WorldWideScience

Sample records for actinobacteria

  1. Emerging biopharmaceuticals from marine actinobacteria.

    Science.gov (United States)

    Hassan, Syed Shams Ul; Anjum, Komal; Abbas, Syed Qamar; Akhter, Najeeb; Shagufta, Bibi Ibtesam; Shah, Sayed Asmat Ali; Tasneem, Umber

    2017-01-01

    Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Recent advances in genetic modification systems for Actinobacteria.

    Science.gov (United States)

    Deng, Yu; Zhang, Xi; Zhang, Xiaojuan

    2017-03-01

    Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.

  3. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  4. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Variability of Actinobacteria, a minor component of rumen microflora.

    Science.gov (United States)

    Suľák, M; Sikorová, L; Jankuvová, J; Javorský, P; Pristaš, P

    2012-07-01

    Actinobacteria (Actinomycetes) are a significant and interesting group of gram-positive bacteria. They are regular, though infrequent, members of the microbial life in the rumen and represent up to 3 % of total rumen bacteria; there is considerable lack of information about ecology and biology of rumen actinobacteria. During the characterization of variability of rumen treponemas using non-cultivation approach, we also noted the variability of rumen actinobacteria. By using Treponema-specific primers a specific 16S rRNA gene library was prepared from cow and sheep rumen total DNA. About 10 % of recombinant clones contained actinobacteria-like sequences. Phylogenetic analyses of 11 clones obtained showed the high variability of actinobacteria in the ruminant digestive system. While some sequences are nearly identical to known sequences of actinobacteria, we detected completely new clusters of actinobacteria-like sequences, representing probably new, as yet undiscovered, group of rumen Actinobacteria. Further research will be necessary for understanding their nature and functions in the rumen.

  6. Brazilian Cerrado soil Actinobacteria ecology.

    Science.gov (United States)

    Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas

    2013-01-01

    A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.

  7. Brazilian Cerrado Soil Actinobacteria Ecology

    Directory of Open Access Journals (Sweden)

    Monique Suela Silva

    2013-01-01

    Full Text Available A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil. The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora and 92 distinct species in both seasons studied (rainy and dry. The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.

  8. Penicillin-binding proteins in Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2015-04-01

    Because some Actinobacteria, especially Streptomyces species, are β-lactam-producing bacteria, they have to have some self-resistant mechanism. The β-lactam biosynthetic gene clusters include genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β-lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β-lactam-producing Actinobacterium, may strengthen further the self-resistance against β-lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.

  9. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    Science.gov (United States)

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  10. Isolation of antimicrobial producing Actinobacteria from soil samples.

    Science.gov (United States)

    Elbendary, Afaf Ahmed; Hessain, Ashgan Mohamed; El-Hariri, Mahmoud Darderi; Seida, Ahmed Adel; Moussa, Ihab Mohamed; Mubarak, Ayman Salem; Kabli, Saleh A; Hemeg, Hassan A; El Jakee, Jakeen Kamal

    2018-01-01

    Emergence of multidrug resistant bacteria has made the search for novel bioactive compounds from natural and unexplored habitats a necessity. Actinobacteria have important bioactive substances. The present study investigated antimicrobial activity of Actinobacteria isolated from soil samples of Egypt. One hundred samples were collected from agricultural farming soil of different governorates. Twelve isolates have produced activity against the tested microorganisms ( S. aureus , Bacillus cereus , E. coli , K. pneumoniae , P. aeruginosa , S. Typhi, C. albicans , A. niger and A. flavus ). By VITEK 2 system version: 07.01 the 12 isolates were identified as Kocuria kristinae , Kocuria rosea , Streptomyces griseus , Streptomyces flaveolus and Actinobacteria . Using ethyl acetate extraction method the isolates culture's supernatants were tested by diffusion method against indicator microorganisms. These results indicate that Actinobacteria isolated from Egypt farms could be sources of antimicrobial bioactive substances.

  11. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications

    Directory of Open Access Journals (Sweden)

    L eShivlata

    2015-09-01

    Full Text Available Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.

  12. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea

    Science.gov (United States)

    Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described families and 10 unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater. PMID:26539166

  13. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    Science.gov (United States)

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  14. [Diversity of cultivable actinobacteria in Xinghu wetland sediments].

    Science.gov (United States)

    Xue, Dong; Zhao, Guozhen; Yao, Qing; Zhao, Haiquan; Zhu, Honghui

    2015-11-04

    To study the diversity of cultivable actinobacteria in Xinghu wetland and screen actinobacteria with a pharmaceutical potential for producing biologically active secondary metabolites. We studied the diversity of actinobacteria isolated from Xinghu wetland by using different selective isolation media and methods. The high bioactive actinobacteria were identified and further investigated for the presence of polyketide synthases (PKS-I, PKS-II), nonribosomal peptide synthetases (NRPS), 3-amino-5-hydroxybenzoic acid synthases (AHBA) and 3-hydroxy-3-methylglutaryl Coenzyme A (HMG CoA) sequences by specific amplification. More than 300 actinobacteria were isolated, and 135 isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The isolates belonged to 7 orders, 10 families, 13 genera, Streptomyces was the most frequently isolated genus, followed by the genera Micromonospora and Nocardia. Twenty-four isolates showed high activity against Staphylococcus aureus and Escherichia coli, but there no strain displaying antagonistic activity against Salmonella sp. High frequencies of positive PCR amplification were obtained for PKS-I (16.7%, 4/24), PKS-II (62.5%,15/24), NRPS (16.7%, 4/24), HMG CoA (29.2%, 7/24) and AHBA (12.5%, 3/24) biosynthetic systems. High Performance Liquid Chromatography showed that strain XD7, XD114, XD128 produce lots of secondary metabolites. This study indicated that actinobacteria isolated from Xinghu wetland are abundant and have potentially beneficial and diverse bioactivities which should be pursued for their biotechnical promise.

  15. Taxonomy, Physiology, and Natural Products of Actinobacteria.

    Science.gov (United States)

    Barka, Essaid Ait; Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Meier-Kolthoff, Jan P; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder; van Wezel, Gilles P

    2016-03-01

    Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Marine actinobacteria as a drug treasure house.

    Science.gov (United States)

    Hassan, Syed Shams Ul; Shaikh, Abdul Lateef

    2017-03-01

    Marine actinobacteria have been considered as a gold mine with respect to great potential regarding their secondary metabolites. Most of the researches have been conducted on actinobacteria's derived secondary metabolites to examine its pharmacological properties. Actinobacteria have a potential to provide future drugs against crucial diseases, such as drug-resistance bacteria, cancer, a range of viral illnesses, malaria, several infections and inflammations. Although, the mode of action of many bio molecules are still untapped, for a tangible number of compounds by which they interfere with human pathogenesis are reported here with detailed diagrammed illustrations. This knowledge is one of the basic vehicles to be known especially for transforming bio medicinal molecules to medicines. Actinobacteria produce a different kind of biochemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. Different diseases have the capability to fight at different sites inside the body can lead to a new wave of increasing the chances to produce targeted medicines. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Isolation of antimicrobial producing Actinobacteria from soil samples

    Directory of Open Access Journals (Sweden)

    Afaf Ahmed Elbendary

    2018-01-01

    Full Text Available Emergence of multidrug resistant bacteria has made the search for novel bioactive compounds from natural and unexplored habitats a necessity. Actinobacteria have important bioactive substances. The present study investigated antimicrobial activity of Actinobacteria isolated from soil samples of Egypt. One hundred samples were collected from agricultural farming soil of different governorates. Twelve isolates have produced activity against the tested microorganisms (S. aureus, Bacillus cereus, E. coli, K. pneumoniae, P. aeruginosa, S. Typhi, C. albicans, A. niger and A. flavus. By VITEK 2 system version: 07.01 the 12 isolates were identified as Kocuria kristinae, Kocuria rosea, Streptomyces griseus, Streptomyces flaveolus and Actinobacteria. Using ethyl acetate extraction method the isolates culture’s supernatants were tested by diffusion method against indicator microorganisms. These results indicate that Actinobacteria isolated from Egypt farms could be sources of antimicrobial bioactive substances.

  18. Research on marine actinobacteria in India.

    Science.gov (United States)

    Sivakumar, K; Sahu, Maloy Kumar; Thangaradjou, T; Kannan, L

    2007-09-01

    Marine actinobacteriology is one of the major emerging areas of research in tropics. Marine actinobacteria occur on the sediments and in water and also other biomass (mangrove) and substrates (animal). These organisms are gaining importance not only for their taxonomic and ecological perspectives, but also for their unique metabolites and enzymes. Many earlier studies on these organisms were confined only to the temperate regions. In tropical environment, investigations on them have gained importance only in the last two decades. So far, from the Indian peninsula, 41 species of actinobacteria belonging to 8 genera have been recorded. The genus, Streptomyces of marine origin has been more frequently recorded. Of 9 maritime states of India, only 4 have been extensively covered for the study of marine actinobacteria. Most of the studies conducted pertain to isolation, identification and maintenance of these organisms in different culture media. Further, attention has been focused on studying their antagonistic properties against different pathogens. Their biotechnological potentials are yet to be fully explored.

  19. Actinobacteria from arid and desert habitats: diversity and biological activity

    Directory of Open Access Journals (Sweden)

    Joachim eWink

    2016-01-01

    Full Text Available Abstract The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability.At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS and nonribosomal peptide synthetase (NRPS genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria

  20. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity.

    Science.gov (United States)

    Mohammadipanah, Fatemeh; Wink, Joachim

    2015-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  1. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity

    Science.gov (United States)

    Mohammadipanah, Fatemeh; Wink, Joachim

    2016-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  2. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.

    Science.gov (United States)

    Tan, Gao-Yi; Liu, Tiangang

    2017-01-01

    Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Taxonomy, Physiology, and Natural Products of Actinobacteria

    OpenAIRE

    Barka, Essaid Ait; Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder; van Wezel, Gilles P.

    2015-01-01

    Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal c...

  4. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria.

    Science.gov (United States)

    Neuenschwander, Stefan M; Ghai, Rohit; Pernthaler, Jakob; Salcher, Michaela M

    2018-01-01

    Actinobacteria of the acI lineage are the most abundant microbes in freshwater systems, but there are so far no pure living cultures of these organisms, possibly because of metabolic dependencies on other microbes. This, in turn, has hampered an in-depth assessment of the genomic basis for their success in the environment. Here we present genomes from 16 axenic cultures of acI Actinobacteria. The isolates were not only of minute cell size, but also among the most streamlined free-living microbes, with extremely small genome sizes (1.2-1.4 Mbp) and low genomic GC content. Genome reduction in these bacteria might have led to auxotrophy for various vitamins, amino acids and reduced sulphur sources, thus creating dependencies to co-occurring organisms (the 'Black Queen' hypothesis). Genome analyses, moreover, revealed a surprising degree of inter- and intraspecific diversity in metabolic pathways, especially of carbohydrate transport and metabolism, and mainly encoded in genomic islands. The striking genotype microdiversification of acI Actinobacteria might explain their global success in highly dynamic freshwater environments with complex seasonal patterns of allochthonous and autochthonous carbon sources. We propose a new order within Actinobacteria ('Candidatus Nanopelagicales') with two new genera ('Candidatus Nanopelagicus' and 'Candidatus Planktophila') and nine new species.

  5. A new approach to isolating siderophore-producing actinobacteria.

    Science.gov (United States)

    Nakouti, I; Sihanonth, P; Hobbs, G

    2012-07-01

    This study was conducted to investigate the application of 2,2'-dipyridyl as a new approach to isolating siderophore-producing actinobacteria. Isolation of actinobacteria from soil was conducted by a soil dilution plate technique using starch-casein agar. Iron starvation was fostered by the incorporation of the iron chelator 2,2'-dipyridyl in the isolation medium. Pretreatment of the samples at an elevated temperature (40°C) ensured that the majority of nonsporulating bacteria were excluded. The survivors of this treatment were largely actinobacteria. Of the viable cultures grown in the presence of 2,2'-dipyridyl, more than 78-88% (average of three separate studies) were reported to produce siderophore-like compounds compared to 13-18% (average of three separate studies) when grown on the basic media in the absence of the chelating agent. The most prolific producers as assessed by the chrome azurol sulphate (CAS) assay were further characterized and found to belong to the genus Streptomyces. Selective pressure using 2,2'-dipyridyl as an iron-chelating agent in starch-casein media increased the isolation of siderophore-producing actinobacteria compared to the unamended medium. The study described represents a new approach to the isolation of siderophore-producing actinobacteria using a novel procedure that places a selection on cell population based upon the incorporation of a chelating agent in the medium. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  7. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria.

    Science.gov (United States)

    Ghai, Rohit; Mehrshad, Maliheh; Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco

    2017-01-01

    Low-GC Actinobacteria are among the most abundant and widespread microbes in freshwaters and have largely resisted all cultivation efforts. Consequently, their phages have remained totally unknown. In this work, we have used deep metagenomic sequencing to assemble eight complete genomes of the first tailed phages that infect freshwater Actinobacteria. Their genomes encode the actinobacterial-specific transcription factor whiB, frequently found in mycobacteriophages and also in phages infecting marine pelagic Actinobacteria. Its presence suggests a common and widespread strategy of modulation of host transcriptional machinery upon infection via this transcriptional switch. We present evidence that some whiB-carrying phages infect the acI lineage of Actinobacteria. At least one of them encodes the ADP-ribosylating component of the widespread bacterial AB toxins family (for example, clostridial toxin). We posit that the presence of this toxin reflects a 'trojan horse' strategy, providing protection at the population level to the abundant host microbes against eukaryotic predators.

  8. Marine actinobacteria: an important source of bioactive natural products.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Diversity and bioactivity of culturable actinobacteria from animal feces].

    Science.gov (United States)

    Jiang, Yi; Cao, Yanru; Han, Li; Jin, Rongxian; Zheng, Dan; He, Wenxiang; Li, Youlong; Huang, Xueshi

    2012-10-04

    In order to provide new source for discovering new lead compounds of drugs and other products, the diversity and some bioactivities of culturable actinobacteria in animal feces were studied. Five animals' fecal samples were collected from Yunnan Wild Animal Park. The pure cultures of actinobacteria were isolated from these samples by using 5 different media. The 16S rRNA gene sequences of 119 selected strains were determined; the phylogenetic analysis was carried out; and antimicrobial and anti-tumor activities were determined by using agar diffusion method, tumor cell lines k562and HL60 respectively. In total 20 genera of actinobacteria from the 5 animals' feces were identified. Many strains inhibited Bacillus subtilis, Staphylococcus lentus, Mycobacterium tuberculosis, Candida albicans and Aspergillus niger. Some strains presented antitumor activities. Some known secondary metabolites and Sannastatin, a novel macrolactam polyketide glycoside with bioactivities, were isolated and identified. Fecal actinobacteria are a new potential source for discovering drug lead and other industry products.

  10. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites

    DEFF Research Database (Denmark)

    Visser, Anna A.; Nobre, Tânia; Currie, Cameron R.

    2012-01-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play...... a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets...... for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus...

  11. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    Science.gov (United States)

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  12. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  13. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  14. Mangrove rare actinobacteria: Taxonomy, natural compound and discovery of bioactivity

    Directory of Open Access Journals (Sweden)

    Adzzie-Shazleen eAzman

    2015-08-01

    Full Text Available Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  15. [Isolation of actinobacteria with antibiotic associated with soft coral Nephthea sp].

    Science.gov (United States)

    Ma, Liang; Zhang, Wenjun; Zhu, Yiguang; Wu, Zhengchao; Saurav, Kumar; Hang, Hui; Zhang, Changsheng

    2013-10-04

    The present study aims to isolate and identify actinobacteria associated with the soft coral Nephthea sp., and to isolate natural products from these actinobacteria under the guidance of PCR screening for polyketides synthase (PKS) genes. Eleven selective media were used to isolate actinobacteria associated with the soft coral Nephthea sp. collected from Yongxin Island. The isolated actinobacteria were classified on the basis of phylogenetic tree analysis of their 16S rRNA genes. Degenerated primers targeted on conserved KS (ketoacyl-synthase) domain of type I PKS genes were used to screen for potential isolates. The positive isolates were cultured in three different media to check their producing profiles. One bioactive strain that is rich in metabolites was subjected to larger scale fermentation for isolating bioactive natural products. A total of 20 strains were isolated from Nephthea sp., and were categorized into 3 genera including Streptomyces, Dietzia and Salinospora, among which 18 strains were positive in screening with type I PKS genes. Two bioactive compounds rifamycin S and rifamycin W were isolated and identified from Salinospora arenicola SH04. This is the first report of isolating indigenous marine actinobacteria Salinospora from the soft coral Nephthea sp. It provides an example of isolating bioactive secondary metabolites from cultivable actinobacteria associated with Nephthea sp. by PCR screening.

  16. Bioactivity Assessment of Indian Origin-Mangrove Actinobacteria against Candida albicans.

    Science.gov (United States)

    Pavan Kumar, J G S; Gomathi, Ajitha; Gothandam, K M; Vasconcelos, Vitor

    2018-02-12

    Actinobacteria is found to have a potent metabolic activity against pathogens. The present study reveals the assessment of potent antifungal secondary metabolites from actinobacteria isolated from Indian marine mangrove sediments. The samples were collected from the coastal regions of Muthupet, Andaman and the Nicobar Islands. Identification was carried out using 16S rRNA analysis and biosynthetic genes (Polyketide synthase type I/II and Non-ribosomal peptide synthase) were screened. Actinobacteria were assayed for their antifungal activity against 16 clinical Candida albicans and the compound analysis was performed using gas chromatography-mass spectrometry GC-MS. The 31 actinobacterial strains were isolated and 16S rRNA gene sequencing revealed that this ecosystem is rich on actinobacteria, with Streptomyces as the predominant genus. The PCR based screening of biosynthetic genes revealed the presence of PKS-I in six strains, PKS-II in four strains and NRPS in 11 strains. The isolated actinobacteria VITGAP240 and VITGAP241 (two isolates) were found to have a potential antifungal activity against all the tested C. albicans . GC-MS results revealed that the actinobacterial compounds were belonging to heterocyclic, polyketides and peptides. Overall, the strains possess a wide spectrum of antifungal properties which affords the production of significant bioactive metabolites as potential antibiotics.

  17. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.

    Science.gov (United States)

    Valliappan, Karuppiah; Sun, Wei; Li, Zhiyong

    2014-09-01

    Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.

  18. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications.

    Science.gov (United States)

    Lewin, Gina R; Carlos, Camila; Chevrette, Marc G; Horn, Heidi A; McDonald, Bradon R; Stankey, Robert J; Fox, Brian G; Currie, Cameron R

    2016-09-08

    The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.

  19. [Actinobacteria and their odor-producing capacities in a surface water in Shanghai].

    Science.gov (United States)

    Chen, Jiao; Bai, Xiao-hui; Lu, Ning; Wang, Xian-yun; Zhang, Yong-hui; Wu, Pan-cheng; Guo, Xin-chi

    2014-10-01

    The odor in raw water is one of the main sources of odor in drinking water. The occurrence of actinobacteria and their odor producing capacities in a reservoir in.Shanghai were investigated. Gauze's medium and membrane filtration were used for actinobacteria isolation. Through combined methods of 16S rRNA sequencing, colony and hyphae morphology, carbon source utilization, physiological and biochemical characteristics, 40 strains of actinobacteria were identified from the reservoir. Results showed that there were 38 Streptomyces, an Aeromicrobium and a Pseudonocardia. Liquid culture medium and the real reservoir water were used to test the odor producing capacity of these 40 strains of actinobacteria, and headspace solid phase microextraction (HS-SPME) and high resolution gas chromatography mass spectroscopy (GC/MS) were used to analyze the odor compounds 2-methylisoborneol (2-MIB) and geosmin (GSM) in the fermentation liquor. The test results showed that, the odor-producing capacities of these actinobacteria in different fermentation media showed different variation trends, even within the genera Streptomyces. The odor-producing capacity of actinobacteria in the liquid culture medium could not represent their states in the reservoir water or their actual odor contribution to the aquatic environment.

  20. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites.

    Science.gov (United States)

    Visser, Anna A; Nobre, Tânia; Currie, Cameron R; Aanen, Duur K; Poulsen, Michael

    2012-05-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus

  1. Successful enrichment of the ubiquitous freshwater acI Actinobacteria.

    Science.gov (United States)

    Garcia, Sarahi L; McMahon, Katherine D; Grossart, Hans-Peter; Warnecke, Falk

    2014-02-01

    Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    Science.gov (United States)

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  3. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria.

    Science.gov (United States)

    Hamedi, Javad; Mohammadipanah, Fatemeh

    2015-02-01

    Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.

  4. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis.

    Science.gov (United States)

    Zhao, Yue; Lu, Qian; Wei, Yuquan; Cui, Hongyang; Zhang, Xu; Wang, Xueqin; Shan, Si; Wei, Zimin

    2016-11-01

    In this study, actinobacteria agent including Streptomyces sp. and Micromonospora sp. were inoculated during chicken manure composting by different inoculation methods. The effect of different treatments on cellulose degradation and the relationship between inoculants and indigenous actinobacteria were investigated during composting. The results showed that inoculation in different stages of composting all improved the actinobacteria community diversity particularly in the cooling stage of composting (M3). Moreover, inoculation could distinctly accelerate the degradation of organic matters (OM) especially celluloses. Redundancy analysis indicated that the correlation between indigenous actinobacteria and degradation of OM and cellulose were regulated by inoculants and there were significant differences between different inoculation methods. Furthermore, synergy between indigenous actinobacteria and inoculants for degradation of OM and cellulose in M3 was better than other treatments. Conclusively, we suggested an inoculation method to regulate the indigenous actinobacteria based on the relationship between inoculants and indigenous actinobacteria and degradation content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of actinobacteria associated with three ant-plant mutualisms.

    Science.gov (United States)

    Hanshew, Alissa S; McDonald, Bradon R; Díaz Díaz, Carol; Djiéto-Lordon, Champlain; Blatrix, Rumsaïs; Currie, Cameron R

    2015-01-01

    Ant-plant mutualisms are conspicuous and ecologically important components of tropical ecosystems that remain largely unexplored in terms of insect-associated microbial communities. Recent work has revealed that ants in some ant-plant systems cultivate fungi (Chaetothyriales) within their domatia, which are fed to larvae. Using Pseudomyrmex penetrator/Tachigali sp. from French Guiana and Petalomyrmex phylax/Leonardoxa africana and Crematogaster margaritae/Keetia hispida, both from Cameroon, as models, we tested the hypothesis that ant-plant-fungus mutualisms co-occur with culturable Actinobacteria. Using selective media, we isolated 861 putative Actinobacteria from the three systems. All C. margaritae/K. hispida samples had culturable Actinobacteria with a mean of 10.0 colony forming units (CFUs) per sample, while 26 % of P. penetrator/Tachigali samples (mean CFUs 1.3) and 67 % of P. phylax/L. africana samples (mean CFUs 3.6) yielded Actinobacteria. The largest number of CFUs was obtained from P. penetrator workers, P. phylax alates, and C. margaritae pupae. 16S rRNA gene sequencing and phylogenetic analysis revealed the presence of four main clades of Streptomyces and one clade of Nocardioides within these three ant-plant mutualisms. Streptomyces with antifungal properties were isolated from all three systems, suggesting that they could serve as protective symbionts, as found in other insects. In addition, a number of isolates from a clade of Streptomyces associated with P. phylax/L. africana and C. margaritae/K. hispida were capable of degrading cellulose, suggesting that Streptomyces in these systems may serve a nutritional role. Repeated isolation of particular clades of Actinobacteria from two geographically distant locations supports these isolates as residents in ant-plant-fungi niches.

  6. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus.

    Science.gov (United States)

    Sathish, Kumar S R; Kokati, Venkata Bhaskara Rao

    2012-10-01

    To investigate the antibacterial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus (MDRSA). Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology. Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000 µg/mL. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  7. [Isolation methods and diversity of culturable fecal actinobacteria associated with Panthera tigris tigris in Yunnan Safari Park].

    Science.gov (United States)

    Cao, Yanru; Jiang, Yi; Li, Youlong; Chen, Xiu; Jin, Rongxian; He, Wenxiang

    2012-07-04

    We studied the isolation methods and diversity of culturable fecal actinobacteria associated with Panthera tigris tigris by using culture-dependent approaches. Fresh fecal samples of healthy Panthera tigris tigris were collected from Yunnan Safari Park. Pretreatment of the samples, isolation media and inhibitors were tested for actinobacteria isolation. 16S rRNA genes of actinobacteria were sequenced and subjected to phylogenetic analysis. The abundance of culturable actinobacteria was 1.10 x 10(8) cfu/g colony forming units (CFU) per gram of feces (wet weight). We obtained 110 purified cultural actinobacterium strains. The analysis based on 16S rRNA gene sequences showed that these strains were distributed in 10 different families and 12 genera of actinobacteria at least, and most of them were non-filamentous, such as Arthrobacter, Dietzia, Kocuria, Corynebacterium and Microbacterium. Streptomyces was the mainly classical filamentous actinobacteria, and up to 64% of total. Drying and heating up the fecal samples can greatly increase the rate of the actinobacteria. Many kinds of inhibitors and chemical defined media are suitable for isolation of fecal actinobacteria. The culturable actinobacteria are abundant in Panthera tigris tigris feces. Our study found an effective method to isolate animals' fecal actinobacteria and it's useful for studying and exploiting animals' fecal actinobacteria.

  8. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia.

    Science.gov (United States)

    Duran, Robert; Bielen, Ana; Paradžik, Tina; Gassie, Claire; Pustijanac, Emina; Cagnon, Christine; Hamer, Bojan; Vujaklija, Dušica

    2015-10-01

    The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.

  9. [Biodiversity and enzymes of culturable facultative-alkaliphilic actinobacteria in saline-alkaline soil in Fukang, Xinjiang].

    Science.gov (United States)

    Zhang, Yongguang; Liu, Qing; Wang, Hongfei; Zhang, Daofeng; Chen, Jiyue; Zhang, Yuanming; Li, Wenjun

    2014-02-04

    In order to analyze the biodiversity of cultivable facultative-alkaliphilic actinobacteria and the enzymes they produced. Total 10 soil samples were collected from saline-alkaline environments of Fukang, Xinjiang province. Facultative-alkaliphilic actinobacteria strains were isolated and identified by 16S rRNA gene sequence analysis. Enzymes including amylase, proteinase, xylanase, and cellulase were detected. Total 116 facultative-alkaliphilic actinobacterial strains and 4 alkali-tolerant actinobacterial strains were isolated from the samples, and those strains were distributed within 22 genera in 13 families and 8 orders of actinobacteria based on their 16S rRNA gene sequence analysis. The ratio of non-predominant Streptomyces and Nocardiopsis strains were 53.3%. The positive rates of amylase, proteinase, xylanase and cellulase were 35.8, 37.6, 28.3 and 17.5%, respectively. Diverse facultative-alkaliphilic actinobacteria were discovered from saline-alkaline environments of Fukang. Facultative-alkaliphilic actinobacteria are a potential source for enzymes. The study would facilitate the knowledge of the diversity of facultative-alkaliphilic actinobacteria, and provide the technical basis for exploration of facultative-alkaliphilic actinobacteria resources.

  10. Quorum sensing: an under-explored phenomenon in the phylum Actinobacteria

    Directory of Open Access Journals (Sweden)

    Ashish Vasant Polkade

    2016-02-01

    Full Text Available Quorum sensing is known to play a major role in the regulation of secondary metabolite production, especially antibiotics, and morphogenesis in the phylum Actinobacteria. Although it is one of the largest bacterial phylum, only 25 of the 342 genera have been reported to use quorum sensing. Of these, only nine have accompanying experimental evidence; the rest are only known through bioinformatic analysis of gene/genome sequences. It is evident that this important communication mechanism is not extensively explored in Actinobacteria. In this review, we summarize the different quorum sensing systems while identifying the limitations of the existing screening strategies and addressing the improvements that have taken place in this field in recent years. The γ-butyrolactone system turned out to be almost exclusively limited to this phylum. In addition, methylenomycin furans, AI-2 and other putative AHL-like signaling molecules are also reported in Actinobacteria. The lack of existing screening systems in detecting minute quantities and of a wider range of signaling molecules was a major reason behind the limited information available on quorum sensing in this phylum. However, recent improvements in screening strategies hold a promising future and are likely to increase the discovery of new signaling molecules. Further, the quorum quenching ability in many Actinobacteria has a great potential in controlling the spread of plant and animal pathogens. A systematic and coordinated effort is required to screen and exploit the enormous potential that quorum sensing in the phylum Actinobacteria has to offer for human benefit.

  11. Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria

    Directory of Open Access Journals (Sweden)

    Bernal Matarrita-Carranza

    2017-10-01

    Full Text Available The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees, Vespidae (wasps, and Formicidae (ants. In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect

  12. Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria

    Science.gov (United States)

    Matarrita-Carranza, Bernal; Moreira-Soto, Rolando D.; Murillo-Cruz, Catalina; Mora, Marielos; Currie, Cameron R.; Pinto-Tomas, Adrián A.

    2017-01-01

    The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees), Vespidae (wasps), and Formicidae (ants). In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales) known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level) provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect taxa and

  13. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum†

    Science.gov (United States)

    Ventura, Marco; Canchaya, Carlos; Tauch, Andreas; Chandra, Govind; Fitzgerald, Gerald F.; Chater, Keith F.; van Sinderen, Douwe

    2007-01-01

    Summary: Actinobacteria constitute one of the largest phyla among Bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context. PMID:17804669

  14. Littoral lichens as a novel source of potentially bioactive Actinobacteria.

    Science.gov (United States)

    Parrot, Delphine; Antony-Babu, Sanjay; Intertaglia, Laurent; Grube, Martin; Tomasi, Sophie; Suzuki, Marcelino T

    2015-10-30

    Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.

  15. Diversity and Seasonal Dynamics of Actinobacteria Populations in Four Lakes in Northeastern Germany

    Science.gov (United States)

    Allgaier, Martin; Grossart, Hans-Peter

    2006-01-01

    The phylogenetic diversity and seasonal dynamics of freshwater Actinobacteria populations in four limnologically different lakes of the Mecklenburg-Brandenburg Lake District (northeastern Germany) were investigated. Fluorescence in situ hybridization was used to determine the seasonal abundances and dynamics of total Actinobacteria (probe HGC69a) and the three actinobacterial subclusters acI, acI-A, and acI-B (probes AcI-852, AcI-840-1, and AcI-840-2). Seasonal means of total Actinobacteria abundances in the epilimnia of the lakes varied from 13 to 36%, with maximum values of 30 to 58%, of all DAPI (4′,6′-diamidino-2-phenylindole)-stained cells. Around 80% of total Actinobacteria belonged to the acI cluster. The two subclusters acI-A and acI-B accounted for 60 to 91% of the acI cluster and showed seasonal means of 49% (acI-B) and 23% (acI-A) in relation to the acI cluster. Total Actinobacteria and members of the clusters acI and acI-B showed distinct seasonal changes in their absolute abundances, with maxima in late spring and fall/winter. In eight clone libraries constructed from the lakes, a total of 76 actinobacterial 16S rRNA gene sequences were identified from a total of 177 clones. The majority of the Actinobacteria sequences belonged to the acI and acIV cluster. Several new clusters and subclusters were found (acSTL, scB1-4, and acIVA-D). The majority of all obtained 16S rRNA gene sequences are distinct from those of already-cultured freshwater Actinobacteria. PMID:16672495

  16. Use of denaturing gradient gel electrophoresis to detect Actinobacteria associated with the human faecal microbiota.

    Science.gov (United States)

    Hoyles, Lesley; Clear, Jessica A; McCartney, Anne L

    2013-08-01

    With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intensity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Natural product diversity of actinobacteria in the Atacama Desert.

    Science.gov (United States)

    Rateb, Mostafa E; Ebel, Rainer; Jaspars, Marcel

    2018-02-14

    The Atacama Desert of northern Chile is considered one of the most arid and extreme environment on Earth. Its core region was described as featuring "Mars-like" soils that were at one point deemed too extreme for life to exist. However, recent investigations confirmed the presence of diverse culturable actinobacteria. In the current review, we discuss a total of 46 natural products isolated to date representing diverse chemical classes characterized from different actinobacteria isolated from various locations in the Atacama Desert. Their reported biological activities are also discussed.

  18. Anti-Candida Properties of Urauchimycins from Actinobacteria Associated with Trachymyrmex Ants

    Science.gov (United States)

    Mendes, Thais D.; Borges, Warley S.; Solomon, Scott E.; Vieira, Paulo C.; Duarte, Marta C. T.; Pagnocca, Fernando C.

    2013-01-01

    After decades of intensive searching for antimicrobial compounds derived from actinobacteria, the frequency of isolation of new molecules has decreased. To cope with this concern, studies have focused on the exploitation of actinobacteria from unexplored environments and actinobacteria symbionts of plants and animals. In this study, twenty-four actinobacteria strains isolated from workers of Trachymyrmex ants were evaluated for antifungal activity towards a variety of Candida species. Results revealed that seven strains inhibited the tested Candida species. Streptomyces sp. TD025 presented potent and broad spectrum of inhibition of Candida and was selected for the isolation of bioactive molecules. From liquid shake culture of this bacterium, we isolated the rare antimycin urauchimycins A and B. For the first time, these molecules were evaluated for antifungal activity against medically important Candida species. Both antimycins showed antifungal activity, especially urauchimycin B. This compound inhibited the growth of all Candida species tested, with minimum inhibitory concentration values equivalent to the antifungal nystatin. Our results concur with the predictions that the attine ant-microbe symbiosis may be a source of bioactive metabolites for biotechnology and medical applications. PMID:23586060

  19. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    Directory of Open Access Journals (Sweden)

    Hector Fernando Arocha-Garza

    2017-05-01

    Full Text Available The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB, an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae

  20. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    Science.gov (United States)

    Arocha-Garza, Hector Fernando; Canales-Del Castillo, Ricardo; Eguiarte, Luis E.; Souza, Valeria

    2017-01-01

    The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our

  1. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2016-01-01

    Nanotechnology is gaining tremendous attention in the present century due to its expected impact on many important areas such as medicine, energy, electronics, and space industries. In this context, actinobacterial biosynthesis of nanoparticles is a reliable, eco-friendly, and important aspect of green chemistry approach that interconnects microbial biotechnology and nanobiotechnology. Antibiotics produced by actinobacteria are popular in almost all the therapeutic measures and it is known that these microbes are also helpful in the biosynthesis of nanoparticles with good surface and size characteristics. In fact, actinobacteria are efficient producers of nanoparticles that show a range of biological properties, namely, antibacterial, antifungal, anticancer, anti-biofouling, anti-malarial, anti-parasitic, antioxidant, etc. This review describes the potential use of the actinobacteria as the novel sources for the biosynthesis of nanoparticles with improved biomedical applications.

  2. Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets.

    Science.gov (United States)

    Zang, Emerson; Brandes, Susanne; Tovar, Miguel; Martin, Karin; Mech, Franziska; Horbert, Peter; Henkel, Thomas; Figge, Marc Thilo; Roth, Martin

    2013-09-21

    The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600,000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.

  3. The obligate respiratory supercomplex from Actinobacteria.

    Science.gov (United States)

    Kao, Wei-Chun; Kleinschroth, Thomas; Nitschke, Wolfgang; Baymann, Frauke; Neehaul, Yashvin; Hellwig, Petra; Richers, Sebastian; Vonck, Janet; Bott, Michael; Hunte, Carola

    2016-10-01

    Actinobacteria are closely linked to human life as industrial producers of bioactive molecules and as human pathogens. Respiratory cytochrome bcc complex and cytochrome aa3 oxidase are key components of their aerobic energy metabolism. They form a supercomplex in the actinobacterial species Corynebacterium glutamicum. With comprehensive bioinformatics and phylogenetic analysis we show that genes for cyt bcc-aa3 supercomplex are characteristic for Actinobacteria (Actinobacteria and Acidimicrobiia, except the anaerobic orders Actinomycetales and Bifidobacteriales). An obligatory supercomplex is likely, due to the lack of genes encoding alternative electron transfer partners such as mono-heme cyt c. Instead, subunit QcrC of bcc complex, here classified as short di-heme cyt c, will provide the exclusive electron transfer link between the complexes as in C. glutamicum. Purified to high homogeneity, the C. glutamicum bcc-aa3 supercomplex contained all subunits and cofactors as analyzed by SDS-PAGE, BN-PAGE, absorption and EPR spectroscopy. Highly uniform supercomplex particles in electron microscopy analysis support a distinct structural composition. The supercomplex possesses a dimeric stoichiometry with a ratio of a-type, b-type and c-type hemes close to 1:1:1. Redox titrations revealed a low potential bcc complex (Em(ISP)=+160mV, Em(bL)=-291mV, Em(bH)=-163mV, Em(cc)=+100mV) fined-tuned for oxidation of menaquinol and a mixed potential aa3 oxidase (Em(CuA)=+150mV, Em(a/a3)=+143/+317mV) mediating between low and high redox potential to accomplish dioxygen reduction. The generated molecular model supports a stable assembled supercomplex with defined architecture which permits energetically efficient coupling of menaquinol oxidation and dioxygen reduction in one supramolecular entity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Potential biocontrol actinobacteria: Rhizospheric isolates from the Argentine Pampas lowlands legumes.

    Science.gov (United States)

    Solans, Mariana; Scervino, Jose Martin; Messuti, María Inés; Vobis, Gernot; Wall, Luis Gabriel

    2016-11-01

    Control of fungal plant diseases by using naturally occurring non-pathogenic microorganisms represents a promising approach to biocontrol agents. This study reports the isolation, characterization, and fungal antagonistic activity of actinobacteria from forage soils in the Flooding Pampa, Argentina. A total of 32 saprophytic strains of actinobacteria were obtained by different isolation methods from rhizospheric soil of Lotus tenuis growing in the Salado River Basin. Based on physiological traits, eight isolates were selected for their biocontrol-related activities such as production of lytic extracellular enzymes, siderophores, hydrogen cyanide (HCN), and antagonistic activity against Cercospora sojina, Macrophomia phaseolina, Phomopsis sp., Fusarium oxysporum, and Fusarium verticilloides. These actinobacteria strains were characterized morphologically, physiologically, and identified by using molecular techniques. The characterization of biocontrol-related activities in vitro showed positive results for exoprotease, phospholipase, fungal growth inhibition, and siderophore production. However, none of the strains was positive for the production of hydrogen cyanide (HCN). Streptomyces sp. MM140 presented the highest index for biocontrol, and appear to be promising pathogenic fungi biocontrol agents. These results show the potential capacity of actinobacteria isolated from forage soils in the Argentine Pampas lowlands as promising biocontrol agents, and their future agronomic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing.

    Science.gov (United States)

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2014-12-01

    Freshwater ecosystems are critical but fragile environments directly affecting society and its welfare. However, our understanding of genuinely freshwater microbial communities, constrained by our capacity to manipulate its prokaryotic participants in axenic cultures, remains very rudimentary. Even the most abundant components, freshwater Actinobacteria, remain largely unknown. Here, applying deep metagenomic sequencing to the microbial community of a freshwater reservoir, we were able to circumvent this traditional bottleneck and reconstruct de novo seven distinct streamlined actinobacterial genomes. These genomes represent three new groups of photoheterotrophic, planktonic Actinobacteria. We describe for the first time genomes of two novel clades, acMicro (Micrococcineae, related to Luna2,) and acAMD (Actinomycetales, related to acTH1). Besides, an aggregate of contigs belonged to a new branch of the Acidimicrobiales. All are estimated to have small genomes (approximately 1.2 Mb), and their GC content varied from 40 to 61%. One of the Micrococcineae genomes encodes a proteorhodopsin, a rhodopsin type reported for the first time in Actinobacteria. The remarkable potential capacity of some of these genomes to transform recalcitrant plant detrital material, particularly lignin-derived compounds, suggests close linkages between the terrestrial and aquatic realms. Moreover, abundances of Actinobacteria correlate inversely to those of Cyanobacteria that are responsible for prolonged and frequently irretrievable damage to freshwater ecosystems. This suggests that they might serve as sentinels of impending ecological catastrophes. © 2014 John Wiley & Sons Ltd.

  6. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    Science.gov (United States)

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities.

    Science.gov (United States)

    Salam, Nimaichand; Khieu, Thi-Nhan; Liu, Min-Jiao; Vu, Thu-Trang; Chu-Ky, Son; Quach, Ngoc-Tung; Phi, Quyet-Tien; Narsing Rao, Manik Prabhu; Fontana, Angélique; Sarter, Samira; Li, Wen-Jun

    2017-01-01

    Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces , Nocardiopsis , Brevibacterium , Microbacterium , Tsukamurella , Arthrobacter , Brachybacterium , Nocardia , Rhodococcus , Kocuria , Nocardioides , and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC 50 -values ranging between 3 and 33  μ g·mL -1 . Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.

  8. Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India.

    Science.gov (United States)

    Arumugam, T; Senthil Kumar, P; Kameshwar, R; Prapanchana, K

    2017-06-01

    The importance of the current research is to investigate the different types of samples from the various mangrove sediments; as source of actinobacteria from the mangrove wet soil. Potential isolate screening by antimicrobial activity and identified actinobacteria was characterized based on cultural morphology, physiological and biochemical characteristics. Three different types of media were used to isolate actinobacteria from various geographical region of mangrove soil sediment and the genotype locus was recognized by 16S rDNA. Totally 144 actinobacteria isolates were recovered from 10 samples using three media. The most active culture media in the isolation of actinobacteria were ISP2 and Glycerol Yeast Extract Agar. Among 144 isolates, 38 isolates (26.38%) exhibited antimicrobial activity. Out of 38 isolates, potentially active 2 cultures were further supported for morphological and biochemical characterization analysis. Most of the isolates were produced pharmaceutically important enzymes such as protease, amylase, lipase, cellulose and also revealed antimicrobial activity against tested microorganism. The enriched salt, pH and temperature tolerance of the actinobacteria isolates to discharge commercially valuable primary and secondary bioactive metabolites. The present results functionally characterize novel mangrove actinobacteria and their metabolites for commercial interest in pharmaceutical industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Discovery of novel rare actinobacteria isolated from mangrove environments in the east coast of Peninsular Malaysia

    OpenAIRE

    Azman, Adzzie Shazleen

    2017-01-01

    Mangrove forest is a complex ecology and it refers to a group of tropical trees and shrubs that grows in the intertidal zone. It contains various microorganisms including rare actinobacteria that can produce bioactive compounds with interesting bioactivities. The goals of this research were to describe the taxonomic status of novel rare actinobacteria and to screen their bioactivity for antibacterial, neuroprotective and cytotoxic properties. Three rare actinobacteria strains namely MUSC 115T...

  10. Evaluación del golfo de California como una fuente potencial de actinobacterias marinas bioactivas

    OpenAIRE

    Torres-Beltrán, M; Cardoso-Martínez, F; Millán-Aguiñaga, N; Becerril-Espinosa, A; Soria-Mercado, IE

    2012-01-01

    Las actinobacterias son productoras de una gran variedad de compuestos utilizados actualmente como antibióticos y anticancerígenos. En este trabajo se evaluó el potencial del golfo de California como fuente de cepas de actinobacterias bioactivas. En total, se aislaron 235 cepas de actinobacterias de los sedimentos de bahía Concepción y bahía de los Ángeles, (México). Con base en su morfología, requerimiento de agua de mar para su crecimiento y secuenciación del gen 16S del ARNr, las cepas se ...

  11. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    Science.gov (United States)

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed. Copyright © 2015. Published by Elsevier B.V.

  12. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  13. Genomics of aerobic cellulose utilization systems in actinobacteria.

    Directory of Open Access Journals (Sweden)

    Iain Anderson

    Full Text Available Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.

  14. Chloromuconolactone dehalogenase ClcF of actinobacteria.

    Science.gov (United States)

    Solyanikova, Inna P; Plotnikova, Elena G; Shumkova, Ekaterina S; Robota, Irina V; Prisyazhnaya, Natalya V; Golovleva, Ludmila A

    2014-01-01

    This work investigated the distribution of the clcF gene in actinobacteria isolated from different ecotopes. The gene encodes chloromuconolactone dehalogenase (CMLD) ClcF, the enzyme found to date in only one representative of Gram-positive bacteria, Rhodococcus opacus 1CP, adapted to 2-chlorophenol (2CP). Using primers specific to the clcF gene, from the DNA matrix of rhodococcal strains closely related to species Rhodococcus wratislaviensis (P1, P12, P13, P20, G10, KT112, KT723, BO1) we obtained PCR products whose nucleotide sequences were 100% identical to that of the clcF gene from strain R. opacus 1CP. CMLDs isolated from the biomass of strains Rhodococcus spp. G10 and P1 grown on 2CP did not differ by their subunit molecular mass deduced from the known amino acid sequence of the clcF gene from the ClcF of strain R. opacus 1CP. Matrix-assisted laser dissociation/ionization time-of-flight mass spectrometry showed the presence of a peak with m/z 11,194-11,196 Da both in whole cells and in protein solutions with a ClcF activity. Thus, we have first time shown the distribution of ClcF among actinobacteria isolated from geographically distant habitats.

  15. Bioprospecting Deep-Sea Actinobacteria for Novel Anti-infective Natural Products

    Directory of Open Access Journals (Sweden)

    Dongbo Xu

    2018-04-01

    Full Text Available The global prevalence of drug resistance has created an urgent need for the discovery of novel anti-infective drugs. The major source of antibiotics in current clinical practice is terrestrial actinobacteria; the less-exploited deep-sea actinobacteria may serve as an unprecedented source of novel natural products. In this study, we evaluated 50 actinobacteria strains derived from diverse deep water sponges and environmental niches for their anti-microbial activities against a panel of pathogens including Candida albicans, Clostridium difficile, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA, and Pseudomonas aeruginosa. More than half of the tested strains (27 were identified as active in at least one assay. The rare earth salt lanthanum chloride (LaCl3 was shown to be as an effective elicitor. Among the 27 strains, the anti-microbial activity of 15 were induced or enhanced by the addition of LaCl3. This part of study focused on one strain R818, in which potent antifungal activity was induced by the addition of LaCl3. We found that the LaCl3-activated metabolites in R818 are likely antimycin-type compounds. One of them, compound 1, has been purified. Spectroscopic analyses including HR-MS and 1D NMR indicated that this compound is urauchimycin D. The antifungal activity of compound 1 was confirmed with a minimal inhibitory concentration (MIC of 25 μg/mL; the purified compound also showed a moderate activity against C. difficile. Additional notable strains are: strain N217 which showed both antifungal and antibacterial (including P. aeruginosa activities and strain M864 which showed potent activity against C. difficile with an MIC value (0.125 μg/mL lower than those of vancomycin and metronidazole. Our preliminary studies show that deep-sea actinobacteria is a promising source of anti-infective natural products.

  16. The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties.

    Science.gov (United States)

    Zhao, Ke; Penttinen, Petri; Chen, Qiang; Guan, Tongwei; Lindström, Kristina; Ao, Xiaoling; Zhang, Lili; Zhang, Xiaoping

    2012-06-01

    Actinobacteria are a prolific source of antibiotics. Since the rate of discovery of novel antibiotics is decreasing, actinobacteria from unique environments need to be explored. In particular, actinobacterial biocontrol strains from medicinal plants need to be studied as they can be a source of potent antibiotics. We combined culture-dependent and culture-independent methods in analyzing the actinobacterial diversity in the rhizosphere of seven traditional medicinal plant species from Panxi, China, and assessed the antimicrobial activity of the isolates. Each of the plant species hosted a unique set of actinobacterial strains. Out of the 64 morphologically distinct isolates, half were Streptomyces sp., eight were Micromonospora sp., and the rest were members of 18 actinobacterial genera. In particular, Ainsliaea henryi Diels. hosted a diverse selection of actinobacteria, although the 16S ribosomal RNA (rRNA) sequence identity ranges of the isolates and of the 16S rRNA gene clone library were not congruent. In the clone library, 40% of the sequences were related to uncultured actinobacteria, emphasizing the need to develop isolation methods to assess the full potential of the actinobacteria. All Streptomyces isolates showed antimicrobial activity. While the antimicrobial activities of the rare actinobacteria were limited, the growth of Escherichia coli, Verticillium dahliae, and Fusarium oxysporum were inhibited only by rare actinobacteria, and strains related to Saccharopolyspora shandongensis and Streptosporangium roseum showed broad antimicrobial activity.

  17. Antibiotic rezistance genes in soil actinobacteria

    OpenAIRE

    Patrmanová, Tereza

    2016-01-01

    Actinobacteria are important members of the soil ecosystems, where they are involved in organic matter decomposition. It is worth mentioning that their secondary metabolism allows them to produce a variety of different compounds. These compounds include antibiotics, among them aminoglycosides have a place in clinical practice. These antibiotics are significant due to a broad spectrum of activities against both gram-negative and gram-positive bacteria. However, their use currently carries a ri...

  18. Isolation, structure elucidation and anticancer activity from Brevibacillus brevis EGS 9 that combats Multi Drug Resistant actinobacteria.

    Science.gov (United States)

    Arumugam, T; Senthil Kumar, P; Hemavathy, R V; Swetha, V; Karishma Sri, R

    2018-02-01

    Actinobacteria is the most widely distributed organism in the mangrove environment and produce a large amount of secondary metabolites. A new environmental actinobacterial stain exhibited strong antimicrobial activity against vancomycin and methicillin resistant actinobacteria. The active producer strain was found to be as Brevibacillus brevis EGS9, which was confirmed by its morphological, biochemical characteristics and 16S rRNA gene sequencing. It was deposited in NCBI GeneBank database and received with an accession number of KX388147. Brevibacillus brevis EGS9 was cultivated by submerged fermentation to produce antimicrobial compounds. The anti-proliferative agent was extracted from Brevibacillus brevis EGS9 with ethyl acetate. The bioactive metabolites of mangrove actinobacteria was identified by Liquid chromatography with mass spectrometry analysis. The result of the present investigation revealed that actinobacteria isolated from mangroves are potent source of anticancer activity. The strain of Brevibacillus brevis EGS9 exhibited a potential in vitro anticancer activity. The present research concluded that the actinobacteria isolated from mangrove soil sediment are valuable in discovery of novel species. Copyright © 2017. Published by Elsevier Ltd.

