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work; therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.

  5. Sound Investigation: The Key to Defensible Human Resource Action.

    Hirschfeld, Stephen J.

    1994-01-01

    When a college/university employee feels that his/her rights have been abrogated, the human resource department and in-house legal staff should be prepared to conduct a comprehensive, objective, and professional investigation. Such issues as proof of misconduct, "reasonable grounds," negligent investigation claims, and defamation claims are…

  6. Hungary: Considerations in the planning of corrective actions at the Puespoekszilagy near surface repository

    The Puespoekszilagy repository is considered to be unsuitable for certain wastes formerly emplaced in it. Based on recent safety assessments, a judgement has been made that long term safety of the Puespoekszilagy repository may be ensured, but only with some technical and administrative modifications to the facility. In 1998, Hungary started a systematic programme to upgrade the repository. During 1998 and 2002, the safety re-evaluation was the primary focus, together with some basic modernization and refurbishment measures replacement of the obsolete equipment, supplementary site investigations, reinventory, near-field and far-field studies). In 2003, a project was launched to select the most appropriate methods for enhancing safety and to prepare for corrective actions. Important elements of this phase include construction of the central interim storage facility, inventory re-evaluation, a feasibility study, a detailed work programme, licence preparations and application for international assistance. The final step is the implementation of safety upgrading measures based on the selected option. For any proposed intervention, the benefits (in terms of risk or dose averted) should be balanced against cost. In addition to the work on safety reassessments, it is necessary to develop short term and long term plans for providing disposal and storage capacity for all the waste types currently disposed of at the site. According to PURAM's plan, the repository will be operational for an additional 40-50 years, receiving radioactive wastes from non-nuclear power plant waste producers. By the end of this period a deep geologic repository should be available to receive those long lived wastes temporarily stored in the Puespoekszilagy facility that are not amenable to disposal in a near surface repository. Bearing this approach in mind, measures will first be taken to provide additional disposal capacity at the site

  7. The Extrastriate Body Area Computes Desired Goal States during Action Planning.

    Zimmermann, Marius; Verhagen, Lennart; de Lange, Floris P; Toni, Ivan

    2016-01-01

    How do object perception and action interact at a neural level? Here we test the hypothesis that perceptual features, processed by the ventral visuoperceptual stream, are used as priors by the dorsal visuomotor stream to specify goal-directed grasping actions. We present three main findings, which were obtained by combining time-resolved transcranial magnetic stimulation and kinematic tracking of grasp-and-rotate object manipulations, in a group of healthy human participants (N = 22). First, the extrastriate body area (EBA), in the ventral stream, provides an initial structure to motor plans, based on current and desired states of a grasped object and of the grasping hand. Second, the contributions of EBA are earlier in time than those of a caudal intraparietal region known to specify the action plan. Third, the contributions of EBA are particularly important when desired and current object configurations differ, and multiple courses of actions are possible. These findings specify the temporal and functional characteristics for a mechanism that integrates perceptual processing with motor planning. PMID:27066535

  8. Remedial design report and remedial action work plan for the 100-HR-3 and 100-KR-4 groundwater operable units' interim action

    This document is a combination remedial design report and remedial action work plan for the 100-HR-3 and 100-KR-4 Operable Units (located on the Hanford Site in Richland, Washington) interim action. The interim actions described in this document represent the first of an ongoing program to address groundwater contamination in each operable unit. This document describes the design basis, provides a description of the interim action, and identifies how they will meet the requirements set forth in the interim action Record of Decision

  9. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  10. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices

  11. Is science the driving force in the operation of environmental regimes? : a case study of the Mediterranean Action Plan

    Frantzi, Sofia; Lovett, Jon C.

    2008-01-01

    This study examines the role of science in the operation of environmental regimes using the Barcelona Convention/Mediterranean Action Plan (MAP) as a case study. The ‘epistemic communities’ theory suggests that emergence of the Mediterranean Action Plan was largely driven by scientific experts. In o

  12. Measures for the Diffusion of Solar PV are Aligned in Technology Action Plans for Six Countries in Africa

    Nygaard, Ivan; Hansen, Ulrich Elmer; Pedersen, Mathilde Brix;

    2014-01-01

    region prioritized solar PV, and action plans for the diffusion of solar home systems were put forward in Cote d’Ivoire, Kenya, Mali and Senegal, while the implementation of grid-connected systems was proposed in Rwanda, Mali and Senegal. The project reports and technology action plans prepared in these...

  13. A Low Carbon City Action Plan for one of China’s Low Carbon Pilot Cities

    Jakutyte-Walangitang D.

    2012-10-01

    Full Text Available In Chinese cities urbanization, industrialization and a changing life style of the population are driving growing energy consumption in buildings, industries and transportation and an increase in CO2 emissions. Facing these challenges, the National Development and Reform Commission has recognised an urgent need for transformation and designated 8 Cities and 5 Provinces in China to pioneer the planning and implementation of concrete low carbon measures, aiming to decrease the CO2 intensity of the economic development, to increase the energy efficiency of urban systems and to improve the quality of life in growing urban regions. In this context, a Sino-Austrian cooperation has been initiated between the Development and Reform Commission of Nanchang, one of the 8 selected Low Carbon Pilot Cities, and the Austrian Institute of Technology to develop a comprehensive set of Low Carbon City Measures and a Low Carbon City Action Plan, proposing specific technological and non-technological measures and concrete actions, capable of introducing important impulses targeting the increase of energy efficiency and the reduction of CO2 emissions in Nanchang. A team of experts has developed an integrated Low Carbon City Action Plan, including sectors such as buildings, energy supply and consumption, industries, transportation, agriculture and urban planning.

  14. City of North Vancouver greenhouse gas local action plan : final report

    This paper presented details of a greenhouse gas (GHG) local action plan developed as a result of the City of North Vancouver's participation in the Partners for Climate Protection Program (PCPP). The plan is intended to better manage the impacts of urban development related to GHG and air quality, while also achieving community objectives related to affordable housing, transportation management, job creation and economic development. The report reviewed the local emissions inventory in addition to various programs, plans, policies and by-laws relating to energy management. Potential policies and programs were identified to achieve GHG emissions reductions in accordance with the PCPP. A plan for emissions reductions was also presented. A situation analysis was presented with details of population, transportation, residential and commercial building and industry. Solid waste management and transportation plans were outlined. A GHG emissions profile and forecast was presented. An outline of a GHG management framework included information on initiatives in the city as well as details of public consultation feedback. A program implementation plan includes forecasts of the program's impact, as well as details of program delivery and a performance measurement framework. Proposed initiatives in the plan included new building guidelines; fuel switching for light and heavy duty vehicles; driver training and enhanced vehicle maintenance programs; and, an environmental procurement policy. Community programs include residential and commercial building retrofits; land use planning; support for community energy systems; green building design guidelines; transportation demand management; and, public engagement and outreach programs. 21 tabs., 9 figs

  15. Resolution No. 44/172. Plan of Action to Combat Desertification, 19 December 1989.

    1989-01-01

    Resolution No. 44172, December 19, 1989, from the United Nations-General Assembly reviews the plan of action to combat desertification. Step A, implementation of the plan of action to combat desertification begins with recalling of previous resolutions concerning desertification, acknowledges with deep concern the problem of desertification, which has a global impact but is still on the fringe of growing awareness on the part of the international community, and how imperative it is to combat environment deterioration effectively within the framework of the interdependence of nations. It expresses grave concern at the continuing spread and intensification of decertification in developing countries, particularly in Africa, the indescribable human suffering, economic and financial losses, and social disruption caused by that scourge; it acknowledges that drought and desertification place a considerable burden on the economic and financial capacities of the developing countries affected and that the negative effects of the international economic environment impede their efforts to undertake effective and sustained programs to combat desertification, for which they bear primary responsibility. The resolution notes the inadequacy of financial resources for the implementation of the plan of action to combat desertification, urges governments to increase and intensify their efforts and to prioritize decertification control, and requests a report containing expert studies in the specified areas. Step B, implementation in the Sudan-Sahelian region of the plan of action to combat decertification, begins with the recall of previous resolutions, reviews important facts and concerns, urges affected countries to include projects to combat desertification and drought in their national development plans and to accord high priority to them. It invites the United Nations Sudano-Sahelian office to intensify its efforts to mobilize additional resources to support the efforts of the

