WorldWideScience

Sample records for actinides

  1. Actinides-1981

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  2. Actinides-1981

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  3. Actinide recycle

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  4. The lanthanides and actinides

    This paper relates the chemical properties of the actinides to their position in the Mendeleev periodic system. The changes in the oxidation states of the actinides with increasing atomic number are similar to those of the 3d elements. Monovalent and divalent actinides are very similar to alkaline and alkaline earth elements; in the 3+ and 4+ oxidation states they resemble d elements in the respective oxidation states. However, in their highest oxidation states the actinides display their individual properties with only a slight resemblance to d elements. Finally, there is a profound similarity between the second half of the actinides and the first half of the lanthanides

  5. Actinide environmental chemistry

    In order to predict release and transport rates, as well as design cleanup and containment methods, it is essential to understand the chemical reactions and forms of the actinides under aqueous environmental conditions. Four important processes that can occur with the actinide cations are: precipitation, complexation, sorption and colloid formation. Precipitation of a solid phase will limit the amount of actinide in solution near the solid phase and have a retarding effect on release and transport rates. Complexation increases the amount of actinide in solution and tends to increase release and migration rates. Actinides can sorb on to mineral or rock surfaces which tends to retard migration. Actinide ions can form or become associated with colloidal sized particles which can, depending on the nature of the colloid and the solution conditions, enhance or retard migration of the actinide. The degree to which these four processes progress is strongly dependent on the oxidation state of the actinide and tends to be similar for actinides in the same oxidation state. In order to obtain information on the speciation of actinides in solution, i.e., oxidation state, complexation form, dissolved or colloidal forms, the use of absorption spectroscopy has become a method of choice. The advent of the ultrasensitive, laser induced photothermal and fluorescence spectroscopies has made possible the detection and study of actinide ions at the parts per billion level. With the availability of third generation synchrotrons and the development of new fluorescence detectors, X-ray absorption spectroscopy (XAS) is becoming a powerful technique to study the speciation of actinides in the environment, particularly for reactions at the solid/solution interfaces. (orig.)

  6. Research in actinide chemistry

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH-, CO32-, PO43-, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  7. Research in actinide chemistry

    1991-01-01

    This report contains research results on studies of inorganic and organic complexes of actinide and lanthanide elements. Special attention is given to complexes of humic acids and to spectroscopic studies.

  8. Subsurface Biogeochemistry of Actinides

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  9. Actinide isotopic analysis systems

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  10. Radiochemistry and actinide chemistry

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 1012, are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  11. Actinide separative chemistry

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  12. Photochemistry of the actinides

    It has been found that all three major actinides have a useful variety of photochemical reactions which could be used to achieve a separations process that requires fewer reagents. Several features merit enumerating: (1) Laser photochemistry is not now as uniquely important in fuel reprocessing as it is in isotopic enrichment. The photochemistry can be successfully accomplished with conventional light sources. (2) The easiest place to apply photo-reprocessing is on the three actinides U, Pu, and Np. The solutions are potentially cleaner and more amenable to photoreactions. (3) Organic-phase photoreactions are probably not worth much attention because of the troublesome solvent redox chemistry associated with the photochemical reaction. (4) Upstream process treatment on the raffinate (dissolver solution) may never be too attractive since the radiation intensity precludes the usage of many optical materials and the nature of the solution is such that light transmission into it might be totally impossible

  13. Recovering actinide values

    Actinide values are recovered from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorus extractants such as tri-n butyl phosphate (TBP) and dihexyl-N, N-diethyl carbamylmethylene phosphonate (DHDECMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant can be recycled after stripping the degradation products with a neutral sodium carbonate solution. (author)

  14. Actinides: why are they important biologically

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  15. Photoelectron spectra of actinide compounds

    A brief overview of the application of photoelectron spectroscopy is presented for the study of actinide materials. Phenomenology as well as specific materials are discussed with illustrative examples

  16. Optical techniques for actinide research

    In recent years, substantial gains have been made in the development of spectroscopic techniques for electronic properties studies. These techniques have seen relatively small, but growing, application in the field of actinide research. Photoemission spectroscopies, reflectivity and absorption studies, and x-ray techniques will be discussed and illustrative examples of studies on actinide materials will be presented

  17. Managing Inventories of Heavy Actinides

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  18. Concentration of actinides in the food chain

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  19. Calorimetric assay of minor actinides

    Rudy, C.; Bracken, D.; Cremers, T.; Foster, L.A.; Ensslin, N.

    1996-12-31

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques.

  20. Calorimetric assay of minor actinides

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques

  1. Actinides and the environment

    The book combines in one volume the opinions of experts regarding the interaction of radionuclides with the environment and possible ways to immobilize and dispose of nuclear waste. The relevant areas span the spectrum from pure science, such as the fundamental physics and chemistry of the actinides, geology, environmental transport mechanisms, to engineering issues such as reactor operation and the design of nuclear waste repositories. The cross-fertilization between these various areas means that the material in the book will be accessible to seasoned scientists who may wish to obtain an overview of the current state of the art in the field of environmental remediation of radionuclides, as well as to beginning scientists embarking on a career in this field. refs

  2. Environmental research on actinide elements

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  3. Properties of minor actinide nitrides

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  4. THERMODYNAMICS OF THE ACTINIDES

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated from spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)

  5. Actinide burning and waste disposal

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  6. Kinetics of actinide complexation reactions

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions

  7. 33rd Actinide Separations Conference

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  8. Thermal-hydraulics of actinide burner reactors

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  9. Actinides and Life's Origins.

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  10. ALMR potential for actinide consumption

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  11. Actinide cation-cation complexes

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+·UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+·UO22+, NpO2+·Th4+, PuO2+·UO22+, and PuO2+·Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M-1

  12. Orbital effects in actinide systems

    Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge

  13. Fabrication of actinide mononitride fuel

    Fabrication of actinide mononitride fuel in JAERI is summarized. Actinide mononitride and their solid solutions were fabricated by carbothermic reduction of the oxides in N2 or N2-H2 mixed gas stream. Sintering study was also performed for the preparation of pellets for the property measurements and irradiation tests. The products were characterized to be high-purity mononitride with a single phase of NaCl-type structure. Moreover, fuel pins containing uranium-plutonium mixed nitride pellets were fabricated for the irradiation tests in JMTR and JOYO. (author)

  14. Research on the chemical speciation of actinides

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  15. Environmental research on actinide elements

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  16. ENDF/B-V actinides

    This document summarizes the contents of the actinides part of the ENDF/B-V nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available from the IAEA Nuclear Data Section. (author)

  17. Actinides recycling assessment in a thermal reactor

    Highlights: • Actinides recycling is assessed using BWR fuel assemblies. • Four fuel rods are substituted by minor actinides rods in a UO2 and in a MOX fuel assembly. • Performance of standard fuel assemblies and the ones with the substitution is compared. • Reduction of actinides is measured for the fuel assemblies containing minor actinides rods. • Thermal reactors can be used for actinides recycling. - Abstract: Actinides recycling have the potential to reduce the geological repository burden of the high-level radioactive waste that is produced in a nuclear power reactor. The core of a standard light water reactor is composed only by fuel assemblies and there are no specific positions to allocate any actinides blanket, in this assessment it is proposed to replace several fuel rods by actinides blankets inside some of the reactor core fuel assemblies. In the first part of this study, a single uranium standard fuel assembly is modeled and the amount of actinides generated during irradiation is quantified for use it as reference. Later, in the same fuel assembly four rods containing 6 w/o of minor actinides and using depleted uranium as matrix were replaced and depletion was simulated to obtain the net reduction of minor actinides. Other calculations were performed using MOX fuel lattices instead of uranium standard fuel to find out how much reduction is possible to obtain. Results show that a reduction of minor actinides is possible using thermal reactors and a higher reduction is obtained when the minor actinides are embedded in uranium fuel assemblies instead of MOX fuel assemblies