  19. Actinobacteria and Myxobacteria-Two of the Most Important Bacterial Resources for Novel Antibiotics.

    Science.gov (United States)

    Landwehr, Wiebke; Wolf, Corinna; Wink, Joachim

    Bacteria have been by far the most promising resource for antibiotics in the past decades and will in all undoubtedly remain an important resource of innovative bioactive natural products in the future. Actinobacteria have been screened for many years, whereas the Myxobacteria have been underestimated in the past. Even though Actinobacteria belong to the Gram-positive and Myxobacteria to the Gram-negative bacteria both groups have a number of similar characters, as they both have huge genomes with in some cases more than 10kB and a high GC content and they both can differentiate and have often cell cycles including the formation of spores. Actinobacteria have been used for the antibiotic research for many years, hence it is often discussed whether this resource has now been exhaustively exploited but most of the screening programs from pharmaceutical companies were basing on the cultivation mainly of members of the genus Streptomyces or Streptomyces like strains (e.g., some Saccharopolyspora, Amycolatopsis or Actinomadura species) by use of standard methods so that many of the so called "neglected" Actinobacteria were overlooked the whole time. The present review gives an overview on the state of the art regarding new bioactive compounds with a focus on the marine habitats. Furthermore, the evaluation of Myxobacteria in our ongoing search for novel anti-infectives is highlighted.

  20. Genomes of planktonic Acidimicrobiales: widening horizons for marine Actinobacteria by metagenomics.

    Science.gov (United States)

    Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco; Ghai, Rohit

    2015-02-10

    The genomes of four novel marine Actinobacteria have been assembled from large metagenomic data sets derived from the Mediterranean deep chlorophyll maximum (DCM). These are the first marine representatives belonging to the order Acidimicrobiales and only the second group of planktonic marine Actinobacteria to be described. Their streamlined genomes and photoheterotrophic lifestyle suggest that they are planktonic, free-living microbes. A novel rhodopsin clade, acidirhodopsins, related to freshwater actinorhodopsins, was found in these organisms. Their genomes suggest a capacity to assimilate C2 compounds, some using the glyoxylate bypass and others with the ethylmalonyl-coenzyme A (CoA) pathway. They are also able to derive energy from dimethylsulfopropionate (DMSP), sulfonate, and carbon monoxide oxidation, all commonly available in the marine habitat. These organisms appear to be prevalent in the deep photic zone at or around the DCM. The presence of sister clades to the marine Acidimicrobiales in freshwater aquatic habitats provides a new example of marine-freshwater transitions with potential evolutionary insights. Despite several studies showing the importance and abundance of planktonic Actinobacteria in the marine habitat, a representative genome was only recently described. In order to expand the genomic repertoire of marine Actinobacteria, we describe here the first Acidimicrobidae genomes of marine origin and provide insights about their ecology. They display metabolic versatility in the acquisition of carbon and appear capable of utilizing diverse sources of energy. One of the genomes harbors a new kind of rhodopsin related to the actinorhodopsin clade of freshwater origin that is widespread in the oceans. Our data also support their preference to inhabit the deep chlorophyll maximum and the deep photic zone. This work contributes to the perception of marine actinobacterial groups as important players in the marine environment with distinct and

  1. Metagenomic Classification and Characterization Marine Actinobacteria from the Gulf of Maine without Representative Genomes

    Science.gov (United States)

    Sachdeva, R.; Heidelberg, J.

    2012-12-01

    Actinobacteria represent one of the largest and most diverse bacterial phyla and unlike most marine prokaryotes are gram-positive. This phylum encompasses a broad range of physiologies, morphologies, and metabolic properties with a broad array of lifestyles. The marine actinobacterial assemblage is dominated by the orders Actinomycetales and Acidimicrobiales (also known as the marine Actinobacteria clade). The Acidimicrobiales bacteria typically outnumber the Actinomycetales bacteria and are mostly represented by the OCS155 group. Although bacteria of the order Acidimicrobiales make up ~7.6% of the 16S matches from the Global Ocean Survey shotgun metagenomic libraries; very little is known about their potential function and role in biogeochemical cycling. Samples were collected from surface seawater samples in the Gulf of Maine (GOM) from the summer and winter of 2006. Sanger sequences were generated from the 0.1-0.8 μm fractions using paired-end medium insert shotgun libraries. The resulting 2.2 Gb were assembled using the Celera Assembler package into 280 Mb of non-redundant scaffolds. Putative actinobacterial assemblies were identified using (1) ribosomal RNA genes (16S and 23S), (2) phylogenetically informative non-ribosomal core genes thought to be resistant to horizontal gene transfer (e.g. RecA and RpoB) and (3) compositional binning using oligonucleotide frequency pattern based hierarchical clustering. Binning resulted in 3.6 Mb (4.2X coverage) of actinobacterial scaffolds that were comprised of 15.1 Mb of unassembled reads. Putative actinobacterial assemblies included both summer and winter reads demonstrating that the Actinobacteria are abundant year round. Classification reveals that all of the sampled Actinobacteria are from the orders Acidimicrobiales and Actinomycetales and are similar to those found in the global ocean. The GOM Actinobacteria show a broad range of G+C % content (32-66%) indicating a high level of genomic diversity. Those assemblies

  2. Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea.

    Science.gov (United States)

    Yang, Shan; Sun, Wei; Tang, Cen; Jin, Liling; Zhang, Fengli; Li, Zhiyong

    2013-07-01

    Actinobacteria are widely distributed in the marine environment. To date, few studies have been performed to explore the coral-associated Actinobacteria, and little is known about the diversity of coral-associated Actinobacteria. In this study, the actinobacterial diversity associated with one soft coral Alcyonium gracllimum and one stony coral Tubastraea coccinea collected from the East China Sea was investigated using both culture-independent and culture-dependent approaches. A total of 19 actinobacterial genera were detected in these two corals, among which nine genera (Corynebacterium, Dietzia, Gordonia, Kocuria, Microbacterium, Micrococcus, Mycobacterium, Streptomyces, and Candidatus Microthrix) were common, three genera (Cellulomonas, Dermatophilus, and Janibacter) were unique to the soft coral, and seven genera (Brevibacterium, Dermacoccus, Leucobacter, Micromonospora, Nocardioides, Rhodococcus, and Serinicoccus) were unique to the stony coral. This finding suggested that highly diverse Actinobacteria were associated with different types of corals. In particular, five actinobacterial genera (Cellulomonas, Dermacoccus, Gordonia, Serinicoccus, and Candidatus Microthrix) were recovered from corals for the first time, extending the known diversity of coral-associated Actinobacteria. This study shows that soft and stony corals host diverse Actinobacteria and can serve as a new source of marine actinomycetes.

  3. Insights on the Effects of Heat Pretreatment, pH, and Calcium Salts on Isolation of Rare Actinobacteria from Karstic Caves

    Science.gov (United States)

    Fang, Bao-Zhu; Salam, Nimaichand; Han, Ming-Xian; Jiao, Jian-Yu; Cheng, Juan; Wei, Da-Qiao; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The phylum Actinobacteria is one of the most ubiquitously present bacterial lineages on Earth. In the present study, we try to explore the diversity of cultivable rare Actinobacteria in Sigangli Cave, Yunnan, China by utilizing a combination of different sample pretreatments and under different culture conditions. Pretreating the samples under different conditions of heat, setting the isolation condition at different pHs, and supplementation of media with different calcium salts were found to be effective for isolation of diverse rare Actinobacteria. During our study, a total of 204 isolates affiliated to 30 genera of phylum Actinobacteria were cultured. Besides the dominant Streptomyces, rare Actinobacteria of the genera Actinocorallia, Actinomadura, Agromyces, Alloactinosynnema, Amycolatopsis, Beutenbergia, Cellulosimicrobium, Gordonia, Isoptericola, Jiangella, Knoellia, Kocuria, Krasilnikoviella, Kribbella, Microbacterium, Micromonospora, Mumia, Mycobacterium, Nocardia, Nocardioides, Nocardiopsis, Nonomuraea, Oerskovia, Pseudokineococcus, Pseudonocardia, Rhodococcus, Saccharothrix, Streptosporangium, and Tsukamurella were isolated from these cave samples. PMID:28848538

  4. Date palm and the activated sludge co-composting actinobacteria sanitization potential.

    Science.gov (United States)

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-01-01

    The objective of this study was to find a connection between the development of the compost actinobacteria and the potential involvement of antagonistic thermophilic actinomycetes in compost sanitization as high temperature additional role. An abundance of actinobacteria and coliforms during the activated sludge and date palm co-composting is determined. Hundred actinomycete isolates were isolated from the sample collected at different composting times. To evaluate the antagonistic effects of the different recovered actinomycete isolates, several wastewater-linked microorganisms known as human and plant potential pathogens were used. The results showed that 12 isolates have an in vitro inhibitory effect on at least 9 of the indicator microorganisms while only 4 active strains inhibit all these pathogens. The antimicrobial activities of sterilized composting time extracts are also investigated.

  5. The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal.

    Science.gov (United States)

    Axenov-Gribanov, Denis; Rebets, Yuriy; Tokovenko, Bogdan; Voytsekhovskaya, Irina; Timofeyev, Maxim; Luzhetskyy, Andriy

    2016-03-01

    The high demand for new antibacterials fosters the isolation of new biologically active compounds producing actinobacteria. Here, we report the isolation and initial characterization of cultured actinobacteria from dominant benthic organisms' communities of Lake Baikal. Twenty-five distinct strains were obtained from 5 species of Baikal endemic macroinvertebrates of amphipods, freshwater sponges, turbellaria worms, and insects (caddisfly larvae). The 16S ribosomal RNA (rRNA)-based phylogenic analysis of obtained strains showed their affiliation to Streptomyces, Nocardia, Pseudonocardia, Micromonospora, Aeromicrobium, and Agromyces genera, revealing the diversity of actinobacteria associated with the benthic organisms of Lake Baikal. The biological activity assays showed that 24 out of 25 strains are producing compounds active against at least one of the test cultures used, including Gram-negative bacteria and Candida albicans. Complete dereplication of secondary metabolite profiles of two isolated strains led to identification of only few known compounds, while the majority of detected metabolites are not listed in existing antibiotic databases.

  6. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and

  7. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    Science.gov (United States)

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  8. Antituberculotic activity of actinobacteria isolated from the rare habitats.

    Science.gov (United States)

    Hussain, A; Rather, M A; Shah, A M; Bhat, Z S; Shah, A; Ahmad, Z; Parvaiz Hassan, Q

    2017-09-01

    A distinctive screening procedure resulted in the isolation and identification of antituberculotic actinobacteria. In this course, a total of 125 actinobacteria were isolated from various soil samples from untapped areas in Northwestern Himalayas, India. The antibacterial screening showed that 26 isolates inhibited the growth of at least one of the tested bacterial pathogens including Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228), Bacillus subtilis (ATCC 11774), Micrococcus luteus (ATCC 10240), Escherichia coli (10536), Pseudomonas aeruginosa (ATCC 10145) and Klebsiella pneumonia (ATCC BAA-2146). The production media was optimized for the active strains by estimation of their extract value by the quantification of the ethyl acetate extract. The screening of fermentation products from the selected 26 bioactive isolates revealed that 10 strains have metabolites antagonistic against the standard H37Rv strain of Mycobacterium tuberculosis. The characterization by 16S rRNA gene sequencing and phylogenetic analysis demonstrated the diverse nature of these antituberculosis strains. The secondary metabolites of potent, rare strain, Lentzea violacea AS08 exhibited promising antituberculosis activity with minimal inhibitory concentration (MIC) of 3·9 μg ml -1 . The metabolites identified by gas chromatography-mass spectrometry (GC-MS) included, Phenol, 2,5-bis (1, 1-dimethylethyl), n-Hexadecanoic acid, Hexadecanoic acid methyl-ester, Hexadecanoic acid ethyl-ester and, 9,12-Octadecadienoyl chloride(Z,Z) are biologically significant molecules. The study presents the isolation of rare actinobacteria from untapped sites in the Northwestern Himalayas and their in vitro potential against Mycobacterium tuberculosis for their metabolites. The study revealed that exploring the untapped natural sources as one of the resourceful approaches for the discovery of new natural products. This study also provided strong evidence for the ability of rare and

  9. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria.

    Science.gov (United States)

    Sagova-Mareckova, Marketa; Ulanova, Dana; Sanderova, Petra; Omelka, Marek; Kamenik, Zdenek; Olsovska, Jana; Kopecky, Jan

    2015-04-01

    Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite

  10. Isolation, Phylogenetic Analysis and Antibiotic Activity Screening of Red Sea Sponge-Associated Actinobacteria

    KAUST Repository

    Yang, Chen

    2013-06-01

    Infectious disease has always been and will continue to be a heavy burden on human society worldwide. Terrestrial actinobacteria, notable as a source of antibiotics, have been well investigated in the past. In constrast, marine actinobacteria, especially sponge-associated species, have received much less attention and isolates are sparse. With the aim of studying and discovering novel marine actinobacteria, 11 different species of sponges were collected from the Central Red Sea in Saudi Arabia and cultured with three different types of media. 16S rRNA gene-sequencing revealed that among all 75 isolated bacterial strains 13 belonged to the order actinomycetales. These 13 actinomycetes fall into four different families and can be assigned to six different genera. Antibiotic activity tests using disc diffusion assay were performed against Gram-positive bacteria (Bacillus sp.), Gram-negative bacteria (Escherichia coli), fungi (Fusarium sp.) and West Nile virus NS3 protease. Nine strains presented different level of bioactivity against these pathogens. These findings provide evidence that actinomycetes are presented in marine sponges and that they have the potential to be good candidates in the search for new effective antibiotic, antifungal, and antiviral compounds.

  11. Codon usage bias in phylum Actinobacteria: relevance to environmental adaptation and host pathogenicity.

    Science.gov (United States)

    Lal, Devi; Verma, Mansi; Behura, Susanta K; Lal, Rup

    2016-10-01

    Actinobacteria are Gram-positive bacteria commonly found in soil, freshwater and marine ecosystems. In this investigation, bias in codon usages of ninety actinobacterial genomes was analyzed by estimating different indices of codon bias such as Nc (effective number of codons), SCUO (synonymous codon usage order), RSCU (relative synonymous codon usage), as well as sequence patterns of codon contexts. The results revealed several characteristic features of codon usage in Actinobacteria, as follows: 1) C- or G-ending codons are used frequently in comparison with A- and U ending codons; 2) there is a direct relationship of GC content with use of specific amino acids such as alanine, proline and glycine; 3) there is an inverse relationship between GC content and Nc estimates, 4) there is low SCUO value (Actinobacteria, extreme GC content and codon bias are driven by mutation rather than natural selection; (2) traits like aerobicity are associated with effective natural selection and therefore low GC content and low codon bias, demonstrating the role of both mutational bias and translational selection in shaping the habitat and phenotype of actinobacterial species. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China.

    Science.gov (United States)

    Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2009-10-01

    Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds.

  13. Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes.

    Science.gov (United States)

    Sujada, Nikhom; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    A total of 118 actinobacterial isolates were collected from the three types of termite nests (mound, carton, and subterranean nests) to evaluate their potential as a source of bioactive actinobacteria with antimicrobial activity. The highest number (67 isolates) and generic abundance (7 known genera) of actinobacterial isolates were obtained from carton nests. Streptomyces was the dominant genus in each type of termite nest. In the non-Streptomyces group, Nocardia was the dominant genus detected in mound and carton nests, while Pseudonocardia was the dominant genus in subterranean nests. A discovery trend of novel species (20% of bioactive actinobacteria that could inhibit the growth of at least one test organism, while 12 isolates, belonging to the genera Streptomyces, Amycolatopsis, Pseudonocardia, Micromonospora and Nocardia, exhibited distinct antimicrobial activities. Streptomyces sp. CMU-NKS-3 was the most distinct bioactive isolate. It was closely related to S. padanus MITKK-103T, which was confirmed by 99% similarities in their 16S rRNA gene sequences. The highest level of extracellular antimicrobial substances was produced by the isolate CMU-NKS-3, which was grown in potato dextrose broth and exhibited a wide range (6.10×10(-4)-1.25 mg mL(-1)) of minimum inhibitory concentrations against diverse pathogens. We concluded that termite nests are an abundant source of bioactive strains of cultivable actinobacteria for future biotechnological needs.

  14. Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals.

    Science.gov (United States)

    Zhang, Xiao-Yong; He, Fei; Wang, Guang-Hua; Bao, Jie; Xu, Xin-Ya; Qi, Shu-Hua

    2013-06-01

    This study describes the diversity and antibacterial activity of culturable actinobacteria isolated from five species of gorgonian corals (Echinogorgia aurantiaca, Melitodes squamata, Muricella flexuosa, Subergorgia suberosa, and Verrucella umbraculum) collected in shallow water of the South China Sea. A total of 123 actinobacterial isolates were recovered using ten different isolation media, and assigned to 11 genera, including Streptomyces and Micromonospora as the dominant genera, followed by Nocardia, Verrucosispora, Nocardiopsis, Rhodococcus, Pseudonocardia, Agrococcus, Saccharomonospora, Saccharopolyspora and Dietzia. Comparable analysis indicated that the numbers of actinobacterial genera and isolates from the five gorgonian coral species varied significantly. It was found that 72 isolates displayed antibacterial activity against at least one indicator bacterium, and the antibacterial strains isolated from different gorgonians had almost the same proportion (~50 %). These results provide direct evidence for the hypotheses that gorgonian coral species contain large and diverse communities of actinobacteria, and suggest that many gorgonian-associated actinobacteria could produce some antibacterial agents to protect their hosts against pathogens. To our knowledge, this is the first report about the diversity of culturable actinobacteria isolated from gorgonian corals.

  15. On the nature of fur evolution: A phylogenetic approach in Actinobacteria

    Directory of Open Access Journals (Sweden)

    Benson David R

    2008-06-01

    Full Text Available Abstract Background An understanding of the evolution of global transcription regulators is essential for comprehending the complex networks of cellular metabolism that have developed among related organisms. The fur gene encodes one of those regulators – the ferric uptake regulator Fur – widely distributed among bacteria and known to regulate different genes committed to varied metabolic pathways. On the other hand, members of the Actinobacteria comprise an ecologically diverse group of bacteria able to inhabit various natural environments, and for which relatively little is currently understood concerning transcriptional regulation. Results BLAST analyses revealed the presence of more than one fur homologue in most members of the Actinobacteria whose genomes have been fully sequenced. We propose a model to explain the evolutionary history of fur within this well-known bacterial phylum: the postulated scenario includes one duplication event from a primitive regulator, which probably had a broad range of co-factors and DNA-binding sites. This duplication predated the appearance of the last common ancestor of the Actinobacteria, while six other duplications occurred later within specific groups of organisms, particularly in two genera: Frankia and Streptomyces. The resulting paralogues maintained main biochemical properties, but became specialised for regulating specific functions, coordinating different metal ions and binding to unique DNA sequences. The presence of syntenic regions surrounding the different fur orthologues supports the proposed model, as do the evolutionary distances and topology of phylogenetic trees built using both Neighbor-Joining and Maximum-Likelihood methods. Conclusion The proposed fur evolutionary model, which includes one general duplication and two in-genus duplications followed by divergence and specialization, explains the presence and diversity of fur genes within the Actinobacteria. Although a few rare

  16. Exploring the diversity and antimicrobial potential of marine Actinobacteria from the Comau Fjord in Northern Patagonia, Chile

    Directory of Open Access Journals (Sweden)

    Agustina Undabarrena

    2016-07-01

    Full Text Available Bioprospecting natural products in marine bacteria from fjord environments are attractive due to their unique geographical features. Although Actinobacteria are well known for producing a myriad of bioactive compounds, investigations regarding fjord-derived marine Actinobacteria are scarce. In this study, the diversity and biotechnological potential of Actinobacteria isolated from marine sediments within the Comau fjord, in Northern Chilean Patagonia, were assessed by culture-based approaches. The 16S rRNA gene sequences revealed that members phylogenetically related to the Micrococcaceae, Dermabacteraceae, Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, Dietziaceae, Nocardiaceae and Streptomycetaceae families were present at the Comau fjord. A high diversity of cultivable Actinobacteria (10 genera was retrieved by using only five different isolation media. Four isolates belonging to Arthrobacter, Brevibacterium, Corynebacterium and Kocuria genera showed 16S rRNA gene identity <98.7% suggesting that they are novel species. Physiological features such as salt tolerance, artificial sea water requirement, growth temperature, pigmentation and antimicrobial activity were evaluated. Arthrobacter, Brachybacterium, Curtobacterium, Rhodococcus and Streptomyces isolates showed strong inhibition against both Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica and Gram-positive Staphylococcus aureus, Listeria monocytogenes. Antimicrobial activities in Brachybacterium, Curtobacterium and Rhodococcus have been scarcely reported, suggesting that non-mycelial strains are a suitable source of bioactive compounds. In addition, all strains bear at least one of the biosynthetic genes coding for NRPS (91%, PKS I (18% and PKS II (73%.Our results indicate that the Comau fjord is a promising source of novel Actinobacteria with biotechnological potential for producing biologically active compounds.

  17. A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria

    Science.gov (United States)

    Actinobacteria such as streptomycetes are renowned for their ability to produce bioactive natural products including nonribosomal peptides (NRPs) and polyketides (PKs). The advent of genome sequencing has revealed an even larger genetic repertoire for secondary metabolism with most of the small mole...

  18. Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity

    NARCIS (Netherlands)

    Meij, van der Anne; Willemse, Joost; Schneijderberg, Martinus A.; Geurts, René; Raaijmakers, Jos M.; Wezel, van Gilles P.

    2018-01-01

    Many actinobacteria live in close association with eukaryotes such as fungi, insects, animals and plants. Plant-associated actinobacteria display (endo)symbiotic, saprophytic or pathogenic life styles, and can make up a substantial part of the endophytic community. Here, we characterised endophytic

  19. Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity

    NARCIS (Netherlands)

    Van der Meij, Anne; Willemse, Joost; Schneijderberg, Martinus A.; Geurts, Rene; Raaijmakers, Jos; van Wezel, Gilles

    2018-01-01

    Many actinobacteria live in close association with eukaryotes like fungi, insects, animals and plants. Plant-associated actinobacteria display (endo)symbiotic, saprophytic or pathogenic life styles, and can make up a substantial part of the endophytic community. Here, we characterised endophytic

  20. Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia.

    Science.gov (United States)

    Lee, Learn-Han; Zainal, Nurullhudda; Azman, Adzzie-Shazleen; Eng, Shu-Kee; Goh, Bey-Hing; Yin, Wai-Fong; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan

    2014-01-01

    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.

  1. Isolation and screening of rare Actinobacteria, a new insight for finding natural products with antivascular calcification activity.

    Science.gov (United States)

    Salimi, F; Hamedi, J; Motevaseli, E; Mohammadipanah, F

    2018-01-01

    Vascular calcification (VC) is a significant pathological process in some life-threatening diseases. Several pathological mechanisms, including transdifferentiation of vascular smooth muscle cells to osteoblast-like cells and apoptosis are involved in VC. Compounds with an inhibitory effect on these processes are potentially efficient medications. In consideration of the multiple biological activities of Actinobacteria, this research was aimed at finding anti-VC metabolite-producing Actinobacteria. After the isolation and identification of Actinobacteria, the effect of their fermentation broth extracts on the apoptosis rate was measured using various methods, for example, ethidium bromide/acridine orange staining, DNA laddering and diphenylamine assays. The effect of the most effective fermentation broth extract of Actinobacteria (FBEA) on the mRNA expression of runt-related transcription factor 2 (Runx2) and osteopontin (OPN) was examined. Finally, the most effective FBEA was fractionated and the chemical composition of anti-VC fractions was analysed using GC-MS. Various VC inhibition rates were observed in the tested FBEA (20 μg ml -1 ; 17·9-60·15%). The inhibition of DNA fragmentation was 7-48%. The FBE with the greatest anticalcification activity belonged to Kribbella sp. UTMC 267 and, according to 16S rRNA analysis, Kribbella sancticallisti with a similarity of 98·53% is its nearest neighbour. The FBE of Kribbella sp. UTMC 267 reduced Runx2 mRNA expression by 2·95-fold and OPN mRNA expression by 28·57-fold, both of which are considered significant (P Actinobacteria as a new natural source for drug discovery programs in the nonantibiotic bioactivity field. © 2017 The Society for Applied Microbiology.

  2. Antimicrobial activity of actinobacteria isolated from the guts of subterranean termites

    Science.gov (United States)

    Rachel Arango; C. M. Carlson; C. R. Currie; B. R. McDonald; A. J. Book; Frederick Green; K. F. Raffa; N.K. Lebow

    2016-01-01

    Subterranean termites need to minimize potentially pathogenic and competitive fungi in their environment in order to maintain colony health. We examined the ability of Actinobacteria isolated from termite guts in suppressing microorganisms commonly encountered in a subterranean environment. Guts from two subterranean termite species, Reticulitermes flavipes...

  3. Exploring the Potential for Actinobacteria as Defensive Symbionts in Fungus-Growing Termites

    NARCIS (Netherlands)

    Visser, A.A.; Mesquita Nobre, T.; Currie, C.R.; Aanen, D.K.; Poulsen, M.

    2012-01-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a

  4. The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale

    Science.gov (United States)

    Zhang, Binglin; Wu, Xiukun; Zhang, Gaosen; Li, Shuyan; Zhang, Wei; Chen, Ximing; Sun, Likun; Zhang, Baogui; Liu, Guangxiu; Chen, Tuo

    2016-05-01

    Glacier forelands, where the initially exposed area is unvegetated with minimal human influence, are an ideal place for research on the distributions and biogeography of microbial communities. Actinobacteria produce many bioactive substances and have important roles in soil development and biogeochemical cycling. However, little is known about the distribution and biogeography of Actinobacteria in glacier forelands. Therefore, we investigated the patterns of diversity and the biogeography of actinobacterial communities of the inhabited forefields of 5 glaciers in China. Of the bacteria, the mean relative abundance of Actinobacteria was 13.1%, and 6 classes were identified in the phylum Actinobacteria. The dominant class was Actinobacteria (57%), which was followed in abundance by Acidimicrobiia (19%) and Thermoleophilia (19%). When combined, the relative abundance of the other three classes, the MB-A2-108, Nitriliruptoria and Rubrobacteria, was only 2.4%. A biogeographic pattern in the forelands of the 5 glaciers in China was not detected for actinobacterial communities. Compared with 7 other actinobacterial communities found in the forelands of glaciers globally, those in the Southern Hemisphere were significantly different from those in the Northern Hemisphere. Moreover, the communities were significantly different on the separate continents of the Northern Hemisphere. The dissimilarity of the actinobacterial communities increased with geographic distance (r = 0.428, p = 0.0003). Because of environmental factors, the effect of geography was clear when the distance exceeded a certain continent-level threshold. With the analysis of indicator species, we found that each genus had a geographic characteristic, which could explain why the communities with greater diversity were more strongly affected by biogeography.

  5. Environmental Controls Over Actinobacteria Communities in Ecological Sensitive Yanshan Mountains Zone

    Science.gov (United States)

    Tang, Hui; Shi, Xunxun; Wang, Xiaofei; Hao, Huanhuan; Zhang, Xiu-Min; Zhang, Li-Ping

    2016-01-01

    The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1–YS10) on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With the soil pretreatment method: air drying of the soil sample, followed by exposure to 120°C for 1 h, we observed the higher Actinobacteria diversity in a relatively small number of clone libraries. No significant differences were observed in the Actinobacterial diversity of soils from sites YS2, YS3, YS4, YS6, YS8, YS9, or YS10 (P > 0.1). However, there were differences (P < 0.05) from the YS7 site and other sites, especially in response to environmental change. And we observed highly significant differences (P < 0.001) in Actinobacterial diversity of the soil from YS7 and that from YS4 and YS8 sites. The climatic characteristics of mean active accumulated temperature, annual mean precipitation, and annual mean temperature, and biogeochemical data of total phosphorus contributed to the diversity of Actinobacterial communities in soils at YS1, YS3, YS4, and YS5 sites. Compared to the climatic factors, the biogeochemical factors mostly contributed in shaping the Actinobacterial community. This work provides evidence that the diversity of Actinobacterial communities in soils from the Yashan Mountains show regional biogeographic patterns and that community membership change along the north-south distribution of the Hu Huanyong Line. PMID:27047461

  6. Diversity and Antimicrobial Activities of Actinobacteria Isolated from Tropical Mangrove Sediments in Malaysia

    Directory of Open Access Journals (Sweden)

    Learn-Han Lee

    2014-01-01

    Full Text Available The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135T that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS and nonribosomal polyketide synthetase (NRPS genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%, PKS-II (42.5%, and NRPS (5.7% genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.

  7. Antimicrobial potential of actinobacteria isolated from the rhizosphere of the Caatinga biome plant Caesalpinia pyramidalis Tul.

    Science.gov (United States)

    Silva-Lacerda, G R; Santana, R C F; Vicalvi-Costa, M C V; Solidônio, E G; Sena, K X F R; Lima, G M S; Araújo, J M

    2016-03-04

    Actinobacteria are known to produce various secondary metabolites having antibiotic effects. This study assessed the antimicrobial potential of actinobacteria isolated from the rhizosphere of Caesalpinia pyramidalis Tul. from the Caatinga biome. Sixty-eight actinobacteria isolates were evaluated for antimicrobial activity against different microorganisms by disk diffusion and submerged fermentation, using different culture media, followed by determination of minimum inhibitory concentration (MIC) and chemical prospecting of the crude extract. Of the isolates studied, 52.9% of those isolated at 37°C and 47.05% of those isolated at 45°C had activity against Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Fusarium moniliforme, and Candida albicans. When compared with others actinobacteria, the isolate C1.129 stood out with better activity and was identified by 16S rDNA gene analysis as Streptomyces parvulus. The crude ethanol extract showed an MIC of 0.97 μg/mL for MRSA and B. subtilis, while the ethyl acetate extract showed MIC of 3.9 μg/mL for S. aureus and MRSA, showing the greatest potential among the metabolites produced. Chemical prospecting revealed the presence of mono/sesquiterpenes, proanthocyanidin, triterpenes, and steroids in both crude extracts. This study evaluates S. parvulus activity against multi-resistant microorganisms such as MRSA. Thus, it proves that low-fertility soil, as is found in the Caatinga, may contain important microorganisms for the development of new antimicrobial drugs.

  8. Diversity, biogeography and biodegradation potential of actinobacteria in the deep-sea sediments along the Southwest Indian Ridge

    Directory of Open Access Journals (Sweden)

    Ping Chen

    2016-08-01

    Full Text Available The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.

  9. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge

    Science.gov (United States)

    Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying

    2016-01-01

    The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling. PMID:27621725

  10. Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach.

    Science.gov (United States)

    Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup

    2013-12-01

    Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms

  11. Lantibiotics produced by Actinobacteria and their potential applications (a review).

    Science.gov (United States)

    Gomes, Karen Machado; Duarte, Rafael Silva; de Freire Bastos, Maria do Carmo

    2017-02-01

    The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumour cells and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.

  12. [New isolation methods and phylogenetic diversity of actinobacteria from hypersaline beach in Aksu].

    Science.gov (United States)

    Zhang, Yao; Xia, Zhanfeng; Cao, Xinbo; Li, Jun; Zhang, Lili

    2013-08-04

    We explored 4 new methods to improve the isolation of actinobacterial resources from high salt areas. Optimized media based on 4 new strategies were used for isolating actinobacteria from hypersaline beaches. Glycerin-arginine, trehalose-creatine, glycerol-asparticacid, mannitol-casein, casein-mannitol, mannitol-alanine, chitosan-asparagineand GAUZE' No. 1 were used as basic media. New isolation strategy includes 4 methods: ten-fold dilution culture, simulation of the original environment, actinobacterial culture guided by uncultured molecular technology detected, and reference of actinobacterial media for brackish marine environment. The 16S rRNA genes of the isolates were amplified with bacterial universal primers. The results of 16S rRNA gene sequences were compared with sequences obtained from GenBank databases. We constructed phylogenetic tree with the neighbor-joining method. No actinobacterial strains were isolated by 8 media of control group, while 403 strains were isolated by new strategies. The isolates by new methods were members of 14 genera (Streptomyces, Streptomonospora, Saccharomonospora, Plantactinospora, Nocardia, Amycolatopsis, Glycomyces, Micromonospora, Nocardiopsis, Isoptericola, Nonomuraea, Thermobifida, Actinopolyspora, Actinomadura) of 10 families in 8 suborders. The most abundant and diverse isolates were the two suborders of Streptomycineae (69.96%) and Streptosporangineaesuborder (9.68%) within the phylum Actinobacteria, including 9 potential novel species. New isolation methods significantly improved the actinobacterial culturability of hypersaline areas, and obtained many potential novel species, which provided a new and more effective way to isolate actinobacteria resources in hypersaline environments.

  13. Potential of Cometabolic Transformation of Polysaccharides and Lignin in Lignocellulose by soil Actinobacteria

    Czech Academy of Sciences Publication Activity Database

    Větrovský, Tomáš; Steffen, K. T.; Baldrian, Petr

    2014-01-01

    Roč. 6, č. 1 (2014) E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA603020901 Institutional support: RVO:61388971 Keywords : actinobacteria * lignin decomposition * soil Subject RIV: EE - Microbiology, Virology Impact factor: 3.234, year: 2014

  14. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    OpenAIRE

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between ...

  15. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria

    Czech Academy of Sciences Publication Activity Database

    Ságová-Marečková, M.; Ulanová, Dana; Šanderová, P.; Omelka, M.; Kameník, Zdeněk; Olšovská, J.; Kopecký, J.

    2015-01-01

    Roč. 15, APR 2015 (2015) ISSN 1471-2180 Institutional support: RVO:61388971 Keywords : Actinobacteria * 16S rRNA diversity * Resistance genes Subject RIV: EH - Ecology, Behaviour Impact factor: 2.581, year: 2015

  16. The diversity and antibiotic properties of actinobacteria associated with endemic deepwater amphipods of Lake Baikal.

    Science.gov (United States)

    Protasov, Eugenii S; Axenov-Gribanov, Denis V; Rebets, Yuriy V; Voytsekhovskaya, Irina V; Tokovenko, Bogdan T; Shatilina, Zhanna M; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2017-12-01

    The emergence of pathogenic bacteria resistant to antibiotics increases the need for discovery of new effective antimicrobials. Unique habitats such as marine deposits, wetlands and caves or unexplored biological communities are promising sources for the isolation of actinobacteria, which are among the major antibiotic producers. The present study aimed at examining cultivated actinobacteria strains associated with endemic Lake Baikal deepwater amphipods and estimating their antibiotic activity. We isolated 42 actinobacterial strains from crustaceans belonging to Ommatogammarus albinus and Ommatogammarus flavus. To our knowledge, this is the first report describing the isolation and initial characterization of representatives of Micromonospora and Pseudonocardia genera from Baikal deepwater invertebrates. Also, as expected, representatives of the genus Streptomyces were the dominant group among the isolated species. Some correlations could be observed between the number of actinobacterial isolates, the depth of sampling and the source of the strains. Nevertheless, >70% of isolated strains demonstrated antifungal activity. The dereplication analysis of extract of one of the isolated strains resulted in annotation of several known compounds that can help to explain the observed biological activities. The characteristics of ecological niche and lifestyle of deepwater amphipods suggests that the observed associations between crustaceans and isolated actinobacteria are not random and might represent long-term symbiotic interactions.

  17. Potential for biocontrol of melanized fungi by actinobacteria isolated from intertidal region of Ilha Do Mel, Paraná, Brazil.

    Science.gov (United States)

    Dalitz, Camila de Araújo; Porsani, Mariana Vieira; Figel, Izabel Cristina; Pimentel, Ida C; Dalzoto, Patrícia R

    Actinobacteria occur in many environments and have the capacity to produce secondary metabolites with antibiotic potential. Identification and taxonomy of actinobacteria that produce antimicrobial substances is essential for the screening of new compounds, and sequencing of the 16S region of ribosomal DNA (rDNA), which is conserved and present in all bacteria, is an important method of identification. Melanized fungi are free-living organisms, which can also be pathogens of clinical importance. This work aimed to evaluate growth inhibition of melanized fungi by actinobacteria and to identify the latter to the species level. In this study, antimicrobial activity of 13 actinobacterial isolates from the genus Streptomyces was evaluated against seven melanized fungi of the genera Exophiala, Cladosporium, and Rhinocladiella. In all tests, all actinobacterial isolates showed inhibitory activity against all isolates of melanized fungi, and only one actinobacterial isolate had less efficient inhibitory activity. The 16S rDNA region of five previously unidentified actinobacterial isolates from Ilha do Mel, Paraná, Brazil, was sequenced; four of the isolates were identified as Streptomyces globisporus subsp. globisporus, and one isolate was identified as Streptomyces aureus. This work highlights the potential of actinobacteria with antifungal activity and their role in the pursuit of novel antimicrobial substances. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Pharmacological Potential of Phylogenetically Diverse Actinobacteria Isolated from Deep-Sea Coral Ecosystems of the Submarine Avilés Canyon in the Cantabrian Sea.

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; González, Verónica; Braña, Alfredo F; Palacios, Juan J; Otero, Luis; Fernández, Jonathan; Molina, Axayacatl; Kulik, Andreas; Vázquez, Fernando; Acuña, José L; García, Luis A; Blanco, Gloria

    2017-02-01

    Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.

  19. Genetic and functional characterization of culturable plant-beneficial actinobacteria associated with yam rhizosphere.

    Science.gov (United States)

    Arunachalam Palaniyandi, Sasikumar; Yang, Seung Hwan; Damodharan, Karthiyaini; Suh, Joo-Won

    2013-12-01

    Actinobacteria were isolated from the rhizosphere of yam plants from agricultural fields from Yeoju, South Korea and analyzed for their genetic and plant-beneficial functional diversity. A total of 29 highly occurring actinobacterial isolates from the yam rhizosphere were screened for various plant-beneficial traits such as antimicrobial activity on fungi and bacteria; biocontrol traits such as production of siderophore, protease, chitinase, endo-cellulase, and β-glucanase. The isolates were also screened for plant growth-promoting (PGP) traits such as auxin production, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and in vitro Arabidopsis growth promotion. 16S rDNA sequence-based phylogenetic analysis was carried out on the actinobacterial isolates to determine their genetic relatedness to known actinobacteria. BOX-PCR analysis revealed high genetic diversity among the isolates. Several isolates were identified to belong to the genus Streptomyces and a few to Kitasatospora. The actinobacterial strains exhibited high diversity in their functionality and were identified as novel and promising candidates for future development into biocontrol and PGP agents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation.

    Science.gov (United States)

    Aparicio, Juan D; Benimeli, Claudia S; Almeida, César A; Polti, Marta A; Colin, Verónica L

    2017-08-01

    The use of living actinobacteria biomass to clean up contaminated soils is an attractive biotechnology approach. However, biomass generation from cheap feedstock is the first step to ensure process sustainability. The present work reports the ability of four actinobacteria, Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis, to generate biomass from sugarcane vinasse. Optimal vinasse concentration to obtain the required biomass (more than 0.4 g L -1 ) was 20% for all strains, either grown individually or as mixed cultures. However, the biomass fraction recovered from first vinasse was discarded as it retained trace metals present in the effluent. Fractions recovered from three consecutive cycles of vinasse re-use obtained by mixing equal amounts of biomass from single cultures or produced as a mixed culture were evaluated to clean up contaminated soil with lindane and chromium. In all cases, the decrease in pesticide was about 50% after 14 d of incubation. However, chromium removal was statistically different depending on the preparation methodology of the inoculum. While the combined actinobacteria biomass recovered from their respective single cultures removed about 85% of the chromium, the mixed culture biomass removed more than 95%. At the end of the reused vinasse cycle, the mixed culture removed more than 70% of the biological oxygen demand suggesting a proportional reduction in the effluent toxicity. These results represent the first integral approach to address a problematic of multiple contaminations, concerning pesticides, heavy metals and a regionally important effluent like vinasse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products

    Science.gov (United States)

    Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J.

    2016-01-01

    Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects. PMID:27089350

  2. A walk into the LuxR regulators of Actinobacteria: phylogenomic distribution and functional diversity.

    Directory of Open Access Journals (Sweden)

    Catarina Lopes Santos

    Full Text Available LuxR regulators are a widely studied group of bacterial helix-turn-helix (HTH transcription factors involved in the regulation of many genes coding for important traits at an ecological and medical level. This regulatory family is particularly known by their involvement in quorum-sensing (QS mechanisms, i.e., in the bacterial ability to communicate through the synthesis and binding of molecular signals. However, these studies have been mainly focused on gram-negative organisms, and the presence of LuxR regulators in the gram-positive Actinobacteria phylum is still poorly explored. In this manuscript, the presence of LuxR regulators among Actinobacteria was assayed using a domain-based strategy. A total of 991 proteins having one LuxR domain were identified in 53 genome-sequenced actinobacterial species, of which 59% had an additional domain. In most cases (53% this domain was REC (receiver domain, suggesting that LuxR regulators in Actinobacteria may either function as single transcription factors or as part of two-component systems. The frequency, distribution and evolutionary stability of each of these sub-families of regulators was analyzed and contextualized regarding the ecological niche occupied by each organism. The results show that the presence of extra-domains in the LuxR-regulators was likely driven by a general need to physically uncouple the signal sensing from the signal transduction. Moreover, the total frequency of LuxR regulators was shown to be dependent on genetic, metabolic and ecological variables. Finally, the functional annotation of the LuxR regulators revealed that the bacterial ecological niche has biased the specialization of these proteins. In the case of pathogens, our results suggest that LuxR regulators can be involved in virulence and are therefore promising targets for future studies in the health-related biotechnology field.

  3. A Walk into the LuxR Regulators of Actinobacteria: Phylogenomic Distribution and Functional Diversity

    Science.gov (United States)

    Santos, Catarina Lopes; Correia-Neves, Margarida; Moradas-Ferreira, Pedro; Mendes, Marta Vaz

    2012-01-01

    LuxR regulators are a widely studied group of bacterial helix-turn-helix (HTH) transcription factors involved in the regulation of many genes coding for important traits at an ecological and medical level. This regulatory family is particularly known by their involvement in quorum-sensing (QS) mechanisms, i.e., in the bacterial ability to communicate through the synthesis and binding of molecular signals. However, these studies have been mainly focused on Gram-negative organisms, and the presence of LuxR regulators in the Gram-positive Actinobacteria phylum is still poorly explored. In this manuscript, the presence of LuxR regulators among Actinobacteria was assayed using a domain-based strategy. A total of 991 proteins having one LuxR domain were identified in 53 genome-sequenced actinobacterial species, of which 59% had an additional domain. In most cases (53%) this domain was REC (receiver domain), suggesting that LuxR regulators in Actinobacteria may either function as single transcription factors or as part of two-component systems. The frequency, distribution and evolutionary stability of each of these sub-families of regulators was analyzed and contextualized regarding the ecological niche occupied by each organism. The results show that the presence of extra-domains in the LuxR-regulators was likely driven by a general need to physically uncouple the signal sensing from the signal transduction. Moreover, the total frequency of LuxR regulators was shown to be dependent on genetic, metabolic and ecological variables. Finally, the functional annotation of the LuxR regulators revealed that the bacterial ecological niche has biased the specialization of these proteins. In the case of pathogens, our results suggest that LuxR regulators can be involved in virulence and are therefore promising targets for future studies in the health-related biotechnology field. PMID:23056438

  4. Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts.

    Science.gov (United States)

    Meena, Balakrishnan; Rajan, Lawrance Anbu; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2013-06-22

    Andaman and Nicobar Islands situated in the eastern part of Bay of Bengal are one of the distinguished biodiversity hotspot. Even though number of studies carried out on the marine flora and fauna, the studies on actinobacteria from Andaman and Nicobar Islands are meager. The aim of the present study was to screen the actinobacteria for their characterization and identify the potential sources for industrial and pharmaceutical byproducts. A total of 26 actinobacterial strains were isolated from the marine sediments collected from various sites of Port Blair Bay where no collection has been characterized previously. Isolates were categorized under the genera: Saccharopolyspora, Streptomyces, Nocardiopsis, Streptoverticillium, Microtetraspora, Actinopolyspora, Actinokineospora and Dactylosporangium. Majority of the isolates were found to produce industrially important enzymes such as amylase, protease, gelatinase, lipase, DNase, cellulase, urease and phosphatase, and also exhibited substantial antibacterial activity against human pathogens. 77% of isolates exhibited significant hemolytic activity. Among 26 isolates, three strains (NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26) were found to generate appreciable extent of surfactant, amylase, cellulase and protease enzyme. NIOT-VKKMA02 produced surfactant using kerosene as carbon source and emulsified upto E(24)-63.6%. Moreover, NIOT-VKKMA02, NIOT-VKKMA22 and NIOT-VKKMA26 synthesized 13.27 U/ml, 9.85 U/ml and 8.03 U/ml amylase; 7.75 U/ml, 5.01 U/ml and 2.08 U/ml of cellulase and 11.34 U/ml, 6.89 U/ml and 3.51 U/ml of protease enzyme, respectively. High diversity of marine actinobacteria was isolated and characterized in this work including undescribed species and species not previously reported from emerald Andaman and Nicobar Islands, including Streptomyces griseus, Streptomyces venezuelae and Saccharopolyspora salina. The enhanced salt, pH and temperature tolerance of the actinobacterial isolates along with their

  5. Production of an antibiotic enterocin from a marine actinobacteria strain H1003 by metal-stress technique with enhanced enrichment using response surface methodology.

    Science.gov (United States)

    Hassan, Syed Shamsul; Shah, Sayed Asmat Ali; Pan, Chengqian; Fu, Leilei; Cao, Xun; Shi, Yutong; Wu, Xiaodan; Wang, Kuiwu; Wu, Bin

    2017-01-01

    Elicitation by chemical means including heavy metals is one of a new technique for drug discoveries. In this research, the effect of heavy metals on marine actinobacteria Streptomyces sp. H-1003 for the production of enterocin, with a strong broad spectrum activity, along optimized fermented medium was firstly investigated. The optimum metal stress conditions consisted of culturing marine actinobacteria strain H-1003 with addition of cobalt ions at 2mM in optimized Gause's medium having starch at 20mg/L for 10 days at 180 revolution/min. Under these conditions, enterocin production was enhanced with a value of 5.33mg/L, which was totally absent at the normal culture of strain H-1003 and much higher than other tested metal-stress conditions. This work triumphantly announced a prodigious effect of heavy metals on marine actinobacteria with fringe benefits as a key tool of enterocin production.

  6. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.

    Science.gov (United States)

    Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico

    2016-06-01

    Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Isolation and screening of proangiogenic and antiangiogenic metabolites producing rare actinobacteria from soil.

    Science.gov (United States)

    Azarakhsh, Y; Mohammadipanah, F; Nassiri, S M; Siavashi, V; Hamedi, J

    2017-06-01

    Angiogenesis is a physiological process that has important impacts on the pathology and healing of various diseases, and its induction or inhibition by bioactive actinobacterial metabolites can help the treatment of some diseases. In this study, the effects of actinobacterial extract in the process of angiogenesis have been explored. In this research, proangiogenic and antiangiogenic metabolites producing actinobacteria were isolated from soil samples and their fermentation broth were extracted and after evaluation of their toxicity by MTT assay, antiangiogenic and proangiogenic activities were screened against human umbilical vein endothelial cells (HUVECs) by in vitro tube formation and migration assay. Isolated strains were identified through molecular techniques. The results showed that Nocardiopsis arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts had a high potential of anti-angiogenic activity on HUVECs. For the first time proangiogenic potency of a rare actinobacterium, Kribbella sp. UTMC 522, was reported, and N. arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts inhibits the proliferation, migration and angiogenesis activity of HUVECs with reasonable potency. Metabolites of the introduced rare actinobacteria are potent proangiogenic and angiogenic inhibitors. Identification of angiogenic-antiangiogenic mechanisms and purification of the extracts would be useful in therapeutic angiogenesis. © 2017 The Society for Applied Microbiology.

  8. Antibacterial and cytotoxic bioactivity of marine Actinobacteria from Loreto Bay National Park, Mexico

    OpenAIRE

    Cardoso-Martínez, Faviola; Becerril-Espinosa, Amayaly; Barrila-Ortíz, Celso; Torres-Beltrán, Mónica; Ocampo-Alvarez, Héctor; Iñiguez-Martínez, Ana M.; Soria-Mercado, Irma E.

    2015-01-01

    Abstract Production of bioactive compounds is intimately linked to the ecology of the producing organisms. Taking this into account, the objective of this study was to evaluate the bioactive properties of isolated Actinobacteria from sea sediments of a high biodiversity zone; under the hypothesis that the ecological characteristics of this site stimulate the presence of unique and bioactive strains that can be screened for new compounds with antibiotic and anticancer properties. The elected z...

  9. Characterization and phylogenetic affiliation of Actinobacteria from tropical soils with potential uses for agro-industrial processes.

    Science.gov (United States)

    Dornelas, J C M; Figueiredo, J E F; de Abreu, C S; Lana, U G P; Oliveira, C A; Marriel, I E

    2017-08-31

    Secondary metabolites produced by Actinobacteria of tropical soils represent a largely understudied source of novel molecules with relevant application in medicine, pharmaceutical and food industries, agriculture, and environmental bioremediation. The present study aimed to characterize sixty-nine Actinobacteria isolated from compost and tropical soils using morphological, biochemical, and molecular methods. All the isolates showed high variation for morphological traits considering the color of pigments of the aerial and vegetative mycelium and spore chain morphology. The enzymatic activity of amylase, cellulase, and lipase was highly variable. The amylase activity was detected in 53 (76.81%) isolates. Eighteen isolates showed enzymatic index (EI) > 4.0, and the isolates ACJ 45 (Streptomyces curacoi) and ACSL 6 (S. hygroscopicus) showed the highest EI values (6.44 and 6.42, respectively). The cellulase activity varied significantly (P ≤ 0.05) among the isolates. Twenty-nine isolates (42.02%) showed high cellulase activity, and the isolates ACJ 48 (S. chiangmaiensis) and ACJ 53 (S. cyslabdanicus) showed the highest EI values (6.56 for both isolates). The lipase activity varied statistically (P ≤ 0.05) with fourteen isolates (20.29%) considered good lipase producers (EI > 2.0). The isolate ACSL 6 (S. hygroscopicus) showed the highest EI value of 2.60. Molecular analysis of partial 16S rRNA gene sequencing revealed the existence of 49 species, being 38 species with only one representative member and 11 species represented by one or more strains. All species belonged to three genera, namely Streptomyces (82.61%), Amycolatopsis (7.25%), and Kitasatospora (10.14%). The present results showed the high biotechnological potential of different Actinobacteria from tropical soils.

  10. Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota.