  16. Proceedings of the exploratory meeting of experts to define an action plan on best estimate calculations and uncertainty analysis

    The purpose of the meeting was to develop an Action Plan on Best Estimate calculations and uncertainty analysis. This would require to better identify the needs for additional investigations in this field, with a view to reaching technical consensus on understanding and methodologies, and to making progress in the Best Estimate analysis of Design Basis Accidents and Severe Accidents. The meeting was open to organisations interested in participating in the definition of this programme. The following approach had been suggested: - With respect to methodologies already used in safety analysis: - Identify weak points (difficulties regarding implementation, justification of basic assumptions, etc.); this task would require the participation of experts having experience in safety analyses. - Identify questions of general interest (weak points not too specific to a particular methodology). - Perform an inventory and analysis of actions underway to solve the problems. - Propose complementary or supporting actions to make progress together. - With respect to methodologies not yet used in safety analysis: - Identify the issues to be solved, in order to convince end users to make use of the methodology. - Perform an inventory and analysis of actions underway to solve the problems. - Evaluate how much time could be necessary to solve the problem (short term, medium term, long term). - Propose actions to make common progress on the most promising alternative methods. The following actions could be considered, among others: - Examine methodologies used in other fields (weather forecast, etc.). - Develop tools and methods (quantification of basic uncertainties, treatment, etc.) - Develop/improve the validation methodology of uncertainty evaluation methods. - Define a consistent programme of computational benchmark exercises (based on SET and/or IET and/or reactor scenarios) associated to the specification of clear procedures allowing an actual evaluation and comparison of the

  17. Streamlined Approach for (SAFER) Plan for Corrective Action Unit 566: E-MAD Compound, Nevada Test Site, Nevada, Revision 0

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 566, EMAD Compound, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 566 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site: • 25-99-20, EMAD Compound This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 25-99-20. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 566 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action. It is anticipated that the results of the field investigation and implementation of a corrective action of clean closure will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The data quality objective (DQO) strategy for CAU 566 was developed at a meeting on April 30, 2009, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 566. The following text summarizes the SAFER activities that will

  18. Student-Faculty Interactions about Disappointing Grades: Application of the Goals-Plans-Actions Model and the Theory of Planned Behavior

    Henningsen, Mary Lynn Miller; Valde, Kathleen S.; Russell, Gregory A.; Russell, Gregory R.

    2011-01-01

    The goals-plans-actions model and the theory of planned behavior were used to predict what lead to students having a conversation about a disappointing grade with a faculty member. Participants (N = 130) completed two surveys. In the first survey, participants completed measures of primary and secondary goals, planning, decision to engage,…

  19. Updated action plan for the implementation of measures as a consequence of the Fukushima reactor accident; Fortgeschriebener Aktionsplan zur Umsetzung von Massnahmen nach dem Reaktorunfall in Fukushima

    NONE

    2014-01-15

    The action plan of the German government concerning the measures following the Fukushima reactor accident include the decision on the future of nuclear power in Germany, safety analyses, investigations and measures for nuclear power plants in a national frame, investigations in an international frame, planning for the implementation of CNS (Convention on nuclear safety) topics 1-3, i.e. measures to increase the robustness in German nuclear power plants, and the planning of implementation of further measures (CNS topics 4-6).

  20. The Bali action plan: a first step towards a global agreement on climate?

    The authors present and discuss the main conclusions and advances of the Bali Conference on climate change (1-15 December 2007). This conference adopted a text, an action plan, which does not mention any precise objective in terms of emission reductions, but organizes the negotiation around four 'building blocks'. The authors present and comment these four blocks: the climate change mitigation, the adaptation, the technological cooperation for the mitigation of climate change and for the adaptation to this change, and the financing of adaptation and mitigation actions

  1. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    1990-06-01

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs.

  2. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs

  3. Method for Measuring the Alignment Between Information Technology Strategic Planning and Actions of Information Technology Governance

    Lúcio Melre da Silva

    2014-10-01

    Full Text Available The purpose of this research is to present a method for measuring the degree of alignment between Strategic Planning and Information Technology Management practices and Information Technology Governance. A survey of IT governance maturity at the High Courts and the Supreme Court was carried out in order to reach this aim. The Attribute Table of the COBIT 4.1 was used both as a model for maturity analysis as for the degree of alignment of IT strategic plans of these bodies with the IT Strategic Planning established by the National Judiciary Council (CNJ. It was assessed the maturity of thirty four processes, according to six attributes, in the four COBIT domains. The proposed method, named COMPLAN-GTI, allows the linking of the guidelines of the strategic planning to the COBIT processes. The field research above mentioned shows that the alignment between the planning established by the CNJ and those established by the High Courts and Supreme Court is around 68%, leading to the conclusion that the policies and actions established by the National Council of Justice for the Judiciary are being followed. The application of the method is also used to confirm whether the management practices and the IT Governance are consistent with the strategic plan established by the organization. It was observed in the research carried out in the Courts that the average convergence between PETIs and management practices and Governance lies around 70%, leading to the conclusion that the strategic plans exerted influence on the action planning of these organizations.

  4. Quebec and climate change : 2006-2012 action plan first year results

    This brochure was released by the Quebec government in order to provide the first year results of the Quebec and Climate Change Action Plan. The plan implemented 24 actions for the reduction of greenhouse gas (GHG) emissions. The measures are expected to reduce emissions by 10 megatonnes by 2012. A federal government grant of $350 million is also being used to reduce GHGs by a further 3.8 megatonnes. A $1.2 billion budget has been financed through a duty levied on fossil fuels. The plan included a comprehensive energy efficiency and new technologies program; programs to encourage marine transport as well as a program to develop innovative public transportation initiatives. The plan also included the creation of an industrial research chair in cellulose ethanol as well as 2 demonstration plants for the production of cellulose ethanol. A program has also been introduced to support municipalities who wish to adopt bylaws prohibiting vehicle idling. A draft regulation has also been prepared concerning the mandatory reporting of releases of contaminants into the atmosphere. The plan will include awareness raising and assistance activities. Funding has also been given to the development of local climate models. It was concluded that the Quebec government is preparing to meet the environmental challenges of the future. 4 figs

  5. Disabling Conditions: Investigating Instructional Leadership Teams in Action

    Weiner, Jennie Miles

    2014-01-01

    This study investigated why and how principals selected members for their instructional leadership team (ILT) and how this selection criteria and process may have impacted team members' understandings of, and behaviors on, the team. Qualitative methods, specifically interviews and observations, were used to explore team members'…

