WorldWideScience

Sample records for actinium halides

  1. Extraction of actinium with di-(2-ethylhexyl)phosphoric acid from hydrochloric and nitric acid solutions

    The extraction of actinium with HDEHP from Cl- and NO3- systems has been investigated. It was found that extraction of actinium from HCl solutions is much better than from HNO3 solutions. Stability constants of actinium complexes Ac(X-)+2 with Cl- and NO3- ligands were determined. Our results show that the actinium formed less stable complexes with Cl- than with NO3- ligands. 5 refs., 3 figs., 1 tab. (author)

  2. The sorption of polonium, actinium and protactinium onto geological materials

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results

  3. Discovery of the actinium, thorium, protactinium, and uranium isotopes

    Fry, C; Thoennessen, M

    2012-01-01

    Currently, 31 actinium, 31 thorium, 28 protactinium, and 23 uranium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  4. Separation of Actinium 227 from the uranium minerals

    The purpose of this work was to separate Actinium 227, whose content is 18%, from the mineral carnotite found in Gomez Chihuahua mountain range in Mexico. The mineral before processing is is pre-concentrated and passed, first through anionic exchange resins, later the eluate obtained is passed through cationic resins. The resins were 20-50 MESH QOWEX and 100-200 MESH 50 X 8-20 in some cased 200-400 MESH AG 50W-X8, 1X8 in other cases. The eluates from the ionic exchange were electrodeposited on stainless steel polished disc cathode and platinum electrode as anode; under a current ODF 10mA for 2.5 to 5 hours and of 100mA for .5 of an hour. it was possible to identify the Actinium 227 by means of its descendents, TH-227 and RA-223, through alpha spectroscopy. Due to the radiochemical purity which the electro deposits were obtained the Actinium 227 was low and was not quantitatively determined. A large majority of the members of the natural radioactive series 3 were identified and even alpha energies reported in the literature with very low percentages of non-identified emissions were observed. We conclude that a more precise study is needed concerning ionic exchange and electrodeposit to obtain an Actinium 227 of radiochemical purity. (Author)

  5. Spectroscopic and computational investigation of actinium coordination chemistry.

    Ferrier, Maryline G; Batista, Enrique R; Berg, John M; Birnbaum, Eva R; Cross, Justin N; Engle, Jonathan W; La Pierre, Henry S; Kozimor, Stosh A; Lezama Pacheco, Juan S; Stein, Benjamin W; Stieber, S Chantal E; Wilson, Justin J

    2016-01-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, Ac(III) reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between Ac(III) and Am(III) in HCl solutions indicate Ac(III) coordinates more inner-sphere Cl(1-) ligands (3.2±1.1) than Am(III) (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique Ac(III) chemical behaviour. PMID:27531582

  6. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development. PMID:22697483

  7. The Silver Halides

    Sahyun, M. R. V.

    1977-01-01

    Illustrates the type of fractional bonding for solid silver halides. Treats the silver halides as electron excess compounds, and develops a model of a localized bonding unit that may be iterated in three dimensions to describe the bulk phase. (MLH)

  8. Polynuclear technetium halide clusters

    Development of chemistry of polynuclear technetium halide clusters in works devoted to synthesis, structure and investigation of their chemical and physical properties is considered. The role of academician V.I. Spitsyn as an initiator of investigation of polynuclear technetium halide clusters in the Institute of Physical Chemistry of Academy of Science of USSR is noted. Reactions and stability of cluster halides, their molecular and electronic structures are analyzed. Prospects of development of polynuclear technetium halide clusters chemistry as a direction being on the junction of cluster chemistry and theory of metal-metal multiple bonds are appreciated

  9. Radium, thorium, and actinium extraction from seawater using an improved manganese-oxide-coated fiber

    Laboratory experiments were conducted to determine the efficiency with which improved manganese-oxide-coated acrylic fibers extract radium, thorium, and actinium from seawater. Tests were made using surface seawater spiked with 227Ac, 227Th and 223Ra. For sample volumes of approximately 30 liters and flow rates up to 0.5 liters per minute, radium and actinium are removed quantitatively. Approximately 80-95% of the thorium is removed under these same conditions. (Auth.)

  10. Photofragmentation of metal halides

    The author deals with photodissociation of molecules of alkali halides. It is shown that the total absorption cross section consists of two contributions arising from transitions to excited states of total electronic angular momentum Ω=0+ and Ω=1. From the inversion of the absorption continua potential energy curves of the excited states can be constructed in the Franck-Condon region. It is found that for all alkali halides the 0+ state is higher in energy than the Ω=1 state. Extensive studies are reported on three thallium halides, TlI, TlBr and TlCl at various wavelengths covering the near ultraviolet region. (Auth.)

  11. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  12. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces ∼100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 GeV protons

  13. PREPARATION OF HALIDES OF PLUTONIUM

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  14. Neutron-Induced Fission of Actinium-227, Protactinium-231 and Neptunium-237: Mass Distribution

    Results of radiochemical studies on the mass distribution in the neutron-induced fission of actinium-227, protactinium-231 and neptunium-237 have been presented. This work has been carried out as part of a programme to determine the mass distribution in the fission of heavy elements as a function of Z and A. All irradiations have been carried out in the core of the swimming-pool type reactor APSARA with cadmium shielding wherever necessary. Relative yields of several fission product nuclides have been obtained by a method involving a comparison of the fission product activities from the respective targets with those formed from uranium-235 simultaneously irradiated. Thermal-neutron fission yields of uranium-235 have been assumed. These results indicate a predominantly asymmetric mass distribution in all the three cases, and also a distinct though small symmetric peak in the case of actinium-227. (author)

  15. A new method for the determination of low-level actinium-227 in geological samples

    We developed a new method for the determination of 227Ac in geological samples. The method uses extraction chromatographic techniques and alpha-spectrometry and is applicable for a range of natural matrices. Here we report on the procedure and results of the analysis of water (fresh and seawater) and rock samples. Water samples were acidified and rock samples underwent total dissolution via acid leaching. A DGA (N,N,N',N'-tetra-n-octyldiglycolamide) extraction chromatographic column was used for the separation of actinium. The actinium fraction was prepared for alpha spectrometric measurement via cerium fluoride micro-precipitation. Recoveries of actinium in water samples were 80 ± 8 % (number of analyses n = 14) and in rock samples 70 ± 12 % (n = 30). The minimum detectable activities (MDA) were 0.017-0.5 Bq kg-1 for both matrices. Rock sample 227Ac activities ranged from 0.17 to 8.3 Bq kg-1 and water sample activities ranged from below MDA values to 14 Bq kg-1of 227Ac. From the analysis of several standard rock and water samples with the method we found very good agreement between our results and certified values. (author)

  16. METHOD OF PREPARING METAL HALIDES

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  17. Preparation of cerium halide solvate complexes

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  18. Radiochemical synthesis of pure anhydrous metal halides

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  19. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    Momeni, M.H.

    1981-09-01

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore.

  20. Analysis of the gamma spectra of the uranium, actinium, and thorium decay series

    This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore

  1. Electronic conduction in molten halides

    Heus, R.J.; Egan, J.J.

    1976-01-01

    Methods of measuring electronic conductivity in molten halides are reviewed. These include increase of total conductivity with addition of metal, polarization techniques, chronopotentiometry, and motion of colored subhalides in a potential gradient. The applicability of the Nernst-Einstein equation and the role of convection are considered. Results are presented for several halide melts. Applications of these results are elucidated, including self-discharge rate of molten salt batteries, measurement of alloy thermodynamics using molten salt electrolytes, and kinetics of tarnishing reactions with formation of liquid films.

  2. Thermodynamic properties of Alkali Halides

    The method of moments of [1], developed by the authors in [2] for strongly and harmonic crystals with f.c.c. structure is used here to investigate the main thermodynamic properties of the potassium halides. Their analytic expressions as functions of temperature are obtained and the comparison between the theoretical results and the experimental data is made. (author). 22 refs., 5 tabs

  3. Saucy-Marbet Rearrangements of Alkynyl Halides in the Synthesis of Highly Enantiomerically Enriched Allenyl Halides

    Tang, Yu; Shen, Lichun; Dellaria, Becky J.; Richard P. Hsung

    2008-01-01

    A stereospecific Saucy-Marbet rearrangement of alkynyl halides is described here. These rearrangements provide an entry to highly enantiomerically enriched allenyl bromides and chlorides through excellent chirality transfer and the reservation of optical integrity of alkynyl halides.

  4. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  5. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    2010-07-01

    ... trialkylamine halides. 721.4095 Section 721.4095 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  6. Halogen versus halide electronic structure

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  7. In-source laser spectroscopy developments at TRILIS—towards spectroscopy on actinium and scandium

    Resonance Ionization Laser Ion Sources (RILIS) have become a versatile tool for production and study of exotic nuclides at Isotope Separator On-Line (ISOL) facilities such as ISAC at TRIUMF. The recent development and addition of a grating tuned spectroscopy laser to the TRIUMF RILIS solid state laser system allows for wide range spectral scans to investigate atomic structures on short lived isotopes, e.g., those from the element actinium, produced in uranium targets at ISAC. In addition, development of new and improved laser ionization schemes for rare isotope production at ISAC is ongoing. Here spectroscopic studies on bound states, Rydberg states and autoionizing (AI) resonances on scandium using the existing off-line capabilities are reported. These results allowed to identify a suitable ionization scheme for scandium via excitation into an autoionizing state at 58,104 cm − 1 which has subsequently been used for ionization of on-line produced exotic scandium isotopes.

  8. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  9. Computational screening of mixed metal halide ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich;

    of natural selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides......Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...

  10. Fullerenes doped with metal halides

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  11. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Raeder, S.; Bastin, B.; Block, M.; Creemers, P.; Delahaye, P.; Ferrer, R.; Fléchard, X.; Franchoo, S.; Ghys, L.; Gaffney, L. P.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Luton, F.; Moore, I. D.; Martinez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  12. Toxicity of organometal halide perovskite solar cells

    Babayigit, Aslihan; Ethirajan, Anitha; Muller, Marc; Conings, Bert

    2016-03-01

    In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.

  13. PREPARATION OF ALKYL HALIDES VIA ORGANOTELLURIUMS

    チカマツ, キヨフミ; オオツボ, テツオ; オグラ, フミオ; ヤマグチ, ハチロウ; Kiyofumi, CHIKAMATSU; Tetsuo, OTSUBO; Fumio, OGURA; Hachiro, YAMAGUCHI

    1982-01-01

    The conversion of phenyltelluroalkanes to haloalkanes was studied in connection with the homologation of alkyl halides. Similar reactions of 1,1-bis(phenyltelluro)alkanes provided a new synthetic method of aldehydes.

  14. Copper Catalyzed Oceanic Methyl Halide Production

    Robin Kim, Jae Yun; Rhew, Robert

    2014-01-01

    Methyl halides are found in all of Earth’s biomes, produced naturally or through manmade means. Their presence in the atmosphere is problematic, as they catalyze depletion of stratospheric ozone. To understand the full environmental impact of these compounds, it is important to identify their chemical cycling processes. Iron increases methyl halide production in soils and oceans, yet copper’s influence remains unknown despite its similar chemical oxidation properties to iron. I experimentally...

  15. Oxidation of hydrogen halides to elemental halogens

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  16. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  17. The Antimicrobial Action of Silver Halides in Calcium Phosphate

    Kalniņa, D; Gross, K; Onufrijevs, P.; Daukšta, E; Nikolajeva, V; Stankeviciute, Z; Kareiva, A.

    2015-01-01

    Silver halides represent a yet unexplored avenue for imparting antimicrobial activity to calcium phosphates. Negtively charged silver halide colloids (AgI, AgBr and AgCl) were added to synthesized amorphous calcium phosphate. Concurrent melting of silver halides and crystallization to carbonated apatite at 700 oC increased the silver halide surface area available to bacteria and formed a lower solubility apatite. The effect of the matrix solubility on antimicrobial response could ...

  18. Method for recovering hydrocarbons from molten metal halides

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  19. 40 CFR 721.575 - Substituted alkyl halide.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  20. Harmonic dynamical behaviour of thallous halides

    Sarvesh K Tiwari; L J Shukla; K S Upadhyaya

    2010-05-01

    Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.

  1. Ultraviolet laser ablation of halides and oxides

    We compare and contrast recent measurements of the behavior of ions and excited ions desorbed from samples of alkali halides and oxide ferroelectrics by an excimer laser at 308 nm wavelength. At the intensities used in these experiments, the density of local electronic excitation is low in the halides and high in the ferroelectrics, corresponding to two- and one-photon band-to-band transitions, respectively. The observed desorption yields and changes in the sample surfaces are discussed in terms of the density of electronic excitation, the relative strengths of electron-lattice coupling, and the role of thermal relaxation processes in the two materials. (orig.)