    Science.gov (United States)

    Jami, Mansooreh; Ghanbari, Mahdi; Kneifel, Wolfgang; Domig, Konrad J

    2015-06-01

    The diversity of Actinobacteria isolated from the gut microbiota of two freshwater fish species namely Schizothorax zarudnyi and Schizocypris altidorsalis was investigated employing classical cultivation techniques, repetitive sequence-based PCR (rep-PCR), partial and full 16S rDNA sequencing followed by phylogenetic analysis. A total of 277 isolates were cultured by applying three different agar media. Based on rep-PCR profile analysis a subset of 33 strains was selected for further phylogenetic investigations, antimicrobial activity testing and diversity analysis of secondary-metabolite biosynthetic genes. The identification based on 16S rRNA gene sequencing revealed that the isolates belong to eight genera distributed among six families. At the family level, 72% of the 277 isolates belong to the family Streptomycetaceae. Among the non-streptomycetes group, the most dominant group could be allocated to the family of Pseudonocardiaceae followed by the members of Micromonosporaceae. Phylogenetic analysis clearly showed that many of the isolates in the genera Streptomyces, Saccharomonospora, Micromonospora, Nocardiopsis, Arthrobacter, Kocuria, Microbacterium and Agromyces formed a single and distinct cluster with the type strains. Notably, there is no report so far about the occurrence of these Actinobacteria in the microbiota of freshwater fish. Of the 33 isolates, all the strains exhibited antibacterial activity against a set of tested human and fish pathogenic bacteria. Then, to study their associated potential capacity to synthesize diverse bioactive natural products, diversity of genes associated with secondary-metabolite biosynthesis including PKS I, PKS II, NRPS, the enzyme PhzE of the phenazine pathways, the enzyme dTGD of 6-deoxyhexoses glycosylation pathway, the enzyme Halo of halogenation pathway and the enzyme CYP in polyene polyketide biosynthesis were investigated among the isolates. All the strains possess at least two types of the investigated

  11. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage

    Science.gov (United States)

    Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen

    2017-07-01

    γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.

  12. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Science.gov (United States)

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  13. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition.

    Science.gov (United States)

    Wang, Cheng; Dong, Da; Wang, Haoshu; Müller, Karin; Qin, Yong; Wang, Hailong; Wu, Weixiang

    2016-01-01

    Compost habitats sustain a vast ensemble of microbes specializing in the degradation of lignocellulosic plant materials and are thus important both for their roles in the global carbon cycle and as potential sources of biochemical catalysts for advanced biofuels production. Studies have revealed substantial diversity in compost microbiomes, yet how this diversity relates to functions and even to the genes encoding lignocellulolytic enzymes remains obscure. Here, we used a metagenomic analysis of the rice straw-adapted (RSA) microbial consortia enriched from compost ecosystems to decipher the systematic and functional contexts within such a distinctive microbiome. Analyses of the 16S pyrotag library and 5 Gbp of metagenomic sequence showed that the phylum Actinobacteria was the predominant group among the Bacteria in the RSA consortia, followed by Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes. The CAZymes profile revealed that CAZyme genes in the RSA consortia were also widely distributed within these bacterial phyla. Strikingly, about 46.1 % of CAZyme genes were from actinomycetal communities, which harbored a substantially expanded catalog of the cellobiohydrolase, β-glucosidase, acetyl xylan esterase, arabinofuranosidase, pectin lyase, and ligninase genes. Among these communities, a variety of previously unrecognized species was found, which reveals a greater ecological functional diversity of thermophilic Actinobacteria than previously assumed. These data underline the pivotal role of thermophilic Actinobacteria in lignocellulose biodegradation processes in the compost habitat. Besides revealing a new benchmark for microbial enzymatic deconstruction of lignocelluloses, the results suggest that actinomycetes found in compost ecosystems are potential candidates for mining efficient lignocellulosic enzymes in the biofuel industry.

  14. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China

    Directory of Open Access Journals (Sweden)

    Zhong-ke Jiang

    2018-05-01

    Full Text Available Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory

  15. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China

    Science.gov (United States)

    Jiang, Zhong-ke; Tuo, Li; Huang, Da-lin; Osterman, Ilya A.; Tyurin, Anton P.; Liu, Shao-wei; Lukyanov, Dmitry A.; Sergiev, Petr V.; Dontsova, Olga A.; Korshun, Vladimir A.; Li, Fei-na; Sun, Cheng-hang

    2018-01-01

    Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one “ESKAPE” resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein

  16. De novo synthesis and functional analysis of the phosphatase-encoding gene acI-B of uncultured Actinobacteria from Lake Stechlin (NE Germany).

    Science.gov (United States)

    Srivastava, Abhishek; McMahon, Katherine D; Stepanauskas, Ramunas; Grossart, Hans-Peter

    2015-12-01

    The National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov/guide/taxonomy/] database enlists more than 15,500 bacterial species. But this also includes a plethora of uncultured bacterial representations. Owing to their metabolism, they directly influence biogeochemical cycles, which underscores the the important status of bacteria on our planet. To study the function of a gene from an uncultured bacterium, we have undertaken a de novo gene synthesis approach. Actinobacteria of the acI-B subcluster are important but yet uncultured members of the bacterioplankton in temperate lakes of the northern hemisphere such as oligotrophic Lake Stechlin (NE Germany). This lake is relatively poor in phosphate (P) and harbors on average ~1.3 x 10 6 bacterial cells/ml, whereby Actinobacteria of the ac-I lineage can contribute to almost half of the entire bacterial community depending on seasonal variability. Single cell genome analysis of Actinobacterium SCGC AB141-P03, a member of the acI-B tribe in Lake Stechlin has revealed several phosphate-metabolizing genes. The genome of acI-B Actinobacteria indicates potential to degrade polyphosphate compound. To test for this genetic potential, we targeted the exoP-annotated gene potentially encoding polyphosphatase and synthesized it artificially to examine its biochemical role. Heterologous overexpression of the gene in Escherichia coli and protein purification revealed phosphatase activity. Comparative genome analysis suggested that homologs of this gene should be also present in other Actinobacteria of the acI lineages. This strategic retention of specialized genes in their genome provides a metabolic advantage over other members of the aquatic food web in a P-limited ecosystem. [Int Microbiol 2016; 19(1):39-47]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  17. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria.

    Science.gov (United States)

    Zhou, Xiaoxue; Halladin, David K; Theriot, Julie A

    2016-08-30

    Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond) daughter cell separation (DCS) driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes) or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives), observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis) with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae Much of our knowledge on bacterial cytokinesis comes from studying rod-shaped model organisms such as Escherichia coli and Bacillus subtilis Less is known about variations in this process among different bacterial species. While cell division in many bacteria has been characterized to some extent genetically or biochemically, few species have been examined using video microscopy to uncover the kinetics of cytokinesis and daughter cell separation (DCS). In this work, we found that fast (millisecond) DCS is exhibited by species in two independent clades of Gram-positive bacteria and is particularly prevalent

  18. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    Directory of Open Access Journals (Sweden)

    Soraia El Baz

    2015-01-01

    Full Text Available Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3.

  19. Resistance to and Accumulation of Heavy Metals by Actinobacteria Isolated from Abandoned Mining Areas

    Science.gov (United States)

    El Baz, Soraia; Baz, Mohamed; El Gharmali, Abdelhay; Imziln, Boujamâa

    2015-01-01

    Accumulation of high concentrations of heavy metals in environments can cause many human health risks and serious ecological problems. Nowadays, bioremediation using microorganisms is receiving much attention due to their good performance. The aim of this work is to investigate heavy metals resistance and bioaccumulation potential of actinobacteria strains isolated from some abandoned mining areas. Analysis of mining residues revealed that high concentration of zinc “Zn” was recorded in Sidi Bouatman, Arbar, and Bir Nhass mining residues. The highest concentration of lead “Pb” was found in Sidi Bouatman. Copper “Cu,” cadmium “Cd,” and chromium “Cr” were found with moderate and low concentrations. The resistance of 59 isolated actinobacteria to the five heavy metals was also determined. Using molecular identification 16S rRNA, these 27 isolates were found to belong to Streptomyces and Amycolatopsis genera. The results showed different levels of heavy metal resistance; the minimum inhibitory concentration (MIC) recorded was 0.55 for Pb, 0.15 for Cr, and 0.10 mg·mL−1 for both Zn and Cu. Chemical precipitation assay of heavy metals using hydrogen sulfide technic (H2S) revealed that only 27 isolates have a strong ability to accumulate Pb (up to 600 mg of Pb per g of biomass for Streptomyces sp. BN3). PMID:25763383

  20. Surfactants tailored by the class Actinobacteria

    Science.gov (United States)

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  1. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  2. Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria.

    Science.gov (United States)

    Bae, Kyung Sook; Kim, Mi Sun; Lee, Ji Hee; Kang, Joo Won; Kim, Dae In; Lee, Ji Hee; Seong, Chi Nam

    2016-12-01

    To understand the isolation and classification state of actinobacterial species with valid names for Korean indigenous isolates, isolation source, regional origin, and taxonomic affiliation of the isolates were studied. At the time of this writing, the phylum Actinobacteria consisted of only one class, Actinobacteria, including five subclasses, 10 orders, 56 families, and 330 genera. Moreover, new taxa of this phylum continue to be discovered. Korean actinobacterial species with a valid name has been reported from 1995 as Tsukamurella inchonensis isolated from a clinical specimen. In 1997, Streptomyces seoulensis was validated with the isolate from the natural Korean environment. Until Feb. 2016, 256 actinobacterial species with valid names originated from Korean territory were listed on LPSN. The species were affiliated with three subclasses (Acidimicrobidae, Actinobacteridae, and Rubrobacteridae), four orders (Acidimicrobiales, Actinomycetales, Bifidobacteriales, and Solirubrobacterales), 12 suborders, 36 families, and 93 genera. Most of the species belonged to the subclass Actinobacteridae, and almost of the members of this subclass were affiliated with the order Actinomycetales. A number of novel isolates belonged to the families Nocardioidaceae, Microbacteriaceae, Intrasporangiaceae, and Streptomycetaceae as well as the genera Nocardioides, Streptomyces, and Microbacterium. Twenty-six novel genera and one novel family, Motilibacteraceae, were created first with Korean indigenous isolates. Most of the Korean indigenous actionobacterial species were isolated from natural environments such as soil, seawater, tidal flat sediment, and fresh-water. A considerable number of species were isolated from artificial resources such as fermented foods, wastewater, compost, biofilm, and water-cooling systems or clinical specimens. Korean indigenous actinobacterial species were isolated from whole territory of Korea, and especially a large number of species were from Jeju

  3. Quorum quenching properties of Actinobacteria isolated from Malaysian tropical soils.

    Science.gov (United States)

    Devaraj, Kavimalar; Tan, Geok Yuan Annie; Chan, Kok-Gan

    2017-08-01

    In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.

  4. Environmental monitoring and assessment of antibacterial metabolite producing actinobacteria screened from marine sediments in south coastal regions of Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Garka, Shruthi; Puttaswamy, Sushmitha; Shanbhogue, Shobitha; Devaraju, Raksha; Narayanappa, Rajeswari

    2017-06-01

    Assessment of the therapeutic potential of secondary metabolite producing microorganisms from the marine coastal areas imparts scope and application in the field of environmental monitoring. The present study aims to screen metabolites with antibacterial potential from actionbacteria associated with marine sediments collected from south coastal regions of Karnataka, India. The actinobacteria were isolated and characterized from marine sediments by standard protocol. The metabolites were extracted, and antibacterial potential was analyzed against eight hospital associated bacteria. The selected metabolites were partially characterized by proximate analysis, SDS-PAGE, and FTIR-spectroscopy. The antibiogram of the test clinical isolates revealed that they were emerged as multidrug-resistant strains (P ≤ 0.05). Among six actinobacteria (IS1-1S6) screened, 100 μl -1 metabolite from IS1 showed significant antibacterial activities against all the clinical isolates except Pseudomonas aeruginosa. IS2 demonstrated antimicrobial potential towards Proteus mirabilis, Streptococcus pyogenes, and Escherichia coli. The metabolite from IS3 showed activity against Strep. pyogenes and E. coli. The metabolites from IS4, IS5, and IS6 exhibited antimicrobial activities against Ps. aeruginosa (P ≤ 0.05). The two metabolites that depicted highest antibacterial activities against the test strains were suggested to be antimicrobial peptides with low molecular weight. These isolates were characterized and designated as Streptomyces sp. strain mangaluru01 and Streptomyces sp. mangaloreK01 by 16S ribosomal DNA (rDNA) sequencing. This study suggests that south coastal regions of Karnataka, India, are one of the richest sources of antibacterial metabolites producing actinobacteria and monitoring of these regions for therapeutic intervention plays profound role in healthcare management.

  5. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.

    Science.gov (United States)

    Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D

    2014-12-01

    Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.

  6. Effects of dietary fiber preparations made from maize starch on the growth and activity of selected bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla in fecal samples from obese children.

    Science.gov (United States)

    Barczynska, Renata; Slizewska, Katarzyna; Litwin, Mieczyslaw; Szalecki, Mieczyslaw; Kapusniak, Janusz

    2016-01-01

    Currently, there is a search for substances that would be very well tolerated by an organism and which could contribute to the activation of the growth of Bacteroidetes and Actinobacteria strains, with simultaneous inhibition of the growth of Firmicutes. High expectations in this regard are raised with the use of fiber preparations from starch - resistant corn dextrins, branched dextrins, resistant maltodextrins and soluble corn fiber. In this paper, the influence of fiber preparations made from corn starch was evaluated on growth and activity of Bacteroidetes, Actinobacteria and Firmicutes strains isolated from obese children. It was demonstrated that in the stool of obese children Firmicutes strains predominate, while Bacteroidetes and Actinobacteria strains were in the minority. A supplementation of fecal culture with fiber preparations did not cause any significant changes in the number of strains of Bacteroidetes and Firmicutes. Addition of fiber preparations to the fecal samples of obese children increased the amount of short-chain fatty acids, especially acetic (p < 0.01), propionic, butyric (p = 0.05) and lactic acid (p < 0.01).

  7. Regulation of specialised metabolites in Actinobacteria - expanding the paradigms.

    Science.gov (United States)

    Hoskisson, Paul A; Fernández-Martínez, Lorena T

    2018-06-01

    The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster-specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.

  8. Regulation of specialised metabolites in Actinobacteria – expanding the paradigms

    Science.gov (United States)

    Hoskisson, Paul A.

    2018-01-01

    Summary The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster‐specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. PMID:29457705

  9. Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea.

    Science.gov (United States)

    Karuppiah, Valliappan; Li, Yingxin; Sun, Wei; Feng, Guofang; Li, Zhiyong

    2015-07-01

    Phenazines represent a large group of nitrogen-containing heterocyclic compounds produced by the diverse group of bacteria including actinobacteria. In this study, a total of 197 actinobacterial strains were isolated from seven different marine sponge species in the South China Sea using five different culture media. Eighty-seven morphologically different actinobacterial strains were selected and grouped into 13 genera, including Actinoalloteichus, Kocuria, Micrococcus, Micromonospora, Mycobacterium, Nocardiopsis, Prauserella, Rhodococcus, Saccharopolyspora, Salinispora, Serinicoccus, and Streptomyces by the phylogenetic analysis of 16S rRNA gene. Based on the screening of phzE genes, ten strains, including five Streptomyces, two Nocardiopsis, one Salinispora, one Micrococcus, and one Serinicoccus were found to be potential for phenazine production. The level of phzE gene expression was highly expressed in Nocardiopsis sp. 13-33-15, 13-12-13, and Serinicoccus sp. 13-12-4 on the fifth day of fermentation. Finally, 1,6-dihydroxy phenazine (1) from Nocardiopsis sp. 13-33-15 and 13-12-13, and 1,6-dimethoxy phenazine (2) from Nocardiopsis sp. 13-33-15 were isolated and identified successfully based on ESI-MS and NMR analysis. The compounds 1 and 2 showed antibacterial activity against Bacillus mycoides SJ14, Staphylococcus aureus SJ51, Escherichia coli SJ42, and Micrococcus luteus SJ47. This study suggests that the integrated approach of gene screening and chemical analysis is an effective strategy to find the target compounds and lays the basis for the production of phenazine from the sponge-associated actinobacteria.

  10. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat.

    Science.gov (United States)

    Dholakiya, Riddhi N; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15-C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria ( Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria ( Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H 2 O 2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria , isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  11. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    Directory of Open Access Journals (Sweden)

    Riddhi N. Dholakiya

    2017-12-01

    Full Text Available Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655 similarity with Streptomyces variabilis (EU841661 and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development, heat-map and PCA (principal component analysis. The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM, and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96. Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II, an enzyme complex that produces polyketides, the encoding gene(s detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s. In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat, India showed promising

  12. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    Science.gov (United States)

    Dholakiya, Riddhi N.; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H.; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  13. Antagonistic activity of marine sponges associated Actinobacteria

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2016-06-01

    Full Text Available Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology, nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance, physiological (pH, temperature and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate, soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are

  14. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    Science.gov (United States)

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  15. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria

    Directory of Open Access Journals (Sweden)

    Xiaoxue Zhou

    2016-08-01

    Full Text Available Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond daughter cell separation (DCS driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives, observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria. In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae.

  16. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria

    Science.gov (United States)

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2013-01-01

    We describe a deep-branching lineage of marine Actinobacteria with very low GC content (33%) and the smallest free living cells described yet (cell volume ca. 0.013 μm3), even smaller than the cosmopolitan marine photoheterotroph, ‘Candidatus Pelagibacter ubique'. These microbes are highly related to 16S rRNA sequences retrieved by PCR from the Pacific and Atlantic oceans 20 years ago. Metagenomic fosmids allowed a virtual genome reconstruction that also indicated very small genomes below 1 Mb. A new kind of rhodopsin was detected indicating a photoheterotrophic lifestyle. They are estimated to be ~4% of the total numbers of cells found at the site studied (the Mediterranean deep chlorophyll maximum) and similar numbers were estimated in all tropical and temperate photic zone metagenomes available. Their geographic distribution mirrors that of picocyanobacteria and there appears to be an association between these microbial groups. A new sub-class, ‘Candidatus Actinomarinidae' is proposed to designate these microbes. PMID:23959135

  17. Genomic islands predict functional adaptation in marine actinobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  18. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhongmin [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Su, Weiqin [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Chen, Huaihai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Barberan, Albert [Univ. of Arizona, Tucson, AZ (United States). Dept. of Soil, Water and Environmental Science; Zhao, Haochun [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Yu, Mengjie [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Yu, Lu [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Brookes, Philip C. [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Schadt, Christopher W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Chang, Scott X. [Univ. of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources; Xu, Jianming [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment

    2018-04-25

    Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro

  19. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron.

    Science.gov (United States)

    Jones, Rose M; Johnson, D Barrie

    2015-01-01

    A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic stream draining an abandoned copper mine in north Wales. The isolate (PY-F3) was demonstrated to be a heterotroph that catalyzed the oxidation of ferrous iron (but not of sulfur or hydrogen) under aerobic conditions, and the reduction of ferric iron under micro-aerobic and anaerobic conditions. PY-F3 formed long entangled filaments of cells (>50 μm long) during active growth phases, though these degenerated into smaller fragments and single cells in late stationary phase. Although isolate PY-F3 was not observed to grow below pH 2.0 and 10 °C, harvested biomass was found to oxidize ferrous iron at relatively fast rates at pH 1.5 and 5 °C. Phylogenetic analysis, based on comparisons of 16S rRNA gene sequences, showed that isolate PY-F3 has 91-93% gene similarity to those of the four classified genera and species of acidophilic Actinobacteria, and therefore is a representative of a novel genus. The binomial Acidithrix ferrooxidans is proposed for this new species, with PY-F3 as the designated type strain (=DSM 28176(T), =JCM 19728(T)). Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. T box riboswitches in Actinobacteria: Translational regulation via novel tRNA interactions

    Science.gov (United States)

    Sherwood, Anna V.; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5′ untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine–Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNAIle and tRNAIle-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch. PMID:25583497

  1. Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters.

    Science.gov (United States)

    Dinesh, Raghavan; Srinivasan, Veeraraghavan; T E, Sheeja; Anandaraj, Muthuswamy; Srambikkal, Hamza

    2017-09-01

    Endophytic actinobacteria, which reside in the inner tissues of host plants, are gaining serious attention due to their capacity to produce a plethora of secondary metabolites (e.g. antibiotics) possessing a wide variety of biological activity with diverse functions. This review encompasses the recent reports on endophytic actinobacterial species diversity, in planta habitats and mechanisms underlying their mode of entry into plants. Besides, their metabolic potential, novel bioactive compounds they produce and mechanisms to unravel their hidden metabolic repertoire by activation of cryptic or silent biosynthetic gene clusters (BGCs) for eliciting novel secondary metabolite production are discussed. The study also reviews the classical conservative techniques (chemical/biological/physical elicitation, co-culturing) as well as modern microbiology tools (e.g. next generation sequencing) that are being gainfully employed to uncover the vast hidden scaffolds for novel secondary metabolites produced by these endophytes, which would subsequently herald a revolution in drug engineering. The potential role of these endophytes in the agro-environment as promising biological candidates for inhibition of phytopathogens and the way forward to thoroughly exploit this unique microbial community by inducing expression of cryptic BGCs for encoding unseen products with novel therapeutic properties are also discussed.

  2. In silico discovery of the dormancy regulons in a number of Actinobacteria genomes

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimova, Anna; Dubchak, Inna; Arkin, Adam; Gelfand, Mikhail

    2010-11-16

    Mycobacterium tuberculosis is a dangerous Actinobacteria infecting nearly one third of the human population. It becomes dormant and phenotypically drug resistant in response to stresses. An important feature of the M. tuberculosis pathogenesis is the prevalence of latent infection without disease, making understanding of the mechanisms used by the bacteria to exist in this state and to switch to metabolically active infectious form a vital problem to consider. M. tuberculosis dormancy is regulated by the three-component regulatory system of two kinases (DosT and DevS) and transcriprional regulator (DevR). DevR activates transcription of a set of genes, which allow the bacteria to survive long periods of anaerobiosis, and may be important for long-term survival within the host during latent infection. The DevR-regulon is studied experimentally in M. tuberculosis and few other phylogenetically close Mycobacteria spp. As many other two-component systems, the devRS operon is autoregulated. However, the mechanism of the dormancy is not completely clear even for these bacteria and there is no data describing the dormancy regulons in other species.

  3. Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity.

    Science.gov (United States)

    Barczynska, Renata; Kapusniak, Janusz; Litwin, Mieczyslaw; Slizewska, Katarzyna; Szalecki, Mieczyslaw

    2016-06-01

    Unarguably, diet has a significant impact on human intestinal microbiota. The role of prebiotics as substances supporting the maintenance of appropriate body weight and reducing the demand for energy via stimulation of the growth of beneficial microbiota of the gut and formation products such as short-chain fatty acids, is more and more often highlighted. The objective of this study was to evaluate whether dextrins from maize starch resistant to enzymatic digestion stimulate the growth of Bacteroidetes and Actinobacteria strains representing a majority of the population of colon microbiota in lean individuals and limit the growth of Firmicutes bacterial strains representing a majority of the population of colon microbiota in obese individuals. The study was conducted with the use of in vitro method, using isolates from faeces of children characterized by normal weight, overweight and obesity. It was demonstrated that dextrins from maize starch equally efficient stimulate the growth of the isolates derived from normal-weight, overweight and obese children, and therefore may be added to foods as a beneficial component stimulating growth of strains belonging to Actinobacteria and Bacteroidetes for both overweight, obese and normal-weight children.

  4. Caracterización de actinobacterias raras, degradadoras de lignocelulosa: demostración de actividad lacasa en dos aislados de Tsukamurella sp y Cellulosimicrobium sp

    Directory of Open Access Journals (Sweden)

    Enrique Luis Revollo Escudero

    2012-07-01

    Full Text Available Título en ingles: Characterization of lignocelluloses-degrading rare actinobacteria: Demostration of laccase activity in two isolates of Tsukamurella sp and Cellulosimicrobium sp Resumen: Las características fisicoquímicas de la lignina y su compactación con la celulosa han dificultado la explotación biotecnológica de enormes cantidades de biomasa vegetal. Las lacasas constituyen una subfamilia de oxidasas multicobre que intervienen en la despolimerización de la lignina. Si bien han sido ampliamente caracterizadas en los hongos, los estudios de la diversidad y las funcionalidades de las lacasas en los procariotas se han centrado especialmente en isoformas enzimáticas de Streptomyces sp. En este trabajo se aislaron 20 cepas de actinobacterias del suelo. La actividad lacasa de 17 de ellas fue evidenciada en ensayos cualitativos con guayacol y dos cepas seleccionadas fueron caracterizadas en detalle. Las pruebas morfológicas y el análisis de las secuencias del gen 16S rRNA apuntan a que estos dos aislados pertenecen a los géneros Tsukamurella y Cellulosimicrobium. En cultivo sumergido con agitación, AC01 (Tsukamurella sp. expresó una máxima actividad de oxidación de ABTS (2,2’-azino-bis-(3-etilbenzotiazolin-6-sulfonato de 108 U/L. Por otra parte, AC18 (Cellulosimicrobium sp. que había exhibido una actividad oxidativa de guayacol superior a las 16 cepas restantes y demostró ser resistente a niveles tóxicos de cobre, logró un valor máximo de oxidación del ABTS de 0,56 U/L. Estos resultados sugieren que en el aislado AC18 operaría un fenómeno de especificidad de sustrato o de inductor, regulador de la expresión y de la actividad lacasa cuantificable. La caracterización genómica y funcional de las lacasas de nuevas actinobacterias lignocelulósicas ampliará la gama de centros redox con aplicaciones biotecnológicas específicas, además de facilitar el establecimiento de sus relaciones evolutivas con las eucariotas

  5. Influence of linear alkylbenzene sulfonate (LAS) on the structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities in a soil microcosm.

    Science.gov (United States)

    Sánchez-Peinado, M del Mar; González-López, Jesús; Martínez-Toledo, M Victoria; Pozo, Clementina; Rodelas, Belén

    2010-03-01

    Linear alkylbenzene sulfonate (LAS) is the most used anionic surfactant in a worldwide scale and is considered a high-priority pollutant. LAS is regarded as a readily biodegradable product under aerobic conditions in aqueous media and is mostly removed in wastewater treatment plants, but an important fraction (20-25%) is immobilized in sewage sludge and persists under anoxic conditions. Due to the application of the sludge as a fertilizer, LAS reaches agricultural soil, and therefore, microbial toxicity tests have been widely used to evaluate the influence of LAS on soil microbial ecology. However, molecular-based community-level analyses have been seldom applied in studies regarding the effects of LAS on natural or engineered systems, and, to our knowledge, there are no reports of their use for such appraisals in agricultural soil. In this study, a microcosm system is used to evaluate the effects of a commercial mixture of LAS on the community structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria in an agricultural soil. The microcosms consisted of agricultural soil columns (800 g) fed with sterile water (8 ml h(-1)) added of different concentration of LAS (10 or 50 mg l(-1)) for periods of time up to 21 days. Sterile water was added to control columns for comparison. The structures of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities were analyzed by a cultivation independent method (temperature gradient gel electrophoresis (TGGE) separation of polymerase chain reaction (PCR)-amplified partial 16S rRNA genes). Relevant populations were identified by subsequent reamplification, DNA sequencing, and database comparisons. Cluster analysis of the TGGE fingerprints taking into consideration both the number of bands and their relative intensities revealed that the structure of the Alphaproteobacteria community was significantly changed in the presence of LAS, at both concentrations tested. The average number of bands was significantly

  6. Actinobacteria Associated With Arbuscular Mycorrhizal Funneliformis mosseae Spores, Taxonomic Characterization and Their Beneficial Traits to Plants: Evidence Obtained From Mung Bean (Vigna radiata) and Thai Jasmine Rice (Oryza sativa)

    Science.gov (United States)

    Lasudee, Krisana; Tokuyama, Shinji; Lumyong, Saisamorn; Pathom-aree, Wasu

    2018-01-01

    In this study, we report on the isolation of actinobacteria obtained from spores of Funneliformis mosseae and provide evidence for their potential in agricultural uses as plant growth promoters in vitro and in vivo. Actinobacteria were isolated from spores of F. mosseae using the dilution plate technique and media designed for the selective isolation of members of specific actinobacterial taxa. Six strains namely 48, S1, S3, S4, S4-1 and SP, were isolated and identified based on16S rRNA gene sequences. Phylogenetic analysis showed that isolate SP belonged to the genus Pseudonocardia with P. nantongensis KLBMP 1282T as its closest neighbor. The remaining isolates belonged to the genus Streptomyces. Two isolates, 48 and S3 were most closely related to S. thermocarboxydus DSM 44293T. Isolates S4 and S4-1 shared the highest 16S RNA gene similarity with S. pilosus NBRC 127772T. Isolate S1 showed its closest relationship with the type strain of S. spinoverrucosus NBRC14228T. The ability of these isolates to produce indole-3-acetic acid (IAA), siderophores and the ability to solubilize phosphate in vitro were examined. All isolates produced siderophores, four isolates produced IAA and two isolates solubilized inorganic phosphate at varying levels. S. thermocarboxydus isolate S3 showed the highest IAA production with high activities of phosphate solubilization and siderophore production. The inoculation of mung beans (Vigna radiata) with this strain resulted in a significant increase in fresh weight, root length and total length as an effect of IAA production. In an experiment with rice (Oryza sativa), S. thermocarboxydus isolate S3 promoted the growth of rice plants grown in low nutritional soil under induced drought stress. This report supports the view that the inoculation of rice with plant growth promoting actinobacteria mitigates some adverse effects of low nutrient and drought stress on rice. PMID:29942292

  7. Structure of Mycobacterium tuberculosis Rv2714, a representative of a duplicated gene family in Actinobacteria

    International Nuclear Information System (INIS)

    Graña, Martin; Bellinzoni, Marco; Miras, Isabelle; Fiez-Vandal, Cedric; Haouz, Ahmed; Shepard, William; Buschiazzo, Alejandro; Alzari, Pedro M.

    2009-01-01

    The crystal structure of Rv2714, a protein of unknown function from M. tuberculosis, has been determined at 2.6 Å resolution using single-wavelength anomalous diffraction methods. The gene Rv2714 from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is a representative member of a gene family that is largely confined to the order Actinomycetales of Actinobacteria. Sequence analysis indicates the presence of two paralogous genes in most mycobacterial genomes and suggests that gene duplication was an ancient event in bacterial evolution. The crystal structure of Rv2714 has been determined at 2.6 Å resolution, revealing a trimer in which the topology of the protomer core is similar to that observed in a functionally diverse set of enzymes, including purine nucleoside phosphorylases, some carboxypeptidases, bacterial peptidyl-tRNA hydrolases and even the plastidic form of an intron splicing factor. However, some structural elements, such as a β-hairpin insertion involved in protein oligomerization and a C-terminal α-helical domain that serves as a lid to the putative substrate-binding (or ligand-binding) site, are only found in Rv2714 bacterial homologues and represent specific signatures of this protein family

  8. Structure of Mycobacterium tuberculosis Rv2714, a representative of a duplicated gene family in Actinobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Graña, Martin; Bellinzoni, Marco [Institut Pasteur, Unité de Biochimie Structurale, URA CNRS 2185, 25 Rue du Dr Roux, 75724 Paris (France); Miras, Isabelle; Fiez-Vandal, Cedric; Haouz, Ahmed; Shepard, William [Institut Pasteur, Plate-forme de Cristallogenèse et Diffraction des Rayons X, 25 Rue du Dr Roux, 75724 Paris (France); Buschiazzo, Alejandro; Alzari, Pedro M., E-mail: alzari@pasteur.fr [Institut Pasteur, Unité de Biochimie Structurale, URA CNRS 2185, 25 Rue du Dr Roux, 75724 Paris (France)

    2009-10-01

    The crystal structure of Rv2714, a protein of unknown function from M. tuberculosis, has been determined at 2.6 Å resolution using single-wavelength anomalous diffraction methods. The gene Rv2714 from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is a representative member of a gene family that is largely confined to the order Actinomycetales of Actinobacteria. Sequence analysis indicates the presence of two paralogous genes in most mycobacterial genomes and suggests that gene duplication was an ancient event in bacterial evolution. The crystal structure of Rv2714 has been determined at 2.6 Å resolution, revealing a trimer in which the topology of the protomer core is similar to that observed in a functionally diverse set of enzymes, including purine nucleoside phosphorylases, some carboxypeptidases, bacterial peptidyl-tRNA hydrolases and even the plastidic form of an intron splicing factor. However, some structural elements, such as a β-hairpin insertion involved in protein oligomerization and a C-terminal α-helical domain that serves as a lid to the putative substrate-binding (or ligand-binding) site, are only found in Rv2714 bacterial homologues and represent specific signatures of this protein family.

  9. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria.

    Science.gov (United States)

    Chevrette, Marc G; Aicheler, Fabian; Kohlbacher, Oliver; Currie, Cameron R; Medema, Marnix H

    2017-10-15

    Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables prioritization and dereplication, and integration with other data types in discovery efforts. However, insufficient training data and a lack of clarity regarding prediction quality have impeded optimal use. Here, we introduce prediCAT, a new phylogenetics-inspired algorithm, which quantitatively estimates the degree of predictability of each A-domain. We then systematically benchmarked all algorithms on a newly gathered, independent test set of 434 A-domain sequences, showing that active-site-motif-based algorithms outperform whole-domain-based methods. Subsequently, we developed SANDPUMA, a powerful ensemble algorithm, based on newly trained versions of all high-performing algorithms, which significantly outperforms individual methods. Finally, we deployed SANDPUMA in a systematic investigation of 7635 Actinobacteria genomes, suggesting that NRP chemical diversity is much higher than previously estimated. SANDPUMA has been integrated into the widely used antiSMASH biosynthetic gene cluster analysis pipeline and is also available as an open-source, standalone tool. SANDPUMA is freely available at https://bitbucket.org/chevrm/sandpuma and as a docker image at https://hub.docker.com/r/chevrm/sandpuma/ under the GNU Public License 3 (GPL3). chevrette@wisc.edu or marnix.medema@wur.nl. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Mass spectrometric approaches for the identification of anthracycline analogs produced by actinobacteria.

    Science.gov (United States)

    Bauermeister, Anelize; Zucchi, Tiago Domingues; Moraes, Luiz Alberto Beraldo

    2016-06-01

    Anthracyclines are a well-known chemical class produced by actinobacteria used effectively in cancer treatment; however, these compounds are usually produced in few amounts because of being toxic against their producers. In this work, we successfully explored the mass spectrometry versatility to detect 18 anthracyclines in microbial crude extract. From collision-induced dissociation and nuclear magnetic resonance spectra, we proposed structures for five new and identified three more anthracyclines already described in the literature, nocardicyclins A and B and nothramicin. One new compound 8 (4-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]oxy-2,5,7,12-tetrahydroxy-3,10-dimethoxy-2-methyl-3,4-dihydrotetracene-1,6,11-trione) was isolated and had its structure confirmed by (1) H nuclear magnetic resonance. The anthracyclines identified in this work show an interesting aminoglycoside, poorly found in natural products, 3-methyl-rhodosamine and derivatives. This fact encouraged to develop a focused method to identify compounds with aminoglycosides (rhodosamine, m/z 158; 3-methyl-rhodosamine, m/z 172; 4'-O-acethyl-3-C-methyl-rhodosamine, m/z 214). This method allowed the detection of four more anthracyclines. This focused method can also be applied in the search of these aminoglycosides in other microbial crude extracts. Additionally, it was observed that nocardicyclin A, nothramicin and compound 8 were able to interact to DNA through a DNA-binding study by mass spectrometry, showing its potential as anticancer drugs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach.

    Directory of Open Access Journals (Sweden)

    Luz A Betancur

    Full Text Available Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.

  12. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach

    Science.gov (United States)

    Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766

  13. Rape phosphatide concentrate in the technologies of surfactants production by the Actinobacteria

    Directory of Open Access Journals (Sweden)

    N. Koretska

    2015-05-01

    Full Text Available Introduction. Due to the fact that the production of microbial surfactants is limited by the low yield of end products and high cost of processes, the actual task is to optimize and reduce the cost of the technology of biosurfactants synthesis. One of the solutions of this problem is to use the industrial wastes, including rape phosphatide concentrate (PC. Materials and methods. Hexadecane and rape phosphatide concentrate (2% were used as a carbon source in a nutrient medium for the cultivation of bacteria. Lipids were extracted from a cell mass and supernatant by the mixture of chloroform-methanol 2:1. The qualitative analysis of metabolites was performed by a thin layer chromatography. Results and discussion. The peculiarities of synthesis of biosurfactants by strains G. rubripertincta UCM Aс-122 and R. erythropolis Au-1 during the growth on the nutrient media with rape phosphatide concentrate as a carbon source was studied. Quantity of biomass was 9.4 – 10.1 g/l, exopoly mers –8.9-9.5 g/l and the content of cellbound trehalose lipids was 1.37 – 2.26 g/l; whereas the content of exogenous trehalose lipids –metabolites of R. erythropolis Au-1 was 2.95 g/l. It was found that the addition of trehalose lipids (0.01 g/l to the nutrient medium caused the increase of biomass on 14.6 –17.0 % and cell-bound lipids on 13.9 –15.5 %. Conclusions. Rape phosphatide concentrate is economically viable carbon source in the technologies of surfactant production by Actinobacteria. Its use promotes an increasing of exogenous surfactants strain R. erythropolisAu-1 in 3-fold compared with cultivation on nutrient medium with hexadecane. Trehalose lipids show a stimulating effect on growth and synthesis of biosurfactants by strains of G. rubripertincta UCM Ac-122 and R. erythropolisAu-1.

  14. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea

    KAUST Repository

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n = 49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n = 22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  15. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea

    KAUST Repository

    Ettoumi, Besma

    2016-04-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n = 49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n = 22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.

  16. Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea.

    Science.gov (United States)

    Ettoumi, Besma; Chouchane, Habib; Guesmi, Amel; Mahjoubi, Mouna; Brusetti, Lorenzo; Neifar, Mohamed; Borin, Sara; Daffonchio, Daniele; Cherif, Ameur

    2016-01-01

    In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits.

    Science.gov (United States)

    Cruz-Morales, Pablo; Ramos-Aboites, Hilda E; Licona-Cassani, Cuauhtémoc; Selem-Mójica, Nelly; Mejía-Ponce, Paulina M; Souza-Saldívar, Valeria; Barona-Gómez, Francisco

    2017-09-01

    Desferrioxamines are hydroxamate siderophores widely conserved in both aquatic and soil-dwelling Actinobacteria. While the genetic and enzymatic bases of siderophore biosynthesis and their transport in model families of this phylum are well understood, evolutionary studies are lacking. Here, we perform a comprehensive desferrioxamine-centric (des genes) phylogenomic analysis, which includes the genomes of six novel strains isolated from an iron and phosphorous depleted oasis in the Chihuahuan desert of Mexico. Our analyses reveal previously unnoticed desferrioxamine evolutionary patterns, involving both biosynthetic and transport genes, likely to be related to desferrioxamines chemical diversity. The identified patterns were used to postulate experimentally testable hypotheses after phenotypic characterization, including profiling of siderophores production and growth stimulation of co-cultures under iron deficiency. Based in our results, we propose a novel des gene, which we term desG, as responsible for incorporation of phenylacetyl moieties during biosynthesis of previously reported arylated desferrioxamines. Moreover, a genomic-based classification of the siderophore-binding proteins responsible for specific and generalist siderophore assimilation is postulated. This report provides a much-needed evolutionary framework, with specific insights supported by experimental data, to direct the future ecological and functional analysis of desferrioxamines in the environment. © FEMS 2017.

  18. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes.

    Science.gov (United States)

    Sathya, Arumugam; Vijayabharathi, Rajendran; Gopalakrishnan, Subramaniam

    2017-06-01

    Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the "International Year of pulses". Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes.

  19. Characterization of a Novel Subgroup of Extracellular Medium-Chain-Length Polyhydroxyalkanoate Depolymerases from Actinobacteria

    Science.gov (United States)

    Gangoiti, Joana; Santos, Marta; Prieto, María Auxiliadora; de la Mata, Isabel; Llama, María J.

    2012-01-01

    Nineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied. On the basis of the great ability to degrade different polyesters, Streptomyces roseolus SL3 was selected, and its extracellular depolymerase was biochemically characterized. The enzyme consisted of one polypeptide chain of 28 kDa with a pI value of 5.2. Its maximum activity was observed at pH 9.5 with chromogenic substrates. The purified enzyme hydrolyzed mcl PHA and PCL but not scl PHA, PES, and PLA. Moreover, the mcl PHA depolymerase can hydrolyze various substrates for esterases, such as tributyrin and p-nitrophenyl (pNP)-alkanoates, with its maximum activity being measured with pNP-octanoate. Interestingly, when poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate [11%]) was used as the substrate, the main hydrolysis product was the monomer (R)-3-hydroxyoctanoate. In addition, the genes of several Actinobacteria strains, including S. roseolus SL3, were identified on the basis of the peptide de novo sequencing of the Streptomyces venezuelae SO1 mcl PHA depolymerase by tandem mass spectrometry. These enzymes did not show significant similarity to mcl PHA depolymerases characterized previously. Our results suggest that these distinct enzymes might represent a new subgroup of mcl PHA depolymerases. PMID:22865072

  20. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond.

    Science.gov (United States)

    Kulis-Horn, Robert Kasimir; Rückert, Christian; Kalinowski, Jörn; Persicke, Marcus

    2017-07-18

    The eighth step of L-histidine biosynthesis is carried out by an enzyme called histidinol-phosphate phosphatase (HolPase). Three unrelated HolPase families are known so far. Two of them are well studied: HAD-type HolPases known from Gammaproteobacteria like Escherichia coli or Salmonella enterica and PHP-type HolPases known from yeast and Firmicutes like Bacillus subtilis. However, the third family of HolPases, the inositol monophosphatase (IMPase)-like HolPases, present in Actinobacteria like Corynebacterium glutamicum (HisN) and plants, are poorly characterized. Moreover, there exist several IMPase-like proteins in bacteria (e.g. CysQ, ImpA, and SuhB) which are very similar to HisN but most likely do not participate in L-histidine biosynthesis. Deletion of hisN, the gene encoding the IMPase-like HolPase in C. glutamicum, does not result in complete L-histidine auxotrophy. Out of four hisN homologs present in the genome of C. glutamicum (impA, suhB, cysQ, and cg0911), only cg0911 encodes an enzyme with HolPase activity. The enzymatic properties of HisN and Cg0911 were determined, delivering the first available kinetic data for IMPase-like HolPases. Additionally, we analyzed the amino acid sequences of potential HisN, ImpA, SuhB, CysQ and Cg0911 orthologs from bacteria and identified six conserved sequence motifs for each group of orthologs. Mutational studies confirmed the importance of a highly conserved aspartate residue accompanied by several aromatic amino acid residues present in motif 5 for HolPase activity. Several bacterial proteins containing all identified HolPase motifs, but showing only moderate sequence similarity to HisN from C. glutamicum, were experimentally confirmed as IMPase-like HolPases, demonstrating the value of the identified motifs. Based on the confirmed IMPase-like HolPases two profile Hidden Markov Models (HMMs) were build using an iterative approach. These HMMs allow the fast, reliable detection and differentiation of the two

  1. Actinobacteria possessing antimicrobial and antioxidant activities isolated from the pollen of scots pine (Pinus sylvestris) grown on the Baikal shore.

    Science.gov (United States)

    Axenov-Gribanov, Denis V; Voytsekhovskaya, Irina V; Rebets, Yuriy V; Tokovenko, Bogdan T; Penzina, Tatyana A; Gornostay, Tatyana G; Adelshin, Renat V; Protasov, Eugenii S; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2016-10-01

    Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Scots pine trees (Pinus sylvestris) growing on the shore of the ancient Lake Baikal in Siberia. In addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens.

  2. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.

    Science.gov (United States)

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R

    2017-12-15

    Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the

  3. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis.

    Science.gov (United States)

    Gupta, Radhey S; Khadka, Bijendra

    2016-02-01

    Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the

  4. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect.

    Science.gov (United States)

    Passari, Ajit Kumar; Chandra, Preeti; Zothanpuia; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Kumar, Brijesh; Singh, Bhim Pratap

    2016-10-01

    In the present study, fifteen endophytic actinobacterial isolates recovered from Solanum lycopersicum were studied for their antagonistic potential and plant-growth-promoting (PGP) traits. Among them, eight isolates showed significant antagonistic and PGP traits, identified by amplification of the 16S rRNA gene. Isolate number DBT204, identified as Streptomyces sp., showed multiple PGP traits tested in planta and improved a range of growth parameters in seedlings of chili (Capsicum annuum L.) and tomato (S. lycopersicum L.). Further, genes of indole acetic acid (iaaM) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) were successively amplified from five strains. Six antibiotics (trimethoprim, fluconazole, chloramphenicol, nalidixic acid, rifampicin and streptomycin) and two phytohormones [indole acetic acid (IAA) and kinetin (KI)] were detected and quantified in Streptomyces sp. strain DBT204 using UPLC-ESI-MS/MS. The study indicates the potential of these PGP strains for production of phytohormones and shows the presence of biosynthetic genes responsible for production of secondary metabolites. It is the first report showing production of phytohormones (IAA and KI) by endophytic actinobacteria having PGP and biosynthetic potential. We propose Streptomyces sp. strain DBT204 for inoculums production and development of biofertilizers for enhancing growth of chili and tomato seedlings. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants

    Science.gov (United States)

    Trujillo, Martha E.; Riesco, Raúl; Benito, Patricia; Carro, Lorena

    2015-01-01

    For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and

  6. Study of silver nanoparticles synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil.

    Science.gov (United States)

    Railean-Plugaru, V; Pomastowski, P; Wypij, M; Szultka-Mlynska, M; Rafinska, K; Golinska, P; Dahm, H; Buszewski, B

    2016-05-01

    In the present work the acidophilic actinobacteria strain was used as a novel reducing agent for the cheap, green and single-step synthesis of nanostructure silver particles. Structural, morphological and optical properties of the synthesized nanoparticles have been characterized by spectroscopy, dynamic light scattering and electron microscopy approach. The antimicrobial activity of silver nanoparticles against clinical strains such as Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis and Salmonella infantis alone and in combination with antibiotics were studied. The crystalline and stable biosynthesized silver nanoparticles ranged in size from 4 to 45 nm and were mostly spherical in shape being characterized evolving several analytical techniques. The bioAgNPs inhibited growth of most bacterial strains. The highest antimicrobial activity was observed against Ps. aeruginosa (10 mm), followed by Staph. aureus, B. subtilis and Pr. mirabilis (all 8 mm). The lower activity was noticed for E. coli and Kl. pneumoniae (6 and 2 mm, respectively). Moreover, the synergistic effect of bio(AgNPs) with various commercially available antibiotics was also evaluated. The most significant results were observed for bio(AgNPs) combined with tetracycline, kanamycin, ampicillin and neomycin, followed by streptomycin and gentamycin against E. coli, Salm. infantis and Kl. pneumoniae. The most resistant bacteria to commercial antibiotics was Pr. mirabilis. The Streptacidiphilus sp. strain CGG11n isolated from acidic soil can be used to efficiently synthesize the bioactive nanoparticles using inexpensive substances in an eco-friendly and nontoxic manner. The present work provides helpful insight into the development of new antimicrobial agents with the synergistic enhancement of the antibacterial mechanism against pathogenic micro-organisms. The synthesized silver bionanoparticles from Streptacidiphilus sp. strain

  7. Streptosporangium jiaoheense sp. nov. and Streptosporangium taraxaci sp. nov., actinobacteria isolated from soil and dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    Science.gov (United States)

    Zhao, Junwei; Guo, Lifeng; Li, Zhilei; Piao, Chenyu; Li, Yao; Li, Jiansong; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng

    2016-06-01

    Two novel actinobacteria, designated strains NEAU-Jh1-4T and NEAU-Wp2-0T, were isolated from muddy soil collected from a riverbank in Jiaohe and a dandelion root collected from Harbin, respectively. A polyphasic study was carried out to establish the taxonomic positions of these two strains. The phylogenetic analysis based on the 16S rRNA gene sequences of strains NEAU-Jh1-4T and NEAU-Wp2-0T indicated that strain NEAU-Jh1-4T clustered with Streptosporangium nanhuense NEAU-NH11T (99.32 % 16S rRNA gene sequence similarity), Streptosporangium purpuratum CY-15110T (98.30 %) and Streptosporangium yunnanense CY-11007T (97.95 %) and strain NEAU-Wp2-0T clustered with 'Streptosporangium sonchi  ' NEAU-QS7 (99.39 %), 'Streptosporangium kronopolitis' NEAU-ML10 (99.26 %), 'Streptosporangium shengliense' NEAU-GH7 (98.85 %) and Streptosporangium longisporum DSM 43180T (98.69 %). Moreover, morphological and chemotaxonomic properties of the two isolates also confirmed their affiliation to the genus Streptosporangium. However, the low level of DNA-DNA hybridization and some phenotypic characteristics allowed the isolates to be differentiated from the most closely related species. Therefore, it is proposed that strains NEAU-Jh1-4T and NEAU-Wp2-0T represent two novel species of the genus Streptosporangium, for which the name Streptosporangium jiaoheense sp. nov. and Streptosporangium taraxaci sp. nov. are proposed. The type strains are NEAU-Jh1-4T (=CGMCC 4.7213T=JCM 30348T) and NEAU-Wp2-0T (=CGMCC 4.7217T=JCM 30349T), respectively.

