WorldWideScience

Sample records for actinobacteria

  1. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different cul...

  2. The obligate respiratory supercomplex from Actinobacteria.

    Kao, Wei-Chun; Kleinschroth, Thomas; Nitschke, Wolfgang; Baymann, Frauke; Neehaul, Yashvin; Hellwig, Petra; Richers, Sebastian; Vonck, Janet; Bott, Michael; Hunte, Carola

    2016-10-01

    Actinobacteria are closely linked to human life as industrial producers of bioactive molecules and as human pathogens. Respiratory cytochrome bcc complex and cytochrome aa3 oxidase are key components of their aerobic energy metabolism. They form a supercomplex in the actinobacterial species Corynebacterium glutamicum. With comprehensive bioinformatics and phylogenetic analysis we show that genes for cyt bcc-aa3 supercomplex are characteristic for Actinobacteria (Actinobacteria and Acidimicrobiia, except the anaerobic orders Actinomycetales and Bifidobacteriales). An obligatory supercomplex is likely, due to the lack of genes encoding alternative electron transfer partners such as mono-heme cyt c. Instead, subunit QcrC of bcc complex, here classified as short di-heme cyt c, will provide the exclusive electron transfer link between the complexes as in C. glutamicum. Purified to high homogeneity, the C. glutamicum bcc-aa3 supercomplex contained all subunits and cofactors as analyzed by SDS-PAGE, BN-PAGE, absorption and EPR spectroscopy. Highly uniform supercomplex particles in electron microscopy analysis support a distinct structural composition. The supercomplex possesses a dimeric stoichiometry with a ratio of a-type, b-type and c-type hemes close to 1:1:1. Redox titrations revealed a low potential bcc complex (Em(ISP)=+160mV, Em(bL)=-291mV, Em(bH)=-163mV, Em(cc)=+100mV) fined-tuned for oxidation of menaquinol and a mixed potential aa3 oxidase (Em(CuA)=+150mV, Em(a/a3)=+143/+317mV) mediating between low and high redox potential to accomplish dioxygen reduction. The generated molecular model supports a stable assembled supercomplex with defined architecture which permits energetically efficient coupling of menaquinol oxidation and dioxygen reduction in one supramolecular entity. PMID:27472998

  3. Surfactants tailored by the class Actinobacteria

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  4. Antagonistic activity of marine sponges associated Actinobacteria

    Selvakumar Dharmaraj; Dhevendaran Kandasamy

    2016-01-01

    Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology), nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance), physiological (pH, temperature) and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate), soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are universally well

  5. [Identification of environmental Actinobacteria representing an occupational health risk].

    Skóra, Justyna; Szponar, Bogumiła; Paściak, Mariola; Gutarowska, Beata

    2013-01-01

    Actinobacteria, the etiologic agents of tuberculosis, actinomycosis, respiratory infections and pathological skin lesions, are also classified as hazardous biological agents at the workplace. An increased number of Actinobacteria primarily occurs at the workplaces in composting plants, agriculture, waste management facilities, libraries and museums. Robust identification of Actinobacteria requires a polyphasic diagnostic strategy including an assessment of morphological, physiological, biochemical and chemotaxonomic features as well as genotyping. Commercially available diagnostic kits often do not include bacteria isolated from the environment and therefore analyses of chemotaxonomic markers--components of peptidoglycan, fatty acids, polar lipids (phospho- and glycolipids) and isoprenoid quinones are recommended. The paper discusses a comprehensive approach to the isolation and identification of Actinobacteria, with emphasis on chemotaxonomic methods. A diagnostic procedure is exemplified by environmental strains obtained from composting plants and libraries. PMID:24379263

  6. Screening of marine actinobacteria for amylase enzymes inhibitors

    Raja, S.; Ganesan, S.; Sivakumar, K.; Thangaradjou, T.

    2010-01-01

    Amylase inhibitor producing actinobacteria were isolated and characterized from terrestrial environment and there is no much report found from marine environment, hence in the present study, 17 strains isolated from the rhizosphere sediments of mangroves were tested for their amylase inhibition ability. Seawater requirement test for the growth of actinobacteria found that the strains SSR-3, SSR-12 and SSR-16 requires at least 50% and SSR-6 requires at least 25% seawater for their growth. The ...

  7. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials.

    Mahmoud, Huda M; Kalendar, Aisha A

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  8. DESTRUCTION OF HYDROCARBONS WITH VARIOUS MORPHOTYPES OF OIL OXIDIZING ACTINOBACTERIA

    Khudokormov A. A.

    2013-10-01

    Full Text Available In this article we have carried out a comparative study of hydro-carbon-oxidizing activity of S-and R-morphological types of oil oxidizing Actinobacteria from the collection of Kuban State University. Signifi-cant differences observed in parameters of growth between S- and R-forms of oil oxidizing Actinobacte-ria. In S-forms it is higher than the maximum specific growth rate, which is typical for a wide range of hy-drocarbon degradation and a high degree of degrada-tion of pollutants. In experiments with the use of oil as a substrate and heavy oil S-forms, Actinobacteria quickly adapted to the environmental conditions

  9. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications.

    Lewin, Gina R; Carlos, Camila; Chevrette, Marc G; Horn, Heidi A; McDonald, Bradon R; Stankey, Robert J; Fox, Brian G; Currie, Cameron R

    2016-09-01

    The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels. PMID:27607553

  10. DESTRUCTION OF HYDROCARBONS WITH VARIOUS MORPHOTYPES OF OIL OXIDIZING ACTINOBACTERIA

    Khudokormov A. A.; Karaseva E. V.; Samkov A. A.; Volchenko N. N.; Kozitsin A. E.

    2013-01-01

    In this article we have carried out a comparative study of hydro-carbon-oxidizing activity of S-and R-morphological types of oil oxidizing Actinobacteria from the collection of Kuban State University. Signifi-cant differences observed in parameters of growth between S- and R-forms of oil oxidizing Actinobacte-ria. In S-forms it is higher than the maximum specific growth rate, which is typical for a wide range of hy-drocarbon degradation and a high degree of degrada-tion of pollutants. In expe...

  11. Characterization of actinobacteria associated with three ant-plant mutualisms.

    Hanshew, Alissa S; McDonald, Bradon R; Díaz Díaz, Carol; Djiéto-Lordon, Champlain; Blatrix, Rumsaïs; Currie, Cameron R

    2015-01-01

    Ant-plant mutualisms are conspicuous and ecologically important components of tropical ecosystems that remain largely unexplored in terms of insect-associated microbial communities. Recent work has revealed that ants in some ant-plant systems cultivate fungi (Chaetothyriales) within their domatia, which are fed to larvae. Using Pseudomyrmex penetrator/Tachigali sp. from French Guiana and Petalomyrmex phylax/Leonardoxa africana and Crematogaster margaritae/Keetia hispida, both from Cameroon, as models, we tested the hypothesis that ant-plant-fungus mutualisms co-occur with culturable Actinobacteria. Using selective media, we isolated 861 putative Actinobacteria from the three systems. All C. margaritae/K. hispida samples had culturable Actinobacteria with a mean of 10.0 colony forming units (CFUs) per sample, while 26 % of P. penetrator/Tachigali samples (mean CFUs 1.3) and 67 % of P. phylax/L. africana samples (mean CFUs 3.6) yielded Actinobacteria. The largest number of CFUs was obtained from P. penetrator workers, P. phylax alates, and C. margaritae pupae. 16S rRNA gene sequencing and phylogenetic analysis revealed the presence of four main clades of Streptomyces and one clade of Nocardioides within these three ant-plant mutualisms. Streptomyces with antifungal properties were isolated from all three systems, suggesting that they could serve as protective symbionts, as found in other insects. In addition, a number of isolates from a clade of Streptomyces associated with P. phylax/L. africana and C. margaritae/K. hispida were capable of degrading cellulose, suggesting that Streptomyces in these systems may serve a nutritional role. Repeated isolation of particular clades of Actinobacteria from two geographically distant locations supports these isolates as residents in ant-plant-fungi niches. PMID:25096989

  12. Coral-associated Actinobacteria from the Arabian Gulf: diversity, abundance and biotechnological potentials

    Huda Mahmoud Mahmoud; Aisha Ahmad Kalendar

    2016-01-01

    Actinobacteria are widely distributed in terrestrial environments, where they are considered a significant source of bioactive compounds, mainly antibiotics. Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with Coscinaraea columna, Platygyra daedalea and Porites harrisoni, north of the Arabian Gulf were investigated. The corals of the Arabian Gulf, one of the world’s...

  13. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea

    Weiqi eKuang; Jie eLi; Si eZhang; Lijuan eLong

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every three months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene cl...

  14. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea

    Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone ...

  15. Antioxidant activity of newly discovered lineage of marine actinobacteria

    Loganathan Karthik; Gaurav Kumar; Kokati Venkata Bhaskara Rao

    2013-01-01

    Objective: To investigate the antioxidant activity of marine actinobacteria. Methods: The content of total phenolics, the level of antioxidant potential by DPPH radical scavenging activity, metal chelating activity, FRAP method, β carotene assay and NO scavenging activity in extract were determined. Results: In all the methods the extract exhibited good scavenging activity except NO scavenging activity. The IC50 values of marine actinobacteria extract on DPPH radical were found to be 41.09 µg/mL. The zone of color retention was 12 mm in β-carotene bleaching assay. DNA protective efficiency of the extracts was also studied using UV- photolysed H2O2-driven oxidative damage to pBR322. HPLC analysis identified some of the major phenolic compounds in extracts, which might be responsible for the antioxidant potential and cyto-protection. It showed a 100% cytotoxic effect in brine shrimp lethality assay within 10 mins. The novel actinobacteria was identified as Streptomyces LK-3 (JF710608) through 16S rDNA Sequencing. Conclusions: The results obtained suggest that the extracts bear anti-cancer metabolites and could be considered as a potential source for anti-cancer drug development.

  16. Genomics of aerobic cellulose utilization systems in actinobacteria.

    Iain Anderson

    Full Text Available Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.

  17. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea

    Weiqi eKuang

    2015-10-01

    Full Text Available Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every three months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of twenty-five described families and ten unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater.

  18. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea.

    Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described families and 10 unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater. PMID:26539166

  19. Diversity and novelty of actinobacteria in Arctic marine sediments.

    Zhang, Gaiyun; Cao, Tingfeng; Ying, Jianxi; Yang, Yanliu; Ma, Lingqi

    2014-04-01

    The actinobacterial diversity of Arctic marine sediments was investigated using culture-dependent and culture-independent approaches. A total of 152 strains were isolated from seven different media; 18 isolates were selected for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 18 isolates belonged to a potential novel genus and 10 known genera including Actinotalea, Arthrobacter, Brachybacterium, Brevibacterium, Kocuria, Kytococcus, Microbacterium, Micrococcus, Mycobacterium, and Pseudonocardia. Subsequently, 172 rDNA clones were selected by restriction fragment length polymorphism analysis from 692 positive clones within four actinobacteria-specific 16S rDNA libraries of Arctic marine sediments, and then these 172 clones were sequenced. In total, 67 phylotypes were clustered in 11 known genera of actinobacteria including Agrococcus, Cellulomonas, Demequina, Iamia, Ilumatobacter, Janibacter, Kocuria, Microbacterium, Phycicoccus, Propionibacterium, and Pseudonocardia, along with other, unidentified actinobacterial clones. Based on the detection of a substantial number of uncultured phylotypes showing low BLAST identities (<95 %), this study confirms that Arctic marine environments harbour highly diverse actinobacterial communities, many of which appear to be novel, uncultured species. PMID:24519808

  20. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites

    Visser, Anna A.; Nobre, Tânia; Currie, Cameron R.;

    2012-01-01

    for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus...... a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets......-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed...

  1. Isolation and Characterisation of Antagonistic Actinobacteria from Mangrove Soil

    Venkata Raghava Rao

    2012-04-01

    Full Text Available 1024x768 The aim of the present study was to isolate and screen actinobacteria having antagonistic activities against pathogenic microorganisms. A total of twenty actinobacteria strains were isolated from the mangrove sediment. Of these four active isolates were identified as Streptomyces species by means of morphological, physiological, biochemical and cultural characteristics. These isolates were subjected to shake flask fermentation and the secondary metabolites were extracted with ethyl acetate and screened for their antimicrobial activities against selected bacterial and fungal pathogens. The results showed that among the active isolates, four isolates (BC 01, BC 02, BC 03 and BC 04 showed promising activities against the selected test pathogens. These four extracted isolates were analyzed for UV Spectrophotometric and HPLC. Spectral data of the extracted compound revealed its antimicrobial nature. The UV spectrum of the methanol extracts for the active isolates showed absorbance peaks ranging between 207-223 nm. Two to three bioactive regions were detected on the HPLC. The results indicate that Streptomyces strains isolated from mangrove sediment produce potential antibacterial, antifungal and broad spectrum antibiotic compounds. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  2. The biogeochemical role of Actinobacteria in Altamira Cave, Spain.

    Cuezva, Soledad; Fernandez-Cortes, Angel; Porca, Estefania; Pašić, Lejla; Jurado, Valme; Hernandez-Marine, Mariona; Serrano-Ortiz, Penelope; Hermosin, Bernardo; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2012-07-01

    The walls and ceiling of Altamira Cave, northern Spain, are coated with different coloured spots (yellow, white and grey). Electron microscopy revealed that the grey spots are composed of bacteria and bioinduced CaCO(3) crystals. The morphology of the spots revealed a dense network of microorganisms organized in well-defined radial and dendritic divergent branches from the central area towards the exterior of the spot, which is coated with overlying spheroidal elements of CaCO(3) and CaCO(3) nest-like aggregates. Molecular analysis indicated that the grey spots were mainly formed by an unrecognized species of the genus Actinobacteria. CO(2) efflux measurements in rocks heavily covered by grey spots confirmed that bacteria-forming spots promoted uptake of the gas, which is abundant in the cave. The bacteria can use the captured CO(2) to dissolve the rock and subsequently generate crystals of CaCO(3) in periods of lower humidity and/or CO(2). A tentative model for the formation of these grey spots, supported by scanning electron microscopy and transmission electron microscopy data, is proposed. PMID:22500975

  3. Analysis of Actinobacteria from mould-colonized water damaged building material

    Schäfer, Jenny; Jäckel, Udo; Kämpfer, Peter

    2010-01-01

    Mould-colonized water damaged building materials are frequently co-colonized by actinomycetes. Here, we report the results of the analyses of Actinobacteria on different wall materials from water damaged buildings obtained by both cultivation-dependent and cultivation-independent methods. Actinobacteria were detected in all but one of the investigated materials by both methods. The detected concentrations of Actinobacteria ranged between 1.8 x 10(4) and 7.6 x 10(7) CFUg(-1) of investigated ma...

  4. Genomic islands predict functional adaptation in marine actinobacteria

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  5. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria

    Ságová-Marečková, M.; Ulanová, Dana; Šanderová, P.; Omelka, M.; Kameník, Zdeněk; Olšovská, J.; Kopecký, J.

    2015-01-01

    Roč. 15, APR 2015 (2015). ISSN 1471-2180 Institutional support: RVO:61388971 Keywords : Actinobacteria * 16S rRNA diversity * Resistance genes Subject RIV: EE - Microbiology , Virology Impact factor: 2.729, year: 2014

  6. Coral-associated Actinobacteria from the Arabian Gulf: diversity, abundance and biotechnological potentials

    Huda Mahmoud Mahmoud

    2016-02-01

    Full Text Available Actinobacteria are widely distributed in terrestrial environments, where they are considered a significant source of bioactive compounds, mainly antibiotics. Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with Coscinaraea columna, Platygyra daedalea and Porites harrisoni, north of the Arabian Gulf were investigated. The corals of the Arabian Gulf, one of the world’s hottest seas, are thriving under extreme water temperatures that exceed 39°C during the summer. Similar water temperatures cause coral bleaching and death in other water bodies. For this reason, the corals of the Gulf are living models for investigating how corals in other settings may survive at the end of the current century.Different coral hosts have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though

  7. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    Sathish Kumar S.R; Kokati Venkata Bhaskara Rao

    2012-01-01

    Objective: To investigate the antibacterial activity of marine actinobacteria against Multidrug resistance Staphylococcus aureus (MDRSA). Methods: Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey’s manual of Determinative Bacteriology. Results: Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1000μg/ml. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. Conclusion: The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  8. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    Sathish; Kumar; SR; Kokati; Venkata; Bhaskara; Rao

    2012-01-01

    Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal area in Kothapattanam,Ongole,Andhra Pradesh.Primary screening was done using cross-streak method against MDRSA.The bioaclive compounds are extracted from efficient actinobacteria using solvent extraction.The antimicrobial activity of crude and solvent extracts was perfomied using Kirby-Bauer method.MIC for ethyl acetate extract was determined by modified agar well diffusion method.The potent actinobacteria are identified using Nonomura key,Shirling and Gottlieb 1966 with Bergey’s manual of determinative bacteriology.Results:Among the fifty one isolates screened for antibacterial activity,SRB25were found efficient against MDRSA.The ethyl acetate extracts showed high inhibition against test organism.MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000μg/mL.The isolaled actinobacteria are identified as Streptomyces sp with the help of Nonomura key.Conclusions:The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  9. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    Sathish Kumar SR; Kokati Venkata Bhaskara Rao

    2012-01-01

    To investigate the antibacterial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus (MDRSA). Methods: Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology. Results: Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000 μg/mL. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. Conclusions: The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  10. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria

    Polkade, Ashish V.; Mantri, Shailesh S.; Patwekar, Umera J.; Jangid, Kamlesh

    2016-01-01

    Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially, antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit. PMID:26904007

  11. The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal.

    Axenov-Gribanov, Denis; Rebets, Yuriy; Tokovenko, Bogdan; Voytsekhovskaya, Irina; Timofeyev, Maxim; Luzhetskyy, Andriy

    2016-03-01

    The high demand for new antibacterials fosters the isolation of new biologically active compounds producing actinobacteria. Here, we report the isolation and initial characterization of cultured actinobacteria from dominant benthic organisms' communities of Lake Baikal. Twenty-five distinct strains were obtained from 5 species of Baikal endemic macroinvertebrates of amphipods, freshwater sponges, turbellaria worms, and insects (caddisfly larvae). The 16S ribosomal RNA (rRNA)-based phylogenic analysis of obtained strains showed their affiliation to Streptomyces, Nocardia, Pseudonocardia, Micromonospora, Aeromicrobium, and Agromyces genera, revealing the diversity of actinobacteria associated with the benthic organisms of Lake Baikal. The biological activity assays showed that 24 out of 25 strains are producing compounds active against at least one of the test cultures used, including Gram-negative bacteria and Candida albicans. Complete dereplication of secondary metabolite profiles of two isolated strains led to identification of only few known compounds, while the majority of detected metabolites are not listed in existing antibiotic databases. PMID:26347255

  12. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L.

    Li, Jie; Zhao, Guo-Zhen; Huang, Hai-Yu; Qin, Sheng; Zhu, Wen-Yong; Zhao, Li-Xing; Xu, Li-Hua; Zhang, Si; Li, Wen-Jun; Strobel, Gary

    2012-03-01

    Endophytic actinobacteria isolated from Artemisia annua were characterized and evaluated for their bioactivities. A total of 228 isolates representing at least 19 different genera of actinobacteria were obtained and several of them seemed to be novel taxa. An evaluation of antimicrobial activity showed that more isolates possessed activity towards plant pathogens than activity against other pathogenic bacteria or yeasts. High frequencies of PCR amplification were obtained for type I polyketide synthases (PKS-I, 21.1%), type II polyketide synthases (PKS-II, 45.2%) and nonribosomal peptide synthetases (NRPS, 32.5%). The results of herbicidal activity screening indicated that 19 out of 117 samples of fermentation broths completely inhibited the germination of Echinochloa crusgalli. This study indicated that endophytic actinobacteria associated with A. annua are abundant and have potentially beneficial and diverse bioactivities which should be pursued for their biotechnical promise. PMID:22038129

  13. Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater .i.Actinobacteria./i

    Sharma, A. K.; Sommerfeld, K.; Bullerjahn, G. S.; Matteson, A. R.; Wilhelm, S. W.; Jezbera, Jan; Brandt, U.; Doolittle, W.F.; Hahn, M.W.

    2009-01-01

    Roč. 3, č. 6 (2009), s. 726-737. ISSN 1751-7362 Institutional research plan: CEZ:AV0Z60170517 Keywords : rhodopsins * actinorhodopsin * freshwater * Actinobacteria * Superior * Erie Subject RIV: EE - Microbiology, Virology Impact factor: 6.397, year: 2009

  14. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. PMID:24771570

  15. Metagenomic Classification and Characterization Marine Actinobacteria from the Gulf of Maine without Representative Genomes

    Sachdeva, R.; Heidelberg, J.

    2012-12-01

    Actinobacteria represent one of the largest and most diverse bacterial phyla and unlike most marine prokaryotes are gram-positive. This phylum encompasses a broad range of physiologies, morphologies, and metabolic properties with a broad array of lifestyles. The marine actinobacterial assemblage is dominated by the orders Actinomycetales and Acidimicrobiales (also known as the marine Actinobacteria clade). The Acidimicrobiales bacteria typically outnumber the Actinomycetales bacteria and are mostly represented by the OCS155 group. Although bacteria of the order Acidimicrobiales make up ~7.6% of the 16S matches from the Global Ocean Survey shotgun metagenomic libraries; very little is known about their potential function and role in biogeochemical cycling. Samples were collected from surface seawater samples in the Gulf of Maine (GOM) from the summer and winter of 2006. Sanger sequences were generated from the 0.1-0.8 μm fractions using paired-end medium insert shotgun libraries. The resulting 2.2 Gb were assembled using the Celera Assembler package into 280 Mb of non-redundant scaffolds. Putative actinobacterial assemblies were identified using (1) ribosomal RNA genes (16S and 23S), (2) phylogenetically informative non-ribosomal core genes thought to be resistant to horizontal gene transfer (e.g. RecA and RpoB) and (3) compositional binning using oligonucleotide frequency pattern based hierarchical clustering. Binning resulted in 3.6 Mb (4.2X coverage) of actinobacterial scaffolds that were comprised of 15.1 Mb of unassembled reads. Putative actinobacterial assemblies included both summer and winter reads demonstrating that the Actinobacteria are abundant year round. Classification reveals that all of the sampled Actinobacteria are from the orders Acidimicrobiales and Actinomycetales and are similar to those found in the global ocean. The GOM Actinobacteria show a broad range of G+C % content (32-66%) indicating a high level of genomic diversity. Those assemblies

  16. Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria.

    Mariana Gabriela Ghinet

    Full Text Available Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs. While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS, in Actinobacteria a single DNA FtsK/SpoIIIE-like translocation protein is required. To date, the role and diversity of ICEs in Actinobacteria have received little attention. Putative ICEs were searched for in 275 genomes of Actinobacteria using HMM-profiles of proteins involved in ICE maintenance and transfer. These exhaustive analyses revealed 144 putative FtsK/SpoIIIE-type ICEs and 17 putative T4SS-type ICEs. Grouping of the ICEs based on the phylogenetic analyses of maintenance and transfer proteins revealed extensive exchanges between different sub-families of ICEs. 17 ICEs were found in Actinobacteria from the genus Frankia, globally important nitrogen-fixing microorganisms that establish root nodule symbioses with actinorhizal plants. Structural analysis of ICEs from Frankia revealed their unexpected diversity and a vast array of predicted adaptive functions. Frankia ICEs were found to excise by site-specific recombination from their host's chromosome in vitro and in planta suggesting that they are functional mobile elements whether Frankiae live as soil saprophytes or plant endosymbionts. Phylogenetic analyses of proteins involved in ICEs maintenance and transfer suggests that active exchange between ICEs cargo-borne and chromosomal genes took place within the Actinomycetales order. Functionality of Frankia ICEs in vitro as well as in planta lets us anticipate that conjugation and ICEs could allow the development of genetic manipulation tools for this challenging microorganism

  17. An airborne actinobacteria Nocardiopsis alba isolated from bioaerosol of a mushroom compost facility

    Paściak, Mariola; Pawlik, Krzysztof; Gamian, Andrzej; Szponar, Bogumiła; Skóra, Justyna; Gutarowska, Beata

    2014-01-01

    Actinobacteria are widely distributed in many environments and represent the most important trigger to the occupant respiratory health. Health complaints, including hypersensitivity pneumonitis of the workers, were recorded in a mushroom compost facility (MCF). The studies on the airborne bacteria were carried out to find a possible microbiological source of these symptoms. Culture analysis of compost bioaerosols collected in different location of the MCF was performed. An assessment of the i...