  18. Synergistic extraction of actinides : Part II. Tetra-and trivalent actinides

    A detailed discussion on the synergistic solvent extraction behaviour of tetra- and trivalent actinide ions is presented. Structural aspects of the natural donor adducts of the tetravalent actinide ion chelates involved in synergism are also discussed. (author)

  19. Spin Hamiltonians for actinide ions

    The breakdown of Russel Saunders coupling for correlated f-levels of actinide ions is due to both spin orbit coupling and the crystalline electric field (CEF). Experiments on curium, an S-state ion in the metal for which the CEF is weak indicate a g-factor close to the Russel-Saunders value. Spin-orbit coupling is therefore too weak to produce jj coupling. This suggests a model for magnetic actinide ions in which the CEF ground multiplet is well separated from higher levels, completely determining thermodynamic magnetic properties. On this basis simplified spin Hamiltonians are derived for GAMMA1-GAMMA5 ground states in order to interpret thermodynamic measurements and ordering phenomena. (author)

  20. Actinide chemistry in ionic liquids.

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  1. Actinide recovery techniques utilizing electromechanical processes

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  2. Actinide Waste Forms and Radiation Effects

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  3. Anthropogenic Actinides in the Environment

    The use of nuclear energy and the testing of nuclear weapons have led to significant releases of anthropogenic isotopes, in particular a number of actinide isotopes generally not abundant in nature. Most prominent amongst these are 239Pu, 240Pu, and 236U. The study of these actinides in nature has been an active field of study ever since. Measurements of actinides are applied to nuclear safeguards, investigating the sources of contamination, and as a tracer for a number of erosion and hydrology studies. Accelerator Mass Spectrometry (AMS) is ideally suited for these studies and generally offers higher sensitivities than competing techniques, like ICP-MS or decay counting. Recent advances in AMS allow the study of “minor” plutonium isotopes (241Pu, 242Pu, and 244Pu). Furthermore, 236U can now be measured at the levels expected from the global stratospheric fall-out of the atmospheric nuclear weapon tests in the 1950s and 1960s. Even the pre-anthropogenic isotope ratios could be within reach. However, the distribution and abundance levels of these isotopes are not well known yet. I will present an overview of the field, and in detail two recent studies on minor plutonium isotopes and 236U, respectively.(author)

  4. PWRs potentialities for minor actinides burning

    In the frame of the SPIN program at CEA, the impacts of the minor actinides (MA) incineration in PWRs are analysed. The aim is to reduce the mass, the potential radiotoxicity level. The recycling of all actinide elements is evaluated in a PWR nuclear yard. A sensitivity study is done to evaluate the incineration for each minor actinide element. This gives the most efficient way of incineration for each MA elements in a PWR and helps to design a PWR burner. This burner is disposed in a PWR nuclear system in which the actinides are recycled until equilibrium. (author)

  5. Research on the chemical speciation of actinides

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  6. Long-term plant availability of actinides

    Environmental releases of actinide elements raise issues about which data are very limited. Quantitative information is required to assess the long-term behavior of actinides and their potential hazards resulting from the transport through food chains leading to man. Of special interest is the effect of time on the changes in the availability of actinide elements for uptake by plants from soil. This study provides valuable information on the effects of weathering and aging on the uptake of actinides from soil by range and crop plants grown under realistic field conditions

  7. Chemistry of actinides and fission products

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  8. Calculated Atomic Volumes of the Actinide Metals

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  9. Environmental chemistry of the actinide elements

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  10. PIE analysis for minor actinide

    Minor actinide (MA) is generated in nuclear fuel during the operation of power reactor. For fuel design, reactivity decrease due to it should be considered. Out of reactors, MA plays key role to define the property of spent fuel (SF) such as α-radioactivity, neutron emission rate, and criticality of SF. In order to evaluate the calculation codes and libraries for predicting the amount of MA, comparison between calculation results and experimentally obtained data has been conducted. In this report, we will present the status of PIE data of MA taken by post irradiation examinations (PIE) and several calculation results. (author)

  11. Actinide co-conversion by internal gelation

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  12. Actinides analysis by accelerator mass spectrometry

    At the ANTARES accelerator at ANSTO a new beamline has been commissioned, incorporating new magnetic and electrostatic analysers, to optimise the efficiency for Actinides detection by Accelerator Mass Spectrometry (AMS). The detection of Actinides, particularly the isotopic ratios of uranium and plutonium, provide unique signatures for nuclear safeguards purposes. We are currently engaged in a project to evaluate the application of AMS to the measurement of Actinides in environmental samples for nuclear safeguards. Levels of certain fission products, Actinides and other radioactive species can be used as indicators of undeclared nuclear facilities or activities, either on-going or in the past Other applications of ultra-sensitive detection of Actinides are also under consideration. neutron-attenuation images of a porous reservoir rock

  13. Actinide ion sensor for pyroprocess monitoring

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  14. The ALMR actinide burning system

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives

  15. Experimental studies of actinides in molten salts

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  16. Experimental studies of actinides in molten salts

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  17. Spin and orbital moments in actinide compounds

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    -electron band-structure calculations, is that the orbital moments of the actinide 5f electrons are considerably reduced from the values anticipated by a simple application of Hund's rules. To test these ideas, and thus to obtain a measure of the hybridization, we have performed a series of neutron scattering...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced as...

  18. Actinide chemistry in the far field

    The environmental chemistry of the actinides is complicated due both to the extensive redox and coordination chemistry of the elements and also to the complexity of the reactive phases encountered in natural environments. In the far field, interactions with reactive surfaces, coatings and colloidal particles will play a crucial role in controlling actinide mobility. By virtue of both their abundance and reactivity; clays and other layer aluminosilicate minerals, hydrous oxides and organic matter (humic substances) are all identified as having the potential to react with actinide ions and some possible modes of interaction are described, together with experimental evidence for their occurrence. (author)

  19. Electronic structure and magnetic properties of actinides

    The study of the actinide series shows the change between transition metal behavior and lanthanide behavior, between constant weak paramagnetism for thorium and strong Curie-Weiss paramagnetism for curium. Curium is shown to be the first metal of the actinide series to be magnetically ordered, its Neel temperature being 52K. The magnetic properties of the actinides depending on all the peripheral electrons, their electronic structure was studied and an attempt was made to determine it by means of a phenomenological model. Attempts were also made to interrelate the different physical properties which depend on the outer electronic structure

  20. Endohedral Fullerenes with Actinide-Actinide Bonds: Unwilling Bonding in U2@C80

    Foroutan-Nejad, C.; Patzschke, M.; Straka, Michal

    Opole: -, 2014. [MMNB 2014. Polish-Taiwanese Conference. From Molecular Modeling to Nano- and Biotechnology . 04.09.2014-06.09.2014, Opole] R&D Projects: GA ČR(CZ) GA14-03564S Grant ostatní: European Social Fund(XE) CZ.1.07/2.3.00/30.009 Institutional support: RVO:61388963 Keywords : endohedral actinide fullerene * U-U bonding * actinide-actinide bonding Subject RIV: CF - Physical ; Theoretical Chemistry

  1. Actinide recovery from pyrochemical residues

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 62- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO3-4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  2. PF-4 actinide disposition strategy

    The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

  3. Subsurface interactions of actinide species and microorganisms. Implications for the bioremediation of actinide-organic mixtures

    By reviewing how microorganisms interact with actinides in subsurface environments, the way how bioremediation controls the fate of actinides is assessed. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. The way how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility is described. Why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions is explained. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. Development of mathematical models that link microbiological and geochemical reactions is described. Throughout, the key research needs are identified. (author)

  4. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  5. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  6. Overview of actinide chemistry in the WIPP

    Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  7. PWRs potentialities for minor actinides burning

    In the frame of the SPIN program at CEA, the impacts of the Minor Actinides (MA) incineration in PWRs are analysed. The aim is to reduce the mass and the potential radiotoxicity level. This study is done separately one on the Plutonium recycling. But the plutonium is essential. Thus, the recycling of all Actinide elements is evaluated in a PWR nuclear yard. A sensitivity study is done to evaluate the incineration for each Minor Actinide element. This gives us the most efficient way of incineration for each MA element in a PWR and help us to design a PWR burner. This burner is disposed in a PWR nuclear system in which the Actinides are recycled until equilibrium. (authors). 2 refs

  8. Electronic structure and correlation effects in actinides

    Albers, R.C.