  8. Tungsten: A Preliminary Environmental Risk Assessment

    Science.gov (United States)

    2011-05-01

    Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha-Proteobacteria beta-Proteobacteria gamma...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes  γ-Proteobacteria – includes a variety of microbes

  9. Main: FEA2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available ons of a variety of proteins involved in the biosynthesis pathway of the secondary metabolites of actinobacteria...ing synthase for curcumin, a medicinal ingredient of turmeric - C-nitrosation pathways in nitrosobenzamide biosynthesis of actinobact...eria have been deciphered While primary metabolites such as amino acids, nucleic ac

  10. Novel Insights into Fur Regulation in Helicobacter pylori

    Science.gov (United States)

    2013-01-10

    site (tumor vs. mucin); the dominant phyla are the Proteobacteria, Actinobacteria , Firmicutes, and Bactroidetes. Furthermore, a core set of...used for ISH are listed in Table 14. The Actinobacteria , Bacteroidetes, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Rhizobiales, Pseudomonas...Probe (Abbreviation) Taxonomic Depth Sequence (5’-3’) Target Actinobacteria (ACT) Phylum TATAGTTACCACCGCCGT 23S rRNA

  11. Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range

    Science.gov (United States)

    2016-05-12

    16S rRNA sequences were derived. These sequences resided in four major clusters: Actinobacteria (Eggerthella), -Proteobacteria (unclassified...Proteobacteria, Actinobacteria , -Proteobacteria and Clostridia) have been previously reported to biodegrade RDX directly, or to contribute to RDX...detected primarily under manganese-reducing conditions (with one under sulfate- reducing conditions) in our study, remain unclear. Actinobacteria are

  12. Modeling and Decision Support Tools Based on the Effects to Sediment Geochemistry and Microbial Populations on Contaminant Reactions in Sediments

    Science.gov (United States)

    2011-09-01

    Deltaproteobacteria(4) Others(5) Unclassified bacteria(7) Nitrospira(2) Actinobacteria (2) Betaproteobacteria(17) Re su lts  a nd  D is cu...3/7.18E-1) » » » phylum Actinobacteria (2/0/2.38E-1) » » » » class Actinobacteria (2/0/2.38E-1) » » » » » subclass Coriobacteridae

  13. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon

    2011-01-01

    and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...... phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest....

  14. Characterizing the Bacterial Communities in Retail Stores in the United States

    Science.gov (United States)

    2015-01-01

    filters (Tringe et al., 2008). The next two most abundant phyla detected in the stores were Actinobacteria (19%) and Firmicutes (17%). The relative...abundance of the phyla varied across the retail sites, especially for Proteobacteria and Actinobacteria . The high variability at the phylum level is...contrast, the direct pyrosequenced results showed a mixture of Proteobacteria, Firmicutes, and Actinobacteria . As shown in the Supplemental Figure 2

  15. A Metagenomic Analysis of Microbial Contamination in Aviation Fuels

    Science.gov (United States)

    2009-03-01

    classification by the RDP Classifier, sequences similar to members of the Acidobacteria, Actinobacteria , Bacteroidetes, Chloroflexi, Cyanobacteria... Actinobacteria 85 63 4 152 Bacteroidetes 5 0 0 5 Chloroflexi 7 0 0 7 Cyanobacteria 56 0 0 56 Deinococcus-Thermus 2 0 0 2 Firmicutes 83 99 2 184...Members of the Proteobacteria, Firmicutes and Actinobacteria were represented in all three fuel types; in Jet A and Biodiesel they were the only

  16. Extremozymes from Marine Actinobacteria.

    Science.gov (United States)

    Suriya, J; Bharathiraja, S; Krishnan, M; Manivasagan, P; Kim, S-K

    Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications. © 2016 Elsevier Inc. All rights reserved.

  17. Biological Control of Mango Dieback Disease Caused by Lasiodiplodia theobromae Using Streptomycete and Non-streptomycete Actinobacteria in the United Arab Emirates

    Science.gov (United States)

    Kamil, Fatima H.; Saeed, Esam E.; El-Tarabily, Khaled A.; AbuQamar, Synan F.

    2018-01-01

    . samsunensis using multiple modes of action retarded the in planta invasion of L. theobromae. This is the first report of BCA effects against L. theobromae on mango seedlings by microbial antagonists. It is also the first report of actinobacteria naturally existing in the soils of the UAE or elsewhere that show the ability to suppress the mango dieback disease.

  18. The role of symbiont genetic distance and potential adaptability in host preference towards Pseudonocardia symbionts in Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael; Maynard, Janielle; Roland, Damien L.

    2011-01-01

    Fungus-growing ants display symbiont preference in behavioral assays, both towards the fungus they cultivate for food and Actinobacteria they maintain on their cuticle for antibiotic production against parasites. These Actinobacteria, genus Pseudonocardia Henssen (Pseudonocardiacea: Actinomycetales...

  19. Speleothem and biofilm formation in a granite/dolerite cave, Northern Sweden

    DEFF Research Database (Denmark)

    Sallstedt, T.; Ivarsson, M.; Lundberg, J.

    2014-01-01

    incorporated remains of microorganisms. Two types of microbial communities can be distinguished associated with the speleothems: an Actinobacteria-like biofilm and a fungal community. Actinobacteria seem to play an important role in the formation of speleothem while the fungal community acts as both...... a constructive and a destructive agent. A modern biofilm dominated by Actinobacteria is present in the speleothem-free parts of the dolerite and located in cave ceiling cracks. These biofilms may represent sites of early speleothem formation. Because of its unusual position in between two types of host rock...

  20. Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequences

    DEFF Research Database (Denmark)

    Rasmussen, L D; Zawadsky, C; Binnerup, S J

    2008-01-01

    different 16S rRNA gene sequences were observed, including Alpha-, Beta-, and Gammaproteobacteria; Actinobacteria; Firmicutes; and Bacteroidetes. The diversity of isolates obtained by direct plating included eight different 16S rRNA gene sequences (Alpha- and Betaproteobacteria and Actinobacteria). Partial...... sequencing of merA of selected isolates led to the discovery of new merA sequences. With phylum-specific merA primers, PCR products were obtained for Alpha- and Betaproteobacteria and Actinobacteria but not for Bacteroidetes and Firmicutes. The similarity to known sequences ranged between 89 and 95%. One...

  1. Insect symbioses: a case study of past, present, and future fungus-growing ant research

    DEFF Research Database (Denmark)

    Caldera, Eric J; Poulsen, Michael; Suen, Garret

    2009-01-01

    's fungus garden, antibiotic-producing actinobacteria that help protect the fungus garden from the parasite, and a black yeast that parasitizes the ant-actinobacteria mutualism. The fungus-growing ant symbiosis serves as a particularly useful model system for studying insect-microbe symbioses, because...

  2. Role of Bactericidal Peptidoglycan Recognition Proteins in Regulating Gut Microbiota and Obesity

    Science.gov (United States)

    2018-03-01

    two Deferribacteres, one Proteobacteria, and one Actinobacteria species (Table 1). Importantly, three of these bacterial species, both Deferribacteres...0.058 0.0000 Actinobacteria Adlercreutzia equolifaciens 0.028 0.0025 Table 1. Bacterial species with significantly higher abundance in Nod2−/− HFD

  3. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater

    DEFF Research Database (Denmark)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon

    2015-01-01

    of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion...

  4. Global patterns of marine bacterioplankton diversity and characterisation of bioactive Vibrionaceae isolates

    DEFF Research Database (Denmark)

    Wietz, Matthias

    from P. halotolerans and a novel siderophore-like compound from V. nigripulchritudo were isolated. All three compounds interfere with quorum sensing in S. aureus. During LOMROG-II further seventeen strains with antagonistic activity were isolated, affiliating with the Actinobacteria (8 strains......), Pseudoalteromonas (4 strains), the Vibrionaceae (3 strains), and Psychrobacter (2 strains). Seven of the eight bioactive Actinobacteria, being isolated from different sources throughout the Arctic Ocean, were related to Arthrobacter davidanieli. Its broad antibiotic spectrum was likely based on production...... demonstrated that marine Vibrionaceae and polar Actinobacteria are a resource of antibacterial compounds and may have potential for future natural product discovery....

  5. Dysfunction of the Intestinal Microbiome in Inflammatory Bowel Disease and Treatment

    Science.gov (United States)

    2012-01-01

    Actinobacteria [4,5]. Many studies have observed imbalances or dysbioses in the GI micro- biomes of IBD patients [6-13]; in both CD and UC patients...aprote obacte ria Proteobacteri a O doribacter B acteroidetes Actinobacteria Fusobacteria Genera Families Orders Classes Phyla Crohn’s disease and

  6. Microbial secondary metabolites are an alternative approaches against insect vector to prevent zoonotic diseases

    Directory of Open Access Journals (Sweden)

    Dharumadurai Dhanasekaran

    2014-08-01

    Full Text Available Approximately 1500 naturally occurring microorganisms have been identified as potentially insecticidal agents. Metabolites from 942 microbial isolates were screened for insecticidal and properties. The isolates included 302 streptomycetes, 502 novel actinobacteria including representatives of 18 genera, 28 unidentified aerobic actinobacteria, 70 fungi and 40 bacteria other than actinobacteria showed the insecticidal activity. Most spore-forming bacteria pathogenic to insects belong to the family Bacillaceae. Only four Bacillus species namely Bacillus thuringiensis, Bacillus popilliae, Bacillus lentimorbus, Bacillus sphaericus have been closely examined as insect control agents. Fungi are applied directly in the form of spores, mycelia or blastospores or by their metabolites. Many viruses that belong to the family Baculoviridae are pathogenic in insects. The microbial insecticides are generally pest-specific, readily biodegradable and usually lack toxicity to higher animals. This review paper communicates the insect problem in the transmission of diseases in human, animals, plants and problem of chemical insecticides control of insects using microbial metabolites from actinobacteria, bacteria, fungi and viruses.

  7. Streptosporangium sonchi sp. nov. and Streptosporangium kronopolitis sp. nov., two novel actinobacteria isolated from a root of common sowthistle (Sonchus oleraceus L.) and a millipede (Kronopolites svenhedind Verhoeff).

    Science.gov (United States)

    Ma, Zhaoxu; Liu, Hui; Liu, Chongxi; He, Hairong; Zhao, Junwei; Wang, Xin; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng

    2015-06-01

    Two novel actinobacteria, designated strains NEAU-QS7(T) and NEAU-ML10(T), were isolated from a root of Sonchus oleraceus L. and a Kronopolites svenhedind Verhoeff specimen, respectively, collected from Wuchang, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic positions of these strains. The two strains were observed to form abundant aerial hyphae that differentiated into spherical spore vesicles. The phylogenetic analysis based on the 16S rRNA gene sequences of strains NEAU-QS7(T) and NEAU-ML10(T) showed that the two novel isolates exhibited 99.7 % 16S rRNA gene sequence similarity with each other and that they are most closely related to Streptosporangium shengliense NEAU-GH7(T) (99.1, 99.0 %) and Streptosporangium longisporum DSM 43180(T) (99.1, 99.0 %). However, the DNA-DNA hybridization value between strains NEAU-QS7(T) and NEAU-ML10(T) was 46.5 %, and the values between the two strains and their closest phylogenetic relatives were also below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA-DNA hybridization results, the two strains can be distinguished from each other and their closest phylogenetic relatives. Thus, strains NEAU-QS7(T) and NEAU-ML10(T) represent two novel species of the genus Streptosporangium, for which the names Streptosporangium sonchi sp. nov. and Streptosporangium kronopolitis sp. nov. are proposed. The type strains are NEAU-QS7(T) (=CGMCC 4.7142(T) =DSM 46717(T)) and NEAU-ML10(T) (=CGMCC 4.7153(T) =DSM 46720(T)), respectively.

  8. Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Mørk, Søren; Madsen, Mette Vestergård

    2006-01-01

    -Proteobacteria supported the growth of Cercomonas sp. well, whereas Actinobacteria did not. In contrast, C. elegans reproduced poorly on most a-proteobacteria but were able to reproduce well on some Actinobacteria. These results suggest that the different response of protozoa and nematodes to P addition could be mediated...

  9. The gastric caeca of pentatomids as a house for actinomycetes

    Directory of Open Access Journals (Sweden)

    Zucchi Tiago D

    2012-06-01

    Full Text Available Abstract Background Microbes are extensively associated with insects, playing key roles in insect defense, nutrition and reproduction. Most of the associations reported involve Proteobacteria. Despite the fact that Actinobacteria associated with insects were shown to produce antibiotic barriers against pathogens to the hosts or to their food and nutrients, there are few studies focusing on their association with insects. Thus, we surveyed the Actinobacteria diversity on a specific region of the midgut of seven species of stinkbugs (Hemiptera: Pentatomidae known to carry a diversity of symbiotically-associated Proteobacteria. Results A total of 34 phylotypes were placed in 11 different Actinobacteria families. Dichelops melacanthus held the highest diversity with six actinobacteria families represented by nine phylotypes. Thyanta perditor (n = 7, Edessa meditabunda (n = 5, Loxa deducta (n = 4 and Pellaea stictica (n = 3 were all associated with three families. Piezodorus guildini (n = 3 and Nezara viridula (n = 3 had the lowest diversity, being associated with two (Propionibacteriaceae and Mycobacteriaceae and one (Streptomyceataceae families, respectively. Corynebacteriaceae and Mycobacteriaceae were the most common families with phylotypes from three different insect species each one. Conclusions Many phylotypes shared a low 16S rRNA gene similarity with their closest type strains and formed new phyletic lines on the periphery of several genera. This is a strong indicative that stinkbug caeca can harbor new species of actinobacteria, which might be derived from specific associations with the species of stinkbugs studied. Although the well-known role of actinobacteria as a source of biomolecules, the ecological features of these symbionts on the stinkbugs biology remain unknown.

  10. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Jansen, J.l.C.; Aspegren, H.

    2002-01-01

    belonged to the β Proteobacteria, whereas the rest of the clusters belonged either to the Actinobacteria or to the α Proteobacteria. The relative abundance of Rhodocyclus-related bacteria in the activated sludge varied significantly in both systems during the whole period (from 6 to 18% in BNP, and from 4...... Proteobacteria (part of them Rhodocyclus-related, the identity of the rest unknown) and the Actinobacteria. However, not all of the Rhodocyclus-related bacteria showed 33Pi uptake. The P removal in the investigated plants is thus believed to be mediated by a mixed population consisting of a part...... of the Rhodocyclus-related bacteria, the Actinobacteria and other, yet unidentified bacteria....

  11. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens...... and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  12. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity.

    Science.gov (United States)

    Hamm, Paris S; Caimi, Nicole A; Northup, Diana E; Valdez, Ernest W; Buecher, Debbie C; Dunlap, Christopher A; Labeda, David P; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-03-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria , more specifically from the genus Streptomyces Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans , which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans , with 32 (88.9%) actinobacteria belonging to the genus Streptomyces Isolates in the genera Rhodococcus , Streptosporangium , Luteipulveratus , and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans , the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. Copyright © 2017 American Society for Microbiology.

  13. Toxicity of Bioactive and Probiotic Marine Bacteria and Their Secondary Metabolites in Artemia sp. and Caenorhabditis elegans as Eukaryotic Model Organisms

    DEFF Research Database (Denmark)

    Neu, Anna; Månsson, Maria; Gram, Lone

    2014-01-01

    We have previously reported that some strains belonging to the marine Actinobacteria class, the Pseudoalteromonas genus, the Roseobacter clade, and the Photobacteriaceae and Vibrionaceae families produce both antibacterial and antivirulence compounds, and these organisms are interesting from......-producing Roseobacter bacteria as a promising group to be used as probiotics in aquaculture, whereas Actinobacteria, Pseudoalteromonas, Photobacteriaceae, and Vibrionaceae should be used with caution....

  14. A common soil flagellate (Cercomonas sp.) grows slowly when feeding on the bacterium Rhodococcus fascians in isolation, but does not discriminate against it in a mixed culture with Sphingopyxis witflariensis

    DEFF Research Database (Denmark)

    Lekfeldt, Jonas D S; Rønn, Regin

    2008-01-01

    Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates. In this ......Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates....... In this study, we investigated the growth of the flagellate Cercomonas sp. (ATCC 50334) on each of the two bacteria Sphingopyxis witflariensis (Alphaproteobacteria) and Rhodococcus fascians (actinobacteria) separately and in combination. The growth rate of the flagellate was lower and the lag phase was longer...

  15. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    2011-02-01

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  16. Short communication. Response of bacterial community composition to long-term applications of different composts in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Ros, M; Knapp, B A; Peintner, U; Insam, H

    2011-07-01

    Differences in the bacterial community composition of agricultural soils caused by a long-term (12 year) application of different composts were identified by cultivation-dependent and -independent methods (PCR-DGGE and 16S rRNA clone libraries). The number of colony forming units indicated that the successive incorporation of organic amendments increased the bacterial abundance (6.41-5.66 log10 cfu g-1dry soil) compared to control and mineral soils (5.54-3.74 log10 cfu g-1 dry soil). Isolated bacteria were dominated by Actinobacteria, whereby compost-amended soils and green compost-amended soils showed, respectively, higher number of members of Actinobacteria (100% and 64%) than control and mineral soils (50% and 40%). The 16S rRNA clone libraries were dominated by Proteobacteria (43%), Acidobacteria (21%) and Actinobacteria (13%). Proteobacteria and Actinobacteria were most abundant in compost amended soils while Acidobacteria were more frequently found in mineral fertilizer and control soils. Partial 16S rRNA gene clone libraries revealed a higher bacterial diversity than cultivation. In conclusion, we found differences of bacterial community composition with a cultivation approach and clone libraries between compost amended soils and control and mineral soil. (Author) 31 refs.

  17. Bacterial reduction of mercury in the high arctic

    DEFF Research Database (Denmark)

    Møller, Annette Klæstrup

    than the rare phyla, suggesting that the ecological success of a bacterial phylum depends on the diversity rather than the dominance of a few genera. The most dominant phyla included Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes in the snow and Proteobacteria......, Bacteroidetes, Actinobacteria and Planctomycetes in freshwater. The bacteria identified in this study both included phylotypes commonly found in cold environments as well as rare phylotypes. During the time of sampling atmospheric ozone measurements and total Hg measurements in the snow indicated......, Firmicutes, Actinobacteria, and Bacteriodetes. It was found that 25% of the isolates resistant to Hg also reduced HgII to Hg0, although there was no correlation between level of resistance, ability to reduce HgII, and taxonomic group. An estimation of the potential bacterial reduction of HgII in snow...

  18. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences

    Science.gov (United States)

    Chandra, Govind; Chater, Keith F

    2014-01-01

    To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes. PMID:24164321

  19. Bioprospecting for culturable actinobacteria with antimicrobial ...

    African Journals Online (AJOL)

    Strains of Fusarium sp. H24, Trichoderma harzianum H5 and Colletotrichum ... Antibiosis was indicated by visually observable growth inhibition of the ... Table 1: Antimicrobial activity of seven selected strains against fungi and bacterial strains.

  20. Characterization of the bacterial gut microbiota in new neonatal porcine diarrhoea

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise

    from that of control piglets by a depletion of the phyla Firmicutes, Bacteroidetes, and Actinobacteria, while the numbers of genus Enterococcus and the class Beta- and Gammaproteobacteria (including family Enterobacteriaceae and species Escherichia coli), but also phylum Fusobacteria were elevated...... involved in diarrhoea was examined for a subset of piglets by qPCR using the 96.96 Dynamic Array™ Integrated Fluidic Circuits (Fluidigm). Similar to NNPD-field cases the gut microbiota of case piglets were characterized by reduced numbers of the phyla Firmicutes, Bacteroidetes, and Actinobacteria...

  1. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    DEFF Research Database (Denmark)

    Møller, Annette K.; Søborg, Ditte A.; Abu Al-Soud, Waleed

    2013-01-01

    of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers...... of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity...

  2. Association between Pseudonocardia symbionts and Atta leaf-cutting ants suggested by improved isolation methods

    DEFF Research Database (Denmark)

    Marsh, Sarah E.; Poulsen, Michael; Gorosito, Norma B.

    2013-01-01

    Fungus-growing ants associate with multiple symbiotic microbes, including Actinobacteria for production of antibiotics. The best studied of these bacteria are within the genus Pseudonocardia, which in most fungus-growing ants are conspicuously visible on the external cuticle of workers. However......, given that fungus-growing ants in the genus Atta do not carry visible Actinobacteria on their cuticle, it is unclear if this genus engages in the symbiosis with Pseudonocardia. Here we explore whether improving culturing techniques can allow for successful isolation of Pseudonocardia from Atta...

  3. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    DEFF Research Database (Denmark)

    Gittel, Antje; Barta, Jiri; Kohoutova, Iva

    2014-01-01

    topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated...... that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates...

  4. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx.

    Science.gov (United States)

    Lemon, Katherine P; Klepac-Ceraj, Vanja; Schiffer, Hilary K; Brodie, Eoin L; Lynch, Susan V; Kolter, Roberto

    2010-06-22

    The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups.

  5. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria.

    Science.gov (United States)

    Baoune, Hafida; Ould El Hadj-Khelil, Aminata; Pucci, Graciela; Sineli, Pedro; Loucif, Lotfi; Polti, Marta Alejandra

    2018-01-01

    Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that. For this purpose, our study aimed to isolate, characterize, and assess the ability of endophytic actinobacteria to degrade crude petroleum, as well as to produce plant growth promoting traits. Seventeen endophytic actinobacteria were isolated from roots of plants grown naturally in sandy contaminated soil. Among them, six isolates were selected on the basis of their tolerance to petroleum on solid minimal medium and characterized by 16S rDNA gene sequencing. All petroleum-tolerant isolates belonged to the Streptomyces genus. Determination by crude oil degradation by gas chromatorgraph-flame ionization detector revealed that five strains could use petroleum as sole carbon and energy source and the petroleum removal achieved up to 98% after 7 days of incubation. These isolates displayed an important role in the degradation of the n-alkanes (C 6 -C 30 ), aromatic and polycyclic aromatic hydrocarbons. All strains showed a wide range of plant growth promoting features such as siderophores, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase, nitrogen fixation and indole-3-acetic acid production as well as biosurfactant production. This is the first study highlighting the petroleum degradation ability and plant growth promoting attributes of endophytic Streptomyces. The finding suggests that the endophytic actinobacteria isolated are promising candidates for improving phytoremediation efficiency of petroleum contaminated soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake

    Science.gov (United States)

    Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.

    2009-01-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.

  7. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Nielsen, P.H.; Aspegren, H.

    2003-01-01

    . However, we observed a lower correlation (0.9). The Actinobacteria were the only additional group of bacteria which showed a similar degree of correlation to the P content in activated sludge as the Rhodocyclus-related bacteria - but only for the system without nitrogen removal. Significant amounts (less...... of the Betaproteobacteria (part of them identified as Rhodocyclus-related bacteria) as well as the Actinobacteria were able to take up P-33(i), [H-3]-acetate and [H-3]-glucose under anaerobic-aerobic conditions. The contribution of anoxic P-33(i) uptake under alternating anaerobic-anoxic conditions was significantly lower...

  8. Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses

    Science.gov (United States)

    D’haeseleer, Patrik; Khudyakov, Jane; Burd, Helcio; Hadi, Masood; Simmons, Blake A.; Singer, Steven W.; Thelen, Michael P.; VanderGheynst, Jean S.

    2013-01-01

    High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2) were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production. PMID:24205054

  9. Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses.

    Directory of Open Access Journals (Sweden)

    Amitha P Reddy

    Full Text Available High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C and thermophilic (55°C conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2 were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production.

  10. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard.

    Science.gov (United States)

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  11. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard

    Directory of Open Access Journals (Sweden)

    Giorgia Novello

    2017-08-01

    Full Text Available Microorganisms associated with Vitis vinifera (grapevine can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  12. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India and their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Salam eNimaichand

    2015-05-01

    Full Text Available Studies on actinobacterial diversity in limestone habitats are scarce. This paper reports profiling of actinobacteria isolated from Hundung limestone samples in Manipur, India using ARDRA as the molecular tool for preliminary classification. A total of 137 actinobacteria were clustered into 31 phylotypic groups based on the ARDRA pattern generated and representative of each group was subjected to 16S rRNA gene sequencing. Generic diversity of the limestone isolates consisted of Streptomyces (15 phylotypic groups, Micromonospora (4, Amycolatopsis (3, Arthrobacter (3, Kitasatospora (2, Janibacter (1, Nocardia (1, Pseudonocardia (1 and Rhodococcus (1. Considering the antimicrobial potential of these actinobacteria, 19 showed antimicrobial activities against at least one of the bacterial and candidal test pathogens, while 45 exhibit biocontrol activities against at least one of the rice fungal pathogens. Out of the 137 actinobacterial isolates, 118 were found to have at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, NRPS. The results indicate that 86% of the strains isolated from Hundung limestone deposit sites possessed biosynthetic gene clusters of which 40% exhibited antimicrobial activities. It can, therefore, be concluded that limestone habitat is a promising source for search of novel secondary metabolites.

  13. Bacterial community structure of a full-scale biofilter treating pig house exhaust air

    DEFF Research Database (Denmark)

    Kristiansen, Anja; Pedersen, Kristina Hadulla; Nielsen, Per Halkjær

    2011-01-01

    Biological air filters represent a promising tool for treating emissions of ammonia and odor from pig facilities. Quantitative fluorescence in situ hybridization (FISH) and 16S rRNA gene sequencing were used to investigate the bacterial community structure and diversity in a full-scale biofilter ...... consisting of two consecutive compartments (front and back filter). The analysis revealed a highly specialized bacterial community of limited diversity, dominated by a few groups of Betaproteobacteria (especially Comamonas) and diverse Bacteroidetes. Actinobacteria, Gammaproteobacteria......, and betaproteobacterial ammoniaoxidizers (Nitrosomonas eutropha/Nitrosococcus mobilis-lineage) were also quantitatively important. Only a few quantitative differences existed between the two filter compartments at the group level, with a lower relative abundance of Actinobacteria and a higher relative abundance...

  14. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    Science.gov (United States)

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample.

  15. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2017-08-01

    Full Text Available Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes, and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria, and Bacteroidetes were significantly higher in the dry season than those in the wet season (p < 0.01, while the relative abundance of Cyanobacteria was about 10-fold higher in the wet season than in the dry season. Temperature and NO3--N concentration represented key contributing factors to the observed seasonal variations. These findings help understand the roles of various bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.

  16. Genomic and Transcriptomic Evidence for Carbohydrate Consumption among Microorganisms in a Cold Seep Brine Pool

    KAUST Repository

    Zhang, Weipeng; Ding, Wei; Yang, Bo; Tian, Renmao; Gu, Shuo; Luo, Haiwei; Qian, Pei-Yuan

    2016-01-01

    the Thuwal cold seep brine pool of the Red Sea. The recovered metagenome-assembled genomes (MAGs) belong to six different phyla: Actinobacteria, Proteobacteria, Candidatus Cloacimonetes, Candidatus Marinimicrobia, Bathyarchaeota, and Thaumarchaeota

  17. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong; Sharp, Jonathan O.; Drewes, Jorg

    2015-01-01

    , sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast

  18. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong; Liu, Wen-Tso

    2013-01-01

    structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant

  19. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    KAUST Repository

    Siam, Rania; Mustafa, Ghada A; Sharaf, Hazem; Moustafa, Ahmed; Ramadan, Adham R; Antunes, Andre; Bajic, Vladimir B.; Stingl, Ulrich; Marsis, Nardine G R; Coolen, Marco J L; Sogin, Mitchell; Ferreira, Ari J S; Dorry, Hamza El

    2012-01-01

    )-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota

  20. Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome.

    Science.gov (United States)

    Delley, Cyrille L; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins.

  1. Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats.

    Directory of Open Access Journals (Sweden)

    Jitka Jezberová

    Full Text Available Actinorhodopsins (ActRs are recently discovered proteorhodopsins present in Actinobacteria, enabling them to adapt to a wider spectrum of environmental conditions. Frequently, a large fraction of freshwater bacterioplankton belongs to the acI lineage of Actinobacteria and codes the LG1 type of ActRs. In this paper we studied the genotype variability of the LG1 ActRs. We have constructed two clone libraries originating from two environmentally different habitats located in Central Europe; the large alkaline lake Mondsee (Austria and the small humic reservoir Jiřická (the Czech Republic. The 75 yielded clones were phylogenetically analyzed together with all ActR sequences currently available in public databases. Altogether 156 sequences were analyzed and 13 clusters of ActRs were distinguished. Newly obtained clones are distributed over all three LG1 subgroups--LG1-A, B and C. Eighty percent of the sequences belonged to the acI lineage (LG1-A ActR gene bearers further divided into LG1-A1 and LG1-A2 subgroups. Interestingly, the two habitats markedly differed in genotype composition with no identical sequence found in both samples of clones. Moreover, Jiřická reservoir contained three so far not reported clusters, one of them LG1-C related, presenting thus completely new, so far undescribed, genotypes of Actinobacteria in freshwaters.

  2. The small 6C RNA of Corynebacterium glutamicum is involved in the SOS response

    Czech Academy of Sciences Publication Activity Database

    Pahlke, J.; Dostálová, Hana; Holátko, Jiří; Degner, U.; Bott, M.; Pátek, Miroslav; Polen, T.

    2016-01-01

    Roč. 13, č. 9 (2016), s. 848-860 ISSN 1547-6286 Institutional support: RVO:61388971 Keywords : Actinobacteria * branched morphology * cell division Subject RIV: EE - Microbiology, Virology Impact factor: 3.900, year: 2016

  3. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems.

    Directory of Open Access Journals (Sweden)

    Acacio Aparecido Navarrete

    Full Text Available This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N, vinasse (V; a liquid waste from ethanol production, and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N and decreasing MB carbon (MB-C in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%, Planctomycetes (12.3%, Deltaproteobacteria (12.3%, Alphaproteobacteria (12.0% and Betaproteobacteria (11.1% were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  4. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui

    2015-01-01

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  5. Genome sequence of the Fleming strain of Micrococcus luteus, a simple free- living actinobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Young, Michael; Artsatbanov, Vladislav; Beller, Harry R.; Chandra, Govind; Chater, Keith F.; Dover, Lynn G.; Goh, Ee-Been; Kahan, Tamar; Kaprelyants, Arseny S.; Kyrpides, Nikos; Lapidus, Alla; Lowry, Stephen R.; Lykidis, Athanasios; Mahillon, Jacques; Markowitz, Viktor; Mavrommatis, Konstantinos; Mukamolova, Galina V.; Oren, Aharon; Rokem, J. Stefan; Smith, Margaret C. M.; Young, Danielle I.; Greenblatt, Charles L.

    2009-11-01

    Micrococcus luteus (NCTC2665, Fleming strain) has one of the smallest genomes of free living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content 73%) predicted to encode 2403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 IS elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and fourteen response regulators, indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to {Beta}-lactam antibiotics may result from the presence of a reduced set of penicillin binding proteins and the absence of a wblC gene, which plays an important role in antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose, and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three gene cluster essential for this metabolism has been identified in the genome.

  6. .i.Candidatus./i. Planktophila limnetica, an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton

    Czech Academy of Sciences Publication Activity Database

    Jezbera, Jan; Sharma, A. K.; Brandt, U.; Doolittle, W.F.; Hahn, M.W.

    2009-01-01

    Roč. 59, č. 11 (2009), s. 2864-2869 ISSN 1466-5026 Institutional research plan: CEZ:AV0Z60170517 Keywords : Actinobacteria * Planktophila * freshwater * bacterioplankton Subject RIV: EE - Microbiology, Virology Impact factor: 2.113, year: 2009

  7. Coping with copper

    DEFF Research Database (Denmark)

    Nunes, Ines; Jacquiod, Samuel; Brejnrod, Asker

    2016-01-01

    concentration increased, bacterial richness and evenness were negatively impacted, while distinct communities with an enhanced relative abundance of Nitrospira and Acidobacteria members and a lower representation of Verrucomicrobia, Proteobacteria and Actinobacteria were selected. Our analysis showed...

  8. Kinetic study of seawater reverse osmosis membrane fouling

    KAUST Repository

    Khan, Muhammad; De, Carmemlara; Aubry, Cyril; Gutié rrez, Leonardo A.; Croue, Jean-Philippe

    2013-01-01

    population in all the membrane samples was dominated by specific groups/species belonging to Proteobacteria and Actinobacteria phyla; however, similar to abiotic foulant, their relative abundance also changed with the biofilm age. © 2013 American Chemical

  9. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria

    Czech Academy of Sciences Publication Activity Database

    Ghai, Rohit; Mehrshad, M.; Mizuno, C.M.; Rodriguez-Valera, F.

    2017-01-01

    Roč. 11, č. 1 (2017), s. 304-308 ISSN 1751-7362 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : low gc * toxin * dna * sequences * defense Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 9.664, year: 2016

  10. Genomic Analysis of Pathogenicity Determinants in Mycobacterium kansasii Type I

    KAUST Repository

    Guan, Qingtian

    2016-01-01

    Mycobacteria, a genus within Actinobacteria Phylum, are well known for two pathogens that cause human diseases: leprosy and tuberculosis. Other than the obligate human mycobacteria, there is a group of bacteria that are present in the environment

  11. The vaginal microbiome is stable in prepubertal and sexually mature Ellegaard Göttingen Minipigs throughout an estrous cycle

    DEFF Research Database (Denmark)

    Lorenzen, Emma; Kudirkiene, Egle; Gutman, Nicole

    2015-01-01

    in prepubertal and sexually mature Göttingen Minipigs during an estrous cycle. The dominating phyla in the vaginal microbiota consisted of Firmicutes, Proteobacteria, Actinobacteria, Bacteriodetes and Tenericutes. The most abundant bacterial families were Enterobacteriaceae, unclassified families from...

  12. Actinobacterial community structure in the Polar Frontal waters of the Southern Ocean of the Antarctica using Geographic Information System (GIS: A novel approach to study Ocean Microbiome

    Directory of Open Access Journals (Sweden)

    P. Sivasankar

    2018-04-01

    Full Text Available Integration of microbiological data and geographical locations is necessary to understand the spatiotemporal patterns of the microbial diversity of an ecosystem. The Geographic Information System (GIS to map and catalogue the data on the actinobacterial diversity of the Southern Ocean waters was completed through sampling and analysis. Water samples collected at two sampling stations viz. Polar Front 1 (Station 1 and Polar Front 2 (Station 2 during 7th Indian Scientific Expedition to the Indian Ocean Sector of the Southern Ocean (SOE-2012-13 were used for analysis. At the outset, two different genera of Actinobacteria were recorded at both sampling stations. Streptomyces was the dominanted with the high score (> 60%, followed by Nocardiopsis (< 30% at both the sampling stations-Polar Front 1 and Polar Front 2-along with other invasive genera such as Agrococcus, Arthrobacter, Cryobacterium, Curtobacterium, Microbacterium, Marisediminicola, Rhodococcus and Kocuria. This data will help to discriminate the diversity and distribution pattern of the Actinobacteria in the Polar Frontal Region of the Southern Ocean waters. It is a novel approach useful for geospatial cataloguing of microbial diversity from extreme niches and in various environmental gradations. Furthermore, this research work will act as the milestone for bioprospecting of microbial communities and their products having potential applications in healthcare, agriculture and beneficial to mankind. Hence, this research work would have significance in creating a database on microbial communities of the Antarctic ecosystem. Keywords: Antarctica, Marine actinobacteria, Southern ocean, GIS, Polar Frontal waters, Microbiome

  13. Extracellular Synthesis and Characterization of Gold Nanoparticles Using Mycobacterium sp. BRS2A-AR2 Isolated from the Aerial Roots of the Ghanaian Mangrove Plant, Rhizophora racemosa.

    Science.gov (United States)

    Camas, Mustafa; Sazak Camas, Anil; Kyeremeh, Kwaku

    2018-06-01

    Through the use of genomes that have undergone millions of years of evolution, marine Actinobacteria are known to have adapted to rapidly changing environmental pressures. The result is a huge chemical and biological diversity among marine Actinobacteria . It is gradually becoming a known fact that, marine Actinobacteria have the capability to produce nanoparticles which have reasonable sizes and structures with possible applications in biotechnology and pharmacology. Mycobacterium sp. BRS2A-AR2 was isolated from the aerial roots of the mangrove plant Rhizophora racemosa . The Mycobacterium was demonstrated for the first time ever to produce AuNPs with sizes that range between 5 and 55 nm. The highest level absorbance of the biosynthesized AuNPs was typical for actinobacterial strains (2.881 at 545 nm). The polydispersity index was measured as 0.207 in DLS and the zeta potential was negatively charged (- 28.3 mV). Significant vibration stretches were seen at 3314, 2358, 1635 and 667 cm -1 in FT-IR spectra. This demonstrated the possible use of small aliphatic compounds containing -COOH, -OH, -Cl and -NH 2 functional groups in the stabilization of the AuNPs. The effect of the biosynthesized AuNPs on HUVEC and HeLA cell lines was measured at 48 h. IC 50 values were determined at 3500 µg/ml concentration for HUVEC and HeLA cell lines at 45.25 and 53.41% respectively.

  14. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    Science.gov (United States)

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.

  15. Determination of physiological, taxonomic, and molecular characteristics of a cultivable arsenic-resistant bacterial community.

    Science.gov (United States)

    Cordi, A; Pagnout, C; Devin, S; Poirel, J; Billard, P; Dollard, M A; Bauda, P

    2015-09-01

    A collection of 219 bacterial arsenic-resistant isolates was constituted from neutral arsenic mine drainage sediments. Isolates were grown aerobically or anaerobically during 21 days on solid DR2A medium using agar or gelan gum as gelling agent, with 7 mM As(III) or 20 mM As(V) as selective pressure. Interestingly, the sum of the different incubation conditions used (arsenic form, gelling agent, oxygen pressure) results in an overall increase of the isolate diversity. Isolated strains mainly belonged to Proteobacteria (63%), Actinobacteria (25%), and Bacteroidetes (10%). The most representative genera were Pseudomonas (20%), Acinetobacter (8%), and Serratia (15%) among the Proteobacteria; Rhodococcus (13%) and Microbacterium (5%) among Actinobacteria; and Flavobacterium (13%) among the Bacteroidetes. Isolates were screened for the presence of arsenic-related genes (arsB, ACR3(1), ACR3(2), aioA, arsM, and arrA). In this way, 106 ACR3(1)-, 74 arsB-, 22 aioA-, 14 ACR3(2)-, and one arsM-positive PCR products were obtained and sequenced. Analysis of isolate sensitivity toward metalloids (arsenite, arsenate, and antimonite) revealed correlations between taxonomy, sensitivity, and genotype. Antimonite sensitivity correlated with the presence of ACR3(1) mainly present in Bacteroidetes and Actinobacteria, and arsenite or antimonite resistance correlated with arsB gene presence. The presence of either aioA gene or several different arsenite carrier genes did not ensure a high level of arsenic resistance in the tested conditions.

  16. Isolation and partial characterization of soils actinomycetes with antimicrobial activity against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Romina Belén Parada

    2017-07-01

    Full Text Available Two hundred and thirty four actinobacteria strains were isolated from Argentinian and Peruvian soil in order to evaluate the antimicrobial activity against multidrug resistant bacteria On the basis of their antagonist activity against methicillin-resistant Staphylococcus aureus (MRSA and two vancomycin-resistant Enterococcus (EVR-Van A and  EVR Van B,13 strains were selected. The presence of NRPS, PKS-I and PKS-II genes were also investigated by PCR techniques. Among the 13 selected actinobacteria, strain AC69C displayed the higher activity in diffusion tests in solid medium and was further evaluated for the production of antagonist metabolites in liquid media. The best results were obtained using fermentation broth with carbohydrates, when starch and glucose were used in combination. Antimicrobial activities of 640 arbitrary units (AU, 320 AU, 320 AU and 80 AU were obtained against EVR-Van A, EVR-Van B, Listeria monocytogenes ATCC7644 and MRSA, respectively. PCR amplification of 16S rRNA gene and subsequent phylogenetic analysis of AC69C strain displayed a 100 % homology with Streptomyces antibioticus NRRL B-1701. It was not possible to establish a correlation between the amplified genes and antimicrobial activity of the 13 selected strains. The results of this work show the wide distribution of actinobacteria in soil and the importance of the isolation of strain to screen novel active metabolites against multidrug resistant bacteria of clinical origin.

  17. Sex differences in gut microbiota in patients with major depressive disorder.

    Science.gov (United States)

    Chen, Jian-Jun; Zheng, Peng; Liu, Yi-Yun; Zhong, Xiao-Gang; Wang, Hai-Yang; Guo, Yu-Jie; Xie, Peng

    2018-01-01

    Our previous studies found that disturbances in gut microbiota might have a causative role in the onset of major depressive disorder (MDD). The aim of this study was to investigate whether there were sex differences in gut microbiota in patients with MDD. First-episode drug-naïve MDD patients and healthy controls were included. 16S rRNA gene sequences extracted from the fecal samples of the included subjects were analyzed. Principal-coordinate analysis and partial least squares-discriminant analysis were used to assess whether there were sex-specific gut microbiota. A random forest algorithm was used to identify the differential operational taxonomic units. Linear discriminant-analysis effect size was further used to identify the dominant sex-specific phylotypes responsible for the differences between MDD patients and healthy controls. In total, 57 and 74 differential operational taxonomic units responsible for separating female and male MDD patients from their healthy counterparts were identified. Compared with their healthy counterparts, increased Actinobacteria and decreased Bacteroidetes levels were found in female and male MDD patients, respectively. The most differentially abundant bacterial taxa in female and male MDD patients belonged to phyla Actinobacteria and Bacteroidia, respectively. Meanwhile, female and male MDD patients had different dominant phylotypes. These results demonstrated that there were sex differences in gut microbiota in patients with MDD. The suitability of Actinobacteria and Bacteroidia as the sex-specific biomarkers for diagnosing MDD should be further explored.

  18. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Militon, Cécile; Boucher, Delphine; Vachelard, Cédric; Perchet, Geoffrey; Barra, Vincent; Troquet, Julien; Peyretaillade, Eric; Peyret, Pierre

    2010-12-01

    The microbial community response during the oxygen biostimulation process of aged oil-polluted soils is poorly documented and there is no reference for the long-term monitoring of the unsaturated zone. To assess the potential effect of air supply on hydrocarbon fate and microbial community structure, two treatments (0 and 0.056 mol h⁻¹ molar flow rate of oxygen) were performed in fixed bed reactors containing oil-polluted soil. Microbial activity was monitored continuously over 2 years throughout the oxygen biostimulation process. Microbial community structure before and after treatment for 12 and 24 months was determined using a dual rRNA/rRNA gene approach, allowing us to characterize bacteria that were presumably metabolically active and therefore responsible for the functionality of the community in this polluted soil. Clone library analysis revealed that the microbial community contained many rare phylotypes. These have never been observed in other studied ecosystems. The bacterial community shifted from Gammaproteobacteria to Actinobacteria during the treatment. Without aeration, the samples were dominated by a phylotype linked to the Streptomyces. Members belonging to eight dominant phylotypes were well adapted to the aeration process. Aeration stimulated an Actinobacteria phylotype that might be involved in restoring the ecosystem studied. Phylogenetic analyses suggested that this phylotype is a novel, deep-branching member of the Actinobacteria related to the well-studied genus Acidimicrobium. FEMS Microbiology Ecology © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original French government works.

  19. Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis

    DEFF Research Database (Denmark)

    Bergström, Anders; Licht, Tine Rask; Wilcks, Andrea

    2012-01-01

    obtained from individuals at various points in time. The target genes represent important phyla, genera, species, or other taxonomic groups within the five predominant bacterial phyla of the gut, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia and also Euryarchaeota...

  20. A review of applied aspects of dealing with gut microbiota impact on rodent models

    DEFF Research Database (Denmark)

    Hansen, Axel Kornerup; Krych, Lukasz; Nielsen, Dennis Sandris

    2015-01-01

    -negative phylum Bacteroidetes. Other important phyla are the gram-negative phyla Proteobacteria and Verrucomicrobia, and the gram-positive phylum Actinobacteria. GM members influence models for diseases, such as inflammatory bowel diseases, allergies, autoimmunity, cancer, and neuropsychiatric diseases. GM...

  1. Basin-scale seasonal changes in marine free-living bacterioplankton community in the Ofunato Bay

    KAUST Repository

    Reza, Md. Shaheed; Kobiyama, Atsushi; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Ikeo, Kazuho; Sato, Shigeru; Ogata, Takehiko; Jimbo, Mitsuru; Kudo, Toshiaki; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    by Nitrosopumilus), as their relative abundance was very low during spring and summer but high during winter. In contrast, Actinobacteria and Cyanobacteria appeared to be higher in abundance during high-temperature periods. It was also revealed that Bacteroidetes

  2. Local environmental conditions shape generalist but not specialist components of microbial metacommunities in the Baltic Sea

    DEFF Research Database (Denmark)

    Lindh, Markus V.; Sjöstedt, Johanna; Casini, Michele

    2016-01-01

    structured bacterioplankton communities in summer but not in spring or autumn. Species sorting (SS) was the dominant assembly process, but temporal and taxonomical variation in mechanisms was observed. For May communities, Cyanobacteria, Actinobacteria, Alpha- and Betaproteobacteria exhibited SS while...

  3. Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains

    Science.gov (United States)

    Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...

  4. Bioprospecting Sediments from Red Sea Coastal Lagoons for Microorganisms and Their Antimicrobial Potential

    KAUST Repository

    Al Amoudi, Soha

    2016-01-01

    location with an increased probability of successful antibiotic bioprospecting, while the best sediment type in RHL for this purpose is microbial mat. Moreover, the phylum Actinobacteria tends to be the common target for research when it comes to antibiotic

  5. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-Glycine and FACE CO2

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Dungait, Jennifer A.J.; Bol, Roland

    2014-01-01

    PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i...

  6. Combining flow cytometry and 16S rRNA gene pyrosequencing: A promising approach for drinking water monitoring and characterization

    KAUST Repository

    Prest, Emmanuelle I E C; El Chakhtoura, Joline; Hammes, Frederik A.; Saikaly, Pascal; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2014-01-01

    concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two

  7. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Delta(4)-(5 alpha)-dehydrogenase from Rhodococcus jostii RHA1

    NARCIS (Netherlands)

    van Oosterwijk, Niels; Knol, Jan; Dijkhuizen, Lubbert; van der Geize, Robert; Dijkstra, Bauke

    2011-01-01

    3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid

  8. Rice root-associated bacteria: insights into community structures across 10 cultivars

    NARCIS (Netherlands)

    Hardoim, P.R.; Andreote, F.D.; Reinhold-Hurek, B.; Sessitsch, A.; Overbeek, van L.S.; Elsas, van J.D.

    2011-01-01

    In this study, the effects of plant genotype, soil type and nutrient use efficiency on the composition of different bacterial communities associated with rice roots were investigated. Thus, total bacteria, Alpha- and Betaproteobacteria, Pseudomonas and Actinobacteria were studied using PCR, followed

  9. Rice root-associated bacteria : insights into community structures across 10 cultivars

    NARCIS (Netherlands)

    Hardoim, P. R.; Andreote, F. D.; Reinhold-Hurek, B.; Sessitsch, A.; van Overbeek, L. S.; van Elsas, J. D.

    In this study, the effects of plant genotype, soil type and nutrient use efficiency on the composition of different bacterial communities associated with rice roots were investigated. Thus, total bacteria, Alpha- and Betaproteobacteria, Pseudomonas and Actinobacteria were studied using PCR, followed

  10. On the limits of computational functional genomics for bacterial lifestyle prediction

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Röttger, Richard; Hauschild, Anne-Christin

    2014-01-01

    We review the level of genomic specificity regarding actinobacterial pathogenicity. As they occupy various niches in diverse habitats, one may assume the existence of lifestyle-specific genomic features. We include 240 actinobacteria classified into four pathogenicity classes: human pathogens (HPs...

  11. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos

    DEFF Research Database (Denmark)

    Sommer, Felix; Ståhlman, Marcus; Ilkayeva, Olga

    2016-01-01

    the microbiota of free-ranging brown bears during their active phase and hibernation. Compared to the active phase, hibernation microbiota had reduced diversity, reduced levels of Firmicutes and Actinobacteria, and increased levels of Bacteroidetes. Several metabolites involved in lipid metabolism, including...

  12. Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina

    DEFF Research Database (Denmark)

    Jensen, Sheila Ingemann; Kühl, Michael; Priemé, Anders

    2007-01-01

    to Epsilonproteobacteria showed a relative mean distribution of between 5% and 11% in the root-associated communities of the youngest root bundle, in contrast to the bulk-sediment where this TRF only contributed Actinobacteria and Gammaproteobacteria also seemed important first root...

  13. Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass

    DEFF Research Database (Denmark)

    Zhao, Nannan; Jiang, Yinan; Alvarado-Morales, Merlin

    2018-01-01

    .1%), Proteobacteria (11.5%), Euryarchaeota (3.1%), Deferribacteres (1.3%), Spirochaetes (1.0%), Chloroflexi (0.7%), Actinobacteria (0.5%), and others (22.4%). The predominance of Bacteroidetes, Firmicutes and Proteobacteria demonstrated their importance for substrate degradation and simultaneous power generation...

  14. Genetic Markers Are Associated with the Ruminal Microbiome and Metabolome in Grain and Sugar Challenged Dairy Heifers

    Directory of Open Access Journals (Sweden)

    Helen M. Golder

    2018-02-01

    Full Text Available Dairy heifers were subjected to a non-life-threatening challenge designed to induce ruminal acidosis by feeding grain and sugar. Large among animal variation in clinical signs of acidosis, rumen metabolite concentrations, and the rumen microbiome occurred. This exploratory study investigates sources of the variation by examining associations between the genome, metabolome, and microbiome, albeit with a limited population. The broader objective is to provide a rationale for a larger field study to identify markers for susceptibility to ruminal acidosis. Initially, heifers (n = 40 allocated to five feed additive groups were fed 20-days pre-challenge with a total mixed ration and additives. Fructose (0.1% of bodyweight/day was added for the last 10 days pre-challenge. On day 21 heifers were challenged with 1.0% of bodyweight dry matter wheat + 0.2% of bodyweight fructose + additives. Rumen samples were collected via stomach tube weekly (day 0, 7, and 14 and at five times over 3.6 h after challenge and analyzed for pH and volatile fatty acid, ammonia, D-, and L-lactate concentrations. Relative abundance of bacteria and archaea were determined using Illumina MiSeq. Genotyping was undertaken using a 150K Illumina SNPchip. Genome-wide association was performed for metabolite and microbiome measures (n = 33. Few genome associations occurred with rumen pH, concentration of acetate, propionate, total volatile fatty acids, or ammonia, or the relative abundance of the Firmicutes, Bacteroidetes, and Spirochaetes phyla. Metabolites and microbial phyla that had markers associated and quantitative trait loci (QTL were: acetate to propionate ratio (A:P, D-, L-, and total lactate, butyrate, acidosis eigenvalue, Actinobacteria, Chloroflexi, Euryarchaeota, Fibrobacteres, Planctomycetes, Proteobacteria, and Tenericutes. A putative genomic region overlapped for Actinobacteria, Euryarchaeota, and Fibrobacteres and covered the region that codes for matrix extracellular

  15. Bacterial diversity and abundance of a creek valley sites reflected soil pH and season

    Czech Academy of Sciences Publication Activity Database

    Ságová-Marečková, M.; Čermák, L.; Omelka, M.; Kyselková, Martina; Kopecký, J.