  18. Uncovering the Prevalence and Diversity of Integrating Conjugative Elements in Actinobacteria

    Mariana Gabriela Ghinet; Eric Bordeleau; Julie Beaudin; Ryszard Brzezinski; Sébastien Roy; Vincent Burrus

    2011-01-01

    Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs). While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS), in Actinobacteria a sing...

  19. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

    Juan Pablo Gomez-Escribano; Silke Alt; Bibb, Mervyn J.

    2016-01-01

    Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a subs...

  20. Termite Nests as an Abundant Source of Cultivable Actinobacteria for Biotechnological Purposes

    Sujada, N.; Sungthong, R.; Lumyong, S.

    2014-01-01

    A total of 118 actinobacterial isolates were collected from the three types of termite nests (mound, carton, and subterranean nests) to evaluate their potential as a source of bioactive actinobacteria with antimicrobial activity. The highest number (67 isolates) and generic abundance (7 known genera) of actinobacterial isolates were obtained from carton nests. Streptomyces was the dominant genus in each type of termite nest. In the non-Streptomyces group, Nocardia was the dominant genus detec...

  1. [Storage of Actinobacteria of the Genera Streptomyces and Nonomuraea by Low Temperature Preservation].

    Sineva, O N; Kulikova, N G; Filippova, S N; Terekhova, L P

    2014-01-01

    The influence of storage of actinobacteria Streptomyces hygroscopicus RIA 1433T, Nonomuraea roseoviolacea subsp. carminata INA 4281 and Nonomuraea sp. INA 34-06 at extremely low temperatures (-70 degrees C) for 1.5 years was studied with respect to their viability and antibiotic activity. The spores of the actinobacteria preserved their high viability when freezed at a concentration of 10(5)-10(7) CFU/ml. As for the antibiotic activity against the test culture Micrococcus luteus ATCC 9341, the strains differed: the S. hygroscopicus RIA 1433T colonies preserved their antibiotic activity against the test culture, the antibiotic activity of Nonomuraea roseoviolacea subsp. carminata lowered by 5% and that of N. sp. INA 34-06 lowered by 44%. Differences in the resistance of the strains to the storage at the extremely low temperatures were observed when the suspensions contained low concentrations of the spores (10(2) CFU/ml): S. hygroscopicus RIA 1433T preserved its viability and antibiotic activity during 1.5 years, while N. roseoviolacea subsp. carminata INA 4281 and N. sp. INA 34-06 lost the viability by the 8th month of the storage. The study showed that 10% glycerol solution used as a cryoprotector during the storage had no effect on viability and antibiotic activity of the actinobacteria. PMID:26448987

  2. Isolation, Phylogenetic Analysis and Antibiotic Activity Screening of Red Sea Sponge-Associated Actinobacteria

    Yang, Chen

    2013-06-01

    Infectious disease has always been and will continue to be a heavy burden on human society worldwide. Terrestrial actinobacteria, notable as a source of antibiotics, have been well investigated in the past. In constrast, marine actinobacteria, especially sponge-associated species, have received much less attention and isolates are sparse. With the aim of studying and discovering novel marine actinobacteria, 11 different species of sponges were collected from the Central Red Sea in Saudi Arabia and cultured with three different types of media. 16S rRNA gene-sequencing revealed that among all 75 isolated bacterial strains 13 belonged to the order actinomycetales. These 13 actinomycetes fall into four different families and can be assigned to six different genera. Antibiotic activity tests using disc diffusion assay were performed against Gram-positive bacteria (Bacillus sp.), Gram-negative bacteria (Escherichia coli), fungi (Fusarium sp.) and West Nile virus NS3 protease. Nine strains presented different level of bioactivity against these pathogens. These findings provide evidence that actinomycetes are presented in marine sponges and that they have the potential to be good candidates in the search for new effective antibiotic, antifungal, and antiviral compounds.

  3. Use of Metagenomics and Isolation of Actinobacteria in Brazil's Atlantic Rainforest Soil for Antimicrobial Prospecting.

    Assis, Danyelle Alves Martins; Rezende, Rachel Passos; Dias, João Carlos Teixeira

    2014-01-01

    Modern techniques involving molecular biology, such as metagenomics, have the advantage of exploiting a higher number of microorganisms; however, classic isolation and culture methods used to obtain antimicrobials continue to be promising, especially in the isolation of Actinobacteria, which are responsible for the production of many of these compounds. In this work, two methodologies were used to search for antimicrobial substances-isolation of Actinobacteria and metagenomics of the Atlantic Rainforest soil and of the cultivation of cocoa intercropped with acai berry in the Atlantic Rainforest. The metagenomic libraries were constructed with the CopyControl Fosmid Library kit EPICENTRE, resulting in a total of 2688 clones, 1344 of each soil sample. None of the clones presented antimicrobial activity against the microorganisms tested: S. aureus, Bacillus subtilis, and Salmonella choleraesuis. A total of 46 isolates were obtained from the isolation of soil Actinobacteria: 24 isolates from Atlantic Rainforest soil and 22 isolates from the intercrop cultivation soil. Of these, two Atlantic Rainforest soil isolates inhibited the growth of S. aureus including a clinical isolate of S. aureus MRSA-a promising result, since it is an important multidrug-resistant human pathogen. PMID:25937991

  4. Structural and Phylogenetic Analysis of a Conserved Actinobacteria-Specific Protein (ASP1; SCO1997) from Streptomyces Coelicolor

    Gao, B.; Sugiman-Marangos, S; Junop, M; Gupta, R

    2009-01-01

    The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.

  5. Environmental controls over Actinobacteria communities in ecological sensitive Yanshan mountains zone

    hui etang

    2016-03-01

    Full Text Available The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1–YS10 on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying of the soil sample, followed by exposure to 120 oC for 1 h, we observed the higher Actinobacteria diversity in a relatively small number of clone libraries. No significant differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3, YS4, YS6, YS8, YS9, or YS10 (P > 0.1. However, there were differences (P < 0.05 from the YS7 site and other sites, especially in response to environmental change. And we observed highly significant differences (P < 0.001 in Actinobacterial diversity of the soil from YS7 and that from YS4 and YS8 sites.. The climatic characteristics of mean active accumulated temperature, annual mean precipitation, and annual mean temperature, and biogeochemical data of total phosphorus contributed to the diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites. Compared to the climatic factors, the biogeochemical factors mostly contributed in shaping the Actinobacterial community. This work provides evidence that the diversity of Actinobacterial communities in soils from the Yashan Mountains show regional biogeographic patterns and that community membership change along the north-south distribution of the Hu Huanyong Line.

  6. Draft genome sequence of Paenibacillus dauci sp. nov., a carrot-associated endophytic actinobacteria.

    Wu, Qian; Zhu, Liying; Jiang, Ling; Xu, Xian; Xu, Qing; Zhang, Zhidong; Huang, He

    2015-09-01

    Paenibacillus dauci sp. nov., a new kind of endophytic actinobacteria, is separated from the inner tissues of carrot sample, which forms intimated associations with carrot acting as biological control agents. Here we report a 5.37-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for biological processes such as antibiotic metabolic process, antimicrobial metabolism, anaerobic regulation and the biosynthesis of vitamin B and polysaccharide. This novel strain can be a potential source of novel lead products for exploitation in the field of pharmaceutical, agriculture and industry. PMID:26484263

  7. On the nature of fur evolution: A phylogenetic approach in Actinobacteria

    Benson David R

    2008-06-01

    Full Text Available Abstract Background An understanding of the evolution of global transcription regulators is essential for comprehending the complex networks of cellular metabolism that have developed among related organisms. The fur gene encodes one of those regulators – the ferric uptake regulator Fur – widely distributed among bacteria and known to regulate different genes committed to varied metabolic pathways. On the other hand, members of the Actinobacteria comprise an ecologically diverse group of bacteria able to inhabit various natural environments, and for which relatively little is currently understood concerning transcriptional regulation. Results BLAST analyses revealed the presence of more than one fur homologue in most members of the Actinobacteria whose genomes have been fully sequenced. We propose a model to explain the evolutionary history of fur within this well-known bacterial phylum: the postulated scenario includes one duplication event from a primitive regulator, which probably had a broad range of co-factors and DNA-binding sites. This duplication predated the appearance of the last common ancestor of the Actinobacteria, while six other duplications occurred later within specific groups of organisms, particularly in two genera: Frankia and Streptomyces. The resulting paralogues maintained main biochemical properties, but became specialised for regulating specific functions, coordinating different metal ions and binding to unique DNA sequences. The presence of syntenic regions surrounding the different fur orthologues supports the proposed model, as do the evolutionary distances and topology of phylogenetic trees built using both Neighbor-Joining and Maximum-Likelihood methods. Conclusion The proposed fur evolutionary model, which includes one general duplication and two in-genus duplications followed by divergence and specialization, explains the presence and diversity of fur genes within the Actinobacteria. Although a few rare

  8. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria

    Gelfand Mikhail S

    2005-10-01

    Full Text Available Abstract Background Formation of alternative structures in mRNA in response to external stimuli, either direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene expression in bacteria. This mechanism has been studied in detail using experimental and computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria. Results Comparative analysis of amino acid biosynthesis operons in Actinobacteria resulted in identification of conserved regions upstream of several operons. Classical attenuators were predicted upstream of trp operons in Corynebacterium spp. and Streptomyces spp., and trpS and leuS genes in some Streptomyces spp. Candidate leader peptides with terminators were observed upstream of ilvB genes in Corynebacterium spp., Mycobacterium spp. and Streptomyces spp. Candidate leader peptides without obvious terminators were found upstream of cys operons in Mycobacterium spp. and several other species. A conserved pseudoknot (named LEU element was identified upstream of leuA operons in most Actinobacteria. Finally, T-boxes likely involved in the regulation of translation initiation were observed upstream of ileS genes from several Actinobacteria. Conclusion The metabolism of tryptophan, cysteine and leucine in Actinobacteria seems to be regulated on the RNA level. In some cases the mechanism is classical attenuation, but in many cases some components of attenuators are missing. The most interesting case seems to be the leuA operon preceded by the LEU element that may fold into a conserved pseudoknot or an alternative structure. A LEU element has been observed in a transposase gene from Bifidobacterium longum, but it is not conserved in genes encoding closely related transposases despite a very high level of protein similarity. One possibility is that the regulatory region of the leuA has been co-opted from some element involved in transposition. Analysis of phylogenetic patterns

  9. Carbonate Mineral Formation under the Influence of Limestone-Colonizing Actinobacteria: Morphology and Polymorphism

    Cao, Chengliang; Jiang, Jihong; Sun, Henry; Huang, Ying; Tao, Faxiang; Lian, Bin

    2016-01-01

    Microorganisms and their biomineralization processes are widespread in almost every environment on earth. In this work, Streptomyces luteogriseus DHS C014, a dominant lithophilous actinobacteria isolated from microbial mats on limestone rocks, was used to investigate its potential biomineralization to allow a better understanding of bacterial contributions to carbonate mineralization in nature. The ammonium carbonate free-drift method was used with mycelium pellets, culture supernatant, and spent culture of the strain. Mineralogical analyses showed that hexagonal prism calcite was only observed in the sub-surfaces of the mycelium pellets, which is a novel morphology mediated by microbes. Hemispheroidal vaterite appeared in the presence of spent culture, mainly because of the effects of soluble microbial products (SMP) during mineralization. When using the culture supernatant, doughnut-like vaterite was favored by actinobacterial mycelia, which has not yet been captured in previous studies. Our analyses suggested that the effects of mycelium pellets as a molecular template almost gained an advantage over SMP both in crystal nucleation and growth, having nothing to do with biological activity. It is thereby convinced that lithophilous actinobacteria, S. luteogriseus DHS C014, owing to its advantageous genetic metabolism and filamentous structure, showed good biomineralization abilities, maybe it would have geoactive potential for biogenic carbonate in local microenvironments.

  10. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

    Juan Pablo Gomez-Escribano

    2016-04-01

    Full Text Available Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS. Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects.

  11. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

    Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J.

    2016-01-01

    Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects. PMID:27089350

  12. The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale

    Zhang, Binglin; Wu, Xiukun; Zhang, Gaosen; Li, Shuyan; Zhang, Wei; Chen, Ximing; Sun, Likun; Zhang, Baogui; Liu, Guangxiu; Chen, Tuo

    2016-05-01

    Glacier forelands, where the initially exposed area is unvegetated with minimal human influence, are an ideal place for research on the distributions and biogeography of microbial communities. Actinobacteria produce many bioactive substances and have important roles in soil development and biogeochemical cycling. However, little is known about the distribution and biogeography of Actinobacteria in glacier forelands. Therefore, we investigated the patterns of diversity and the biogeography of actinobacterial communities of the inhabited forefields of 5 glaciers in China. Of the bacteria, the mean relative abundance of Actinobacteria was 13.1%, and 6 classes were identified in the phylum Actinobacteria. The dominant class was Actinobacteria (57%), which was followed in abundance by Acidimicrobiia (19%) and Thermoleophilia (19%). When combined, the relative abundance of the other three classes, the MB-A2-108, Nitriliruptoria and Rubrobacteria, was only 2.4%. A biogeographic pattern in the forelands of the 5 glaciers in China was not detected for actinobacterial communities. Compared with 7 other actinobacterial communities found in the forelands of glaciers globally, those in the Southern Hemisphere were significantly different from those in the Northern Hemisphere. Moreover, the communities were significantly different on the separate continents of the Northern Hemisphere. The dissimilarity of the actinobacterial communities increased with geographic distance (r = 0.428, p = 0.0003). Because of environmental factors, the effect of geography was clear when the distance exceeded a certain continent-level threshold. With the analysis of indicator species, we found that each genus had a geographic characteristic, which could explain why the communities with greater diversity were more strongly affected by biogeography.

  13. Exploring the Diversity and Antimicrobial Potential of Marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile.

    Undabarrena, Agustina; Beltrametti, Fabrizio; Claverías, Fernanda P; González, Myriam; Moore, Edward R B; Seeger, Michael; Cámara, Beatriz

    2016-01-01

    Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although, Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae, and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera) was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus, and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium, and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%), PKS I (18%), and PKS II (73%). Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds. PMID:27486455

  14. Structure of Mycobacterium tuberculosis Rv2714, a representative of a duplicated gene family in Actinobacteria

    The crystal structure of Rv2714, a protein of unknown function from M. tuberculosis, has been determined at 2.6 Å resolution using single-wavelength anomalous diffraction methods. The gene Rv2714 from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is a representative member of a gene family that is largely confined to the order Actinomycetales of Actinobacteria. Sequence analysis indicates the presence of two paralogous genes in most mycobacterial genomes and suggests that gene duplication was an ancient event in bacterial evolution. The crystal structure of Rv2714 has been determined at 2.6 Å resolution, revealing a trimer in which the topology of the protomer core is similar to that observed in a functionally diverse set of enzymes, including purine nucleoside phosphorylases, some carboxypeptidases, bacterial peptidyl-tRNA hydrolases and even the plastidic form of an intron splicing factor. However, some structural elements, such as a β-hairpin insertion involved in protein oligomerization and a C-terminal α-helical domain that serves as a lid to the putative substrate-binding (or ligand-binding) site, are only found in Rv2714 bacterial homologues and represent specific signatures of this protein family

  15. In silico discovery of the dormancy regulons in a number of Actinobacteria genomes

    Gerasimova, Anna; Dubchak, Inna; Arkin, Adam; Gelfand, Mikhail

    2010-11-16

    Mycobacterium tuberculosis is a dangerous Actinobacteria infecting nearly one third of the human population. It becomes dormant and phenotypically drug resistant in response to stresses. An important feature of the M. tuberculosis pathogenesis is the prevalence of latent infection without disease, making understanding of the mechanisms used by the bacteria to exist in this state and to switch to metabolically active infectious form a vital problem to consider. M. tuberculosis dormancy is regulated by the three-component regulatory system of two kinases (DosT and DevS) and transcriprional regulator (DevR). DevR activates transcription of a set of genes, which allow the bacteria to survive long periods of anaerobiosis, and may be important for long-term survival within the host during latent infection. The DevR-regulon is studied experimentally in M. tuberculosis and few other phylogenetically close Mycobacteria spp. As many other two-component systems, the devRS operon is autoregulated. However, the mechanism of the dormancy is not completely clear even for these bacteria and there is no data describing the dormancy regulons in other species.

  16. Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China

    Jicheng; Yu; Liu; Zhang; Qiu; Liu; Xiaohui; Qi; Ying; Ji; Beom; Seok; Kim

    2015-01-01

    Objective: To evaluate various types of samples from the different marine environments as sources of actinomycetes from the Yalujiang coastal wetland, North China, and to screen their antimicrobial properties. Further, the identified actinomycetes were characterized based on morphological, biochemical, and physiological characteristics.Methods: Eight different production media were used to isolate actinomycets from different stations of marine soil sediments in Yalujiang coastal wetland and the genotypic positions were established by 16 S r DNA.Results: A total of 172 actinomycetal isolates were obtained from 13 samples using five media. The most effective culture media in the isolation of actinobacteria were Gause’s Synthetic agar and Starch-casein agar. Among 172 isolates, 46 isolates(26.74%) showed antibacterial activity, 70.93% belonged to the genus Streptomyces, others were Micromonospora spp. and Rhodococcus spp. Out of the 46 isolates, two cultures were further supported by morphological characterization analysis.Conclusions: This is the first report about actinomycetes isolated from Yalujiang coastal wetland and it seems that the promising isolates from the unusual/unexplored wetland may prove to be an important step in the development of microbial natural product research.

  17. Phylogenetic Diversity and Antimicrobial Activities of Culturable Endophytic Actinobacteria Isolated from Different Egyptian Marine Sponges and Soft Corals

    El-Bondkly, Ahmed-Mohammed; El-Gendy, Mervat M. A. A.; Wiese, Jutta; Imhoff, Johannes F.

    2012-01-01

    A cultivation-based approach was employed to isolate and compare the endophytic culturable actinobacterial diversity associated with different Egyptian marine sponges and soft corals. A total of 13 culturable actinobacteria isolates were obtained, five of which isolated from different sponges, two (AE27 and AE32) and three (AE29, AE41 and AE46) were isolated from Haliclona sp. and Callyspongia sp. collected from Sharm El-Sheikh and Hurghada, Egypt, respectively. Eight were isolated from diffe...

  18. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.

    Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico

    2016-06-01

    Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. PMID:27128202

  19. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean

    Meng Yuan

    2014-03-01

    Full Text Available Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis.

  20. Phylogenetic diversity and biological activity of actinobacteria isolated from the Chukchi Shelf marine sediments in the Arctic Ocean.

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-03-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  1. Rape phosphatide concentrate in the technologies of surfactants production by the Actinobacteria

    N. Koretska

    2015-05-01

    Full Text Available Introduction. Due to the fact that the production of microbial surfactants is limited by the low yield of end products and high cost of processes, the actual task is to optimize and reduce the cost of the technology of biosurfactants synthesis. One of the solutions of this problem is to use the industrial wastes, including rape phosphatide concentrate (PC. Materials and methods. Hexadecane and rape phosphatide concentrate (2% were used as a carbon source in a nutrient medium for the cultivation of bacteria. Lipids were extracted from a cell mass and supernatant by the mixture of chloroform-methanol 2:1. The qualitative analysis of metabolites was performed by a thin layer chromatography. Results and discussion. The peculiarities of synthesis of biosurfactants by strains G. rubripertincta UCM Aс-122 and R. erythropolis Au-1 during the growth on the nutrient media with rape phosphatide concentrate as a carbon source was studied. Quantity of biomass was 9.4 – 10.1 g/l, exopoly mers –8.9-9.5 g/l and the content of cellbound trehalose lipids was 1.37 – 2.26 g/l; whereas the content of exogenous trehalose lipids –metabolites of R. erythropolis Au-1 was 2.95 g/l. It was found that the addition of trehalose lipids (0.01 g/l to the nutrient medium caused the increase of biomass on 14.6 –17.0 % and cell-bound lipids on 13.9 –15.5 %. Conclusions. Rape phosphatide concentrate is economically viable carbon source in the technologies of surfactant production by Actinobacteria. Its use promotes an increasing of exogenous surfactants strain R. erythropolisAu-1 in 3-fold compared with cultivation on nutrient medium with hexadecane. Trehalose lipids show a stimulating effect on growth and synthesis of biosurfactants by strains of G. rubripertincta UCM Ac-122 and R. erythropolisAu-1.

  2. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  3. Studies on a Novel Actinobacteria Species Capable of Oxidizing Ammonium under Iron Reduction Conditions

    Huanh, Shan; Ruiz-Urigüen, Melany; Jaffe, Peter R.

    2014-05-01

    Ammonium (NH4+) oxidation coupled to iron reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) was noted in a forested riparian wetland in New Jersey (1,2), and in tropical rainforest soils (3), and was coined Feammox (4). Through a 180-days anaerobic incubation of soil samples collected at the New Jersey site, and using 16S rDNA PCR-DGGE, 454-pyosequecing, and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, belonging to the phylum Actinobacteria, is responsible for this Feammox process, described previously (1,2). We have enriched these Feammox bacteria in a high efficiency Feammox membrane reactor (with 85% NH4+removal per 48h), and isolated the pure Acidimicrobiaceae bacterium A6 strain 5, in an autotrophic medium. To determine if the Feammox bacteria found in this study are common, at least at the regional scale, we analyzed a series of local wetland-, upland-, as well as storm-water detention pond-sediments. Through anaerobic incubations and molecular biology analysis, the Feammox reaction and Acidimicrobiaceae bacterium A6 were found in three of twenty soil samples collected, indicating that the Feammox pathway might be widespread in selected soil environments. Results show that soil pH and Fe(III) content are key environmental factors controlling the distributions of Feammox bacteria, which require acidic conditions and the presence of iron oxides. Results from incubation experiments conducted at different temperatures have shown that, in contrast to another anaerobic ammonium oxidation pathways (e.g., anammox), the optimal temperature of the Feammox process is ~ 20° and that the organisms are still active when the temperature is around 10°. An incubation experiment amended with acetylene gas (C2H2) as a selected inhibitor showed that in the Feammox reaction, Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+is the electron donor, which is oxidized to NO2-. After this process, NO2- is converted to

  4. Actinobacteria Isolated from an Underground Lake and Moonmilk Speleothem from the Biggest Conglomeratic Karstic Cave in Siberia as Sources of Novel Biologically Active Compounds

    Tokovenko, Bogdan T.; Protasov, Eugeniy S.; Gamaiunov, Stanislav V.; Rebets, Yuriy V.; Luzhetskyy, Andriy N.; Timofeyev, Maxim A.

    2016-01-01

    Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans. PMID:26901168

  5. Kenaf biomass biodecomposition by basidiomycetes and actinobacteria in submerged fermentation for production of carbohydrates and phenolic compounds.

    Brzonova, Ivana; Kozliak, Evguenii; Kubátová, Alena; Chebeir, Michelle; Qin, Wensheng; Christopher, Lew; Ji, Yun

    2014-12-01

    The efficiency and dynamics of simultaneous kenaf biomass decomposition by basidiomycetous fungi and actinobacteria were investigated. After 8weeks of incubation, up to 34wt.% of the kenaf biomass was degraded, with the combination of fungi and bacteria being the most efficient. Lignin decomposition accounted for ∼20% of the observed biomass reduction, regardless of the culture used. The remaining 80% of biomass degradation was due to carbohydrate based polymers. Major monosaccharides were produced in tangible yields (26-38%) at different times. Glucose, fructose and xylose were then fully consumed by day 25 while some galactose persisted until day 45. Once monosaccharides were depleted, the production of laccase, manganese-dependent peroxidase and lignin peroxidase enzymes, essential for lignin decomposition, was induced. The products of lignin biodecomposition were shown to be water-soluble and characterized by thermal desorption-pyrolysis-gas chromatography. PMID:25314665

  6. Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea.