    1998-12-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related.

  9. Preparation of actinide targets by electrodeposition

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  10. Actinide research to solve some practical problems

    The following topics are discussed: generation of plutonium inventories by nuclear power plants; resettlement of the Marshallese Islanders into an actinide contaminated environment; high radiation background areas of the world; and radiation hazards to uranium miners

  11. Advanced Aqueous Separation Systems for Actinide Partitioning

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  12. BWR Assembly Optimization for Minor Actinide Recycling

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  13. Superconductivity in rare earth and actinide compounds

    Rare earth and actinide compounds and the extraordinary superconducting and magnetic phenomena they exhibit are surveyed. The rare earth and actinide compounds described belong to three classes of novel superconducting materials: high temperature, high field superconductors (intermetallics and layered cuprates); superconductors containing localized magnetic moments; heavy fermion superconductors. Recent experiments on the resistive upper critical field of high Tc cuprate superconductors and the peak effect in the critical current density of the f-electron superconductor CeRu2 are discussed. (orig.)

  14. Lanthanides and actinides in ionic liquids

    Binnemans, Koen

    2007-01-01

    This lecture gives an overview of the research possibilities offered by combining f-elements (lanthanides and actinides) with ionic liquids [1] Many ionic liquids are solvents with weakly coordinating anions. Solvation of lanthanide and actinide ions in these solvents is different from what is observed in conventional organic solvents and water. The poorly solvating behavior can also lead to the formation of coordination compounds with low coordination numbers. The solvation of f-elements can...

  15. New molecules to separate actinides: the picolinamides

    The reprocessing of spent fuel is made with the Purex process, funded on liquid-liquid extraction of uranium nitrates(VI) and plutonium nitrates(IV) by the BTP (tributyl phosphate). To improve this proceeding, we look for extractants which allow, beyond U and Pu extractions, these of actinides (II) and allow separation of the whole actinides from the fission products, which have an important fraction of lanthanides. A new family seems to give good results: the picolinamides

  16. Lattice effects in the light actinides

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated

  17. Recent progress in actinide borate chemistry.

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-10-21

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials. PMID:21915396

  18. Evaluation of actinide partitioning and transmutation

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  19. Radioecology of the actinide elements

    Research progress is reported in sections entitled: scope of studies supported by the Department of Energy; oxidation state diagrams are a potential tool for studying the redox chemistry of Pu in natural waters; studies are initiated to investigate the effect of pH and organic matter on the distribution coefficients of Cm with natural sediments; the relative distributions of resuspended and direct deposited Pu in a corn canopy are quantified; the retention of Pu surface contamination by corn plants is being studied; Pu concentrations in tobacco are being determined; concentrations of Pu per unit mass and per unit surface area are compared for subterranean crops; models of Pu behavior in agricultural crops are being validated; distribution of aerially released Pu in loblolly pine plantations is independent of deposition rate; investigation of the effects of chelate and redox potential of the uptake of Pu and Cm by rice is underway; studies of Cm cycling in a floodplain forest have been initiated; the effects of unusually large Pu deposition onto a wheat ecosystem are being studied using computer simulations; long-term kinetic models of Pu behavior in plant-soil systems are being developed; scope of studies supported by the Nuclear Regulatory Commission; growth form of broadleaf crop may affect Pu contents; root uptake of Pu and Cm measured for rice root uptake of Pu and Cm measured for rice; long-term actinide uptake study is continuing at SREL; and uranium cycling in major southeastern agricultural crops being studied

  20. Actinide transmutation in nuclear reactors

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  1. Use of fast reactors for actinide transmutation

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  2. Waste disposal aspects of actinide separation

    Two recent NRPB reports are summarized (Camplin, W.C., Grimwood, P.D. and White, I.F., The effects of actinide separation on the radiological consequences of disposal of high-level radioactive waste on the ocean bed, Harwell, National Radiological Protection Board, NRPB-R94 (1980), London, HMSO; Hill, M.D., White, I.F. and Fleishman, A.B., The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste. Harwell, National Radiological Protection Board, NRPB-R95 (1980), London, HMSO). They describe preliminary environmental assessments relevant to waste arising from the reprocessing of PWR fuel. Details are given of the modelling of transport of radionuclides to man, and of the methodology for calculating effective dose equivalents in man. Emphasis has been placed on the interaction between actinide separation and the disposal options rather than comparison of disposal options. The reports show that the effects of actinide separation do depend on the disposal method. Conditions are outlined where the required substantial further research and development work on actinide separation and recycle would be justified. Toxicity indices or 'toxic potentials' can be misleading and should not be used to guide research and development. (U.K.)

  3. Solubility of actinide surrogates in nuclear glasses

    This paper discusses the results of a study of actinide surrogates in a nuclear borosilicate glass to understand the effect of processing conditions (temperature and oxidizing versus reducing conditions) on the solubility limits of these elements. The incorporation of cerium oxide, hafnium oxide, and neodymium oxide in this borosilicate glass was investigated. Cerium is a possible surrogate for tetravalent and trivalent actinides, hafnium for tetravalent actinides, and neodymium for trivalent actinides. The material homogeneity was studied by optical, scanning electron microscopy. Cerium LIII XANES spectroscopy showed that the Ce3+/Cetotal ratio increased from about 0.5 to 0.9 as the processing temperature increased from 1100 to 1400 deg. C. Cerium LIII XANES spectroscopy also confirmed that the increased Ce solubility in glasses melted under reducing conditions was due to complete reduction of all the cerium in the glass. The most significant results pointed out in the current study are that the solubility limits of the actinide surrogates increases with the processing temperature and that Ce3+ is shown to be more soluble than Ce4+ in this borosilicate glass

  4. TUCS/phosphate mineralization of actinides

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  5. New reagents for actinide-lanthanide group separations

    Organic extractants which possess nitrogen or sulfur donor atoms preferentially complex the trivalent actinide. They are potential reagents for actinide lanthanide group separations, which can be performed at low pH without the addition of inorganic salts

  6. Separation of actinides with alkylpyridinium salts

    Various f-elements are separated as anionic complexes from both acidic and alkaline solutions by precipitation with alkylpyridinium salts. The precipitates are also cationic surfactants where the simple counter-ion (e.g. nitrate or chloride) is replaced by the negatively charged complex anion of an actinide or lanthanide. The low solubility of these precipitates is explained by a strong affinity of divalent complex counter-ions of f-elements to the quaternary nitrogen. Precipitations in solutions of nitric acid allow to separate tetravalent f-elements from other metals, in alkaline carbonate solutions tetravalent and hexavalent actinides are precipitated simultaneously. The last procedure yields precipitates, which are very intimate mixtures of hexavalent and tetravalent actinides. This allows to prepare mixed oxides in a simple way. (author) 6 refs.; 3 figs.; 3 tabs

  7. Minior Actinide Doppler Coefficient Measurement Assessment

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  8. Research on Actinides in Nuclear Fuel Cycles