  2. Computational screening of mixed metal halide ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich; Vegge, Tejs

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure....... In this project we are searching for improved mixed materials with optimal desorption temperatures and kinetics, optimally releasing all ammonia in one step. We apply Density Functional Theory, DFT, calculations on mixed compounds selected by a Genetic Algorithm (GA), relying on biological principles...

  3. Computational Screening of Mixed Metal Halide Ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich; Vegge, Tejs

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. In this project we are searching for improved mixed materials with optimal desorption temperature and kinetics. We apply DFT calculations on mixed compounds...

  4. The Additive Coloration of Alkali Halides

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  5. Transport of Soil Halides through Rice Paddies: A Viable Mechanism for Rapid Dispersion of the Soil Halide Reservoir

    Redeker, K. R.; Manley, S.; Wang, N.; Cicerone, R.

    2002-05-01

    On short time scales (1-10 years) soil halide concentrations have been assumed to be primarily driven by leaching and deposition processes. Recent results however, have shown that terrestrial plants volatilize soil halides in the form of methyl halides. Emissions of methyl chloride, methyl bromide and methyl iodide represent major pathways for delivery of inorganic halogen radicals to the atmosphere. Inorganic halogen radicals destroy ozone in the stratosphere and modify the oxidative capacity of the lower atmosphere. We have previously shown that rice paddies emit methyl halides and that emissions depend on growth stage of the rice plant as well as field water management. We show here that rice grown in a greenhouse at UCI is capable of volatilizing and/or storing up to 30%, 5%, and 10% of the available chloride, bromide and iodide within the top meter of soil. The percent of plant tissue halide volatilized as methyl halide over the course of the season is calculated to be 0.05%, 0.25% and 85.0% for chloride, bromide and iodide. We compare our greenhouse soil halide concentrations to other commercial rice fields around the world and estimate the e-folding time for soil halides within each region. We suggest that rice agriculture is the driving removal mechanism for halides within rice paddies and that terrestrial plants play a larger role in global cycling of halides than previously estimated.

  6. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  7. Computational Screening of Mixed Metal Halide Ammines

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich;

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. In this project we are searching for improved mixed materials with optimal desorption temperature and kinetics. We apply DFT calculations on mixed compounds...... selected by a Genetic Algorithm (GA), relying on biological principles of natural selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d...... and 4d metals and the four lightest halides, giving in total almost two million combinations....

  8. Lanthanide-halide based humidity indicators

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  9. Process and composition for drying of gaseous hydrogen halides

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  10. Iridium-catalyzed intramolecular [4 + 2] cycloadditions of alkynyl halides

    Andrew Tigchelaar; William Tam

    2012-01-01

    Iridium-catalyzed intramolecular [4 + 2] cycloadditions of diene-tethered alkynyl halides were investigated by using [IrCl(cod)]2 as catalyst, and dppe was found to be the most suitable phosphine ligand for the reaction. No oxidative insertion of the iridium into the carbon–halide bond was observed, and the reactions proceeded to provide the halogenated cycloadducts in good yield (75–94%). These results are the first examples of cycloadditions of alkynyl halides using an iridium c...

  11. Lanthanide doped strontium-barium cesium halide scintillators

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  12. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides w...

  13. Making and Breaking of Lead Halide Perovskites

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  14. Making and Breaking of Lead Halide Perovskites.

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  15. The coacervation of aqueous solutions of tetraalkylammonium halides

    The coacervation of aqueous solutions of tatraalkylammonium halides in the presence of not of inorganic halides and acids has been studied, considering thermodynamic and spectroscopic aspects. The importance of dispersion forces as well as forces resulting from hydrophobic hydration has been assessed. The analogy between these systems and anionic ion exchange resins has been shown especially for Uranium VI extraction

  16. Studies of rare gas halide lasers

    Hogan, Daniel Christopher.; Webb, Colin E.; Dr. C. E. Webb

    1983-01-01

    This thesis presents the results of a study of the mechanisms responsible for limiting the laser pulse duration obtainable in xenon chloride lasers which are excited by UV-preionized, self-sustained gas discharges. The xenon chloride laser system, the principal emission band of which is centred around 308 nm, belongs to the class of high pressure gas lasers known as 'rare-gas halides'(RGH). RGH lasers are now well known for their high peak power output at a number of wavelen...

  17. Ultraviolet absorption spectra of mercuric halides.

    Templet, P.; Mcdonald, J. R.; Mcglynn, S. P.; Kendrow, C. H.; Roebber, J. L.; Weiss, K.

    1972-01-01

    The gas phase transitions of the mercuric halides were observed in the UV region by operating at temperatures above 400 K and at vapor pressures on the order of 0.5 mm. Spectral features exhibited by the chloride, bromide, and iodide of mercury correlate energetically with bands previously designated as intermolecular charge transfer transitions. The solution spectra of mercuric iodide and deep color of the crystals (if not due to some solid state interactions) indicate that this molecule may also have longer wavelength transitions.

  18. Elastic Properties of Potassium Halides under Pressure

    K.Haddadi; L.Louail; D.Maouche

    2008-01-01

    The moderate-pressure elastic properties of potassium halides KX (X=F, CI, Br) was studied theoretically using the density functional theory (DFT) with normconserving pseudopotentials method. The phase transfor- mation from the B1 phase (NaCl-type structure) to the denser B2 phase (CsCl-type structure) occurred at 7.7, 3.46 and 2.96 GPa for KF, KCl and KBr, respectively. The elastic stiffness coefficients and bulk modulus of these materials were calculated as function of hydrostatic pressure and compared with both the experimental and theoretical values.

  19. Finding New Perovskite Halides via Machine learning

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  20. Finding New Perovskite Halides via Machine learning

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  1. Alkali metal and alkali earth metal gadolinium halide scintillators

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  2. Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies.

    Li, Chi; Wei, Jian; Sato, Mikio; Koike, Harunobu; Xie, Zhong-Zhi; Li, Yan-Qing; Kanai, Kaname; Kera, Satoshi; Ueno, Nobuo; Tang, Jian-Xin

    2016-05-11

    Solution-processed perovskite solar cells are attracting increasing interest due to their potential in next-generation hybrid photovoltaic devices. Despite the morphological control over the perovskite films, quantitative information on electronic structures and interface energetics is of paramount importance to the optimal photovoltaic performance. Here, direct and inverse photoemission spectroscopies are used to determine the electronic structures and chemical compositions of various methylammonium lead halide perovskite films (MAPbX3, X = Cl, Br, and I), revealing the strong influence of halide substitution on the electronic properties of perovskite films. Precise control over halide compositions in MAPbX3 films causes the manipulation of the electronic properties, with a qualitatively blue shift along the I → Br → Cl series and showing the increase in ionization potentials from 5.96 to 7.04 eV and the change of transport band gaps in the range from 1.70 to 3.09 eV. The resulting light absorption of MAPbX3 films can cover the entire visible region from 420 to 800 nm. The results presented here provide a quantitative guide for the analysis of perovskite-based solar cell performance and the selection of optimal carrier-extraction materials for photogenerated electrons and holes. PMID:27101940

  3. Thermoluminescence of alkali halides and its implications

    Gartia, R. K.; Rey, L.; Tejkumar Singh, Th.; Basanta Singh, Th.

    2012-03-01

    Trapping levels present in some alkali halides namely NaCl, KCl, KBr, and KI are determined by deconvolution of the thermoluminescence (TL) curves. Unlike most of the studies undertaken over the last few decades, we have presented a comprehensive picture of the phenomenon of TL as an analytical technique capable of revealing the position of the trapping levels present in the materials. We show that for all practical purposes, TL can be described involving only the three key trapping parameters, namely, the activation energy (E), the frequency factor (s), and the order of kinetics (b) even for complex glow curves having a number of TL peaks. Finally, based on these, we logically infer the importance of TL in development and characterization of materials used in dosimetry, dating and scintillation.

  4. Metal halide perovskites for energy applications

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  5. Groundwater seepage from the Ranger uranium mine tailings dam: radioisotopes of radium, thorium and actinium. Supervising Scientist report 106

    Monitoring of bores near the Ranger uranium mine tailings dam has revealed deterioration in water quality in several bores since 1983. In a group of bores to the north of the dam, increases have been observed of up to 500 times for sulphate concentrations and of up to 5 times for 226Ra concentrations. Results are presented here of measurements of members of the uranium, thorium and actinium decay series in borewater samples collected between 1985 and 1993. In particular, measurements of all four naturally-occurring radium isotopes have been used in an investigation of the mechanism of radium concentration changes. For the most seepage-affected bores the major findings of the study include: 228Ra/226Ra 223Ra /226Ra and 224Ra/228Ra ratios all increased over the course of the study; barium concentrations show high seasonal variability, being lower in November than May, but strontium concentrations show a steady increase with time. Calculations show that the groundwater is probably saturated with respect to barite but not with respect to celestite or anglesite; sulphide concentrations are low in comparison with sulphate, and are higher in November than in May; and 227Ac concentrations have increased with time, but do not account for the high 223Ra/226Ra ratios. It is concluded on the basis of these observations that increases in Ra isotope concentrations observed in a number of seepage-affected bores arise from increases in salinity leading to desorption of radium from adsorption sites in the vicinity of the bore rather by direct transport of radium from the tailings. Increased salinity is also causing the observed increases in 227Ac and strontium concentrations, while formation of a barite solid phase in the groundwater is causing the removal of some radium from solution. This is the cause of the increasing radium isotope ratios noted above

  6. Silver-catalyzed coupling reactions of alkyl halides with indenyllithiums

    Someya, Hidenori; Yorimitsu, Hideki; Oshima, Koichiro

    2010-01-01

    Coupling reactions of tertiary and secondary alkyl halides with indenyllithiums proceeded effectively in the presence of a catalytic amount of silver bromide to provide tertiary- and secondary-alkyl-substituted indene derivatives in good yields.

  7. Theory of the late stage of radiolysis of alkali halides

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocation loops formed in alkali halides during earlier stages of irradiation. We present a theory based on a new mechanism of dislocation climb, which involves the production of Vt centers (self-trapped ...

  8. Color silver halide hologram production and mastering

    Bjelkhagen, Hans I.; Huang, Qiang

    1997-04-01

    Color reflection holograms recorded with the Denisyuk geometry have been demonstrated by the recently formed HOLOS Corporation in New Hampshire. The Slavich red-green-blue (RGB) sensitized ultra-high resolution silver halide emulsion was used for the hologram recording. The employed laser wavelengths were 647 nm, 532 nm, and 476 nm, generated by an argon ion, a frequency doubled Nd:YAG, and a krypton ion laser, respectively. A beam combination mechanism with dichroic filters enabled a simultaneous RGB exposure, which made the color balance and overall exposure energy easy to control as well as simplifying the recording procedure. HOLOS has been producing limited edition color holograms in various sizes from 4' X 5' to 12' X 16'. A 30 foot long optical table and high power lasers will enable HOLOS to record color holograms up to the size of one meter square in the near future. Various approaches have been investigated in generating color hologram masters which have sufficiently high diffraction efficiency to contact copy the color images onto photopolymer materials. A specially designed test object including the 1931 CIE chromaticity diagram, a rainbow ribbon cable, pure yellow dots, and a cloisonne elephant was used for color recording experiments. In addition, the Macbeth Color Checker chart was used. Both colorimetric evaluation and scattering noise measurements were performed using the PR-650 Photo Research SpectraScan SpectraCalorimeter.

  9. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature. PMID:27174223

  10. Vitrification of IFR and MSBR halide salt reprocessing wastes

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  11. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors. PMID:27089497

  12. Process for oxidation of hydrogen halides to elemental halogens

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  13. High Biomass Specific Methyl Halide Production Rates of Selected Coastal Marsh Plants and its Relationship to Halide Content

    Manley, S. L.; Wang, N.; Cicerone, R. J.

    2002-12-01

    Salt tolerant coastal marsh plants (halophytes) have previously been shown to be globally significant producers of methyl chloride (MeCl) and methyl bromide (MeBr). While halophytes are known for their high salt content, there are few reports of their halide content. Our studies have attempted to quantify biomass specific methyl halide (MeX) production from these plants and relate it to tissue halide levels. MeCl, MeBr and MeI production rates and tissue chloride, bromide and iodide concentrations from selected coastal marsh plants were measured for nearly a year. Certain halophyte species (i.e. Batis and Frankenia) have very high summer biomass specific production rates for MeX (e.g. Frankenia: 1 ug MeCl /gfwt/hr; 80 ng MeBr/gfwt/hr; 8 ng MeI/gfwt/hr). These rates of MeCl and MeBr production are much higher than those from other coastal marsh plants or seaweeds. Plant halide levels remain high throughout the year, while MeX production peaks at a high level in mid summer falling to low winter rates. This implies a linkage to plant growth. Higher levels of chloride and bromide were seen in the fleshy marsh plants such as Batis (saltwort, approximately 20 percent dry wt chloride, 0.4 percent dry wt bromide) and Salicornia (pickleweed) than in the others such as Frankenia (alkali heath) approx 7 percent dry wt chloride, 0.1 percent dry wt bromide) or Spartina (cordgrass). No such trend was seen for iodide, which ranged from 4 - 10 ppm. Calculations show the daily halide losses from MeX production are far less than the variability in tissue halide content. MeX production removes a small fraction of the total tissue halide from these plants suggesting that MeX production is not a mechanism used by these species to control internal halide levels. Saltwort cell-free extracts incubated with bromide or iodide in the presence of S-adenosyl-L-methionine (SAM) produced the corresponding MeX. MeBr production was inhibited by caffeic acid the substrate of lignin-specific O

  14. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.;

    1979-01-01

    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide. This is...