  6. Mitigation action plan for remedial action at the Uranium Mill Tailing Sites and Disposal Site, Rifle, Colorado

    The Estes Gulch disposal site is approximately 10 kilometers (6 miles) north of the town of Rifle, off State Highway 13 on Federal land administered by the Bureau of Land Management. The Department of Energy (DOE) will transport the residual radioactive materials (RRM) by truck to the Estes Gulch disposal site via State Highway 13 and place it in a partially below-grade disposal cell. The RRM will be covered by an earthen radon barrier, frost protection layers, and a rock erosion protection layer. A toe ditch and other features will also be constructed to control erosion at the disposal site. After removal of the RRM and disposal at the Estes Gulch site, the disturbed areas at all three sites will be backfilled with clean soils, contoured to facilitate surface drainage, and revegetated. Wetlands areas destroyed at the former Rifle processing sites will be compensated for by the incorporation of now wetlands into the revegetation plan at the New Rifle site. The UMTRA Project Office, supported by the Remedial Action Contractor (RAC) and the Technical Assistance Contractor (TAC), oversees the implementation of the MAP. The RAC executes mitigation measures in the field. The TAC provides monitoring of the mitigation actions in cases where mitigation measures are associated with design features. Site closeout and inspection compliance will be documented in the site completion report

  7. The IAEA and Y2K. The Agency's action plan on the year 2000 problem

    The article describes the aims of it IAEA action plan concerned with Year 2000 (Y2K) problem and the results achieved during four years of work, including the technical documents dealing with the Y2K computer problem, published by IAEA. This include IAEA systems and operations, contingency plans, coordination in the United Nations system. Through the IAEA Internet site, a series of Web pages were developed by the Division of Public Information to co-ordinate the global exchange of information on the IAEA Y2K activities and related topics. The site is open to Member States and international organisations within and outside United Nations system

  8. IAEA Board of Governors approves IAEA action plan to combat nuclear terrorism

    The IAEA Board of Governors today approved in principal an action plan designed to upgrade worldwide protection against acts of terrorism involving nuclear and other radioactive materials. In approving the plan, the Board has recognized that the first line of defense against nuclear terrorism is the strong physical protection of nuclear facilities and materials. 'National measures for protecting nuclear material and facilities are uneven in their substance and application,' the IAEA says. 'There is wide recognition that the international physical protection regime needs to be strengthened.'

  9. Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action

    This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE's preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public's role in helping DOE and the EPA to make the final decision on a remedy

  10. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada

    This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: (lgbullet) CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations

  11. Antecedents of self identity and consequences for action control: an application of the theory of planned behaviour in the exercise domain

    G.-J. de Bruijn; K. Verkooijen; N.K. de Vries; B. van den Putte

    2012-01-01

    Objectives To study whether exercise action control profiles should be usefully extended to include exercise identity. Further, this study investigated theory of planned behaviour antecedents of exercise identity. Design Prospective data from 413 undergraduate students (M age = 21.4; 73.5% females).

  12. Antecedents of self identity and consequences for action control: An application of the theory of planned behaviour in the exercise domain

    Bruijn, de G.J.; Verkooijen, K.T.; Putte, van den B.; Vries, de N.K.

    2012-01-01

    Objectives: To study whether exercise action control profiles should be usefully extended to include exercise identity. Further, this study investigated theory of planned behaviour antecedents of exercise identity. Design: Prospective data from 413 undergraduate students (M age ¼ 21.4; 73.5% females

  13. Visions, Scenarios and Action Plans Towards Next Generation Tanzania Power System

    Alex Kyaruzi

    2012-10-01

    Full Text Available This paper presents strategic visions, scenarios and action plans for enhancing Tanzania Power Systems towards next generation Smart Power Grid. It first introduces the present Tanzanian power grid and the challenges ahead in terms of generation capacity, financial aspect, technical and non-technical losses, revenue loss, high tariff, aging infrastructure, environmental impact and the interconnection with the neighboring countries. Then, the current initiatives undertaken by the Tanzania government in response to the present challenges and the expected roles of smart grid in overcoming these challenges in the future with respect to the scenarios presented are discussed. The developed scenarios along with visions and recommended action plans towards the future Tanzanian power system can be exploited at all governmental levels to achieve public policy goals and help develop business opportunities by motivating domestic and international investments in modernizing the nation’s electric power infrastructure. In return, it should help build the green energy economy.

  14. Democracy and changes. The energy action plan 96; Demokrati og forandring. Energihandlingsplan 96

    Hvelplund, F.; Lund, H.; Serup, K.E.; Maeng, H.

    1995-12-01

    Denmark has problems with implementation of the official energy policy. This book deals with the background of these problems and the ways for remedial action. Realization of the energy-political aims requires a new organization, where single large supply systems are replaced by many smaller energy-saving ones. However, at present all the changes are attempted by the old organizations in closed formal bodies, without control by the general public. The planned changes cannot be effectively implemented without a wide democratic participation. Consumers, organizations and businesses should be given the necessary knowledge and action chances, so that they can develop various fuel-saving measures. This book indicates, how such democratization of the energy planning might become like, and how it might be implemented. The phase is reached, where further technological energy effectivization can be achieved solely by means of democratization of the energy system control. (EG) 154 refs.

  15. Buried Waste Integrated Demonstration Commercialization Action Plans second quarter, FY-94

    The Federal Government is extremely good at creating knowledge and developing new technology. However, our declining market share in many industries points to a weakness in our ability to successfully commercialize new discoveries. BWID assembled a team of qualified experts with expertise in technology transfer and broad-based technology knowledge to assist with this effort. Five new technologies were chosen to develop commercialization action plans. They include Dig-Face Characterization, Imaging Infrared Interferometer for Waste Characterization, Tensor Magnetic Gradiometer, Very Early Time Electromagnetic System, and Virtual Environment Generation of Buried Waste. Each plan includes a short description of the technology, a market overview, a list of potential customers, a description of competitors and the technology's competitive advantage, the status of intellectual property, the status of technology transfer, a table of action items, commercialization contacts, and program contacts

  16. Enhancing local action planning through quantitative flood risk analysis: a case study in Spain

    Castillo-Rodríguez, Jesica T.; Escuder-Bueno, Ignacio; Perales-Momparler, Sara; Porta-Sancho, Juan R.

    2016-01-01

    This article presents a method to incorporate and promote quantitative flood risk analysis to support local action planning against flooding. The proposed approach aims to provide a standardized framework for local flood risk analysis, combining hazard mapping with vulnerability data to quantify risk in terms of expected annual affected population, potential injuries, number of fatalities, and economic damages. Flood risk is estimated combining GIS data of loads, system response and consequen...

  17. Theories of Reasoned Action and Planned Behavior as Models of Condom Use: A Meta-Analysis

    Albarracín, Dolores; Johnson, Blair T.; Fishbein, Martin; Muellerleile, Paige A.

    2001-01-01

    To examine how well the theories of reasoned action and planned behavior predict condom use, the authors synthesized 96 data sets (N = 22,594) containing associations between the models’ key variables. Consistent with the theory of reasoned action’s predictions, (a) condom use was related to intentions (weighted mean r. = .45), (b) intentions were based on attitudes (r. = .58) and subjective norms (r. = .39), and (c) attitudes were associated with behavioral beliefs (r. = .56) and norms were ...

  18. Participatory evaluation methodology for community plans and action. Three experiences of participatory evaluation in Catalunya

    Anna Planas Lladó; Pilar Pineda-Herrero; Esther Gil Pasamontes; Laia Sánchez Casals

    2014-01-01

    Participatory evaluation (PE) is frequently used to assess community plans and actions. But how is a PE process designed and carried out? Which methodological elements differentiate PE from other assessment practices? And what kind of tools and instruments are used? This article attempts to answer these questions, though a review of the most recent literature and guidebooks on the EP methodology. Some methodological reflections on th...