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  9. Neutron scattering studies of the actinides

    The electronic structure of actinide materials presents a unique example of the interplay between localized and band electrons. Together with a variety of other techniques, especially magnetization and the Mossbauer effect, neutron studies have helped us to understand the systematics of many actinide compounds that order magnetically. A direct consequence of the localization of 5f electrons is the spin-orbit coupling and subsequent spin-lattice interaction that often leads to strongly anisotropic behavior. The unusual phase transition in UO2, for example, arises from interactions between quadrupole moments. On the other hand, in the monopnictides and monochalcogenides, the anisotropy is more difficult to understand, but probably involves an interaction between actinide and anion wave functions. A variety of neutron experiments, including form-factor studies, critical scattering and measurements of the elementary excitations have now been performed, and the conceptual picture emerging from these studies will be discussed

  10. Coordination chemistry for new actinide separation processes

    The amount of wastes and the number of chemical steps can be decreased by replacing the PUREX process extractant (TBP) by, N.N- dialkylamides (RCONR'2). Large amounts of deep underground storable wastes can be stored into sub-surface disposals if the long lived actinide isotopes are removed. Spent nuclear fuels reprocessing including the partitioning of the minor actinides Np, Am, Cm and their transmutation into short half lives fission products is appealing to the public who is not favorable to the deep underground storage of large amounts of long half lived actinide isotopes. In this paper coordination chemistry problems related to improved chemical separations by solvent extraction are presented. 2 tabs.; 4 refs

  11. Spin-Orbit Coupling in Actinide Cations

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.; Jensen, Hans Jorgen A.; Knecht, Stefan

    2012-09-01

    The limiting case of Russell-Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin-orbit splitting is large enough to cause a significantly reduced spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell.

  12. Spin-orbit coupling in actinide cations

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.; Jensen, Hans Jørgen Aa.; Knecht, Stefan

    2012-09-01

    The limiting case of Russell-Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin-orbit splitting is large enough to cause a significantly reduced spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell.

  13. Actinide and fission product separation and transmutation

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  14. Actinide phosphonate complexes in aqueous solutions

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO3H2) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described

  15. Actinide elements in aquatic and terrestrial environments

    Progress is reported on the following research projects: water-sediment interactions of U, Pu, Am, and Cm; relative availability of actinide elements from abiotic to aquatic biota; comparative uptake of transuranic elements by biota bordering Pond 3513; metabolic reduction of 239Np from Np(V) to Np(IV) in cotton rats; evaluation of hazards associated with transuranium releases to the biosphere; predicting Pu in bone; adsorption--solubility--complexation phenomena in actinide partitioning between sorbents and solution; comparative soil extraction data; and comparative plant uptake data

  16. Sequential analysis of selected actinides in urine

    The monitoring of personnel by urinalysis for suspected contamination by actinides necessitated the development and implementation of an analytical scheme that will separate and identify alpha emitting radionuclides of these elements. The present work deals with Pu, Am, and Th. These elements are separated from an ashed urine sample by means of coprecipitation and ion exchange techniques. The final analysis is carried out by electroplating the actinides and counting in a α-spectrometer. Mean recoveries of these elements from urine are: Pu 64%, Am 74% and Th 69%. (auth)

  17. Actinide and fission product separation and transmutation

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  18. Actinide recycle in LMFBRs as a waste management alternative

    Beaman, S.L.

    1979-08-21

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs.

  19. Chemical compatibility of HLW borosilicate glasses with actinides

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 230C and 1150C. (orig.)

  20. Actinide recycle in LMFBRs as a waste management alternative

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs

  1. Placental transfer of plutonium and other actinides

    The report is based on an extensive literature search. All data available from studies on placental transfer of plutonium and other actinides in man and animals have been collected and analysed, and the report presents the significant results as well as unresolved questions and knowledge gaps which may serve as a waypost to future research work. (orig./MG)

  2. Actinide and fission product partitioning and transmutation

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  3. Actinide and fission product partitioning and transmutation

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  4. Rapid determination of actinides in asphalt samples

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis. If a radiological dispersive device, improvised nuclear device or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean-up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well. (author)

  5. Treatment of actinide-containing organic waste

    A method has been developed for reducing the volume of organic wastes and recovering the actinide elements. The waste, together with gaseous oxygen (air) is introduced into a molten salt, preferably an alkali metal carbonate such as sodium carbonate. The bath is kept at 7500 - 10000C and 0.5 - 10 atm to thermally decompose and partially oxidize the waste, while substantially reducing its volume. The gaseous effluent, mainly carbon dioxide and water vapour, is vented to the atmosphere through a series of filters to remove trace amounts of actinide elements or particulate alkali metal salts. The remaining combustion products are entrained in the molten salt. Part of the molten salt-combustion product mixture is withdrawn and mixed with an aqueous medium. Insoluble combustion products are then removed from the aqueous medium and are leached with a mixture of hydrofluoric and nitric acids to solubilize the actinide elements. The actinide elements are easily recovered from the acid solution using conventional techniques. (DN)

  6. Actinide measurements by AMS using fluoride matrices

    Cornett, R. J.; Kazi, Z. H.; Zhao, X.-L.; Chartrand, M. G.; Charles, R. J.; Kieser, W. E.

    2015-10-01

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF3. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF3 precipitates were diluted about 6-8 fold with PbF2. The measured concentrations of 239,240Pu and 241Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of 239,240Pu and 241Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  7. Trends in actinide processing at Hanford

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn't eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report

  8. Report of the panel on inhaled actinides

    Some topics discussed are as follows: assessment of risks to man of inhaling actinides; use of estimates for developing protection standards; epidemiology of lung cancer in exposed human populations; development of respiratory tract models; and effects in animals: dose- and effect-modifying factors

  9. Electronic Structure of the Actinide Metals

    Johansson, B.; Skriver, Hans Lomholt

    1982-01-01

    itinerant to localized 5f electron behaviour calculated to take place between plutonium and americium. From experimental data it is shown that the screening of deep core-holes is due to 5f electrons for the lighter actinide elements and 6d electrons for the heavier elements. A simplified model for the full...

  10. Spin–orbit coupling in actinide cations

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.;

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduced...

  11. ENDF/B-5 Actinides (Rev. 86)

    This document summarizes the contents of the Actinides part of the ENDF/B-5 nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available costfree from the IAEA Nuclear Data Section upon request. The present version of the library is the Revision of 1986. (author). Refs, figs and tabs

  12. ACTINET: a European Network for Actinide Sciences

    Full text of publication follows: The research in Actinide sciences appear as a strategic issue for the future of nuclear systems. Sustainability issues are clearly in connection with the way actinide elements are managed (either addressing saving natural resource, or decreasing the radiotoxicity of the waste). The recent developments in the field of minor actinide P and T offer convincing indications of what could be possible options, possible future processes for the selective recovery of minor actinides. But they point out, too, some lacks in the basic understanding of key-issues (such as for instance the control An versus Ln selectivity, or solvation phenomena in organic phases). Such lacks could be real obstacles for an optimization of future processes, with new fuel compounds and facing new recycling strategies. This is why a large and sustainable work appears necessary, here in the field of basic actinide separative chemistry. And similar examples could be taken from other aspects of An science, for various applications (nuclear fuel or transmutation targets design, or migration issues,): future developments need a strong, enlarged, scientific basis. The Network ACTINET, established with the support of the European Commission, has the following objectives: - significantly improve the accessibility of the major actinide facilities to the European scientific community, and form a set of pooled facilities, as the corner-stone of a progressive integration process, - improve mobility between the member organisations, in particular between Academic Institutions and National Laboratories holding the pooled facilities, - merge part of the research programs conducted by the member institutions, and optimise the research programs and infrastructure policy via joint management procedures, - strengthen European excellence through a selection process of joint proposals, and reduce the fragmentation of the community by putting critical mass of resources and expertise on