  15. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  16. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  17. Thallous and cesium halide materials for use in cryogenic applications

    Certain thallous and cesium halides, either used alone or in combination with other ceramic materials, are provided in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous and cesium halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated or extruded onto substrates or wires. (author)

  18. Theory of the late stage of radiolysis of alkali halides

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    Recent results on heavily irradiated natural and synthetic NaCl crystals give evidence for the formation of large vacancy voids, which were not addressed by the conventional Jain-Lidiard model of radiation damage ill alkali halides. This model was constructed to describe metal colloids and dislocati

  19. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  20. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  1. Method for calcining nuclear waste solutions containing zirconium and halides

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  2. Kinetic Studies of the Solvolysis of Two Organic Halides

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  3. On the Boiling Points of the Alkyl Halides.

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  4. A new mechanism for radiation damage processes in alkali halides

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution o

  5. Halide glass containing trivalent uranium ions and its fabrication process

    This halide glass, showing an optical attenuation -1 in the near infrared from 2.2 to 304 micrometers, is prepared with a glass containing uranium ions as U4+ and/or U5+ reduced by ionizing radiations in U3+. Application is made to the fabrication of optical fibers and lasers doped with trivalent uranium

  6. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  7. Electrolytic systems and methods for making metal halides and refining metals

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  8. Large methyl halide emissions from south Texas salt marshes

    R. C. Rhew

    2014-06-01

    Full Text Available Coastal salt marshes are natural sources of methyl chloride (CH3Cl and methyl bromide (CH3Br to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  9. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  10. Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts

    Linfan Cui

    2015-07-01

    Full Text Available In this study, highly efficient silver halide (AgX-based photocatalysts were successfully fabricated using a facile and template-free direct-precipitation method. AgX nanoparticles, which included silver chloride (AgCl, silver bromide (AgBr and silver iodide (AgI, were synthesized using different potassium halides and silver acetate as reactive sources. The size distribution of the AgX nanopar‐ ticles was determined by the reaction time and ratio of the reagents, which were monitored by UV-vis spectra. The as- prepared AgX nanoparticles exhibited different photoca‐ talytic properties. This shows the differences for the photodegradation of methyl orange and Congo red dyes. In addition, the AgCl nanoparticle-based photocatalyst exhibited the best photocatalytic property among all three types of AgX nanoparticles that are discussed in this study. Therefore, it is a good candidate for removing organic pollutants.

  11. Correlations between entropy and volume of melting in halide salts

    Melting parameters and transport coefficients in the melt are collated for halides of monovalent, divalent and trivalent metals. A number of systems show a deficit of entropy of melting relative to the linear relationships between entropy change and relative volume change on melting that are found to be approximately obeyed by a majority of halides. These behaviours are discussed on the basis of structural and transport data. The deviating systems are classified into three main classes, namely (i) fast-ion conductors in the high-temperature crystal phase such as AgI, (ii) strongly structured network-like systems such as ZnCl2, and (iii) molecular systems melting into associated molecular liquids such as SbCl3. (author). 35 refs, 1 fig., 3 tabs

  12. Stability diagrams for complexes in molten mixtures of halide salts

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudo-potential radii of Zunger and Cohen. As a third alternative we also consider a classification based on Pettifor's phenomenological chemical scale of the elements. The alternative structural classification schemes that are developed from these elemental properties are very successful in distinguishing molten mixtures in which the available experimental evidence indicates stability of ''complexes'', i.e. long-lived fourfold coordination of polyvalent metal ions. (author). 55 refs, 3 figs

  13. Alkali halide microstructured optical fiber for X-ray detection

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed

  14. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31Р-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  15. Study of methyl halide fluxes in temperate and tropical ecosystems

    Blei, Emanuel

    2010-01-01

    CH3Br and CH3Cl (methyl halides) are the most abundant natural vectors of bromine and chlorine into the stratosphere and play an important role in stratospheric ozone destruction. The current knowledge of their respective natural sources is incomplete leading to large uncertainties in their global budgets. Beside the issue of quantification, characterisation of possible sources is needed to assist modelling of future environmental change impacts on these sources and hence the s...

  16. Influence of the Print Run on Silver Halide Printing Plates

    Tomislav Cigula

    2010-09-01

    Full Text Available The most common printing technique today is lithography. The difference between printing and nonprinting areason a printing plate is accomplished by opposite physical and chemical properties of those areas (MacPhee, 1998.The printing areas are made of photoactive layer that attracts oil and chemical substances with oil solvent – printinginks. The nonprinting areas are made of aluminium-oxide which attracts water based substances – the fountainsolution.There are many of various types of photoactive layer which are used for production of offset printing plates, amongothers is silver halide layer. The usage of the silver halide technology in the graphic reproduction is not a novelty.The filmmaking phase is based on the usage of the silver halide as the photographically active ingredient, for instance,AgBr (silver bromide. The new, digital plate making technology (Computer to Plate, CtP eliminates thefilmmaking phase and therefore enables control of the printing plate’s exposure made by computer. CtP technologyeliminates the filmmaking phase, but it also results with the reduction of needed material quantities and requiredtime for the production (Limburg, 1994; Seydel, 1996.In this paper the basis of the graphic reproduction by using the silver halide digital printing plates was described.The changes of the AgX copying layer and the surface of the aluminium base in the printing process have beenobserved. The surface characteristics were determined by measuring the relevant surface roughness parameters. Inaddition, measurements of coverage values on the prints, detailed at smaller print run, were conducted.Results showed that surface changes on the printing plate are changing during printing process and that thesechanges influence transfer of the printing ink on the printing substrate. These measurements proved to be of greatinterest in the graphic reproduction as they enable us to determine consistency of the printing plates during theprinting

  17. Semiphysical development of holograms recorded in silver halide emulsions

    Banyasz, Istvan; Belendez, Augusto; Pascual, Inmaculada V.; Fimia, Antonio

    2000-10-01

    In the course of experiments on measurement of the effects of processing on nonlinear characteristics of silver halide holograms recorded in Agfa-gevaert 8E75HD emulsions we found that, under certain circumstances, the AAC developer acted as a semi-physical developer instead of the normal chemical developing action. The developed and fixed holograms were of low optical density (carbonate of purest grade with that of for analysis grade of the same company.

  18. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    Bijay Shrestha

    2015-12-01

    Full Text Available We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1 as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields.

  19. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  20. Effects of Halides on Plasmid-Mediated Silver Resistance in Escherichia coli

    Gupta, Amit; Maynes, Maria; Silver, Simon

    1998-01-01

    Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag+ resistance were measured with AgNO3 and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag+.

  1. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles

    Weix, Daniel J.

    2015-01-01

    Conspectus Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C–H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, th...

  2. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  3. Environmental controls over methyl halide emissions from rice paddies

    Redeker, K. R.; Cicerone, R. J.

    2004-03-01

    This paper examines primary controlling factors that affect methyl halide emissions from rice paddy ecosystems. Observations of four cultivars under multiple growth conditions during studies in commercial fields and the University of California, Irvine, greenhouse lead to the conclusion that daily emissions of methyl halides are primarily determined by the growth stage of the rice plant, with the exception that methyl chloride emissions show no clear seasonal pattern. Methyl chloride emissions appear to be more from the paddy water and/or soil as opposed to the plants; however, in soils with high chloride content, these emissions appear to peak during the reproductive phase. Strong secondary influences include air temperature, soil halide concentration, and soil pore water saturation. The cultivars studied had statistically separate seasonally integrated emissions. Irradiant light and aboveground biomass appear to have little effect on emissions. Emissions of methyl chloride, methyl bromide, and methyl iodide are estimated to be 3.5, 2.3, and 48 mg/m2/yr, or 5.3, 3.5, and 72 Gg/yr, from rice paddies globally.

  4. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  5. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets.

    Sichert, Jasmina A; Tong, Yu; Mutz, Niklas; Vollmer, Mathias; Fischer, Stefan; Milowska, Karolina Z; García Cortadella, Ramon; Nickel, Bert; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Urban, Alexander S; Feldmann, Jochen

    2015-10-14

    Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites. PMID:26327242

  6. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition. PMID:26791587

  7. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish)

    Taniguchi Tomokazu; Negishi Takashi; Matsuda Michiko; Toda Hiroshi; Itoh Nobuya; Ohsawa Noboru

    2009-01-01

    Abstract Background Biogenic emissions of methyl halides (CH3Cl, CH3Br and CH3I) are the major source of these compounds in the atmosphere; however, there are few reports about the halide profiles and strengths of these emissions. Halide ion methyltransferase (HMT) and halide/thiol methyltransferase (HTMT) enzymes concerning these emissions have been purified and characterized from several organisms including marine algae, fungi, and higher plants; however, the correlation between emission pr...

  8. Seasonal variations in halides in marine brown algae from Porbandar and Okha coasts (NW coast of India)

    Rao, Ch.K.; Singbal, S.Y.S.

    Seasonal variation of halides and their ratios were estimated in three brown algae, namely Cystoseira indica, Sargassum tenerrimum) and S. johnstonii from Porbandar and Okha Coasts. Halides were found to be higher in early stages of growth. The Br...

  9. Artificial Synapses: Organometal Halide Perovskite Artificial Synapses (Adv. Mater. 28/2016).

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    A synapse-emulating electronic device based on organometal halide perovskite thin films is described by T.-W. Lee and co-workers on page 5916. The device successfully emulates important characteristics of a biological synapse. This work extends the application of organometal halide perovskites to bioinspired electronic devices, and contributes to the development of neuromorphic electronics. PMID:27442971

  10. Formal Nucleophilic Boryl Substitution of Organic Halides with Silylborane/Alkoxy Base System

    Yamamoto, Eiji; Izumi, Kiyotaka; Horita, Yuko; Ukigai, Satoshi; Ito, Hajime

    2014-01-01

    Boryl substitution of organohalides with a silylborane and alkoxy bases is described. This reaction can be applied to various functionalized aryl halides. Alkyl and alkenyl halides, and even sterically congested aryl bromides also provided the corresponding borylated products in high yields. Mechanistic studies indicated that neither trace transition-metal impurities nor aryl radical species involved in this reaction.

  11. Temperature effects in the absorption spectra and exciton luminescence in ammonium halides

    Warm-up behavior of the first maximum exciton absorption bands in ammonium halides is explored. Under phase transition occurs offset of bands, bound both with changing a parameter of lattice, and efficient mass of exciton. Warm-up dependency of quantum leaving a luminescence of self-trapped excitons in ammonium halides is measured. (author)

  12. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Moore, David T.

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  13. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films

  14. Structural, dynamical, and transport properties of the hydrated halides: How do At− bulk properties compare with those of the other halides, from F− to I−?

    Réal, Florent; Severo Pereira Gomes, Andre; Guerrero Martínez, Yansel Omar; Galland, Nicolas; Vallet, Valérie; Masella, Michel; Ayed, Tarah

    2016-01-01

    International audience The properties of halides from the lightest, uoride (F−), to the heaviest, astatide (At−), have been studied in water using a polarizable force- eld approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force- eld explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force- eld parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Möller-Plesset second-o...

  15. Silylaryl Halides Can Replace Triflates as Aryne Precursors.

    Mesgar, Milad; Daugulis, Olafs

    2016-08-01

    Silylaryl bromides and iodides can be prepared in one step from commercially available starting materials. Arynes can be generated from these compounds under conditions nearly identical to those employed for silylaryl triflates. Three distinct transformations, ortho-arylation of N-tritylanilines, intermolecular addition of arynes to amides, and reaction of ureas with arynes, were shown to be successful for the new aryne precursors. The main advantage of silylaryl halides relative to silyl aryl triflates is their one-step preparation from commercially available starting materials. PMID:27415183

  16. A new mechanism for radiation damage processes in alkali halides

    Dubinko, V. I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution of all experimentally observed extended defects: metal colloids, gas bubbles, and vacancy voids. Voids are shown to arise and grow large due to the reaction between F and VF centers at the surface o...