  19. Facing the Challenge of Natural Disasters in Latin America and the Caribbean: An IDB Action Plan

    Caroline Clarke; Céline Charvériat; Sergio Mora-Castro; Michael Collins; Kari Keipi

    2000-01-01

    This report provides an overview of the current state of affairs regarding capacity to cope with natural disasters in the region, an analysis of what needs to be done, and a plan of action with specific measures that the Bank will put into practice in its operation. The Bank's comprehensive approach to disaster risk management will place top priority on preventing and mitigating natural disasters, while standing ready to assist countries in their reconstruction and rehabilitation efforts when...

  20. Plan of action for quality improvement of ventilation systems; Actieplan Kwaliteitsverbetering Ventilatievoorzieningen

    Atsma, J. [Ministerie van Infrastructuur en Milieu IenM, Den Haag (Netherlands); Calon, M. [Aedes vereniging van woningcorporaties, Den Haag (Netherlands); Schoorl, F.J. [Bond Nederlandse Architecten BNA, Amsterdam (Netherlands); Van Tuinen, J.L. [Bouwend Nederland, Zoetermeer (Netherlands); Bodewes, W.J. [Vereniging van Nederlandse projectontwikkeling Maatschappijen Neprom, Voorburg (Netherlands); Goossens, J.H. [Vereniging voor ontwikkelaars en bouwondernemers NVB, Voorburg (Netherlands); Polman, E.J.M. [Stichting Waarborgfonds Koopwoningen SWK, Rotterdam (Netherlands); Engels, M. [Uneto-VNI, Zoetermeer (Netherlands); Werner-van Beek, H. J. [VACpunt Wonen, Utrecht (Netherlands); Mulder, R.J. [Vereniging Eigen Huis VEH, Amersfoort (Netherlands); Rook, G. [Vereniging Leveranciers van Luchttechnische Apparaten VLA, Zoetermeer (Netherlands); Van Noord, P. [Woningborg, Gouda (Netherlands); Paping, R.H.M. [De Nederlandse Woonbond, Amsterdam (Netherlands)

    2012-06-15

    The action plan comprises the agreements made by the Ministry of Infrastructure and Environment and the Ministry of Internal Affairs in the Netherlands with representatives of building organizations to improve the quality of ventilation systems in newly built houses [Dutch] Het actieplan bevat de afspraken die het ministerie van Infrastructuur en Milieu en het ministerie van Binnenlandse Zaken met de bouwpartijen hebben gemaakt om de kwaliteit van de ventilatievoorzieningen van nieuwbouwwoningen te verbeteren.

  1. Task action plans for unresolved safety issues related to nuclear power plants

    This document contains Task Action Plans for generic tasks addressing Unresolved Safety Issues (USIs) related to nuclear power plants. Progress on USIs is reported to Congress each year in the NRC Annual Report pursuant to the requirements of Section 210 of the Energy Reorganization Act of 1974, as amended. In addition, the NRR issues NUREG-0606, Unresolved Safety Issues Summary, Aqua Book on a quarterly basis; this report provides current schedule information for each USI. The Task Action Plans in this document include a description of the issue, a description of the NRC staff's approach to resolving the issue, a general discussion of the basis for continued operation and licensing pending resolution of the issue, a discussion of the technical organizations involved in the task, the requirements of manpower and program support funding, interactions with outside organizations and potential problems. This document does not include Task Action Plans for generic tasks addressing USIs for which reports providing the NRC staff resolution of the issue have been published. Those tasks for which reports have been published are identified and the reports are referenced

  2. Enhancing local action planning through quantitative flood risk analysis: a case study in Spain

    Castillo-Rodríguez, Jesica Tamara; Escuder-Bueno, Ignacio; Perales-Momparler, Sara; Ramón Porta-Sancho, Juan

    2016-07-01

    This article presents a method to incorporate and promote quantitative risk analysis to support local action planning against flooding. The proposed approach aims to provide a framework for local flood risk analysis, combining hazard mapping with vulnerability data to quantify risk in terms of expected annual affected population, potential injuries, number of fatalities, and economic damages. Flood risk is estimated combining GIS data of loads, system response, and consequences and using event tree modelling for risk calculation. The study area is the city of Oliva, located on the eastern coast of Spain. Results from risk modelling have been used to inform local action planning and to assess the benefits of structural and non-structural risk reduction measures. Results show the potential impact on risk reduction of flood defences and improved warning communication schemes through local action planning: societal flood risk (in terms of annual expected affected population) would be reduced up to 51 % by combining both structural and non-structural measures. In addition, the effect of seasonal population variability is analysed (annual expected affected population ranges from 82 to 107 %, compared with the current situation, depending on occupancy rates in hotels and campsites). Results highlight the need for robust and standardized methods for urban flood risk analysis replicability at regional and national scale.

  3. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  4. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy's (DOE's) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow

  5. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Rev. No. 0

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site (NTS), Nevada. It has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. A SAFER may be performed when the following criteria are met: (1) Conceptual corrective actions are clearly identified (although some degree of investigation may be necessary to select a specific corrective action before completion of the Corrective Action Investigation [CAI]); (2) Uncertainty of the nature, extent, and corrective action must be limited to an acceptable level of risk; (3) The SAFER Plan includes decision points and criteria for making data quality objective (DQO) decisions. The purpose of the investigation will be to document and verify the adequacy of existing information; to affirm the decision for clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action. The actual corrective action selected will be based on characterization activities implemented under this SAFER Plan. This SAFER Plan identifies decision points developed in cooperation with the Nevada Department of Environmental Protection (NDEP), where the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) will reach consensus with the NDEP before beginning the next phase of work. Corrective Action Unit 553 is located in Areas 19 and 20 of the NTS, approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 553 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: 19-99-01, Mud Spill; 19-99-11, Mud Spill; 20-09-09, Mud Spill; and 20-99-03, Mud Spill. There is sufficient information and process

  6. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Rev. No. 0

    Boehlecke, Robert F.

    2006-11-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site (NTS), Nevada. It has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. A SAFER may be performed when the following criteria are met: (1) Conceptual corrective actions are clearly identified (although some degree of investigation may be necessary to select a specific corrective action before completion of the Corrective Action Investigation [CAI]); (2) Uncertainty of the nature, extent, and corrective action must be limited to an acceptable level of risk; (3) The SAFER Plan includes decision points and criteria for making data quality objective (DQO) decisions. The purpose of the investigation will be to document and verify the adequacy of existing information; to affirm the decision for clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action. The actual corrective action selected will be based on characterization activities implemented under this SAFER Plan. This SAFER Plan identifies decision points developed in cooperation with the Nevada Department of Environmental Protection (NDEP), where the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) will reach consensus with the NDEP before beginning the next phase of work. Corrective Action Unit 553 is located in Areas 19 and 20 of the NTS, approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 553 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: 19-99-01, Mud Spill; 19-99-11, Mud Spill; 20-09-09, Mud Spill; and 20-99-03, Mud Spill. There is sufficient

  7. Corrective Action Plan in response to the March 1992 Tiger Team Assessment of the Ames Laboratory

    On March 5, 1992, a Department of Energy (DOE) Tiger Team completed an assessment of the Ames Laboratory, located in Ames, Iowa. The purpose of the assessment was to provide the Secretary of Energy with a report on the status and performance of Environment, Safety and Health (ES ampersand H) programs at Ames Laboratory. Detailed findings of the assessment are presented in the report, DOE/EH-0237, Tiger Team Assessment of the Ames Laboratory. This document, the Ames Laboratory Corrective Action Plan (ALCAP), presents corrective actions to overcome deficiencies cited in the Tiger Team Assessment. The Tiger Team identified 53 Environmental findings, from which the Team derived four key findings. In the Safety and Health (S ampersand H) area, 126 concerns were identified, eight of which were designated Category 11 (there were no Category I concerns). Seven key concerns were derived from the 126 concerns. The Management Subteam developed 19 findings which have been summarized in four key findings. The eight S ampersand H Category 11 concerns identified in the Tiger Team Assessment were given prompt management attention. Actions to address these deficiencies have been described in individual corrective action plans, which were submitted to DOE Headquarters on March 20, 1992. The ALCAP includes actions described in this early response, as well as a long term strategy and framework for correcting all remaining deficiencies. Accordingly, the ALCAP presents the organizational structure, management systems, and specific responses that are being developed to implement corrective actions and to resolve root causes identified in the Tiger Team Assessment. The Chicago Field Office (CH), IowaState University (ISU), the Institute for Physical Research and Technology (IPRT), and Ames Laboratory prepared the ALCAP with input from the DOE Headquarters, Office of Energy Research (ER)