  13. Library of Recommended Actinide Decay Data, 2011

    A major objective of the nuclear data programme within the IAEA is to devise and promote improvements in the quality of nuclear data used in science and technology. Work of this nature was performed by participants in an IAEA coordinated research project (CRP) formulated in 2005 to produce an updated decay data library of important actinides recommended for adoption in various nuclear applications. The specific objectives of this project were to improve the accuracy of heavy element and actinide decay data in order to: determine more accurately the effects of these recommended data on fission reactor fuel cycles; aid in improved assessments of nuclear waste management procedures; provide more reliable decay data for nuclear safeguards; assess with greater confidence the environmental impact of specific actinides and other heavy element radionuclides generated through their decay chains; and extend the scientific knowledge of actinide decay characteristics for nuclear physics research and non-energy applications. Some CRP participants were able to perform a number of highly precise measurements, based on the availability of suitable source materials, and systematic in depth evaluations of the requested decay data. These requested data consisted primarily of half-lives, and α, β-, EC/β+, Auger electron, conversion electron, X ray and γ ray energies and emission probabilities, all with uncertainties expressed at the 1σ confidence level. The IAEA established a CRP entitled Updated Decay Data Library for Actinides in mid-2005. During the course of discussions at the coordinated research meetings, the participants agreed to undertake work programmes of measurements and evaluations, to be completed by the end of 2010. The results of the evaluation studies undertaken by the CRP are presented in Annex I. Annexes II-V include descriptions of the sources of the evaluated decay data and each individual evaluation process in detail, as well as data files in the Evaluated

  14. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  15. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  16. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  17. Minor actinide transmutation on PWR burnable poison rods

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  18. Method to determine actinide pollution in water

    This patent describes a process for measuring small amounts, of actinide pollution in fluidic samples by use of solid state track recording devices. It comprises: containing a sample to be tested, containing small amounts of less than 3E-12 Curies per cubic centimeter of actinide pollution, in a sample cell defining an internal chamber and having means for ingress and egress and means for establishing a fluidic sample therein, the sample cell being substantially transparent to thermal neutron radiation and the internal chamber defined therein being configured to constitute a fluidic sample therein as an asymptotic fluid fission source; positioning a solid state track recorder within the internal chamber defined by the sample cell, so that the solid state track recorder has a radiation viewing window through an asymptotic thickness of a fluidic sample contained in the sample cell; capturing at least an asymptotic amount of fluidic sample in the sample cell

  19. Microbial Transformations of Actinides and Other Radionuclides

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  20. Actinide and fission product separation and transmutation

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  1. Interaction of actinide cations with synthetic polyelectrolytes

    The binding of Am+3, Th+4 and UO2+2 to polymaleic acid, polyethylenemaleic acid and polymethylvinylethermaleic acid has been measured by a solvent extraction technique at 250C and either 0.02 or 0.10 M ionic strength. The solutions were buffered over a pH range such that the percent of carboxylate groups ionized ranged from 25 to 74%. The binding was described by two constants, β1 and β2, which were evaluated after correction for complexation of the actinide cations by acetate and hydrolysis. For comparable degrees of ionization, all three polyelectrolytes showed similar binding strengths. In general, these results indicated that the binding of actinides to these synthetic polyelectrolytes is basically similar to that of natural polyelectrolytes such as humic and fulvic acids. (orig.)

  2. Actinide and fission product separation and transmutation

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  3. Actinides: from heavy fermions to plutonium metallurgy

    The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe13 and UPt3. Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior

  4. Actinide co-ordination and discrimination by human transferrin

    The design and evaluation of synthetic chelating agents which are specific for the actinide(IV) ions are described. The initial approach has been based on the biological and chemical similarities of Pu(IV) and Fe(III). In particular, using a philosophy influenced by naturally occurring ferric ion chelating agents, tetracatechoylamide ligands have been developed for the actinides. The test of the degree to which there was an actinide-specific complexing agent has been based on studies using Pu4+ as a biological contaminant. For a chelating agent to be able to sequester actinides effectively, it must remove actinides from actinide(IV)-protein complexes. The complexation chemistry of Th(IV)-transferrin system is described. The evidence suggests that, based on a size criterion, Th(IV) may be a poor biological model for Pu(IV) in some cases, with U(IV) being a somewhat better model. (author)

  5. Actinide Source Term Program, position paper. Revision 1

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA open-quotes expert panelclose quotes model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the open-quotes inventory limitsclose quotes model is the only existing defensible model for the actinide source term. The model effort in progress, open-quotes chemical modeling of mobile actinide concentrationsclose quotes, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the open-quotes Inventory limitsclose quotes model

  6. Actinides reduction by recycling in a thermal reactor

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  7. Thermal properties of minor actinide targets

    Staicu, Dragos; Somers, Joseph; FERNANDEZ CARRETERO Asuncion; KONINGS Rudy

    2014-01-01

    The thermal properties of minor actinides targets for the management of high level and long lived radioactive waste are investigated. The microstructure, thermal diffusivity and specific heat of (Pu,Am)O2, (Zr,Pu,Am)O2, (Zr,Y,Am)O2, (Zr,Y,Pu,Am)O2 and CERMETS with Mo matrix are characterised in order to assess the safety limits of these materials.

  8. SPECIFIC SEQUESTERING AGENTS FOR THE ACTINIDES

    Raymond, Kenneth N.; Smith, William L.; Weitl, Frederick L.; Durbin, Patricia W.; Jones, E.Sarah; Abu-Dari, Kamal; Sofen, Stephen R.; Cooper, Stephen R.

    1979-09-01

    This paper summarizes the current status of a continuing project directed toward the synthesis and characterization of chelating agents which are specific for actinide ions - especially Pu(IV) - using a biomimetic approach that relies on the observation that Pu(IV) and Fe(III) has marked similarities that include their biological transport and distribution in mammals. Since the naturally-occurring Fe(III) sequestering agents produced by microbes commonly contain hydroxamate and catecholate functional groups, these groups should complex the actinides very strongly and macrocyclic ligands incorporating these moieties are being prepared. We have reported the isolation and structure analysis of an isostructural series of tetrakis(catecholato) complexes with the general stoichiometry Na{sub 4}[M(C{sub 6}H{sub 4}O{sub 2}){sub 4}] • 21 H{sub 2}O (M = Th, U, Ce, Hf). These complexes are structural archetypes for the cavity that must be formed if an actinide-specific sequestering agent is to conform ideally to the coordination requirements of the central metal ion. The [M(cat){sub 4}]{sup 4-} complexes have the D{sub 2d} symmetry of the trigonal-faced dodecahedron.. The complexes Th [R'C(0)N(O)R]{sub 4} have been prepared where R = isopropyl and R' = t-butyl or neopentyl. The neopentyl derivative is also relatively close to an idealized D{sub 2d} dodecahedron, while the sterically more hindered t-butyl compound is distorted toward a cubic geometry. The synthesis of a series of 2, 3-dihydroxy-benzoyl amide derivatives of linear and cyclic tetraaza- and diazaalkanes is reported. Sulfonation of these compounds improves the metal complexation and in vivo removal of plutonium from test animals. These results substantially exceed the capabilities of compounds presently used for the therapeutic treatment of actinide contamination.