    2015-01-01

    Roč. 10, č. 1 (2015), s. 61-70 ISSN 2391-5412 Grant - others:GA AV ČR(CZ) IAA603020901 Program:IA Institutional support: RVO:60077344 Keywords : bacterial communities * actinobacteria * OM quantity and quality * T-RFLP Subject RIV: EE - Microbiology, Virology

  16. Brevibacterium oceanic sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bhadra, B.; Raghukumar, C.; Pindi, P.K.; Shivaji, S.

    ., Schuetze, B. & Augsten, K. (1997). Demetria terragena gen. nov., sp. nov., a new genus of actinobacteria isolated from compost soil. Int J Syst Bacteriol 47, 1129–1133. Heyrman, J., Verbeeren, J., Schumann, P., Devos, J., Swings, J. & De Vos, P. (2004...

  17. Diversity of Nitrate-Reducing and Denitrifying Bacteria in a Marine Aquaculture Biofilter and their Response to Sulfide

    DEFF Research Database (Denmark)

    Krieger, Bärbel; Schwermer, Carsten U.; Rezakhani, Nastaran

    2006-01-01

    with Alphaproteobacteria but also including Beta- and Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The diversity of the isolates was compared to the cultivation-independent diversity of nitrate-reducing and denitrifying bacteria based on narG and nosZ as functional marker genes. Growth experiments...

  18. Molecular and biochemical characteristics of the inulosucrase HugO from Streptomyces viridochromogenes DSM40736 (Tü494)

    NARCIS (Netherlands)

    Frasch, Hans-Jörg; Leeuwen, Sander S van; Dijkhuizen, Lubbert

    2017-01-01

    Polyfructans are synthesized from sucrose by plants (mostly inulin) and by both Gram-negative and Gram-positive bacteria (mostly levan). In the phylum Actinobacteria only levan synthesis by Actinomyces species has been reported. We have identified a putative fructansucrase gene (hugO) in

  19. Effects of reclaimed water irrigation on microbial diversity and composition of soil with reducing nitrogen fertilization

    DEFF Research Database (Denmark)

    Wei, Guo; Qi, Xuebin; Xiao, Yatao

    2018-01-01

    -dependent manner. RW irrigation increased the abundances of Gemmatimonadetes, Actinobacteria, Firmicutes, and Nitrospirae in soils. The Chao, ACE, and H indices revealed no significant difference under RW irrigation with varying levels of N fertilization. The tomato yield and partial factor productivity from...

  20. A roadmap for natural product discovery based on large-scale genomics and metabolomics

    Science.gov (United States)

    Actinobacteria encode a wealth of natural product biosynthetic gene clusters, whose systematic study is complicated by numerous repetitive motifs. By combining several metrics we developed a method for global classification of these gene clusters into families (GCFs) and analyzed the biosynthetic ca...

  1. Community analysis of bacteria colonizing intestinal tissue of neonates with necrotizing enterocolitis

    DEFF Research Database (Denmark)

    Smith, Birgitte; Bodé, Susan; Petersen, Bodil L.

    2011-01-01

    (30.4%), Actinobacteria (17.1%) and Bacteroidetes (3.6%). A major detected class of the phylum Proteobacteria belonged to δ-proteobacteria. Surprisingly, Clostridium species were only detected in 4 of the specimens by FISH, but two of these specimens exhibited histological pneumatosis intestinalis...

  2. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R

    2009-01-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. We have analyzed one such system at the molecular level and found...

  3. Response of the bacterial community in an on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season

    DEFF Research Database (Denmark)

    Holmsgaard, Peter N.; Dealtry, Simone; Dunon, Vincent

    2017-01-01

    positively during the course of the season. Furthermore, a banding-pattern analysis of 16S rRNA gene-based DGGE fingerprinting, targeting the Alpha- and Betaproteobacteria as well as the Actinobacteria, indicated that the Betaproteobacteria might play an important role. Interestingly, a decrease...

  4. Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme.

    Directory of Open Access Journals (Sweden)

    Jullie M Sarmiento-Ramírez

    Full Text Available Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species.

  5. Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme.

    Science.gov (United States)

    Sarmiento-Ramírez, Jullie M; van der Voort, Menno; Raaijmakers, Jos M; Diéguez-Uribeondo, Javier

    2014-01-01

    Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora) that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species.

  6. Strong linkage between active microbial communities and microbial carbon usage in a deglaciated terrain of the High Arctic

    Science.gov (United States)

    Kim, M.; Gyeong, H. R.; Lee, Y. K.

    2017-12-01

    Soil microorganisms play pivotal roles in ecosystem development and carbon cycling in newly exposed glacier forelands. However, little is known about carbon utilization pattern by metabolically active microbes over the course of ecosystem succession in these nutrient-poor environments. We investigated RNA-based microbial community dynamics and its relation to microbial carbon usage along the chronosequence of a High Arctic glacier foreland. Among microbial taxa surveyed (bacteria, archaea and fungi), bacteria are among the most metabolically active taxa with a dominance of Cyanobacteria and Actinobacteria. There was a strong association between microbial carbon usage and active Actinobacterial communities, suggesting that member of Actinobacteria are actively involved in organic carbon degradation in glacier forelands. Both bacterial community and microbial carbon usage are converged towards later stage of succession, indicating that the composition of soil organic carbon plays important roles in structuring bacterial decomposer communities during ecosystem development.

  7. Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus.

    Science.gov (United States)

    Šantrić, Ljiljana; Potočnik, Ivana; Radivojević, Ljiljana; Umiljendić, Jelena Gajić; Rekanović, Emil; Duduk, Bojan; Milijašević-Marčić, Svetlana

    2018-05-18

    Thirty-five actinobacterial isolates, obtained from button mushroom (Agaricus bisporus) substrates (i.e., compost in different phases of composting, black peat or casing layer) in Serbia in 2014-2016 were tested in vitro against the causal agents of green mold in cultivated mushroom. Out of six most promising isolates, A06 induced 42.4% in vitro growth inhibition of Trichoderma harzianum T54, and 27.6% inhibition of T. aggressivum f. europaeum T77. The novel strain A06 was identified as Streptomyces flavovirens based on macroscopic and cultural characteristics and 16S rDNA sequence and used in mushroom growing room experiments. Actinobacteria had no negative influence on mycelial growth of the cultivated mushroom in compost in situ. Isolate S. flavovirens A06 enhanced mushroom yield significantly, up to 31.5%. The A06 isolate was more efficient in enhancing yield after inoculation with the compost mold T. aggressivum (26.1%), compared to casing mold T. harzianum (8%). Considering disease incidence, actinobacteria significantly prevented green mold in compost caused by T. aggressivum (6.8%). However, fungicide prochloraz-Mn had a more significant role in reducing symptoms of casing mold, T. harzianum, in comparison with actinobacteria (24.2 and 11.8%, respectively). No significant differences between efficacies of S. flavovirens A06 and the fungicide prochloraz-Mn against T. aggressivum were revealed. These results imply that S. flavovirens A06 can be used to increase mushroom yield and contribute to disease control against the aggressive compost green mold disease caused by Trichoderma aggressivum.

  8. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.

    Science.gov (United States)

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-08-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.

  9. Selective progressive response of soil microbial community to wild oat roots

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Brodie, E.L.; DeSantis, T.Z.; Andersen, G.L.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Roots moving through soil enact physical and chemical changes that differentiate rhizosphere from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of interest. Use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal community analysis has allowed definition of the populations that respond to the root within the complex grassland soil community; this research accompanies previously reported compositional changes, including increases in chitinase and protease specific activity, cell numbers and quorum sensing signal. PhyloChip results showed a significant change in 7% of the total rhizosphere microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA T-RFLP analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and Actinobacteria decreased in soil near the root tip compared to bulk soil, but then increased in older root zones. Quantitative PCR revealed {beta}-Proteobacteria and Actinobacteria present at about 10{sup 8} copies of 16S rRNA genes g{sup -1} soil, with Nitrospira having about 10{sup 5} copies g{sup -1} soil. This report demonstrates that changes in a relatively small subset of the soil microbial community are sufficient to produce substantial changes in function in progressively more mature rhizosphere zones.

  10. Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and and pyrosequencing for the characterisation of the caries-associated microbiome

    Directory of Open Access Journals (Sweden)

    Kathrin eSchulze-Schweifing

    2014-11-01

    Full Text Available Culture-independent analyses have greatly expanded knowledge regarding the composition of complex bacterial communities including those associated with oral diseases. A consistent finding from such studies, however, has been the under-reporting of members of the phylum Actinobacteria. In this study, five pairs of broad range primers targeting 16S rRNA genes were used in clonal analysis of 6 samples collected from tooth lesions involving dentine in subjects with active caries. Samples were also subjected to cultural analysis and pyrosequencing by means of the 454 platform. A diverse bacterial community of 229 species-level taxa was revealed by culture and clonal analysis, dominated by representatives of the genera Prevotella, Lactobacillus, Selenomonas and Streptococcus. The five most abundant species were: Lactobacillus gasseri, Prevotella denticola, Alloprevotella tannerae, S. mutans and Streptococcus sp. HOT 070, which together made up 31.6 % of the sequences. Two samples were dominated by lactobacilli, while the remaining samples had low numbers of lactobacilli but significantly higher numbers of Prevotella species. The different primer pairs produced broadly similar data but proportions of the phylum Bacteroidetes were significantly higher when primer 1387R was used. All of the primer sets underestimated the proportion of Actinobacteria compared to culture. Pyrosequencing analysis of the samples was performed to a depth of sequencing of 4293 sequences per sample which were identified to 264 species-level taxa, and resulted in significantly higher coverage estimates than the clonal analysis. Pyrosequencing, however, also underestimated the relative abundance of Actinobacteria compared to culture.

  11. Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats

    Czech Academy of Sciences Publication Activity Database

    Jezberová, Jitka; Jezbera, Jan; Hahn, M.W.

    2013-01-01

    Roč. 8, č. 7 (2013), e68542 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GEEEF/10/E011 Institutional support: RVO:60077344 Keywords : actinobacteria * bacteria * bacterioplankton * diversity * sequences * lakes Subject RIV: EE - Microbiology, Virology Impact factor: 3.534, year: 2013

  12. Functional and phenotypic profiling of innate immunity during Salmonella infection

    DEFF Research Database (Denmark)

    Sørensen, Rikke Brandt; Pedersen, Susanne Brix

    responded to six different bacteria in a phyla-specific manner giving rise to similar inflammatory signatures within the groups of proteobacteria, firmicutes and actinobacteria, hence being independent on pathogenic versus non-pathogenic properties, and also on the bacteria-to-cell ratio for most bacteria...

  13. Bacterial Preferences for Specific Soil Particle Size Fractions Revealed by Community Analyses

    DEFF Research Database (Denmark)

    Hemkemeyer, Michael; Dohrmann, Anja B.; Christensen, Bent Tolstrup

    2018-01-01

    , while Gemmatimonadales preferred coarse silt, Actinobacteria and Nitrosospira fine silt, and Planctomycetales clay. Firmicutes were depleted in the sand-sized fraction. In contrast, archaea, which represented 0.8% of all 16S rRNA gene sequences, showed only little preference for specific PSFs. We...

  14. Characterization of the bacterial gut microbiota of piglets suffering from new neonatal porcine diarrhoea

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise; Skovgaard, Kerstin; Stockmarr, Anders

    2015-01-01

    . Results: NNPD was associated with a diminished quantity of bacteria from the phyla Actinobacteria and Firmicutes while genus Enterococcus was more than 24 times more abundant in diarrhoeic piglets. The number of bacteria from the phylum Fusobacteria was also doubled in piglets suffering from diarrhoea...

  15. Western bats as a reservoir of novel Streptomyces species with antifungal activity.

    Science.gov (United States)

    White-nose syndrome (WNS), a bat infection caused by the psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, has caused the death of more than six million bats. In this study we evaluate the biocontrol potential of naturally occurring Actinobacteria isolated from WNS-free bats from New...

  16. Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Strube, Mikael Lenz; Jørgensen, Louise von Gersdorff

    2014-01-01

    of rainbow trout. The plant-based diet gave rise to an intestinal microbiota dominated by the genera Streptococcus, Leuconostoc and Weissella from phylum Firmicutes whereas phylum Proteobacteria/Bacteroidetes/Actinobacteria dominated the community in the marine fed fish. In connection to the Y. ruckeri bath...

  17. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci

    Science.gov (United States)

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of thre...

  18. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum

    DEFF Research Database (Denmark)

    Crusell, Mie Korslund Wiinblad; Hansen, Tue Haldor; Nielsen, Trine

    2018-01-01

    and after pregnancy. RESULTS: Gut microbiota of women with GDM was aberrant at multiple levels, including phylum and genus levels, compared with normoglycaemic pregnant women. Actinobacteria at phylum level and Collinsella, Rothia and Desulfovibrio at genus level had a higher abundance in the GDM cohort...

  19. Insights into the microbiota of the bovine uterus

    DEFF Research Database (Denmark)

    Rødtness Vesterby Knudsen, Lif; Christensen Karstrup, Cecilia; Gervi Pedersen, Hanne

    (Machado et al. 2012 and Galvão et al. 2012) while Escherichia coli, Trueperella Pyogenes, Prevotella species and Fusobacterium necrophorum have commonly been associated with endometritis (Sheldon 2006). Preliminary results indicate that we often find bacteria from phylum Actinobacteria in the healthy cows...

  20. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce ... As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of ...

  1. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing

    DEFF Research Database (Denmark)

    Inceoglu, Özgül; Abu Al-Soud, Waleed; Salles, Joana Falcão

    2011-01-01

    obtained (5,700 to 38,000 per sample). Across all samples, rank abundance distributions best fitted the power law model, which indicates a community composed of a few highly dominant species next to numerous rare species. Grouping of the sequences showed that members of the Actinobacteria...

  2. Functional redundancy ensures performance robustness in 3-stage PHA-producing mixed cultures under variable feed operation

    DEFF Research Database (Denmark)

    Carvalho, Gilda; Pedras, Inês; Karst, Søren Michael

    2018-01-01

    community, where Actinobacteria dominated with sugarcane molasses (up to 93% of the operational taxonomic units) and Firmicutes, with cheese whey (up to 97%). The resulting fermentation products profile also changed, with a higher fraction of HV precursors obtained with molasses than cheese whey (7.1 ± 0...

  3. Soil bacteria show different tolerance ranges to an unprecedented disturbance

    DEFF Research Database (Denmark)

    Nunes, Ines Marques; Jurburg, Stephanie; Jacquiod, Samuel Jehan Auguste

    2018-01-01

    stress doses. FRG1, the most sensitive group, was dominated by Actinobacteria. FRG2 and FRG3, with intermediate tolerance, displayed prevalence of Proteobacteria, while FRG4, the most resistant group, was driven by Firmicutes. While the most sensitive FRGs showed predictable responses linked to changes...

  4. Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil

    DEFF Research Database (Denmark)

    Guo, Wei; Andersen, Mathias Neumann; Qi, Xue-bin

    2017-01-01

    microbes and the chemical properties of the soil, which indicated that nitrate N (NO3−-N) and total phosphorus (TP) had significant impact on abundance of Verrucomicrobia and Gemmatimonadetes, meanwhile the pH and organic matter (OM) had impact on abundance of Firmicutes and Actinobacteria significantly...

  5. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing

    DEFF Research Database (Denmark)

    Zakrzewski, Martha; Goesmann, Alexander; Jaenicke, Sebastian

    2012-01-01

    of the community by classification of 16S ribosomal sequence tags revealed that members of the Euryarchaeota and Firmicutes account for the dominant phyla. Only smaller fractions of the 16S ribosomal sequence tags were assigned to the phyla Bacteroidetes, Actinobacteria and Synergistetes. Among the m...

  6. Culturable Facultative Methylotrophic Bacteria from the Cactus Neobuxbaumia macrocephala Possess the Locus xoxF and Consume Methanol in the Presence of Ce3+ and Ca2.

    Science.gov (United States)

    Del Rocío Bustillos-Cristales, María; Corona-Gutierrez, Ivan; Castañeda-Lucio, Miguel; Águila-Zempoaltécatl, Carolina; Seynos-García, Eduardo; Hernández-Lucas, Ismael; Muñoz-Rojas, Jesús; Medina-Aparicio, Liliana; Fuentes-Ramírez, Luis Ernesto

    2017-09-27

    Methanol-consuming culturable bacteria were isolated from the plant surface, rhizosphere, and inside the stem of Neobuxbaumia macrocephala. All 38 isolates were facultative methylotrophic microorganisms. Their classification included the Classes Actinobacteria, Sphingobacteriia, Alpha-, Beta-, and Gammaproteobacteria. The deduced amino acid sequences of methanol dehydrogenase obtained by PCR belonging to Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria showed high similarity to rare-earth element (REE)-dependent XoxF methanol dehydrogenases, particularly the group XoxF5. The sequences included Asp 301 , the REE-coordinating amino acid, present in all known XoxF dehydrogenases and absent in MxaF methanol dehydrogenases. The quantity of the isolates showed positive hybridization with a xoxF probe, but not with a mxaF probe. Isolates of all taxonomic groups showed methylotrophic growth in the presence of Ce 3+ or Ca 2+ . The presence of xoxF-like sequences in methylotrophic bacteria from N. macrocephala and its potential relationship with their adaptability to xerophytic plants are discussed.

  7. Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA-dependent ATPases with 3' to 5' translocase and helicase activities.

    Science.gov (United States)

    Yakovleva, Lyudmila; Shuman, Stewart

    2012-08-01

    Bacterial DNA helicases are nucleic acid-dependent NTPases that play important roles in DNA replication, recombination and repair. We are interested in the DNA helicases of Mycobacteria, a genus of the phylum Actinobacteria, which includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis SftH, a superfamily II helicase with a distinctive domain structure, comprising an N-terminal NTPase domain and a C-terminal DUF1998 domain (containing a putative tetracysteine metal-binding motif). We show that SftH is a monomeric DNA-dependent ATPase/dATPase that translocates 3' to 5' on single-stranded DNA and has 3' to 5' helicase activity. SftH homologs are found in bacteria representing 12 different phyla, being especially prevalent in Actinobacteria (including M. tuberculosis). SftH homologs are evident in more than 30 genera of Archaea. Among eukarya, SftH homologs are present in plants and fungi.

  8. Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Qin, Hua; Brookes, Philip C; Xu, Jianming; Feng, Youzhi

    2014-11-01

    A greenhouse experiment was conducted to investigate the effects of zucchini (Cucurbita pepo L.), inoculated with the arbuscular mycorrhizal (AM) species Acaulospora laevis, Glomus caledonium, and Glomus mosseae, on the soil bacterial community responsible for Aroclor 1242 dissipation. The dissipation rates of Aroclor 1242 and soil bacteria abundance were much higher with the A. laevis and G. mosseae treatments compared to the non-mycorrhizal control. The biphenyl dioxygenase (bphA) and Rhodococcus-like 2,3-dihydroxybiphenyl dioxygenase (bphC) genes were more abundant in AM inoculated soils, suggesting that the bphA and Rhodococcus-like bphC pathways play an important role in Aroclor 1242 dissipation in the mycorrhizosphere. The soil bacterial communities were dominated by classes Betaproteobacteria and Actinobacteria, while the relative proportion of Actinobacteria was significantly (F=2.288, P<0.05) correlated with the PCB congener profile in bulk soil. Our results showed that AM fungi could enhance PCB dissipation by stimulating bph gene abundance and the growth of specific bacterial groups.

  9. Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion.

    Science.gov (United States)

    Burleigh, Thomas D; Gierke, Casey G; Fredj, Narjes; Boston, Penelope J

    2014-06-05

    Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC). In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS), then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM). The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water.

  10. Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Thomas D. Burleigh

    2014-06-01

    Full Text Available Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC. In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS, then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM. The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water.

  11. Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4.

    Science.gov (United States)

    Liang, Quan; Zhang, Xiaoping; Lee, Khui Hung; Wang, Yibing; Yu, Kan; Shen, Wenying; Fu, Luoqin; Shu, Miaoan; Li, Weifen

    2015-11-01

    This experiment was designed to study the effects of Bacillus licheniformis BSK-4 on nitrogen removal and microbial community structure in a grass carp (Ctenopharyngodon idellus) culture. The selected strain Bacillus licheniformis BSK-4 significantly decreased nitrite, nitrate and total nitrogen levels in water over an extended, whereas increased ammonia level. Pyrosequencing showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were dominant in grass carp culture water. Compared with the control group, the number of Proteobacteria and Firmicutes were increased, while Actinobacteria and Bacteroidetes decreased in treatment group. At the genus level, some genera, such as Bacillus, Prosthecobacter, Enterococcus, etc., appear only in the treatment, while many other genera exist only in the control group; Lactobacillus, Luteolibacter, Phenylobacterium, etc. were increased in treatment group compared to those in control group. As above, the results suggested that supplementation with B. licheniformis BSK-4 could remove some nitrogen and cause alterations of the microbial composition in grass carp water.

  12. Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves

    OpenAIRE

    Riquelme, Cristina; Enes Dapkevicius, Maria de L. N.; Miller, A. Z.; Charlop-Powers, Z.; Brady, Sean; Cohord; Cheeptham, N.

    2017-01-01

    C. Riquelme was funded by the Regional Fund for Science and Technology and Pro-Emprego program of the Regional Government of the Azores, Portugal [M3.1.7/F/013/2011, M3.1.7/F/030/2011]. Her work was partly supported by National funds from the Foundation for Science and Technology of the Portuguese Government [Understanding Underground Biodiversity: Studies in Azorean Lava Tubes (reference TDC/AMB/70801/2006)]. A.Z. Miller acknowledges the support from the Marie Curie Intra-European Fellowship...

  13. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    Directory of Open Access Journals (Sweden)

    Avi Raveh

    Full Text Available Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.

  14. Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity

    Czech Academy of Sciences Publication Activity Database

    Veselá, Alicja Barbara; Franc, M.; Pelantová, Helena; Kubáč, David; Vejvoda, Vojtěch; Šulc, Miroslav; Bhalla, T. C.; Macková, M.; Lovecká, P.; Janů, P.; Demnerová, K.; Martínková, Ludmila

    2011-01-01

    Roč. 22, č. 6 (2011), s. 761-770 ISSN 0923-9820 R&D Projects: GA MPO FT-TA5/043; GA MŠk OC09046; GA MŠk(CZ) LC06010; GA AV ČR IAA500200708; GA ČR GD305/09/H008 Institutional research plan: CEZ:AV0Z50200510 Keywords : nitrilase * benzonitrile herbicides * chloroxynil Subject RIV: CE - Biochemistry Impact factor: 2.017, year: 2011

  15. Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity

    Czech Academy of Sciences Publication Activity Database

    Veselá, Alicja Barbara; Franc, M.; Pelantová, Helena; Kubáč, David; Vejvoda, Vojtěch; Šulc, Miroslav; Bhalla, T. C.; Macková, M.; Lovecká, P.; Janů, P.; Demnerová, K.; Martínková, Ludmila

    2010-01-01

    Roč. 21, č. 5 (2010), s. 761-770 ISSN 0923-9820 R&D Projects: GA MPO FT-TA5/043; GA MŠk OC09046; GA MŠk(CZ) LC06010; GA AV ČR IAA500200708; GA ČR GD305/09/H008 Institutional research plan: CEZ:AV0Z50200510 Keywords : Benzonitrile herbicides * nitrilase * Chloroxynil Subject RIV: EE - Microbiology, Virology Impact factor: 2.012, year: 2010

  16. isolation and characterization of keratinase producing marine ...

    African Journals Online (AJOL)

    Dr.NGPASC

    Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore – 48, Tamilnadu, India. Accepted 2 October, 2012. A unique standard starch casein medium has been implemented for the isolation of actinobacteria from the south Indian ... INTRODUCTION. Keratin is an insoluble protein which is resistant to.

  17. Host-specific microbial communities in three sympatric North Sea sponges

    DEFF Research Database (Denmark)

    Naim, Mohd Azrul; Morillo, Jose A.; Sørensen, Søren Johannes

    2014-01-01

    phylotypes belonging to Chlamydiae, TM6, Actinobacteria and Betaproteobacteria were detected in all sponge samples. A number of phylotypes of the phylum Chlamydiae were present at an unprecedentedly high relative abundance of up to 14.4% ± 1.4% of the total reads, which suggests an important ecological role...

  18. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment

    DEFF Research Database (Denmark)

    Otani, Saria; Hansen, Lars Hestbjerg; Sørensen, Søren J

    2016-01-01

    , Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over...

  19. Use of cultivation-dependent and -independent techniques to assess contamination of central venous catheters: a pilot study

    DEFF Research Database (Denmark)

    Larsen, M.K.; Thomsen, T.R.; Moser, C.

    2008-01-01

    , Firmicutes, Actinobacteria and Bacteroidetes were also found, stressing that only a minor portion of the species present were found by cultivation. Some of these bacteria are known to be pathogens, some have not before been described in relation to human health, and some were not closely related to known...

  20. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    Science.gov (United States)

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  1. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure.

    Science.gov (United States)

    Pérez, María Teresa; Sommaruga, Ruben

    2007-09-01

    We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24-48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition.

  2. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    DEFF Research Database (Denmark)

    Klümper, Uli; Riber, Leise; Dechesne, Arnaud

    2014-01-01

    and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse...

  3. The microbiome of biogas reactors treating lignocellulosic substrates revealed different mechanisms for carbohydrates utilization

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Campanaro, S.; Treu, Laura

    , Actinobacteria were also presented in both samples but in lower relative abundance. Assembly of the shotgun reads followed by a binning process led to the extraction of 151 genome bins, out of which 80 microbial species were completely new and not previously deposited in any database. Moreover, it was shown...

  4. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Among the Actinobacteria, the genus Frankia is well known for its facultative lifestyle as a plant symbiont of dicotyledonous plants and as a free-living soil dweller. Frankia sp. strains are generally classified into one of four major phylogenetic groups that have distinctive plant host ranges. Our understanding of these bacteria ...

  5. High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence.

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna C; Shaik, Sadiq Pasha

    2017-11-01

    Molecular and microscopic analyses reveal enormous non-cultivable endophytic bacteria in grapevine field shoots with functional significance. Diverse bacteria enter tissue cultures through surface-sterilized tissues and survive surreptitiously with varying taxonomic realignments. The study was envisaged to assess the extent of endophytic bacterial association with field shoot tissues of grapevine and the likelihood of introduction of such internally colonizing bacteria in vitro adopting molecular techniques targeting the non-cultivable bacterial community. PowerFood ® -kit derived DNA from surface-sterilized field shoot tips of grapevine Flame Seedless was employed in a preliminary bacterial class-specific PCR screening proving positive for major prokaryotic taxa including Archaea. Taxonomic and functional diversity were analyzed through whole metagenome profiling (WMG) which revealed predominantly phylum Actinobacteria, Proteobacteria, and minor shares of Firmicutes, Bacteroidetes, and Deinococcus-Thermus with varying functional roles ascribable to the whole bacterial community. Field shoot tip tissues and callus derived from stem segments were further employed in 16S rRNA V3-V4 amplicon taxonomic profiling. This revealed elevated taxonomic diversity in field shoots over WMG, predominantly Proteobacteria succeeded by Actinobacteria, Firmicutes, Bacteroidetes, and 15 other phyla including several candidate phyla (135 families, 179 genera). Callus stocks also displayed broad bacterial diversity (16 phyla; 96 families; 141 genera) bearing resemblance to field tissues with Proteobacterial dominance but a reduction in its share, enrichment of Actinobacteria and Firmicutes, disappearance of some field-associated phyla and detection of a few additional taxonomic groups over field community. Similar results were documented during 16S V3-V4 amplicon taxonomic profiling on Thompson Seedless field shoot tip and callus tissues. Video microscopy on tissue homogenates

  6. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ma, Haijun; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-11-15

    To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5 ppb, 50 ppb and 10 ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH{sub 4}{sup +}−N) removals appeared unchanged (p > 0.05) with 5 and 50 ppb, but decreased significantly with 10 ppm (p < 0.05). Extracellular polymeric substances (EPS) concentrations increased significantly with increasing TC or SMX concentrations (p < 0.05). High-throughput 16S rRNA gene sequencing results suggested that Proteobacteria, Actinobacteria and Bacteroidetes were the three most abundant phyla in sludge samples. The Actinobacteria percentages increased with increasing TC or SMX concentration, while Proteobacteria and Bacteroidetes decreased. The microbial diversity achieved its maximum at 5 ppb and decreased with higher concentrations. The total ARGs abundances in sludge increased with addition of TC or SMX, and the higher relative abundances were in the order of sul1 > tetG > sul2 > tetA > intI1 > tetS > tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p < 0.01). - Highlights: • COD and NH{sub 4}{sup +}−N removals significantly decrease under 10 ppm TC or SMX. • Activated sludge EPS concentrations increase with increasing TC or SMX concentrations. • TC and SMX affect the microbial community diversity of activated sludge. • Actinobacteria abundances increase with increase of TC or SMX concentration. • ARGs abundance increases with addition of TC or SMX.

  7. Dysbiosis of the Fecal Microbiota in Cattle Infected with Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Fecteau, Marie-Eve; Pitta, Dipti W; Vecchiarelli, Bonnie; Indugu, Nagaraju; Kumar, Sanjay; Gallagher, Susan C; Fyock, Terry L; Sweeney, Raymond W

    2016-01-01

    Johne's disease (JD) is a chronic, intestinal infection of cattle, caused by Mycobacterium avium subsp. paratuberculosis (MAP). It results in granulomatous inflammation of the intestinal lining, leading to malabsorption, diarrhea, and weight loss. Crohn's disease (CD), a chronic, inflammatory gastrointestinal disease of humans, has many clinical and pathologic similarities to JD. Dysbiosis of the enteric microbiota has been demonstrated in CD patients. It is speculated that this dysbiosis may contribute to the intestinal inflammation observed in those patients. The purpose of this study was to investigate the diversity patterns of fecal bacterial populations in cattle infected with MAP, compared to those of uninfected control cattle, using phylogenomic analysis. Fecal samples were selected to include samples from 20 MAP-positive cows; 25 MAP-negative herdmates; and 25 MAP-negative cows from a MAP-free herd. The genomic DNA was extracted; PCR amplified sequenced on a 454 Roche platform, and analyzed using QIIME. Approximately 199,077 reads were analyzed from 70 bacterial communities (average of 2,843 reads/sample). The composition of bacterial communities differed between the 3 treatment groups (P Permanova test). Taxonomic assignment of the operational taxonomic units (OTUs) identified 17 bacterial phyla across all samples. Bacteroidetes and Firmicutes constituted more than 95% of the bacterial population in the negative and exposed groups. In the positive group, lineages of Actinobacteria and Proteobacteria increased and those of Bacteroidetes and Firmicutes decreased (P < 0.001). Actinobacteria was highly abundant (30% of the total bacteria) in the positive group compared to exposed and negative groups (0.1-0.2%). Notably, the genus Arthrobacter was found to predominate Actinobacteria in the positive group. This study indicates that MAP-infected cattle have a different composition of their fecal microbiota than MAP-negative cattle.

  8. Dysbiosis of the Fecal Microbiota in Cattle Infected with Mycobacterium avium subsp. paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Marie-Eve Fecteau

    Full Text Available Johne's disease (JD is a chronic, intestinal infection of cattle, caused by Mycobacterium avium subsp. paratuberculosis (MAP. It results in granulomatous inflammation of the intestinal lining, leading to malabsorption, diarrhea, and weight loss. Crohn's disease (CD, a chronic, inflammatory gastrointestinal disease of humans, has many clinical and pathologic similarities to JD. Dysbiosis of the enteric microbiota has been demonstrated in CD patients. It is speculated that this dysbiosis may contribute to the intestinal inflammation observed in those patients. The purpose of this study was to investigate the diversity patterns of fecal bacterial populations in cattle infected with MAP, compared to those of uninfected control cattle, using phylogenomic analysis. Fecal samples were selected to include samples from 20 MAP-positive cows; 25 MAP-negative herdmates; and 25 MAP-negative cows from a MAP-free herd. The genomic DNA was extracted; PCR amplified sequenced on a 454 Roche platform, and analyzed using QIIME. Approximately 199,077 reads were analyzed from 70 bacterial communities (average of 2,843 reads/sample. The composition of bacterial communities differed between the 3 treatment groups (P < 0.001; Permanova test. Taxonomic assignment of the operational taxonomic units (OTUs identified 17 bacterial phyla across all samples. Bacteroidetes and Firmicutes constituted more than 95% of the bacterial population in the negative and exposed groups. In the positive group, lineages of Actinobacteria and Proteobacteria increased and those of Bacteroidetes and Firmicutes decreased (P < 0.001. Actinobacteria was highly abundant (30% of the total bacteria in the positive group compared to exposed and negative groups (0.1-0.2%. Notably, the genus Arthrobacter was found to predominate Actinobacteria in the positive group. This study indicates that MAP-infected cattle have a different composition of their fecal microbiota than MAP-negative cattle.

  9. Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice.

    Science.gov (United States)

    Jin, Cuiyuan; Zeng, Zhaoyang; Fu, Zhengwei; Jin, Yuanxiang

    2016-10-01

    The fungicide imazalil (IMZ) is used extensively in vegetable and fruit plantations and as a post-harvest treatment to avoid rot. Here, we revealed that ingestion of 25, 50 and 100 mg IMZ kg(-1) body weight for 28 d induced gut microbiota dysbiosis and colonic inflammation in mice. The relative abundance of Bacteroidetes, Firmicutes and Actinobacteria in the cecal contents decreased significantly after exposure to 100 mg kg(-1) IMZ for 28 d. In feces, the relative abundance in Bacteroidetes, Firmicutes and Actinobacteria decreased significantly after being exposed to 100 mg kg(-1) IMZ for 1, 14 and 7 d, respectively. High throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed a significant reduction in the richness and diversity of microbiota in cecal contents and feces of IMZ-treated mice. Operational taxonomic units (OTUs) analysis identified 49.3% of OTUs changed in cecal contents, while 55.6% of OTUs changed in the feces after IMZ exposure. Overall, at the phylum level, the relative abundance of Firmicutes, Proteobacteria and Actinobacteria increased and that of Bacteroidetes decreased in IMZ-treated groups. At the genus level, the abundance of Lactobacillus and Bifidobacterium decreased while those of Deltaproteobacteria and Desulfovibrio increased in response to IMZ exposure. In addition, it was observed that IMZ exposure could induce colonic inflammation characterized by infiltration of inflammatory cells, elevated levels of lipocalin-2 (lcn-2) in the feces, and increased mRNA levels of Tnf-α, IL-1β, IL-22 and IFN-γ in the colon. Our findings strongly suggest that ingestion of IMZ has some risks to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  11. Diversity rankings among bacterial lineages in soil.

    Science.gov (United States)

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.

  12. Salivary microbiota and metabolome associated with celiac disease.

    Science.gov (United States)

    Francavilla, Ruggiero; Ercolini, Danilo; Piccolo, Maria; Vannini, Lucia; Siragusa, Sonya; De Filippis, Francesca; De Pasquale, Ilaria; Di Cagno, Raffaella; Di Toma, Michele; Gozzi, Giorgia; Serrazanetti, Diana I; De Angelis, Maria; Gobbetti, Marco

    2014-06-01

    This study aimed to investigate the salivary microbiota and metabolome of 13 children with celiac disease (CD) under a gluten-free diet (treated celiac disease [T-CD]). The same number of healthy children (HC) was used as controls. The salivary microbiota was analyzed by an integrated approach using culture-dependent and -independent methods. Metabolome analysis was carried out by gas chromatography-mass spectrometry-solid-phase microextraction. Compared to HC, the number of some cultivable bacterial groups (e.g., total anaerobes) significantly (P endodontalis, and Prevotella nanceiensis), together with the smallest amount of Actinobacteria. T-CD children were also characterized by decreased levels of some Actinomyces species, Atopobium species, and Corynebacterium durum. Rothia mucilaginosa was the only Actinobacteria species found at the highest level in T-CD children. As shown by multivariate statistical analyses, the levels of organic volatile compounds markedly differentiated T-CD children. Some compounds (e.g., ethyl-acetate, nonanal, and 2-hexanone) were found to be associated with T-CD children. Correlations (false discovery rate [FDR], oral dysbiosis that could affect the oral metabolome.

  13. Integration of acoustic and light sensors for marine bio-mining

    Science.gov (United States)

    Wiegand, Gordon

    2016-05-01

    Maximum diversity of life exists within the estuaries and coral reefs of the Globe. The absence of vertebrate and other land dwelling adaptations has resulted in an enormous range of complexity among invertebrates and their symbiotic biome resulting in the generation of compounds finding uses in anti-tumor and antibiotic applications. It has been widely reported that the greatest factor limiting progress in characterizing and processing new therapeutics derived from invertebrates is the lack of adequate original material. Symbiotic bacteria within specific tunicates often synthesize antitumor compounds as secondary metabolites. We describe a 3-stage protocol that utilizes acoustic and photonic analysis of large areas of marine ecosystem and life forms. We refer to this as Estuary Assessment System (EAS), which includes a multi-frequency acoustic transducer/sensing instrument mounted on our research vessel. This generates a topological map of surveyed tracks of marine locations known to be habitats of useful actinobacteria laden invertebrates. Photonic devices are used to generate image and pulse data leading to location, identification and isolation of tunicates and actinobacteria.

  14. Genetics and Genomics of the Genus Amycolatopsis

    OpenAIRE

    Kumari, Rashmi; Singh, Priya; Lal, Rup

    2016-01-01

    Actinobacteria are gram-positive filamentous bacteria which contains some of the most deadly human pathogens (Mycobacterium tuberculosis, M. leprae, Corynebacterium diphtheriae, Nocardia farcinica), plant pathogens (Streptomyces scabies, Leifsonia xyli) along with organisms that produces antibiotic (Streptomycetes, Amycolatopsis, Salinospora). Interestingly, these bacteria are equipped with an extraordinary capability of producing antibiotics and other metabolites which have medicinal propert...

  15. Latitudinal patterns in the abundance of major marine bacterioplankton groups

    DEFF Research Database (Denmark)

    Wietz, Matthias; Gram, Lone; Jørgensen, Bo

    2010-01-01

    relative abundance 37%, average absolute abundance 3.7×105 cells mL-1) including SAR11 (30%/3×105), Gammaproteobacteria (14%/1.2×105), and Bacteroidetes (12%/1.3×105) globally dominated the bacterioplankton. The SAR86 clade (4.6%/4.1×104) and Actinobacteria (4.5%/4×104) were detected ubiquitously, whereas...

  16. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    DEFF Research Database (Denmark)

    Kielak, Anna; Cretoiu, Mariana; Semenov, Alexander

    2013-01-01

    by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one of Actinobacteria in the immediate response to the added chitin (based on 16S rRNA gene abundance and chiA gene types) was indicated. The results of this study enhance our...

  17. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge

    DEFF Research Database (Denmark)

    Wu, Ying; Cui, Erping; Zuo, Yiru

    2016-01-01

    The response of representative antibiotic resistance genes (ARGs) to lab-scale two-phase (acidogenic/methanogenic phase) anaerobic digestion processes under thermophilic and mesophilic conditions was explored. The associated microbial communities and bacterial pathogens were characterized by 16S ...... for ermB and blaTEM. ARGs patterns were correlated with Proteobacteria and Actinobacteria during the two-phase anaerobic digestion....

  18. Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Dastager, S.G.; Damare, S.R.

    . 2005, Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology & Biochemistry. 37, 1970–1974. 6. Collins C.H., Lyne P.M., 1980, Microbiological methods. London: Butterworth and Co..., Studies on phosphobacteriain Cochin Backwater. J. Mar. Biolog Associ. India. 29, 297–305. 21. Ramachandran K., Srinivasan V., Hamza S., Anandaraj M., 2007, Phosphate solubilizing bacteria isolated from the rhizosphere soil and its growth promotion...

  19. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants

    OpenAIRE

    Trujillo, Martha E.; Riesco, Ra?l; Benito, Patricia; Carro, Lorena

    2015-01-01

    For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and ...

  20. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes

    KAUST Repository

    Sghaier, Haïtham

    2015-06-30

    The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could provide important insight into their adaptation mechanisms. Here we report the detailed comparative genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geodermatophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation to these niches can be achieved through various strategies including ‘molecular tinkering/opportunism’ as shown by the high proportion of lost, duplicated or horizontally transferred genes and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors. Proteomic data corroborated previously demonstrated stone-related ecological distribution. For instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as signatures of the microbes associated with the interior, surface and outside of stones, respectively.

  1. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes

    KAUST Repository

    Sghaier, Haï tham; Hezbri, Karima; Ghodhbane-Gtari, Faten; Pujic, Petar; Sen, Arnab; Daffonchio, Daniele; Boudabous, Abdellatif; Tisa, Louis S; Klenk, Hans-Peter; Armengaud, Jean; Normand, Philippe; Gtari, Maher

    2015-01-01

    The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could provide important insight into their adaptation mechanisms. Here we report the detailed comparative genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geodermatophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation to these niches can be achieved through various strategies including ‘molecular tinkering/opportunism’ as shown by the high proportion of lost, duplicated or horizontally transferred genes and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors. Proteomic data corroborated previously demonstrated stone-related ecological distribution. For instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as signatures of the microbes associated with the interior, surface and outside of stones, respectively.

  2. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  3. Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate using stable isotope probing in contaminated subsurface sediments

    International Nuclear Information System (INIS)

    Akob, Denise M.; Kerkhof, Lee; Kusel, Kirsten; Watson, David B.; Palumbo, Anthony Vito; Kostka, Joel

    2011-01-01

    Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [ 13 C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions.

  4. Bacterial Bio-Resources for Remediation of Hexachlorocyclohexane

    Directory of Open Access Journals (Sweden)

    María J. Amoroso

    2012-11-01

    Full Text Available In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP hexachlorocyclohexane (HCH have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.

  5. Bacterial bio-resources for remediation of hexachlorocyclohexane.

    Science.gov (United States)

    Alvarez, Analía; Benimeli, Claudia S; Saez, Juliana M; Fuentes, María S; Cuozzo, Sergio A; Polti, Marta A; Amoroso, María J

    2012-11-15

    In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.

  6. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus.

    Science.gov (United States)

    Su, Xiao-Mei; Liu, Yin-Dong; Hashmi, Muhammad Zaffar; Ding, Lin-Xian; Shen, Chao-Feng

    2015-05-01

    Biphenyl (BP)-degrading bacteria were identified to degrade various polychlorinated BP (PCB) congers in long-term PCB-contaminated sites. Exploring BP-degrading capability of potentially useful bacteria was performed for enhancing PCB bioremediation. In the present study, the bacterial composition of the PCB-contaminated sediment sample was first investigated. Then extracellular organic matter (EOM) from Micrococcus luteus was used to enhance BP biodegradation. The effect of the EOM on the composition of bacterial community was investigated by combining with culture-dependent and culture-independent methods. The obtained results indicate that Proteobacteria and Actinobacteria were predominant community in the PCB-contaminated sediment. EOM from M. luteus could stimulate the activity of some potentially difficult-to-culture BP degraders, which contribute to significant enhancement of BP biodegradation. The potentially difficult-to-culture bacteria in response to EOM addition were mainly Rhodococcus and Pseudomonas belonging to Gammaproteobacteria and Actinobacteria respectively. This study provides new insights into exploration of functional difficult-to-culture bacteria with EOM addition and points out broader BP/PCB degrading, which could be employed for enhancing PCB-bioremediation processes. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Polyphasic analysis of a middle ages coprolite microbiota, Belgium.

    Directory of Open Access Journals (Sweden)

    Sandra Appelt

    Full Text Available Paleomicrobiological investigations of a 14(th-century coprolite found inside a barrel in Namur, Belgium were done using microscopy, a culture-dependent approach and metagenomics. Results were confirmed by ad hoc PCR--sequencing. Investigations yielded evidence for flora from ancient environment preserved inside the coprolite, indicated by microscopic observation of amoebal cysts, plant fibers, seeds, pollens and mold remains. Seventeen different bacterial species were cultured from the coprolite, mixing organisms known to originate from the environment and organisms known to be gut inhabitants. Metagenomic analyses yielded 107,470 reads, of which known sequences (31.9% comprised 98.98% bacterial, 0.52% eukaryotic, 0.44% archaeal and 0.06% viral assigned reads. Most abundant bacterial phyla were Proteobacteria, Gemmatimonadetes, Actinobacteria and Bacteroidetes. The 16 S rRNA gene dataset yielded 132,000 trimmed reads and 673 Operational Taxonomic Units. Most abundant bacterial phyla observed in the 16 S rRNA gene dataset belonged to Proteobacteria, Firmicutes, Actinobacteria and Chlamydia. The Namur coprolite yielded typical gut microbiota inhabitants, intestinal parasites Trichuris and Ascaris and systemic pathogens Bartonella and Bordetella. This study adds knowledge to gut microbiota in medieval times.

  8. Microbial Activity in Forest Soil Under Beech, Spruce, Douglas Fir and Fir

    Directory of Open Access Journals (Sweden)

    Hajnal-Jafari Timea

    2016-08-01

    Full Text Available The aim of this research was to investigate the microbial activity in forest soil from different sites under deciduous and coniferous trees in Serbia. One site on Stara planina was under beech trees (Fagus sp. while another under mixture of spruce (Picea sp. and Douglas fir (Pseudotsuga sp.. The site on Kopaonik was under mixture of beech (Fagus sp. and spruce (Picea sp. trees. The site on Tara was dominantly under fir (Abies sp., beech (Fagus sp. and spruce (Picea sp.. The total number of bacteria, the number of actinobacteria, fungi and microorganisms involved in N and C cycles were determined using standard method of agar plates. The activities of dehydrogenase and ß-glucosidase enzymes were measured by spectrophotometric methods. The microbial activity was affected by tree species and sampling time. The highest dehydrogenase activity, total number of bacteria, number of actinobacteria, aminoheterotrophs, amylolytic and cellulolytic microorganisms were determined in soil under beech trees. The highest total number of fungi and number of pectinolytic microorganisms were determined in soil under spruce and Douglas fir trees. The correlation analyses proved the existence of statistically significant interdependency among investigated parameters.

  9. Direct mass spectrometric screening of antibiotics from bacterial surfaces using liquid extraction surface analysis.

    Science.gov (United States)

    Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš

    2012-10-30

    There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73

    Energy Technology Data Exchange (ETDEWEB)

    Guilan, Niu [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Junjie, Zhang [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Shuo, Zhao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Hong, Liu [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent (Belgium); Zhou Ningyi [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)], E-mail: n.zhou@pentium.whiov.ac.cn

    2009-03-15

    The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation. - Pseudomonas putida ZWL73 can accelerate 4CNB removal in lab-scale soils, causing dynamic changes within intrinsic Actinobacteria and Acidobacteria.

  11. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73

    International Nuclear Information System (INIS)

    Niu Guilan; Zhang Junjie; Zhao Shuo; Liu Hong; Boon, Nico; Zhou Ningyi

    2009-01-01

    The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation. - Pseudomonas putida ZWL73 can accelerate 4CNB removal in lab-scale soils, causing dynamic changes within intrinsic Actinobacteria and Acidobacteria

  12. Bacterial community analysis of contaminant soils from Chernobyl

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Chapon, V.; Berthomieu, C.; Piette, L.; Le Marrec, C.; Coppin, F.; Fevrier, L.; Martin-Garin, A.

    2010-01-01

    Complete text of publication follows: Shortly after the Chernobyl accident in 1986, vegetation, contaminated soil and other radioactive debris were buried in situ in trenches. The aims of this work are to analyse the structure of bacterial communities evolving in this environment since 20 years, and to evaluate the potential role of microorganisms in radionuclide migration in soils. Therefore, soil samples exhibiting contrasted radionuclides content were collected in and around the trench number 22. Bacterial communities were examined using a genetic fingerprinting method that allowed a comparative profiling of the samples (DGGE), with universal and group-specific PCR primers. Our results indicate that Chernobyl soil samples host a wide diversity of Bacteria, with stable patterns for Firmicutes and Actinobacteria and more variable for Proteobacteria. A collection of 650 aerobic and anaerobic culturable isolates was also constructed. A phylogenetic analysis of 250 heterotrophic aerobic isolates revealed that 5 phyla are represented: Beta-, Gamma-proteobacteria, Actinobacteria, Bacteroidetes and spore-forming Firmicutes, which is largely dominant. These collection will be screened for the presence of radionuclide-accumulating species in order to estimate the potential influence of microorganisms in radionuclides migration in soils

  13. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria

    NARCIS (Netherlands)

    Chevrette, Marc G.; Aicheler, Fabian; Kohlbacher, Oliver; Currie, Cameron R.; Medema, M.H.

    2017-01-01

    Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables

  14. Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA-dependent ATPases with 3′ to 5′ translocase and helicase activities

    OpenAIRE

    Yakovleva, Lyudmila; Shuman, Stewart

    2012-01-01

    Bacterial DNA helicases are nucleic acid-dependent NTPases that play important roles in DNA replication, recombination and repair. We are interested in the DNA helicases of Mycobacteria, a genus of the phylum Actinobacteria, which includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis SftH, a superfamily II helicase with a distinctive domain structure, comprising an N-terminal NTPase domain and...

  15. Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria

    OpenAIRE

    Dietrich, Lars E. P.; Teal, Tracy K.; Price-Whelan, Alexa; Newman, Dianne K.

    2008-01-01

    It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for ...

  16. Frenolicins C–G, Pyranonaphthoquinones from Streptomyces sp. RM-4-15

    OpenAIRE

    Wang, Xiachang; Shaaban, Khaled A.; Elshahawi, Sherif I.; Ponomareva, Larissa V.; Sunkara, Manjula; Zhang, Yinan; Copley, Gregory C.; Hower, James C.; Morris, Andrew J.; Kharel, Madan K.; Thorson, Jon S.

    2013-01-01

    Appalachian active coal fire sites were selected for the isolation of bacterial strains belonging to the class actinobacteria. A comparison of high resolution electrospray ionization mass spectrometry (HR-ESI-MS) and ultraviolet (UV) absorption profiles from isolate extracts to natural product databases suggested Streptomyces sp. RM-4-15 to produce unique metabolites. Four new pyranonaphthoquinones, frenolicins C–F (1–4), along with three known analogues, frenolicin (6), ...