    Karuppiah, Valliappan; Li, Yingxin; Sun, Wei; Feng, Guofang; Li, Zhiyong

    2015-07-01

    Phenazines represent a large group of nitrogen-containing heterocyclic compounds produced by the diverse group of bacteria including actinobacteria. In this study, a total of 197 actinobacterial strains were isolated from seven different marine sponge species in the South China Sea using five different culture media. Eighty-seven morphologically different actinobacterial strains were selected and grouped into 13 genera, including Actinoalloteichus, Kocuria, Micrococcus, Micromonospora, Mycobacterium, Nocardiopsis, Prauserella, Rhodococcus, Saccharopolyspora, Salinispora, Serinicoccus, and Streptomyces by the phylogenetic analysis of 16S rRNA gene. Based on the screening of phzE genes, ten strains, including five Streptomyces, two Nocardiopsis, one Salinispora, one Micrococcus, and one Serinicoccus were found to be potential for phenazine production. The level of phzE gene expression was highly expressed in Nocardiopsis sp. 13-33-15, 13-12-13, and Serinicoccus sp. 13-12-4 on the fifth day of fermentation. Finally, 1,6-dihydroxy phenazine (1) from Nocardiopsis sp. 13-33-15 and 13-12-13, and 1,6-dimethoxy phenazine (2) from Nocardiopsis sp. 13-33-15 were isolated and identified successfully based on ESI-MS and NMR analysis. The compounds 1 and 2 showed antibacterial activity against Bacillus mycoides SJ14, Staphylococcus aureus SJ51, Escherichia coli SJ42, and Micrococcus luteus SJ47. This study suggests that the integrated approach of gene screening and chemical analysis is an effective strategy to find the target compounds and lays the basis for the production of phenazine from the sponge-associated actinobacteria. PMID:25820602

  7. MULTIDRUG RESISTANT GRAM NEGATIVE PATHOGENS ANTIBIOTIC PROFILE AND ITS EFFECTIVE CONTROL US ING SECONDARY METABOLITES FROM MARINE ACTINOBACTERIA

    Shanthi J

    2012-05-01

    Full Text Available Aim:To screen the spread ofresistance in ESBLs producer’s particularly non lactose fermenting gram negative Acinetobacter spp. andPseudomonas spp.and study antimicrobial activity with crude extract from novel marine actinomycetes in India. Methods:Fifty clinical isolates in a period of one year were processed and the antibiotic susceptibility was determined by double disk approximation test, the ESBLs production was screened with phenotypic confirmatory methodsusing disks of amikacin, meropenem, netilimicin, ciprofloxacin, gentamicin, tigecycline and piperacillinalong with cephalosporin disks. Antimicrobial activity of the crude extract was determined by agar plug method. Results:The isolates collected from different samples were found resistant to third and fourth generation cephalosporins. ESBL production was detected in 56 % to 66 % of the isolates, amikacin and netilmicin showed 50% to 60% resistance they were also found resistant to carbapenems,86% resistance wasobserved in Acinetobacter spp. Two strains PM21 and PM27selected from 24 actinobacterial isolates had zone of inhibition >21mm. Conclusion:A high level of antibiotic resistance was found in Acinetobacter spp.in our study and may reflect the scenario in India. Earlier detection and reporting of ESBL producers will help in treating individual cases and also in controlling the spread of these resistant genes to othersensitive nosocomial isolates. The medical need for new agents is most acute and the future of this work aims to identify one such novel compound from marine actinobacteria.

  8. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea

    Ettoumi, Besma

    2016-04-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n = 49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n = 22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  9. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. PMID:27242145

  10. Classification of thermophilic actinobacteria isolated from arid desert soils, including the description of Amycolatopsis deserti sp. nov.

    Busarakam, Kanungnid; Brown, Ros; Bull, Alan T; Tan, Geok Yuan Annie; Zucchi, Tiago D; da Silva, Leonardo José; de Souza, Wallace Rafael; Goodfellow, Michael

    2016-02-01

    The taxonomic position of 26 filamentous actinobacteria isolated from a hyper-arid Atacama Desert soil and 2 from an arid Australian composite soil was established using a polyphasic approach. All of the isolates gave the diagnostic amplification product using 16S rRNA oligonucleotide primers specific for the genus Amycolatopsis. Representative isolates had chemotaxonomic and morphological properties typical of members of the genus Amycolatopsis. 16S rRNA gene analyses showed that all of the isolates belong to the Amycolatopsis methanolica 16S rRNA gene clade. The Atacama Desert isolates were assigned to one or other of two recognised species, namely Amycolatopsis ruanii and Amycolatopsis thermalba, based on 16S rRNA gene sequence, DNA:DNA relatedness and phenotypic data; emended descriptions are given for these species. In contrast, the two strains from the arid Australian composite soil, isolates GY024(T) and GY142, formed a distinct branch at the periphery of the A. methanolica 16S rRNA phyletic line, a taxon that was supported by all of the tree-making algorithms and by a 100 % bootstrap value. These strains shared a high degree of DNA:DNA relatedness and have many phenotypic properties in common, some of which distinguished them from all of the constituent species classified in the A. methanolica 16S rRNA clade. Isolates GY024(T) and GY142 merit recognition as a new species within the A. methanolica group of thermophilic strains. The name proposed for the new species is Amycolatopsis deserti sp. nov.; the type strain is GY024(T) (=NCIMB 14972(T) = NRRL B-65266(T)). PMID:26809280

  11. Knoellia sinensis gen. nov., sp. nov. and Knoellia subterranea sp. nov., two novel actinobacteria isolated from a cave.

    Groth, Ingrid; Schumann, Peter; Schütze, Barbara; Augsten, Kurt; Stackebrandt, Erko

    2002-01-01

    Two novel strains of the class Actinobacteria were isolated from a cave in China. Cells of both strains were gram-positive, non-motile, non-spore-forming and not acid-fast and exhibited a rod/coccus growth cycle. Both isolates grew well on complex organic media under aerobic conditions. Their cell wall peptidoglycan contained meso-diaminopimelic acid as diagnostic diamino acid. The acyl type of the glycan chain of peptidoglycan was acetyl. The major respiratory quinone was MK-8(H4). The cellular fatty acid profile was characterized by the predominance of 13-methyltetradecanoic (i-C15:0), 15-methylhexadecanoic (i-C17:0), 14-methylpentadecanoic (i-C16:0) and 14-methylhexadecanoic (ai-C17:0) acids. The major polar lipids were phosphatidylethanolamine, phosphatidylinositol and diphosphatidylglycerol. Mycolic acids were absent. The DNA G+C composition was 68-69 mol%. 16S rDNA-based phylogenetic analysis revealed an intermediate phylogenetic position of the cave isolates between the genera Janibacter and Tetrasphaera, which did not permit their unambiguous affiliation to either genus. Differences in morphological, physiological and chemotaxonomic properties between the two isolates and their closest phylogenetic neighbours support the proposal of a new genus and two novel species, Knoellia sinensis gen. nov., sp. nov. and Knoellia subterranea sp. nov. The type and only strains of the species are respectively HKI 0119T (= DSM 12331T = CIP 106775T) and HKI 0120T (= DSM 12332T = CIP 106776T). PMID:11837319

  12. Caracterización de actinobacterias raras, degradadoras de lignocelulosa: demostración de actividad lacasa en dos aislados de tsukamurella sp y cellulosimicrobium sp

    Enrique Luis Revollo Escudero; Oriana Danuta Serna Daza; Jorge Hernández Torres

    2014-01-01

    Título en ingles: Characterization of lignocelluloses-degrading rare actinobacteria: Demostration of laccase activity in two isolates of Tsukamurella sp and Cellulosimicrobium sp Resumen: Las características fisicoquímicas de la lignina y su compactación con la celulosa han dificultado la explotación biotecnológica de enormes cantidades de biomasa vegetal. Las lacasas constituyen una subfamilia de oxidasas multicobre que intervienen en la despolimerización de la lignina. Si bien han sido ampl...

  13. Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity.

    Barczynska, Renata; Kapusniak, Janusz; Litwin, Mieczyslaw; Slizewska, Katarzyna; Szalecki, Mieczyslaw

    2016-06-01

    Unarguably, diet has a significant impact on human intestinal microbiota. The role of prebiotics as substances supporting the maintenance of appropriate body weight and reducing the demand for energy via stimulation of the growth of beneficial microbiota of the gut and formation products such as short-chain fatty acids, is more and more often highlighted. The objective of this study was to evaluate whether dextrins from maize starch resistant to enzymatic digestion stimulate the growth of Bacteroidetes and Actinobacteria strains representing a majority of the population of colon microbiota in lean individuals and limit the growth of Firmicutes bacterial strains representing a majority of the population of colon microbiota in obese individuals. The study was conducted with the use of in vitro method, using isolates from faeces of children characterized by normal weight, overweight and obesity. It was demonstrated that dextrins from maize starch equally efficient stimulate the growth of the isolates derived from normal-weight, overweight and obese children, and therefore may be added to foods as a beneficial component stimulating growth of strains belonging to Actinobacteria and Bacteroidetes for both overweight, obese and normal-weight children. PMID:27155867

  14. A Survey of Nucleotide Cyclases in Actinobacteria: Unique Domain Organization and Expansion of the Class III Cyclase Family in Mycobacterium tuberculosis

    Sandhya S. Visweswariah

    2004-01-01

    Full Text Available Cyclic nucleotides are well-known second messengers involved in the regulation of important metabolic pathways or virulence factors. There are six different classes of nucleotide cyclases that can accomplish the task of generating cAMP, and four of these are restricted to the prokaryotes. The role of cAMP has been implicated in the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis and Corynebacterium, and industrial organisms from the genus Streptomyces. We have analysed the actinobacterial genome sequences found in current databases for the presence of different classes of nucleotide cyclases, and find that only class III cyclases are present in these organisms. Importantly, prominent members such as M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded in their genomes, some of which display interesting domain fusions seen for the first time. In addition, a pseudogene corresponding to a cyclase from M. avium has been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase each, both of which have corresponding orthologues in M. tuberculosis. A clustering of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like, fungi-like and other bacteria-like class III cyclase sequences within this phylum, suggesting that these proteins may have significant roles to play in this important group of organisms.

  15. Distinct Spatial Patterns of SAR11, SAR86, and Actinobacteria Diversity along a Transect in the Ultra-oligotrophic South Pacific Ocean.

    West, Nyree J; Lepère, Cécile; Manes, Carmem-Lara de O; Catala, Philippe; Scanlan, David J; Lebaron, Philippe

    2016-01-01

    Distinct distribution patterns of members of the major bacterial clades SAR11, SAR86, and Actinobacteria were observed across a transect from the Marquesas islands through the ultra-oligotrophic South Pacific Gyre into the Chilean upwelling using 16S rRNA gene sequencing and RNA-DNA fingerprinting. Three different Actinobacteria sequence clusters belonging to "Candidatus Actinomarinidae" were localized in the western half of the transect, one was limited to the gyre deep chlorophyll maximum (DCM) and sequences affiliated to the OCS155 clade were unique to the upwelling. The structure of the surface bacterial community was highly correlated with water mass and remained similar across the whole central gyre (1300 nautical miles). The surface hyperoligotrophic gyre was dominated (>70% of all sequences) by highly diverse SAR11 and SAR86 operational taxonomic units and these communities were significantly different from those in the DCM. Analysis of 16S rRNA fingerprints generated from RNA allowed insights into the potential activity of assigned bacterial groups. SAR11 and Prochlorococcus showed the highest potential activity in all water masses except for the upwelling, accounting together for 65% of the total bacterial 16S rRNA in the gyre surface waters in equal proportions whereas the contribution of SAR11 decreased significantly at the DCM. PMID:27014192

  16. Caracterización de actinobacterias raras, degradadoras de lignocelulosa: demostración de actividad lacasa en dos aislados de Tsukamurella sp y Cellulosimicrobium sp

    Enrique Luis Revollo Escudero

    2014-01-01

    Full Text Available Título en ingles: Characterization of lignocelluloses-degrading rare actinobacteria: Demostration of laccase activity in two isolates of Tsukamurella sp and Cellulosimicrobium sp Resumen: Las características fisicoquímicas de la lignina y su compactación con la celulosa han dificultado la explotación biotecnológica de enormes cantidades de biomasa vegetal. Las lacasas constituyen una subfamilia de oxidasas multicobre que intervienen en la despolimerización de la lignina. Si bien han sido ampliamente caracterizadas en los hongos, los estudios de la diversidad y las funcionalidades de las lacasas en los procariotas se han centrado especialmente en isoformas enzimáticas de Streptomyces sp. En este trabajo se aislaron 20 cepas de actinobacterias del suelo. La actividad lacasa de 17 de ellas fue evidenciada en ensayos cualitativos con guayacol y dos cepas seleccionadas fueron caracterizadas en detalle. Las pruebas morfológicas y el análisis de las secuencias del gen 16S rRNA apuntan a que estos dos aislados pertenecen a los géneros Tsukamurella y Cellulosimicrobium. En cultivo sumergido con agitación, AC01 (Tsukamurella sp. expresó una máxima actividad de oxidación de ABTS (2,2’-azino-bis-(3-etilbenzotiazolin-6-sulfonato de 108 U/L. Por otra parte, AC18 (Cellulosimicrobium sp. que había exhibido una actividad oxidativa de guayacol superior a las 16 cepas restantes y demostró ser resistente a niveles tóxicos de cobre, logró un valor máximo de oxidación del ABTS de 0,56 U/L. Estos resultados sugieren que en el aislado AC18 operaría un fenómeno de especificidad de sustrato o de inductor, regulador de la expresión y de la actividad lacasa cuantificable. La caracterización genómica y funcional de las lacasas de nuevas actinobacterias lignocelulósicas ampliará la gama de centros redox con aplicaciones biotecnológicas específicas, además de facilitar el establecimiento de sus relaciones evolutivas con las eucariotas

  17. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens. PMID:20542109

  18. 印度洋红树林沉积物可培养海洋放线菌多样性及其活性%Diversity and bioactivities of culturable marine actinobacteria isolated from mangrove sediment in Indian Ocean

    何洁; 张道锋; 徐盈; 张晓梅; 唐蜀昆; 徐丽华; 李文均

    2012-01-01

    [目的]本研究旨在了解印度洋红树林沉积物可培养海洋放线菌多样性、抗菌活性及产酶活性.[方法]选用24种碳源为唯一能源培养基,利用稀释平板涂布方法对8个印度洋红树林沉积物样品进行分离,并基于16S rRNA基因系统发育分析的方法研究样品中海洋放线菌多样性;对分离得到的菌株进行抗菌活性和产酶活性检测.[结果]24种唯一碳源分离培养基中,非糖类碳源特别是甘油、丙氨酸分离效果最好,其次是多糖物质,最后是单糖.共分离得到521株海洋放线菌,经并菌后选取其中的139株代表性菌株测序,结果发现它们主要分布在放线菌纲7个亚目10个科的16个属,其中35个为潜在新种.有43.1%、33.3%、26.9%、25.5%、15.7%的实验菌株分别对枯草芽孢杆菌、白色念珠菌、大肠埃希氏菌、金黄色葡萄球菌、黑曲霉具有抑制作用;有36.5%、26.5%、22.4%、15.9%的实验菌株分别具有蛋白酶活性、纤维素酶活、淀粉酶活性、酯酶活性.[结论]印度洋红树林沉积物蕴藏着丰富的海洋放线菌资源,并具有较高生物活性,为后续工作提供良好的实验材料.%[Objective] In order to explore the diversity, antimicrobial activity and enzyme-producing activity of marine actinobacteria isolated from mangrove sediments in Indian Ocean. [Methods] Eight sediments collected from mangrove sediments in Indian Ocean were treated by the plate dilution method and spread on 24 isolation media only containing sole carbon source for energy. Marine actinobacteria were isolated and identified by 16S rRNA gene sequence analysis. The antimicrobial activity and enzyme-producing activity of isolated strains were further detected by spot planting method [Results] In total 139 representative strains were selected from 521 isolates, and they were further sequenced and performed phylogenetic analysis based on their 16S rRNA gene sequences. There were 35

  19. Diversity of integrating conjugative elements in actinobacteria

    Bordeleau, Eric; Ghinet, Mariana Gabriela; Burrus, Vincent

    2012-01-01

    Conjugation is certainly the most widespread and promiscuous mechanism of horizontal gene transfer in bacteria. During conjugation, DNA translocation across membranes of two cells forming a mating pair is mediated by two types of mobile genetic elements: conjugative plasmids and integrating conjugative elements (ICEs). The vast majority of conjugative plasmids and ICEs employ a sophisticated protein secretion apparatus called type IV secretion system to transfer to a recipient cell. Yet anoth...

  20. Competitive strategies differentiate closely related species of marine actinobacteria.

    Patin, Nastassia V; Duncan, Katherine R; Dorrestein, Pieter C; Jensen, Paul R

    2016-02-01

    Although competition, niche partitioning, and spatial isolation have been used to describe the ecology and evolution of macro-organisms, it is less clear to what extent these principles account for the extraordinary levels of bacterial diversity observed in nature. Ecological interactions among bacteria are particularly challenging to address due to methodological limitations and uncertainties over how to recognize fundamental units of diversity and link them to the functional traits and evolutionary processes that led to their divergence. Here we show that two closely related marine actinomycete species can be differentiated based on competitive strategies. Using a direct challenge assay to investigate inhibitory interactions with members of the bacterial community, we observed a temporal difference in the onset of inhibition. The majority of inhibitory activity exhibited by Salinispora arenicola occurred early in its growth cycle and was linked to antibiotic production. In contrast, most inhibition by Salinispora tropica occurred later in the growth cycle and was more commonly linked to nutrient depletion or other sources. Comparative genomics support these differences, with S. arenicola containing nearly twice the number of secondary metabolite biosynthetic gene clusters as S. tropica, indicating a greater potential for secondary metabolite production. In contrast, S. tropica is enriched in gene clusters associated with the acquisition of growth-limiting nutrients such as iron. Coupled with differences in growth rates, the results reveal that S. arenicola uses interference competition at the expense of growth, whereas S. tropica preferentially employs a strategy of exploitation competition. The results support the ecological divergence of two co-occurring and closely related species of marine bacteria by providing evidence they have evolved fundamentally different strategies to compete in marine sediments. PMID:26241505

  1. Mycelial actinobacteria in salt-affected soils of arid territories of Ukraine and Russia

    Grishko, V. N.; Syshchikova, O. V.; Zenova, G. M.; Kozhevin, P. A.; Dubrova, M. S.; Lubsanova, D. A.; Chernov, I. Yu.

    2015-01-01

    A high population density (up to hundreds of thousands or millions CFU/g soil) of mycelial bacteria (actinomycetes) is determined in salt-affected soils of arid territories of Ukraine, Russia, and Turkmenistan. Of all the studied soils, the lowest amounts of actinomycetes (thousands and tens of thousands CFU/g soil) are isolated from sor (playa) and soda solonchaks developed on the bottoms of drying salt lakes in Buryatia and in the Amu Darya Delta. Actinomycetes of the Streptomyces, Micromonospora, and Nocardiopsis genera were recorded in the studied soils. It is found that conditions of preincubation greatly affect the activity of substrate consumption by the cultures of actinomycetes. This could be attributed to changes in the metabolism of actinomycetes as a mechanism of their adaptation to the increased osmotic pressure of the medium. The alkali tolerance of halotolerant actinomycetes isolated from the salt-affected soils is experimentally proved.

  2. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes

    Sghaier, Haïtham

    2015-06-30

    The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could provide important insight into their adaptation mechanisms. Here we report the detailed comparative genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geodermatophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation to these niches can be achieved through various strategies including ‘molecular tinkering/opportunism’ as shown by the high proportion of lost, duplicated or horizontally transferred genes and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors. Proteomic data corroborated previously demonstrated stone-related ecological distribution. For instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as signatures of the microbes associated with the interior, surface and outside of stones, respectively.

  3. Micromonospora endophytica sp. nov., an endophytic actinobacteria of Thai upland rice (Oryza sativa).

    Thanaboripat, Dusanee; Thawai, Chitti; Kittiwongwattana, Chokchai; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak

    2015-11-01

    An actinobacterial strain, DCWR9-8-2(T), was isolated from a leaf of Thai upland rice (Oryza sativa) collected in Chumporn province, Thailand. Strain DCWR9-8-2(T) is Gram-stain-positive aerobic bacteria that produce single spores directly on the vegetative hypha. Cell wall peptidoglycan of this strain exhibits meso-diaminopimelic acid and glycine, the reducing sugars of whole-cell hydrolysate are arabinose, glucose, ribose, xylose and small amount of mannose. The phospholipid profiles in the membrane are comprised of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides. The major menaquinones are MK-9(H4) and MK-10(H6). The diagnostic cellular fatty acids are iso-C16:0 and iso-C15:0. The G+C content of the genomic DNA is 72.5 mol%. The result of 16S rRNA sequence analysis of the strain revealed that this strain was closely related to Micromonospora auratinigra TT1-11(T) (99.25%). On the other hand, the result of gyrB gene sequence analysis revealed that this strain was closed to M. eburnea JCM 12345(T) (96.30%). In addition, a combination of DNA-DNA hybridization results and some phenotypic properties supported that this strain should be judged as a novel species of the genus Micromonospora, for which the name M. endophytica sp. nov. is proposed. The type strain is DCWR9-8-2(T) (=BCC 67267(T)=NBRC 110008(T)). PMID:25966850

  4. Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture

    Pernthaler, J.; Posch, T.; Šimek, Karel; Vrba, Jaroslav; Pernthaler, A.; Glöckner, F. O.; Nübel, U.; Psenner, R.; Amann, R.

    2001-01-01

    Roč. 67, č. 5 (2001), s. 2145-2155. ISSN 0099-2240 R&D Projects: GA ČR GA206/99/0028 Grant ostatní: ANB(AT) OENB6513; AKTION(AT) 23P5 Keywords : protistan bacterivory * Cyclidium glaucoma * Ochromonas sp. Subject RIV: EE - Microbiology, Virology Impact factor: 3.688, year: 2001

  5. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes.

    Sghaier, Haïtham; Hezbri, Karima; Ghodhbane-Gtari, Faten; Pujic, Petar; Sen, Arnab; Daffonchio, Daniele; Boudabous, Abdellatif; Tisa, Louis S; Klenk, Hans-Peter; Armengaud, Jean; Normand, Philippe; Gtari, Maher

    2016-01-01

    The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could provide important insight into their adaptation mechanisms. Here we report the detailed comparative genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geodermatophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation to these niches can be achieved through various strategies including 'molecular tinkering/opportunism' as shown by the high proportion of lost, duplicated or horizontally transferred genes and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors. Proteomic data corroborated previously demonstrated stone-related ecological distribution. For instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as signatures of the microbes associated with the interior, surface and outside of stones, respectively. PMID:26125681

  6. Predator-Specific Enrichment of Actinobacteria from a Cosmopolitan Freshwater Clade in Mixed Continuous Culture

    Pernthaler, Jakob; Posch, Thomas; S̆imek, Karel; Vrba, Jaroslav; Pernthaler, Annelie; Glöckner, Frank Oliver; Nübel, Ulrich; Psenner, Roland; Amann, Rudolf

    2001-01-01

    We investigated whether individual populations of freshwater bacteria in mixed experimental communities may exhibit specific responses to the presence of different bacterivorous protists. In two successive experiments, a two-stage continuous cultivation system was inoculated with nonaxenic batch cultures of the cryptophyte Cryptomonas sp. Algal exudates provided the sole source of organic carbon for growth of the accompanying microflora. The dynamics of several 16S rRNA-defined bacterial popu...

  7. Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India

    Dastager, S.G.; Damare, S.R.

    Sci.12, 213–217. 29. Whitelaw M.A., Harden T.J., Heylar K.R., 1999, Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol.Biochem. 31, 655-665. 30. Widawati S., Suliasih., Latupuapua H.J.D., Sugiharto A...

  8. Antiviral Activity of Marine Actinobacteria against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Juliana Cristina Santiago Bastos

    2015-12-01

    Full Text Available The Hepatitis C virus (Flaviviridae family, Hepacivirus genus represents a major public health problem worldwide and it is responsible for chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. As this virus does not replicate efficiently in cell culture and in animals, bovine viral diarrhea virus (BVDV is used as a surrogate model for screening assays of antiviral activity, and mechanism of action assays. From marine invertebrates and their microorganisms isolated, we prepared extracts and fractions, and we isolated substances for assessment of their possible antiviral activity. Of the 71 tested, seven were considered promising presenting protection percentage of more than 80%. The best inhibition results were obtained from the extracts produced by the Gordonia bacteria samples with 99.9% inhibition and by Micrococcus with 99% inhibition. Furthermore, most of the extracts selected by the protection percentage showed selectivity index values considered promising, especially the extracts of the bacteria Williansia (SI=27 and Brachybacterium (SI=39. On the action mechanism, most of the promising extracts showed activity in the inhibition of intracellular replication steps, although it has been observed action of different extracts in several stages of viral replicative cycle. Thus, various extracts stood out and may lead to the development of drugs that ensure an alternative therapy for the treatment of hepatitis C.

  9. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7.