  9. The electrochemical properties of actinide amalgams

    Standard potentials are selected for actinides (An) and their amalgams. From the obtained results, energy characteristics are calculated and analyzed for alloy formation in An-Hg systems. It is found that solutions of the f-elements in mercury are very close in properties to amalgams of the alkali and alkaline-earth metals, except that, for the active Group III metals, the ion skeletons have a greater number of realizable charged states in the condensed phase

  10. Actinide and fission product partitioning and transmutation

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  11. The actinide waste problem in perspective

    The long lived alpha emitting actinide waste nuclides of transplutonium elements such as Np, Am, Cm etc (also called Byproduct Actinides or BPA for short) which are proposed to be disposed of as part of High Active Waste (HAW) in deep underground geological repositories has been a persistent source of concern to opponents and critics of nuclear fission energy. In this context the recent finding of the authors that each and every transuranium nuclide, without exception, can independently support a self sustaining chain reaction raises the important philosophical question: Is it justified to continue to refer to these nuclides as nuclear waste ? Our computations have revealed that the Ksub(eff) of an assembly of each of these nuclides increases linearly with the fissility parameter (Z2/A), its threshold value for Ksub(eff) to exceed unity being 34.1 for fissile (odd neutron) nuclides and 34.9 for fissible (even neutron) nuclides. In other words higher the (Z2/A) better is its performance as a fission reactor fuel. This finding suggests that the long lived actinide waste problem can be solved by separating all the actinide nuclides from the High Active Waste stream and recycling them back into any hard spectrum fission reactor. The studies strongly support the concept of partitioning-transmutation (p-t) revived with great enthusiasm in Japan under the banner of the OMEGA proposal. However it is found that there is no need to resort to any exotic devices such as proton accelerators or fusion reactor blankets for nuclear incineration. In the context of the 232Th/233U fuel cycle it is worth noting that the quantum of transuranium nuclides generated per se is smaller by several orders of magnitude as compared to that arising from 235U/238U bearing fuels. Thus on the whole it appears that in the thorium fuel cycle partitioning and recycle of byproduct nuclides would be a less cumbersome undertaking. (author). 26 refs., 6 figs., 3 tabs

  12. Actinide and fission product partitioning and transmutation

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  13. Thermodynamics and biogeochemistry of lanthanides and actinides

    Periodicity of changes in specific values of heat capacity and entropy of chemical elements, lanthanides, actinides, separating or transition elements, first of all, depending on their ordinal number, was considered. It is shown that entropy minima separate the chemical elements into light-weight and more heavy ones. The universal separation is fundamental, as it dictates the difference of the chemical elements not only in terms of thermodynamic, but also metallogenic, biogeochemical and physical properties, as well

  14. Strength of Coriolis alignment in actinide nuclei

    Analysis of aligned angular momenta i/sub α/(ω) in different rotational bands extracted from experimental data with a linear spin term approx.BI in the formulas for E/sub rot/(I) reveal that, in actinide nuclei in the levels with modest spin I< or =23, i/sub α/(ω) usually is very small (< or approx. =0.7), i.e., is much smaller than in rare earth nuclei

  15. In vitro removal of actinide (IV) ions

    Weitl, Frederick L.; Raymond, Kenneth N.

    1982-01-01

    A compound of the formula: ##STR1## wherein X is hydrogen or a conventional electron-withdrawing group, particularly --SO.sub.3 H or a salt thereof; n is 2, 3, or 4; m is 2, 3, or 4; and p is 2 or 3. The present compounds are useful as specific sequestering agents for actinide (IV) ions. Also described is a method for the 2,3-dihydroxybenzamidation of azaalkanes.

  16. Analysis of optical properties of actinide dioxides

    Ionic calculations, symmetry considerations, and detailed analysis of reflectivity experiments have been used to identify general features of the band structure of actinide dioxides with a fluorite lattice. The ionic calculations adjust atomic energy levels by the electrostatic energies arising from long range electric fields of the ionic lattice; the labelling of high lying energy bands is determined by symmetry; experimental analysis includes the use of appropriate sum rules. A combination of these considerations enable a tentative band scheme to be constructed. It is suggested that there are filled valence bands (GAMMA15,GAMMA'25) originating in oxygen 2p-states and empty conduction bands (GAMMA1,GAMMA12,GAMMA'25) originating in actinide 7s and 6d states. The mean band gap (Penn gap) is of the order of 14 eV. The actinide f-electron states, which lie approximately 5 eV below the conduction bands, are taken to be localized - at least in UO2. (author)

  17. Actinide behavior in a freshwater pond

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables

  18. Nuclear data for plutonium and minor actinides

    Some experience in the usage of different evaluations of neutron constants for plutonium isotopes and minor actinides (MA) is described. That experience was obtained under designing the ABBN-93 group data set which nowadays is used widely for neutronics calculations of different cores with different spectrum and shielding. Under testing of the ABBN-93 data set through different integral and macroscopic experiments the main attention was paid to fuel nuclides and cross sections for MA practically did not verify. That gave an opportunity to change MA nuclear data for more modern without verification of the hole system. This desire appeared with new data libraries JENDL-3.2, JEF-2.2 and ENDF/B-6.2, which was not accessible under designing the ABBN-93. At the same time with the reevaluation of the basic MA nuclear data the ABBN-93 and the library FOND-2 of evaluated nuclear data files, which used as the basis for retrieving of the ABBN-93 data, were added with not very important MA data. So the FOND-2 library nowadays contents nuclear data files for all actinides with the half-life time more 1 day and also those MA which produce long-life actinides

  19. BWR Assembly Optimization for Minor Actinide Recycling

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs). A top-level objective of the Advanced Fuel Cycle Systems Analysis program element of the DOE NERI program is to investigate spent fuel treatment and recycling options for current light water reactors (LWRs). Accordingly, this project targets to expand the traditional scope of nuclear fuel management optimization into the following two complementary specific objectives: (1) To develop a direct coupling between the pin-by-pin within-bundle loading control variables and core-wide (bundle-by-bundle) optimization objectives, (2) to extend the methodology developed to explicitly encompass control variables, objectives, and constraints designed to maximize minor actinide incineration in BWR bundles and cycles. The first specific objective is projected to 'uncover' dormant thermal margin made available by employing additional degrees of freedom within the optimization process, while the addition of minor actinides is expected to 'consume' some of the uncovered thermal margin. Therefore, a key underlying goal of this project is to effectively invest some of the uncovered thermal margin into achieving the primary objective.

  20. Ground-state electronic structure of actinide monocarbides and mononitrides

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... the localization transition. The calculated valence electron densities of states are in good agreement with photoemission data....

  1. Successive change regularity of actinide properties with atomic number

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f7n-orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  2. Study on remain actinides recovery in pyro reprocessing

    The spent fuel reprocessing by dry process called pyro reprocessing have been studied. Most of U, Pu and MA (minor actinides) from the spent fuel will be recovered and be fed back to the reactor as new fuel. Accumulation of remain actinides will be separated by extraction process with liquid cadmium solvent. The research was conducted by computer simulation to calculate the stage number required. The calculation's results showed on the 20 stages extractor more than 99% actinides can be separated. (author)

  3. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  4. Advanced Aqueous Separation Systems for Actinide Partitioning

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  5. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  6. Synergistic extraction of actinides : Part I. Hexa-and pentavalent actinides

    A detailed discussion on the reported literature on the synergistic extraction of hexa- and pentavalent actinide ions, by different combinations of extractants and from different aqueous media, is presented. Structural aspects of the various complexes involved in synergism also are reviewed. A short account of the applications based on synergistic extraction is also given. (author)

  7. Extraction of actinides and lanthanides by calixarenes CMPO. Possibility to separate actinides from lanthanides (Calixpart project)