  8. Investigating the influence of military actions on animal genome

    Contemporary world is still faced with misunderstandings between countries and nations that are solved in militant way. Using war a way of solving the problems, brings universal misfortune and deepens injustice. Applying modern arms destroys environment and leaves harmful consequences on contemporary and future world. Of course, the most dangerous influence is manifested on changes in genetic material of human beings. The aim of the investigation was to discover if there were changes in genome of the animals present in the area where the refinery in Novi Sad was bombed. By the means of random sampling we chose 60 cows and 30 pigs from the area where air, water and food was contaminated with a considerate quantity of harmful matters that could be genotoxic. By sterile procedure according to modified Moorhead's method lymphocytes were cultivated, than the technique of G-banding was used (Seobright et al. 1971) According to the International Standards for Karyotyping of Domestic Animals (ISCNDA 1990) the chromosomes were analyzed. In all the investigation 3 cows with numerical and structural changes type aneuploidy and break on chromatids in q-arm were discovered. Analyzing the genome in all the pigs, 2 animals with structural changes of chromosome type ring, deletion and break on q-arm (reciprocal translocation) were discovered. According to the percentage of the changes on 100 examined metaphases, it was discovered that the changes in genetic material appeared 'de novo' and that there are no constitutional changes in karyotype. Out of 90 animals, 5 with chromosome aberration were discovered, which makes 5.5 %. This shows that the changes in genetic material are a consequence of genotoxic agents

  9. Fourth annual Windsor-Essex County air quality action plan report card

    NONE

    2003-12-01

    An anti-smog action plan has been in effect in Windsor-Essex County, Ontario since May 2000. The plan was initiated by the Citizens Environment Alliance (CEA) in an effort to mitigate the poor air quality in the region. This fourth annual report card summarizes the commitments made by the city Council and evaluates its progress. Efforts in implementing the Air Quality Action Plan were graded. The report outlines emergency measures and long term air quality strategies. This report card focuses on the City of Windsor, evaluating the County when it is relevant. The report states that in the past 12 months, neither the City nor the County have made significant progress in implementing the air quality plan. In 30 categories, they received 18 grade F, 9 grade D, 1 grade C, and 2 grade C plus. The CEA indicated that the problem is getting worse, noting that Windsor averages more than 30 smog advisory days per year. This report card also includes an appendix citing the human health and economic impacts of air pollution in Essex County. Eleven recommendations were proposed, including the establishment of an Environment Canada office in Windsor or Essex County to address transboundary air quality issues. 2 tabs., 1 appendix.

  10. Third annual Windsor-Essex County air quality action plan report card

    NONE

    2002-10-01

    In July 1998, the Citizens Environment Alliance (CEA) proposed an anti-smog action plan to the City of Windsor, Ontario. The city council referred the proposed plan to the City Administration for review and comment. A similar plan was adopted in 2000 by the City of Windsor in an effort to mitigate the poor air quality in the region. The present report focusses on the City of Windsor, and discusses Essex County when appropriate. According to the assessment provided by the CEA, it awarded 23 grade F, 5 grade D and 2 grade C in thirty categories. The CEA concluded that the municipalities had made no significant efforts to address air quality issues. The CEA indicated that the problem is getting worse, noting that Windsor averages in excess of 30 smog advisory days per year. All levels of government are responsible for the deteriorating situation. A series of eleven recommendations were made, from the need to create an implementation strategy from the Air Quality Action Plan adopted in 2000, to the establishment of an Environment Canada office in Windsor or Essex County. It was suggested that all levels of government should invest additional funds to public transit. 2 tabs.

  11. National technology needs assessment for the preparation and implementation of climate change action plans

    Berkel, C.W.M. van; Blonk, T.J.; Westra, C.A.

    1996-12-31

    In the United National Framework Convention on Climate Change (FCCC) it is recognised that developed countries have a responsibility in assisting developing countries and countries in economic transition in building a national capacity for the development, acquisition and transfer of Climate-related Technologies (CTs). Such assistance is most likely to be successful once it is tailored to the results of a sound assessment of the country`s development needs and once the results of this assessment have been endorsed by the most important stakeholders in the country. Recent insight in the opportunities and constraints for National (technology) Needs Assessments (NNAs) as planning tool for both capacity building and technology transfer regarding Environmentally Sound Technologies (ESTs) is applied here to propose a participatory Climate Change Action Planning (CCAP) process. This participatory planning process is thought to serve the dual objective of defining a national Climate Change Action Plan (CCAP) while at the same time contributing to the creation of a broad supportive basis for its acceptance and implementation among stakeholders in the developing country.

  12. Approach and plan for cleanup actions in the 100-FR-2 operable unit of the Hanford Site, Revision 0

    A new administrative approach is being used to reach a cleanup decision for the 100-FR-2 Operable Unit. The unit, located at the 100-F Area, contains solid waste sites and is one of the remaining operable units scheduled for characterization and cleanup in the 100 Area. This Focus Package (1) describes the new approach and activities needed to reach a decision on cleanup actions for the 100-FR-2 Operable Unit and (2) invites public participation into the planning process. The previous approach included the production of a Work Plan, a Limited Field Investigation Report, a Qualitative Risk Assessment, a Focused Feasibility Study, and a Proposed Plan, all culminating in an interim action Record of Decision. Information gathered to date on other operable units allows the analgous site approach to be used on the 100-FR-2 Operable Unit, and therefore, a reduction in documentation preparation. The U.S. Environmental Protection Agency, Washington State Department of Ecology, and the U.S. Department of Energy (Tri-Party Agreement) believe that the new approach will save time and funding. In the new approach, the Work Plan has been condensed into this 12 page Focus Package. The Focus Package includes a summary of 100-F Area information, a list of waste sites in the 100-FR-2 Operable Unit, a summary of proposed work, and a schedule. The new approach will also combine the Limited Field Investigation and Qualitative Risk Assessment reports into the Focused Feasibility Study. The Focused Feasibility Study will analyze methods and costs to clean up waste sites. Consolidating the documents should reduce the time to complete the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process by 16 months, compared to the previous approach

  13. Bridging knowledge to develop an action plan for integrated care for chronic diseases in Greece.

    Tsiachristas, Apostolos; Lionis, Christos; Yfantopoulos, John

    2015-01-01

    The health, social and economic impact of chronic diseases is well documented in Europe. However, chronic diseases threaten relatively more the 'memorandum and peripheral' Eurozone countries (i.e., Greece, Spain, Portugal and Ireland), which were under heavy recession after the economic crisis in 2009. Especially in Greece, where the crisis was the most severe across Europe, the austerity measures affected mainly people with chronic diseases. As a result, the urgency to tackle the threat of chronic diseases in Greece by promoting public health and providing effective chronic care while flattening the rising health care expenditure is eminent. In many European countries, integrated care is seen as a means to achieve this. The aim of this paper was to support Greek health policy makers to develop an action plan from 2015 onwards, to integrate care by bridging local policy context and needs with knowledge and experience from other European countries. To achieve this aim, we adopted a conceptual framework developed by the World Health Organization on one hand to analyse the status of integrated care in Greece, and on the other to develop an action plan for reform. The action plan was based on an analysis of the Greek health care system regarding prerequisite conditions to integrate care, a clear understanding of its context and successful examples of integrated care from other European countries. This study showed that chronic diseases are poorly addressed in Greece and integrated care is in embryonic stage. Greek policy makers have to realise that this is the opportunity to make substantial reforms in chronic care. Failing to reform towards integrated care would lead to the significant risk of collapse of the Greek health care system with all associated negative consequences. The action plan provided in this paper could support policy makers to make the first serious step to face this challenge. The details and specifications of the action plan can only be decided by