    Sineli, P E; Tortella, G; Dávila Costa, J S; Benimeli, C S; Cuozzo, S A

    2016-05-01

    The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and β-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and β-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and β-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and β-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers. PMID:27038951

  10. USE OF AGRICULTURAL WASTES FOR BIOMASS PRODUCTION OF THE PLANT GROWTH PROMOTER ACTINOBACTERIA, Streptomyces sp. MCR26

    Iván Ávila-Cortes

    2014-10-01

    Full Text Available The use of agricultural wastes for plant growth promoting rhizobacteria (PGPR biomass production has not been widely explored. This study focuses on the development a culture medium for PGPR Streptomyces sp. MCR26, evaluating the influence of carnation harvest waste, yeast extract and ammonium sulfate on biomass production, as well as, the effect of biomass produced in the designed culture medium on the maintenance of PGPR MCR26 traits. The experiments were conducted by a full factorial design, varying nutritional sources concentrations, with duplicate experiments at the central point. Yeast extract and carnation harvest waste were the most influential factors, showing a positive effect on biomass production. The statistical model predicted optimal conditions for maximal biomass production at 20.0 g/L carnation harvest waste and 4.0 g/L yeast extract. Shake flask validation experiments resulted in 8.087 g/L of MCR26 biomass, 80.6% higher compared to carboxymetil cellulose (CMC broth. MCR26 biomass produced on designed culture medium enhanced hydroxamate production, and maintained phosphatases and indole-3-acetic acid synthesis. In addition, white clover inoculated plants presented higher shoot biomass accumulation compared to control treatment; nevertheless, there were no effects on seed germination. These results demonstrated that the designed culture medium effectively induced Streptomyces sp. MCR26 biomass production and maintained its plant growth promotion traits.

  11. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    Marina Aiello Padilla

    2015-01-01

    Full Text Available Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV. Two bacterial strains were identified as active, with percentages of inhibition (IP equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  12. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition

    Wang, Cheng; Dong, Da; Wang, Haoshu; Müller, Karin; Qin, Yong; Wang, Hailong; Wu, Weixiang

    2016-01-01

    Background Compost habitats sustain a vast ensemble of microbes specializing in the degradation of lignocellulosic plant materials and are thus important both for their roles in the global carbon cycle and as potential sources of biochemical catalysts for advanced biofuels production. Studies have revealed substantial diversity in compost microbiomes, yet how this diversity relates to functions and even to the genes encoding lignocellulolytic enzymes remains obscure. Here, we used a metagenom...

  13. Modestobacter caceresii sp. nov., novel actinobacteria with an insight into their adaptive mechanisms for survival in extreme hyper-arid Atacama Desert soils.

    Busarakam, Kanungnid; Bull, Alan T; Trujillo, Martha E; Riesco, Raul; Sangal, Vartul; van Wezel, Gilles P; Goodfellow, Michael

    2016-06-01

    A polyphasic study was designed to determine the taxonomic provenance of three Modestobacter strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates KNN 45-1a, KNN 45-2b(T) and KNN 45-3b, were shown to have chemotaxonomic and morphological properties in line with their classification in the genus Modestobacter. The isolates had identical 16S rRNA gene sequences and formed a branch in the Modestobacter gene tree that was most closely related to the type strain of Modestobacter marinus (99.6% similarity). All three isolates were distinguished readily from Modestobacter type strains by a broad range of phenotypic properties, by qualitative and quantitative differences in fatty acid profiles and by BOX fingerprint patterns. The whole genome sequence of isolate KNN 45-2b(T) showed 89.3% average nucleotide identity, 90.1% (SD: 10.97%) average amino acid identity and a digital DNA-DNA hybridization value of 42.4±3.1 against the genome sequence of M. marinus DSM 45201(T), values consistent with its assignment to a separate species. On the basis of all of these data, it is proposed that the isolates be assigned to the genus Modestobacter as Modestobacter caceresii sp. nov. with isolate KNN 45-2b(T) (CECT 9023(T)=DSM 101691(T)) as the type strain. Analysis of the whole-genome sequence of M. caceresii KNN 45-2b(T), with 4683 open reading frames and a genome size of ∽4.96Mb, revealed the presence of genes and gene-clusters that encode for properties relevant to its adaptability to harsh environmental conditions prevalent in extreme hyper arid Atacama Desert soils. PMID:27108251

  14. Diversity of actinobacteria associated with coral Porites lutea and Galaxea fascicularis%澄黄滨珊瑚和丛生盔型珊瑚非培养放线菌多样性

    陈淇; 龙丽娟; 张偲; 董俊德; 李洁

    2014-01-01

    [目的]研究澄黄滨珊瑚(Porites lutea)和丛生盔型珊瑚(Galaxea fascicularis)联合放线菌物种多样性.[方法]实验提取两种珊瑚的总DNA,利用放线菌特异性引物对样品总DNA进行扩增,通过构建16S rRNA基因克隆文库和系统发育分析,对三亚鹿回头岸礁区优势物种澄黄滨珊瑚和丛生盔型珊瑚联合放线菌的多样性和群落结构进行研究.[结果]118个从澄黄滨珊瑚克隆文库中随机挑选的阳性克隆子归为58个OTUs,主要分布于酸微菌亚目、棒状杆菌亚目、微球菌亚目、丙酸杆菌亚目和未知类群.丛生盔型珊瑚克隆文库共获得96个序列,归为31个OTUs,主要分布于酸微菌亚目和未知的放线菌类群.多样性指数和稀疏度曲线分析结果显示澄黄滨珊瑚联合放线菌物种多样性比丛生盔型珊瑚更高.[结论]澄黄滨珊瑚和丛生盔型珊瑚拥有较高水平的放线菌物种多样性和复杂的群落结构,并隐藏着大量的高等级放线菌新分类单元.

  15. 两种南海海绵放线菌的分离和培养研究%Isolating Actinobacteria from Two Marine Sponges of the South China Sea

    欧阳永长; 梁梓添; 姚雅琪; 冯颖; 王鹏飞

    2014-01-01

    利用3种培养基对两种南海海绵Axinyssa和Halichondria共附生的放线菌(Actinobacterid)进行分离和培养,共得到41个放线菌菌株,分别属于Brachybaste rium、Janibacter、Dermacoccus、Brevibacterium、Saccharomonospora、A rthrobacter、Micromonospora、Tsukamurella和Streptomyces 9个属的14个种,其中Y12和Y13为候选新种属.这些放线菌能抑制金黄色葡萄球菌、大肠杆菌和枯草芽孢杆菌的生长,其分子方法显示这些放线菌具有产生聚酮类化合物和非核糖体多肽的潜力.

  16. Ectosymbionts and immunity in the leaf-cutting ant Acromyrmex subterraneus subterraneus.

    de Souza, Danival José; Lenoir, Alain; Kasuya, Maria Catarina Megumi; Ribeiro, Myriam Marques Ramos; Devers, Séverine; Couceiro, Joel da Cruz; Della Lucia, Terezinha Maria Castro

    2013-02-01

    Associations with symbiotic organisms can serve as a strategy for social insects to resist pathogens. Antibiotics produced by attine ectosymbionts (Actinobacteria) suppress the growth of Escovopsis spp., the specialized parasite of attine fungus gardens. Our objective was to evaluate whether the presence or absence of symbiotic actinobacteria covering the whole ant cuticle is related to differential immunocompetence, respiratory rate and cuticular hydrocarbons (CHs). We evaluated these parameters in three worker groups of Acromyrmex subterraneus subterraneus: External workers (EXT), internal workers with actinobacteria covering the whole body (INB) and internal workers without actinobacteria covering the whole body (INØ). We also eliminated the actinobacteria by antibiotic treatment and examined worker encapsulation response. INB ants showed lower rates of encapsulation and respiration than did the EXT and INØ ants. The lower encapsulation rate did not seem to be a cost imposed by actinomycetes because the elimination of the actinomycetes did not increase the encapsulation rate. Instead, we propose that actinobacteria confer protection to young workers until the maturation of their immune system. Actinobacteria do not seem to change nestmate recognition in these colonies. Although it is known that actinobacteria have a specific action against Escovopsis spp., our studies, along with other independent studies, indicate that actinomycetes may also be important for the individual health of the workers. PMID:23207105

  17. Reassessment of the Lineage Fusion Hypothesis for the Origin of Double Membrane Bacteria

    Swithers, Kristen S.; Fournier, Gregory P.; Anna G Green; Gogarten, J. Peter; Lapierre, Pascal

    2011-01-01

    In 2009, James Lake introduced a new hypothesis in which reticulate phylogeny reconstruction is used to elucidate the origin of Gram-negative bacteria (Nature 460: 967–971). The presented data supported the Gram-negative bacteria originating from an ancient endosymbiosis between the Actinobacteria and Clostridia. His conclusion was based on a presence-absence analysis of protein families that divided all prokaryotes into five groups: Actinobacteria, Double Membrane bacteria (DM), Clostridia, ...

  18. Aquatic model for engine oil degradation by rhamnolipid producing Nocardiopsis VITSISB

    Roy, Suki; Chandni, Shreta; Das, Ishita; Karthik, Loganathan; Kumar, Gaurav; Bhaskara Rao, Kokati Venkata

    2014-01-01

    The present study was focused on isolation, screening, characterization and application of biosurfactant producing marine actinobacteria. Twenty actinobacteria were isolated from marine water sample and were primarily screened for biosurfactant production using hemolytic activity method. Among the 20 isolates, six showed positive result for hemolytic activity and those were taken for further secondary screening tests such as oil collapse method, oil spreading method and emulsification method....

  19. Ectosymbionts and immunity in the leaf-cutting ant Acromyrmex subterraneus subterraneus

    José De Souza, Danival; Lenoir, Alain; Megumi Kasuya, Maria Catarina; Marques Ramos Ribeiro, Myriam; Devers, Séverine; Couceiro, Joel da Cruz; Castro Della Lucia, Terezinha Maria

    2012-01-01

    International audience Associations with symbiotic organisms can serve as a strategy for social insects to resist pathogens. Antibiotics produced by attine ectosymbionts (Actinobacteria) suppress the growth of Escovopsis spp., the specialized parasite of attine fungus gardens. Our objective was to evaluate whether the presence or absence of symbiotic actinobacteria covering the whole ant cuticle is related to differential immunocompetence, respiratory rate and cuticular hydrocarbons (CHs)....

  20. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions

    Riquelme, Cristina; Marshall Hathaway, Jennifer J.; Enes Dapkevicius, Maria de L. N.; Miller, Ana Z.; Kooser, Ara; Northup, Diana E.; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in

  1. Phylogenetic diversity of culturable bacteria in surface seawater from the Drake Passage, Antarctica

    Li, Zhao; Xing, Mengxin; Wang, Wei; Wang, Dan; Zhu, Jiancheng; Sun, Mi

    2016-01-01

    The Drake Passage is located between the Antarctic Peninsula and Tierra del Fuego in the south of South America. Surface seawater samples were collected at seven sites in the Drake Passage during the austral summer of 2012. The 16S rRNA sequences were analyzed from 187 isolated bacterial strains. Three phyla, 29 genera and 56 species were identified. The three phyla were Actinobacteria, Firmicutes and Proteobacteria; the Proteobacteria included α-Proteobacteria, β-Proteobacteria and γ-Proteobacteria. γ-Proteobacteria, Actinobacteria and Firmicutes were the dominant class or phyla in terms of quantity and species. Gram-positive bacteria (Actinobacteria and Firmicutes) accounted for 57.8% of all types identified. There were nine dominant genera, including Curtobacterium, Staphylococcus, and Halomonas, and 14 dominant species including Curtobacterium flaccumfaciens, Curtobacterium pusillum, and Staphylococcus sciuri. Of the strains identified, 87.2% were catalase positive or weakly positive.

  2. Structural-functional specificity of the complexes of psychrotolerant soil actinomycetes

    Zenova, G. M.; Dubrova, M. S.; Zvyagintsev, D. G.

    2010-04-01

    The active growth and development of psychrotolerant actinomycetes take place in peat and podzolic soils of the tundra and taiga at temperatures below 10°C. The population density of psychrotolerant mycelial prokaryotes in these soils reaches thousands and tens of thousands of CFU/g of soil, and the length of their mycelium is up to 380 m/g of soil. The application of fluorescent in situ hybridization (the FISH method) demonstrated that the metabolically active psychrotolerant representatives of the phylogenetic group of Actinobacteria comprise up to 30% of the total number of bacteria in prokaryotic microbial communities of oligotrophic peat bog and podzolic soils. The portion of metabolically active mycelial actinobacteria exceeds the portion of unicellular actinobacteria. Psychrotolerant streptomycetes isolated from peat bog soils possess pectinolytic, amylolytic, and antagonistic activities at low temperatures (5°C).

  3. Phylogenetic diversity of culturable bacteria in surface seawater from the Drake Passage, Antarctica

    Li, Zhao; Xing, Mengxin; Wang, Wei; Wang, Dan; Zhu, Jiancheng; Sun, Mi

    2016-09-01

    The Drake Passage is located between the Antarctic Peninsula and Tierra del Fuego in the south of South America. Surface seawater samples were collected at seven sites in the Drake Passage during the austral summer of 2012. The 16S rRNA sequences were analyzed from 187 isolated bacterial strains. Three phyla, 29 genera and 56 species were identified. The three phyla were Actinobacteria, Firmicutes and Proteobacteria; the Proteobacteria included α-Proteobacteria, β-Proteobacteria and γ-Proteobacteria. γ-Proteobacteria, Actinobacteria and Firmicutes were the dominant class or phyla in terms of quantity and species. Gram-positive bacteria (Actinobacteria and Firmicutes) accounted for 57.8% of all types identified. There were nine dominant genera, including Curtobacterium, Staphylococcus, and Halomonas, and 14 dominant species including Curtobacterium flaccumfaciens, Curtobacterium pusillum, and Staphylococcus sciuri. Of the strains identified, 87.2% were catalase positive or weakly positive.

  4. EFFECTS OF CARBON SOURCE TO RESISTANCE OF HEAVY METALS OF OIL-DESTUCTIVE STRAINS ACTINOBACTERIA USED FOR BIOREMEDIATION Влияние источника углерода на устойчивость к тяжёлым металлам штаммов нефтеокисляющих актинобактерий, используемых в процессах биоремедиации

    Khudokormov A. A.

    2012-11-01

    Full Text Available We studied the resistance of the eight strains of oil-destructive actinomycetes, isolated from the oil-contaminated ecosystems to heavy metal salts when cultivatiwng with different carbon sources. Furthermore we researched feasibility to use those microorganisms for bioremediation of oil- contaminated sites with high level of heavy metals

  5. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Michael Poulsen

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  6. Isolation of Bacterial Strains Capable of Sulfamethoxazole Mineralization from an Acclimated Membrane Bioreactor

    Bouju, H.; Ricken, B.; Beffa, T; Corvini, P. F.- X.; Kolvenbach, B.A.

    2011-01-01

    In this study, we isolated five strains capable of degrading 14C-labeled sulfamethoxazole to 14CO2 from a membrane bioreactor acclimatized to sulfamethoxazole, carbamazepine, and diclofenac. Of these strains, two belonged to the phylum Actinobacteria, while three were members of the Proteobacteria.

  7. Genome Sequence of "Candidatus Microthrix parvicella" Bio17-1, a Long-Chain-Fatty-Acid-Accumulating Filamentous Actinobacterium from a Biological Wastewater Treatment Plant

    Muller, Emilie; Pinel, Nicolás; Gillece, John D.; Schupp, James M.; Lance B Price; Engelthaler, David M.; Levantesi, Caterina; Tandoi, Valter; Luong, Kkai; Baliga, Nitin S.; Korlach, Jonas; Keim, Paul S.; Wilmes, Paul

    2012-01-01

    “Candidatus Microthrix” bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: “Candidatus Microthrix parvicella” strain Bio17-1.

  8. Bacterial diversity and abundance of a creek valley sites reflected soil pH and season

    Ságová-Marečková, M.; Čermák, L.; Omelka, M.; Kyselková, Martina; Kopecký, J.

    2015-01-01

    Roč. 10, č. 1 (2015), s. 61-70. ISSN 2391-5412 Grant ostatní: GA AV ČR(CZ) IAA603020901 Institutional support: RVO:60077344 Keywords : bacterial communities * actinobacteria * OM quantity and quality * T-RFLP Subject RIV: EE - Microbiology, Virology

  9. Draft Genome Sequence of Frankia sp. Strain BMG5.23, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina glauca Grown in Tunisia.

    Ghodhbane-Gtari, Faten; Hurst, Sheldon G; Oshone, Rediet; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Ktari, Amir; Salem, Karima; Gtari, Maher; Tisa, Louis S

    2014-01-01

    Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.27-Mbp draft genome sequence for Frankia sp. strain BMG5.23, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casuarina glauca collected in Tunisia. PMID:24874687

  10. Draft Genome Sequence of Frankia sp. Strain Thr, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina cunninghamiana Grown in Egypt

    Hurst, Sheldon G.; Oshone, Rediet; Ghodhbane-Gtari, Faten; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Ktari, Amir; Salem, Karima; Mansour, Samira; Gtari, Maher; Tisa, Louis S.

    2014-01-01

    Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.3-Mbp draft genome sequence for Frankia sp. stain Thr, a nitrogen-fixing actinobacterium isolated from root nodules of Casuarina cunninghamiana collected in Egypt.

  11. Draft Genome Sequence of Frankia sp. Strain Thr, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina cunninghamiana Grown in Egypt.

    Hurst, Sheldon G; Oshone, Rediet; Ghodhbane-Gtari, Faten; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Ktari, Amir; Salem, Karima; Mansour, Samira; Gtari, Maher; Tisa, Louis S

    2014-01-01

    Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.3-Mbp draft genome sequence for Frankia sp. stain Thr, a nitrogen-fixing actinobacterium isolated from root nodules of Casuarina cunninghamiana collected in Egypt. PMID:24855310

  12. Draft Genome Sequence of Frankia sp. Strain BMG5.23, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina glauca Grown in Tunisia

    Ghodhbane-Gtari, Faten; Hurst, Sheldon G.; Oshone, Rediet; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Ktari, Amir; Salem, Karima; Gtari, Maher; Tisa, Louis S.

    2014-01-01

    Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.27-Mbp draft genome sequence for Frankia sp. strain BMG5.23, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casuarina glauca collected in Tunisia.

  13. A roadmap for natural product discovery based on large-scale genomics and metabolomics

    Actinobacteria encode a wealth of natural product biosynthetic gene clusters, whose systematic study is complicated by numerous repetitive motifs. By combining several metrics we developed a method for global classification of these gene clusters into families (GCFs) and analyzed the biosynthetic ca...

  14. .i.Candidatus./i. Planktophila limnetica, an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton

    Jezbera, Jan; Sharma, A. K.; Brandt, U.; Doolittle, W.F.; Hahn, M.W.

    2009-01-01

    Roč. 59, č. 11 (2009), s. 2864-2869. ISSN 1466-5026 Institutional research plan: CEZ:AV0Z60170517 Keywords : Actinobacteria * Planktophila * freshwater * bacterioplankton Subject RIV: EE - Microbiology, Virology Impact factor: 2.113, year: 2009

  15. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing

    Mehetre, Gajanan T.; Paranjpe, Aditi; Dastager, Syed G.; Dharne, Mahesh S.

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche.

  16. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p Brevibacterium antiquum strain VKM Ac-2118 (AY243344), with 98-99% sequence identity. This species is also a member of the phylum Actinobacteria and was originally isolated from Siberian permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample. PMID:25843055

  17. Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequences

    Rasmussen, L D; Zawadsky, C; Binnerup, S J;

    2008-01-01

    sequencing of merA of selected isolates led to the discovery of new merA sequences. With phylum-specific merA primers, PCR products were obtained for Alpha- and Betaproteobacteria and Actinobacteria but not for Bacteroidetes and Firmicutes. The similarity to known sequences ranged between 89 and 95%. One of...

  18. Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats

    Jezberová, Jitka; Jezbera, Jan; Hahn, M.W.

    2013-01-01

    Roč. 8, č. 7 (2013), e68542. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GEEEF/10/E011 Institutional support: RVO:60077344 Keywords : actinobacteria * bacteria * bacterioplankton * diversity * sequences * lakes Subject RIV: EE - Microbiology, Virology Impact factor: 3.534, year: 2013

  19. Cell division in Corynebacterineae

    CatrionaDonovan

    2014-04-01

    Full Text Available Bacterial cells must coordinate a number of events during the cell cycle. Spatio-temporal regulation of bacterial cytokinesis is indispensable for the production of viable, genetically identical offspring. In many rod-shaped bacteria, precise midcell assembly of the division machinery relies on inhibitory systems such as Min and Noc. In rod-shaped Actinobacteria, for example Corynebacterium glutamicum and Mycobacterium tuberculosis, the divisome assembles in the proximity of the midcell region, however more spatial flexibility is observed compared to Escherichia coli and Bacillus subtilis. Actinobacteria represent a group of bacteria that spatially regulate cytokinesis in the absence of recognizable Min and Noc homologs. The key cell division steps in E. coli and B. subtilis have been subject to intensive study and are well understood. In comparison, only a minimal set of positive and negative regulators of cytokinesis are known in Actinobacteria. Nonetheless, the timing of cytokinesis and the placement of the division septum is coordinated with growth as well as initiation of chromosome replication and segregation. We summarize here the current knowledge on cytokinesis and division site selection in the Actinobacteria suborder Corynebacterineae.

  20. Bacterial Community Responses to Soils along a Latitudinal and Vegetation Gradient on the Loess Plateau, China.

    Zeng, Quanchao; Dong, Yanghong; An, Shaoshan

    2016-01-01

    Soil bacterial communities play an important role in nutrient recycling and storage in terrestrial ecosystems. Loess soils are one of the most important soil resources for maintaining the stability of vegetation ecosystems and are mainly distributed in northwest China. Estimating the distributions and affecting factors of soil bacterial communities associated with various types of vegetation will inform our understanding of the effect of vegetation restoration and climate change on these processes. In this study, we collected soil samples from 15 sites from north to south on the Loess Plateau of China that represent different ecosystem types and analyzed the distributions of soil bacterial communities by high-throughput 454 pyrosequencing. The results showed that the 142444 sequences were grouped into 36816 operational taxonomic units (OTUs) based on 97% similarity. The results of the analysis showed that the dominant taxonomic phyla observed in all samples were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes. Actinobacteria and Proteobacteria were the two most abundant groups in all samples. The relative abundance of Actinobacteria increased from 14.73% to 40.22% as the ecosystem changed from forest to sandy, while the relative abundance of Proteobacteria decreased from 35.35% to 21.40%. Actinobacteria and Proteobacteria had significant correlations with mean annual precipitation (MAP), pH, and soil moisture and nutrients. MAP was significantly correlated with soil chemical and physical properties. The relative abundance of Actinobacteria, Proteobacteria and Planctomycetes correlated significantly with MAP, suggesting that MAP was a key factor that affected the soil bacterial community composition. However, along with the MAP gradient, Chloroflexi, Bacteroidetes and Cyanobacteria had narrow ranges that did not significantly vary with the soil and environmental factors. Overall, we conclude that the edaphic properties and/or vegetation

  1. A potent fish pathogenic bacterial killer Streptomyces sp. isolated from the soils of east coast region, South India

    Durairaj Thirumurugan; Ramasamy Vijayakumar

    2013-01-01

    Objective: To investigate the potentiality of the marine actinobacteria isolated from marine soil against fish pathogenic bacteria.Methods:east coast region (ECR) of Tamilnadu, South India. Then they were used for the isolation of actinobacteria by using conventional serial dilution technique on starch casein agar medium. The antibacterial activities of the actinobacteria were screened primarily by using cross streak plate method against fish pathogenic bacteria namely Vibrio alginolyticus, Vibrio parahaemolyticus,Vibrio cholera, Aeromonas sp. and Pseudomonas sp. The antimicrobial efficacy of the selected isolates was carried out with various organic solvents, and finally the active compound was subjected to chromatographic techniques including TLC and GC-MS.Results:In the present study, a total of 33 soil samples were collected from the Bay of Bengal, against fish pathogenic bacteria. Out of 21 antibacterial isolates, the isolate ECR77 was selected for further study based on its potential activity against fish pathogenic bacteria. Of the various solvents tested, the ethyl acetate extract had good antibacterial activity against the tested bacterial pathogens. The isolate ECR77 grew well on oat meal agar medium with 2% salt level at 35 °C. GC-MS study found that the presence of bioactive compounds namely tetradecanoic acid,n-hexadecanoic acid and octadecanoic acid. The morphological, physiological, biochemical and cultural characteristics of the potential isolate were supported the identity up to generic level asStreptomyces sp. ECR77. Conclusions: The results obtained from this study concludes that the ECR soils of South India is a hot spot of novel bioactive compound producing marine actinobacteria with great pharmaceutical values. Of the 82 actinobacteria isolated, 21 (26%) isolates were possessed antibacterial activity.

  2. [Taxonomical status of the psychrotolerant Antarctic microorganisms].