    The CALIXPART project accepted by the European Community within the framework of the 5 PCRD, relates to the 'selective extraction of minor actinides from H.A. liquid waste by organized matrices'. The objective of this new project is the selective extraction in only one step of minor actinides from a solution of fission products including lanthanides. This separation will be investigated through two strategies: - In the first one, macrocycles will be grafted with ligands containing nitrogen or sulphur which are able to discriminate actinides from lanthanides, but generally present very low distribution coefficients in strongly acidic solutions. Following the example of calixarenes CMPO, the grafting of these ligands on macrocyclic supports should increase the distribution coefficients, and thus allow to use these extractants at nitric acid concentrations up to 3 M. The nitrogen or sulphur ligands are not necessarily selective with respect to the other fission products, and the macrocyclic structure should also afford this necessary selectivity if one wishes to operate in a single step. Once americium and curium separated, the difference in size between both cations is undoubtedly sufficient to make it possible to separate them at the stripping stage. - The second strategy considered is the introduction of two types of ligands (hard and soft) on a macrocyclic structure, the first ensuring the extraction of lanthanides and trivalent actinides, the seconds bringing discrimination between these two groups of cations. (author)

  8. Transmutation of minor actinide using thorium fueled BWR core

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6th of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  9. Research needs in metabolism and dosimetry of the actinides

    The following topics are discussed: uranium mine and mill tailings; environmental standards; recommendations of NCRP and ICRP; metabolic models and health effects; life-time exposures to actinides and other alpha emitters; high-specific-activity actinide isotopes versus naturally occurring isotopic mixtures of uranium isotopes; adequacy of the n factor; and metabolism and dosimetry;

  10. Solubility of actinides and surrogates in nuclear glasses

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  11. Separations chemistry for actinide elements: Recent developments and historical perspective

    With the end of the cold war, the principal mission in actinide separations has changed from production of plutonium to cleanup of the immense volume of moderately radioactive mixed wastes which resulted from fifty years of processing activities. In order to approach the cleanup task from a proper perspective, it is necessary to understand how the wastes were generated. Most of the key separations techniques central to actinide production were developed in the 40's and 50's for the identification and production of actinide elements. Total actinide recovery, lanthanide/actinide separations, and selective partitioning of actinides from inert constituents are currently of primary concern. To respond to the modern world of actinide separations, new techniques are being developed for separations ranging from analytical methods to detect ultra-trace concentrations (for bioassay and environmental monitoring) to large-scale waste treatment procedures. In this report, the history of actinide separations, both the basic science and production aspects, is examined and evaluated in terms of contemporary priorities

  12. Actinide management with commercial fast reactors

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel

  13. The electrochemical properties of actinide amalgams

    Selection of the values of standard potentials of An actinides and their amalgams was made. On the basis of the data obtained energy characteristics of alloy formation processes in the systems An-Hg were calculated and analyzed. It is ascertained that the properties of f-element solutions in mercury are similar to those of alkali and alkaline-earth metal amalgams with the only difference, i.e. in case of active metals of group 3 the number of realized charge value of ionic frames in condensed phase increases

  14. Status of nuclear data for actinides

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  15. Fission cross section measurements for minor actinides

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  16. Actinide behavior under final repository relevant conditions

    Experiments on the solubility behavior and the redox chemistry of actinides and long-living fission products under different geochemical boundary conditions, here on the Np(V) solubility in alkaline CaCl2 systems, provide basic information on processes that can occur in a nuclear final repository in case of water ingress. The thermodynamic constants derived from these experiments allow the geochemical modeling of these processes and a rough estimation of radionuclide solubility limits for different scenarios. Scientific research projects on this issue will reduce the uncertainties of long-term safety analyses for final repositories for high-level radioactive wastes significantly.

  17. Supercritical fluid extraction studies on actinides

    Uranyl nitrate and plutonium in its Pu (III) as well Pu (IV) form loaded onto a tissue paper was extracted completed from paper, glass, stainless steel as well as teflon matrices using modified SC-CO2. A further investigation on recovery of actinides independent of their drying period is expected to culminate into developing an universal procedure to handle Pu bearing waste for its recovery irrespective of its drying history and oxidation states. Such endeavors ultimately lead to the potential utility of the SFE technology for efficient nuclear waste management

  18. Compilation of actinide neutron nuclear data

    The Swedish nuclear data committee has compiled a selected set of neutron cross section data for the 16 most important actinide isotopes. The aim of the report is to present available data in a comprehensible way to allow a comparison between different evaluated libraries and to judge about the reliability of these libraries from the experimental data. The data are given in graphical form below about 1 ev and above about 10 keV shile the 2200 m/s cross sections and resonance integrals are given in numerical form. (G.B.)

  19. Recent progress in actinide borate chemistry

    Wang, S.; Alekseev, E .V.; Depmeier, W.; Albrecht-Schmitt, T.E.

    2011-01-01

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topol...

  20. Actinide management with commercial fast reactors

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  1. Actinide removal from nitric acid waste streams

    Actinide separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve plutonium secondary recovery and americium removal from nitric acid waste streams generated by plutonium purification operations. Capacity and breakthrough studies show anion exchange with Dowex 1x4 (50 to 100 mesh) to be superior for secondary recovery of plutonium. Extraction chromatography with TOPO(tri-n-octyl-phosphine oxide) on XAD-4 removes the final traces of plutonium, including hydrolytic polymer. Partial neutralization and solid supported liquid membrane transfer removes americium for sorption on discardable inorganic ion exchangers, potentially allowing for non-TRU waste disposal

  2. Prediction of some fission properties of actinides

    The 2 Z-N correlations are indications for the deuteron-triton clusters structure to most of the nuclei. For N=Z nuclei this approach indicates deuteron clusters only. The space dependence Schroedinger equation for neutron and proton in the same shell for N=Z nuclei shows that part of the time these particles behave like single particles and part of the time as deuteron clusters. The 2 Z-N correlations are used to predict some fission properties of some actinides. (author). 13 refs., 6 Tabs

  3. Calculated Bulk Properties of the Actinide Metals

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  4. Actinide management with commercial fast reactors

    Ohki, Shigeo [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  5. Actinide coordination chemistry: towards the limits of the periodic table

    Actinide elements represent a distinct chemical family at the bottom of the periodic table. Among the major characteristics of this 14 element family is their high atomic numbers and their radioactivity. Actinide chemistry finds its roots in the history of the 20. century and plays a very important role in our contemporary world. Energetic as well as technical challenges are facing the development of nuclear energy. In this pedagogical introduction to actinide chemistry, the authors draw a comparison between the actinides family and the chemistry of two other families, lanthanides and transition metals. This article focuses on molecular and aqueous chemistry. It has been based on class notes aiming to present an overview of the chemical diversity of actinides, and its future challenges for modern science. (authors)

  6. The electronic structure of the lanthanides and actinides, a comparison

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  7. Electronic structure of the actinide dioxides

    The electronic properties of the fluorite structured actinide dioxides have been investigated using the linear muffin tin orbital method in the atomic sphere approximation. CaF2 with the same structure was also studied because of the relative simplicity of its electronic structure and the greater amount of experimental data available. Band structures were calculated both non self consistently and self consistently. In the non self consistent calculations the effect of changing the approximation to the exchange-correlation potential and the starting atomic configurations was examined. Using the concepts of canonical bands the effects of hybridization were investigated. In particular the 5f electrons included in the band picture were found to mix more strongly into the valence band than indicated by experiment. On this basis the 5f electrons were not included in self consistent calculations which in the density functional formalism are capable of yielding ground state properties. Because of the non participation of the f electrons in the bonding UO2 only was considered as representative of the actinide dioxides. For comparison CaF2 was also examined. Using Pettifor's pressure formula to determine the equilibrium condition the lattice constants were calculated to be 0.5% and 5% respectively below the experimental values. (author)

  8. Decorporation of inhaled actinides by chelation therapy

    This article describes recent work in NRPB laboratories that has identified some of the factors influencing the behaviour of plutonium, americium and curium compounds in the body after inhalation, together with a number of experimental approaches that are being developed to optimise their treatment with DTPA. It is concluded that the most effective treatment has yet to be developed, but progress must depend on a better understanding of the factors governing the transport of actinides in the body. It cannot be assumed that because the inhaled material is readily translocated to blood, that treatment regimens with Ca-DTPA based solely on previous understanding of the metabolic fate of soluble actinide complexes will be successful. In fact, depending on the nature of the material involved in the accident, inhalation alone or combined with prolonged infusion of DTPA may be more effective than the periodic intravenous injections of the chelating agent alone. For poorly transportable materials such as insoluble plutonium-239 dioxide, chelation treatment remains essentially ineffective. (U.K.)