  14. Bridging knowledge to develop an action plan for integrated care for chronic diseases in Greece

    Apostolos Tsiachristas

    2015-10-01

    Full Text Available The health, social and economic impact of chronic diseases is well documented in Europe. However, chronic diseases threaten relatively more the ‘memorandum and peripheral’ Eurozone countries (i.e., Greece, Spain, Portugal and Ireland, which were under heavy recession after the economic crisis in 2009. Especially in Greece, where the crisis was the most severe across Europe, the austerity measures affected mainly people with chronic diseases. As a result, the urgency to tackle the threat of chronic diseases in Greece by promoting public health and providing effective chronic care while flattening the rising health care expenditure is eminent. In many European countries, integrated care is seen as a means to achieve this.The aim of this paper was to support Greek health policy makers to develop an action plan from 2015 onwards, to integrate care by bridging local policy context and needs with knowledge and experience from other European countries. To achieve this aim, we adopted a conceptual framework developed by the World Health Organization on one hand to analyse the status of integrated care in Greece, and on the other to develop an action plan for reform. The action plan was based on an analysis of the Greek health care system regarding prerequisite conditions to integrate care, a clear understanding of its context and successful examples of integrated care from other European countries. This study showed that chronic diseases are poorly addressed in Greece and integrated care is in embryonic stage.Greek policy makers have to realise that this is the opportunity to make substantial reforms in chronic care. Failing to reform towards integrated care would lead to the significant risk of collapse of the Greek health care system with all associated negative consequences. The action plan provided in this paper could support policy makers to make the first serious step to face this challenge. The details and specifications of the action plan

  15. Project licensing plan for UMTRA [Uranium Mill Tailings Remedial Action] sites

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Licensing Plan is to establish how a disposal site will be licensed, and to provide responsibilities of participatory agencies as legislated by the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604). This Plan has been developed to ensure that the objectives of licensing are met by identifying the necessary institutional controls, participatory agency responsibilities, and key milestones in the licensing process. The Plan contains the legislative basis for and a description of the licensing process (''Process'') for UMTRA sites. This is followed by a discussion of agency responsibilities, and milestones in the Process. The Plan concludes with a generic timeline of this Process. As discussed in Section 2.1, a custodial maintenance and surveillance plan will constitute the basis for a site license. The details of maintenance and surveillance are discussed in the Project Maintenance and Surveillance Plan (AL-350124.0000). 5 refs., 4 figs

  16. Priority actions of the different Regional Prevention Plans: common features and innovations

    Francesca Russo

    2013-06-01

    Full Text Available The National Prevention Plan (NPP 2010-2012, approved by the Agreement between the Government, the Regions and Autonomous Provinces of Trento and Bolzano on 29 April 2010, called for Regions to adopt, by 31/12/2010, the Regional Prevention Plan (RPP for implementing the interventions provided by the NPP 2010-2012.This article has considered and compared the different RPP’s. In an attempt to provide an outlook on the future medical prevention plans over the next few years in Italy, a comparison has been made between the RPP from 19 Regions and the Autonomous Province of Trento. This work has been focused on the actions identified in regional plans as a priority concerning the major common and innovative elements.The analysis of each RPP revealed a common plan to chronic degenerative diseases, because of the aging of the population in every Region of Italy. Other important common targets are: surveillance systems, vaccination programs and screening programs. Toscana and Liguria, more than other Regions, are engaged in the creation of networks involving various social actors. In some Regions there are projects aimed at eliminating social, economic or gender inequities, such as the project “women’s health” in the Region of Puglia. Toscana and Emilia-Romagna Plans pay attention to environment and pollution issues.Despite social, environmental and economic differences, the various Regions have common principles, concerning: life style, surveillance, vaccination and the screening for cancer.

  17. Surfaced-based investigations plan, Volume 4: Yucca Mountain Project

    This document represents a detailed summary of design plans for surface-based investigations to be conducted for site characterization of the Yucca Mountain site. These plans are current as of December 1988. The description of surface-based site characterization activities contained in this document is intended to give all interested parties an understanding of the current plans for site characterization of Yucca Mountain. The maps presented in Volume 4 are products of the Geographic Information System (GIS) being used by the Yucca Mountain Project. The ARC/INFO GIS software, developed by Environmental Systems Research Institute, was used to digitize and process these SBIP maps. The maps were prepared using existing US Geological Survey (USGS) maps as a planimetric base. Roads and other surface features were interpreted from a variety of sources and entered into the GIS. Sources include the USGS maps, 1976 USGS orthophotoquads and aerial photography, 1986 and 1987 aerial photography, surveyed coordinates of field sites, and a combination of various maps, figures, descriptions and approximate coordinates of proposed locations for future activities

  18. Streamlined approach for environmental restoration (SAFER) plan for corrective action unit 412: clean slate I plutonium dispersion (TTR) tonopah test range, Nevada, revision 0

    Matthews, Patrick K.

    2015-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 412. CAU 412 is located on the Tonopah Test Range and consists of a single corrective action site (CAS), TA-23-01CS, Pu Contaminated Soil. There is sufficient information and historical documentation from previous investigations and the 1997 interim corrective action to recommend closure of CAU 412 using the SAFER process. Based on existing data, the presumed corrective action for CAU 412 is clean closure. However, additional data will be obtained during a field investigation to document and verify the adequacy of existing information and determine whether the CAU 412 closure objectives have been achieved. This SAFER Plan provides the methodology to gather the necessary information for closing the CAU.The following summarizes the SAFER activities that will support the closure of CAU 412:• Collect environmental samples from designated target populations to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information.• If no COCs are present, establish clean closure as the corrective action. • If COCs are present, the extent of contamination will be defined and further corrective actions will be evaluated with the stakeholders (NDEP, USAF).• Confirm the preferred closure option is sufficient to protect human health and the environment.

  19. Investigating social gaze as an action-perception online performance

    Ouriel eGrynszpan

    2012-04-01

    Full Text Available In interpersonal interactions, linguistic information is complemented by non-linguistic information originating largely from facial expressions. The study of online face-to-face social interaction thus entails investigating the multimodal simultaneous processing of oral and visual percepts. Moreover, gaze in and of itself functions as a powerful communicative channel. In this respect, gaze should not be examined as a purely perceptive process but also as an active social performance. We designed a task involving multimodal deciphering of social information based on virtual characters, embedded in naturalistic backgrounds, who directly address the participant with non-literal speech and meaningful facial expressions. Eighteen adult participants were to interpret an equivocal sentence which could be disambiguated by examining the emotional expressions of the character speaking to them face-to-face. To examine self-control and self-awareness of gaze in this context, visual feedback is provided to the participant by a real-time gaze-contingent viewing window centered on the focal point, while the rest of the display is blurred. Eye-tracking data showed that the viewing window induced changes in gaze behaviour, notably longer visual fixations. Notwithstanding, only half the participants ascribed the window displacements to their eye movements. These results highlight the dissociation between non volitional gaze adaptation and self-ascription of agency. Such dissociation provides support for a two-step account of the sense of agency composed of pre-noetic monitoring mechanisms and reflexive processes. We comment upon these results, which illustrate the relevance of our method for studying online social cognition, especially concerning Autism Spectrum Disorders (ASD where poor pragmatic understanding of oral speech are considered linked to visual peculiarities that impede face exploration.