  17. Thermal conductivity of halide solid solutions: measurement and prediction.

    Gheribi, Aïmen E; Poncsák, Sándor; St-Pierre, Rémi; Kiss, László I; Chartrand, Patrice

    2014-09-14

    The composition dependence of the lattice thermal conductivity in NaCl-KCl solid solutions has been measured as a function of composition and temperature. Samples with systematically varied compositions were prepared and the laser flash technique was used to determine the thermal diffusivity from 373 K to 823 K. A theoretical model, based on the Debye approximation of phonon density of state (which contains no adjustable parameters) was used to predict the thermal conductivity of both stoichiometric compounds and fully disordered solid solutions. The predictions obtained with the model agree very well with our measurement. A general method for predicting the thermal conductivity of different halide systems is discussed. PMID:25217938

  18. A new mechanism for radiation damage processes in alkali halides

    Dubinko, V. I.; Turkin, A. A.; Vainshtein, D. I.; den Hartog, H. W.

    1999-12-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution of all experimentally observed extended defects: metal colloids, gas bubbles, and vacancy voids. Voids are shown to arise and grow large due to the reaction between F and VF centers at the surface of halogen bubbles. Voids can ignite a back reaction between the radiolytic products resulting in decomposition of the irradiated material.

  19. Coordination chemistry of halides and oxohalides of tungsten (6)

    Literature data on the structure of molecular complexes of halides, exo- and dioxohalides of tungsten (6), as well as results of the study of WX6, WOX4 and WO2X2 structures in gaseous phase, crystal state and in solutions of organic solvents, were generalized. The greatest volume of structural studies involved complexes W6 with oxygen-containing ligands. The presence of cis- and trans- effects of aliquotly bound oxygen atoms in complexes of exo- and dioxohalides of tungsten is pointed out

  20. Analysis and modeling of alkali halide aqueous solutions

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems that are...... very soluble in water, for example, up to more than 30 mol kg-1. Phase behaviors for the systems are analyzed at concentrations of salt up to the solubility in water at temperatures between 273 and 373 K by comparing calculated results with available experimental data and available models....

  1. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-01

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes. PMID:26560862

  2. RENUW - A dry halide process for nuclear fuel reprocessing

    The RENUW Dry Halide Process for reprocessing nuclear fuel will be described. Analysis has shown that the RENUW process will significantly reduce the waste produces from processing irradiated nuclear fuel compared to aqueous processes. Waste reduction is accomplished by recovering the zirconium and uranium for reuse. The RENUW process uses hot chlorine gas to chlorinate the feed; separation is accomplished by exploiting the large differences between the relative volatilities of the fission products and the uranium and zirconium. The flow sheet is quite simple and uses readily commercial technologies

  3. RENUW - A dry halide process for nuclear fuel reprocessing

    Lahoda, E.J.; McLaughlin, D.F.; Peterson, S.H.; Burgman, H.A. [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Behrens, R. Jr.; Johnston, S.C.; Vosen, S.R. [Sandia National Laboratories, Livermore, CA (United States); Christian, J.D. [Westinghouse Idaho Nuclear Company, Idaho Falls, ID (United States)

    1993-12-31

    The RENUW Dry Halide Process for reprocessing nuclear fuel will be described. Analysis has shown that the RENUW process will significantly reduce the waste produces from processing irradiated nuclear fuel compared to aqueous processes. Waste reduction is accomplished by recovering the zirconium and uranium for reuse. The RENUW process uses hot chlorine gas to chlorinate the feed; separation is accomplished by exploiting the large differences between the relative volatilities of the fission products and the uranium and zirconium. The flow sheet is quite simple and uses readily commercial technologies.

  4. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications. PMID:27336412

  5. A new polarizable force field for alkali and halide ions

    We developed transferable potentials for alkali and halide ions which are consistent with our recent model of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. Following the approach used for the water potential, we applied Gaussian charge distributions, exponential repulsion, and r−6 attraction. One of the two charges of the ions is fixed to the center of the particle, while the other is connected to this charge by a harmonic spring to express polarization. Polarizability is taken from quantum chemical calculations. The repulsion between different species is expressed by the combining rule of Kong [J. Chem. Phys. 59, 2464 (1972)]. Our primary target was the hydration free energy of ions which is correct within the error of calculations. We calculated water-ion clusters up to 6 water molecules, and, as a crosscheck, we determined the density and internal energy of alkali-halide crystals at ambient conditions with acceptable accuracy. The structure of hydrated ions was also discussed

  6. Dislocation unpinning model of acoustic emission from alkali halide crystals

    B P Chandra; Anubha S Gour; Vivek K Chandra; Yuvraj Patil

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant $_{\\text{s}}$ for surface annihilation of dislocations and the pinning time $_{\\text{p}}$ of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  7. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them. PMID:27100910

  8. Halide salts accelerate degradation of high explosives by zerovalent iron

    Zerovalent iron (Fe0, ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl- and Br- was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br- was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  9. Structure and Bonding in Small Neutral Alkali-Halide Clusters

    Aguado, A; López, J M; Alonso, J A

    1997-01-01

    The structural and bonding properties of small neutral alkali-halide clusters (AX)n, with n less than or equal to 10, A=Li, Na, K, Rb and X=F, Cl, Br, I, are studied using the ab initio Perturbed Ion (aiPI) model and a restricted structural relaxation criterion. A trend of competition between rock-salt and hexagonal ring-like isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C/r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rock-salt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n= 4, 6 and 9, and these are universal since they occur for all alkali-halides and do not depend on the specific ground state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n (n=3-7) and (AX)_3 clusters, an...

  10. Melting and liquid structure of polyvalent metal halides

    A short review is given of recent progress in determining and understanding liquid structure types and melting mechanisms for halides of polyvalent metals. The nature of the preferred local coordination for the polyvalent metal ion in the melt can usually be ascertained from data on liquid mixtures with halogen-donating alkali halides. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure melt determines the character of its short-range and possible medium-range order. A broad classification of structural and melting behaviours can be given on the basis of measured melting parameters and transport coefficients for many compounds, in combination with the available diffraction data on the liquid structure of several compounds. Correlations have been shown to exist with a simple indicator of the nature of the chemical bond and also with appropriate parameters of ionic models, wherever the latter are usefully applicable for semiquantitative calculations of liquid structure. Consequences on the mechanisms for valence electron localization in solutions of metallic elements into strongly structured molten salts are also briefly discussed. (author). 46 refs, 4 figs, 2 tabs

  11. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites.

    Li, Chonghea; Lu, Xionggang; Ding, Weizhong; Feng, Liming; Gao, Yonghui; Guo, Ziming

    2008-12-01

    In this study a total of 186 complex halide systems were collected; the formabilities of ABX3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF2) without perovskite structure and six systems (RbF-PbF2, CsF-BeF2, KCl-FeCl2, TlI-MnI2, RbI-SnI2, TlI-PbI2) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. PMID:19029699

  12. Investigation of change regularity of energy states of Mn2+ in halides

    Data on 4E, 4A1 (4G) and 4T1 (4G) energy states of Mn2+ ion in some halides have been obtained and analyzed. With use of the dielectric theory of the chemical bond for complex crystals, several chemical bond parameters were calculated. The change regularity of the energy states of Mn2+ in halides has been studied. The results show that the covalence, the coordination number and the radius of the central ion are the main factors influencing the energy states of Mn2+ ion in halides. The relationships between these factors and the energy state 4T1 (4G), the energy difference ΔE (ΔE=4E, 4A1 (4G)→4T1 (4G)) of Mn2+ ion in halides were established: E=2.0898+0.8618 exp (−F/0.2431); ΔE=0.3201+0.9713⁎F. These relationships allow us to predict the position of energy state 4T1 (4G) and the energy difference ΔE of Mn2+ in halides. This work can be significant for further understanding the luminescent properties of Mn2+ and can be used to develop new Mn2+-doped phosphors. - Highlights: ► Relationship between F and energy state 4T1(4G) of Mn2+ in halides was set up. ► Relationship between F and energy difference ΔE of Mn2+ in halides was set up. ► Site occupation of Mn2+-doped halides with two or more cations can be made clear. ► Energy state 4T1(4G) and emission band of Mn2+ in halides can be predicted.

  13. Mild Palladium-Catalyzed Cyanation of (Hetero)aryl Halides and Triflates in Aqueous Media

    Cohen, Daniel T.; Buchwald, Stephen L.

    2015-01-01

    A mild, efficient, and low-temperature palladium-catalyzed cyanation of (hetero)aryl halides and triflates is reported. Previous palladium-catalyzed cyanations of (hetero)aryl halides have required higher temperatures to achieve good catalytic activity. This current reaction allows the cyanation of a general scope of (hetero)aryl halides and triflates at 2–5 mol % catalyst loadings with temperatures ranging from rt to 40 °C. This mild method was applied to the synthesis of lersivirine, a reve...

  14. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    Falivene, Laura

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  15. Neutron Activation Analysis of Lead Halide Pollution Aerosols

    Iodine, bromine and chlorine have been determined by neutron activation analysis in atmospheric samples of both natural and pollution origin, and a comparison of the two sources provides the basis of a technique described in this paper for determining the composition and possible source of lead halide pollution aerosols. The activation analysis procedure employed consists of reactor neutron irradiation of aqueous samples and comparators for 20 min followed by radiochemical separation of iodine, bromine and chlorine and automatic counting of beta radioactivity from solid silver halide sources. Determination of lead by anodic stripping voltammetry (inverse polarography) consists of deposition of Pb++ from the solution onto a composite paraffin- impregnated graphite and mercury electrode at -1.00 V versus the standard calomel electrode, and then stripping by increasing the potential continuously. A significant question of public health interest in the air chemistry of lead is the source of the lead. Ethyl fluid, a mixture of organic lead, bromine and chlorine compounds, burns to form inorganic lead halide particles with Cl/Pb = 0.34 and Br/Pb = 0.39 by weight. In Cambridge, Massachusetts, analyses of cascade impactor aerosols were compared with similarly collected samples from the unpolluted air of Hawaii. The pollution bromine component ranged from 0.4 to 0.1 or less of the lead concentration, indicating in most cases either automotive lead with a bromine deficiency or a mixture of lead from automotive and other sources. In Fairbanks, Alaska, during winter, atmospheric conditions favour high local concentrations of air pollutants. Aerosols collected by Millipore filters show that pollution chlorine averages very nearly the value predicted from the observed lead and the known composition of ethyl fluid, and the automotive source for both chlorine and lead is strongly indicated. Pollution bromine, however, was less than predicted, and the bromine deficiency was about

  16. Games people play with interstitials (in alkali halides)

    A survey is given of the various ways in which interstitial halogen atoms produced by ionising radiation can be trapped in alkali halides. First, the fundamental interstitial halogen atom center, the H-center, is discussed. Then, interstitial centers trapped by, or in the neighbourhood of, various impurities are presented. Particular attention is given to trapping by the following impurities: foreign halogen ions, foreign alkali ions or pairs of both. The discussion is limited to a description of the production and the models of these H-type centers and little is said about their sometimes interesting physical properties. A few speculations are offered why certain interstitial centers have not yet been observed. The models of a few paramagnetic diinterstitial centers are also presented

  17. Giant photostriction in organic-inorganic lead halide perovskites

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  18. Mechanical properties of silver halide core/clad IR fibers

    Shalem, Shaul; German, Alla; Moser, Frank; Katzir, Abraham

    1996-04-01

    We have developed core/clad polycrystalline silver halide optical fibers with a loss of roughly 0.3 dB/m at 10.6 micrometers. Such fibers, with core diameters 0.3 - 0.6 mm and lengths of 1 to 2 meters are capable of continuously delivering output power densities as high as 14 KW/cm2. The fibers were repetitively bent in the plastic and elastic regimes and the optical transmission monitored during bending. The mechanical properties of the core/clad fibers and of the core only fibers are similar. It was also demonstrated that the 'bending' properties of the core/clad fibers are determined by the cladding material. Our investigations suggest that proper design of the core/clad structure may give significant improvement in mechanical properties such as more cycles to optical failure. This will be very important especially for endoscopic laser surgery and other medical applications.

  19. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  20. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X1Σ+→a'3Σ+ transitions of the CN- molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN- concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author)

  1. Theoretical study of the scandium and yttrium halides

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1988-01-01

    The X1Sigma(+) ground states and a3Delta excited states of the diatomic halides of Sc and Y are characterized theoretically, using the SDCI coupled-pair functional method and the state-averaged CASSCF method to determine the spectroscopic constants and related properties. The techniques employed are discussed, and the results are presented in extensive tables. The dissociation energies are given as D0 = 6.00 eV for ScF, 4.55 eV for ScCl, 3.90 eV for ScBr, 6.72 eV for YF, 5.36 eV for YCl, and 4.74 eV for YBr.

  2. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-01

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities. PMID:26631361

  3. Quasielastic neutron scattering study of silver selenium halides

    Major, A G; Barnes, A C; Howells, W S

    2002-01-01

    Both silver chalcogenides (Ag sub 2 S, Ag sub 2 Se, and Ag sub 2 Te) and silver halides (AgCl, AgBr, and AgI) are known to be fast-ion solids in which the silver ions can diffuse quickly in a sublattice formed by the other ions. To clarify whether mixtures of these materials (such as Ag sub 3 SeI) possess comparable properties and whether a systematic dependence on the cation-to-anion ratio can be observed, some of these mixtures were studied by quasielastic neutron scattering both in the solid and the liquid phases. To identify the diffusion mechanisms and constants, a new data-analysis method based on a two-dimensional maximum-likelihood fit is proposed. This method has the potential to give more reliable information on the diffusion mechanism than the traditional Bayesian method. (orig.)