  17. Targeting proteasomes in infectious organisms to combat disease

    OpenAIRE

    Bibo-Verdugo, B; Jiang, Z; Caffrey, CR; O'Donoghue, AJ

    2017-01-01

    Proteasomes are multisubunit, energy-dependent, proteolytic complexes that play an essential role in intracellular protein turnover. They are present in eukaryotes, archaea, and in some actinobacteria species. Inhibition of proteasome activity has emerged as a powerful strategy for anticancer therapy and three drugs have been approved for treatment of multiple myeloma. These compounds react covalently with a threonine residue located in the active site of a proteasome subunit to block protein...

  18. Faecal microbiota in lean and obese dogs.

    Science.gov (United States)

    Handl, Stefanie; German, Alexander J; Holden, Shelley L; Dowd, Scot E; Steiner, Jörg M; Heilmann, Romy M; Grant, Ryan W; Swanson, Kelly S; Suchodolski, Jan S

    2013-05-01

    Previous work has shown obesity to be associated with changes in intestinal microbiota. While obesity is common in dogs, limited information is available about the role of the intestinal microbiota. The aim of this study was to investigate whether alterations in the intestinal microbiota may be associated with canine obesity. Using 16S rRNA gene pyrosequencing and quantitative real-time PCR, we evaluated the composition of the faecal microbiota in 22 lean and 21 obese pet dogs, as well as in five research dogs fed ad libitum and four research dogs serving as lean controls. Firmicutes, Fusobacteria and Actinobacteria were the predominant bacterial phyla. The phylum Actinobacteria and the genus Roseburia were significantly more abundant in the obese pet dogs. The order Clostridiales significantly increased under ad libitum feeding in the research dogs. Canine intestinal microbiota is highly diverse and shows considerable interindividual variation. In the pet dogs, influence on the intestinal microbiota besides body condition, like age, breed, diet or lifestyle, might have masked the effect of obesity. The study population of research dogs was small, and further work is required before the role of the intestinal microbiota in canine obesity is clarified. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems

    KAUST Repository

    Li, Dong

    2014-03-26

    This study was performed to reveal the microbial community characteristics in simulated managed aquifer recharge (MAR), a natural water treatment system, under different concentrations and compositions of biodegradable dissolved organic carbon (BDOC) and further link these to the biotransformation of emerging trace organic chemicals (TOrCs). Two pairs of soil-column setups were established in the laboratory receiving synthetic feed solutions composed of different peptone/humic acid ratios and concentrations. Higher BDOC concentration resulted in lower microbial community diversity and higher relative abundance of Betaproteobacteria. Decreasing the peptone/humic acid ratio resulted in higher diversity of the community and higher relative abundances of Firmicutes, Planctomycetes, and Actinobacteria. The metabolic capabilities of microbiome involved in xenobiotics biodegradation were significantly promoted under lower BDOC concentration and higher humic acid content. Cytochrome P450 genes were also more abundant under these primary substrate conditions. Lower peptone/humic acid ratios also promoted the attenuation of most TOrCs. These results suggest that the primary substrate characterized by a more refractory character could increase the relative abundances of Firmicutes, Planctomycetes, and Actinobacteria, as well as associated cytochrome P450 genes, all of which should play important roles in the biotransformation of TOrCs in this natural treatment system. © 2014 Springer-Verlag.

  20. Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions

    Energy Technology Data Exchange (ETDEWEB)

    López, José L.; Golemba, Marcelo; Hernández, Edgardo; Lozada, Mariana; Dionisi, Hebe; Jansson, Janet K.; Carroll, Jolynn; Lundgren, Leif; Sjöling, Sara; Mac Cormack, Walter P.; Sobecky, Patricia

    2016-11-03

    Rhodopsins are broadly distributed. In this work, we analyzed 23 metagenomes corresponding to marine sediment samples from four regions that share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral rhodopsins, an initial set of 6224 bacterial rhodopsin sequences according to COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment, 123 viral (51) and non-viral (72) sequences (>50 amino acids) were finally included in further analysis. Viral rhodopsin genes were homologs of Phaeocystis globosa virus and Organic lake Phycodnavirus. Non-viral microbial rhodopsin genes were ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus-Thermus and Cryptophyta and Fungi. A rescreening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 amino acids). Phylogeographic analysis revealed a geographical clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non-viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsin genes related to Actinobacteria and Chloroflexi. This is the first report about the existence of a phylogeographic association of the viral rhodopsin sequences from marine sediments.

  1. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce.

    Science.gov (United States)

    Li, Jian-Gang; Shen, Min-Chong; Hou, Jin-Feng; Li, Ling; Wu, Jun-Xia; Dong, Yuan-Hua

    2016-04-28

    Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3(-)-N, and NH4(+)-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.

  2. Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation.

    Science.gov (United States)

    Radwan, Samir; Mahmoud, Huda; Khanafer, Majida; Al-Habib, Aamar; Al-Hasan, Redha

    2010-08-01

    Gravel particles from four sites along the Arabian Gulf coast in autumn, winter, and spring were naturally colonized with microbial consortia containing between 7 and 400 × 10(2) cm(-2) of cultivable oil-utilizing bacteria. The 16S rRNA gene sequences of 70 representatives of oil-utilizing bacteria revealed that they were predominantly affiliated with the Gammaproteobacteria and the Actinobacteria. The Gammaproteobacteria comprised among others, the genera Pseudomonas, Pseudoalteromonas, Shewanella, Marinobacter, Psychrobacter, Idiomarina, Alcanivorax, Cobetia, and others. Actinobacteria comprised the genera Dietzia, Kocuria, Isoptericola, Rhodococcus, Microbacterium, and others. In autumn, Firmicutes members were isolated from bay and nonbay stations while Alphaproteobacteria were detected only during winter from Anjefa bay station. Fingerprinting by denaturing gradient gel electrophoresis of amplified 16S rRNA genes of whole microbial consortia confirmed the culture-based bacterial diversities in the various epilithons in various sites and seasons. Most of the representative oil-utilizing bacteria isolated from the epilithons were diazotrophic and could attenuate oil also in nitrogen-rich (7.9-62%) and nitrogen-free (4-54%) cultures, which, makes the microbial consortia suitable for oil bioremediation in situ, without need for nitrogen supplementation. This was confirmed in bench-scale experiments in which unfertilized oily seawater was bioremediated by epilithon-coated gravel particles.

  3. Effect of Bifidobacterium breve on the Intestinal Microbiota of Coeliac Children on a Gluten Free Diet: A Pilot Study.

    Science.gov (United States)

    Quagliariello, Andrea; Aloisio, Irene; Bozzi Cionci, Nicole; Luiselli, Donata; D'Auria, Giuseppe; Martinez-Priego, Llúcia; Pérez-Villarroya, David; Langerholc, Tomaž; Primec, Maša; Mičetić-Turk, Dušanka; Di Gioia, Diana

    2016-10-22

    Coeliac disease (CD) is associated with alterations of the intestinal microbiota. Although several Bifidobacterium strains showed anti-inflammatory activity and prevention of toxic gliadin peptides generation in vitro, few data are available on their efficacy when administered to CD subjects. This study evaluated the effect of administration for three months of a food supplement based on two Bifidobacterium breve strains (B632 and BR03) to restore the gut microbial balance in coeliac children on a gluten free diet (GFD). Microbial DNA was extracted from faeces of 40 coeliac children before and after probiotic or placebo administration and 16 healthy children (Control group). Sequencing of the amplified V3-V4 hypervariable region of 16S rRNA gene as well as qPCR of Bidobacterium spp., Lactobacillus spp., Bacteroides fragilis group Clostridium sensu stricto and enterobacteria were performed. The comparison between CD subjects and Control group revealed an alteration in the intestinal microbial composition of coeliacs mainly characterized by a reduction of the Firmicutes/Bacteroidetes ratio, of Actinobacteria and Euryarchaeota . Regarding the effects of the probiotic, an increase of Actinobacteria was found as well as a re-establishment of the physiological Firmicutes/Bacteroidetes ratio. Therefore, a three-month administration of B. breve strains helps in restoring the healthy percentage of main microbial components.

  4. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.

    Science.gov (United States)

    Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W

    2009-01-01

    Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

  5. Phylogenetic diversity and functional characterization of the Manila clam microbiota: a culture-based approach.

    Science.gov (United States)

    Leite, Laura; Jude-Lemeilleur, Florence; Raymond, Natalie; Henriques, Isabel; Garabetian, Frédéric; Alves, Artur

    2017-09-01

    According to the hologenome theory, the microbiota contributes to the fitness of the holobiont having an important role in its adaptation, survival, development, health, and evolution. Environmental stress also affects the microbiota and its capability to assist the holobiont in coping with stress factors. Here, we analyzed the diversity of cultivable bacteria associated with Manila clam tissues (mantle, gills, hemolymph) in two non-contaminated sites (Portugal and France) and one metal-contaminated site (Portugal). A total of 240 isolates were obtained. Representative isolates (n = 198) of the overall diversity were identified by 16S rDNA sequencing and subjected to functional characterization. Isolates affiliated with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Proteobacteria (mostly Pseudoalteromonadaceae and Vibrionaceae) were dominant in non-contaminated sites while Actinobacteria (mostly Microbacteriaceae) dominated in the metal-contaminated site. The main factor affecting the microbiota composition was contamination. No significant differences were observed between clam tissues and geographic regions. Several isolates tested positive for antibacterial activity, biofilm formation, protease, and siderophore production. The results show that the Manila clam harbors a diverse microbiota that may contribute to clam protection and overall fitness, as well as to its adaptation to stressful environments. In addition, the Manila clam microbiota is revealed as a promising source of novel probiotics with potential application in aquaculture.

  6. The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge.

    Science.gov (United States)

    Liu, Changli; Liu, Di; Qi, Yingjie; Zhang, Ying; Liu, Xi; Zhao, Min

    2016-07-01

    The main objective of this work was to investigate the influence of different oxygen supply patterns on poly-β-hydroxybutyrate (PHB) yield and bacterial community diversity. The anaerobic-aerobic (A/O) sequencing batch reactors (SBR1) and feast-famine (F/F) SBR2 were used to cultivate activated sludge to produce PHB. The mixed microbial communities were collected and analyzed after 3 months cultivation. The PHB maximum yield was 64 wt% in SBR1 and 53 wt% in SBR2. Pyrosequencing analysis 16S rRNA gene of two microbial communities indicated there were nine and four bacterial phyla in SBR1 and SBR2, respectively. Specifically, Proteobacteria (36.4 % of the total bacterial community), Actinobacteria (19.7 %), Acidobacteria (14.1 %), Firmicutes (4.4 %), Bacteroidetes (1.7 %), Cyanobacteria/Chloroplast (1.5 %), TM7 (0.8 %), Gemmatimonadetes (0.2 %), and Nitrospirae (0.1 %) were present in SBR1. Proteobacteria (94.2 %), Bacteroidetes (2.9 %), Firmicutes (1.9 %), and Actinobacteria (0.7 %) were present in SBR2. Our results indicated the SBR1 fermentation system was more stable than that of SBR2 for PHB accumulation.

  7. Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems.

    Science.gov (United States)

    Li, Dong; Alidina, Mazahirali; Drewes, Jörg E

    2014-06-01

    This study was performed to reveal the microbial community characteristics in simulated managed aquifer recharge (MAR), a natural water treatment system, under different concentrations and compositions of biodegradable dissolved organic carbon (BDOC) and further link these to the biotransformation of emerging trace organic chemicals (TOrCs). Two pairs of soil-column setups were established in the laboratory receiving synthetic feed solutions composed of different peptone/humic acid ratios and concentrations. Higher BDOC concentration resulted in lower microbial community diversity and higher relative abundance of Betaproteobacteria. Decreasing the peptone/humic acid ratio resulted in higher diversity of the community and higher relative abundances of Firmicutes, Planctomycetes, and Actinobacteria. The metabolic capabilities of microbiome involved in xenobiotics biodegradation were significantly promoted under lower BDOC concentration and higher humic acid content. Cytochrome P450 genes were also more abundant under these primary substrate conditions. Lower peptone/humic acid ratios also promoted the attenuation of most TOrCs. These results suggest that the primary substrate characterized by a more refractory character could increase the relative abundances of Firmicutes, Planctomycetes, and Actinobacteria, as well as associated cytochrome P450 genes, all of which should play important roles in the biotransformation of TOrCs in this natural treatment system.

  8. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China

    Science.gov (United States)

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-06-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3--N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau.

  9. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce

    Science.gov (United States)

    Li, Jian-Gang; Shen, Min-Chong; Hou, Jin-Feng; Li, Ling; Wu, Jun-Xia; Dong, Yuan-Hua

    2016-04-01

    Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3--N, and NH4+-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.

  10. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    Science.gov (United States)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  11. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Narit Thaochan

    2015-12-01

    Full Text Available The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering and Bactrocera tryoni (Froggatt, was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria which was prominent in all clones. The total bacterial community consisted of Proteobacteria (more than 75% of clones, except in the crop of B. cacuminata where more than 50% of clones belonged to Firmicutes. Firmicutes gave the number of the secondary community structure in the fly’s gut. Four orders, Alpha-, Beta-, Delta- and Gammaproteobacteria and the phyla Firmicutes and Actinobacteria were found in both fruit fly species, while the order Epsilonproteobacteria and the phylum Bacteroidetes were found only in B. tryoni. Two phyla, Actinobacteria and Bacteroidetes, were rare and less frequent in the flies. There was a greater diversity of bacteria in the crop of the two fruit fly species than in the midgut. The midgut of B. tryoni females and the midgut of B. cacuminata males had the lowest bacterial diversity.

  12. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    Science.gov (United States)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha-1•yr-1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  13. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-11-01

    Full Text Available Abstract Recently Mycobacterium tuberculosis was shown to possess a novel protein modification, in which a small protein Pup is conjugated to the epsilon-amino groups of lysines in target proteins. Analogous to ubiquitin modification in eukaryotes, this remarkable modification recruits proteins for degradation via archaeal-type proteasomes found in mycobacteria and allied actinobacteria. While a mycobacterial protein named PafA was found to be required for this conjugation reaction, its biochemical mechanism has not been elucidated. Using sensitive sequence profile comparison methods we establish that the PafA family proteins are related to the γ-glutamyl-cysteine synthetase and glutamine synthetase. Hence, we predict that PafA is the Pup ligase, which catalyzes the ATP-dependent ligation of the terminal γ-carboxylate of glutamate to lysines, similar to the above enzymes. We further discovered that an ortholog of the eukaryotic PAC2 (e.g. cg2106 is often present in the vicinity of the actinobacterial Pup-proteasome gene neighborhoods and is likely to represent the ancestral proteasomal chaperone. Pup-conjugation is sporadically present outside the actinobacteria in certain lineages, such as verrucomicrobia, nitrospirae, deltaproteobacteria and planctomycetes, and in the latter two lineages it might modify membrane proteins. Reviewers This article was reviewed by M. Madan Babu and Andrei Osterman

  14. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid

    OpenAIRE

    Thamhesl, Michaela; Apfelthaler, Elisabeth; Schwartz-Zimmermann, Heidi Elisabeth; Kunz-Vekiru, Elisavet; Krska, Rudolf; Kneifel, Wolfgang; Schatzmayr, Gerd; Moll, Wulf-Dieter

    2015-01-01

    Background Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. Results We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strai...

  15. Characterization of Growing Soil Bacterial Communities across a pH gradient Using H218O DNA-Stable Isotope Probing

    Science.gov (United States)

    Welty-Bernard, A. T.; Schwartz, E.

    2014-12-01

    Recent studies have established consistent relationships between pH and bacterial diversity and community structure in soils from site-specific to landscape scales. However, these studies rely on DNA or PLFA extraction techniques from bulk soils that encompass metabolically active and inactive, or dormant, communities, and loose DNA. Dormant cells may comprise up to 80% of total live cells. If dormant cells dominate a particular environment, it is possible that previous interpretations of the soil variables assumed to drive communities could be profoundly affected. We used H218O stable isotope probing and bar-coded illumina sequencing of 16S rRNA genes to monitor the response of actively growing communities to changes in soil pH in a soil microcosm over 14 days. This substrate-independent approach has several advantages over 13C or 15N-labelled molecules in that all growing bacteria should be able to make use of water, allowing characterization of whole communities. We hypothesized that Acidobacteria would increasingly dominate the growing community and that Actinobacteria and Bacteroidetes would decline, given previously established responses by these taxa to soil pH. Instead, we observed the reverse. Actinobacteria abundance increased three-fold from 26 to 76% of the overall community as soil pH fell from pH 5.6 to pH 4.6. Shifts in community structure and decreases in diversity with declining soil pH were essentially driven by two families, Streptomyceaca and Microbacteracea, which collectively increased from 2 to 40% of the entire community. In contrast, Acidobacteria as a whole declined although numbers of subdivision 1 remained stable across all soil pH levels. We suggest that the brief incubation period in this SIP study selected for growth of acid-tolerant Actinobacteria over Acidobacteria. Taxa within Actinomycetales have been readily cultured over short time frames, suggesting rapid growth patterns. Conversely, taxa within Acidobacteria have been

  16. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  17. Bacterial natural products : Prediction, regulation and characterization of biosynthetic gene clusters in Actinobacteria

    NARCIS (Netherlands)

    Ceniceros, Ana

    2017-01-01

    Secondary metabolites are produced by many microbes. They are not essential for life, but may provide a competitive advantage in the natural environment. Antibiotics are an important example, crucial agents in the human health system, widely used to combat infectious diseases. In view of the

  18. The suitability of the IOM foam sampler for bioaerosol sampling in Occupational Environments.

    Science.gov (United States)

    Haatainen, Susanna; Laitinen, Juha; Linnainmaa, Markku; Reponen, Tiina; Kalliokoski, Pentti

    2010-01-01

    Concurrent samples were collected with Andersen and IOM foam samplers to determine whether if the IOM foam sampler can be applied to collect culturable microorganisms. Two different kinds of aerosols were studied: peat dust in a power plant and mist from coolant fluid aerosolized during grinding of blades and rollers in a paper mill. In the power plant, the concentrations of fungi were 2-3 times higher in the IOM samples than in the Andersen samples. However, more fungal genera were identified in the latter case. The methods yielded similar concentrations of bacteria and actinobacteria in the power plant. On the other hand, the performance of the IOM foam sampler was very poor in the paper mill, where stress-sensitive gram-negative bacteria dominated; low concentration of bacteria was detected in only one IOM sample even though the concentration of bacteria often exceeded even the upper detection limit in the Andersen impactor samples. It could be concluded that the IOM foam sampler performs quite well for collecting inhalable fungi and actinobacteria. However, the Andersen sampler provides better information on fungal genera and concentrations of gram-negative bacteria. Personal sampling with the IOM foam sampler provided an important benefit in the power plant, where the concentration ratio of personal to stationary samples was much higher for bacteria than for inhalable or respirable dust.

  19. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    Science.gov (United States)

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  20. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    Directory of Open Access Journals (Sweden)

    Annette K. Møller

    2013-04-01

    Full Text Available The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria. Thus, differences in the physicochemical conditions may play an important role in the processes leading to distinctive bacterial community structures in High-Arctic snow and freshwater.

  1. Mycobacterium smegmatis Lhr Is a DNA-dependent ATPase and a 3'-to-5' DNA translocase and helicase that prefers to unwind 3'-tailed RNA:DNA hybrids.

    Science.gov (United States)

    Ordonez, Heather; Shuman, Stewart

    2013-05-17

    We are interested in the distinctive roster of helicases of Mycobacterium, a genus of the phylum Actinobacteria that includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis Lhr as the exemplar of a novel clade of superfamily II helicases, by virtue of its biochemical specificities and signature domain organization. Lhr is a 1507-amino acid monomeric nucleic acid-dependent ATPase that uses the energy of ATP hydrolysis to drive unidirectional 3'-to-5' translocation along single strand DNA and to unwind duplexes en route. The ATPase is more active in the presence of calcium than magnesium. ATP hydrolysis is triggered by either single strand DNA or single strand RNA, yet the apparent affinity for a DNA activator is 11-fold higher than for an RNA strand of identical size and nucleobase sequence. Lhr is 8-fold better at unwinding an RNA:DNA hybrid than it is at displacing a DNA:DNA duplex of identical nucleobase sequence. The truncated derivative Lhr-(1-856) is an autonomous ATPase, 3'-to-5' translocase, and RNA:DNA helicase. Lhr-(1-856) is 100-fold better RNA:DNA helicase than DNA:DNA helicase. Lhr homologs are found in bacteria representing eight different phyla, being especially prevalent in Actinobacteria (including M. tuberculosis) and Proteobacteria (including Escherichia coli).

  2. Effect of Bifidobacterium breve on the Intestinal Microbiota of Coeliac Children on a Gluten Free Diet: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Andrea Quagliariello

    2016-10-01

    Full Text Available Coeliac disease (CD is associated with alterations of the intestinal microbiota. Although several Bifidobacterium strains showed anti-inflammatory activity and prevention of toxic gliadin peptides generation in vitro, few data are available on their efficacy when administered to CD subjects. This study evaluated the effect of administration for three months of a food supplement based on two Bifidobacterium breve strains (B632 and BR03 to restore the gut microbial balance in coeliac children on a gluten free diet (GFD. Microbial DNA was extracted from faeces of 40 coeliac children before and after probiotic or placebo administration and 16 healthy children (Control group. Sequencing of the amplified V3-V4 hypervariable region of 16S rRNA gene as well as qPCR of Bidobacterium spp., Lactobacillus spp., Bacteroides fragilis group Clostridium sensu stricto and enterobacteria were performed. The comparison between CD subjects and Control group revealed an alteration in the intestinal microbial composition of coeliacs mainly characterized by a reduction of the Firmicutes/Bacteroidetes ratio, of Actinobacteria and Euryarchaeota. Regarding the effects of the probiotic, an increase of Actinobacteria was found as well as a re-establishment of the physiological Firmicutes/Bacteroidetes ratio. Therefore, a three-month administration of B. breve strains helps in restoring the healthy percentage of main microbial components.

  3. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  4. Isolation of oxalotrophic bacteria associated with Varroa destructor mites.

    Science.gov (United States)

    Maddaloni, M; Pascual, D W

    2015-11-01

    Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.

  5. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil.

    Science.gov (United States)

    Jeong, Seulki; Moon, Hee Sun; Shin, Doyun; Nam, Kyoungphile

    2013-12-15

    This study was conducted to investigate whether or not phosphate-solubilizing bacteria (PSB) as a kind of plant growth promoting rhizobacteria enhance the uptake of Cd by plants. In addition, the effect of PSB augmentation during phytoextraction on the microbial community of indigenous soil bacteria was also studied. In the initial Cd-contaminated soil, the major phyla were Proteobacteria (35%), Actinobacteria (38%) and Firmicutes (8%). While Proteobacteria were dominant at the second and sixth week (41 and 54%, respectively) in inoculated soil, Firmicutes (mainly belonging to the Bacilli class-61%), dramatically increased in the eight-week soil. For the uninoculated soil, the proportion of α-Proteobacteria increased after eight weeks (32%). Interestingly, Actinobacteria class, which was originally present in the soil (37%), seemed to disappear during phytoremediation, irrespective of whether PSB was inoculated or not. Cluster analysis and Principal Component Analysis revealed that the microbial community of eight-week inoculated soil was completely separated from the other soil samples, due to the dramatic increase of Bacillus aryabhattai. These findings revealed that it took at least eight weeks for the inoculated Bacillus sp. to functionally adapt to the introduced soil, against competition with indigenous microorganisms in soil. An ecological understanding of interaction among augmented bacteria, plant and indigenous soil bacteria is needed, for proper management of phytoextraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Comparison of bacterial community structures of terrestrial cyanobacterium Nostoc flagelliforme in three different regions of China using PCR-DGGE analysis.

    Science.gov (United States)

    Han, Pei-pei; Shen, Shi-gang; Jia, Shi-ru; Wang, Hui-yan; Zhong, Cheng; Tan, Zhi-lei; Lv, He-xin

    2015-07-01

    Filamentous Nostoc flagelliforme form colloidal complex, with beaded cells interacting with other bacteria embedded in the complex multilayer sheath. However, the species of bacteria in the sheath and the interaction between N. flagelliforme and associated bacteria remain unclear. In this study, PCR-denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial communities of N. flagelliforme from three regions of China. DGGE patterns showed variations in all samples, exhibiting 25 discrete bands with various intensities. The diversity index analysis of bands profiles suggested the high similarity of bacterial communities to each other but also the dependence of microbial composition on each location. Phylogenetic affiliation indicated that the majority of the sequences obtained were affiliated with Actinobacteria, Cyanobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, of which Cyanobacteria was dominant, followed the Proteobacteria. Members of the genus Nostoc were the most abundant in all samples. Rhizobiales and Actinobacteria were identified, whereas, Craurococcus, Caulobacter, Pseudomonas, Terriglobus and Mucilaginibacter were also identified at low levels. Through comparing the bacterial composition of N. flagelliforme from different regions, it was revealed that N. flagelliforme could facilitate the growth of other microorganisms including both autotrophic bacteria and heterotrophic ones and positively contributed to their harsh ecosystems. The results indicated N. flagelliforme played an important role in diversifying the microbial community composition and had potential application in soil desertification.

  7. Seasonal variation of bacterial endophytes in urban trees

    Directory of Open Access Journals (Sweden)

    Shu Yi eShen

    2015-05-01

    Full Text Available Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons. The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp.. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia and Sanguibacter spp.. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests investigations of the studies ofendophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly.

  8. Sebum and Hydration Levels in Specific Regions of Human Face Significantly Predict the Nature and Diversity of Facial Skin Microbiome.

    Science.gov (United States)

    Mukherjee, Souvik; Mitra, Rupak; Maitra, Arindam; Gupta, Satyaranjan; Kumaran, Srikala; Chakrabortty, Amit; Majumder, Partha P

    2016-10-27

    The skin microbiome varies across individuals. The causes of these variations are inadequately understood. We tested the hypothesis that inter-individual variation in facial skin microbiome can be significantly explained by variation in sebum and hydration levels in specific facial regions of humans. We measured sebum and hydration from forehead and cheek regions of healthy female volunteers (n = 30). Metagenomic DNA from skin swabs were sequenced for V3-V5 regions of 16S rRNA gene. Altogether, 34 phyla were identified; predominantly Actinobacteria (66.3%), Firmicutes (17.7%), Proteobacteria (13.1%) and Bacteroidetes (1.4%). About 1000 genera were identified; predominantly Propionibacterium (58.6%), Staphylococcus (8.6%), Streptococcus (4.0%), Corynebacterium (3.6%) and Paracoccus (3.3%). A subset (n = 24) of individuals were sampled two months later. Stepwise multiple regression analysis showed that cheek sebum level was the most significant predictor of microbiome composition and diversity followed by forehead hydration level; forehead sebum and cheek hydration levels were not. With increase in cheek sebum, the prevalence of Actinobacteria (p = 0.001)/Propionibacterium (p = 0.002) increased, whereas microbiome diversity decreased (Shannon Index, p = 0.032); this was opposite for other phyla/genera. These trends were reversed for forehead hydration levels. Therefore, the nature and diversity of facial skin microbiome is jointly determined by site-specific lipid and water levels in the stratum corneum.

  9. Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements

    Science.gov (United States)

    Pérez, María Teresa; Hörtnagl, Paul; Sommaruga, Ruben

    2010-01-01

    We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria-positive cells, whereas only 15–43% of Bacteria-positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells. PMID:19725866

  10. Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil).

    Science.gov (United States)

    Lima, Sandrine M A; Melo, Janaína G S; Militão, Gardênia C G; Lima, Gláucia M S; do Carmo A Lima, Maria; Aguiar, Jaciana S; Araújo, Renata M; Braz-Filho, Raimundo; Marchand, Pascal; Araújo, Janete M; Silva, Teresinha G

    2017-01-01

    Actinomycetes are known to produce numerous secondary bioactive metabolites of pharmaceutical interest. The purpose of this study was to isolate, characterize, and investigate the antibacterial, antifungal, and anticancer activities of metabolites produced by Actinobacteria isolated from the rhizosphere of Paullinia cupana. The Actinobacteria was identified as Streptomyces hygroscopicus ACTMS-9H. Based on a bioguided study, the methanolic biomass extract obtained from submerged cultivation had the most potent antibacterial, antifungal, and cytotoxic activities. This extract was partitioned with n-hexane, ethyl acetate, and 2-butanol. Elaiophylin was isolated from the methanolic biomass extract, and its molecular formula was determined (C 54 H 88 O 18 ) based on 1 H and 13 C NMR, IR and MS analyses. The 2-butanol phase was fractionated into four fractions (EB1, EB2A, EB2B, and EB3M). Chemical prospecting indicated the presence of alkaloids, saponins, and reducing sugars in the methanolic extract and 2-butanol phase. The elaiophylin displayed anticancer activity in HEp-2 and HL-60 cells with an IC 50 of 1 μg/mL. The EB1 fraction was selectively toxic to HL-60 cells with IC 50 of 9 ng/mL. Bioautography showed that the EB1 fraction contained an alkaloid with antibacterial and antifungal activities (MIC values ≤1.9 and anticancer activities.

  11. Diversity of endophytic bacteria of Dendrobium officinale based on culture-dependent and culture-independent methods

    Directory of Open Access Journals (Sweden)

    Cong Pei

    2017-01-01

    Full Text Available Culture-dependent and culture-independent methods were compared and evaluated in the study of the endophytic diversity of Dendrobium officinale. Culture-independent methods consisted of polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE and metagenome methods. According to the results, differences were found between the three methods. Three phyla, namely Firmicutes, Proteobacteria, and Actinobacteria, were detected using the culture-dependent method, and two phyla, Firmicutes and Proteobacteria, were detected by the DGGE method. Using the metagenome method, four major phyla were determined, including Proteobacteria (76.54%, Actinobacteria (18.56%, Firmicutes (2.27%, and Bacteroidetes (1.56%. A distinct trend was obtained at the genus level in terms of the method and the corresponding number of genera determined. There were 449 genera and 16 genera obtained from the metagenome and DGGE methods, respectively, and only 7 genera were obtained through the culture-dependent method. By comparison, all the genera from the culture-dependent and DGGE methods were contained in the members determined using the metagenome method. Overall, culture-dependent methods are limited to ‘finding’ endophytic bacteria in plants. DGGE is an alternative to investigating primary diversity patterns; however, the metagenome method is still the best choice for determining the endophytic profile in plants. It is essential to use multiphasic approaches to study cultured and uncultured microbes.

  12. Feasibility of Metatranscriptome Analysis from Infant Gut Microbiota: Adaptation to Solid Foods Results in Increased Activity of Firmicutes at Six Months

    Directory of Open Access Journals (Sweden)

    Floor Hugenholtz

    2017-01-01

    Full Text Available Newborns are rapidly colonized by microbes and their intestinal tracts contain highly dynamic and rapidly developing microbial communities in the first months of life. In this study, we describe the feasibility of isolating mRNA from rapidly processed faecal samples and applying deep RNA-Seq analysis to provide insight into the active contributors of the microbial community in early life. Specific attention is given to the impact of removing rRNA from the mRNA on the phylogenetic and transcriptional profiling and its analysis depth. A breastfed baby was followed in the first six months of life during adaptation to solid food, dairy products, and formula. It was found that, in the weaning period, the total transcriptional activity of Actinobacteria, mainly represented by Bifidobacterium, decreased while that of Firmicutes increased over time. Moreover, Firmicutes and Actinobacteria, including the canonical Bifidobacteria as well as Collinsella, were found to be important contributors to carbohydrate fermentation and vitamin biosynthesis in the infant intestine. Finally, the expression of Lactobacillus rhamnosus-like genes was detected, likely following transfer from the mother who consumed L. rhamnosus GG. The study indicates that metatranscriptome analysis of the infant gut microbiota is feasible on infant stool samples and can be used to provide insight into the core activities of the developing community.

  13. Chemical Elicitors of Antibiotic Biosynthesis in Actinomycetes

    Directory of Open Access Journals (Sweden)

    Anton P. Tyurin

    2018-06-01

    Full Text Available Whole genome sequencing of actinomycetes has uncovered a new immense realm of microbial chemistry and biology. Most biosynthetic gene clusters present in genomes were found to remain “silent” under standard cultivation conditions. Some small molecules—chemical elicitors—can be used to induce the biosynthesis of antibiotics in actinobacteria and to expand the chemical diversity of secondary metabolites. Here, we outline a brief account of the basic principles of the search for regulators of this type and their application.

  14. Specificity and stability of the Acromyrmex–Pseudonocardia symbiosis

    DEFF Research Database (Denmark)

    Andersen, Sandra Breum; Hansen, Lars Hestbjerg; Sapountzis, Panagiotis

    2013-01-01

    The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus-growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and d...... and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to ...

  15. Stretches of alternating pyrimidine/purines and purines are respectively linked with pathogenicity and growth temperature in prokaryotes

    DEFF Research Database (Denmark)

    Ussery, David; Bohlin, J; Hardy, SP

    2009-01-01

    BACKGROUND: The genomic fractions of purine (RR) and alternating pyrimidine/purine (YR) stretches of 10 base pairs or more, have been linked to genomic AT content, the formation of different DNA helices, strand-biased gene distribution, DNA structure, and more. Although some of these factors are ...... phyla. RR stretches are overrepresented in all phyla except for the Actinobacteria and beta-Proteobacteria. In contrast, YR tracts are underrepresented in all phyla except for the beta-Proteobacterial group. YR-stretches are associated with phylum, pathogenicity and habitat, whilst RR...

  16. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway

    Directory of Open Access Journals (Sweden)

    Gaigalat Lars

    2006-08-01

    Full Text Available Abstract Background Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. Results A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4-monophosphatases (EC 3.1.3.25. Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown

  17. Microbial monitoring in treated stone at the Royal Chapel of Granada

    Science.gov (United States)

    Jroundi, Fadwa; Pinar, Guadalupe; González-Muñoz, Maria Theresa; Sterflinger, Katja

    2014-05-01

    Biomineralization processes have been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). In few years, this conservation treatment has gained worth attention as environmentally friendly methodology for protection and consolidation of limestone because of the compatibilities shown between the new calcium carbonate cement and the original stone substrate. Moreover, the success of this approach may be related to the diversity of the microbiota inhabiting the stone and activated upon the biotreatment application and throughout the time. González-Muñoz et al. (2008) proposed a nutritional solution that activate among the bacteria inhabiting the stone those with carbonatogenic activity. In this study, a long-term (one, two and three years) monitoring of the microbiota present on the treated and untreated stones was done using a molecular strategy, including total DNA extraction, PCR amplification of 16S rRNA sequences, construction of clone libraries and fingerprinting by DGGE (Denaturing Gradient Gel Electrophoresis) analysis. Sequencing of the 16S rDNA revealed the dominant occurrence of members of Actinobacteria (44.20%), Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) after one year of the biotreatment. Whereas after two years, members of Cyanobacteria (22.10%) appeared and three years after, the microbiota consisted of only Actinobacteria and Cyanobacteria with approximately the same percentage in comparison with the untreated stones, dominated exclusively by Actinobacteria (100%). Fungal diversity followed the same dynamic as bacterial diversity being Ascomicota the predominant order before treatment. After one year, members of Basidiomycota and Viridiplantae appeared on the stone while two years after, the Viridiplantae dominated with a percentage of 84.77%. Finally, three years after the treatment, fungi population started to stabilize again and Ascomicota predominated next to 16.67% of

  18. Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches.

    Science.gov (United States)

    Piñar, Guadalupe; Garcia-Valles, Maite; Gimeno-Torrente, Domingo; Fernandez-Turiel, Jose Luis; Ettenauer, Jörg; Sterflinger, Katja

    2013-10-01

    We investigated the decayed historical church window glasses of two Catalonian churches, both under Mediterranean climate. Glass surfaces were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). Their chemical composition was determined by wavelength-dispersive spectrometry (WDS) microprobe analysis. The biodiversity was investigated by molecular methods: DNA extraction from glass, amplification by PCR targeting the16S rRNA and ITS regions, and fingerprint analyses by denaturing gradient gel electrophoresis (DGGE). Clone libraries containing either PCR fragments of the bacterial 16S rDNA or the fungal ITS regions were screened by DGGE. Clone inserts were sequenced and compared with the EMBL database. Similarity values ranged from 89 to 100% to known bacteria and fungi. Biological activity in both sites was evidenced in the form of orange patinas, bio-pitting, and mineral precipitation. Analyses revealed complex bacterial communities consisting of members of the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Fungi showed less diversity than bacteria, and species of the genera Cladosporium and Phoma were dominant. The detected Actinobacteria and fungi may be responsible for the observed bio-pitting phenomenon. Moreover, some of the detected bacteria are known for their mineral precipitation capabilities. Sequence results also showed similarities with bacteria commonly found on deteriorated stone monuments, supporting the idea that medieval stained glass biodeterioration in the Mediterranean area shows a pattern comparable to that on stone.

  19. Cultivation Versus Molecular Analysis of Banana (Musa sp.) Shoot-Tip Tissue Reveals Enormous Diversity of Normally Uncultivable Endophytic Bacteria.

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna Chandra

    2017-05-01

    The interior of plants constitutes a unique environment for microorganisms with various organisms inhabiting as endophytes. Unlike subterranean plant parts, aboveground parts are relatively less explored for endophytic microbial diversity. We employed a combination of cultivation and molecular approaches to study the endophytic bacterial diversity in banana shoot-tips. Cultivable bacteria from 20 sucker shoot-tips of cv. Grand Naine included 37 strains under 16 genera and three phyla (Proteobacteria, Actinobacteria, Firmicutes). 16S rRNA gene-ribotyping approach on 799f and 1492r PCR-amplicons to avoid plant organelle sequences was ineffective showing limited bacterial diversity. 16S rRNA metagene profiling targeting the V3-V4 hypervariable region after filtering out the chloroplast (74.2 %), mitochondrial (22.9 %), and unknown sequences (1.1 %) revealed enormous bacterial diversity. Proteobacteria formed the predominant phylum (64 %) succeeded by Firmicutes (12.1 %), Actinobacteria (9.5 %), Bacteroidetes (6.4 %), Planctomycetes, Cyanobacteria, and minor shares (banana shoot-tips (20 phyla, 46 classes) with about 2.6 % of the deciphered 269 genera and 1.5 % of the 656 observed species from the same source of shoot-tips attained through cultivation. The predominant genera included several agriculturally important bacteria. The study reveals an immense ecosystem of endophytic bacteria in banana shoot tissues endorsing the earlier documentation of intracellular "Cytobacts" and "Peribacts" with possible roles in plant holobiome and hologenome.

  20. Diversity of Cultivable Midgut Microbiota at Different Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India.

    Directory of Open Access Journals (Sweden)

    Kamlesh K Yadav

    Full Text Available Aedes aegypti and Ae. albopictus are among the most important vectors of arboviral diseases, worldwide. Recent studies indicate that diverse midgut microbiota of mosquitoes significantly affect development, digestion, metabolism, and immunity of their hosts. Midgut microbiota has also been suggested to modulate the competency of mosquitoes to transmit arboviruses, malaria parasites etc. Interestingly, the midgut microbial flora is dynamic and the diversity changes with the development of vectors, in addition to other factors such as species, sex, life-stage, feeding behavior and geographical origin. The aim of the present study was to investigate the midgut bacterial diversity among larva, adult male, sugar fed female and blood fed female Ae. albopictus collected from Tezpur, Northeastern India. Based on colony morphological characteristics, we selected 113 cultivable bacterial isolates for 16S rRNA gene sequence based molecular identification. Of the 113 isolates, we could identify 35 bacterial species belonging to 18 distinct genera under four major phyla, namely Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Phyla Proteobacteria and Firmicutes accounted for majority (80% of the species, while phylum Actinobacteria constituted 17% of the species. Bacteroidetes was the least represented phylum, characterized by a single species- Chryseobacterium rhizoplanae, isolated from blood fed individuals. Dissection of midgut microbiota diversity at different developmental stages of Ae. albopictus will be helpful in better understanding mosquito-borne diseases, and for designing effective strategies to manage mosquito-borne diseases.

  1. Immune status, antibiotic medication and pH are associated with changes in the stomach fluid microbiota.

    Science.gov (United States)

    von Rosenvinge, Erik C; Song, Yang; White, James R; Maddox, Cynthia; Blanchard, Thomas; Fricke, W Florian

    2013-07-01

    The stomach acts as a barrier to ingested microbes, thereby influencing the microbial ecology of the entire gastrointestinal (GI) tract. The stomach microbiota and the role of human host and environmental factors, such as health status or medications, in shaping its composition remain largely unknown. We sought to characterize the bacterial and fungal microbiota in the stomach fluid in order to gain insights into the role of the stomach in GI homeostasis. Gastric fluid was collected from 25 patients undergoing clinically indicated upper endoscopy. DNA isolates were used for PCR amplification of bacterial 16S ribosomal RNA (rRNA) genes and fungal internal transcribed spacers (ITS). RNA isolates were used for 16S rRNA cDNA generation and subsequent PCR amplification. While all stomach fluid samples are dominated by the phyla Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Fusobacteria (>99% of sequence reads), the transcriptionally active microbiota shows significant reduction in Actinobacteria (34%) and increase in Campylobacter (444%) (PpH >4 (70%; P<0.05). Immunosuppression correlates with decreased abundance of Prevotella (24%), Fusobacterium (2%) and Leptotrichia (6%) and increased abundance of Lactobacillus (3844%) (P<0.003). We have generated the first in-depth characterization of the human gastric fluid microbiota, using bacterial 16S rRNA gene and transcript, and fungal ITS amplicon sequencing and provide evidence for a significant impact of the host immune status on its composition with likely consequences for human health.

  2. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    Science.gov (United States)

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. The abundance of health-associated bacteria is altered in PAH polluted soils-Implications for health in urban areas?

    Directory of Open Access Journals (Sweden)

    Anirudra Parajuli

    Full Text Available Long-term exposure to polyaromatic hydrocarbons (PAHs has been connected to chronic human health disorders. It is also well-known that i PAH contamination alters soil bacterial communities, ii human microbiome is associated with environmental microbiome, and iii alteration in the abundance of members in several bacterial phyla is associated with adverse or beneficial human health effects. We hypothesized that soil pollution by PAHs altered soil bacterial communities that had known associations with human health. The rationale behind our study was to increase understanding and potentially facilitate reconsidering factors that lead to health disorders in areas characterized by PAH contamination. Large containers filled with either spruce forest soil, pine forest soil, peat, or glacial sand were left to incubate or contaminated with creosote. Biological degradation of PAHs was monitored using GC-MS, and the bacterial community composition was analyzed using 454 pyrosequencing. Proteobacteria had higher and Actinobacteria and Bacteroidetes had lower relative abundance in creosote contaminated soils than in non-contaminated soils. Earlier studies have demonstrated that an increase in the abundance of Proteobacteria and decreased abundance of the phyla Actinobacteria and Bacteroidetes are particularly associated with adverse health outcomes and immunological disorders. Therefore, we propose that pollution-induced shifts in natural soil bacterial community, like in PAH-polluted areas, can contribute to the prevalence of chronic diseases. We encourage studies that simultaneously address the classic "adverse toxin effect" paradigm and our novel "altered environmental microbiome" hypothesis.

  4. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System.

    Science.gov (United States)

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H 2 S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H 2 S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH 3 -N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H 2 S, CH 4 , and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.

  5. The Arctic soil bacterial communities in the vicinity of a little auk colony

    Directory of Open Access Journals (Sweden)

    Sylwia Zielinska

    2016-09-01

    Full Text Available Due to deposition of birds’ guano, eggshells or feathers, the vicinity of a large seabirds’ breeding colony is expected to have a substantial impact on the soil’s physicochemical features as well as on diversity of vegetation and the soil invertebrates. Consequently, due to changing physicochemical features the structure of bacterial communities might fluctuate in different soil environments. The aim of this study was to investigate the bacterial assemblages in the Arctic soil within the area of a birds’ colony and in a control sample from a topographically similar location but situated away from the colony’s impact area. A high number of OTUs found in both areas indicates a highly complex microbial populations structure. The most abundant phyla in both of the tested samples were: Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexi, with different proportions in the total share. Despite differences in the physicochemical soil characteristics, the soil microbial community structures at the phylum level were similar to some extent in the two samples. The only share that was significantly higher in the control area when compared to the sample obtained within the birds’ colony, belonged to the Actinobacteria phylum. Moreover, when analyzing the class level for each phylum, several differences between the samples were observed. Furthermore, lower proportions of Proteobacteria and Acidobacteria were observed in the soil sample under the influence of the bird’s colony, which most probably could be linked to higher nitrogen concentrations in that sample.

  6. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.

    Science.gov (United States)

    Hao, Da Cheng; Ge, Guang Bo; Yang, Ling

    2008-07-01

    The regional variability of Taxus rhizosphere bacterial community composition and diversity was studied by comparative analysis of three large 16S rRNA gene clone libraries from the Taxus rhizosphere in different regions of China (subtropical and temperate regions). One hundred and forty-six clones were screened for three libraries. Phylogenetic analysis of 16S rRNA gene sequences demonstrated that the abundance of sequences affiliated with Gammaproteobacteria, Betaproteobacteria, and Actinobacteria was higher in the library from the T. xmedia rhizosphere of the temperate region compared with the subtropical Taxus mairei rhizosphere. On the other hand, Acidobacteria was more abundant in libraries from the subtropical Taxus mairei rhizosphere. Richness estimates and diversity indices of three libraries revealed major differences, indicating a higher richness in the Taxus rhizosphere bacterial communities of the subtropical region and considerable variability in the bacterial community composition within this region. By enrichment culture, a novel Actinobacteria strain DICP16 was isolated from the T. xmedia rhizosphere of the temperate region and was identified as Leifsonia shinshuensis sp. via 16S rRNA gene and gyrase B sequence analyses. DICP16 was able to remove the xylosyl group from 7-xylosyl-10-deacetylbaccatin III and 7-xylosyl-10-deacetylpaclitaxel, thereby making the xylosyltaxanes available as sources of 10-deacetylbaccatin III and the anticancer drug paclitaxel. Taken together, the present studies provide, for the first time, the knowledge of the biodiversity of microorganisms populating Taxus rhizospheres.

  7. The Impact of Low Level X-rays on Biosynthesis of Gold Nanoparticles by Actinobacteria

    Directory of Open Access Journals (Sweden)

    Faranak Saghatchi

    2016-12-01

    Full Text Available Background: Gold nanoparticles (GNPs play an important role in medical, health and environmental applications. All kinds of microorganisms were found to be able to synthesize GNPs. The optimization of laboratory conditions for achieving more economical benefits of mass production has been studied widely. Methods: This study assesses the enhancing effect of low-level X-rays on the biosynthesis of GNPs by Actinomycetals. The isolated Actinomycetes were grown aerobically in MGYP broth media. The harvested bacteria were suspended in 50 mL aqueous HAuCl4 in 12 Erlenmeyer flask. Each group contained4 flasks. 2 groups of samples were irradiated by 30 mGy and 5 mGy X-rays respectively. The third group as control remained without irradiation. The solutions were shake- incubated for 120 h. Results: After 5 days, the color of first group samples changed from milky to purple, while the color changing occurred after 10 days in the 2nd group samples and the control samples. The UV-vis absorption spectrometry of the irradiated aqueous medium by 30 mGy X-rays confirmed the formation of GNPs. Conclusion: The findings showed that 30 mGy X-rays stimulated the microorganism to form GNPs in a half time in comparison to other groups.

  8. Evaluating the role of Actinobacteria in the gut of wood-feeding termites (Reticulitermes spp.)

    Science.gov (United States)

    Rachel A. Arango; Frederick Green III; Vina W. Yang; Joliene R. Lindholm; Nathaniel P. Chotlos; Kenneth F. Raffa

    2017-01-01

    Nitrogen has been shown to be a limiting nutrient across a range of xylophagous insects. These insects often rely on symbiotic microorganisms in the gut for nitrogen acquisition, via fixation of atmospheric nitrogen or break down of other available nitrogenous substances. In phylogenetically lower, wood-feeding termites, the role of nitrogen fixing bacteria has been...

  9. pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment

    DEFF Research Database (Denmark)

    El Azhari, Najoi

    2007-01-01

    Microorganisms degrading phenolic compounds play an important role in soil carbon cycling as well as in pesticide degradation. The pcaH gene encoding a key ring-cleaving enzyme of the β-ketoadipate pathway was selected as a functional marker. Using a degenerate primer pair, pcaH fragments were cl......H sequences from Actinobacteria and Proteobacteria phyla. This confirms that the developed primer pair targets a wide diversity of pcaH sequences, thereby constituting a suitable molecular marker to estimate the response of the pca community to agricultural practices....

  10. Isolation, screening and characterization of uranium microremediable actinomycetes from fallen leaves of Azadirachta indica in Western Ghats

    International Nuclear Information System (INIS)

    Singh, M.J.; Padmavathy, S.

    2014-01-01

    Microremediation of harmful radioactive waste such as uranium has been carried out by the endophytic actinomycetes strains isolated from the unnoticed fallen leaves of commonly available medicinal plant Azadirachta indica, which are considered as unique source. Among six actinobacteria isolates, one microbe (A5) effectively removed uranium in 12 h at temperature 30 deg C and pH 8-9. Molecular characterization and phylogenetic analysis support the classification of the isolate A5 as a new strain which was named as Streptomyces sp. MINIYAA7 (Genbank accession number KF909129). (author)

  11. Isolation, screening and characterization of uranium microremediable actinomycetes from fallen leaves of Azadirachta indica in Western Ghats

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Padmavathy, S. [Nirmala College for Women, Coimbatore, Tamil Nadu (India). Department of Botany

    2014-12-15

    Microremediation of harmful radioactive waste such as uranium has been carried out by the endophytic actinomycetes strains isolated from the unnoticed fallen leaves of commonly available medicinal plant Azadirachta indica, which are considered as unique source. Among six actinobacteria isolates, one microbe (A5) effectively removed uranium in 12 h at temperature 30 deg C and pH 8-9. Molecular characterization and phylogenetic analysis support the classification of the isolate A5 as a new strain which was named as Streptomyces sp. MINIYAA7 (Genbank accession number KF909129). (author)

  12. Bioprospecting Sediments from Red Sea Coastal Lagoons for Microorganisms and Their Antimicrobial Potential

    KAUST Repository

    Al-Amoudi, Soha

    2016-12-08

    showed a higher percentage of enzymes associated with antibiotic synthesis, PKS and NRPS. When considering sediment type, mangrove mud samples showed a higher percentage of enzymes associated with antibiotic synthesis than microbial mat samples. Taken together, RHL was shown to be the better location with an increased probability of successful antibiotic bioprospecting, while the best sediment type in RHL for this purpose is microbial mat. Moreover, the phylum Actinobacteria tends to be the common target for research when it comes to antibiotic bioprospecting. However this culture-independent metagenomic study suggests the tremendous potential of Proteobacteria, Bacteroidetes, Cyanobacteria and Firmicutes for this purpose. Taking into account that the metagenomic screen suggests other phyla beyond Actinobacteria for antibiotic bioprospecting, the culture-dependent experiments were not designed to target actinobacteria alone. A total of 251 bacterial strains were isolated from the three collected sediments. Phylogenetic characterization of 251 bacterial isolates, based on 16S rRNA gene sequencing, supported their assignment to five different phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Planctomycetes. Fifteen putative novel species were identified based on a 16S rRNA gene sequence similarity of ≤ 98 % to other strain sequences in the NCBI database. We demonstrate that 52 of the 251 isolates exhibit the potential to produce an antimicrobial effect. Additionally, at least one type of biosynthetic gene sequence, responsible for the synthesis of secondary metabolites, was recovered from 25 of the 52 isolates. Moreover, 10 of the isolates had a growth inhibition effect towards all target strains. In conclusion, this study demonstrated the significant microbial diversity associated with Red Sea harbor/lagoon systems and their potential to produce antimicrobial compounds and novel secondary metabolites. To the best of our knowledge, this is the first

  13. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing

    Science.gov (United States)

    Diouf, Michel; Roy, Virginie; Mora, Philippe; Frechault, Sophie; Lefebvre, Thomas; Hervé, Vincent; Rouland-Lefèvre, Corinne; Miambi, Edouard

    2015-01-01

    Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers. PMID:26444989

  14. Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy).