  20. Work plan for the remedial investigation/feasibility study-environmental impact statement for the Maywood site, Maywood, New Jersey

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Maywood site located in northern New Jersey in the boroughs of Maywood and Lodi and the township of Rochelle Park. Remedial action at the Maywood site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information currently known about the Maywood site, presents a conceptual site model that identifies potential routes of human exposure to site contaminants, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. It is DOE policy to integrate the requirements of the CERCLA and NEPA processes for remedial actions at sites for which it has responsibility. This work plan also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 150 refs., 26 figs., 17 tabs

  1. Final work plan for targeted investigation at Hilton, Kansas.

    LaFreniere, L. M.; Environmental Science Division

    2007-08-28

    This Work Plan outlines the scope of a targeted investigation to update the status of carbon tetrachloride contamination in groundwater associated with grain storage operations at Hilton, Kansas. The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility in Hilton during the 1950s and 1960s. At the time of the CCC/USDA operation in Hilton, grain storage facilities (CCC/USDA and private) were located along the both sides of the former Union Pacific railroad tracks (Figure 1.1). The main grain storage structures were on or near the railroad right-of-way. The proposed targeted investigation, to be conducted by Argonne National Laboratory on the behalf of CCC/USDA, will supplement Argonne's Phase I and Phase II investigations in 1996-1997. The earlier investigations erroneously focused on an area east of the railroad property where the CCC/USDA did not operate, specifically on a private grain storage facility. In addition, the investigation was limited in scope, because access to railroad property was denied (Argonne 1997a,b). The hydrogeologic system at Hilton is potentially complex.

  2. We can do better : achieving a made in Canada climate change action plan

    A made in Canada approach to climate change is supported by the Canadian Coalition for Responsible Environmental Solutions, which is comprised of several business organizations, industry associations, and consumer advocacy groups. The issue of reducing greenhouse gas emissions, thereby contributing to a cleaner environment and a stronger economy, can be better achieved through the development of a climate change action plan that takes into account the specific circumstances of Canada through innovative solutions and the development of new technology. This document supports building a stronger national consensus on climate change to involve all Canadians. A brief overview of the challenge of the Kyoto Protocol for Canada is provided, followed by a statement of principles for a solution made in Canada. The components of such a plan are examined through the Canadian context, sectoral emission performance agreements, public involvement and education, and international Canadian leadership. A section is devoted to the right measurement for industrial emissions. It is proposed that the time frame be based on a combination of the most effective short-term and medium-term actions with a long-term framework to stimulate the development and deployment of viable technologies that can be commercialized. A coordinated air quality agenda, a national research and innovation strategy, a comprehensive review and streamlining of regulation, sinks and offsets all need to be included. Initiatives concerning the green advantage of Canada, transportation, buildings, community action and science and adaptation are required. 1 fig

  3. Implementation of the Every Newborn Action Plan: Progress and lessons learned.

    Kinney, Mary V; Cocoman, Olive; Dickson, Kim E; Daelmans, Bernadette; Zaka, Nabila; Rhoda, Natasha R; Moxon, Sarah G; Kak, Lily; Lawn, Joy E; Khadka, Neena; Darmstadt, Gary L

    2015-08-01

    Progress in reducing newborn mortality has lagged behind progress in reducing maternal and child deaths. The Every Newborn Action Plan (ENAP) was launched in 2014, with the aim of achieving equitable and high-quality coverage of care for all women and newborns through links with other global and national plans and measurement and accountability frameworks. This article aims to assess country progress and the mechanisms in place to support country implementation of the ENAP. A country tracking tool was developed and piloted in October-December 2014 to collect data on the ENAP-related national milestones and implementation barriers in 18 high-burden countries. Simultaneously, a mapping exercise involving 47 semi-structured interviews with partner organizations was carried out to frame the categories of technical support available in countries to support care at and around the time of birth by health system building blocks. Existing literature and reports were assessed to further supplement analysis of country progress. A total of 15 out of 18 high-burden countries have taken concrete actions to advance newborn health; four have developed specific action plans with an additional six in process and a further three strengthening newborn components within existing plans. Eight high-burden countries have a newborn mortality target, but only three have a stillbirth target. The ENAP implementation in countries is well-supported by UN agencies, particularly UNICEF and WHO, as well as multilateral and bilateral agencies, especially in health workforce training. New financial commitments from development partners and the private sector are substantial but tracking of national funding remains a challenge. For interventions with strong evidence, low levels of coverage persists and health information systems require investment and support to improve quality and quantity of data to guide and track progress. Some of the highest burden countries have established newborn health

  4. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada Appendix D - Corrective Action Investigation Report, Central Nevada Test Area, CAU 417

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  5. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada Appendix D - Corrective Action Investigation Report, Central Nevada Test Area, CAU 417

    U.S. Department of Energy, Nevada Operations office

    1999-04-02

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  6. Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0

    Lynn Kidman

    2008-02-01

    This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

  7. Developing a National Tiger Action Plan for the Union of Myanmar

    Lynam, Antony J.; Khaing, Saw Tun; Zaw, Khin Maung

    2006-01-01

    A century ago, tigers were considered pests in Myanmar. Hunters claimed thousands, yet populations persisted. In the past century, because of habitat loss and prey depletion, coupled with the recent demand for traditional medicines, tiger populations have been reduced to a few hundred individuals. As a first step toward long-term planning for tigers, and to guide efforts to increase protected area coverage, the Myanmar government in 1998 initiated a project to develop a revised National Tiger Action Plan. Extensive surveys confirmed tigers in only 4 of 17 survey locations. Significant populations are thought to persist in the far North and far South of the country, where large, intact forests offer the potential for tiger recovery. With partnerships and collaborations, tiger populations can be protected in the short term (enforcement staff to reduce poaching of tigers and prey, and amending existing wildlife legislation in accordance with international laws. Over the long term (5-20 years), recovery of Myanmar’s tiger populations will depend on increasing support from local people, zoning tiger areas to reduce habitat loss and disturbance, and maintaining connectivity of existing national and transboundary forests. This article reviews the development of a new National Tiger Action Plan for the Union of Myanmar and discusses a blueprint for conservation measures aimed at saving tigers from extinction.

  8. Applicability of children’s environment and health action plan in Serbia

    Kristoforović-Ilić Miroslava

    2010-01-01

    Full Text Available The Children’s Environment and Health Action Plan for Europe was adopted at the 4th Ministry Conference on Environment (the World Health Organization, 2004. It is focused on children health care against hazards originating from the human environment. In its conclusion, the need is expressed for the development of national plans in the field of Environmental and Children Health for European region by 2007. Mutual activities would be obligatory for each country and their realization should be the responsibility of Ministers of Health Care and Environmental Health. In our country, a draft version of this document was recently adopted, where the following priority regional goals are proposed: safe drinking water and adequate sanitation, injury prevention and adequate physical activity, clean indoor and outdoor air, the human environment without chemicals. Every segment has been explained in details through activities, expected results, indicators, sources of verification and the main participants in the project implementation. The end of the action plan period is proposed to be the year 2019. It is also followed by a defined set of indicators: exposure, activities and health status. The analyses of particular activities or data to be used have pointed to some drawbacks of this draft version, which can be overcome by respecting expert opinions.