  4. Theory of freezing of alkali halides and binary alloys

    Using the basic equations of classical statistical mechanics relating the singlet densities rho1 and rho2 of a binary system to the three partial direct correlation functions csub(ij), a theory of freezing is developed. Though the theory is set up for arbitrary concentration, we focus on the freezing of the alkali halides. In particular, we show that periodic solutions of the equations for rho1 and rho2 can coexist with homogeneous solutions. The difference in free energy between periodic and homogeneous phases is built up in terms of (i) the volume difference and (ii) the Fourier components of rho1, rho2 and csub(ij). To lowest order, it is stressed that the freezing transition is determined by the charge-charge structure factor at the principal peak and by the compressibility. (author)

  5. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    Brendel' , V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  6. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    Brendel', V. M.; Bukin, V. V.; Garnov, Sergei V.; Bagdasarov, V. Kh; Denisov, N. N.; Garanin, Sergey G.; Terekhin, V. A.; Trutnev, Yurii A.

    2012-12-01

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation.

  7. Giant photostriction in organic–inorganic lead halide perovskites

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-01-01

    Among the many materials investigated for next-generation photovoltaic cells, organic–inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge–orbital–lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices. PMID:27044485

  8. Two-photon pumped lead halide perovskite nanowire lasers

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  9. Phase space investigation of the lithium amide halides

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  10. Phase space investigation of the lithium amide halides

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li3(NH2)2I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li7(NH2)6Cl. • New low-chloride phase maintained improved H2 desorption properties of Li4(NH2)3Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH2). It was found that the lithium amide iodide Li3(NH2)2I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li7(NH2)6Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li4(NH2)3Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li7(NH2)6Cl was observed. In comparison to LiNH2, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li4(NH2)3Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful

  11. Efficiency of energy transfer from γ-irradiated ammonium halides in aqueous iodide and nitrate solutions

    It is well known that ammonium halide (NH4X) crystals, on γ-exposure, store energy in the form of primary and secondary radiolytic products. Such crystals on dissolution in aqueous iodide and nitrate solutions result in oxidation of iodide and reduction of nitrate, respectively. The yields of iodine and nitrite are determined by chemical methods under varying conditions of the amount, dose and particle size of the irradiated ammonium halide salts. The maximum values of the efficiency of energy transfer for oxidation and reduction processes for ammonium halide salts correspond to 40% and 10%, respectively. At low doses, an empirical relation proposed between the percent efficiency of energy transfer and the absorbed dose is valid. The concentrations of inherent oxidizing and reducing species initially present are 7.0*1018 and 1.0*1018 per mol of ammonium halide, respectively. (author) 21 refs.; 7 figs.; 2 tabs

  12. Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by Surface Passivation.

    Stewart, Robert J; Grieco, Christopher; Larsen, Alec V; Maier, Joshua J; Asbury, John B

    2016-04-01

    The electronic properties of organo-halide perovskite absorbers described in the literature have been closely associated with their morphologies and processing conditions. However, the underlying origins of this dependence remain unclear. A combination of inorganic synthesis, surface chemistry, and time-resolved photoluminescence spectroscopy was used to show that charge recombination centers in organo-halide perovskites are almost exclusively localized on the surfaces of the crystals rather than in the bulk. Passivation of these surface defects causes average charge carrier lifetimes in nanocrystalline thin films to approach the bulk limit reported for single-crystal organo-halide perovskites. These findings indicate that the charge carrier lifetimes of perovskites are correlated with their thin-film processing conditions and morphologies through the influence these have on the surface chemistry of the nanocrystals. Therefore, surface passivation may provide a means to decouple the electronic properties of organo-halide perovskites from their thin-film processing conditions and corresponding morphologies. PMID:26966792

  13. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  14. Methods for synthesizing alane without the formation of adducts and free of halides

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  15. Palladium-catalyzed Cascade Cyclization-Coupling Reaction of Benzyl Halides with N,N-Diallylbenzoylamide

    Yi Min HU; Yu ZHANG; Jian Lin HAN; Cheng Jian ZHU; Yi PAN

    2003-01-01

    A novel type of palladium-catalyzed cascade cyclization-coupling reaction has been found. Reaction of N, N-diallylbenzoylamide 1 with benzyl halides 2 afforded the corresponding dihydropyrroles 3 in moderate to excellent yields.

  16. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Bretschneider, Simon A.; Jonas Weickert; James A. Dorman; Lukas Schmidt-Mende

    2014-01-01

    The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We...

  17. Space-dependent self-diffusion processes in molten copper halides: a molecular dynamics study

    Alcaraz Sendra, Olga; Trullàs Simó, Joaquim

    2001-01-01

    This work is concerned with single ion dynamics in molten copper halides (CuI and CuCl) which exhibit fast ionic conduction before melting. The self-dynamic structure factor of the two ionic species in each melt have been calculated by molecular dynamics simulations and the corresponding effective wavelength-dependent self-diffusion coefficients have been studied. The results have been compared with those obtained for molten alkali halides (KCl and RbCl).

  18. Atomistic simulation of ion solvation in water explains surface preference of halides

    Caleman, C.; Hub, J. S.; van Maaren, P.; van der Spoel, D

    2011-01-01

    Water is a demanding partner. It strongly attracts ions, yet some halide anions—chloride, bromide, and iodide—are expelled to the air/water interface. This has important implications for chemistry in the atmosphere, including the ozone cycle. We present a quantitative analysis of the energetics of ion solvation based on molecular simulations of all stable alkali and halide ions in water droplets. The potentials of mean force for Cl-, Br-, and I- have shallow minima near the surface. We demons...

  19. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  20. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    Bakr, Osman M.

    2016-02-18

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  1. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were gen...

  2. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles w...

  3. Nickel-Catalyzed Regiodivergent Opening of Epoxides with Aryl Halides: Co-Catalysis Controls Regioselectivity

    Zhao, Yang; Weix, Daniel J.

    2013-01-01

    Epoxides are versatile intermediates in organic synthesis, but have rarely been employed in cross-coupling reactions. We report that bipyridine-ligated nickel can mediate the addition of functionalized aryl halides, a vinyl halide, and a vinyl triflate to epoxides under reducing conditions. For terminal epoxides, the regioselectivity of the reaction depends upon the co-catalyst employed. Iodide co-catalysis results in opening at the less hindered position via an iodohydrin intermediate. Titan...

  4. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  5. Effect of replacing calcium oxide with calcium halide on crystallization and some physical properties of calcium vanadium phosphate glass ceramics

    The effect of halide ions on density, electrical, magnetic and crystallization kinetics for (20X-50P2O5-30V2O5) mole% has been investigated, where X=CaO, CaF2, CaCl2 and CaBr2. Halide ions reduce the glass transition temperature, crystallization temperature and activation energy of crystallization. Density, electrical conductivity and magnetic susceptibility increase while molar volume, glass thermal stability and interatomic distance between transition metal ions decrease as the halide ions replace the oxygen ions in these glasses. -- Research Highlights: → Replacing oxygen ions by halide ions decreases glass transition temperature and thermal stability. → Replacing oxygen ions by halide ions increases electrical conductivity and decreases activation energy. → Replacing oxygen ions by halide ions enhances the tendency of glass ceramic and decreases the crystallization activation energy.

  6. Effect of replacing calcium oxide with calcium halide on crystallization and some physical properties of calcium vanadium phosphate glass ceramics

    Assem, E.E., E-mail: e_assem_2000@sci.kfs.edu.e [Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh (Egypt)

    2011-02-01

    The effect of halide ions on density, electrical, magnetic and crystallization kinetics for (20X-50P{sub 2}O{sub 5}-30V{sub 2}O{sub 5}) mole% has been investigated, where X=CaO, CaF{sub 2}, CaCl{sub 2} and CaBr{sub 2}. Halide ions reduce the glass transition temperature, crystallization temperature and activation energy of crystallization. Density, electrical conductivity and magnetic susceptibility increase while molar volume, glass thermal stability and interatomic distance between transition metal ions decrease as the halide ions replace the oxygen ions in these glasses. -- Research Highlights: {yields} Replacing oxygen ions by halide ions decreases glass transition temperature and thermal stability. {yields} Replacing oxygen ions by halide ions increases electrical conductivity and decreases activation energy. {yields} Replacing oxygen ions by halide ions enhances the tendency of glass ceramic and decreases the crystallization activation energy.

  7. Reactivity of TEMPO anion as a nucleophile and its applications for selective transformations of haloalkanes or acyl halides to aldehydes

    Inokuchi, Tsutomu; Kawafuchi, Hiroyuki

    2004-01-01

    Sodium 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO−Na+), generated by reduction of TEMPO· with sodium naphthalenide in THF, reacted with alkyl halides or acyl halides to produce O-alkylated or acylated TEMPOs, which were in turn oxidized with mCPBA or reduced with DIBAL-H to afford the corresponding aldehydes, thus accomplishing a new protocol for the halides-carbonyls conversion.

  8. Double-Diffusive Convection During Growth of Halides and Selenides

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of

  9. STUDY ON THE CATIONIC POLYMERIZATION OF 1,3-PENTADIENE INITIATED BY AlCl3/ALKYL HALIDE SYSTEMS

    PENG Yuxing; LIU Jialin; DAI Hansong; CUN Linfeng

    1996-01-01

    The cationic polymerizations of 1, 3-pentadiene were initiated by AlCl3 in n-hexane at 30℃ in the presence of alkyl halides, i.e., tert-butyl chloride, tert-butyl bromide and isobutyl chloride. The effects of these halides on the polymer yield, molecular weight,crosslinking reaction, cyclization and polymer microstructure, have been investigated. Two main side reactions, crosslinking and cyclization, were suppressed and reduced by the addition of the halides. The proportion of 1, 4 units of polymer chains was increased by the presence of the halides, which reduced the polymer yield and the molecular weight of polymers.

  10. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local

  11. Effects of isoelectronic and halide surfactants on compound semiconductors

    Howard, Alexander David

    Isoelectronic surfactants Sb, Bi, and N, have proven to increase the doping efficiency of Zn while concurrently reducing the unintentional impurities C, Si, and S in GaP. Additionally, surfactant Sb and N have demonstrated that altering the incorporation efficiency in GaP is also possible with a surfactant surface coverage of less than one. Halide surfactants Br and Cl were shown to systematically destroy ordering in GaInP. Furthermore, a distinct correlation between increasing surfactant Br or Cl in the vapor and surface roughness was evident. This work is presented in three main sections. First, surfactants Sb and Bi, from the pyrolysis of TMSb and TMBi, were examined to determine the effect on Zn doping in GaP. The data demonstrate that the incorporation of Zn can be increased by an order of magnitude in GaP to a value of approximately 1020 cm-3, the highest value reported to date. Additionally, these same surfactants lead to significant decreases in carbon contamination during growth. At high growth temperatures, the reduction can be as large as 100 x in GaP. Second, the role of steps versus the singular surface between steps was studied by using a surfactant fractional surface coverage of less than one. When surfactant Sb was used, the Zn concentration was increased and C was reduced. However, there was no discernable change in incorporation efficiency over the entire range of surfactant Sb studied. Interestingly, surfactant N showed a linear increase in the Zn doping the with amount of surfactant present during growth resulting in an increase of 2 x at the highest flow rate used. Third, halide surfactants Br and Cl, carbon-tetrabromide and carbon-tetrachloride, were studied for their effects on ordering in GaInP. Bromine systematically decreased the amount of CuPt ordering observed by photoluminescence and transmission electron microscopy. Both surfactants Br and Cl were shown to significantly increase the surface roughness, which is postulated to be the

  12. Alternative translocation of protons and halide ions by bacteriorhodopsin

    Bacteriorhodopsin (bR568) in purple membrane near pH 2 shifts its absorption maximum from 568 to 605 nm forming the blue protein bRacid605, which no longer transports protons and which shows no transient deprotonation of the Schiff base upon illumination. Continued acid titration with HCl or HBr but not H2SO4 restores the purple chromophore to yield bRHCl564 or bRHBr568. These acid purple forms also regain transmembrane charge transport, but no transient Schiff base deprotonation is observed. In contrast to bR568, no rate decrease of the bRacidpurple transport kinetics is detected in 2H2O; however, the transport rate decreases by a factor of ∼ 2 in bRHBr568 compared with bRHCl564. The data indicate that in the acid purple form bR transports the halide anions instead of protons. The authors present a testable model for the transport mechanism, which should also be applicable to halorhodopsin

  13. Infrared continuum radiation from metal halide high intensity discharge lamps

    Herd, M T; Lawler, J E [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2007-06-07

    Infrared (IR) continuum radiation from the arc of a metal halide high intensity discharge lamp was measured and modelled. There are three contributions to the near IR continuum from free electrons: electron-Hg atom bremsstrahlung, electron-ion bremsstrahlung and electron-ion recombination radiation. Electron-Hg atom bremsstrahlung is the most important of these. The radiation transport model utilized empirical Hg density, arc temperature and electron density maps. The line width of the Hg 7{sup 1}S{sub 0} to 6{sup 1}P{sub 1} resonance broadened transition was used to determine the arc core Hg density. The arc temperature as a function of radius was determined using the radiance of the Hg 9860, 7311 and 7166 cm{sup -1} lines. Relative densities of neutral Dy atoms and Dy ions as a function of radius were found using an Abel inversion of the relative line radiance of selected Dy I and Dy II lines. A Saha analysis was used to determine the electron density in the lamp. The continuum is 73% of the total near IR radiation in the 4000-12 800 cm{sup -1} range.