    Romanovskaia, V A; Gladka, G V; Tashireva, A A; Tashirev, A B

    2013-01-01

    The aerobic chemoorganotrophic bacteria, dominating in soils and phytocenosis of the Antarctic Region, on combination of morphological and biochemical properties belong to several taxons of Bacteria domain. Gram-negative strains 3189, 3415 (fam. Halomonadaceae, Halomonas sp.) and 3088, 3468, 3469 (fam. Moraxellaceae, Psychrobacter sp.) belong to phylum Proteobacteria, to class Gammaproteobacteria. Gram-negative strains 3294 3392 (Rhizobiales, fam. Methylobacteriaceae, Methylobacterium sp.) relate to class Alphaproteobacteria of this phylum. Gram-positive strains 3179, 3275, 3470, 3471 (fam. Microbacteriaceae, Cryobacterium sp.), 3054, 3058, 3411 (fam. Corynebacteriaceae, Corynebacterium sp.) and 3194, 3398 (fam. Micrococcaceae, Micrococcus sp.) relate to phylum Actinobacteria, class Actinobacteria. Thus, the psychrophilic and psychrotolerant Antarctic bacteria (aerobic chemoorganotrophic) isolated from phytocenosis and soils of polar region are characterized by wide taxonomic variety. PMID:24450178

  3. Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion

    Thomas D. Burleigh

    2014-06-01

    Full Text Available Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC. In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS, then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM. The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water.

  4. Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme.

    Jullie M Sarmiento-Ramírez

    Full Text Available Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species.

  5. Complete genome sequence of Coriobacterium glomerans type strain (PW2T) from the midgut of Pyrrhocoris apterus L. (red soldier bug)

    Stackebrandt, Erko [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chang, Yun-Juan [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2013-01-01

    Coriobacterium glomerans Haas and Ko nig 1988, is the only species of the genus Coriobacterium, family Coriobacteriaceae, order Coriobacteriales, phylum Actinobacteria. The bacterium thrives as an endosymbiont of pyrrhocorid bugs, i.e. the red fire bug Pyrrhocoris apterus L. The rationale for sequencing the genome of strain PW2T is its endosymbiotic life style which is rare among members of Actinobacteria. Here we describe the features of this symbiont, together with the complete genome sequence and its annotation. This is the first complete genome sequence of a member of the genus Coriobacterium and the sixth member of the order Coriobacteriales for which complete genome sequences are now available. The 2,115,681 bp long single replicon genome with its 1,804 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. New insight into influence of mechanical stirring on membrane fouling of membrane bioreactor: Mixed liquor properties and hydrodynamic conditions.

    Qi, Chao; Wang, Jinnan; Lin, Yaohua

    2016-07-01

    Although membrane bioreactor is widely used in wastewater treatment, the problem of membrane fouling remains to be resolved. This paper focused on the influence of mechanical stirring on membrane fouling. Ammonium removal decreased with viscous bulking when stirring rates slowed down. Trans-membrane pressure increased more rapidly when the stirring rate decreased. The resistance of the gel layer increased significantly under low stirring rates, which indicated that the fouling rates of MBR in different stages were attributed to gel layer variation. The proportion of small particles increased when stirring rates slowed down. Furthermore, 16S rRNA gene amplicon sequencing showed that Proteobacteria and Actinobacteria were dominant in the mixed liquor. The relative abundance of Actinobacteria increased from 41% to 50% in the entire experiment. The computational fluid dynamics model was used to simulate the fluid flow characteristics. The model indicated velocities and directions of the fluid flow changes with different stirring rates. PMID:27058400

  7. 信息动态

    2011-01-01

    Actinobacteria is one of the best studied taxa of prokaryotes due to its great importance in biotechnology, medical science, ecology and etc.. Modern actinobacterial taxonomy is polyphasic taxonomy, which is based on the phylogenetic analysis of sequences of 16S rRNA genes and other conservative molecular sequences, and employs a variety of microbial information for polyphasic systematic study. Currently, with the development of large-scale sequencing, over 100 actinobacterial genomes have been finished. A comprehensive, detailed and robust phylogeny of actinobacteria is thus needed for understanding how this group emerged and maintained such a vast diversity throughout evolution and how every subgroup related to each other from various habitats. “Phylogenomics” and “Genomic Encyclopedia of Bacteria and Archaea, GEBA project” indicated that actinobacterial taxonomy stepped into the era of genomics. This review summarizes the actinobacterial taxonomic methodology of the genomic era, and results from recent studies.

  8. Insect symbioses: a case study of past, present, and future fungus-growing ant research

    Caldera, Eric J; Poulsen, Michael; Suen, Garret;

    2009-01-01

    Fungus-growing ants (Attini: Formicidae) engage in an obligate mutualism with fungi they cultivate for food. Although biologists have been fascinated with fungus-growing ants since the resurgence of natural history in the modern era, the early stages of research focused mainly on the foraging......'s fungus garden, antibiotic-producing actinobacteria that help protect the fungus garden from the parasite, and a black yeast that parasitizes the ant-actinobacteria mutualism. The fungus-growing ant symbiosis serves as a particularly useful model system for studying insect-microbe symbioses, because, to...... date, it contains four well-characterized microbial symbionts, including mutualists and parasites that encompass micro-fungi, macro-fungi, yeasts, and bacteria. Here, we discuss approaches for studying insect-microbe symbioses, using the attine ant-microbial symbiosis as our framework. We draw...

  9. Actinobacterial Flora in Feces of Healthy Cottontail Rabbits (Sylvilagus auduboni).

    Zhang, Yu; Tan, Hongming; Deng, Qingli; Cao, Lixiang

    2015-03-01

    Most known antibiotics from bacteria are produced by Actinobacteria. However, little is known about the community structure and diversity of fecal actinobacteria from rabbit feces. To investigate the actinobacterial community structure in rabbit feces, different actinobacterial-specific primer sets were used to amplify the overlap regions of 16S rRNA genes from the same DNA. At the genus level, 12 actinobacterial genera were detected by the L and S libraries. Arthrobacter, Brachybacterium, Dietzia, Leucobacter, Microbacterium, Promicromonospora and Rhodococcus were detected by L and S libraries. The Nocardioides, Streptomyces and Williamsia were only detected by L library; the Oerskovia and Brevibacterium were only detected by S library. The results indicated that rabbit feces contain diverse nonpathogenic actinobacterial taxa and PCR primer sets could underestimate the actinobacterial diversity besides the DNA extract efficiency. PMID:25424303

  10. Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake

    Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.

    2009-01-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.

  11. Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments

    Crits-Christoph, Alexander; Robinson, Courtney K.; Ma, Bing; Ravel, Jacques; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; Souza-Egipsy, Virginia; Casero, M. Cristina; DiRuggiero, Jocelyne

    2016-01-01

    Under extreme water deficit, endolithic (inside rock) microbial ecosystems are considered environmental refuges for life in cold and hot deserts, yet their diversity and functional adaptations remain vastly unexplored. The metagenomic analyses of the communities from two rock substrates, calcite and ignimbrite, revealed that they were dominated by Cyanobacteria, Actinobacteria, and Chloroflexi. The relative distribution of major phyla was significantly different between the two substrates and...

  12. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R; Clardy, Jon

    2009-01-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. We have analyzed one such system at the molecular level and found...... that the bacterium associated with the ant Apterostigma dentigerum produces dentigerumycin, a cyclic depsipeptide with highly modified amino acids, to selectively inhibit the associated parasitic fungus (Escovopsis sp.)....

  13. Draft genome sequence of Kocuria sp. SM24M-10 isolated from coral mucus

    Bruna Rafaella Z. Palermo

    2016-03-01

    Full Text Available Here, we describe the genomic features of the Actinobacteria Kocuria sp. SM24M-10 isolated from mucus of the Brazilian endemic coral Mussismilia hispida. The sequences are available under accession number LDNX01000000 (http://www.ncbi.nlm.nih.gov/nuccore/LDNX00000000. The genomic analysis revealed interesting information about the adaptation of bacteria to the marine environment (such as genes involved in osmotic and oxidative stress and to the nutrient-rich environment provided by the coral mucus.

  14. Draft genome sequence of Kocuria sp. SM24M-10 isolated from coral mucus.

    Palermo, Bruna Rafaella Z; Castro, Daniel B A; Pereira, Letícia Bianca; Cauz, Ana Carolina G; Magalhães, Beatriz L; Carlos, Camila; da Costa, Fernanda L P; Scagion, Guilherme P; Higa, Juliana S; Almeida, Ludimila D; das Neves, Meiriele da S; Cordeiro, Melina Aparecida; do Prado, Paula F V; da Silva, Thiago M; Balsalobre, Thiago Willian A; Paulino, Luciana C; Vicentini, Renato; Ferraz, Lúcio F C; Ottoboni, Laura M M

    2016-03-01

    Here, we describe the genomic features of the Actinobacteria Kocuria sp. SM24M-10 isolated from mucus of the Brazilian endemic coral Mussismilia hispida. The sequences are available under accession number LDNX01000000 (http://www.ncbi.nlm.nih.gov/nuccore/LDNX00000000). The genomic analysis revealed interesting information about the adaptation of bacteria to the marine environment (such as genes involved in osmotic and oxidative stress) and to the nutrient-rich environment provided by the coral mucus. PMID:26981384

  15. Draft genome sequence of Kocuria sp. SM24M-10 isolated from coral mucus

    Palermo, Bruna Rafaella Z.; Castro, Daniel B.A.; Pereira, Letícia Bianca; Cauz, Ana Carolina G.; Beatriz L. Magalhães; Carlos, Camila; da Costa, Fernanda L.P.; Guilherme P. Scagion; Higa, Juliana S.; Almeida, Ludimila D.; das Neves, Meiriele da S.; Cordeiro, Melina Aparecida; Paula F.V. do Prado; da Silva, Thiago M.; Balsalobre, Thiago Willian A.

    2015-01-01

    Here, we describe the genomic features of the Actinobacteria Kocuria sp. SM24M-10 isolated from mucus of the Brazilian endemic coral Mussismilia hispida. The sequences are available under accession number LDNX01000000 (http://www.ncbi.nlm.nih.gov/nuccore/LDNX00000000). The genomic analysis revealed interesting information about the adaptation of bacteria to the marine environment (such as genes involved in osmotic and oxidative stress) and to the nutrient-rich environment provided by the cora...

  16. Draft genome sequence of Kocuria sp. SM24M-10 isolated from coral mucus

    Palermo, Bruna Rafaella Z.; Castro, Daniel B.A.; Letícia Bianca Pereira; Cauz, Ana Carolina G.; Beatriz L. Magalhães; Camila Carlos; da Costa, Fernanda L.P.; Guilherme P. Scagion; Higa, Juliana S.; Almeida, Ludimila D.; das Neves, Meiriele da S.; Melina Aparecida Cordeiro; Paula F.V. do Prado; da Silva, Thiago M.; Balsalobre, Thiago Willian A.

    2016-01-01

    Here, we describe the genomic features of the Actinobacteria Kocuria sp. SM24M-10 isolated from mucus of the Brazilian endemic coral Mussismilia hispida. The sequences are available under accession number LDNX01000000 (http://www.ncbi.nlm.nih.gov/nuccore/LDNX00000000). The genomic analysis revealed interesting information about the adaptation of bacteria to the marine environment (such as genes involved in osmotic and oxidative stress) and to the nutrient-rich environment provided by the cora...

  17. Concluding remarks

    Lerayer, Alda

    2005-01-01

    International audience The focus of this Symposium was on bifidobacteria and propionibacteria for dairy and probiotic applications.Both genera have many similarities: being phylogenetically closely grouped within the Actinobacteria, they are high G+C branch Gram-positive bacteria, and share several physiological properties, despite having different industrial applications. It was highlighted in this Symposium that, from the point of view of consumers, consumer organizations, and government...

  18. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroi...

  19. Co-operation between different targeting pathways during integration of a membrane protein

    Keller, Rebecca; de Keyzer, Jeanine; Driessen, Arnold J. M.; Palmer, Tracy

    2012-01-01

    Membrane protein assembly is a fundamental process in all cells. The membrane-bound Rieske iron-sulfur protein is an essential component of the cytochrome bc(1) and cytochrome b(6)f complexes, and it is exported across the energy-coupling membranes of bacteria and plants in a folded conformation by the twin arginine protein transport pathway (Tat) transport pathway. Although the Rieske protein in most organisms is a monotopic membrane protein, in actinobacteria, it is a polytopic protein with...

  20. Genome sequence of the Fleming strain of Micrococcus luteus, a simple free- living actinobacterium

    Young, Michael; Artsatbanov, Vladislav; Beller, Harry R.; Chandra, Govind; Chater, Keith F.; Dover, Lynn G.; Goh, Ee-Been; Kahan, Tamar; Kaprelyants, Arseny S.; Kyrpides, Nikos; Lapidus, Alla; Lowry, Stephen R.; Lykidis, Athanasios; Mahillon, Jacques; Markowitz, Viktor; Mavrommatis, Konstantinos; Mukamolova, Galina V.; Oren, Aharon; Rokem, J. Stefan; Smith, Margaret C. M.; Young, Danielle I.; Greenblatt, Charles L.

    2009-11-01

    Micrococcus luteus (NCTC2665, Fleming strain) has one of the smallest genomes of free living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content 73%) predicted to encode 2403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 IS elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and fourteen response regulators, indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to {Beta}-lactam antibiotics may result from the presence of a reduced set of penicillin binding proteins and the absence of a wblC gene, which plays an important role in antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose, and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three gene cluster essential for this metabolism has been identified in the genome.

  1. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery

    Sun, Wei; Zhang, Fengli; He, Liming; Karthik, Loganathan; Li, Zhiyong

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a tot...

  2. Actinomycetes as host cells for production of recombinant proteins

    Tamura Tomohiro; Mitani Yasuo; Nakashima Nobutaka

    2005-01-01

    Abstract Actinomycetes (Actinobacteria) are highly attractive as cell factories or bioreactors for applications in industrial, agricultural, environmental, and pharmaceutical fields. Genome sequencing of several species of actinomycetes has paved the way for biochemical and structural analysis of important proteins and the production of such proteins as recombinants on a commercial scale. In this regard, there is a need for improved expression vectors that will be applicable to actinomycetes....

  3. Insights into the molecular bases of the interaction of Bifidobacterium bifidum PRL2010 with the human host and with other human gut commensals.

    Serafini, Fausta

    2014-01-01

    I bifidobatteri sono tra i microrganismi maggiormente presenti nel tratto gastro-intestinale (GIT) dei mammiferi. Sono batteri anaerobi obbligati appartenenti al phylum degli Actinobacteria, Gram-positivi ad alto contenuto di G+C nel genoma. Sono state identificate 47 taxa di bifidobatteri, 11 delle quali isolate dal GIT umano. Sono i primi colonizzatori del tratto gastro-intestinale dei neonati e predominano in quelli allattati al seno, invece dopo lo svezzamento sono in quantità minore risp...

  4. Genetic adaptation of bifidobacteria to the human gut: insights from genomics and transcriptomics analyses

    Duranti, Sabrina

    2015-01-01

    I bifidobatteri sono batteri Gram positivi che appartengono al phylum degli Actinobacteria, caratterizzati dall’avere alto contenuto in GC nel loro DNA, dall’essere non mobili, asporigeni e anaerobi. I bifidobatteri sono parte del microbiota intestinale umano dove sono ritenuti in grado di esplicare degli effetti benefici sull’ospite. Nell’intestino i bifidobatteri sono in grado di influenzare la fisiologia, lo stato di salute e la risposta immunitaria dell’ospite. Tuttavia, poco si cono...

  5. Genomic and ecological studies to understand bifidobacterial adaptation to the human gastro-intestinal tract

    Turroni, Francesca

    2010-01-01

    The Bifidobacterium genus comprises a high GC Gram positive bacteria belonging to the Actinobacteria phylum, which has been found to represent a common inhabitant of the gastro-intestinal tract (GIT) of mammals. In particular focusing on the GIT of human, the overall microorganisms that colonize such environment represent the “gut microbiota”. The human gut microbiota is an extremely complex microbial community whose functions are believed to have a significant impact on human physiology. Dif...

  6. Spatial distribution of marine airborne bacterial communities

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial ...

  7. Genomics of Probiotic Bacteria

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  8. Quantitative comparison of bacterial communities in two Mediterranean sponges

    Noyer, Charlotte; Hamilton, A.; Sacristan-Soriano, Oriol; Becerro, Mikel

    2010-01-01

    Marine sponges can host in their tissues abundant and diverse bacterial communities. Lack of truly quantitative data on bacterial abundance and dynamics limits our understanding of the organization and functioning of these endobiotic communities. In this technical note, we describe a quantitative polymerase chain reaction approach to quantify the relative abundance of multiple clades of three major sponge-associated bacterial phyla: Chloroflexi, Acidobacteria, and Actinobacteria. To test our ...

  9. Comparative genomics reveals evidence of marine adaptation in Salinispora species

    Penn Kevin

    2012-03-01

    Full Text Available Abstract Background Actinobacteria represent a consistent component of most marine bacterial communities yet little is known about the mechanisms by which these Gram-positive bacteria adapt to life in the marine environment. Here we employed a phylogenomic approach to identify marine adaptation genes in marine Actinobacteria. The focus was on the obligate marine actinomycete genus Salinispora and the identification of marine adaptation genes that have been acquired from other marine bacteria. Results Functional annotation, comparative genomics, and evidence of a shared evolutionary history with bacteria from hyperosmotic environments were used to identify a pool of more than 50 marine adaptation genes. An Actinobacterial species tree was used to infer the likelihood of gene gain or loss in accounting for the distribution of each gene. Acquired marine adaptation genes were associated with electron transport, sodium and ABC transporters, and channels and pores. In addition, the loss of a mechanosensitive channel gene appears to have played a major role in the inability of Salinispora strains to grow following transfer to low osmotic strength media. Conclusions The marine Actinobacteria for which genome sequences are available are broadly distributed throughout the Actinobacterial phylogenetic tree and closely related to non-marine forms suggesting they have been independently introduced relatively recently into the marine environment. It appears that the acquisition of transporters in Salinispora spp. represents a major marine adaptation while gene loss is proposed to play a role in the inability of this genus to survive outside of the marine environment. This study reveals fundamental differences between marine adaptations in Gram-positive and Gram-negative bacteria and no common genetic basis for marine adaptation among the Actinobacteria analyzed.

  10. Bacterial Community Composition in Lake Tanganyika: Vertical and Horizontal Heterogeneity

    De Wever, Aaike; Muylaert, Koenraad; Van der Gucht, Katleen; Pirlot, Samuel; Cocquyt, Christine; Descy, Jean-Pierre; Plisnier, Pierre-Denis; Vyverman, Wim

    2005-01-01

    Vertical and latitudinal differences in bacterial community composition (BCC) in Lake Tanganyika were studied during the dry season of 2002 by means of denaturing gradient gel electrophoresis analysis of PCR-amplified 16S RNA fragments. Dominant bands were sequenced and identified as members of the Cyanobacteria, Actinobacteria, Nitrospirae, green nonsulfur bacteria, and Firmicutes divisions and the Gamma- and Deltaproteobacteria subdivisions. The BCC in the lake displayed both vertical and l...

  11. Biosynthetic investigations of ansamycin natural products from marine-derived actinomycetes

    Wilson, Micheal Christopher

    2011-01-01

    Ansamycin polyketides from actinobacteria include the potent antibiotic and anticancer agents rifamycin SV, ansamitocin P-3, and geldanamycin. These natural product macrolactams are characterized by an mC₇N structural unit derived from the aromatic acid 3-amino-5-hydroxybenzoate, which is carboxy extended by multimodular polyketide synthases utilizing primarily acetate and propionate building blocks prior to macrolactam cyclization. Herein, I report a multidisciplinary investigation of the bi...

  12. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D.

    Shtratnikova, Victoria Y; Schelkunov, Mikhail I; Fokina, Victoria V; Pekov, Yury A; Ivashina, Tanya; Donova, Marina V

    2016-08-01

    Actinobacteria comprise diverse groups of bacteria capable of full degradation, or modification of different steroid compounds. Steroid catabolism has been characterized best for the representatives of suborder Corynebacterineae, such as Mycobacteria, Rhodococcus and Gordonia, with high content of mycolic acids in the cell envelope, while it is poorly understood for other steroid-transforming actinobacteria, such as representatives of Nocardioides genus belonging to suborder Propionibacterineae. Nocardioides simplex VKM Ac-2033D is an important biotechnological strain which is known for its ability to introduce ∆(1)-double bond in various 1(2)-saturated 3-ketosteroids, and perform convertion of 3β-hydroxy-5-ene steroids to 3-oxo-4-ene steroids, hydrolysis of acetylated steroids, reduction of carbonyl groups at C-17 and C-20 of androstanes and pregnanes, respectively. The strain is also capable of utilizing cholesterol and phytosterol as carbon and energy sources. In this study, a comprehensive bioinformatics genome-wide screening was carried out to predict genes related to steroid metabolism in this organism, their clustering and possible regulation. The predicted operon structure and number of candidate gene copies paralogs have been estimated. Binding sites of steroid catabolism regulators KstR and KstR2 specified for N. simplex VKM Ac-2033D have been calculated de novo. Most of the candidate genes grouped within three main clusters, one of the predicted clusters having no analogs in other actinobacteria studied so far. The results offer a base for further functional studies, expand the understanding of steroid catabolism by actinobacteria, and will contribute to modifying of metabolic pathways in order to generate effective biocatalysts capable of producing valuable bioactive steroids. PMID:26832142

  13. Specificity and stability of the Acromyrmex–Pseudonocardia symbiosis

    Andersen, Sandra Breum; Hansen, Lars H.; Sapountzis, Panagiotis;

    2013-01-01

    The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus-growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and d...... diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to ...

  14. The Population Structure of Antibiotic-Producing Bacterial Symbionts of Apterostigma dentigerum Ants: Impacts of Coevolution and Multipartite Symbiosis

    Caldera, Eric J.; Currie, Cameron R

    2012-01-01

    Fungus-growing ants (Attini) are part of a complex symbiosis with Basidiomycetous fungi, which the ants cultivate for food, Ascomycetous fungal pathogens (Escovopsis), which parasitize cultivars, and Actinobacteria, which produce antibiotic compounds that suppress pathogen growth. Earlier studies that have characterized the association between attine ants and their bacterial symbionts have employed broad phylogenetic approaches, with conclusions ranging from a diffuse coevolved mutualism to n...

  15. Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis

    van der Loo, B; Kingma, J.; Arand, M; Wubbolts, Marcel; Janssen, D B

    2006-01-01

    Epoxide hydrolases play an important role in the biodegradation of organic compounds and are potentially useful in enantioselective biocatalysis. An analysis of various genomic databases revealed that about 20% of sequenced organisms contain one or more putative epoxide hydrolase genes. They were found in all domains of life, and many fungi and actinobacteria contain several putative epoxide hydrolase-encoding genes. Multiple sequence alignments of epoxide hydrolases with other known and puta...

  16. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing.

    Mehetre, Gajanan T; Paranjpe, Aditi; Dastager, Syed G; Dharne, Mahesh S

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche. PMID:26950332

  17. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes

    Gupta, Radhey S.

    2011-01-01

    The prokaryotic organisms can be divided into two main groups depending upon whether their cell envelopes contain one membrane (monoderms) or two membranes (diderms). It is important to understand how these and other variations that are observed in the cell envelopes of prokaryotic organisms have originated. In 2009, James Lake proposed that cells with two membranes (primarily Gram-negative bacteria) originated from an ancient endosymbiotic event involving an Actinobacteria and a Clostridia (...

  18. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid

    Thamhesl, Michaela; Apfelthaler, Elisabeth; Schwartz-Zimmermann, Heidi Elisabeth; Kunz-Vekiru, Elisavet; Krska, Rudolf; Kneifel, Wolfgang; Schatzmayr, Gerd; Moll, Wulf-Dieter

    2015-01-01

    Background Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. Results We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strai...

  19. Keratinolytic abilities of Micrococcus luteus from poultry waste

    Wojciech Laba; Anna Choinska; Anna Rodziewicz; Michal Piegza

    2015-01-01

    Keratinolytic microorganisms have become the subject of scientific interest due to their ability to biosynthesize specific keratinases and their prospective application in keratinic waste management. Among several bacterial classes, actinobacteria remain one of the most important sources of keratin-degrading strains, however members of the Micrococcaceae family are rarely scrutinized in regard to their applicatory keratinolytic potential. The tested Micrococcus sp. B1pz isolate from poultry f...