    Science.gov (United States)

    Quéméneur, Marianne; Palvadeau, Alexandra; Postec, Anne; Monnin, Christophe; Chavagnac, Valérie; Ollivier, Bernard; Erauso, Gaël

    2015-09-01

    The Voltri Massif is an ophiolitic complex located in the Ligurian Alps close to the city of Genova (Northern Italy) where several springs discharge high pH (up to 11.7), low salinity waters produced by the active serpentinization of the ultramafic basement. Mixing of these hyperalkaline waters with the river waters along with the uptake of atmospheric carbon dioxide forms brownish carbonate precipitates covering the bedrock at the springs. Diverse archaeal and bacterial communities were detected in these carbonate precipitates using 454 pyrosequencing analyses of 16S ribosomal RNA (rRNA) genes. Archaeal communities were dominated by members of potential methane-producing and/or methane-oxidizing Methanobacteriales and Methanosarcinales (Euryarchaeota) together with ammonia-oxidizing Nitrososphaerales (Thaumarchaeota) similar to those found in other serpentinization-driven submarine and terrestrial ecosystems. Bacterial communities consisted of members of the Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, and Verrucomicrobia phyla, altogether accounting for 92.2% of total retrieved bacterial 16S rRNA gene sequences. Amongst Bacteria, potential chemolithotrophy was mainly associated with Alpha- and Betaproteobacteria classes, including nitrogen-fixing, methane-oxidizing or hydrogen-oxidizing representatives of the genera Azospirillum, Methylosinus, and Hydrogenophaga/'Serpentinomonas', respectively. Besides, potential chemoorganotrophy was attributed mainly to representatives of Actinobacteria and Planctomycetales phyla. The reported 16S rRNA gene data strongly suggested that hydrogen, methane, and nitrogen-based chemolithotrophy can sustain growth of the microbial communities inhabiting the carbonate precipitates in the hyperalkaline springs of the Voltri Massif, similarly to what was previously observed in other serpentinite-hosted ecosystems.

  15. Photosynthesis within Mars' volcanic craters?: Insights from Cerro Negro Volcano, Nicaragua

    Science.gov (United States)

    Rogers, K. L.; Hynek, B. M.; McCollom, T. M.

    2011-12-01

    Discrete locales of sulfate-rich bedrocks exist on Mars and in many cases represent the products of acid-sulfate alteration of martian basalt. In some places, the products have been attributed to hydrothermal processes from local volcanism. In order to evaluate the habitability of such an environment, we are investigating the geochemical and biological composition of active fumaroles at Cerro Negro Volcano, Nicaragua, where fresh basaltic cinders similar in composition to martian basalts are altered by acidic, sulfur-bearing gases. Temperatures at active fumaroles can reach as high as 400°C and the pH of the steam ranges from Cyanobacteria and Ktedonobacteria, however Actinobacteria, alpha-Proteobacteria and Acidobacteria were also identified. Many of the cyanobacterial sequences were similar to those of the eukaryotic Cyanidiales, red algae that inhabit acidic, geothermal environments. Many of sequences related to Ktedonobacteria and Actinobacteria have also been found in acid mine drainage environments. The Archaeal community was far less diverse, with sequences matching those of unclassified Desulfurococcales and unclassified Thermoprotei. These sequences were more distant from isolated species than the bacterial sequences. Similar bacterial and archaeal communities have been found in hot spring environments in Yellowstone National Park, Greenland, Iceland, New Zealand and Costa Rica. Some of Mars' volcanoes were active for billions of years and by analogy to Cerro Negro, may have hosted photosynthetic organisms that could have been preserved in alteration mineral assemblages. Even on a generally cold and dry Mars, volcanic craters likely provided long-lived warm and wet conditions and should be a key target for future exploration assessing habitability.

  16. Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing.

    Science.gov (United States)

    Chimienti, Guglielmina; Piredda, Roberta; Pepe, Gabriella; van der Werf, Inez Dorothé; Sabbatini, Luigia; Crecchio, Carmine; Ricciuti, Patrizia; D'Erchia, Anna Maria; Manzari, Caterina; Pesole, Graziano

    2016-10-01

    Comprehensive studies of the biodiversity of the microbial epilithic community on monuments may provide critical insights for clarifying factors involved in the colonization processes. We carried out a high-throughput investigation of the communities colonizing the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. The metagenomic analysis of sequences revealed the presence of Archaea, Bacteria, and Eukarya. Bacteria were Actinobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria, Chloroflexi, Firmicutes and Candidatus Saccharibacteria. The predominant phylum was Actinobacteria, with the orders Actynomycetales and Rubrobacteriales, represented by the genera Pseudokineococcus, Sporichthya, Blastococcus, Arthrobacter, Geodermatophilus, Friedmanniella, Modestobacter, and Rubrobacter, respectively. Cyanobacteria sequences showing strong similarity with an uncultured bacterium sequence were identified. The presence of the green algae Oocystaceae and Trebuxiaceae was revealed. The microbial diversity was explored at qualitative and quantitative levels, evaluating the richness (the number of operational taxonomic units (OTUs)) and the abundance of reads associated with each OTU. The rarefaction curves approached saturation, suggesting that the majority of OTUs were recovered. The results highlighted a structured community, showing low diversity, made up of extremophile organisms adapted to desiccation and UV radiation. Notably, the microbiome appeared to be composed not only of microorganisms possibly involved in biodeterioration but also of carbonatogenic bacteria, such as those belonging to the genus Arthrobacter, which could be useful in bioconservation. Our investigation demonstrated that molecular tools, and in particular the easy-to-run next-generation sequencing, are powerful to perform a microbiological diagnosis in order to plan restoration and protection strategies.

  17. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response.

    Directory of Open Access Journals (Sweden)

    Chin-An Yang

    2017-09-01

    Full Text Available Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined.In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 pinworm-infected first and fourth grade primary school children in Taichung, Taiwan, for a gut microbiome study and an intestinal cytokine and SIgA analysis. In the pinworm-infected individuals, fecal samples were collected again at 2 weeks after administration of 100 mg mebendazole. Gut microbiota diversity increased after Enterobius infection, and it peaked after administration of mebendazole. At the phylum level, pinworm infection and mebendazole deworming were associated with a decreased relative abundance of Fusobacteria and an increased proportion of Actinobacteria. At the genus level, the relative abundance of the probiotic Bifidobacterium increased after enterobiasis and mebendazole treatment. The intestinal SIgA level was found to be lower in the pinworm-infected group, and was elevated in half of the mebendazole-treated group. A higher proportion of pre-treatment Salmonella spp. was associated with a non-increase in SIgA after mebendazole deworming treatment.Childhood exposure to pinworm plus mebendazole is associated with increased bacterial diversity, an increased abundance of Actinobacteria including the probiotic Bifidobacterium, and a decreased proportion of Fusobacteria. The gut SIgA level was lower in the pinworm-infected group, and was increased in half of the individuals after mebendazole deworming treatment.

  18. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response.

    Science.gov (United States)

    Yang, Chin-An; Liang, Chao; Lin, Chia-Li; Hsiao, Chiung-Tzu; Peng, Ching-Tien; Lin, Hung-Chih; Chang, Jan-Gowth

    2017-09-01

    Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined. In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 pinworm-infected) first and fourth grade primary school children in Taichung, Taiwan, for a gut microbiome study and an intestinal cytokine and SIgA analysis. In the pinworm-infected individuals, fecal samples were collected again at 2 weeks after administration of 100 mg mebendazole. Gut microbiota diversity increased after Enterobius infection, and it peaked after administration of mebendazole. At the phylum level, pinworm infection and mebendazole deworming were associated with a decreased relative abundance of Fusobacteria and an increased proportion of Actinobacteria. At the genus level, the relative abundance of the probiotic Bifidobacterium increased after enterobiasis and mebendazole treatment. The intestinal SIgA level was found to be lower in the pinworm-infected group, and was elevated in half of the mebendazole-treated group. A higher proportion of pre-treatment Salmonella spp. was associated with a non-increase in SIgA after mebendazole deworming treatment. Childhood exposure to pinworm plus mebendazole is associated with increased bacterial diversity, an increased abundance of Actinobacteria including the probiotic Bifidobacterium, and a decreased proportion of Fusobacteria. The gut SIgA level was lower in the pinworm-infected group, and was increased in half of the individuals after mebendazole deworming treatment.

  19. Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil.

    Science.gov (United States)

    Salam, Lateef B; Obayori, Sunday O; Nwaokorie, Francisca O; Suleiman, Aisha; Mustapha, Raheemat

    2017-03-01

    Analyzing the microbial community structure and functions become imperative for ecological processes. To understand the impact of spent engine oil (SEO) contamination on microbial community structure of an agricultural soil, soil microcosms designated 1S (agricultural soil) and AB1 (agricultural soil polluted with SEO) were set up. Metagenomic DNA extracted from the soil microcosms and sequenced using Miseq Illumina sequencing were analyzed for their taxonomic and functional properties. Taxonomic profiling of the two microcosms by MG-RAST revealed the dominance of Actinobacteria (23.36%) and Proteobacteria (52.46%) phyla in 1S and AB1 with preponderance of Streptomyces (12.83%) and Gemmatimonas (10.20%) in 1S and Geodermatophilus (26.24%), Burkholderia (15.40%), and Pseudomonas (12.72%) in AB1, respectively. Our results showed that soil microbial diversity significantly decreased in AB1. Further assignment of the metagenomic reads to MG-RAST, Cluster of Orthologous Groups (COG) of proteins, Kyoto Encyclopedia of Genes and Genomes (KEGG), GhostKOALA, and NCBI's CDD hits revealed diverse metabolic potentials of the autochthonous microbial community. It also revealed the adaptation of the community to various environmental stressors such as hydrocarbon hydrophobicity, heavy metal toxicity, oxidative stress, nutrient starvation, and C/N/P imbalance. To the best of our knowledge, this is the first study that investigates the effect of SEO perturbation on soil microbial communities through Illumina sequencing. The results indicated that SEO contamination significantly affects soil microbial community structure and functions leading to massive loss of nonhydrocarbon degrading indigenous microbiota and enrichment of hydrocarbonoclastic organisms such as members of Proteobacteria and Actinobacteria.

  20. Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification.

    Science.gov (United States)

    Yang, Qi; Franco, Christopher M M; Zhang, Wei

    2015-10-01

    Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.

  1. Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil.

    Science.gov (United States)

    Zrafi-Nouira, Ines; Guermazi, Sonda; Chouari, Rakia; Safi, Nimer M D; Pelletier, Eric; Bakhrouf, Amina; Saidane-Mosbahi, Dalila; Sghir, Abdelghani

    2009-07-01

    The indigenous microbiota of polluted coastal seawater in Tunisia was enriched by increasing the concentration of zarzatine crude oil. The resulting adapted microbiota was incubated with zarzatine crude oil as the only carbon and energy source. Crude oil biodegradation capacity and bacterial population dynamics of the microbiota were evaluated every week for 28 days (day 7, day 14, day 21, and day 28). Results show that the percentage of petroleum degradation was 23.9, 32.1, 65.3, and 77.8%, respectively. At day 28, non-aromatic and aromatic hydrocarbon degradation rates reached 92.6 and 68.7%, respectively. Bacterial composition of the adapted microflora was analysed by 16S rRNA gene cloning and sequencing, using total genomic DNA extracted from the adapted microflora at days 0, 7, 14, 21, and 28. Five clone libraries were constructed and a total of 430 sequences were generated and grouped into OTUs using the ARB software package. Phylogenetic analysis of the adapted microbiota shows the presence of four phylogenetic groups: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Diversity indices show a clear decrease in bacterial diversity of the adapted microflora according to the incubation time. The Proteobacteria are the most predominant (>80%) at day 7, day 14 and day 21 but not at day 28 for which the microbiota was reduced to only one OTU affiliated with the genus Kocuria of the Actinobacteria. This study shows that the degradation of zarzatine crude oil components depends on the activity of a specialized and dynamic seawater consortium composed of different phylogenetic taxa depending on the substrate complexity.

  2. Streptomyces songpinggouensis sp. nov., a Novel Actinomycete Isolated from Soil in Sichuan, China.

    Science.gov (United States)

    Guan, Xuejiao; Li, Wenchao; Liu, Chongxi; Jin, Pinjiao; Guo, Siyu; Wang, Xiangjing; Xiang, Wensheng

    2016-12-01

    During a screening for novel and biotechnologically useful actinobacteria, a novel actinobacteria with weak antifungal activity, designated strain NEAU-Spg19 T , was isolated from a soil sample collected from pine forest in Songpinggou, Sichuan, southwest China. The strain was characterized using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth occurred at a temperature range of 10-30 °C, pH 5.0-11.0 and NaCl concentrations of 0-5 %. The cell wall peptidoglycan consisted of LL-diaminopimelic acid and glycine. The major menaquinones were MK-9(H 6 ), MK-9(H 8 ) and MK-9(H 4 ). The phospholipid profile contained diphosphatidylglycerol (DPG), phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C 15:0 , iso-C 16:0 , and C 16:0 . 16S rRNA gene sequence similarity studies showed that strain NEAU-Spg19 T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces tauricus JCM 4837 T (98.6 %) and Streptomyces rectiviolaceus JCM 9092 T (98.3 %). Some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from S. tauricus JCM 4837 T and S. rectiviolaceus JCM 9092 T . Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NEAU-Spg19 T represents a novel species of the genus Streptomyces, for which the name Streptomyces songpinggouensis sp. nov. is proposed. The type strain is NEAU-Spg19 T (=CGMCC 4.7140 T =DSM 42141 T ).

  3. [The composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora].

    Science.gov (United States)

    Lei, D; Lin, Y; Jiang, X; Lan, L; Zhang, W; Wang, B X

    2017-03-02

    Objective: To explore the composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora. Method: Twenty-four specimens were collected from pregnant Kunming mouse including 8 mice of early embryonic (12-13 days) gastrointestinal tissues, 8 cases of late embryonic (19-20 days)gastrointestinal tissues, 8 of late pregnancy placental tissues.The 24 samples were extracted by DNeasy Blood & Tissue kit for high-throughput DNA sequencing. Result: The level of Proteobacteria, Bacteroidetes, Actino-bacteria and Firmicutes were predominantin all specimens.The relative content of predominant bacterial phyla in each group: Proteobacteria (95.00%, 88.14%, 87.26%), Bacteroidetes(1.71%, 2.15%, 2.63%), Actino-Bacteria(1.16%, 4.10%, 3.38%), Firmicutes(0.75%, 2.62%, 2.01%). At the level of family, there were nine predominant bacterial families in which Enterobacteriaeae , Shewanel laceae and Moraxellaceae were dominant.The relative content of dominant bacterial family in eachgroup: Enterobacteriaeae (46.99%, 44.34%, 41.08%), Shewanellaceae (21.99%, 21.10%, 19.05%), Moraxellaceae (9.18%, 7.09%, 5.64%). From the species of flora, the flora from fetal gastrointestinal in early pregnancy and late pregnancy (65.44% and 62.73%) were the same as that from placenta tissue in the late pregnancy.From the abundance of bacteria, at the level of family, the same content of bacteria in three groups accounted for 78.16%, 72.53% and 65.78% respectively. Conclusion: It was proved that the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora were colonized. At the same time the bacteria are classified.

  4. Diverse microbial species survive high ammonia concentrations

    Science.gov (United States)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  5. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil.

    Science.gov (United States)

    Cordovez, Viviane; Carrion, Victor J; Etalo, Desalegn W; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P; Raaijmakers, Jos M

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  6. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    Directory of Open Access Journals (Sweden)

    Viviane eCordovez

    2015-10-01

    Full Text Available In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs. VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogues of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  7. The Salivary Microbiome in Polycystic Ovary Syndrome (PCOS and its Association with Disease-related Parameters: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lisa Lindheim

    2016-08-01

    Full Text Available Background: Polycystic ovary syndrome (PCOS is a common female endocrine condition of unclear etiology characterized by hyperandrogenism, oligo/amenorrhoea, and polycystic ovarian morphology. PCOS is often complicated by infertility, overweight/obesity, insulin resistance, and low-grade inflammation. The gut microbiome is known to contribute to several of these conditions. Recently, an association between stool and saliva microbiome community profiles was shown, making saliva a possible convenient, non-invasive sample type for detecting gut microbiome changes in systemic disease. In this study, we describe the saliva microbiome of PCOS patients and the association of microbiome features with PCOS-related parameters. Methods: 16S rRNA gene amplicon sequencing was performed on saliva samples from 24 PCOS patients and 20 healthy controls. Data processing and microbiome analyses were conducted in mothur and QIIME. All study subjects were characterized regarding reproductive, metabolic, and inflammatory parameters. Results: PCOS patients showed a decrease in bacteria from the phylum Actinobacteria and a borderline significant shift in bacterial community composition in unweighted UniFrac analysis. No differences between patients and controls were found in alpha diversity, weighted UniFrac analysis, or on other taxonomic levels. We found no association of saliva alpha diversity, beta diversity, or taxonomic composition with serum testosterone, oligo/amenorrhoea, overweight, insulin resistance, inflammatory markers, age, or diet.Conclusions: In this pilot study, patients with PCOS showed a reduced salivary relative abundance of Actinobacteria. Reproductive and metabolic components of the syndrome were not associated with saliva microbiome parameters, indicating that the majority of between-subject variation in saliva microbiome profiles remains to be explained.

  8. Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador.

    Science.gov (United States)

    Gainza, Oreste; Ramírez, Carolina; Ramos, Alfredo Salinas; Romero, Jaime

    2018-04-01

    The goal of the study was to characterize the intestinal tract bacterial microbiota composition of Penaeus vannamei in intensive commercial ponds in Ecuador, comparing two shrimp-farming phases: nursery and harvest. Bacterial microbiota was examined by sequencing amplicons V2-V3 of the 16S rRNA using Ion Torrent technology. Archaea sequences were detected in both phases. Sequence analyses revealed quantitative and qualitative differences between the nursery phase and the harvest phase in shrimp intestinal microbiota composition. The main differences were observed at the phylum level during the nursery phase, and the prevailing phyla were CKC4 (37.3%), Proteobacteria (29.8%), Actinobacteria (11.6%), and Firmicutes (10.1%). In the harvest phase, the prevailing phyla were Proteobacteria (28.4%), Chloroflexi (19.9%), and Actinobacteria (15.1%). At the genus level, microbiota from the nursery phase showed greater relative abundances of CKC4 uncultured bacterium (37%) and Escherichia-Shigella (18%). On the contrary, in the microbiota of harvested shrimp, the prevailing genera were uncultured Caldilinea (19%) and Alphaproteobacteria with no other assigned rate (10%). The analysis of similarity ANOSIM test (beta diversity) indicated significant differences between the shrimp microbiota for these two farming phases. Similarly, alfa-diversity analysis (Chao1) indicated that the microbiota at harvest was far more diverse than the microbiota during the nursery phase, which showed a homogeneous composition. These results suggest that shrimp microbiota diversify their composition during intensive farming. The present work offers the most detailed description of the microbiota of P. vannamei under commercial production conditions to date.

  9. The Microbiome in Posttraumatic Stress Disorder and Trauma-Exposed Controls: An Exploratory Study.

    Science.gov (United States)

    Hemmings, Sian M J; Malan-Müller, Stefanie; van den Heuvel, Leigh L; Demmitt, Brittany A; Stanislawski, Maggie A; Smith, David G; Bohr, Adam D; Stamper, Christopher E; Hyde, Embriette R; Morton, James T; Marotz, Clarisse A; Siebler, Philip H; Braspenning, Maarten; Van Criekinge, Wim; Hoisington, Andrew J; Brenner, Lisa A; Postolache, Teodor T; McQueen, Matthew B; Krauter, Kenneth S; Knight, Rob; Seedat, Soraya; Lowry, Christopher A

    2017-10-01

    Inadequate immunoregulation and elevated inflammation may be risk factors for posttraumatic stress disorder (PTSD), and microbial inputs are important determinants of immunoregulation; however, the association between the gut microbiota and PTSD is unknown. This study investigated the gut microbiome in a South African sample of PTSD-affected individuals and trauma-exposed (TE) controls to identify potential differences in microbial diversity or microbial community structure. The Clinician-Administered PTSD Scale for DSM-5 was used to diagnose PTSD according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria. Microbial DNA was extracted from stool samples obtained from 18 individuals with PTSD and 12 TE control participants. Bacterial 16S ribosomal RNA gene V3/V4 amplicons were generated and sequenced. Microbial community structure, α-diversity, and β-diversity were analyzed; random forest analysis was used to identify associations between bacterial taxa and PTSD. There were no differences between PTSD and TE control groups in α- or β-diversity measures (e.g., α-diversity: Shannon index, t = 0.386, p = .70; β-diversity, on the basis of analysis of similarities: Bray-Curtis test statistic = -0.033, p = .70); however, random forest analysis highlighted three phyla as important to distinguish PTSD status: Actinobacteria, Lentisphaerae, and Verrucomicrobia. Decreased total abundance of these taxa was associated with higher Clinician-Administered PTSD Scale scores (r = -0.387, p = .035). In this exploratory study, measures of overall microbial diversity were similar among individuals with PTSD and TE controls; however, decreased total abundance of Actinobacteria, Lentisphaerae, and Verrucomicrobia was associated with PTSD status.

  10. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  11. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock

    Directory of Open Access Journals (Sweden)

    Dhiraj ePaul

    2016-01-01

    Full Text Available Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world created in the basalt rocks. Although culture-dependent studies have been reported, the comprehensive understanding of microbial community composition and structure of Lonar Lake remain obscure. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet near consistent community composition. The predominance of bacterial phyla Proteobacteria (30% followed by Actinobacteria (24%, Firmicutes (11% and Cyanobacteria (5% was observed. Bacterial phylum Bacteroidetes (1.12%, BD1-5 (0.5%, Nitrospirae (0.41% and Verrucomicrobia (0.28% were detected as relatively minor populations in Lonar Lake ecosystem. Within Proteobacteria, Gammaproteobacteria represented the most abundant population (21-47% among all the sediments and as a minor population in water samples. Bacterial members Proteobacteria and Firmicutes were present significantly higher (p≥0.05 in sediment samples, whereas members of Actinobacteria, Candidate_division_TM7 and Cyanobacteria (p≥0.05 were significantly abundant in water samples. It was noted that compared to other hypersaline soda lakes, Lonar Lake samples formed one distinct cluster, suggesting a different microbial community composition and structure. The present study reports for the first time the different composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. Having better insight of community structure of this Lake ecosystem could be useful in understanding the microbial role in the geochemical cycle for future functional exploration of the unique hypersaline Lonar Lake.

  12. Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem.

    Directory of Open Access Journals (Sweden)

    Guo-Chun Ding

    Full Text Available Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.

  13. Involvement of cell surface structures in size-independent grazing resistance of freshwater .i.Actinobacteria./i

    Czech Academy of Sciences Publication Activity Database

    Tarao, M.; Jezbera, Jan; Hahn, M.W.

    2009-01-01

    Roč. 75, č. 14 (2009), s. 4720-4726 ISSN 0099-2240 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : in-situ hybridization * ribosomal-RNA genes * pelagic bacteria * habitats * predation Subject RIV: EE - Microbiology, Virology Impact factor: 3.686, year: 2009

  14. Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Lladó, S., E-mail: llado@biomed.cas.cz [Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4 (Czech Republic); Covino, S., E-mail: covino@biomed.cas.cz [Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4 (Czech Republic); Solanas, A.M., E-mail: asolanas@ub.edu [Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Petruccioli, M., E-mail: petrucci@unitus.it [Department for Innovation in Biological, Agro-Food and Forest Systems [DIBAF], University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo (Italy); D’annibale, A., E-mail: dannib@unitus.it [Department for Innovation in Biological, Agro-Food and Forest Systems [DIBAF], University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo (Italy); Viñas, M., E-mail: marc.vinas@irta.cat [GIRO Joint Research Unit IRTA-UPC, Institute of Research and Technology Food and Agriculture [IRTA], Torre Marimon, E-08140 Caldes de Montbui (Spain)

    2015-02-11

    Highlights: • Soil microbial community assessment through classical (MPN) and molecular tools (DGGE and pyrosequencing) is provided. • A failure of exogenous white rot fungi to colonize the polluted soil is shown by DGGE and pyrosequencing. • Surfactant Brij 30 hampers 4-ring PAHs degradation due to toxicity over Actinobacteria and Bacteroidetes populations. • A high prevalence of Fusarium and Scedosporium populations is revealed during soil bioremediation. • Cupriavidus, Mycobacterium and Chithinophagaceae are potential HMW–PAH degraders in the soil. - Abstract: Bacterial and fungal biodiversity throughout different biostimulation and bioaugmentation treatments applied to an industrial creosote-polluted soil were analyzed by means of polyphasic approach in order to gain insight into the microbial community structure and dynamics. Pyrosequencing data obtained from initial creosote polluted soil (after a biopiling step) revealed that Alpha and Gammaproteobacteria were the most abundant bacterial groups, whereas Fusarium and Scedosporium were the main fungal genera in the contaminated soil. At the end of 60-days laboratory scale bioremediation assays, pyrosequencing and DGGE data showed that (i) major bacterial community shifts were caused by the type of mobilizing agent added to the soil and, to a lesser extent, by the addition of lignocellulosic substrate; and (ii) the presence of the non-ionic surfactant (Brij 30) hampered the proliferation of Actinobacteria (Mycobacteriaceae) and Bacteroidetes (Chitinophagaceae) and, in the absence of lignocellulosic substrate, also impeded polycyclic aromatic hydrocarbons (PAHs) degradation. The results show the importance of implementing bioremediation experiments combined with microbiome assessment to gain insight on the effect of crucial parameters (e.g. use of additives) over the potential functions of complex microbial communities harbored in polluted soils, essential for bioremediation success.

  15. Microbial and genetic ecology of tropical Vertisols under intensive chemical farming.

    Science.gov (United States)

    Malhotra, Jaya; Aparna, K; Dua, Ankita; Sangwan, Naseer; Trimurtulu, N; Rao, D L N; Lal, Rup

    2015-01-01

    There are continued concerns on unscientific usage of chemical fertilizers and pesticides, particularly in many developing countries leading to adverse consequences for soil biological quality and agricultural sustainability. In farmers' fields in tropical Vertisols of peninsular India, "high" fertilizer and pesticide usage at about 2.3 times the recommended rates in black gram (Vigna mungo) did not have a deleterious effect on the abundance of culturable microorganisms, associative nitrogen fixers, nitrifiers, and 16S rRNA gene diversity compared to normal rates. However, "very high" application at about five times the fertilizers and 1.5 times pesticides in chilies (Capsicum annuum) adversely affected the populations of fungi, actinomycetes, and ammonifiers, along with a drastic change in the eubacterial community profile and diversity over normal rates. Actinobacteria were dominant in black gram normal (BG1) (47%), black gram high (BG2) (36%), and chili normal (CH1) (30%) and were least in chili very high (CH2) (14%). Geodermatophilus formed 20% of Actinobacteria in BG1 but disappeared in BG2, CH1, and CH2. Asticcacaulis dominated at "very high" input site (CH2). Diversity of nitrogen fixers was completely altered; Dechloromonas and Anaeromyxobacter were absent in BG1 but proliferated well in BG2. There was reduction in rhizobial nifH sequences in BG2 by 46%. Phylogenetic differences characterized by UniFrac and principal coordinate analysis showed that BG2 and CH2 clustered together depicting a common pattern of genetic shift, while BG1 and CH1 fell at different axis. Overall, there were adverse consequences of "very high" fertilizer and pesticide usage on soil microbial diversity and function in tropical Vertisols.

  16. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters.

    Science.gov (United States)

    Hardoim, C C P; Costa, R; Araújo, F V; Hajdu, E; Peixoto, R; Lins, U; Rosado, A S; van Elsas, J D

    2009-05-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using "direct" and "indirect" approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups--Pseudomonas and Actinobacteria--revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.

  17. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    Science.gov (United States)

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Complete genome sequence of producer of the glycopeptide antibiotic Aculeximycin Kutzneria albida DSM 43870T, a representative of minor genus of Pseudonocardiaceae.

    Science.gov (United States)

    Rebets, Yuriy; Tokovenko, Bogdan; Lushchyk, Igor; Rückert, Christian; Zaburannyi, Nestor; Bechthold, Andreas; Kalinowski, Jörn; Luzhetskyy, Andriy

    2014-10-10

    Kutzneria is a representative of a rarely observed genus of the family Pseudonocardiaceae. Kutzneria species were initially placed in the Streptosporangiaceae genus and later reconsidered to be an independent genus of the Pseudonocardiaceae. Kutzneria albida is one of the eight known members of the genus. This strain is a unique producer of the glycosylated polyole macrolide aculeximycin which is active against both bacteria and fungi. Kutzneria albida genome sequencing and analysis allow a deeper understanding of evolution of this genus of Pseudonocardiaceae, provide new insight in the phylogeny of the genus, as well as decipher the hidden secondary metabolic potential of these rare actinobacteria. To explore the biosynthetic potential of Kutzneria albida to its full extent, the complete genome was sequenced. With a size of 9,874,926 bp, coding for 8,822 genes, it stands alongside other Pseudonocardiaceae with large circular genomes. Genome analysis revealed 46 gene clusters potentially encoding secondary metabolite biosynthesis pathways. Two large genomic islands were identified, containing regions most enriched with secondary metabolism gene clusters. Large parts of this secondary metabolism "clustome" are dedicated to siderophores production. Kutzneria albida is the first species of the genus Kutzneria with a completely sequenced genome. Genome sequencing allowed identifying the gene cluster responsible for the biosynthesis of aculeximycin, one of the largest known oligosaccharide-macrolide antibiotics. Moreover, the genome revealed 45 additional putative secondary metabolite gene clusters, suggesting a huge biosynthetic potential, which makes Kutzneria albida a very rich source of natural products. Comparison of the Kutzneria albida genome to genomes of other actinobacteria clearly shows its close relations with Pseudonocardiaceae in line with the taxonomic position of the genus.

  19. Elimination of indigenous linear plasmids in Streptomyces hygroscopicus var. jinggangensis and Streptomyces sp. FR008 to increase validamycin A and candicidin productivities.

    Science.gov (United States)

    Lu, Chenyang; Wu, Hang; Su, Xiurong; Bai, Linquan

    2017-05-01

    Giant linear plasmids, which replicate independently of the chromosomes, widely exist in actinobacteria. Previous studies mostly focused on the replication and evolution of the linear plasmids or the secondary metabolite gene clusters and the resistance gene clusters therein. However, the relationships of the linear plasmids to the productivities of secondary metabolites have not been studied. In this work, we developed a method to eliminate the indigenous linear plasmid pSHJG1 in Streptomyces hygroscopicus var. jinggangensis, and validamycin A titer increased by 12.5% (from 19.16 ± 1.93 to 21.56 ± 2.25 g/L) in the high-yielding strain TL01 and 43.7% (from 4.67 ± 0.05 to 6.71 ± 0.21 g/L) in the wild-type strain 5008, whereas the cellular growth of the plasmid-cured mutant was reduced. Subsequently, the plasmid-cured mutant was complemented with three structure genes involved in cellular growth in pSHJG1 under the control of a strong PvalA promoter. Among them, the complementation of genes pSHJG1.069 and pSHJG1.072, encoding a putative hydrolase and putative P-loop ATPase, respectively, resulted in the restoration of cellular growth and validamycin A titer. Furthermore, the elimination of indigenous linear plasmid pHZ228 in the candicidin producer Streptomyces sp. FR008 also led to enhanced candicidin production and reduced cellular growth. Because of the wide distribution of indigenous linear plasmids in actinobacteria, the engineering strategy described here could be implemented in a variety of strains for the overproduction of various natural products.

  20. The oral and conjunctival microbiotas in cats with and without feline immunodeficiency virus infection.

    Science.gov (United States)

    Weese, Scott J; Nichols, Jamieson; Jalali, Mohammad; Litster, Annette

    2015-03-03

    The oral and conjunctival microbiotas likely play important roles in protection from opportunistic infections, while also being the source of potential pathogens. Yet, there has been limited investigation in cats, and the impact of comorbidities such as feline immunodeficiency virus (FIV) infection has not been reported. Oral and conjunctival swabs were collected from cats with FIV infection and FIV-uninfected controls, and subjected to 16S rRNA gene (V4) PCR and next generation sequencing. 9,249 OTUs were identified from conjunctival swabs, yet the most common 20 (0.22%) OTUs accounted for 76% of sequences. The two most abundant OTUs both belonged to Staphylococcus, and accounted for 37% of sequences. Cats with FIV infection had significantly lower relative abundances of Verrucomicrobia, Fibrobacteres, Spirochaetes, Bacteroidetes and Tenericutes, and a higher relative abundance of Deinococcus-Thermus. There were significant differences in both community membership (P = 0.006) and community structure (P = 0.02) between FIV-infected and FIV-uninfected cats. FIV-infected cats had significantly higher relative abundances of Fusobacteria and Actinobacteria in the oral cavity, and significantly higher relative abundances of several bacterial classes including Fusobacteria (0.022 vs 0.007, P = 0.006), Actinobacteria (0.017 vs 0.003, P = 0.003), Sphingobacteria (0.00015 vs 0.00003, P = 0.0013) and Flavobacteria (0.0073 vs 0.0034, P = 0.030). The feline conjunctival and oral microbiotas are complex polymicrobial communities but dominated by a limited number of genera. There is an apparent impact of FIV infection on various components of the microbiota, and assessment of the clinical relevance of these alterations in required.

  1. Effect of Saccharomyces boulardii and Mode of Delivery on the Early Development of the Gut Microbial Community in Preterm Infants.

    Science.gov (United States)

    Zeber-Lubecka, Natalia; Kulecka, Maria; Ambrozkiewicz, Filip; Paziewska, Agnieszka; Lechowicz, Milosz; Konopka, Ewa; Majewska, Urszula; Borszewska-Kornacka, Maria; Mikula, Michal; Cukrowska, Bozena; Ostrowski, Jerzy

    2016-01-01

    Recent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities. To examine the effect of oral administration of Saccharomyces (S.) boulardii and mode of delivery on the intestinal microbial community in preterm infants. Stool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18) or a placebo group (n = 21). Samples were collected before probiotic intake (day 0), and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA) gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform. A total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants. While the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns.

  2. Dynamics of the surgical microbiota along the cardiothoracic surgery pathway

    Directory of Open Access Journals (Sweden)

    Sara eRomano-Bertrand

    2015-01-01

    Full Text Available Human skin associated microbiota are increasingly described by culture-independent methods that showed an unexpected diversity with variation correlated with several pathologies. A role of microbiota disequilibrium in infection occurrence is hypothesized, particularly in surgical site infections. We study the diversities of operative site microbiota and its dynamics during surgical pathway of patients undergoing coronary-artery by-pass graft (CABG. Pre-, per- and post-operative samples were collected from 25 patients: skin before the surgery, superficially and deeply during the intervention, and healing tissues. Bacterial diversity was assessed by DNA fingerprint using 16S rRNA gene PCR and Temporal Temperature Gel Electrophoresis (TTGE. The diversity of Operational Taxonomic Units (OTUs at the surgical site was analyzed according to the stage of surgery.From all patients and samples, we identified 147 different OTUs belonging to the 6 phyla Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria and Fusobacteria. High variations were observed among patients but common themes can be observed. The Firmicutes dominated quantitatively but were largely encompassed by the Proteobacteria regarding the OTUs diversity. The genera Propionibacterium and Staphylococcus predominated on the preoperative skin, whereas very diverse Proteobacteria appeared selected in peri-operative samples. The resilience in scar skin was partial with depletion in Actinobacteria and Firmicutes and increase of Gram-negative bacteria. Finally, the thoracic operative site presents an unexpected bacterial diversity, which is partially common to skin microbiota but presents particular dynamics. We described a complex bacterial community that gathers pathobiontes and bacteria deemed to be environmental, opportunistic pathogens and non-pathogenic bacteria. These data stress to consider surgical microbiota as a pathobiome rather than a reservoir of individual

  3. Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang

    Directory of Open Access Journals (Sweden)

    Rajal Debnath

    2016-09-01

    Full Text Available Information on rhizosphere micobiome of endemic plants from high mountain ecosystems against those of cultivated plantations is inadequate. Comparative bacterial profiles of endemic medicinal plant R. arboreum Sm. subsp. delavayi rhizosphere pertaining to four altitudinal zonation Pankang-Thang (PTSO, Nagula, Y-junction and Bum La (Indo-China border (in triplicates each along cold adapted Eastern slope of Himalayan Tawang region, India is described here. Significant differences in DGGE profile between below ground bulk vs rhizospheric community profile associated with the plant was identified. Tagged 16S amplicon sequencing from PTSO (3912m to Bum La (4509 m, revealed that soil pH, total nitrogen (TN, organic matter (OM significantly influenced the underlying bacterial community structure at different altitudes. The relative abundance of Acidobacteria was inversely related to pH, as opposed to TN which was positively correlated to Acidobacteria and Proteobacteria abundance. TN was also the significant predictor for less abundant taxonomic groups Chloroflexi, Gemmatimonadetes and Nitrospirae. Bum La soil harbored less bacterial diversity compared to other sites at lower altitudes. The most abundant phyla at 3% genetic difference were Acidobacteria, Actinobacteria and Proteobacteria amongst others. Analysis of similarity indicated greater similarity within lower altitudinal than higher altitudinal group (ANOSIM, R = 0.287, p = 0.02. Constraining the ordination with the edaphic factor explained 83.13% of variation. Unique phylotypes of Bradyrhizobium and uncultured Rhizobiales were found in significant proportions at the four regions. With over 1% relative abundance Actinobacteria (42.6%, Acidobacteria (24.02%, Proteobacteria (16.00%, AD3 (9.23%, WPS-2 (5.1% and Chloroflexi (1.48% dominated the core microbiome.

  4. Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil

    International Nuclear Information System (INIS)

    Lladó, S.; Covino, S.; Solanas, A.M.; Petruccioli, M.; D’annibale, A.; Viñas, M.

    2015-01-01

    Highlights: • Soil microbial community assessment through classical (MPN) and molecular tools (DGGE and pyrosequencing) is provided. • A failure of exogenous white rot fungi to colonize the polluted soil is shown by DGGE and pyrosequencing. • Surfactant Brij 30 hampers 4-ring PAHs degradation due to toxicity over Actinobacteria and Bacteroidetes populations. • A high prevalence of Fusarium and Scedosporium populations is revealed during soil bioremediation. • Cupriavidus, Mycobacterium and Chithinophagaceae are potential HMW–PAH degraders in the soil. - Abstract: Bacterial and fungal biodiversity throughout different biostimulation and bioaugmentation treatments applied to an industrial creosote-polluted soil were analyzed by means of polyphasic approach in order to gain insight into the microbial community structure and dynamics. Pyrosequencing data obtained from initial creosote polluted soil (after a biopiling step) revealed that Alpha and Gammaproteobacteria were the most abundant bacterial groups, whereas Fusarium and Scedosporium were the main fungal genera in the contaminated soil. At the end of 60-days laboratory scale bioremediation assays, pyrosequencing and DGGE data showed that (i) major bacterial community shifts were caused by the type of mobilizing agent added to the soil and, to a lesser extent, by the addition of lignocellulosic substrate; and (ii) the presence of the non-ionic surfactant (Brij 30) hampered the proliferation of Actinobacteria (Mycobacteriaceae) and Bacteroidetes (Chitinophagaceae) and, in the absence of lignocellulosic substrate, also impeded polycyclic aromatic hydrocarbons (PAHs) degradation. The results show the importance of implementing bioremediation experiments combined with microbiome assessment to gain insight on the effect of crucial parameters (e.g. use of additives) over the potential functions of complex microbial communities harbored in polluted soils, essential for bioremediation success

  5. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    Science.gov (United States)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    Science.gov (United States)

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  7. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant

    Science.gov (United States)

    Persson, Tomas; Battenberg, Kai; Demina, Irina V.; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T.; Wilbanks, Elizabeth G.; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M.

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors. PMID:26020781

  8. The Airway Microbiome in Severe Asthma: Associations with Disease Features and Severity

    Science.gov (United States)

    Huang, Yvonne J.; Nariya, Snehal; Harris, Jeffrey M.; Lynch, Susan V.; Choy, David F.; Arron, Joseph R.; Boushey, Homer

    2015-01-01

    Background Asthma is heterogeneous, and airway dysbiosis is associated with clinical features in mild-moderate asthma. Whether similar relationships exist among patients with severe asthma is unknown. Objective To evaluate relationships between the bronchial microbiome and features of severe asthma. Methods Bronchial brushings from 40 participants in the BOBCAT study (Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma) were evaluated using 16S rRNA-based methods. Relationships to clinical and inflammatory features were analyzed among microbiome-profiled subjects. Secondarily, bacterial compositional profiles were compared between severe asthmatics, and previously studied healthy controls (n=7), and mild-moderate asthma subjects (n=41). Results In severe asthma, bronchial bacterial composition was associated with several disease-related features, including body-mass index (BMI; Bray-Curtis distance PERMANOVA, p < 0.05), changes in Asthma Control Questionnaire (ACQ) scores (p < 0.01), sputum total leukocytes (p = 0.06) and bronchial biopsy eosinophils (per mm2; p = 0.07). Bacterial communities associated with worsening ACQ and sputum total leukocytes (predominantly Proteobacteria) differed markedly from those associated with BMI (Bacteroidetes/Firmicutes). In contrast, improving/stable ACQ and bronchial epithelial gene expression of FKBP5, an indicator of steroid responsiveness, correlated with Actinobacteria. Mostly negative correlations were observed between biopsy eosinophils and Proteobacteria. No taxa were associated with a T-helper type 2-related epithelial gene expression signature, but expression of Th17-related genes was associated with Proteobacteria. Severe asthma subjects, compared to healthy controls or mild-moderate asthmatics, were significantly enriched in Actinobacteria, although the largest differences observed involved a Klebsiella genus member (7.8 fold-increase in severe asthma, padj < 0.001) Conclusions

  9. Effect of Saccharomyces boulardii and Mode of Delivery on the Early Development of the Gut Microbial Community in Preterm Infants.

    Directory of Open Access Journals (Sweden)

    Natalia Zeber-Lubecka

    Full Text Available Recent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities.To examine the effect of oral administration of Saccharomyces (S. boulardii and mode of delivery on the intestinal microbial community in preterm infants.Stool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18 or a placebo group (n = 21. Samples were collected before probiotic intake (day 0, and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform.A total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants.While the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns.

  10. Virulence test using nematodes to prescreen Nocardia species capable of inducing neurodegeneration and behavioral disorders

    Directory of Open Access Journals (Sweden)

    Claire Bernardin Souibgui

    2017-10-01

    Full Text Available Background Parkinson’s disease (PD is a disorder characterized by dopaminergic neuron programmed cell death. The etiology of PD remains uncertain—some cases are due to selected genes associated with familial heredity, others are due to environmental exposure to toxic components, but over 90% of cases have a sporadic origin. Nocardia are Actinobacteria that can cause human diseases like nocardiosis. This illness can lead to lung infection or central nervous system (CNS invasion in both immunocompromised and immunocompetent individuals. The main species involved in CNS are N. farcinica, N. nova, N. brasiliensis and N. cyriacigeorgica. Some studies have highlighted the ability of N. cyriacigeorgica to induce Parkinson’s disease-like symptoms in animals. Actinobacteria are known to produce a large variety of secondary metabolites, some of which can be neurotoxic. We hypothesized that neurotoxic secondary metabolite production and the onset of PD-like symptoms in animals could be linked. Methods Here we used a method to screen bacteria that could induce dopaminergic neurodegeneration before performing mouse experiments. Results The nematode Caenorhabditis elegans allowed us to demonstrate that Nocardia strains belonging to N. cyriacigeorgica and N. farcinica species can induce dopaminergic neurodegeneration. Strains of interest involved with the nematodes in neurodegenerative disorders were then injected in mice. Infected mice had behavioral disorders that may be related to neuronal damage, thus confirming the ability of Nocardia strains to induce neurodegeneration. These behavioral disorders were induced by N. cyriacigeorgica species (N. cyriacigeorgica GUH-2 and N. cyriacigeorgica 44484 and N. farcinica 10152. Discussion We conclude that C. elegans is a good model for detecting Nocardia strains involved in neurodegeneration. This model allowed us to detect bacteria with high neurodegenerative effects and which should be studied in mice to

  11. Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens.

    Science.gov (United States)

    Cui, Yizhe; Wang, Qiuju; Liu, Shengjun; Sun, Rui; Zhou, Yaqiang; Li, Yue

    2017-01-01

    Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens' intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens' gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health.

  12. Comparison of Microbial Communities in Swine Manure at Various Temperatures and storage times.

    Science.gov (United States)

    Lim, Joung-Soo; Yang, Seung Hak; Kim, Bong-Soo; Lee, Eun Young

    2018-01-26

    This study was designed to investigate the effects of temperature and storage time on the evolution of bacterial communities in swine manure. Manure was stored at -20°C, 4°C, 20°C, or 37°C and sampled at 7-day intervals over 28 days of storage, for a total of 5 time points. To assess the bacterial species present, 16S ribosomal RNA gene sequences were analyzed using pyrosequencing. After normalization, 113,934 sequence reads were obtained, with an average length of 466.6 ± 4.4 bp. The diversity indices of the communities reduced as temperature and storage time increased, and the slopes of rarefaction curves decreased from the second week in samples stored at -20 °C and 4 °C. These results indicate that the richness of the bacterial community in the manure reduced as temperature and storage time increased. Firmicutes were the dominant phylum in all samples examined, ranging from 89.3% to 98.8% of total reads, followed by Actinobacteria, which accounted for 0.6% to 7.9%. A change in community composition was observed in samples stored at 37 °C during the first 7 days, indicating that temperature plays an important role in determining the microbiota of swine manure. Clostridium, Turicibacter, Streptococcus, and Lactobacillus within Firmicutes, and Corynebacterium within Actinobacteria were the most dominant genera in fresh manure and all stored samples. Based on our findings, we propose Clostridium as an indicator genus of swine manure decomposition in an anaerobic environment. The proportions of dominant genera changed in samples stored at 20 °C and 37 °C during the fourth week. Based on these results, it was concluded that the microbial communities of swine manure change rapidly as storage time and temperature increase.

  13. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population.

    Science.gov (United States)

    Ramadass, Balamurugan; Rani, B Sandya; Pugazhendhi, Srinivasan; John, K R; Ramakrishna, Balakrishnan S

    2017-02-01

    The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle.

  14. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Peng Dang

    Full Text Available The effects of Chinese pine (Pinus tabuliformis on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1, 29-year-old (PF2, and 53-year-old (PF3, on a Chinese pine plantation and from a natural secondary forest (NSF stand that was almost 80 years old. Abandoned farmland (BL was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota which were affected by soil carbon and nutrients in the Loess Plateau.

  15. Biological anoxic treatment of O2-free VOC emissions from the petrochemical industry: A proof of concept study

    International Nuclear Information System (INIS)

    Muñoz, Raúl; Souza, Theo S.O.; Glittmann, Lina; Pérez, Rebeca; Quijano, Guillermo

    2013-01-01

    Highlights: • The treatment of O 2 -free VOC emissions can be done by means of denitrifying processes. •Toluene vapors were successfully removed under anoxic denitrifying conditions. • A high bacterial diversity was observed. • Actinobacteria and Proteobacteria were the predominant phyla. • The nature and number of metabolites accumulated varied with the toluene load -- Abstract: An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O 2 supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m −3 h −1 (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m −3 h −1 . However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m −3 h −1 , while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m −3 (which entailed a loading rate increase from 3 to 6 g m −3 h −1 ), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria

  16. Biological anoxic treatment of O{sub 2}-free VOC emissions from the petrochemical industry: A proof of concept study

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Raúl; Souza, Theo S.O. [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain); Glittmann, Lina [Ostfalia University of Applied Sciences, Department of Supply Engineering, Wolfenbüttel (Germany); Pérez, Rebeca [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain); Quijano, Guillermo [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain)

    2013-09-15

    Highlights: • The treatment of O{sub 2}-free VOC emissions can be done by means of denitrifying processes. •Toluene vapors were successfully removed under anoxic denitrifying conditions. • A high bacterial diversity was observed. • Actinobacteria and Proteobacteria were the predominant phyla. • The nature and number of metabolites accumulated varied with the toluene load -- Abstract: An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O{sub 2} supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m{sup −3} h{sup −1} (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m{sup −3} h{sup −1}. However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m{sup −3} h{sup −1}, while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m{sup −3} (which entailed a loading rate increase from 3 to 6 g m{sup −3} h{sup −1}), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria.

  17. Mechanisms of microbial destabilization of soil C shifts over decades of warming

    Science.gov (United States)

    DeAngelis, K.; Pold, G.; Chowdhury, P. R.; Schnabel, J.; Grandy, S.; Melillo, J. M.