  14. Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics.

    Miyano, Kenjiro; Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2016-06-16

    Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application. PMID:27227427

  15. Silver nanoparticles from silver halide photography to plasmonics

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  16. Superconducting state in bromium halide at high pressure

    Szczȩśniak, R.; Zemła, T. P.; Szczȩśniak, D.

    2016-08-01

    The thermodynamic properties of the superconducting state in bromium halide (HBr) compound have been analyzed in the framework of the Eliashberg formalism. In particular, for the range of the pressure (p) from 140 GPa to 200 GPa, it has been shown that the critical temperature increases significantly: TC(p) ∈ K, whereas the Coulomb pseudopotential (μ⋆) is equal to 0.1. Together with the increase of p, the values of the thermodynamic parameters such as: the ratio of the energy gap at the temperature of zero Kelvin to the critical temperature (RΔ ≡ 2 Δ (0) /kB TC), the ratio of the specific heat jump at the critical temperature to the electronic specific heat of the normal state (RC ≡ ΔC (TC) /CN (TC)), and the ratio related to the thermodynamic critical field (RH ≡TC CN (TC) / HC2 (0)) increasingly deviate from the predictions of the BCS model: RΔ(p) ∈ , RC(p) ∈ , and RH(p) ∈ . It should be noted that the increase of μ⋆ visibly lowers TC and significantly reduces the difference between the results of the Eliashberg and BCS theory.

  17. Electron–phonon coupling in hybrid lead halide perovskites

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  18. Two dimensional condensation of argon adsorbed on lamellar halides

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  19. Photography: enhancing sensitivity by silver-halide crystal doping

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHIeff of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHItheor=1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO2- as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO2·- radical so formed transfers an electron to another silver cation, so that the PHIeff limit may be of 2Ag0 per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination

  20. Photography: enhancing sensitivity by silver-halide crystal doping

    Belloni, Jacqueline

    2003-06-01

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHI{sub eff} of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHI{sub theor}=1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO{sub 2}{sup -} as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO{sub 2}{sup {center_dot}}{sup -} radical so formed transfers an electron to another silver cation, so that the PHI{sub eff} limit may be of 2Ag{sup 0} per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination.

  1. Synthetic and structural chemistry of amidinate-substituted boron halides.

    Hill, Nicholas J; Findlater, Michael; Cowley, Alan H

    2005-10-01

    The following new amidinate-substituted boron halides are reported: [PhC{N(SiMe(3))}(2)]BCl(2)(6), [MeC{NCy}(2)]BCl(2)(10), [Mes*C{NCy}(2)]BCl(2)(11), [MeC{N(i)Pr}(2)]BCl(2)(12), and [FcC{NCy}(2)]BBr(2)(13). Compound 6 was prepared via the trimethylsilyl chloride elimination reaction of BCl(3) with N,N,N'-tris(trimethylsilyl)benzamidine, and compounds 10-12 were prepared by salt metathesis between the lithium amidinates [RC(NR')(2)]Li and BX(3). Compound 13 was prepared via the insertion of 1,3-dicyclohexylcarbodiimide into the B-C bond of ferrocenyldibromoborane FcBBr(2). The molecular structures of 6, 10, 11, 13 and the known compound [PhC{N(SiMe(3))}(2)]BBr(2)(1) were established by single-crystal X-ray diffraction. PMID:16172649

  2. Phase holograms in silver halide emulsions without a bleaching step

    Belendez, Augusto; Madrigal, Roque F.; Pascual, Inmaculada V.; Fimia, Antonio

    2000-03-01

    Phase holograms in holographic emulsions are usually obtained by two bath processes (developing and bleaching). In this work we present a one step method to reach phase holograms with silver-halide emulsions. Which is based on the variation of the conditions of the typical developing processes of amplitude holograms. For this, we have used the well-known chemical developer, AAC, which is composed by ascorbic acid as a developing agent and sodium carbonate anhydrous as accelerator. Agfa 8E75 HD and BB-640 plates were used to obtain these phase gratings, whose colors are between yellow and brown. In function of the parameters of this developing method the resulting diffraction efficiency and optical density of the diffraction gratings were studied. One of these parameters studied is the influence of the grain size. In the case of Agfa plates diffraction efficiency around 18% with density emulsion, whose grain is smaller than that of the Agfa, diffraction efficiency near 30% has been obtained. The resulting gratings were analyzed through X-ray spectroscopy showing the differences of the structure of the developed silver when amplitude and transmission gratings are obtained. The angular response of both (transmission and amplitude) gratings were studied, where minimal transmission is showed at the Braggs angle in phase holograms, whilst a maximal value is obtained in amplitude gratings.

  3. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, N¯≈ 102–103, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H2O)N is trapped in the ice nanoparticle

  4. Effects of halides on reaction of nucleosides with ozone.

    Suzuki, Toshinori; Kaya, Eriko; Inukai, Michiyo

    2012-01-01

    Ozone (O(3)), a major component of photochemical oxidants, is used recently as a deodorizer in living spaces. It has been reported that O(3) can directly react with DNA, causing mutagenesis in human cells and carcinogenesis in mice. However, little is known about the effects of coexistent ions in the reaction of O(3). In the present study, we analyzed the effects of halides on the reaction of O(3) with nucleosides using reversed-phase high-performance liquid chromatography with ultraviolet detection. When aqueous O(3) solution was added to a nucleoside mixture in potassium phosphate buffer (pH 7.3), the nucleosides were consumed with the following decreasing order of importance: dGuo > Thd > dCyd > dAdo. The effects of addition of fluoride and chloride in the system were slight. Bromide suppressed the reactions of dGuo, Thd, and dAdo but enhanced the reaction of dCyd. The major products were 5-hydroxy-2'-deoxycytidine, 5-bromo-2'-deoxycytidine, and 8-bromo-2'-deoxyguanosine. The time course and pH dependence of the product yield indicated formation of hypobromous acid as the reactive agent. Iodide suppressed all the reactions effectively. The results suggest that bromide may alter the mutation spectrum by O(3) in humans. PMID:22646086

  5. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films

    Cheng Li

    2016-08-01

    Full Text Available Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3−xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices.

  6. Cerium doped lanthanum halides: fast scintillators for medical imaging

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl3:Ce3+ and LaBr3:Ce3+).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  7. Electron-phonon coupling in hybrid lead halide perovskites.

    Wright, Adam D; Verdi, Carla; Milot, Rebecca L; Eperon, Giles E; Pérez-Osorio, Miguel A; Snaith, Henry J; Giustino, Feliciano; Johnston, Michael B; Herz, Laura M

    2016-01-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329

  8. Molecular structure and thermodynamic properties of scandium halides

    Experimental data on molecular constants of mono-, di- and trihalides of scandium, as well as di-scandium hexahalides of the composition ScXn and Sc2X6 (X = F - I; n = 1 - 3), have been analyzed. Specific features of the compounds molecule structure are considered. The values of molecular constants have been evaluated by the methods of statistical thermodynamics and thermodynamic properties of all scandium halides mentioned in the temperature range of 100 - 6000 K and 298.15 - 1000 K respectively for scandium monohalides and for di-, tri-, hexahalides have been calculated. The values of thermodynamic functions Cp Deg, Φ Deg (T), H Deg (T) - H Deg (0) at 298.15 K published for the first time equal respectively for ScF: 32.734; 192.186; 222.232; 8.958; for ScCl: 45.782; 203.351; 237.356; 10.138; for ScBr: 49.449; 215.090; 252.783; 11.238; for ScI: 42.605; 227.517; 265.635; 12.259

  9. Graphitic cage transformation by electron-beam-induced catalysis with alkali-halide nanocrystals

    Fujita, Jun-ichi; Tachi, Masashi; Ito, Naoto; Murakami, Katsuhisa; Takeguchi, Masaki

    2016-05-01

    We found that alkali-halide nanocrystals, such as KCl and NaCl, have strong catalytic capability to form graphitic carbon cages from amorphous carbon shells under electron beam irradiation. In addition to the electron beam irradiation strongly inducing the decomposition of alkali-halide nanocrystals, graphene fragments were formed and linked together to form the final product of thin graphitic carbon cages after the evaporation of alkali-halide nanocrystals. The required electron dose was approximately 1 to 20 C/cm2 at 120 keV at room temperature, which was about two orders of magnitude smaller than that required for conventional beam-induced graphitization. The “knock-on” effect of primary electrons strongly induced the decomposition of the alkali-halide crystal inside the amorphous carbon shell. However, the strong ionic cohesion quickly reformed the crystal into thin layers inside the amorphous shell. The bond excitation induced by the electron beam irradiation seemed to enhance strongly the graphitization at the interface between the outer amorphous carbon shell and the inner alkali-halide crystal.

  10. Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates.

    Li, Yingjie; Qiao, Xianliang; Zhang, Ya-Nan; Zhou, Chengzhi; Xie, Huaijun; Chen, Jingwen

    2016-10-01

    The occurrence of sulfonamide antibiotics (SAs) in estuarine waters urges insights into their environmental fate for ecological risk assessment. Although many studies focused on the photochemical behavior of SAs, yet the effects of halide ions relevant to estuarine and marine environments on their photodegradation have been poorly understood. Here, we investigated the effects of halide ions on the photodegradation of SAs with sulfapyridine, sulfamethazine, and sulfamethoxazole as representative compounds. Results showed that halide ions did not significantly impact the photodegradation of sulfapyridine and sulfamethoxazole, while they significantly promoted the photodegradation of sulfamethazine. Further experiments found that ionic strength applied with NaClO4 significantly enhanced the photodegradation of the SAs, which was attributed to the decreased quenching rate constant of the triplet-excited SAs ((3)SA(∗)). Compared with ionic strength, specific Cl(-) effects retarded the photodegradation of the SAs. Our study found that triplet-excited sulfamethazine can oxidize halide ions to produce halogen radicals, subsequently leading to the halogenation of sulfamethazine, which was confirmed by the identification of both chlorinated and brominated intermediates. These results indicate that halide ions play an important role in the photochemical behavior of some SAs in estuarine waters and seawater. The occurrence of halogenation for certain organic pollutants can be predicted by comparing the oxidation potentials of triplet-excited contaminants with those of halogen radicals. Our findings are helpful in understanding the photochemical behavior and assessing the ecological risks of SAs and other organic pollutants in estuarine and marine environment. PMID:27393965

  11. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Aiichiro Nagaki; Yuki Uesugi; Yutaka Tomida; Jun-ichi Yoshida

    2011-01-01

    The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  12. Copper(I)-catalyzed carbon-halogen bond-selective boryl substitution of alkyl halides bearing terminal alkene moieties

    Iwamoto, Hiroaki; Kubota, Koji; Yamamoto, Eiji; Ito, Hajime

    2015-01-01

    The selective boryl substitution of alkyl halides bearing terminal C=C double bonds has been achieved using a copper(I)/tricyclohexylphosphine or copper(I)/o-diphenylphosphinophenol catalyst. This reaction represents a useful complementary approach to conventional procedures for the hydroboration of C=C double bonds or the borylative cyclization of alkyl halides bearing terminal alkenes.

  13. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Nagaki, Aiichiro; Uesugi, Yuki; Tomida, Yutaka; Yoshida, Jun-ichi

    2011-01-01

    The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  14. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency of metal halide ballasts.

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of metal halide ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts...

  15. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Aiichiro Nagaki

    2011-08-01

    Full Text Available The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  16. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector’s self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  17. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector's self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  18. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.;

    2014-01-01

    electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage......Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be...... supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer...

  19. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Cao, Runan; Xu, Fei [Department of Physics, Shanghai University, Shanghai 200444 (China); Da, Peimei; Zheng, Gengfeng [Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Lu, Jian, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China)

    2016-01-11

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources.