  20. Phylogeny and Functions of Bacterial Communities Associated with Field-Grown Rice Shoots

    Okubo, Takashi; Ikeda, Seishi; Sasaki, Kazuhiro; Ohshima, Kenshiro; Hattori, Masahira; Sato, Tadashi; Minamisawa, Kiwamu

    2014-01-01

    Metagenomic analysis was applied to bacterial communities associated with the shoots of two field-grown rice cultivars, Nipponbare and Kasalath. In both cultivars, shoot microbiomes were dominated by Alphaproteobacteria (51–52%), Actinobacteria (11–15%), Gammaproteobacteria (9–10%), and Betaproteobacteria (4–10%). Compared with other rice microbiomes (root, rhizosphere, and phyllosphere) in public databases, the shoot microbiomes harbored abundant genes for C1 compound metabolism and 1-aminoc...

  1. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil

    Pacchioni, Ralfo G; Fabíola M. Carvalho; Claudia E Thompson; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T. R.; Agnez-Lima, Lucymara F

    2014-01-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related...

  2. Diversity of the bacterial community in the rice rhizosphere managed under conventional and no-tillage practices.

    Aslam, Zubair; Yasir, Muhammad; Yoon, Hwan Sik; Jeon, Che Ok; Chung, Young Ryun

    2013-12-01

    Bacterial diversity in the rice rhizosphere at different rice growth stages, managed under conventional and no-tillage practices, was explored using a culture-based approach. Actinobacteria are among the bacterial phyla abundant in the rice rhizosphere. Their diversity was further examined by constructing metagenomic libraries based on the 16S rRNA gene, using actinobacterial- and streptomycete-specific polymerase chain reaction (PCR) primers. The study included 132 culturable strains and 125 clones from the 16S rRNA gene libraries. In conventional tillage, there were 38% Proteobacteria, 22% Actinobacteria, 33% Firmicutes, 5% Bacteroidetes, and 2% Acidobacteria, whereas with no-tillage management there were 63% Proteobacteria, 24% Actinobacteria, 6% Firmicutes, and 8% Bacteroidetes as estimated using the culture-dependent method during the four stages of rice cultivation. Principal coordinates analysis was used to cluster the bacterial communities along axes of maximal variance. The different growth stages of rice appeared to influence the rhizosphere bacterial profile for both cultivation practices. Novel clones with low similarities (89-97%) to Actinobacteria and Streptomyces were retrieved from both rice fields by screening the 16S rRNA gene libraries using actinobacterial- and streptomycete-specific primers. By comparing the actinobacterial community retrieved by culture-dependent and molecular methods, it was clear that a more comprehensive assessment of microbial diversity in the rice rhizosphere can be obtained using a combination of both techniques than by using either method alone. We also succeeded in culturing a number of bacteria that were previously described as unculturable. These were in a phylogenetically deep lineage when compared with related cultivable genera. PMID:24385351

  3. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-01-01

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded ...

  4. Differential distribution of type II CRISPR-Cas systems in agricultural and nonagricultural campylobacter coli and campylobacter jejuni isolates correlates with lack of shared environments

    Pearson, Bruce M.; Louwen, Rogier; Baarlen, van, P.; Vliet, van, L.P.W.

    2015-01-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of dist...

  5. Concluding remarks

    Lerayer, Alda

    2005-01-01

    The focus of this Symposium was on bifidobacteria and propionibacteria for dairy and probiotic applications.Both genera have many similarities: being phylogenetically closely grouped within the Actinobacteria, they are high G+C branch Gram-positive bacteria, and share several physiological properties, despite having different industrial applications. It was highlighted in this Symposium that, from the point of view of consumers, consumer organizations, and government agencies, clarity regardi...

  6. Isolation, identification, and characterization of gut microflora of Perionyx excavatus collected from Midnapore, West Bengal.

    Samanta, Tanushree Tulsian; Das, Ankita

    2016-03-01

    Agriculture is an important part of the economy of the undivided Midnapore district. Agricultural land is its asset and most importantly its means of sustenance as well as survival. Earthworms are invertebrates that play a key role in recycling organic matters in soils. Since the intestines of earthworms harbor wide ranges of microorganisms, enzymes, hormones etc., these half digested materials decompose rapidly and are transformed into a stabilized material called vermicompost which is very useful for increasing the soil fertility. One has to look for these characters before recommending any species for vermiculture. In the present study, Perionyx excavatus specimens were collected from the undivided Midnapore district and from the Earthworms gut, bacteria, fungus, actinobacteria, and yeast were isolated and identified using various morphological and biochemical tests. All the bacterial isolates were identified using morphological study, staining techniques, and different biochemical tests such as catalase test, KOH test, H2 SO4 test, Starch hydrolysis test, oxidase test, and sucrose hydrolysis test. All the fungal, actinobacteria, and yeast isolates were subjected to staining and morphological characterization (color and texture of fungal colony). Bacterial isolates of genus Bacillus sp., Staphylococcus sp., Enterococci, Micrococcus sp., Enterobacter sp., and Citrobacter sp. were identified. Among the fungal isolates Aspergilus sp., and P. boydii were identified. Streptomyces sp., Nocardia sp. among the actinobacteria and Candida sp. among yeast were also found to be present in earthworm gut and these might play an important role along with the earthworm to increase the quality and fertility of soil. PMID:26821782

  7. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India and their antimicrobial activities

    Salam eNimaichand

    2015-05-01

    Full Text Available Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups, Micromonospora (4, Amycolatopsis (3, Arthrobacter (3, Kitasatospora (2, Janibacter (1, Nocardia (1, Pseudonocardia (1 and Rhodococcus (1. Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS. The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites.

  8. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-03-26

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  9. Selective progressive response of soil microbial community to wild oat roots

    DeAngelis, K.M.; Brodie, E.L.; DeSantis, T.Z.; Andersen, G.L.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Roots moving through soil enact physical and chemical changes that differentiate rhizosphere from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of interest. Use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal community analysis has allowed definition of the populations that respond to the root within the complex grassland soil community; this research accompanies previously reported compositional changes, including increases in chitinase and protease specific activity, cell numbers and quorum sensing signal. PhyloChip results showed a significant change in 7% of the total rhizosphere microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA T-RFLP analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and Actinobacteria decreased in soil near the root tip compared to bulk soil, but then increased in older root zones. Quantitative PCR revealed {beta}-Proteobacteria and Actinobacteria present at about 10{sup 8} copies of 16S rRNA genes g{sup -1} soil, with Nitrospira having about 10{sup 5} copies g{sup -1} soil. This report demonstrates that changes in a relatively small subset of the soil microbial community are sufficient to produce substantial changes in function in progressively more mature rhizosphere zones.

  10. Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice.

    Jin, Cuiyuan; Zeng, Zhaoyang; Fu, Zhengwei; Jin, Yuanxiang

    2016-10-01

    The fungicide imazalil (IMZ) is used extensively in vegetable and fruit plantations and as a post-harvest treatment to avoid rot. Here, we revealed that ingestion of 25, 50 and 100 mg IMZ kg(-1) body weight for 28 d induced gut microbiota dysbiosis and colonic inflammation in mice. The relative abundance of Bacteroidetes, Firmicutes and Actinobacteria in the cecal contents decreased significantly after exposure to 100 mg kg(-1) IMZ for 28 d. In feces, the relative abundance in Bacteroidetes, Firmicutes and Actinobacteria decreased significantly after being exposed to 100 mg kg(-1) IMZ for 1, 14 and 7 d, respectively. High throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed a significant reduction in the richness and diversity of microbiota in cecal contents and feces of IMZ-treated mice. Operational taxonomic units (OTUs) analysis identified 49.3% of OTUs changed in cecal contents, while 55.6% of OTUs changed in the feces after IMZ exposure. Overall, at the phylum level, the relative abundance of Firmicutes, Proteobacteria and Actinobacteria increased and that of Bacteroidetes decreased in IMZ-treated groups. At the genus level, the abundance of Lactobacillus and Bifidobacterium decreased while those of Deltaproteobacteria and Desulfovibrio increased in response to IMZ exposure. In addition, it was observed that IMZ exposure could induce colonic inflammation characterized by infiltration of inflammatory cells, elevated levels of lipocalin-2 (lcn-2) in the feces, and increased mRNA levels of Tnf-α, IL-1β, IL-22 and IFN-γ in the colon. Our findings strongly suggest that ingestion of IMZ has some risks to human health. PMID:27393971

  11. Spatial and temporal changes in Actinobacterial dominance in experimental artificial groundwater recharge.

    Kolehmainen, Reija E; Tiirola, Marja; Puhakka, Jaakko A

    2008-11-01

    Artificial groundwater recharge (AGR) is used in the drinking water industry to supplement groundwater resources and to minimise the use of chemicals in water treatment. This study analysed the spatial and temporal changes of microbial communities in AGR using two test systems: a nutrient-amended fluidized-bed reactor (FBR) and a sand column. Structural changes in the feed lake water (Lake Roine), FBR, and sand column bacterial communities were determined by denaturing gradient gel electrophoresis (DGGE) and the length heterogeneity analysis of amplified 16S rRNA genes (LH-PCR). Two clone libraries were created to link the LH-PCR results to the dominant bacterial groups. The lake water bacterial community was relatively stable, with three bands dominating in all LH-PCR products. The most dominant fragment accounted for up to 72% and was derived from Actinobacteria. Based on the clone libraries and LH-PCR data, Actinobacteria also dominated in the unattached bacterial community of the FBR, whereas several Proteobacterial groups were more abundant on the FBR carrier particles. In the stabilised AGR system a major change in the community structure of the lake water bacteria took place during passage within the first 0.6m in the sand column as the community composition shifted from Actinobacteria-dominated populations to a diverse, mainly Proteobacterial communities. Concurrently, most of the dissolved organic carbon (DOC) was removed at this stage. In summary, the study showed that the make-up of microbial communities in experimental AGR systems responded to changes in their environment. LH-PCR showed potential as a method to determine microbial community dynamics in long-term studies at real-scale AGR sites. This is the first step to provide data on microbial community dynamics in AGR for drinking water production. PMID:18757075

  12. Differences between Bacterial Communities in the Gut of a Soil-Feeding Termite (Cubitermes niokoloensis) and Its Mounds▿ †

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-01-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics. PMID:17574999

  13. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos

    Sommer, Felix; Ståhlman, Marcus; Ilkayeva, Olga;

    2016-01-01

    microbiota of free-ranging brown bears during their active phase and hibernation. Compared to the active phase, hibernation microbiota had reduced diversity, reduced levels of Firmicutes and Actinobacteria, and increased levels of Bacteroidetes. Several metabolites involved in lipid metabolism, including...... triglycerides, cholesterol, and bile acids, were also affected by hibernation. Transplantation of the bear microbiota from summer and winter to germ-free mice transferred some of the seasonal metabolic features and demonstrated that the summer microbiota promoted adiposity without impairing glucose tolerance......, suggesting that seasonal variation in the microbiota may contribute to host energy metabolism in the hibernating brown bear....

  14. Functional and phenotypic profiling of innate immunity during Salmonella infection

    Sørensen, Rikke Brandt; Pedersen, Susanne Brix

    bacterial infections, whereas the other major dendritic cell subset, plasmacytoid DC (pDC), plays an important part in antiviral responses, and is less well characterised in regard to antibacterial immunity. Using multi-parametric flow cytometry, we were able to show for the first time that pDC accumulated...... observed that DC responded to six different bacteria in a phyla-specific manner giving rise to similar inflammatory signatures within the groups of proteobacteria, firmicutes and actinobacteria, hence being independent on pathogenic versus non-pathogenic properties, and also on the bacteria-to-cell ratio...

  15. Isolation of putative probionts from cod rearing environment

    Lauzon, H.L.; Gudmundsdottir, S.; Pedersen, M.H.;

    2008-01-01

    Survival problems are encountered at early stages of intensive fish rearing and antibiotics are widely used to remedy the situation. Probiotics may provide a potential alternative method to protect larvae from opportunistic and pathogenic bacteria and promote a balanced environment. This study was......, metabolite production and adhesion to fish cell lines. Our study demonstrated that 14% of screened bacteria (n = 188) had antagonistic properties towards fish pathogens. The majority of these isolates were Gram-positive (81%), belonging to Firmicutes (69.2%) and Actinobacteria (11.5%) phyla based on 16S r...

  16. 四川冬菜中细菌群落组成及多样性%Bacterial biodiversity in Dongcai, a traditional pickled mustard product in Sichuan Province, China

    董玲; 蒲彪; 敖晓琳; 张小平; 郑有坤; 李小林

    2012-01-01

    [ Objective] To investigate the bacteria community and biodiversity of four-years pickled Yanshan Dongcai. [Methods] We studied the bacterial communities of Dongcai by 16S rDNA diversity analysis and the cultured species isolated from Dongcai sample by Restriction Fragment Length Polymorphism ( RFLP) and 16S rRNA gene sequence analysis. [ Results] The 16S rDNA diversity showed that the bacteria belonged to the phyla Proteobacteria (87. 9% ) and Firmicutes (7. 1% ) , including many moderately halophilic bacteria such as Virgibacillus kekensis, Marinococcus albus, Salinicoccus sp. , Lactobacillus halophilus and Halomonas. Only 5% of clone sequences belonged to the phylum Actinobacteria. Thirty-five strains were isolated from Dongcai sample, and 16S rDNA-RFLP analysis indicated that 34 isolates affiliated with the phylum Firmicutes, including Virgibacillus, Bacillus megaterium and Gracilibacillus saliphilus which were moderately halophilic bacteria, but only one isolate belonged to the phylum Actinobacteria. [ Conclusion ] The bacterial diversity is low in Dongcai, dominated by moderately halophilic bacteria.%[目的]了解腌制4年的四川南充冬菜中细菌群落组成及多样性.[方法]通过16S rDNA多样性分析样品细菌落组成;采用16S rDNA-RFLP方法分析从样品中分离出的纯培养细菌.[结果]16S rDNA多样性分析结果表明,样品中细菌主要属于变形杆菌门( Proteobacteria)和厚壁菌门(Firmicutes),分别占克隆文库的87.9%、7.1%,其中包括Virgibacillus kekensis,Marinococcus albus,Salinicoccus sp.,Lactobacillus halophilus和Halomonas等中度嗜盐菌,仅有5%属于放线菌门(Actinobacteria).通过纯培养方法从冬菜中分离到35株菌,16S rDNA-RFLP分析结果表明,34株属于厚壁菌门(Firmicutes),包括Virgibacillus,Bacillus megaterium和Gracilibacillus saliphilus等中度嗜盐菌,1株属于放线菌门(Actinobacteria).[结论]冬菜中细菌群落多样性较低,以中度嗜盐菌为主.

  17. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems.

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui

    2015-01-01

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  18. Sbírka kultur půdních aktinomycetů v Ústavu půdní biologie BC AV ČR, v.v.i. České Budějovice

    Krištůfek, Václav; Chroňáková, Alica; Elhottová, Dana; Petrásek, Jiří; Němec, Jan

    České Budějovice: Ústav půdní biologie BC AV ČR, 2009, s. 88-91. ISBN 978-80-86525-16-7. [Život v půdě /10./. České Budějovice (CZ), 27.01.2009-28.01.2009] R&D Projects: GA MŠk LC06066; GA MŠk 2B06154; GA AV ČR IAA600660607 Institutional research plan: CEZ:AV0Z60660521 Keywords : Actinobacteria * culture collection * microorganisms Subject RIV: EH - Ecology, Behaviour

  19. Isolation, screening and characterization of uranium microremediable actinomycetes from fallen leaves of Azadirachta indica in Western Ghats

    Microremediation of harmful radioactive waste such as uranium has been carried out by the endophytic actinomycetes strains isolated from the unnoticed fallen leaves of commonly available medicinal plant Azadirachta indica, which are considered as unique source. Among six actinobacteria isolates, one microbe (A5) effectively removed uranium in 12 h at temperature 30 deg C and pH 8-9. Molecular characterization and phylogenetic analysis support the classification of the isolate A5 as a new strain which was named as Streptomyces sp. MINIYAA7 (Genbank accession number KF909129). (author)

  20. The structural-functional organization of thermotolerant complexes of actinomycetes in desert and volcanic soils

    Zenova, G. M.; Kurapova, A. I.; Lysenko, A. M.; Zvyagintsev, D. G.

    2009-05-01

    It has been found that the number of thermotolerant actinomycetes in strongly heated soils of deserts and volcanic regions is comparable to or exceeds the number of mesophilic actinomycetes. Among the latter group, streptomyces usually predominate; among thermotolerant actinomycetes, representatives of the Micromonospora, Streptosporangium, Actinomadura, Saccharopolyspora, Microtetraspora, and Microbispora genera are identified. Thermotolerant actinomycetes display the full cycle of their development in these soils. The method of fluorescent in situ hybridization has made it possible to determine that mycelial forms predominate among the metabolically active representatives of Actinobacteria; their portion increases with the rise in the temperature of soil incubation.

  1. Human microbiome: From the bathroom to the bedside

    Stephen; Malnick; Ehud; Melzer

    2015-01-01

    The human gut contains trillions of bacteria, the major phylae of which include Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. Fecal microbial transplantation(FMT) has been known of for manyyears but only recently has been subjected to rigorous examination. We review the evidence regarding FMT for recurrent Clostridium difficile infection which has resulted in it being an approved treatment. In addition there is some evidence for its use in both irritable bowel syndrome and inflammatory bowel disease. Further research is needed in order to define the indications for FMT and the most appropriate method of administration.

  2. Human microbiome: From the bathroom to the bedside.

    Malnick, Stephen; Melzer, Ehud

    2015-08-15

    The human gut contains trillions of bacteria, the major phylae of which include Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. Fecal microbial transplantation (FMT) has been known of for many years but only recently has been subjected to rigorous examination. We review the evidence regarding FMT for recurrent Clostridium difficile infection which has resulted in it being an approved treatment. In addition there is some evidence for its use in both irritable bowel syndrome and inflammatory bowel disease. Further research is needed in order to define the indications for FMT and the most appropriate method of administration. PMID:26301122

  3. Phylogenetic analysis of bacteria in sea ice brine sampled from the Canada Basin, Arctic Ocean

    2006-01-01

    Bacterial diversity in sea ice brine samples which collected from four stations located at the Canada Basin, Arctic Ocean was analyzed by PCR-DGGE. Twenty-three 16S rDNA sequences of bacteria obtained from DGGE bands were cloned and sequenced. Phylogenetic analysis clustered these sequences within γ-proteobacteria, Cytophaga-Flexibacter-Bacteroides (CFB) group, Firmicutes and Actinobacteria. The phylotype of Pseudoalteromonas in the γ-proteobacteria was predominant and members of the CFB group and γ-proteobacteria were highly abundant in studied sea ice brine samples.

  4. Diversity and homogeneity of oral microbiota in healthy Korean pre-school children using pyrosequencing.

    Lee, Soo Eon; Nam, Ok Hyung; Lee, Hyo-Seol; Choi, Sung Chul

    2016-07-01

    Objectives The purpose of this study was designed to identify the oral microbiota in healthy Korean pre-school children using pyrosequencing. Materials and methods Dental plaque samples were obtained form 10 caries-free pre-school children. The samples were analysed using pyrosequencing. Results The pyrosequencing analysis revealed that, at the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria showed high abundance. Also, predominant genera were identified as core microbiome, such as Streptococcus, Neisseria, Capnocytophaga, Haemophilus and Veilonella. Conclusions The diversity and homogeneity was shown in the dental plaque microbiota in healthy Korean pre-school children. PMID:26758186

  5. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring.

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Joshi, Amit; Souza, Leila; Almeida, Paulo; Chauhan, Ashvini

    2015-09-01

    The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche. PMID:26484255

  6. pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment

    El Azhari, Najoi

    2007-01-01

    cloned from two agricultural soils. Restriction fragment length polymorphism (RFLP) screening of 150 pcaH clones yielded 68 RFLP families. Comparison of 86 deduced amino acid sequences displayed 70% identity to known PcaH sequences. Phylogenetic analysis results in two major groups mainly related to Pca......H sequences from Actinobacteria and Proteobacteria phyla. This confirms that the developed primer pair targets a wide diversity of pcaH sequences, thereby constituting a suitable molecular marker to estimate the response of the pca community to agricultural practices....

  7. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73

    The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation. - Pseudomonas putida ZWL73 can accelerate 4CNB removal in lab-scale soils, causing dynamic changes within intrinsic Actinobacteria and Acidobacteria

  8. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha‑1•yr‑1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  9. Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem.

    Guo-Chun Ding

    Full Text Available Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.

  10. Reassessment of the lineage fusion hypothesis for the origin of double membrane bacteria.

    Kristen S Swithers

    Full Text Available In 2009, James Lake introduced a new hypothesis in which reticulate phylogeny reconstruction is used to elucidate the origin of gram-negative bacteria (Nature 460: 967-971. The presented data supported the gram-negative bacteria originating from an ancient endosymbiosis between the Actinobacteria and Clostridia. His conclusion was based on a presence-absence analysis of protein families that divided all prokaryotes into five groups: Actinobacteria, Double Membrane bacteria (DM, Clostridia, Archaea and Bacilli. Of these five groups, the DM are by far the largest and most diverse group compared to the other groupings. While the fusion hypothesis for the origin of double membrane bacteria is enticing, we show that the signal supporting an ancient symbiosis is lost when the DM group is broken down into smaller subgroups. We conclude that the signal detected in James Lake's analysis in part results from a systematic artifact due to group size and diversity combined with low levels of horizontal gene transfer.

  11. Dual control system - A novel scaffolding architecture of an inducible regulatory device for the precise regulation of gene expression.

    Horbal, L; Luzhetskyy, A

    2016-09-01

    Here, we present a novel scaffolding architecture of an inducible regulatory device. This dual control system is completely silent in the off stage and is coupled to the regulation of gene expression at both the transcriptional and translational levels. This system also functions as an AND gate. We demonstrated the effectiveness of the cumate-riboswitch dual control system for the control of pamamycin production in Streptomyces albus. Placing the cre recombinase gene under the control of this system permitted the construction of synthetic devices with non-volatile memory that sense the signal and respond by altering DNA at the chromosomal level, thereby producing changes that are heritable. In addition, we present a library of synthetic inducible promoters based on the previously described cumate switch. With only one inducer and different promoters, we demonstrate that simultaneous modulation of the expression of several genes to different levels in various operons is possible. Because all modules of the AND gates are functional in bacteria other than Streptomyces, we anticipate that these regulatory devices can be used to control gene expression in other Actinobacteria. The features described in this study make these systems promising tools for metabolic engineering and biotechnology in Actinobacteria. PMID:27040671

  12. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination

    Aravind L

    2008-11-01

    Full Text Available Abstract Recently Mycobacterium tuberculosis was shown to possess a novel protein modification, in which a small protein Pup is conjugated to the epsilon-amino groups of lysines in target proteins. Analogous to ubiquitin modification in eukaryotes, this remarkable modification recruits proteins for degradation via archaeal-type proteasomes found in mycobacteria and allied actinobacteria. While a mycobacterial protein named PafA was found to be required for this conjugation reaction, its biochemical mechanism has not been elucidated. Using sensitive sequence profile comparison methods we establish that the PafA family proteins are related to the γ-glutamyl-cysteine synthetase and glutamine synthetase. Hence, we predict that PafA is the Pup ligase, which catalyzes the ATP-dependent ligation of the terminal γ-carboxylate of glutamate to lysines, similar to the above enzymes. We further discovered that an ortholog of the eukaryotic PAC2 (e.g. cg2106 is often present in the vicinity of the actinobacterial Pup-proteasome gene neighborhoods and is likely to represent the ancestral proteasomal chaperone. Pup-conjugation is sporadically present outside the actinobacteria in certain lineages, such as verrucomicrobia, nitrospirae, deltaproteobacteria and planctomycetes, and in the latter two lineages it might modify membrane proteins. Reviewers This article was reviewed by M. Madan Babu and Andrei Osterman

  13. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake.

    Woodhouse, Jason Nicholas; Kinsela, Andrew Stephen; Collins, Richard Nicholas; Bowling, Lee Chester; Honeyman, Gordon L; Holliday, Jon K; Neilan, Brett Anthony

    2016-06-01

    The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012-2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum, Oscillatoria and Sphaerospermopsis. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems. PMID:26636552

  14. Soil bacterial diversity changes in response to agricultural land use in semi-arid soils

    Ding, Guo-Chun; Piceno, Yvette M.; Heuer, Holger; Weinert, Nicole; Dohrmann, Anja B.; Carrillo, Angel; Andersen, Gary L.; Castellanos, Thelma; Tebbe, Christoph C.; Smalla, Kornelia

    2013-04-01

    Natural scrublands in semi-arid deserts are increasingly being converted into agricultural lands. The long-term effect of such a transition in land use on soil bacterial communities was explored at two sites typical of semi-arid deserts in Mexico (Baja California). Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods - denaturing gradient gel electrophoresis (DGGE) and PhyloChip hybridization -employed to analyze 16S rRNA gene fragments amplified from total community DNA. DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. Soil parameters that differed between land uses were highly correlated with the community composition of taxa responding to land use. Variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses. The long term use for agriculture resulted in profound changes in the bacterial community composition and physicochemical characteristics of former scrublands, which may affect various soil ecosystem functions.