  9. Steps in preparing and biodiversity section of climate change action plan. Development and evolution of forestry and biodiversity mitigation measures

    Methodic for drawing up of national action plans on prevention of unfavorable consequences of climate change in forestry is described. Approaches to development and measures evolution in these fields on greenhouse effect reduce are considered. (author)

  10. Suggestions and comments about preliminary plans of ABNT 20:04.002-001 standard 'Seismic actions for nuclear facilities project'

    This paper presents an analysis of preliminary plans of standard 'seismic actions for nuclear facilities project'. This document presents since seismic event characterization up to details of structural project of nuclear facilities construction. (C.M.)

  11. Territories climate plans: territories in action 21 collectivities involved in the climatic change challenge. 1. experiences collection 2007

    The climate plan invites the collectivities to implement actions of greenhouse reduction. This collection presents the first collectivities involved in a climate approach: towns, natural parks, syndicates, general and regional council. (A.L.B.)

  12. DOE responses to CDH October 1993 comments on the Remedical Action Plan for the Naturita, Colorado, Umtra Site

    This document includes the October 1993 comments provided by the Colorado Department of Health (CDH) on the Department of Energy (DOE) Preliminary Final Remedial Action Plan for the Naturita, Colorado, UMTRA Site. DOE's responses are included after each CDH comment

  13. Tactical Action Plan: Powering the Energy Frontier (An Appendix to the Strategic Roadmap 2024)

    None

    2014-01-01

    The Tactical Action Plan identifies and describes the Western-wide tasks and activities, existing and new, needed to fully achieve the goals in Strategic Roadmap 2024. Each activity in the TAP chart is briefly described in this document and also linked to the Critical Pathway it supports. As the TAP is a list of specific strategies and actions susceptible to changing environments and needs, the TAP will be updated more frequently as Western progresses towards its goals. The TAP is organized into seven Strategic Target Areas that serve as Western’s priorities and areas of focus for the next two to three years. These Target Areas are: Power and Transmission Related Services; Energy Infrastructure; Partnership and Innovation; Asset Management; Safety and Security; Communication; and Human Capital Management and Organization Structure. Target Areas are also used to create the agency’s annual performance targets, which measure progress and implementation of the TAP, and the status of which will be reported regularly.

  14. Action plan for coordinated deployment of hydrogen fuel cell vehicles and hydrogen infrastructure

    This paper discussed a program designed to provide hydrogen vehicles and accessible hydrogen stations for a pre-commercial hydrogen economy in California. The rollout will coordinate the placement of stations in areas that meet the needs of drivers in order to ensure the transition to a competitive marketplace. An action plan has been developed that focuses on the following 3 specific steps: (1) the validation of early passenger vehicle markets, (2) expanded transit bus use, and (2) the establishment of regulations and standards. Specific tasks related to the steps were discussed, as well as potential barriers to the development of a hydrogen infrastructure in California. Methods of ensuring coordinated actions with the fuel cell and hydrogen industries were also reviewed

  15. Feasibility of a smartphone application based action plan and monitoring in asthma

    Kim, Mi-Yeong; Lee, Suh-Young; Jo, Eun-Jung; Lee, Seung-Eun; Kang, Min-Gyu; Song, Woo-Jung; Kim, Sae-Hoon; Cho, Sang-Heon; Min, Kyung-Up; Ahn, Ki-Hwan

    2016-01-01

    Background Asthma patients may experience acute episodic exacerbation. The guidelines recommend that written action plan should be given to asthma patients. However, no one can predict when and where acute exacerbation will happen. As people carry smart phone almost anytime and anywhere, smartphone application could be a useful tool in asthma care. We evaluated the feasibility of the ubiquitous healthcare system of asthma care using a smartphone application (snuCare) based on the self-management guideline or action plan. Methods Forty-four patients including fragile asthmatics were enrolled from Seoul National University Bundang Hospital between December 2011 and February 2012. They were randomly assigned into application user (n = 22) or application nonuser group (n = 22). We evaluated user-satisfaction, and clinical parameters such as asthma control, Quality of Life Questionnaire for Adult Korean Asthmatics, and the adherence of patients. Results The characteristics were similar at baseline between the 2 groups except those who treated with short-term systemic steroid or increased dose of systemic steroid during previous 8 weeks (user vs. nonuser: 31.8% vs. 4.5%, p = 0.020). Total of 2,226 signals was generated during 8 weeks including 5 risky states. After eight weeks, the users answered that it was very easy to use the application, which was shown in highest scores in terms of satisfaction (mean ± standard deviation, 4.3 ± 0.56). Seventy-three percent of patients answered that the application was very useful for asthma care. User group showed improved the adherence scores (p = 0.017). One patient in application user group could avoid Emergency Department visit owing to the application while a patient in nonuser group visited Emergency Department. Conclusion The ubiquitous healthcare system using a smartphone application (snuCare) based on the self-management guideline or action plan could be helpful in the monitoring and the management of asthma. PMID

  16. Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    None

    2013-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: · CAS 11-08-01, Contaminated Waste Dump #1 · CAS 11-08-02, Contaminated Waste Dump #2 · CAS 11-23-01, Radioactively Contaminated Area A · CAS 11-23-02, Radioactively Contaminated Area B · CAS 11-23-03, Radioactively Contaminated Area C · CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities were performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: · No further action for CAS 11-23-01 · Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: · Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. · FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present for 80

  17. A Local Action Plan (PAL) to Combat Desertification in Apulia Region: Functional Integration of Existing Territorial Programs

    Claudia Trotta; Massimo Iannetta

    2010-01-01

    In 2006-2007, the Italian National Committee to Combat Drought and Desertification promoted the execution of local action plans in some of the Italian regions. The aims of these plans were: to carry out specific actions at a local scale; to promote the integration of local policies; to involve the local communities in proposing strategies to be adopted; to harmonize the procedures among institutions in charge of adopting the policies. In this framework, ENEA carried out an evaluation of exist...

  18. The Danish Organic Action Plan 2020:assessment method and baseline status of organic procurement in public kitchens

    Sørensen, Nina Nørgaard; Lassen, Anne Dahl; Løje, Hanne; Tetens, Inge

    2015-01-01

    Objective With political support from the Danish Organic Action Plan 2020, organic public procurement in Denmark is expected to increase. In order to evaluate changes in organic food procurement in Danish public kitchens, reliable methods are needed. The present study aimed to compare organic food procurement measurements by two methods and to collect and discuss baseline organic food procurement measurements from public kitchens participating in the Danish Organic Action Plan 2020. Design Co...

  19. An introduction to the HighARCS Integrated Action Plans, with an institutions, policies and conflicts perspective

    Lund, Søren

    This report is an introduction focused on institutions, policies and conflicts aspects, for the Integrated Action Plans (IAPs) produced by the HighARCS project for the 5 sites in China, India and Vietnam......This report is an introduction focused on institutions, policies and conflicts aspects, for the Integrated Action Plans (IAPs) produced by the HighARCS project for the 5 sites in China, India and Vietnam...

  20. Stakeholder involvement in action plans and/or policies for organic food and farming – ORGAP project recommendations

    Schmid, Otto; Michelsen, Johannes; Eichert, Christian; Gonzalvez, Victor

    2008-01-01

    Stakeholder involvement in action plans and/or policies for organic food and farming are seen as part of good governance. Within the EU project ORGAP (www.orgap.org) recommendations are made how to consider and evaluate the level und degree of stakeholder involvement. Different stakeholder perspectives (organic principles, market, public goods) have to bee taken into account in the different stages of an action plan/policy (the design, decision, implementation and evaluation). Participatory m...