  20. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  1. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    Sourish Chatterjee

    2013-11-01

    Full Text Available Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of CMH lamp demands the use of current control device in the lamp circuit and perfect matching of lamp ballast combination is required for efficient lamp operation. The electrical and photometric performance of two sets of commercial 70 watt CMH lamp and intregated ballast units were measured to investigate their compatibility for optimum lamp operation. The measured data were utilized to develop an electrical model for lamp ballast combination. Using this model a compatibility index is proposed which can be used for assessment of lamp performance.

  2. Effects of halides on plasmid-mediated silver resistance in Escherichia coli

    Gupta, A.; Maynes, M.; Silver, S. [Univ. of Illinois, Chicago, IL (United States). Dept. of Microbiology and Immunology

    1998-12-01

    Silver resistance of sensitive Escherichia coli J53 and resistance plasmid-containing J53(pMG101) was affected by halides in the growth medium. The effects of halides on Ag{sup +} resistance were measured with AgNO{sub 3} and silver sulfadiazine, both on agar and in liquid. Low concentrations of chloride made the differences in MICs between sensitive and resistant strains larger. High concentrations of halides increased the sensitivities of both strains to Ag{sup +}. The purpose of this report is to set out easy-to-use conditions for measuring silver sensitivity and resistance in familiar and widely used media, Luria-Bertani (LB) agar and broth, so as to facilitate wider identification of silver resistance in nature.

  3. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles.

    Poterya, V; Lengyel, J; Pysanenko, A; Svrčková, P; Fárník, M

    2014-08-21

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, N̄ ≈ 10(2)-10(3), clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H2O)N is trapped in the ice nanoparticle. PMID:25149788

  4. Studies on radiation-sensitive nonsilver halide materials, (1)

    In order to discover new radiation-sensitive nonsilver halide materials, the coloration based on the formation of Stenhouse salts was studied in the following three systems: (a) furfural-amine/HCl aq/methanol solution, (b) furfural-amine/polyhalogenide/PMMA matrix, (c) furfural-amine/PVC matrix. Firstly, forty-five aromatic amines were surveyed to find out the amines suitable for the color precursors (reactant from furfural and amine) in the system (a). As a result, the five amines, which gave the precursors in good yields by the reaction with furfural, were selected: m-nitroaniline, N-methylaniline, m-methyl-N-methylaniline, aniline, and o-methoxyaniline. Secondly, the coloration induced by electron beam bombardment was studied in the systems (b) and (c) containing the color precursors (the reactants from these amines and furfural). Although the PMMA films containing the color precursors and polyhalogenides were sensitive to electron beam, they were not stable when standing under daylight at room temperature. The PVC films containing the color precursors were very stable and colored to reddish yellow (lambda sub(max) 498 - 545 nm) by electron beam bombardment. The PVC film containing N-methylaniline-furfural was the most sensitive and the increase in absorbance at 498 nm was 0.78 by electron beam bombardment of 60 kV - 7.5 x 10-7C/cm2. A good linear relationship existed between the degree of coloration and the amounts of electron beam bombardment in the range from 0 to 10-6C/cm2. (author)

  5. Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides

    We have studied a reaction between the reduced form of titanocene dichloride (Cp2TiCl2) and a group of organic halides: benzyl derivatives (4-X-C6H4CH2Cl, X = H, NO2, CH3; 4-X-C6H4CH2Br, X = H, NO2, PhC(O); 4-X-C6H4CH2SCN, X = H, NO2) as well as three aryl halides (4-NO2C6H4Hal, Hal = Cl, Br; 4-CH3O-C6H4Cl). It has been shown that the electrochemical reduction of Cp2TiCl2 in the presence of these benzyl halides leads to a catalytic cycle resulting in the reductive dehalogenation of these organic substrates to yield mostly corresponding toluene derivatives as the main product. No dehalogenation has been observed for aryl derivatives. Based on electrochemical data and digital simulation, possible schemes of the catalytic process have been outlined. For non-substituted benzyl halides halogen atom abstraction is a key step. For the reaction of nitrobenzyl halides the complexation of Ti(III) species with the nitro group takes place, with the electron transfer from Ti(III) to this group (owing to its highest coefficient in LUMO of the nitro benzyl halide) followed by an intramolecular dissociative electron redistribution in the course of the heterolytic C-Hal bond cleavage. The results for reduced titanocene dichloride centers immobilized inside a polymer film showed that the catalytic reductive dehalogenation of the p-nitrobenzyl chloride does occur but with a low efficiency because of the partial deactivation of the film due to the blocking of the electron charge transport between the electrode and catalytic centers

  6. Propensity of heavier halides for the water/vapor interface revisited using the Amoeba force field

    Tůma, Lukáš; Jeníček, Dominik; Jungwirth, Pavel

    2005-08-01

    Molecular dynamics simulations of aqueous sodium halide solutions in slab geometry were performed using the state-of-the-art polarizable Amoeba force field. The present calculations reveal a propensity of halide anions for the water/vapor interface, which correlates with the ionic size and polarizability and, therefore, increases in the series Cl - < Br - < I -. These results are in a quantitative agreement with previous calculations employing much simpler polarizable potentials and are supported by a mounting experimental evidence from photoelectron and non-linear optical and vibrational spectroscopies.

  7. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Simon A. Bretschneider

    2014-04-01

    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  8. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  9. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author)

  10. Mid-infrared planar silver halide waveguides with integrated grating couplers.

    Schädle, Thomas; Eifert, Alexander; Kranz, Christine; Raichlin, Yosef; Katzir, Abraham; Mizaikoff, Boris

    2013-09-01

    Grating couplers for planar silver halide waveguides were designed and fabricated by using focused ion beam (FIB) milling technology, facilitating coupling of mid-infrared radiation from quantum cascade lasers into thin-film waveguide structures. An optimized rectangular grating structure for an emitted wavelength of 10.4 μm, with a grating constant of 16.4 μm was integrated into a silver halide waveguide substrate via an optimized FIB fabrication procedure. Efficient incoupling and radiation propagation through the waveguide was confirmed by analyzing droplets of acetic acid at different concentrations, deposited at the waveguide surface via evanescent field absorption spectroscopy. PMID:24067637

  11. Surface tension of molten alkali metal halides as a function of ion sizes

    The analysis of the experimental data on the surface tension of the liquid/vapor interphase boundary of the molten alkali metal halides MX (M Li-Cs, X = F-I) near the melting temperature, accounting for the cation and anion dimensional differences, is presented. The main attention is focused at the manifestation of the effects of the interphase boundary of the effects of the interphase boundary thickness and twofold electric layer. It is shown, that the experimental data on the whole MX series may be represented in the form of the electrocapillary curve on the graph of the surface tension dependence on the degree of the halides dimensional asymmetry

  12. Nickel-catalyzed regiodivergent opening of epoxides with aryl halides: co-catalysis controls regioselectivity.

    Zhao, Yang; Weix, Daniel J

    2014-01-01

    Epoxides are versatile intermediates in organic synthesis, but have rarely been employed in cross-coupling reactions. We report that bipyridine-ligated nickel can mediate the addition of functionalized aryl halides, a vinyl halide, and a vinyl triflate to epoxides under reducing conditions. For terminal epoxides, the regioselectivity of the reaction depends upon the cocatalyst employed. Iodide cocatalysis results in opening at the less hindered position via an iodohydrin intermediate. Titanocene cocatalysis results in opening at the more hindered position, presumably via Ti(III)-mediated radical generation. 1,2-Disubstituted epoxides are opened under both conditions to form predominantly the trans product. PMID:24341892

  13. Nickel-catalyzed electrochemical couplings of vinyl halides: synthetic and stereochemical aspects

    Cannes; Condon; Durandetti; Perichon; Nedelec

    2000-07-28

    Homo- and cross-coupling involving alkenyl halides have been performed efficiently using an electroassisted nickel-complex catalysis. Valuable product such as conjugated dienes, beta,gamma- or gamma,delta-unsaturated esters, ketones, or nitriles, as well as alkenylated aryl compounds are thus prepared with high yields and high stereoselectivity. Partial isomerization is only observed in a few cases, when the alkenyl halide is involved in a late step of the catalytic cycle. This is the case in the preparation of (Z,Z)-1,3-diene. PMID:10959862

  14. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. PMID:26669326

  15. GaN nanotubes grown by halide vapor phase epitaxy

    Full text: Wide-band gap GaN nanostructures such as quantum dots, nanorods, nanowires, nano columns and nanotubes have a strong potential within areas of biochemical sensing, nanofluidics, and optoelectronics. GaN nanotubes play a role of the building blocks for several applications such as solution-based transistors and highly sensitive nanotube molecular sensors. We have studied non-catalytic and Au-assisted growth of GaN nanotubes using halide vapor phase epitaxy (HVPE) technique. The growth was performed in the temperature range 480 degrees Celsius to 520 degrees Celsius using pure N2 as a carrier gas at atmospheric pressure. The nanotubes size, shape, density and the selectivity of growth have been studied depending on V/III ratio, growth temperature and substrate material. By increasing the GaCl partial pressure, the structure changed from dot-like to nanotubes. The nanotubes were about 1 μm long with a diameter of typically 200 nm. In addition, it was observed that the nanostructures were spontaneously nucleated at droplets of Ga or, when using Au-coated Al2O3, on droplets of Au/Ga alloy. By varying the growth temperature, the inner diameter of the nanotubes could be controlled. A growth model is suggested, where the nanotubes are nucleated at droplets of Ga or an Au/Ga alloy. Our experimental results suggest that the approach with pre-patterned Au-coated Al2O3 substrates has the potential for fabrication of well-organized nanotubes with a high density. Nanostructures were characterized using electron microscopy methods and by low temperature time-resolved photoluminescence (TRPL). Studies were performed on samples with different wall thickness in the range of 35-75 nm. Two recombination processes with different dynamics contribute to the emission spectra of the GaN nanotubes. The photoluminescence peak shifts rapidly to the higher energy from 3.47 eV to 3.75 eV within a very short time of 30 ps. The origin of the emission having a short lifetime is related

  16. New Condensation Reaction of β-keto-δ-valerolactones, Carbon Disulfide and Alkyl Halides

    You Ming WANG; Yu Xin LI; Su Hua WANG; Zheng Ming LI

    2004-01-01

    β-Keto-δ-valerolactones, which were obtained by reaction of acetoacetate with aldehydes or ketones, reacted with carbon disulfide, alkyl halides and a new condensation reaction was developed. The structures of the products 3 were confirmed by 1HNMR spectra and elemental analysis.

  17. Synthesis of Cyclic Carbonates from CO2 and Epoxides Catalyzed by Hexaalkylguanidinium Halides

    DUAN Hai-feng; LI Sheng-hai; LIN Ying-jie; XIE Hai-bo; ZHANG Suo-bo; WANG Zong-mu

    2004-01-01

    Hexaalkylguanidinium halides exhibit an efficient catalytic activity in the synthesis of cyclic carbonates from epoxides and carbon dioxide. By this method cyclic carbonates can be obtained in a high yield and a high selectivity at a low temperature and atmospheric pressure. This procedure is easy for the product isolation and recycling of the catalyst.

  18. Palladium-catalyzed Coupling between Aryl Halides and Trimethylsilylacetylene Assisted by Dimethylaminotrimethyltin

    Cai Liangzhen; Yang Dujuan; Sun Zhonghua; Tao Xiaochun; Cai Lisheng; Pike Victor W

    2011-01-01

    Palladium-catalyzed coupling between aryl halides, especially less reactive ones or N-heteroaryls, and trimethylsilylacetylene in the presence of dimethylaminotrimethyltin generated the coupled products in high yields. The reaction does not need CuI and base as auxiliary agents.

  19. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu+ and Ag+ and the heavy-metal ions In+ and Tl+ was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  20. An Improved Protocol for the Pd-catalyzed α-Arylation of Aldehydes with Aryl Halides

    Martín, Rubén; Buchwald, Stephen L.

    2008-01-01

    An improved protocol for the Pd-catalyzed α-arylation of aldehydes with aryl halides has been developed. The new catalytic system allows for the coupling of an array of substrates including challenging electron-rich aryl bromides and less reactive aryl chlorides. The utility of this method has been demonstrated in a new total synthesis of (±)-sporochnol.

  1. Exciton Binding Energy in Organic-Inorganic Tri-Halide Perovskites.

    Askar, Abdelrahman M; Shankar, Karthik

    2016-06-01

    The recent dramatic increase in the power conversion efficiencies of organic-inorganic tri-halide perovskite solar cells has triggered intense research worldwide and created a paradigm shift in the photovoltaics field. It is crucial to develop a solid understanding of the photophysical processes underlying solar cell operation in order to both further improve the photovoltaic performance of perovskite solar cells as well as to exploit the broader optoelectronic applications of the tri-halide perovskites. In this short review, we summarize the main research findings about the binding energy of excitons in tri-halide perovskite materials and find that a value in the range of 2-22 meV at room temperature would be a safe estimate. Spontaneous free carrier generation is the dominant process taking place directly after photoexcitation in organic-inorganic tri-halide perovskites at room temperature, which eliminates the exciton diffusion bottleneck present in organic solar cells and constitutes a major contributing factor to the high photovoltaic performance of this material. PMID:27427650

  2. Ionic liquids as solvent for efficient esterification of carboxylic acids with alkyl halides

    carboxylic, Ionic liquids as solvent for efficient e

    2010-01-01

    The selective esterification of carboxylic acid derivatives with a variety of alkyl halides was carried out using ionic liquid as solvent in the presence of triethylamine. The reaction was found to proceed under relatively mild conditions with excellent conversions (up to 99%) and selectivities. The ionic liquid was recycled and reused.