  15. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China.

    Liu, Zhenghui; Huang, Shaobin; Sun, Guoping; Xu, Zhencheng; Xu, Meiying

    2012-04-01

    Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems. PMID:22133045

  16. Culture independent characterization of bacteria associated with the mucus of the coral Acropora digitifera from the Gulf of Mannar.

    Nithyanand, Paramasivam; Indhumathi, Thiruvalluvan; Ravi, Arumugam Veera; Pandian, Shunmugiah Karutha

    2011-06-01

    Corals are sessile eukaryotic hosts which provide a unique surface for microbial colonization. Culture independent studies show that the coral mucus and tissue harbour diverse and abundant prokaryotic communities. However, little is known about the diversity of bacteria associated with the corals of Gulf of Mannar. The present study characterised the bacterial diversity associated with the mucus of the coral Acropora digitifera from the Gulf of Mannar by 16S rRNA gene clone library construction. The bacterial communities of the mucus of A. digitifera were diverse, with representatives within the Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes and several unclassified bacteria. The culture independent bacterial population was totally different from our previous culture dependent study of the mucus and tissue of the same coral. 36% of the bacteria in the clone library of A. digitifera were found to be novel after full length sequencing of the 16S rRNA gene wherein several clones were found to be novel at the Genus and species level. The current study further supports the findings that Actinobacteria amount to a certain proportion among bacterial communities associated with corals. PMID:25187139

  17. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73

    Niu Guilan [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Zhang Junjie [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Zhao Shuo [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Liu Hong [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent (Belgium); Zhou Ningyi [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)], E-mail: n.zhou@pentium.whiov.ac.cn

    2009-03-15

    The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation. - Pseudomonas putida ZWL73 can accelerate 4CNB removal in lab-scale soils, causing dynamic changes within intrinsic Actinobacteria and Acidobacteria.

  18. Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems

    Li, Dong

    2014-03-26

    This study was performed to reveal the microbial community characteristics in simulated managed aquifer recharge (MAR), a natural water treatment system, under different concentrations and compositions of biodegradable dissolved organic carbon (BDOC) and further link these to the biotransformation of emerging trace organic chemicals (TOrCs). Two pairs of soil-column setups were established in the laboratory receiving synthetic feed solutions composed of different peptone/humic acid ratios and concentrations. Higher BDOC concentration resulted in lower microbial community diversity and higher relative abundance of Betaproteobacteria. Decreasing the peptone/humic acid ratio resulted in higher diversity of the community and higher relative abundances of Firmicutes, Planctomycetes, and Actinobacteria. The metabolic capabilities of microbiome involved in xenobiotics biodegradation were significantly promoted under lower BDOC concentration and higher humic acid content. Cytochrome P450 genes were also more abundant under these primary substrate conditions. Lower peptone/humic acid ratios also promoted the attenuation of most TOrCs. These results suggest that the primary substrate characterized by a more refractory character could increase the relative abundances of Firmicutes, Planctomycetes, and Actinobacteria, as well as associated cytochrome P450 genes, all of which should play important roles in the biotransformation of TOrCs in this natural treatment system. © 2014 Springer-Verlag.

  19. Diversity rankings among bacterial lineages in soil.

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed. PMID:18987677

  20. The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge.

    Liu, Changli; Liu, Di; Qi, Yingjie; Zhang, Ying; Liu, Xi; Zhao, Min

    2016-07-01

    The main objective of this work was to investigate the influence of different oxygen supply patterns on poly-β-hydroxybutyrate (PHB) yield and bacterial community diversity. The anaerobic-aerobic (A/O) sequencing batch reactors (SBR1) and feast-famine (F/F) SBR2 were used to cultivate activated sludge to produce PHB. The mixed microbial communities were collected and analyzed after 3 months cultivation. The PHB maximum yield was 64 wt% in SBR1 and 53 wt% in SBR2. Pyrosequencing analysis 16S rRNA gene of two microbial communities indicated there were nine and four bacterial phyla in SBR1 and SBR2, respectively. Specifically, Proteobacteria (36.4 % of the total bacterial community), Actinobacteria (19.7 %), Acidobacteria (14.1 %), Firmicutes (4.4 %), Bacteroidetes (1.7 %), Cyanobacteria/Chloroplast (1.5 %), TM7 (0.8 %), Gemmatimonadetes (0.2 %), and Nitrospirae (0.1 %) were present in SBR1. Proteobacteria (94.2 %), Bacteroidetes (2.9 %), Firmicutes (1.9 %), and Actinobacteria (0.7 %) were present in SBR2. Our results indicated the SBR1 fermentation system was more stable than that of SBR2 for PHB accumulation. PMID:26996908

  1. Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments.

    Bravo, Daniel; Martin, Gaëtan; David, Maude M; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2013-11-01

    The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12 days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils. PMID:24033776

  2. Differential utilization patterns of dissolved organic phosphorus compounds by heterotrophic bacteria in two mountain lakes.

    Rofner, Carina; Sommaruga, Ruben; Pérez, María Teresa

    2016-09-01

    Although phosphorus limitation is common in freshwaters and bacteria are known to use dissolved organic phosphorus (DOP), little is known about how efficiently DOP compounds are taken up by individual bacterial taxa. Here, we assessed bacterial uptake of three model DOP substrates in two mountain lakes and examined whether DOP uptake followed concentration-dependent patterns. We determined bulk uptake rates by the bacterioplankton and examined bacterial taxon-specific substrate uptake patterns using microautoradiography combined with catalyzed reporter deposition-fluorescence in situ hybridization. Our results show that in the oligotrophic alpine lake, bacteria took up ATP, glucose-6-phosphate and glycerol-3-phosphate to similar extents (mean 29.7 ± 4.3% Bacteria), whereas in the subalpine mesotrophic lake, ca. 40% of bacteria took up glucose-6-phosphate, but only ∼20% took up ATP or glycerol-3-phosphate. In both lakes, the R-BT cluster of Betaproteobacteria (lineage of genus Limnohabitans) was over-represented in glucose-6-phosphate and glycerol-3-phosphate uptake, whereas AcI Actinobacteria were under-represented in the uptake of those substrates. Alphaproteobacteria and Bacteroidetes contributed to DOP uptake proportionally to their in situ abundance. Our results demonstrate that R-BT Betaproteobacteria are the most active bacteria in DOP acquisition, whereas the abundant AcI Actinobacteria may either lack high affinity DOP uptake systems or have reduced phosphorus requirements. PMID:27312963

  3. Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential.

    López-Miras, M; Piñar, G; Romero-Noguera, J; Bolívar-Galiano, F C; Ettenauer, J; Sterflinger, K; Martín-Sánchez, I

    2013-06-01

    In this study, we investigated and compared the microbial communities adhering to the obverse and the reverse sides of an oil painting on canvas exhibiting signs of biodeterioration. Samples showing no visible damage were investigated as controls. Air samples were also analysed, in order to investigate the presence of airborne microorganisms suspended in the indoor atmosphere. The diversity of the cultivable microorganisms adhering to the surface was analysed by molecular techniques, such as RAPD analysis and gene sequencing. DGGE fingerprints derived from DNA directly extracted from canvas material in combination with clone libraries and sequencing were used to evaluate the non-cultivable fraction of the microbial communities associated with the material. By using culture-dependent methods, most of the bacterial strains were found to be common airborne, spore-forming microorganisms and belonged to the phyla Actinobacteria and Firmicutes, whereas culture-independent techniques identified sequenced clones affiliated with members of the phyla Actinobacteria and Proteobacteria. The diversity of fungi was shown to be much lower than that observed for bacteria, and only species of Penicillium spp. could be detected by cultivation techniques. The selected strategy revealed a higher microbial diversity on the obverse than on the reverse side of the painting and the near absence of actively growing microorganisms on areas showing no visible damage. Furthermore, enzymatic activity tests revealed that the most widespread activities involved in biodeterioration were esterase and esterase lipase among the isolated bacterial strains, and esterase and N-acetyl-β-glucosaminidase among fungi strains. PMID:23576841

  4. Bacterial Bio-Resources for Remediation of Hexachlorocyclohexane

    María J. Amoroso

    2012-11-01

    Full Text Available In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP hexachlorocyclohexane (HCH have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.

  5. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce

    Li, Jian-Gang; Shen, Min-Chong; Hou, Jin-Feng; Li, Ling; Wu, Jun-Xia; Dong, Yuan-Hua

    2016-04-01

    Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3‑-N, and NH4+-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.

  6. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    Annette K. Møller

    2013-04-01

    Full Text Available The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria. Thus, differences in the physicochemical conditions may play an important role in the processes leading to distinctive bacterial community structures in High-Arctic snow and freshwater.

  7. Bacterial community analysis of contaminant soils from Chernobyl

    Complete text of publication follows: Shortly after the Chernobyl accident in 1986, vegetation, contaminated soil and other radioactive debris were buried in situ in trenches. The aims of this work are to analyse the structure of bacterial communities evolving in this environment since 20 years, and to evaluate the potential role of microorganisms in radionuclide migration in soils. Therefore, soil samples exhibiting contrasted radionuclides content were collected in and around the trench number 22. Bacterial communities were examined using a genetic fingerprinting method that allowed a comparative profiling of the samples (DGGE), with universal and group-specific PCR primers. Our results indicate that Chernobyl soil samples host a wide diversity of Bacteria, with stable patterns for Firmicutes and Actinobacteria and more variable for Proteobacteria. A collection of 650 aerobic and anaerobic culturable isolates was also constructed. A phylogenetic analysis of 250 heterotrophic aerobic isolates revealed that 5 phyla are represented: Beta-, Gamma-proteobacteria, Actinobacteria, Bacteroidetes and spore-forming Firmicutes, which is largely dominant. These collection will be screened for the presence of radionuclide-accumulating species in order to estimate the potential influence of microorganisms in radionuclides migration in soils

  8. Molecular Biological Analysis of Microorganisms in Petroleum Reservoirs

    Ko, J.; Son, H. A.; Im, K. C.; Back, K. H.; Kim, H. T.

    2014-12-01

    Microorganisms in petroleum reservoirs were analyzed to examine the potential to apply for microbial enhanced oil recovery (MEOR). Genomic DNA (16S rDNA) were extracted from two heavy oil samples from Canadian oil sand and six light oil samples from the Salin fore-arc basin in Myanmar, and amplified using a polymerase chain reaction (PCR) method. The microbes were identified by cloning the PCR products and pyrosequencing. Actinobacteria, Firmicutes, and Proteobacteria were common in both Canadian and Myanmar samples. Staphylococcus and Streptococcus belonging to the Firmicutes phylum are abundant in oil sands, while Propionibacteria belonging to the Actinobacteria phylum and Coprothermobacter, Streptococcus, and Clostridia belonging to the Frimicutes phylum are contained in Myanmar samples. Streptococcus is known to use crude oil as nutrient, and produce organic acid, bio-gas and polysaccharide that could reduce oil viscosity, improve permeability by dissolving carbonate cement from pores throat, and reduce interfacial tension between oil and rock/water surface. Clostridia produce acids and gases by methanogenesis that could improve oil recovery.

  9. Integration of acoustic and light sensors for marine bio-mining

    Wiegand, Gordon

    2016-05-01

    Maximum diversity of life exists within the estuaries and coral reefs of the Globe. The absence of vertebrate and other land dwelling adaptations has resulted in an enormous range of complexity among invertebrates and their symbiotic biome resulting in the generation of compounds finding uses in anti-tumor and antibiotic applications. It has been widely reported that the greatest factor limiting progress in characterizing and processing new therapeutics derived from invertebrates is the lack of adequate original material. Symbiotic bacteria within specific tunicates often synthesize antitumor compounds as secondary metabolites. We describe a 3-stage protocol that utilizes acoustic and photonic analysis of large areas of marine ecosystem and life forms. We refer to this as Estuary Assessment System (EAS), which includes a multi-frequency acoustic transducer/sensing instrument mounted on our research vessel. This generates a topological map of surveyed tracks of marine locations known to be habitats of useful actinobacteria laden invertebrates. Photonic devices are used to generate image and pulse data leading to location, identification and isolation of tunicates and actinobacteria.

  10. Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis.

    Ren, Guangming; Xu, Xiuhong; Qu, Juanjuan; Zhu, Liping; Wang, Tingting

    2016-06-01

    Microbial population dynamics in co-composting of cow manure and rice straw were evaluated using 16S high throughput sequencing technology. Physicochemical factors, including temperature, pH, nitrogen contents, the ratio of carbon and nitrogen, and germination index, were also determined in this study. 16S high throughput sequencing results showed that bacterial community structure and composition significantly varied in each phase of composting. The major phyla included Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria and Planctomycetes, respectively. Bacteroidetes and Proteobacteria were the most abundant phyla in all phases, and Actinobacteria was just dominant in the mesophilic phase, while Firmicutes and Planctomycetes were ubiquitous. At the genus level, Simiduia, Flavobacterium, unclassified Chitinophagaceae and Flexibacter notably changed in each phase of composting. Bacterial community diversity in the mesophilic phase was higher than that in others based on the Shannon-Wiener index and Simpson diversity index. The ratio of carbon and nitrogen and germination index indicated that the co-composting of cow manure and rice straw reached maturation. The result of nitrogen contents showed that nitrogen loss mainly occurred in the thermophilic phase. In addition, the differences in the distributions of key OTUs between in the late thermophilic phase and the cooling and maturation phase were unobvious compared with other phase's base on the principal component analysis. Redundancy analysis revealed that the changes of nitrogen played a predominant role in the distributions of OTUs during the composting process. PMID:27116967

  11. Genetics and Genomics of the Genus Amycolatopsis.

    Kumari, Rashmi; Singh, Priya; Lal, Rup

    2016-09-01

    Actinobacteria are gram-positive filamentous bacteria which contains some of the most deadly human pathogens (Mycobacterium tuberculosis, M. leprae, Corynebacterium diphtheriae, Nocardia farcinica), plant pathogens (Streptomyces scabies, Leifsonia xyli) along with organisms that produces antibiotic (Streptomycetes, Amycolatopsis, Salinospora). Interestingly, these bacteria are equipped with an extraordinary capability of producing antibiotics and other metabolites which have medicinal properties. With the advent of inexpensive genome sequencing techniques and their clinical importance, many genomes of Actinobacteria have been successfully sequenced. These days, with the constant increasing number of drug-resistant bacteria, the urgent need for discovering new antibiotics has emerged as a major scientific challenge. And, unfortunately the traditional method of screening bacterial strains for the production of antibiotics has decreased leading to a paradigm shift in the planning and execution of discovery of novel biosynthetic gene clusters via genome mining process. The entire focus has shifted to the evaluation of genetic capacity of organisms for metabolite production and activation of cryptic gene clusters. This has been made possible only due to the availability of genome sequencing and has been augmented by genomic studies and new biotechnological approaches. Through this article, we present the analysis of the genomes of species belonging to the genus Amycolatopsis, sequenced till date with a focus on completely sequenced genomes and their application for further studies. PMID:27407288

  12. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China.

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-01-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3(-)-N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau. PMID:27334692

  13. A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil.

    Lladó, S; Solanas, A M; de Lapuente, J; Borràs, M; Viñas, M

    2012-10-01

    A diversified approach involving chemical, microbiological and ecotoxicity assessment of soil polluted by heavy mineral oil was adopted, in order to improve our understanding of the biodegradability of pollutants, microbial community dynamics and ecotoxicological effects of various bioremediation strategies. With the aim of improving hydrocarbon degradation, the following bioremediation treatments were assayed: i) addition of inorganic nutrients; ii) addition of the rhamnolipid-based biosurfactant M(AT10); iii) inoculation of an aliphatic hydrocarbon-degrading microbial consortium (TD); and iv) inoculation of a known hydrocarbon-degrading white-rot fungus strain of Trametes versicolor. After 200 days, all the bioremediation assays achieved between 30% and 50% total petroleum hydrocarbon (TPH) biodegradation, with the T. versicolor inoculation degrading it the most. Biostimulation and T. versicolor inoculation promoted the Brevundimonas genus concurrently with other α-proteobacteria, β-proteobacteria and Cytophaga-Flexibacter-Bacteroides (CFB) as well as Actinobacteria groups. However, T. versicolor inoculation, which produced the highest hydrocarbon degradation in soil, also promoted autochthonous Gram-positive bacterial groups, such as Firmicutes and Actinobacteria. An acute toxicity test using Eisenia fetida confirmed the improvement in the quality of the soil after all biostimulation and bioaugmentation strategies. PMID:22858534

  14. A snapshot on spatial and vertical distribution of bacterial communities in the eastern Indian Ocean

    WANG Jing; KAN Jinjun; BORECKI Laura; ZHANG Xiaodong; WANG Dongxiao; SUN Jun

    2016-01-01

    Besides being critical components of marine food web, microorganisms play vital roles in biogeochemical cycling of nutrients and elements in the ocean. Currently little is known about microbial population structure and their distributions in the eastern Indian Ocean. In this study, we applied molecular approaches including polymerase chain reaction-denaturant gradient gel electrophoresis (PCR-DGGE) and High-Throughput next generation sequencing to investigate bacterial 16S rRNA genes from the equatorial regions and the adjacent Bay of Bengal in the eastern Indian Ocean. In general,Bacteroidetes,Proteobacteria (mainlyAlpha, andGamma),Actinobacteria, Cyanobacteria andPlanctomycetes dominated the microbial communities. Horizontally distinct spatial distribution of major microbial groups was observed from PCR-DGGE gel image analyses. However, further detailed characterization of community structures by pyrosequencing suggested a more pronounced stratified distribution pattern:Cyanobacteria andActinobacteria were more predominant at surface water (25 m);Bacteroidetes dominated at 25 m and 150 m whileProteobacteria (mainlyAlphaproteobacteria) occurred more frequently at 75 m water depth. With increasing water depth, the bacterial communities from different locations tended to share high similarity, indicating a niche partitioning for minor groups of bacteria recovered with high throughput sequencing approaches. This study provided the first “snapshot” on biodiversity and spatial distribution ofBacteria in water columns in the eastern Indian Ocean, and the findings further emphasized the potential functional roles of these microbes in energy and resource cycling in the eastern Indian Ocean.

  15. Bacterial communities associated with the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils.

    Navarro-Noya, Yendi E; Jan-Roblero, Janet; González-Chávez, Maria del Carmen; Hernández-Gama, Regina; Hernández-Rodríguez, César

    2010-05-01

    In this study, the bacterial communities associated with the rhizospheres of pioneer plants Bahia xylopoda and Viguiera linearis were explored. These plants grow on silver mine tailings with high concentration of heavy metals in Zacatecas, Mexico. Metagenomic DNAs from rhizosphere and bulk soil were extracted to perform a denaturing gradient gel electrophoresis analysis (DGGE) and to construct 16S rRNA gene libraries. A moderate bacterial diversity and twelve major phylogenetic groups including Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Firmicutes, Verrucomicrobia, Nitrospirae and Actinobacteria phyla, and divisions TM7, OP10 and OD1 were recognized in the rhizospheres. Only 25.5% from the phylotypes were common in the rhizosphere libraries and the most abundant groups were members of the phyla Acidobacteria and Betaproteobacteria (Thiobacillus spp., Nitrosomonadaceae). The most abundant groups in bulk soil library were Acidobacteria and Actinobacteria, and no common phylotypes were shared with the rhizosphere libraries. Many of the clones detected were related with chemolithotrophic and sulfur-oxidizing bacteria, characteristic of an environment with a high concentration of heavy metal-sulfur complexes, and lacking carbon and organic energy sources. PMID:20084459

  16. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients. PMID:25822201

  17. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae

    Narit Thaochan

    2015-12-01

    Full Text Available The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering and Bactrocera tryoni (Froggatt, was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria which was prominent in all clones. The total bacterial community consisted of Proteobacteria (more than 75% of clones, except in the crop of B. cacuminata where more than 50% of clones belonged to Firmicutes. Firmicutes gave the number of the secondary community structure in the fly’s gut. Four orders, Alpha-, Beta-, Delta- and Gammaproteobacteria and the phyla Firmicutes and Actinobacteria were found in both fruit fly species, while the order Epsilonproteobacteria and the phylum Bacteroidetes were found only in B. tryoni. Two phyla, Actinobacteria and Bacteroidetes, were rare and less frequent in the flies. There was a greater diversity of bacteria in the crop of the two fruit fly species than in the midgut. The midgut of B. tryoni females and the midgut of B. cacuminata males had the lowest bacterial diversity.

  18. Microbial monitoring in treated stone at the Royal Chapel of Granada

    Jroundi, Fadwa; Pinar, Guadalupe; González-Muñoz, Maria Theresa; Sterflinger, Katja

    2014-05-01

    Biomineralization processes have been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). In few years, this conservation treatment has gained worth attention as environmentally friendly methodology for protection and consolidation of limestone because of the compatibilities shown between the new calcium carbonate cement and the original stone substrate. Moreover, the success of this approach may be related to the diversity of the microbiota inhabiting the stone and activated upon the biotreatment application and throughout the time. González-Muñoz et al. (2008) proposed a nutritional solution that activate among the bacteria inhabiting the stone those with carbonatogenic activity. In this study, a long-term (one, two and three years) monitoring of the microbiota present on the treated and untreated stones was done using a molecular strategy, including total DNA extraction, PCR amplification of 16S rRNA sequences, construction of clone libraries and fingerprinting by DGGE (Denaturing Gradient Gel Electrophoresis) analysis. Sequencing of the 16S rDNA revealed the dominant occurrence of members of Actinobacteria (44.20%), Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) after one year of the biotreatment. Whereas after two years, members of Cyanobacteria (22.10%) appeared and three years after, the microbiota consisted of only Actinobacteria and Cyanobacteria with approximately the same percentage in comparison with the untreated stones, dominated exclusively by Actinobacteria (100%). Fungal diversity followed the same dynamic as bacterial diversity being Ascomicota the predominant order before treatment. After one year, members of Basidiomycota and Viridiplantae appeared on the stone while two years after, the Viridiplantae dominated with a percentage of 84.77%. Finally, three years after the treatment, fungi population started to stabilize again and Ascomicota predominated next to 16.67% of

  19. Bacteria as growth-promoting agents for citrus rootstocks.

    Giassi, Valdionei; Kiritani, Camila; Kupper, Katia Cristina

    2016-09-01

    The microbial community plays an essential role in maintaining the ecological balance of soils. Interactions between microorganisms and plants have a major influence on the nutrition and health of the latter, and growth-promoting rhizobacteria can be used to improve plant development through a wide range of mechanisms. Therefore, the objective of the present study was to evaluate bacteria as growth-promoting agents for citrus rootstocks. A total of 30 bacterial isolates (11 of Bacillus spp., 11 actinobacteria, and 8 lactic acid bacteria) were evaluated in vitro for indoleacetic acid production, phosphate solubilization, and nitrogen (N) fixation. In vivo testing consisted of growth promotion trials of the bacterial isolates that yielded the best results on in vitro tests with three rootstocks: Swingle citrumelo [Citrus×paradisi Macfad cv. Duncan×Poncirus trifoliata (L.) Raf.], Sunki mandarin (Citrus sunki Hort. ex Tan), and rangpur (Citrus×limonia Osbeck). The parameters of interest were height, number of leaves, stem diameter, shoot and root dry mass, and total dry mass at 150days after germination. The results showed that most bacterial isolates were capable of IAA production. Only one lactic acid bacterium isolate (BL06) solubilized phosphate, with a high solubilization index (PSI>3). In the actinobacteria group, isolates ACT01 (PSI=2.09) and ACT07 (PSI=2.01) exhibited moderate phosphate-solubilizing properties. Of the Bacillus spp. isolates, only CPMO6 and BM17 solubilized phosphate. The bacterial isolates that most fixated nitrogen were BM17, ACT11, and BL24. In the present study, some bacteria were able to promote growth of citrus rootstocks; however, this response was dependent on plant genotype and isolate. Bacillus spp. BM16 and CPMO4 were able to promote growth of Swingle citrumelo. In Sunki mandarin plants, the best treatment results were obtained with BM17 (Bacillus sp.) and ACT11 (actinobacteria). For Rangpur lime rootstock, only BM05 (Bacillus sp

  20. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway

    Gaigalat Lars

    2006-08-01

    Full Text Available Abstract Background Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. Results A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4-monophosphatases (EC 3.1.3.25. Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown

  1. A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process.

    Liu, Yindong; Su, Xiaomei; Lu, Lian; Ding, Linxian; Shen, Chaofeng

    2016-03-01

    A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations. PMID:26514565

  2. Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland).