    2017-12-01

    Microbes are major actors in regulating the earth's biogeochemical cycles, with temperature-sensitive microbial tradeoffs improving ecosystem biogeochemical models. Meanwhile, the Earth's climate is changing, with decades of warming undercutting the ability of soil to store carbon. Our work explores trends of 26 years of experimental warming in temperate deciduous forest soils, which is associated with cycles of soil carbon degradation punctuated by periods of changes in soil microbial dynamics. Using a combination of biogeochemistry and molecular analytical methods, we explore the hypotheses that substrate availability, community structure, altered temperature sensitivity of microbial turnover-growth efficiency tradeoff, and microbial evolution are responsible for observations of accelerated degradation of soil carbon over time. Amplicon sequencing of microbial communities suggests a small role of changing microbial community composition over decades of warming, but a sustained suppression of fungal biomass is accompanied by increased biomass of Actinobacteria, Actinobacteria, Alphaproteobacteria, Verrucomicrobia and Planctomycetes. Substrate availability plays an important role in microbial dynamics, with depleted labile carbon in the first decade and depleted lignin in the second decade. Increased lignin-degrading enzyme activity supports the suggestion that lignin-like organic matter is an important substrate in chronically warmed soils. Metatranscriptomics data support the suggestion that increased turnover is associated with long-term warming, with metagenomic signals of increased carbohydrate-degrading enzymes in the organic horizon but decreased in the mineral soils. Finally, traits analysis of over 200 cultivated isolates of bacterial species from heated and control soils suggests an expanded ability for degradation of cellulose and hemicellulose but not chitin, supporting the hypothesis that long-term warming is exerting evolutionary pressure on microbial

  18. Covariance of bacterioplankton composition and environmental variables in a temperate delta system

    Science.gov (United States)

    Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.

    2003-01-01

    We examined seasonal and spatial variation in bacterioplankton composition in the Sacramento-San Joaquin River Delta (CA) using terminal restriction fragment length polymorphism (T-RFLP) analysis. Cloned 16S rRNA genes from this system were used for putative identification of taxa dominating the T-RFLP profiles. Both cloning and T-RFLP analysis indicated that Actinobacteria, Verrucomicrobia, Cytophaga-Flavobacterium and Proteobacteria were the most abundant bacterioplankton groups in the Delta. Despite the broad variety of sampled habitats (deep water channels, lakes, marshes, agricultural drains, freshwater and brackish areas), and the spatial and temporal differences in hydrology, temperature and water chemistry among the sampling campaigns, T-RFLP electropherograms from all samples were similar, indicating that the same bacterioplankton phylotypes dominated in the various habitats of the Delta throughout the year. However, principal component analysis (PCA) and partial least-squares regression (PLS) of T-RFLP profiles revealed consistent grouping of samples on a seasonal, but not a spatial, basis. ??-Proteobacteria related to Ralstonia, Actinobacteria related to Microthrix, and ??-Proteobacteria identical to the environmental Clone LD12 had the highest relative abundance in summer/fall T-RFLP profiles and were associated with low river flow, high pH, and a number of optical and chemical characteristics of dissolved organic carbon (DOC) indicative of an increased proportion of phytoplankton-produced organic material as opposed to allochthonous, terrestrially derived organic material. On the other hand, Geobacter-related ??-Proteobacteria showed a relative increase in abundance in T-RFLP analysis during winter/spring, and probably were washed out from watershed soils or sediment. Various phylotypes associated with the same phylogenetic division, based on tentative identification of T-RFLP fragments, exhibited diverse seasonal patterns, suggesting that ecological

  19. Metagenome analysis of the root endophytic microbial community of Indian rice (O. sativa L.

    Directory of Open Access Journals (Sweden)

    Subhadipa Sengupta

    2017-06-01

    Full Text Available This study reports the root endophytic microbial community profile in rice (Oryza sativa L., the largest food crop of Asia, using 16S rRNA gene amplicon sequencing. Metagenome of OS01 and OS04 consisted of 11,17,900 sequences with 300 Mbp size and average 55.6% G + C content. Data of this study are available at NCBI Bioproject (PRJNA360379. The taxonomic analysis of 843 OTU's showed that the sequences belonged to four major phyla revealing dominance of Proteobacteria, Firmicutes, Cyanobacteria and Actinobacteria. Results reveal the dominance of Bacillus as major endophytic genera in rice roots, probably playing a key role in Nitrogen fixation.

  20. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.

    Science.gov (United States)

    Wang, Y; Cobb, R E; Zhao, H

    2016-01-01

    Next-generation sequencing technologies have rapidly expanded the genomic information of numerous organisms and revealed a rich reservoir of natural product gene clusters from microbial genomes, especially from Streptomyces, the largest genus of known actinobacteria at present. However, genetic engineering of these bacteria is often time consuming and labor intensive, if even possible. In this chapter, we describe the design and construction of pCRISPomyces, an engineered Type II CRISPR/Cas system, for targeted multiplex gene deletions in Streptomyces lividans, Streptomyces albus, and Streptomyces viridochromogenes with editing efficiency ranging from 70% to 100%. We demonstrate pCRISPomyces as a powerful tool for genome editing in Streptomyces. © 2016 Elsevier Inc. All rights reserved.

  1. Succession of the functional microbial communities and the metabolic functions in maize straw composting process.

    Science.gov (United States)

    Wei, Huawei; Wang, Liuhong; Hassan, Muhammad; Xie, Bing

    2018-05-01

    Illumina MiSeq sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were applied to study the dynamic changes and effects of microbial community structures as well as the metabolic function of bacterial community in maize straw composting process. Results showed that humic acid contents in loosely combined humus (HA1) and stably combined humus (HA2) increased after composting and Staphylococcus, Cellulosimicrobium and Ochrobactrum possibly participated in the transformation of the process. The bacterial communities differed in different stages of the composting. Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were reported the dominant phyla throughout the process and the relative abundance of the dominant phyla varied significantly (p composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Halophilic & halotolerant prokaryotes in humans.

    Science.gov (United States)

    Seck, El Hadji; Dufour, Jean-Charles; Raoult, Didier; Lagier, Jean-Christophe

    2018-05-04

    Halophilic prokaryotes are described as microorganisms living in hypersaline environments. Here, we list the halotolerant and halophilic bacteria which have been isolated in humans. Of the 52 halophilic prokaryotes, 32 (61.54%) were moderately halophilic, 17 (32.69%) were slightly halophilic and three (5.76%) were extremely halophilic prokaryotes. At the phylum level, 29 (54.72%) belong to Firmicutes, 15 (28.84%) to Proteobacteria, four (7.69%) to Actinobacteria, three (5.78%) to Euryarchaeota and one (1.92%) belongs to Bacteroidetes. Halophilic prokaryotes are rarely pathogenic: of these 52 halophilic prokaryotes only two (3.92%) species were classified in Risk Group 2 (Vibrio cholerae, Vibrio parahaemolyticus) and one (1.96%), species in Risk Group 3 (Bacillus anthracis).

  3. Determination of ionophore antibiotics nactins produced by fecal Streptomyces from sheep.

    Science.gov (United States)

    Wang, Jun; Tan, Hongming; Lu, Yu; Cao, Lixiang

    2014-04-01

    To investigate the correlation between fecal actinobacteria and host animals, Streptomyces was isolated from fresh faeces of healthy sheep and secondary metabolites were analyzed. The most frequently isolated strain S161 with antibiotic activity against bacteria and fungi were analyzed. The S161 showed the highest 99 % similarity to Streptomyces canus DSB17 based on the 16S rRNA gene sequence analysis. Metabolite analysis based on MS and NMR spectra showed that S161 produces nactins, cyclotetralactones derived from nonactic acid and homononactic acid as building units of ionophoretic character. Due to ionophores are antimicrobial compounds that are commonly fed to ruminant animals to improve feed efficiency, stable beneficial interactions between Streptomyces bacteria and vertebrates have been demonstrated.

  4. FEATURES OF THE MICROBIOME OF THE UPPER RESPIRATORY TRACT IN CHILDREN WITH RECURRENT RESPIRATORY DISEASES

    Directory of Open Access Journals (Sweden)

    A. V. Shabaldin

    2017-01-01

    Full Text Available Studies of the metagenome of the upper respiratory tract in children showed the presence of five major bacterial phyla: Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria. Were revealed population differences in the distribution of weights of the above listed phyla, but subject to the dominance of the Firmicutes. Proved the role of environmental factors and time of year for representation in these biotopes of the phyla: Firmicutes, Proteobacteria, Bacteroidetes. Recurrent respiratory infections, hypertrophy of the tonsils of the lymphoid pharyngeal ring, secretory middle ear infections in children is associated with carriage of Haemophilus (H. parainfluenzae, H. paraphrohaemolyticus, Gemella (G. haemolysans, G. morbillorum, G. sanguinis, Streptococcus (S. pneumoniae, S. pseudopneumoniae, S. intermedius, S. agalactiae. 

  5. [Description of the phylogenetic structure of hydrolytic prokaryotic complex in the soils].

    Science.gov (United States)

    Lukacheva, E G; Chernov, T I; Bykova, E M; Vlasenko, A N; Manucharova, N A

    2013-01-01

    With the help of the molecular-biological method of cell hybridization in situ (FISH), the abundance of a physiologically active hydrolytic prokaryotic complex in chernozem and gley-podzolic soils is determined. The total proportion of metabolically active cells, which were detected by hybridization with universal probes as representatives of the domains Bacteria and Archaea, in samples of the studied soil, was from 38% for chernozem up to 78% for gley-podzolic soil of the total number of cells. The differences in the structure of chitinolytic and pectinolytic prokaryotic soil complexes are detected. Along with the high abundance of Actinobacteria and Firmicutes in the soils with chitin, an increase in phylogenetic groups such as Alphaproteobacteria and Bacteroidetes is observed.

  6. A novel genus of the class Actinobacteria, Longivirga aurantiaca gen. nov., sp. nov., isolated from lake sediment.

    Science.gov (United States)

    Qu, Jian-Hang; Zhang, Lu-Jie; Fu, Yun-Hui; Li, Xiao-Dan; Li, Hai-Feng; Tian, Hai-Long

    2018-03-01

    A novel actinobacterial strain, designated X5 T , was isolated from the sediment of Taihu Lake in China and was subjected to a polyphasic taxonomic characterization. The strain formed orange-red colonies comprising aerobic, Gram-stain-negative, rod-shaped cells on R2A agar. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the organism was closely related to the genus Sporichthya and consistently formed a distinct clade along with the members of this genus. The closest phylogenetic neighbour was Sporichthya polymorpha NBRC 12702 T with 93.7 % 16S rRNA gene sequence similarity. The major fatty acids (>10 %) were iso-C16 : 0 (18.7 %), C18 : 1ω9c (18.6 %) and C17 : 1ω8c (14.0 %). The genomic DNA G+C content was 74.4 mol%. The organism contained menaquinone MK-8(H2), MK-9(H4) and an unidentified menaquinone. Polar lipids were composed of phosphatidylglycerol, an unidentified lipid, two unidentified phospholipids and two unidentified aminolipids. The whole-cell sugars contained ribose, xylose, mannose, glucose and galactose. The cell-wall peptidoglycan contained ll-diaminopimelic acid. Based on the physiological, biochemical and chemotaxonomic data, the organism is proposed to represent a novel genus and species, for which the name Longivirga aurantiaca gen. nov., sp. nov. is proposed. The type strain is X5 T (=CGMCC 4.7317 T =NBRC 112237 T ).

  7. Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Kudla, Urszula; Qin, Ling; Milac, Adina; Kielak, Anna; Maissen, Cyril; Overmars, Hein; Popeijus, Herman; Roze, Erwin; Petrescu, Andrei; Smant, Geert; Bakker, Jaap; Helder, Johannes

    2005-04-25

    Southern analysis showed that Gr-EXPB1, a functional expansin from the potato cyst nematode Globodera rostochiensis, is member of a multigene family, and EST data suggest expansins to be present in other plant parasitic nematodes as well. Homology modeling predicted that Gr-EXPB1 domain 1 (D1) has a flat beta-barrel structure with surface-exposed aromatic rings, whereas the 3D structure of Gr-EXPB1-D2 was remarkably similar to plant expansins. Gr-EXPB1 shows highest sequence similarity to two extracellular proteins from saprophytic soil-inhabiting Actinobacteria, and includes a bacterial type II carbohydrate-binding module. These results support the hypothesis that a number of pathogenicity factors of cyst nematodes is of procaryotic origin and were acquired by horizontal gene transfer.

  8. Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India

    Directory of Open Access Journals (Sweden)

    Abhishek Gupta

    2017-06-01

    Full Text Available Mine tailings from copper mines are considered as one of the sources of highly hazardous acid mine drainage (AMD due to bio-oxidation of its sulfidic constituents. This study was designed to understand microbial community composition and potential for acid generation using samples from mine tailings of Malanjkhand copper project (MCP, India through 16S rRNA gene based amplicon sequencing approach (targeting V4 region. Three tailings samples (T1, T2 and T3 with varied physiochemical properties selected for the study revealed distinct microbial assemblages. Sample (T3 with most extreme nature (pH 3.0 exhibited abundance of Proteobacteria, Fimicutes, Actinobacteria and/or Nitrospirae. Metagenomic sequences are available under the BioProject ID PRJNA361456.

  9. Periodical episodes of foaming involving Gram-negative filaments. Morpho type 0581: an unknown; Episodios periodicos de espumacion con impliaciond e filamentos Gram negativos. El morfotipo 0581: un desconido

    Energy Technology Data Exchange (ETDEWEB)

    Zarnoza, A; Rodriguez, E; Isac, L; Alonso, J L; Fernandez, N; Zorrila, F; Fajardo, V

    2006-07-01

    The bacteria GALO and Microthrix parvicella are responsible for foaming in active sludge in WWTP. According to Eikelboom (2000) and Jenkins, et al. (2003), these micro-organisms are classified by morpho types, which sometimes show a diversity of species when specific probes are used. A study of the periodical foaming process in the WWTP in the municipally of Torres-Torres (Valencia, Spain), with a predominance of morpho type 0581, has made it possible to ascertain both the optical and phylogenetic identity of this morpho type. Contrary to what might have been expected in view of its morphological similarity to Microthrix parvicella, morpho type 0581 is photogenically related to the phylum Chloroflexi and not to the phylum Actinobacteria, to which Microthrix parvicella belong. (Author)

  10. Partial Purification and Characterization of a Heat Stable α-Amylase from a Thermophilic Actinobacteria, Streptomyces sp. MSC702

    Directory of Open Access Journals (Sweden)

    Renu Singh

    2014-01-01

    Full Text Available A partial purification and biochemical characterization of the α-amylase from Streptomyces sp. MSC702 were carried out in this study. The optimum operational conditions for enzyme substrate reaction for amylolytic enzyme activity from the strain were evaluated. The optimum pH, temperature, and incubation period for assaying the enzyme were observed to be 5.0, 55°C, and 30 min, respectively. The extracellular extract was concentrated using ammonium sulfate precipitation. It was stable in the presence of metal ions (5 mM such as K+, Co2+, and Mo2+, whereas Pb2+, Mn2+, Mg2+, Cu2+, Zn2+, Ba2+, Ca2+, Hg2+, Sn2+, Cr3+, Al3+, Ag+, and Fe2+ were found to have inhibitory effects. The enzyme activity was also unstable in the presence of 1% Triton X-100, 1% Tween 80, 5 mM sodium lauryl sulphate, 1% glycerol, 5 mM EDTA, and 5 mM denaturant urea. At temperature 60°C and pH 5.0, the enzyme stability was maximum. α-amylase retained 100% and 34.18% stability for 1 h and 4 h, respectively, at 60°C (pH 7.0. The enzyme exhibited a half-life of 195 min at 60°C temperature. The analysis of kinetic showed that the enzyme has Km of 2.4 mg/mL and Vmax of 21853.0 μmol/min/mg for soluble potato starch. The results indicate that the enzyme reflects their potentiality towards industrial utilization.

  11. Partial Purification and Characterization of a Heat Stable α-Amylase from a Thermophilic Actinobacteria, Streptomyces sp. MSC702.

    Science.gov (United States)

    Singh, Renu; Kumar, Vijay; Kapoor, Vishal

    2014-01-01

    A partial purification and biochemical characterization of the α-amylase from Streptomyces sp. MSC702 were carried out in this study. The optimum operational conditions for enzyme substrate reaction for amylolytic enzyme activity from the strain were evaluated. The optimum pH, temperature, and incubation period for assaying the enzyme were observed to be 5.0, 55°C, and 30 min, respectively. The extracellular extract was concentrated using ammonium sulfate precipitation. It was stable in the presence of metal ions (5 mM) such as K(+), Co(2+), and Mo(2+), whereas Pb(2+), Mn(2+), Mg(2+), Cu(2+), Zn(2+), Ba(2+), Ca(2+), Hg(2+), Sn(2+), Cr(3+), Al(3+), Ag(+), and Fe(2+) were found to have inhibitory effects. The enzyme activity was also unstable in the presence of 1% Triton X-100, 1% Tween 80, 5 mM sodium lauryl sulphate, 1% glycerol, 5 mM EDTA, and 5 mM denaturant urea. At temperature 60°C and pH 5.0, the enzyme stability was maximum. α-amylase retained 100% and 34.18% stability for 1 h and 4 h, respectively, at 60°C (pH 7.0). The enzyme exhibited a half-life of 195 min at 60°C temperature. The analysis of kinetic showed that the enzyme has K m of 2.4 mg/mL and V max of 21853.0 μmol/min/mg for soluble potato starch. The results indicate that the enzyme reflects their potentiality towards industrial utilization.

  12. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs.

    Science.gov (United States)

    Jardine, Jocelyn Leonie; Abia, Akebe Luther King; Mavumengwana, Vuyo; Ubomba-Jaswa, Eunice

    2017-09-15

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria , Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment.

  13. Microbial Diversity of Browning Peninsula, Eastern Antarctica Revealed Using Molecular and Cultivation Methods.

    Science.gov (United States)

    Pudasaini, Sarita; Wilson, John; Ji, Mukan; van Dorst, Josie; Snape, Ian; Palmer, Anne S; Burns, Brendan P; Ferrari, Belinda C

    2017-01-01

    Browning Peninsula is an ice-free polar desert situated in the Windmill Islands, Eastern Antarctica. The entire site is described as a barren landscape, comprised of frost boils with soils dominated by microbial life. In this study, we explored the microbial diversity and edaphic drivers of community structure across this site using traditional cultivation methods, a novel approach the soil substrate membrane system (SSMS), and culture-independent 454-tag pyrosequencing. The measured soil environmental and microphysical factors of chlorine, phosphate, aspect and elevation were found to be significant drivers of the bacterial community, while none of the soil parameters analyzed were significantly correlated to the fungal community. Overall, Browning Peninsula soil harbored a distinctive microbial community in comparison to other Antarctic soils comprised of a unique bacterial diversity and extremely limited fungal diversity. Tag pyrosequencing data revealed the bacterial community to be dominated by Actinobacteria (36%), followed by Chloroflexi (18%), Cyanobacteria (14%), and Proteobacteria (10%). For fungi, Ascomycota (97%) dominated the soil microbiome, followed by Basidiomycota. As expected the diversity recovered from culture-based techniques was lower than that detected using tag sequencing. However, in the SSMS enrichments, that mimic the natural conditions for cultivating oligophilic "k-selected" bacteria, a larger proportion of rare bacterial taxa (15%), such as Blastococcus, Devosia, Herbaspirillum, Propionibacterium and Methylocella and fungal (11%) taxa, such as Nigrospora, Exophiala, Hortaea , and Penidiella were recovered at the genus level. At phylum level, a comparison of OTU's showed that the SSMS shared 21% of Acidobacteria, 11% of Actinobacteria and 10% of Proteobacteria OTU's with soil. For fungi, the shared OTUs was 4% (Basidiomycota) and <0.5% (Ascomycota). This was the first known attempt to culture microfungi using the SSMS which resulted in

  14. The development of lower respiratory tract microbiome in mice.

    Science.gov (United States)

    Singh, Nisha; Vats, Asheema; Sharma, Aditi; Arora, Amit; Kumar, Ashwani

    2017-06-21

    Although culture-independent methods have paved the way for characterization of the lung microbiome, the dynamic changes in the lung microbiome from neonatal stage to adult age have not been investigated. In this study, we tracked changes in composition and diversity of the lung microbiome in C57BL/6N mice, starting from 1-week-old neonates to 8-week-old mice. Towards this, the lungs were sterilely excised from mice of different ages from 1 to 8 weeks. High-throughput DNA sequencing of the 16S rRNA gene followed by composition and diversity analysis was utilized to decipher the microbiome in these samples. Microbiome analysis suggests that the changes in the lung microbiome correlated with age. The lung microbiome was primarily dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in all the stages from week 1 to week 8 after birth. Although Defluvibacter was the predominant genus in 1-week-old neonatal mice, Streptococcus became the dominant genus at the age of 2 weeks. Lactobacillus, Defluvibacter, Streptococcus, and Achromobacter were the dominant genera in 3-week-old mice, while Lactobacillus and Achromobacter were the most abundant genera in 4-week-old mice. Interestingly, relatively greater diversity (at the genus level) during the age of 5 to 6 weeks was observed as compared to the earlier weeks. The diversity of the lung microbiome remained stable between 6 and 8 weeks of age. In summary, we have tracked the development of the lung microbiome in mice from an early age of 1 week to adulthood. The lung microbiome is dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. However, dynamic changes were observed at the genus level. Relatively higher richness in the microbial diversity was achieved by age of 6 weeks and then maintained at later ages. We believe that this study improves our understanding of the development of the mice lung microbiome and will facilitate further analyses of the role of

  15. The airway microbiome in patients with severe asthma: Associations with disease features and severity.

    Science.gov (United States)

    Huang, Yvonne J; Nariya, Snehal; Harris, Jeffrey M; Lynch, Susan V; Choy, David F; Arron, Joseph R; Boushey, Homer

    2015-10-01

    Asthma is heterogeneous, and airway dysbiosis is associated with clinical features in patients with mild-to-moderate asthma. Whether similar relationships exist among patients with severe asthma is unknown. We sought to evaluate relationships between the bronchial microbiome and features of severe asthma. Bronchial brushings from 40 participants in the Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma (BOBCAT) study were evaluated by using 16S ribosomal RNA-based methods. Relationships to clinical and inflammatory features were analyzed among microbiome-profiled subjects. Secondarily, bacterial compositional profiles were compared between patients with severe asthma and previously studied healthy control subjects (n = 7) and patients with mild-to-moderate asthma (n = 41). In patients with severe asthma, bronchial bacterial composition was associated with several disease-related features, including body mass index (P PERMANOVA), changes in Asthma Control Questionnaire (ACQ) scores (P < .01), sputum total leukocyte values (P = .06), and bronchial biopsy eosinophil values (per square millimeter, P = .07). Bacterial communities associated with worsening ACQ scores and sputum total leukocyte values (predominantly Proteobacteria) differed markedly from those associated with body mass index (Bacteroidetes/Firmicutes). In contrast, improving/stable ACQ scores and bronchial epithelial gene expression of FK506 binding protein (FKBP5), an indicator of steroid responsiveness, correlated with Actinobacteria. Mostly negative correlations were observed between biopsy eosinophil values and Proteobacteria. No taxa were associated with a TH2-related epithelial gene expression signature, but expression of TH17-related genes was associated with Proteobacteria. Patients with severe asthma compared with healthy control subjects or patients with mild-to-moderate asthma were significantly enriched in Actinobacteria, although the largest differences

  16. POTENCIAL DE ALGUNOS MICROORGANISMOS EN EL COMPOSTAJE DE RESIDUOS SÓLIDOS

    Directory of Open Access Journals (Sweden)

    Alejandro D. Camacho

    2014-10-01

    Full Text Available En México se producen diariamente toneladas de residuos sólidos que requieren un tratamiento seguro. El aumento de residuos que contienen hidrocarburos polimerizados muestra la necesidad de implementar un proceso de compostaje. Una alternativa para la mejora de este proceso es la búsqueda de microorganismos presentes en estos residuos que permitan acelerar los procesos de degradación que conduzcan a un compostaje eficiente. El objetivo de este trabajo fue evaluar microorganismos con potencial de ser utilizados en el proceso de compostaje. Se obtuvieron 17 aislados de 5 compostas; los hongos se caracterizaron mediante morfología microscópica y colonial y las actinobacterias por amplificación del 16S rDNA. A los mismos se les hicieron pruebas de crecimiento a diferentes condiciones de pH y temperatura, además de pruebas cualitativas y cuantitativas de hidrólisis de celulosa y pectina. Con base en los resultados de esas pruebas, se seleccionaron 2 cepas de actinobacterias y 1 hongo filamentoso. Se elaboró un inóculo con esos 3 microorganismos para evaluar su potencial de degradación; se inoculó y se incubó durante 70 días a 45 °C un sustrato compuesto por residuos domésticos y de poda de jardín. Se evaluaron nitrógeno total, materia orgánica, pH, azúcares reductores totales, carbono total y la relación C/N de cada tratamiento antes y después del proceso. Los datos obtenidos se sometieron a análisis de varianza (univariado y a un análisis discriminante canónico (multivariado. La eficiencia del proceso de compostaje (baja relación C/N del sustrato, indicador de la estabilidad del producto final mostró la activa participación de los microorganismos inoculados; también se observó la participación de los microorganismos nativos del sustrato natural.

  17. Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site

    Science.gov (United States)

    Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.

    2012-04-01

    Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well

  18. Soil pH Is the Primary Factor Correlating With Soil Microbiome in Karst Rocky Desertification Regions in the Wushan County, Chongqing, China

    Directory of Open Access Journals (Sweden)

    Daihua Qi

    2018-05-01

    Full Text Available Karst rocky desertification (KRD is a process of land degradation, which causes desert-like landscapes, deconstruction of endemic biomass, and declined soil quality. The relationship of KRD progression with above-ground communities (e.g. vegetation and animal is well-studied. Interaction of soil desertification with underground communities, such as soil microbiome, however, is vastly unknown. This study characterizes change in soil bacterial community in response to KRD progression. Soil bacterial communities were surveyed by deep sequencing of 16S amplicons. Eight soil properties, pH, soil organic matter (SOM, total and available nitrogen (TN and AN, total and available phosphorus (TP and AP, and total and available potassium (TK and AK, were measured to assess soil quality. We find that the overall soil quality decreases along with KRD progressive gradient. Soil bacterial community compositions are distinguishingly different in KRD stages. The richness and diversity in bacterial community do not significantly change with KRD progression although a slight increase in diversity was observed. A slight decrease in richness was seen in SKRD areas. Soil pH primarily correlates with bacterial community composition. We identified a core microbiome for KRD soils consisting of; Acidobacteria, Alpha-Proteobacteria, Planctomycetes, Beta-Proteobacteria, Actinobacteria, Firmicutes, Delta-Proteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Gemmatimonadetes in this study. Phylum Cyanobacteria is significantly abundant in non-degraded soils, suggesting that Cyanobacterial activities might be correlated to soil quality. Our results suggest that Proteobacteria are sensitive to changes in soil properties caused by the KRD progression. Alpha- and beta-Proteobacteria significantly predominated in SKRD compared to NKRD, suggesting that Proteobacteria, along with many others in the core microbiome (Acidobacteria, Actinobacteria, Firmicutes, and Nitrospirae

  19. Metagenomic investigation of the microbial diversity in a chrysotile asbestos mine pit pond, Lowell, Vermont, USA

    Directory of Open Access Journals (Sweden)

    Heather E. Driscoll

    2016-12-01

    Full Text Available Here we report on a metagenomics investigation of the microbial diversity in a serpentine-hosted aquatic habitat created by chrysotile asbestos mining activity at the Vermont Asbestos Group (VAG Mine in northern Vermont, USA. The now-abandoned VAG Mine on Belvidere Mountain in the towns of Eden and Lowell includes three open-pit quarries, a flooded pit, mill buildings, roads, and >26 million metric tons of eroding mine waste that contribute alkaline mine drainage to the surrounding watershed. Metagenomes and water chemistry originated from aquatic samples taken at three depths (0.5 m, 3.5 m, and 25 m along the water column at three distinct, offshore sites within the mine's flooded pit (near 44°46′00.7673″, −72°31′36.2699″; UTM NAD 83 Zone 18 T 0695720 E, 4960030 N. Whole metagenome shotgun Illumina paired-end sequences were quality trimmed and analyzed based on a translated nucleotide search of NCBI-NR protein database and lowest common ancestor taxonomic assignments. Our results show strata within the pit pond water column can be distinguished by taxonomic composition and distribution, pH, temperature, conductivity, light intensity, and concentrations of dissolved oxygen. At the phylum level, metagenomes from 0.5 m and 3.5 m contained a similar distribution of taxa and were dominated by Actinobacteria (46% and 53% of reads, respectively, Proteobacteria (45% and 38%, respectively, and Bacteroidetes (7% in both. The metagenomes from 25 m showed a greater diversity of phyla and a different distribution of reads than the two upper strata: Proteobacteria (60%, Actinobacteria (18%, Planctomycetes, (10%, Bacteroidetes (5% and Cyanobacteria (2.5%, Armatimonadetes (<1%, Verrucomicrobia (<1%, Firmicutes (<1%, and Nitrospirae (<1%. Raw metagenome sequence data from each sample reside in NCBI's Short Read Archive (SRA ID: SRP056095 and are accessible through NCBI BioProject PRJNA277916.

  20. Distinct soil bacterial communities revealed under a diversely managed agroecosystem.

    Directory of Open Access Journals (Sweden)

    Raymon S Shange

    Full Text Available Land-use change and management practices are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, their effect on the soil microbial community and their subsequent influence on soil function is still difficult to quantify. Recent applications of molecular techniques to soil biology, especially the use of 16S rRNA, are helping to bridge this gap. In this study, the influence of three land-use systems within a demonstration farm were evaluated with a view to further understand how these practices may impact observed soil bacterial communities. Replicate soil samples collected from the three land-use systems (grazed pine forest, cultivated crop, and grazed pasture on a single soil type. High throughput 16S rRNA gene pyrosequencing was used to generate sequence datasets. The different land use systems showed distinction in the structure of their bacterial communities with respect to the differences detected in cluster analysis as well as diversity indices. Specific taxa, particularly Actinobacteria, Acidobacteria, and classes of Proteobacteria, showed significant shifts across the land-use strata. Families belonging to these taxa broke with notions of copio- and oligotrphy at the class level, as many of the less abundant groups of families of Actinobacteria showed a propensity for soil environments with reduced carbon/nutrient availability. Orders Actinomycetales and Solirubrobacterales showed their highest abundance in the heavily disturbed cultivated system despite the lowest soil organic carbon (SOC values across the site. Selected soil properties ([SOC], total nitrogen [TN], soil texture, phosphodiesterase [PD], alkaline phosphatase [APA], acid phosphatase [ACP] activity, and pH also differed significantly across land-use regimes, with SOM, PD, and pH showing variation consistent with shifts in community structure and composition. These results suggest that use of

  1. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.

    Science.gov (United States)

    Bulgarelli, Davide; Rott, Matthias; Schlaeppi, Klaus; Ver Loren van Themaat, Emiel; Ahmadinejad, Nahal; Assenza, Federica; Rauf, Philipp; Huettel, Bruno; Reinhardt, Richard; Schmelzer, Elmon; Peplies, Joerg; Gloeckner, Frank Oliver; Amann, Rudolf; Eickhorst, Thilo; Schulze-Lefert, Paul

    2012-08-02

    The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found

  2. Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation Treatment at the Royal Chapel, Granada.

    Directory of Open Access Journals (Sweden)

    Fadwa Jroundi

    Full Text Available Biomineralization processes have recently been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain. While this promising method has demonstrated its efficacy regarding strengthening of the stone, little is known about its ecological sustainability.Here, we report molecular monitoring of the stone-autochthonous microbiota before and at 5, 12 and 30 months after the bio-consolidation treatment (medium/long-term monitoring, employing the well-known molecular strategy of DGGE analyses. Before the bio-consolidation treatment, the bacterial diversity showed the exclusive dominance of Actinobacteria (100%, which decreased in the community (44.2% after 5 months, and Gamma-proteobacteria (30.24% and Chloroflexi (25.56% appeared. After 12 months, Gamma-proteobacteria vanished from the community and Cyanobacteria (22.1% appeared and remained dominant after thirty months, when the microbiota consisted of Actinobacteria (42.2% and Cyanobacteria (57.8% only. Fungal diversity showed that the Ascomycota phylum was dominant before treatment (100%, while, after five months, Basidiomycota (6.38% appeared on the stone, and vanished again after twelve months. Thirty months after the treatment, the fungal population started to stabilize and Ascomycota dominated on the stone (83.33% once again. Members of green algae (Chlorophyta, Viridiplantae appeared on the stone at 5, 12 and 30 months after the treatment and accounted for 4.25%, 84.77% and 16.77%, respectively.The results clearly show that, although a temporary shift in the bacterial and fungal diversity was observed during the first five months, most probably promoted by the application of the bio-consolidation treatment, the microbiota tends to regain its initial stability in a few months. Thus, the treatment does not seem to have any negative side effects on the stone-autochthonous microbiota over that time. The molecular strategy employed here is suggested

  3. Isolation of putative probionts from cod rearing environment

    DEFF Research Database (Denmark)

    Lauzon, H.L.; Gudmundsdottir, S.; Pedersen, M.H.

    2008-01-01

    , metabolite production and adhesion to fish cell lines. Our study demonstrated that 14% of screened bacteria (n = 188) had antagonistic properties towards fish pathogens. The majority of these isolates were Gram-positive (81%), belonging to Firmicutes (69.2%) and Actinobacteria (11.5%) phyla based on 16S r...... was designed to search for new probiotics to target this critical period in cod rearing. Potential probionts were selected from the naturalmicrobiota of cod aquacultural environment. The selection was based on several criteria: pathogen inhibition potential, growth characteristics, strain identification......RNA gene sequencing. Only 6 (3.2%) of 188 isolates could inhibit all three pathogens tested: Vibrio anguillarum, Aeromonas salmonicida subsp. achromogenes and Vibrio salmonicida. Differences observed in activity intensity and spectrum among inhibitory isolates emphasise the need to develop probiotic...

  4. The vaginal microbiome is stable in prepubertal and sexually mature Ellegaard Göttingen Minipigs throughout an estrous cycle

    DEFF Research Database (Denmark)

    Lorenzen, Emma; Kudirkiene, Egle; Gutman, Nicole

    2015-01-01

    Although the pig has been introduced as an advanced animal model of genital tract infections in women, almost no knowledge exists on the porcine vaginal microbiota, especially in barrier-raised Göttingen Minipigs. In women, the vaginal microbiota plays a crucial role for a healthy vaginal...... environment and the fate of sexually transmitted infections such as Chlamydia trachomatis infections. Therefore, knowledge on the vaginal microbiota is urgently needed for the minipig model. The aim of this study was to characterize the microbiota of the anterior vagina by 16 s rRNA gene sequencing...... in prepubertal and sexually mature Göttingen Minipigs during an estrous cycle. The dominating phyla in the vaginal microbiota consisted of Firmicutes, Proteobacteria, Actinobacteria, Bacteriodetes and Tenericutes. The most abundant bacterial families were Enterobacteriaceae, unclassified families from...

  5. On the limits of computational functional genomics for bacterial lifestyle prediction

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Röttger, Richard; Hauschild, Anne-Christin

    2014-01-01

    We review the level of genomic specificity regarding actinobacterial pathogenicity. As they occupy various niches in diverse habitats, one may assume the existence of lifestyle-specific genomic features. We include 240 actinobacteria classified into four pathogenicity classes: human pathogens (HPs...... of an observation bias, i.e. many HPs might yet be unclassified BPs. (H4) There is no intrinsic genomic characteristic of OPs compared with pathogens, as small mutations are likely to play a more dominant role to survive the immune system. To study these hypotheses, we implemented a bioinformatics pipeline...... that combines evolutionary sequence analysis with statistical learning methods (Random Forest with feature selection, model tuning and robustness analysis). Essentially, we present orthologous gene sets that computationally distinguish pathogens from NPs (H1). We further show a clear limit in differentiating...

  6. Analysis of bacterial and fungal communities in Marcha and Thiat, traditionally prepared amylolytic starters of India.

    Science.gov (United States)

    Sha, Shankar Prasad; Jani, Kunal; Sharma, Avinash; Anupma, Anu; Pradhan, Pooja; Shouche, Yogesh; Tamang, Jyoti Prakash

    2017-09-08

    Marcha and thiat are traditionally prepared amylolytic starters use for production of various ethnic alcoholic beverages in Sikkim and Meghalaya states in India. In the present study we have tried to investigate the bacterial and fungal community composition of marcha and thiat by using high throughput sequencing. Characterization of bacterial community depicts phylum Proteobacteria is the most dominant in both marcha (91.4%) and thiat (53.8%), followed by Firmicutes, and Actinobacteria. Estimates of fungal community composition showed Ascomycota as the dominant phylum. Presence of Zygomycota in marcha distinguishes it from the thiat. The results of NGS analysis revealed dominance of yeasts in marcha whereas molds out numbers in case of thiat. This is the first report on microbial communities of traditionally prepared amylolytic starters of India using high throughput sequencing.

  7. Redox-active antibiotics control gene expression and community behavior in divergent bacteria.

    Science.gov (United States)

    Dietrich, Lars E P; Teal, Tracy K; Price-Whelan, Alexa; Newman, Dianne K

    2008-08-29

    It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for stress responses, despite the fact that many of these organisms still produce redox-active small molecules, which indicates that redox-active pigments play a role independent of oxidative stress. These compounds had profound effects on the structural organization of colony biofilms in both P. aeruginosa and S. coelicolor, which shows that "secondary metabolites" play important conserved roles in gene expression and development.

  8. Isolation and characterization of the microbial community of a freshwater distribution system

    International Nuclear Information System (INIS)

    Balamurugan, P.; Subba Rao, T.

    2015-01-01

    This investigation provides generic information on culturable and non-culturable microbial community of a freshwater distribution system. Culture based and culture independent (16S rRNA gene sequencing) techniques were used to identify the resident microbial community of the system. Selective isolation of the fouling bacteria such as biofilm formers and corrosion causing bacteria was also attempted. Denaturing gradient gel electrophoresis (DGGE) was carried out and the bands were sequenced to obtain the diversity of the total bacterial types. Pseudomonas aeruginosa was predominantly observed in most of the samples. A variety of bacteria, related to groups such as Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were identified. The study highlights the relevance of the observed microbial diversity with respect to material deterioration in a freshwater distribution system, which can aid in designing effective control methods. (author)

  9. Molecular analysis of bacterial populations in water samples from two Uranium mill tailings by using RISA retrieval

    International Nuclear Information System (INIS)

    Selenska-Pobell, S.; Radeva, G.

    2004-01-01

    Ribosomal intergenic spacer amplification (RISA) retrieval was applied to analyse the natural bacterial communities in drain waters of two uranium mill tailings - Gittersee/Coschuetz in Germany and Shiprock in the USA. About 35% of the clones from RISA library constructed for the samples of the German tailings represented a microdiverse population of Planctomycetales. The rest of the clones were affiliated with rather diverse bacterial groups including γ- and δ-Proteobacteria, Cytophaga/Flavobacterium/Bacteroides (CFB), Nitrospira, Verrucomicrobia and Actinobacteria. 8% of the cloned sequences represented a novel bacterial lineage from the recently described division NC3. Bacterial diversity in the Shiprock mill tailings was found to be significantly lower. RISA library constructed for those samples contained only two larger groups of clones representing β-proteobacterial species and one small group which was affiliated with δ-Proteobacteria. (authors)

  10. Molecular analysis of bacterial populations in water samples from two Uranium mill tailings by using RISA retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Selenska-Pobell, S [Forschungszentrum Rossendorf, Institute of Radiochemistry, Dresden (Germany); Radeva, G [Bulgarian Academy of Sciences, Institute of Molecular Biology, Sofia (Bulgaria)

    2004-07-01

    Ribosomal intergenic spacer amplification (RISA) retrieval was applied to analyse the natural bacterial communities in drain waters of two uranium mill tailings - Gittersee/Coschuetz in Germany and Shiprock in the USA. About 35% of the clones from RISA library constructed for the samples of the German tailings represented a microdiverse population of Planctomycetales. The rest of the clones were affiliated with rather diverse bacterial groups including {gamma}- and {delta}-Proteobacteria, Cytophaga/Flavobacterium/Bacteroides (CFB), Nitrospira, Verrucomicrobia and Actinobacteria. 8% of the cloned sequences represented a novel bacterial lineage from the recently described division NC3. Bacterial diversity in the Shiprock mill tailings was found to be significantly lower. RISA library constructed for those samples contained only two larger groups of clones representing {beta}-proteobacterial species and one small group which was affiliated with {delta}-Proteobacteria. (authors)

  11. Potassium hydroxide-ethylene diamine tetraacetic acid method for the rapid preparation of small-scale PCR template DNA from actinobacteria.

    Science.gov (United States)

    Sun, Zhibin; Huang, Yan; Wang, Yanzhuo; Zhao, Yuguo; Cui, Zhongli

    2014-01-01

    Genomic DNA extraction from Gram-positive bacteria is a laborious and time-consuming process. A rapid and convenient method was established to extract genomic DNA from a single colony as a PCR template. KOH-EDTA is used as a lysis buffer to disrupt the cell envelope, releasing genomic DNA, and Tris-HCl (pH = 4) is then added to neutralize the lysate. The lysate can be used directly as a template for PCR amplification. 16S rDNA was successfully amplified from Gram-positive bacteria from the genera of Bacillus, Streptomyces, Micromonospora, Nonomuraea, Microbispora, and Staphylococcus. Amplification of the trpB gene indicated that this method could also be applied to the amplification of functional genes. Compared to colony PCR methods without KOH-EDTA, this method is extremely fast and efficient, and it is applicable to high-throughput PCR amplifications.

  12. The soil and plant determinants of community structures of the dominant actinobacteria in Marion Island terrestrial habitats, Sub-Antarctica

    CSIR Research Space (South Africa)

    Sanyika, TW

    2012-08-01

    Full Text Available Marion Island is a Sub-Antarctic island made up of distinct ecological habitats based on soil physiochemical, plant cover and physical characteristics. The microbial diversity and ecological determinants in this harsh Sub-Antarctic environment...

  13. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Marina Aiello Padilla

    2015-01-01

    Full Text Available Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV. Two bacterial strains were identified as active, with percentages of inhibition (IP equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  14. Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers.

    Science.gov (United States)

    Dada, Nsa; Jumas-Bilak, Estelle; Manguin, Sylvie; Seidu, Razak; Stenström, Thor-Axel; Overgaard, Hans J

    2014-08-24

    Domestic water storage containers constitute major Aedes aegypti breeding sites. We present for the first time a comparative analysis of the bacterial communities associated with Ae. aegypti larvae and water from domestic water containers. The 16S rRNA-temporal temperature gradient gel electrophoresis (TTGE) was used to identify and compare bacterial communities in fourth-instar Ae. aegypti larvae and water from larvae positive and negative domestic containers in a rural village in northeastern Thailand. Water samples were cultured for enteric bacteria in addition to TTGE. Sequences obtained from TTGE and bacterial cultures were clustered into operational taxonomic units (OTUs) for analyses. Significantly lower OTU abundance was found in fourth-instar Ae. aegypti larvae compared to mosquito positive water samples. There was no significant difference in OTU abundance between larvae and mosquito negative water samples or between mosquito positive and negative water samples. Larval samples had significantly different OTU diversity compared to mosquito positive and negative water samples, with no significant difference between mosquito positive and negative water samples. The TTGE identified 24 bacterial taxa, belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and TM7 (candidate phylum). Seven of these taxa were identified in larval samples, 16 in mosquito positive and 13 in mosquito negative water samples. Only two taxa, belonging to the phyla Firmicutes and Actinobacteria, were common to both larvae and water samples. Bacilli was the most abundant bacterial class identified from Ae. aegypti larvae, Gammaproteobacteria from mosquito positive water samples, and Flavobacteria from mosquito negative water samples. Enteric bacteria belonging to the class Gammaproteobacteria were sparsely represented in TTGE, but were isolated from both mosquito positive and negative water samples by selective culture. Few bacteria from water samples were

  15. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    Science.gov (United States)

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-07-01

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected

  16. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment

    Directory of Open Access Journals (Sweden)

    Ebru L. Aydogan

    2018-02-01

    Full Text Available Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere, which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album. Leaves were collected from four control and four surface warmed (+2°C plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Warming caused a significant higher relative abundance of members of the Gammaproteobacteria, Actinobacteria, and Firmicutes, and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes. Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae, especially Enterobacter and Erwinia, and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C surface warming on the phyllosphere microbiota on

  17. Physical and microbiological properties of alluvial calcareous Çumra province soils (Central Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Ahmet Sami Erol

    2015-04-01

    Full Text Available Alluvial calcareous soils in Central Anatolia (Konya province, Çumra district has a heavy granulometric composition (average clay, low organic carbon content (less than 1%, but stable pore space structure and favorable agrophysical properties. Studies of the water regime in drip irrigation confirm favorable hydrological properties of these soils. It is assumed that the favorable structure of the pore space due to vigorous activity a large and diverse soil biota. Four phyla dominate in soil biota, among which predominate Actinobacteria. The higher (Streptomyces, and lower (three species Rhodococcus actinobacteria are predominant in large amounts as a part of this phyla. Large biodiversity at a sufficiently high bacteria richness formed the structure of the microbial community that contribute to the balanced production of specific metabolites, including gases (CO2, N2, which allows the soil to function actively, preventing compaction of the pore space and maintaining optimal density, porosity, hydrologic properties of the studied silty clay soils. m the uppermost soil horizons. Analyses of heavy mineral fraction show presence of metamorphic and igneous minerals which indicate participation of weathering products from other rock types in the nearby area. The types of heavy minerals in soils depend more on composition of parent rocks and geomorphic position than on climate type. Soils from Nova Lovcha show similar composition, but the quantity of goethite and hematite significantly increase in soil from plain. Typical high-metamorphic minerals as andalusite, kyanite and sillimanite present only in Nova Lovcha, while garnet dominates in Petrovo and opaque minerals - in Dobrostan. Red soils, formed on slopes, where erosion prevails over accumulation, contain more illite, smectite and vermiculite-smectite, and very few or no kaolinite, whereas the kaolinite is dominant in soils formed on plain. The mineralogical composition of clays in different

  18. Therapeutic effect of a novel oxazolidinone, DA-7867, in BALB/c mice infected with Nocardia brasiliensis.

    Science.gov (United States)

    Vera-Cabrera, Lucio; Daw-Garza, Alejandra; Said-Fernández, Salvador; Lozano-Garza, Hector Gerardo; de Torres, Noemi Waksman; Rocha, Norma Cavazos; Ocampo-Candiani, Jorge; Choi, Sung-Hak; Welsh, Oliverio

    2008-09-10

    Mycetoma is a chronic infectious disease of tropical and subtropical countries. It is produced by true fungi and actinobacteria. In México, Nocardia brasiliensis is the main causative agent of mycetoma, producing about 86% of the cases; the gold standard for the therapy of mycetoma by N. brasiliensis is the use of sulfonamides which give a 70% cure rate. The addition of amikacin to this regime increases to 95% the cure rate; however, the patients have to be monitored for creatinine clearance and audiometry studies because of the potential development of side effects. Because of that it is important to search for new active compounds. In the present work, we evaluated the in vivo effect of DA-7867, an experimental oxazolidinone, on the development of experimental mycetomas by N. brasiliensis in BALB/c mice. In order to determine the optimal dose utilized to apply to the animals, we first determined by HPLC the plasma levels using several concentrations of the compounds. Based on these results, we used 10 and 25 mg/kg subcutaneously every 24 hr; DA-7867 was also supplied in the drinking water at a calculated dose of 25 mg/kg. As a control we utilized linezolid at 25 mg/kg, a compound active in murine and human infections, three times a day. The mice were infected in the right footpad with a young culture of N. brasiliensis HUJEG-1, and one week later we started the application of the antimicrobials for six more weeks. After that we compared the development of lesions in the groups injected with saline solution or with the antimicrobials; the results were analyzed by the variance ANOVA test. DA-7867 was able to reduce the production of lesions at 25 mg/kg, when given either subcutaneously or in the drinking water. The experimental oxazolidinone DA-7867 is active in vivo against N. brasiliensis, which opens the possibility of using this drug once it is accepted for human application. Since oxazolidinones seem to be active against a wide spectrum of actinobacteria, it

  19. Evolution of microbial communities during electrokinetic treatment of antibiotic-polluted soil.

    Science.gov (United States)

    Li, Hongna; Li, Binxu; Zhang, Zhiguo; Zhu, Changxiong; Tian, Yunlong; Ye, Jing

    2018-02-01

    The evolution of microbial communities during the electrokinetic treatment of antibiotic-polluted soil (EKA) was investigated with chlortetracycline (CTC), oxytetracycline (OTC) and tetracycline (TC) as template antibiotics. The total population of soil microorganisms was less affected during the electrokinetic process, while living anti-CTC, anti-OTC, anti-TC and anti-MIX bacteria were inactivated by 10.48%, 31.37%, 34.76%, and 22.08%, respectively, during the 7-day treatment compared with antibiotic-polluted soil without an electric field (NOE). Accordingly, samples with NOE treatment showed a higher Shannon index than those with EKA treatment, indicating a reduction of the microbial community diversity after electrokinetic processes. The major taxonomic phyla found in the samples of EKA and NOE treatment were Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. And the distribution of Actinobacteria, Cyanobacteria, and Chloroflexi was greatly decreased compared with blank soil. In the phylum Proteobacteria, the abundance of Alphaproteobacteria was greatly reduced in the soils supplemented with antibiotics (from 13.40% in blank soil to 6.43-10.16% after treatment); while Betaproteobacteria and Deltaproteobacteria showed a different trend with their abundance increased compared to blank soil, and Gammaproteobacteria remained unchanged for all treatments (2.36-2.78%). The varied trends for different classes indicated that the major bacterial groups changed with the treatments due to their different adaptability to the antibiotics as well as to the electric field. SulI being an exception, the reduction ratio of the observed antibiotic resistance genes (ARGs) including tetC, tetG, tetW, tetM, intI1, and sulII in the 0-2cm soil sampled with EKA versus NOE treatment reached 55.17%, 3.59%, 99.26%, 89.51%, 30.40%, and 27.92%, respectively. Finally, correlation analysis was conducted between antibiotic-resistant bacteria, ARGs and taxonomic bacterial classes. It

  20. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers

    Directory of Open Access Journals (Sweden)

    Alastair W. Tait

    2017-06-01

    Full Text Available Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not