  3. Correlated linear response calculations of the C6 dispersion coefficients of hydrogen halides

    Sauer, S. P. A.; Paidarová, Ivana

    2007-01-01

    Roč. 3, 2-4 (2007), s. 399-421. ISSN 1574-0404 R&D Projects: GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : hydrogen halides * C6 dospersion coefficients * van der Waals coefficients * polarizability at imaginary frequences * SOPPA Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Viabilization of a new aluminium grain refiner based on Zirconium halide salt

    A new aluminium grain refiner based on Zirconium halide salt is proposed. Its efficiency, as grain refiner is analysed varying the salt amount, the inoculation temperature and holding time. The grain size reduction shows to be dependent on the salt amount and independent on the inoculation temperature. The holding time effects is dependent on the innoculated salt amount. (Author)

  5. Regioselective chlorination and bromination of unprotected anilines under mild conditions using copper halides in ionic liquids

    Han Wang; Kun Wen; Nurbiya Nurahmat; Yan Shao; He Zhang; Chao Wei; Ya Li; Yongjia Shen; Zhihua Sun

    2012-01-01

    By using ionic liquids as solvents, the chlorination or bromination of unprotected anilines at the para-position can be achieved in high yields with copper halides under mild conditions, without the need for potentially hazardous operations such as supplementing oxygen or gaseous HCl.

  6. A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes

    Jafeen, M. J. M.; Careem, M.A.; Skaarup, Steen

    2014-01-01

    difference. In highly concentrated aqueous electrolytes, the mass of the PPy/DBS film at the end of each redox cycle is found to drift, which can be controlled by changing the concentration of the electrolyte. The PPy/DBS films were also cycled at different scan rates in various alkali halide aqueous...

  7. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-01

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions. PMID:27490708

  8. Magnetic Silica Supported Copper: A Modular Approach to Aqueous Ullmann-type Amination of Aryl Halides

    One-pot synthesis of magnetic silica supported copper catalyst has been described via in situ generated magnetic silica (Fe3O4@SiO2); the catalyst can be used for the efficacious amination of aryl halides in aqueous medium under microwave irradiation.

  9. Concentration dependence of halide fluxes and selectivity of the anion pathway in toad skin

    Harck, A F; Larsen, Erik Hviid

    1986-01-01

    mV (apical bath negative). The active sodium currents were eliminated by replacing external Na+ with K+. With [Cl-]o varying between 1.45 mM and 110 mM (gluconate substitution) and [I-]o = 3 mM, the total clamping current (y) and the sum of halide currents (x), estimated from flux measurements, were...

  10. Regioselective chlorination and bromination of unprotected anilines under mild conditions using copper halides in ionic liquids

    Han Wang

    2012-05-01

    Full Text Available By using ionic liquids as solvents, the chlorination or bromination of unprotected anilines at the para-position can be achieved in high yields with copper halides under mild conditions, without the need for potentially hazardous operations such as supplementing oxygen or gaseous HCl.

  11. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing

    Thomas M. Kohl; Christian H. Hornung; John Tsanaktsidis

    2015-01-01

    Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID) and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  12. Iron-Catalyzed Acylation of Polyfunctionalized Aryl- and Benzylzinc Halides with Acid Chlorides.

    Benischke, Andreas D; Leroux, Marcel; Knoll, Irina; Knochel, Paul

    2016-08-01

    FeCl2 (5 mol %) catalyzes a smooth and convenient acylation of functionalized arylzinc halides at 50 °C (2-4 h) and benzylic zinc chlorides at 25 °C (0.5-4 h) with a variety of acid chlorides leading to polyfunctionalized diaryl and aryl heteroaryl ketones. PMID:27457108

  13. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    Balzer, Frank; Sun, Rong; Parisi, Jürgen;

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  14. Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.

    Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka

    2016-04-01

    Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature. PMID:27451628

  15. Chemistry of gaseous lower-valent actinide halides. Technical progress report

    Objective is to provide thermochemical data for key actinide halide and oxyhalide systems. Progress is reported on bond dissociation energies of gaseous ThCl4, ThCl3, ThCl2, and ThCl; bond dissociation energies of ruthenium fluorides; and mass spectroscopy of UF6

  16. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  17. Halocyclization of Unsaturated Guanidines Mediated by Koser's Reagent and Lithium Halides.

    Daniel, Marion; Blanchard, Florent; Nocquet-Thibault, Sophie; Cariou, Kevin; Dodd, Robert H

    2015-11-01

    The synthesis of halogenated cyclic guanidines through iodine(III)-mediated umpolung of halide salts is described. Cyclic guanidines of various sizes can be obtained with generally excellent regioselectivities through either a chloro- or a bromocyclization, using Koser's reagent and the corresponding lithium salt. PMID:26492553

  18. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups

  19. Synthesis and Spectroscopic studies on cadmium halide complexes of isonicotinic acid

    In this study infrared spectra (4000-400cm-1) are reported for the cadmium(II) halide isonicotinic acid complexes. Vibrational assignments are given for all observed bands. Some structure spectra correlations and frequency shifts were found. It's found the frequency shifts depends on the halogen for a given metal. Certain chemical formulas were determined using elemental analysis results

  20. Vibrational spectra of discrete UO22+ halide complexes in the gas phase

    Gary S. Groenewold; Michael J. van Stipdonk; Wibe A. de Jong; Jos Oomens; Garold L. Gresham

    2010-11-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions, that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition [UO2(X)(ACO)3]+ (X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric v3 UO2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter the binding in the complex. The v3 peak in the spectrum of the F-containing complex was ~ 10 cm-1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to the blue was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the v1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes were conducted by measuring the v3 UO2 frequencies of [UO2X3]-, where X = Cl-, Br- and I-. The trifluoro complex could not be photodissociated. In these negatively charged complexes, the UO2 v3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that dissociation

  1. Effects of Alloying on the Optical Properties of Organic-Inorganic Lead Halide Perovskite Thin Films

    Ndione, Paul F.; Li, Zhen; Zhu, Kai

    2016-09-07

    Complex refractive index and dielectric function spectra of organic-inorganic lead halide perovskite alloy thin films are presented, together with the critical-point parameter analysis (energy and broadening) of the respective composition. Thin films of methylammonium lead halide alloys (MAPbI3, MAPbBr3, MAPbBr2I, and MAPbBrI2), formamidinium lead halide alloys (FAPbI3, FAPbBr3, and FAPbBr2I), and formamidinium cesium lead halide alloys [FA0.85Cs0.15PbI3, FA0.85Cs0.15PbBrI2, and FA0.85Cs0.15Pb(Br0.4I0.6)3] were studied. The complex refractive index and dielectric functions were determined by spectroscopic ellipsometry (SE) in the photon energy range of 0.7-6.5 eV. Critical point energies and optical transitions were obtained by lineshape fitting to the second-derivative of the complex dielectric function data of these thin films as a function of alloy composition. Absorption onset in the vicinity of the bandgap, as well as critical point energies and optical band transition shift toward higher energies as the concentration of Br in the films increases. Cation alloying (Cs+) has less effect on the optical properties of the thin films compared to halide mixed alloys. The reported optical properties can help to understand the fundamental properties of the perovskite materials and also be used for optimizing or designing new devices.

  2. The ultraviolet photodissociation dynamics of the hydrogen halides

    The first electronic absorption bands of hydrogen halide (HX) molecules - HI, HBr, HCl and DCl - have been studied using two experimental, laser-based techniques. Each band of HX consists of absorption of ultraviolet (UV) radiation and leads to fragmentation into two sets of products: H(2S) + X(2Pj); j=3/2, 1/2. Numerous measurements that cover most of the UV absorption bands (λ∼200-300 nm) of HI and HBr were made using H Rydberg atom photofragment translational spectroscopy (HRPTS). The results comprise two important properties: the branching between the accessible product channels and the spatial distributions of the recoil velocities of the photofragments. These extensive observations afford a detailed interpretation of the featureless absorption bands in terms of the relative influences of transitions and dissociations involving multiple electronic states: 3Π(1), 3Π(0+), 1Π(1) and 3Σ+(1). The photolysis of HCl between 201 and 210 nm was also studied by HRPTS to provide a number of direct determinations of the relative product yield for comparison with the best available theoretical predictions based on ab initio electronic structure calculations and a time-independent treatment of the photodissociation dynamics. The good agreement between the calculations and observations provided encouraging support for the theoretical description. The second experimental method combined resonance enhanced multiphoton ionization (REMPI) and a time-of-flight mass spectrometer (TOF MS) to quantify the relative production of die spin-orbit components of the halogen photoproducts from HI, DCl and vibrationally-excited HCl. Relating the observed REMPI yields for each quantum state to the nascent populations required a scaling factor to account for the different ionization probabilities. This was derived for the ground state of the chlorine atom by comparing the Cl(2Pj) REMPI signal recorded following photolysis of HCl at λ=205.5 nm with a direct determination obtained by

  3. Molten lanthanide halide systems: experimental, modeling and thermodynamic computation

    Molten lanthanide halide based systems were studied using two approaches: experiments and calculations. Liquid mixing enthalpies of chloride europium systems (MCl-EuCl2; M = Na, K, Rb) were measured at 1138 K. They can be represented (in kJ.mol-1) as a function of the molar fraction of EuCl2 (x) with the polynomials: ΔmixHm0 (NaCl - EuCl2) = x(1 - x)(-1.6634 - 5.4964x + 6.3324x2), ΔmixHm0 (KCl - EuCl2 = x(1 - x)(-21.262 + 17.196x- 6.6293x2), ΔmixHm0 (RbCl - EuCl2 = x(1 - x)(-25.286 + 15.786x). The NaCl-EuCl2 phase diagram was experimentally determined. It exhibits an eutectic equilibrium (x(EuCl2) = 0.49; Teut = 847 ± 2 K). Temperatures and enthalpies effusion and transition of EuCl2 were also measured (Ttrs= 1014 ± 2 K, ΔtrsHm0 = 11.5 ± 0.7 kJ.mol1, TfUs = 1125 ± 2 K, ΔfusHm0 = 18.7 ± 1,1 kJ.mol-1) as well as heat capacities (Cpm0(EuCl2, ortho.) = 76.26 + 8.08 x 10-3 T between 310

  4. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-01-01

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials. PMID:27411487

  5. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-07-01

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials.

  6. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells.

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-01-01

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials. PMID:27411487

  7. Vibrational Spectra of Discrete UO22+ Halide Complexes in the Gas Phase

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition (UO2(X)(ACO)3)+ (where X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric ν3 UO2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo-octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter its binding in the complex. The ν3 peak in the spectrum of the F-containing complex was 9 cm-1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to higher wavenumber was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the ν1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes (UO2X3)- (where X = Cl-, Br- and I-) compared the ν3 UO2 modes versus halide, and showed that the ν3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that (UO2X2)--X, and (UO2X2)·-X- dissociation energies decreased on the order F > Cl > Br > I

  8. Vibrational Spectra of Discrete UO₂²⁺ Halide Complexes in the Gas Phase

    Groenewold, G S; Van Stipdonk, Michael J; Oomens, Jos; De Jong, Wibe A; Gresham, Garold L; Mcilwain, Michael

    2010-11-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition [UO₂(X)(ACO)₃]+ (where X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric ν₃ UO₂ frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo-octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter its binding in the complex. The ν₃ peak in the spectrum of the F-containing complex was 9 cm-1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to higher wavenumber was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the ν1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes [UO₂X₃]- (where X = Cl-, Br- and I-) compared the ν₃ UO₂ modes versus halide, and showed that the ν₃ values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that [UO

  9. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations.

    Sum, Tze Chien; Mathews, Nripan; Xing, Guichuan; Lim, Swee Sien; Chong, Wee Kiang; Giovanni, David; Dewi, Herlina Arianita

    2016-02-16

    Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation

  10. Mild and Phosphine-Free Iron-Catalyzed Cross-Coupling of Nonactivated Secondary Alkyl Halides with Alkynyl Grignard Reagents

    Cheung, Chi Wai; Ren, Peng; Hu, Xile

    2014-01-01

    A simple protocol for iron-catalyzed cross-coupling of nonactivated secondary alkyl bromides and iodides with alkynyl Grignard reagents at room temperature has been developed. A wide range of secondary alkyl halides and terminal alkynes are tolerated to afford the substituted alkynes in good yields. A slight modification of the reaction protocol also allows for cross-coupling with a variety of primary alkyl halides.