    Horath, Thomas; Bachofen, Reinhard

    2009-08-01

    Endolithic microorganisms colonize the pores in exposed dolomite rocks in the Piora Valley in the Swiss Alps. They appear as distinct grayish-green bands about 1-8 mm below the rock surface. Based on environmental small subunit ribosomal RNA gene sequences, a diverse community driven by photosynthesis has been found. Cyanobacteria (57 clones), especially the genus Leptolyngbya, form the functional basis for an endolithic community which contains a wide spectrum of so far not characterized species of chemotrophic Bacteria (64 clones) with mainly Actinobacteria, Alpha-Proteobacteria, Bacteroidetes, and Acidobacteria, as well as a cluster within the Chloroflexaceae. Furthermore, a cluster within the Crenarchaeotes (40 clones) has been detected. Although the eukaryotic diversity was outside the scope of the study, an amoeba (39 clones), and several green algae (51 clones) have been observed. We conclude that the bacterial diversity in this endolithic habitat, especially of chemotrophic, nonpigmented organisms, is considerable and that Archaea are present as well. PMID:19172216

  3. Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site.

    McNamara, Christopher J; Perry, Thomas D; Bearce, Kristen A; Hernandez-Duque, Guillermo; Mitchell, Ralph

    2006-01-01

    Biodeterioration of archaeological sites and historic buildings is a major concern for conservators, archaeologists, and scientists involved in preservation of the world's cultural heritage. The Maya archaeological sites in southern Mexico, some of the most important cultural artifacts in the Western Hemisphere, are constructed of limestone. High temperature and humidity have resulted in substantial microbial growth on stone surfaces at many of the sites. Despite the porous nature of limestone and the common occurrence of endolithic microorganisms in many habitats, little is known about the microbial flora living inside the stone. We found a large endolithic bacterial community in limestone from the interior of the Maya archaeological site Ek' Balam. Analysis of 16S rDNA clones demonstrated disparate communities (endolithic: >80% Actinobacteria, Acidobacteria, and Low GC Firmicutes; epilithic: >50% Proteobacteria). The presence of differing epilithic and endolithic bacterial communities may be a significant factor for conservation of stone cultural heritage materials and quantitative prediction of carbonate weathering. PMID:16391878

  4. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal

    Lee, N.; Nielsen, P.H.; Aspegren, H.;

    2003-01-01

    removal (EBPR). The two systems received the same influent wastewater, but were differently operated (with and without nitrogen removal, respectively). Both systems showed a significant P removal that increased when different substrates (phosphorus (P), acetate and glucose, respectively) were added......Quantitative fluorescence in situ hybridization (FISH) and the combination of FISH with microautoradiography (MAR) were used in order to study the long-term population dynamics (2.5 years) and the in situ physiology in two parallel activated sludge pilot systems with enhanced biological phosphorus....... However, we observed a lower correlation (0.9). The Actinobacteria were the only additional group of bacteria which showed a similar degree of correlation to the P content in activated sludge as the Rhodocyclus-related bacteria - but only for the system without nitrogen removal. Significant amounts (less...

  5. The human vaginal bacterial biota and bacterial vaginosis.

    Srinivasan, Sujatha; Fredricks, David N

    2008-01-01

    The bacterial biota of the human vagina can have a profound impact on the health of women and their neonates. Changes in the vaginal microbiota have been associated with several adverse health outcomes including premature birth, pelvic inflammatory disease, and acquisition of HIV infection. Cultivation-independent molecular methods have provided new insights regarding bacterial diversity in this important niche, particularly in women with the common condition bacterial vaginosis (BV). PCR methods have shown that women with BV have complex communities of vaginal bacteria that include many fastidious species, particularly from the phyla Bacteroidetes and Actinobacteria. Healthy women are mostly colonized with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners, though a variety of other bacteria may be present. The microbiology of BV is heterogeneous. The presence of Gardnerella vaginalis and Atopobium vaginae coating the vaginal epithelium in some subjects with BV suggests that biofilms may contribute to this condition. PMID:19282975

  6. What stories can the Frankia genomes start to tell us?

    Louis Tisa; Nicholas Beauchemin; Maher Gtari; Arnab Sen; Luis G Wall

    2013-11-01

    Among the Actinobacteria, the genus Frankia is well known for its facultative lifestyle as a plant symbiont of dicotyledonous plants and as a free-living soil dweller. Frankia sp. strains are generally classified into one of four major phylogenetic groups that have distinctive plant host ranges. Our understanding of these bacteria has been greatly facilitated by the availability of the first three complete genome sequences, which suggested a correlation between genome size and plant host range. Since that first report, eight more Frankia genomes have been sequenced. Representatives from all four lineages have been sequenced to provide vital baseline information for genomic approaches toward understanding these novel bacteria. An overview of the Frankia genomes will be presented to stimulate discussion on the potential of these organisms and a greater understanding of their physiology and evolution.

  7. Isolation and characterization of the microbial community of a freshwater distribution system

    This investigation provides generic information on culturable and non-culturable microbial community of a freshwater distribution system. Culture based and culture independent (16S rRNA gene sequencing) techniques were used to identify the resident microbial community of the system. Selective isolation of the fouling bacteria such as biofilm formers and corrosion causing bacteria was also attempted. Denaturing gradient gel electrophoresis (DGGE) was carried out and the bands were sequenced to obtain the diversity of the total bacterial types. Pseudomonas aeruginosa was predominantly observed in most of the samples. A variety of bacteria, related to groups such as Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were identified. The study highlights the relevance of the observed microbial diversity with respect to material deterioration in a freshwater distribution system, which can aid in designing effective control methods. (author)

  8. A peptidome-based phylogeny pipeline reveals differential peptides at the strain level within Bifidobacterium animalis subsp. lactis.

    Blanco-Míguez, Aitor; Gutiérrez-Jácome, Alberto; Fdez-Riverola, Florentino; Lourenço, Anália; Sánchez, Borja

    2016-12-01

    Bifidobacteria are gut commensal microorganisms belonging to the Actinobacteria group. Some specific strains of Bifidobacterium animalis subsp. lactis are used in functional foods as they are able to exert health-promoting effects in the human host. Due to the limited genetic variability within this subspecies, it is sometimes difficult for a manufacturer to properly track its strain once included in dairy products or functional foods. In this paper, we present a peptidome-based analysis in which the proteomes of a set of B. animalis subsp. lactis strains were digested in silico with human gut endopeptidases. The molecular masses were compared along all the strains to detect strain-specific peptides. These peptides may be interesting towards the development of methodologies for strain identification in the final product. PMID:27554155

  9. ESTIMATING BACTERIAL DIVERSITY IN SCIRTOTHRIPS DORSALIS (THYSANOPTERA: THRIPIDAE) VIA NEXT GENERATION SEQUENCING

    Dickey, Aaron M.; Trease, Andrew J.; Jara-Cavieres, Antonella; Kumar, Vivek; Christenson, Matthew K.; Potluri, Lakshmi-Prasad; Morgan, J. Kent; Shatters, Robert G.; Mckenzie, Cindy L.; Davis, Paul H.; Osborne, Lance S.

    2014-01-01

    The last 2 decades have produced a better understanding of insect-microbial associations and yielded some important opportunities for insect control. However, most of our knowledge comes from model systems. Thrips (Thysanoptera: Thripidae) have been understudied despite their global importance as invasive species, plant pests and disease vectors. Using a culture and primer independent next-generation sequencing and metagenomics pipeline, we surveyed the bacteria of the globally important pest, Scirtothrips dorsalis Hood. The most abundant bacterial phyla identified were Actinobacteria and Proteobacteria and the most abundant genera were Propionibacterium, Stenotrophomonas, and Pseudomonas. A total of 189 genera of bacteria were identified. The absence of any vertically transferred symbiont taxa commonly found in insects is consistent with other studies suggesting that thrips primarilly acquire resident microbes from their environment. This does not preclude a possible beneficial/intimate association between S. dorsalis and the dominant taxa identified and future work should determine the nature of these associations. PMID:25382863

  10. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing

    Surajit De Mandal

    2015-06-01

    Full Text Available V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave — Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach.

  11. Harboring oil-degrading bacteria: a potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs.

    Al-Dahash, Lulwa M; Mahmoud, Huda M

    2013-07-30

    Certain coral reef systems north of the Arabian Gulf are characterized by corals with a unique ability to thrive and flourish despite the presence of crude oil continuously seeping from natural cracks in the seabed. Harboring oil-degrading bacteria as a part of the holobiont has been investigated as a potential mechanism of adaptation and survival for corals in such systems. The use of conventional and molecular techniques verified a predominance of bacteria affiliated with Gammaproteobacteria, Actinobacteria and Firmicutes in the mucus and tissues of Acropora clathrata and Porites compressa. These bacteria were capable of degrading a wide range of aliphatic (C9-C28) aromatic hydrocarbons (Phenanthrene, Biphenyl, Naphthalene) and crude oil. In addition, microcosms supplied with coral samples and various concentrations of crude oil shifted their bacterial population toward the more advantageous types of oil degraders as oil concentrations increased. PMID:23014479

  12. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers.

    Oliveira, Valéria M; Lopes-Oliveira, Patrícia F; Passarini, Michel R Z; Menezes, Claudia B A; Oliveira, Walter R C; Rocha, Adriano J; Sette, Lara D

    2011-04-01

    Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples. PMID:21563009

  13. Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis

    Sergaliev, N. Kh.; Kakishev, M. G.; Zhiengaliev, A. T.; Volodin, M. A.; Andronov, E. E.; Pinaev, A. G.

    2015-04-01

    A method for the extraction of soil microbial DNA has been tested on chestnut soils (Kastanozems) of the West Kazakhstan region. The taxonomic analysis of soil microbiome libraries has shown that the phyla Actinobacteria and Proteobacteria constitute the largest part of microbial communities in the analyzed soils. The Archaea form an appreciable part of the microbiome in the studied samples. In the underdeveloped dark chestnut soil, their portion is higher than 11%. This is of interest, as the proportion of Archaea in the soil communities of virgin lands usually does not exceed 5%. In addition to the phyla mentioned above, there are representatives of the phyla Acidobacteria, Bacteroidetes, Firmicutes, Gemmatimonadales, Planctomycetes, and Verrucomicrobia, which are all fairly common in soil communities.

  14. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes.

    Talia, Paola; Sede, Silvana M; Campos, Eleonora; Rorig, Marcela; Principi, Dario; Tosto, Daniela; Hopp, H Esteban; Grasso, Daniel; Cataldi, Angel

    2012-04-01

    Sequence analysis of the 16S ribosomal RNA gene was used to study bacterial diversity of a pristine forest soil and of two cultures of the same soil enriched with cellulolytic bacteria. Our analysis revealed high bacterial diversity in the native soil sample, evidencing at least 10 phyla, in which Actinobacteria, Proteobacteria and Acidobacteria accounted for more than 76% of all sequences. In both enriched samples, members of Proteobacteria were the most frequently represented. The majority of bacterial genera in both enriched samples were identified as Brevundimonas and Caulobacter, but members of Devosia, Sphingomonas, Variovorax, Acidovorax, Pseudomonas, Xanthomonas, Stenotrophomonas, Achromobacter and Delftia were also found. In addition, it was possible to identify cellulolytic taxa such as Acidothermus, Micromonospora, Streptomyces, Paenibacillus and Pseudomonas, which indicates that this ecosystem could be an attractive source for study of novel enzymes for cellulose degradation. PMID:22202170

  15. Bacterial populations on brewery filling hall surfaces as revealed by next-generation sequencing.

    Priha, Outi; Raulio, Mari; Maukonen, Johanna; Vehviläinen, Anna-Kaisa; Storgårds, Erna

    2016-01-01

    Due to the presence of moisture and nutrients, brewery filling line surfaces are susceptible to unwanted microbial attachment. Knowledge of the attaching microbes will aid in designing hygienic control of the process. In this study the bacterial diversity present on brewery filling line surfaces was revealed by next generation sequencing. The two filling lines studied maintained their characteristic bacterial community throughout three sampling times (13-163 days). On the glass bottle line, γ-proteobacteria dominated (35-82% of all OTUs), whereas on the canning line α-, β- and γ-proteobacteria and actinobacteria were most common. The most frequently detected genera were Acinetobacter, Propinobacterium and Pseudomonas. The halophilic genus Halomonas was commonly detected, which might be due to its tolerance to alkaline foam cleaners. This study has revealed a detailed overall picture of the bacterial groups present on filling line surfaces. Further effort should be given to determine the efficacy of washing procedures on different bacterial groups. PMID:27064426

  16. Temporal Patterns in Bacterioplankton Community Composition in Three Reservoirs of Similar Trophic Status in Shenzhen, China

    Li, Jiancheng; Chen, Cheng; Lu, Jun; Lei, Anping; Hu, Zhangli

    2016-01-01

    The bacterioplankton community composition’s (BCC) spatial and temporal variation patterns in three reservoirs (Shiyan, Xikeng, and LuoTian Reservoir) of similar trophic status in Bao’an District, Shenzhen (China), were investigated using PCR amplification of the 16S rDNA gene and the denaturing gradient gel electrophoresis (DGGE) techniques. Water samples were collected monthly in each reservoir during 12 consecutive months. Distinct differences were detected in band number, pattern, and density of DGGE at different sampling sites and time points. Analysis of the DGGE fingerprints showed that changes in the bacterial community structure mainly varied with seasons, and the patterns of change indicated that seasonal forces might have a more significant impact on the BCC than eutrophic status in the reservoirs, despite the similar Shannon-Weiner index among the three reservoirs. The sequences obtained from excised bands were affiliated with Cyanobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Actinobacteria, Planctomycetes, and Proteobacteria. PMID:27322295

  17. Psychrotolerant actinomycetes of plants and organic horizons in tundra and taiga soils

    Dubrova, M. S.; Zenova, G. M.; Yakushev, A. V.; Manucharova, N. A.; Makarova, E. P.; Zvyagintsev, D. G.; Chernov, I. Yu.

    2013-08-01

    It has been revealed that in organic horizons and plants of the tundra and taiga ecosystems under low temperatures, actinomycetal complexes form. The population density of psychrotolerant actinomycetes in organic horizons and plants reaches tens and hundreds of thousands CFU/g of substrate or soil, and decreases in the sequence litters > plants > soils > undecomposed plant remains > moss growths. The mycelium length of psychrotolerant actinomycetes reaches 220 m/g of substrate. Application of the FISH method has demonstrated that metabolically active psychrotolerant bacteria of the phylum Actinobacteria constitute 30% of all metabolically active psychrotolerant representatives of the Bacterià domain of the prokaryotic microbial community of soils and plants. Psychrotolerant actinomycetes in tundra and taiga ecosystems possess antimicrobial properties.

  18. Ecological and Taxonomic Features of Actinomycetal Complexes in Soils of the Lake Elton Basin

    Zenova, G. M.; Dubrova, M. S.; Kuznetsova, A. I.; Gracheva, T. A.; Manucharova, N. A.; Zvyagintsev, D. G.

    2016-02-01

    In the sor (playa) solonchaks of chloride and sulfate-chloride salinity (the content of readily soluble salts is 0.9-1.0%) in the delta of the Khara River discharging into Lake Elton, the number of mycelial actinobacteria (actinomycetes) is low ((2-3) × 103 CFU/g of soil). At a distance from the water's edge, these soils are substituted for the light chestnut ones, for which an elevated number of actinomycetes (an order of magnitude higher than in the sor solonchaks) and a wider generic spectrum are characteristic. The actinomycetal complex is included the Streptomyces and Micromonospora genera, whereas in the sor solonchaks around the lake, representatives of Micromonospora were not found.

  19. Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss)

    Ingerslev, Hans-Christian; Strube, Mikael Lenz; Jørgensen, Louise von Gersdorff;

    2014-01-01

    rainbow trout. The plant-based diet gave rise to an intestinal microbiota dominated by the genera Streptococcus, Leuconostoc and Weissella from phylum Firmicutes whereas phylum Proteobacteria/Bacteroidetes/Actinobacteria dominated the community in the marine fed fish. In connection to the Y. ruckeri bath...... challenge there was no effect of the diet type on the cumulative survival, but the number of Y. ruckeri positive fish as measured by plate count and the number of fish with a 'high' number of reads belonging to genus Yersinia as measured by 16S rRNA next-generation sequencing was higher for marine diet fed...... fish. Furthermore, the two experimental groups of fish showed a differential immune response, where Y. ruckeri challenged marine fed fish had a higher transcription of IL-1β and MBL-2 relative to challenged plant diet fed fish. The data suggest that the plant diet gave rise to a prebiotic effect...

  20. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    Møller, Annette; Søborg, Ditte Andreasen; Al-Soud, Waleed Abu;

    2013-01-01

    controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input......The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition...... of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers...

  1. Doença de Whipple : um diagnóstico difícil

    Fevereiro, Marta Andrade

    2013-01-01

    A doença de Whipple é uma doença bacteriana, multissistémica e rara. O agente etiológico é a bactéria Tropheryma whipplei, um bacilo gram-positivo da família das Actinobacterias e do grupo Actinomycetes. Por ser uma doença sistémica, a doença de Whipple tem manifestações clínicas muito variadas com particular envolvimento do intestino delgado, do sistema nervoso central, das articulações e do coração. A forma mais comum de apresentação inicial é na forma de uma doença gastrointestinal manifes...

  2. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal

    Lee, N.; Nielsen, P.H.; Aspegren, H.; Henze, Mogens; Schleifer, K.-H.; Jansen, J.l.C.

    2003-01-01

    Quantitative fluorescence in situ hybridization (FISH) and the combination of FISH with microautoradiography (MAR) were used in order to study the long-term population dynamics (2.5 years) and the in situ physiology in two parallel activated sludge pilot systems with enhanced biological phosphorus...... removal (EBPR). The two systems received the same influent wastewater, but were differently operated (with and without nitrogen removal, respectively). Both systems showed a significant P removal that increased when different substrates (phosphorus (P), acetate and glucose, respectively) were added to the....... However, we observed a lower correlation (0.9). The Actinobacteria were the only additional group of bacteria which showed a similar degree of correlation to the P content in activated sludge as the Rhodocyclus-related bacteria - but only for the system without nitrogen removal. Significant amounts (less...

  3. Heterotrophic bacteria from an extremely phosphate-poor lake have conditionally reduced phosphorus demand and utilize diverse sources of phosphorus.

    Yao, Mengyin; Elling, Felix J; Jones, CarriAyne; Nomosatryo, Sulung; Long, Christopher P; Crowe, Sean A; Antoniewicz, Maciek R; Hinrichs, Kai-Uwe; Maresca, Julia A

    2016-02-01

    Heterotrophic Proteobacteria and Actinobacteria were isolated from Lake Matano, Indonesia, a stratified, ferruginous (iron-rich), ultra-oligotrophic lake with phosphate concentrations below 50 nM. Here, we describe the growth of eight strains of heterotrophic bacteria on a variety of soluble and insoluble sources of phosphorus. When transferred to medium without added phosphorus (P), the isolates grow slowly, their RNA content falls to as low as 1% of cellular dry weight, and 86-100% of the membrane lipids are replaced with amino- or glycolipids. Similar changes in lipid composition have been observed in marine photoautotrophs and soil heterotrophs, and similar flexibility in phosphorus sources has been demonstrated in marine and soil-dwelling heterotrophs. Our results demonstrate that heterotrophs isolated from this unusual environment alter their macromolecular composition, which allows the organisms to grow efficiently even in their extremely phosphorus-limited environment. PMID:26415900

  4. Bacteria and archaea paleomicrobiology of the dental calculus: a review.

    Huynh, H T T; Verneau, J; Levasseur, A; Drancourt, M; Aboudharam, G

    2016-06-01

    Dental calculus, a material observed in the majority of adults worldwide, emerged as a source for correlating paleomicrobiology with human health and diet. This mini review of 48 articles on the paleomicrobiology of dental calculus over 7550 years discloses a secular core microbiota comprising nine bacterial phyla - Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, TM7, Synergistetes, Chloroflexi, Fusobacteria, Spirochetes - and one archaeal phylum Euryarchaeota; and some accessory microbiota that appear and disappear according to time frame. The diet residues and oral microbes, including bacteria, archaea, viruses and fungi, consisting of harmless organisms and pathogens associated with local and systemic infections have been found trapped in ancient dental calculus by morphological approaches, immunolabeling techniques, isotope analyses, fluorescent in situ hybridization, DNA-based approaches, and protein-based approaches. These observations led to correlation of paleomicrobiology, particularly Streptococcus mutans and archaea, with past human health and diet. PMID:26194817

  5. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    Klümper, Uli; Riber, Leise; Dechesne, Arnaud;

    2014-01-01

    to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the...... transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes...... and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different...

  6. Coevolution of aah: A dps-Like Gene with the Host Bacterium Revealed by Comparative Genomic Analysis

    Liyan Ping

    2012-01-01

    Full Text Available A protein named AAH was isolated from the bacterium Microbacterium arborescens SE14, a gut commensal of the lepidopteran larvae. It showed not only a high sequence similarity to Dps-like proteins (DNA-binding proteins from starved cell but also reversible hydrolase activity. A comparative genomic analysis was performed to gain more insights into its evolution. The GC profile of the aah gene indicated that it was evolved from a low GC ancestor. Its stop codon usage was also different from the general pattern of Actinobacterial genomes. The phylogeny of dps-like proteins showed strong correlation with the phylogeny of host bacteria. A conserved genomic synteny was identified in some taxonomically related Actinobacteria, suggesting that the ancestor genes had incorporated into the genome before the divergence of Micrococcineae from other families. The aah gene had evolved new function but still retained the typical dodecameric structure.

  7. Capacity of Aromatic Compound Degradation by Bacteria from Amazon Dark Earth

    Fernanda Mancini Nakamura

    2014-06-01

    Full Text Available Amazon dark earth (ADE is known for its high organic matter content, biochar concentration and microbial diversity. The biochar amount suggests the existence of microorganisms capable of degrading aromatic hydrocarbons (AHs. In an effort to investigate the influence of bacteria on the resilience and fertility of these soils, we enriched five ADE soils with naphthalene and phenanthrene, and biodegradation assays with phenanthrene and diesel oil were carried out, as well. After DNA extraction, amplification and sequencing of the 16S rRNA bacterial gene, we identified 148 isolates as the Proteobacteria, Firmicutes and Actinobacteria phyla comprising genera closely related to AHs biodegradation. We obtained 128 isolates that degrade diesel oil and 115 isolates that degrade phenanthrene. Some isolates were successful in degrading both substrates within 2 h. In conclusion, the obtained isolates from ADE have degrading aromatic compound activity, and perhaps, the biochar content has a high influence on this.

  8. What stories can the Frankia genomes start to tell us?

    Tisa, Louis S; Beauchemin, Nicholas; Gtari, Maher; Sen, Arnab; Wall, Luis G

    2013-11-01

    Among the Actinobacteria, the genus Frankia is well known for its facultative lifestyle as a plant symbiont of dicotyledonous plants and as a free-living soil dweller. Frankia sp. strains are generally classified into one of four major phylogenetic groups that have distinctive plant host ranges. Our understanding of these bacteria has been greatly facilitated by the availability of the first three complete genome sequences, which suggested a correlation between genome size and plant host range. Since that first report, eight more Frankia genomes have been sequenced. Representatives from all four lineages have been sequenced to provide vital baseline information for genomic approaches toward understanding these novel bacteria. An overview of the Frankia genomes will be presented to stimulate discussion on the potential of these organisms and a greater understanding of their physiology and evolution. PMID:24287651

  9. Activity of 2,4-Di-tert-butylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi.

    Belghit, S; Driche, E H; Bijani, C; Zitouni, A; Sabaou, N; Badji, B; Mathieu, F

    2016-06-01

    In a search for new antifungal antibiotics active against Candida albicans and others pathogenic fungi, a strain of actinobacteria, designated G61, was isolated from a Saharan soil and tested for its activity against these microorganisms. The analysis of its 16S rDNA sequence showed a similarity level of 100% with Streptomyces mutabilis NBRC 12800(T). The highest anticandidal activities produced by the strain G61 were obtained on Bennett medium in the fourth day of incubation. The active product, extracted by n-butanol, contained one bioactive spot detected on thin layer chromatography plates. It was purified by HPLC and its chemical structure was determined by spectroscopic analyses as 2,4-Di-tert-butylphenol. The minimum inhibitory concentrations (MIC) of this product against several strains of pathogenic microorganisms are interesting. PMID:27107984

  10. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439.

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B; Melançon, Charles E

    2016-02-19

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development. PMID:26562751