  9. Actinide Solubility and Speciation in the WIPP

    Reed, Donald T. [Los Alamos National Laboratory

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  10. Fusion-Fission Burner for Transuranic Actinides

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  11. Gas core reactors for actinide transmutation. [uranium hexafluoride

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  12. Separation of actinides from spent nuclear fuel: A review.

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  13. Actinide separation chemistry in nuclear waste streams and materials

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  14. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  15. Report of the panel on practical problems in actinide biology

    Practical problems are classified as the need to make operational decisions, the need for regulatory assessment either of individual facilities or of generic actions, and the overt appearance of radiobiological effects in man or radioactivity in man or the environment. Topics discussed are as follows: simulated reactor accident; long term effects of low doses; effects of repeated exposures to actinides; inhaled uranium mine air contaminants; metabolism and dosimetry; environmental equilibrium models; patterns of alpha dosimetry; internal dose calculations; interfaces between actinide biology and environmental studies; removal of actinides deposited in the body; and research needs related to uranium isotopes

  16. Status report on actinide and fission product transmutation studies

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  17. The speciation of actinide ions in concentrated salt solutions

    Many separations of actinide ions involve concentrated solutions. There is additional interest in actinide behavior in brine solutions in the WIPP salt repository. Unfortunately, little understanding exists on the speciation of actinides in concentrated solutions. The author has studied the extraction distribution of Am(III) as a function of concentration of NX salts (N-, Li+, Na+, K+, NH4+ and X = ClO4-, Cl-, NO3-). Analyses of the distribution curves are discussed in terms of hydration, complexation, etc. effects on the Am(III). The variation of the calculated stability constants with ionic strength is compared with the expected variation using Specific-Ion Interaction Theory (SIT)

  18. Review of actinide nitride properties with focus on safety aspects

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  19. Actinide interactions at microbial interfaces: an interdisciplinary challenge

    An overview on the current state of knowledge of microbial actinide interaction processes is presented. Several detailed examples of the interaction of aerobic soil bacteria (Pseudomonas, Bacillus and Deinococcus strains) with uranium and plutonium are discussed. Details of the nature of the bacterial functional groups involved in the interfacial actinide interaction process are reported. Based on time-resolved laser-induced fluorescence spectroscopy (TRLFS) and synchrotron X-ray absorption spectroscopy (XANES and EXAFS) studies, molecular-level mechanistic details of the different interaction processes are discussed. Areas of this emerging field in actinide research are outlined where additional information and integrated interdisciplinary research is required

  20. Review of actinide nitride properties with focus on safety aspects

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  1. Electronic structure and ionicity of actinide oxides from first principles

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which...... actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding...

  2. Role of actinide behavior in waste management

    For purposes of assessing the safety of repositories of radioactive wastes placed in geologic isolation, actinide behavior in the environment has been interpreted in terms of five steps of prediction: analysis of repository stability; geosphere transport; the geosphere-biosphere interface; biosphere transport; and biosphere consequences. Each step in the analysis requires models of nuclide behavior and data on the physical and chemical properties of the radioactivity. The scope of information required in order to make reliable safety assessments has been outlined. All steps in the assessment process are coupled; reliable models and data are therefore needed for each step. The prediction phase of safety assessment is also coupled to activities concerned with waste treatment, selection of the final form of the waste, and selection of repository sites and designs. Results of the predictions can impact these activities

  3. Determination of actinides by alpha spectrometric methods

    The submitted thesis in its first part concern with content determination of plutonium, americium, uranium, thorium radionuclides, like the most significant representatives of actinides in environmental patterns, where by the primary consideration is a focusing on content of these actinides in samples of superior mycotic organisms - mushrooms. Following the published studies the mushrooms were monitored as organisms that could verify most of attributes putted on bioindicators in term of observation of substantial radionuclides in living environment. There were analyzed two groups of samples that came from two chosen locations, one of them is situated in Eastern Slovakia and the second one in West Slovakia. Except for mushrooms samples the examined radionuclides volumes were determined even in specimens of soil sub-base and some plants from chosen localities. The liquid - liquid extraction methods were used for determination of mass activities of actinides in samples for radiochemical separation of monitored radionuclides. The obtained results of plutonium and americium mass activities determination's lead us to carry out experiments that proved abilities of superior mycotic organisms to absorb and accumulate alpha radionuclides in their textures. We choose the oyster mushroom (Pleurotus ostreatus) species as an experimental object. Sporocarps of this mushroom were cultivated on substratum which is commercially exploited to cultivate it whereby this substratum was purposely contaminated by known activities of 239Pu and 241Am. We prepared five autonomous samples together. The values of mass activities of 239Pu and 241Am obtained by following analysis of prepared samples showed the ability of mushrooms to absorb observed actinides in their texture structures. On the basis of obtained mass activities it was possible to evaluate and numerically determine a transmitting factor's attributes of monitored radionuclides in sporocarps and in sub-base. Accordingly we defined

  4. Solidification of simulated actinides by natural zircon

    YANG Jian-Wen; LUO Shang-Geng

    2004-01-01

    Natural zircon was used as precursor material to produce a zircon waste form bearing 20wt% simulated actinides (Nd2O3 and UO2) through a solid state reaction by a typical synroc fabrication process. The fabricated zircon waste form has relatively good physical properties (density 5.09g/cm3, open porosity 4.0%, Vickers hardness 715kg/mm2). The XRD, SEM/EDS and TEM/EDS analyses indicate that there are zircon phases containing waste elements formed through the reaction. The chemical durability and radiation stability are determined by the MCC-1method and heavy ion irradiation; the results show that the zircon waste form is highly leach resistance and relatively stable under irradiation (amorphous dose 0.7dpa). From this study, the method of using a natural mineral to solidify radioactive waste has proven to be feasible.

  5. Actinide elements in aquatic and terrestrial environments

    Progress is reported in terrestrial ecology studies with regard to plutonium in biota from the White Oak Creek forest; comparative distribution of plutonium in two forest ecosystems; an ecosystem model of plutonium dynamics; actinide element metabolism in cotton rats; and crayfish studies. Progress is reported in aquatic studies with regard to transuranics in surface waters, frogs, benthic algae, and invertebrates from pond 3513; and radioecology of transuranic elements in cotton rats bordering waste pond 3513. Progress is also reported in stability of trivalent plutonium in White Oak Lake water; chemistry of plutonium, americium, curium, and uranium in pond water; uranium, thorium, and plutonium in small mammals; and effect of soil pretreatment on the distribution of plutonium

  6. Studies of actinides in a superanoxic fjord

    Roos, P.

    1997-04-01

    Water column and sediment profiles of Pu, Am, Th and U have been obtained in the superanoxic Framvaren fjord, southern Norway. The concentration of bomb test fallout Pu, Am as well as `dissolved` Th in the bottom water are the highest recorded in the marine environment. The behaviour of the actinides in the anoxic water mass is to a large extent governed by the behaviour of the colloidal material. Ultrafiltration reveals that 40-60% of the actinides are associated to the large colloids, surprisingly this is valid also for U. The sediment acts as a source for Pu, Am, and Th to the water column but primarily as a sink for U. The remobilization of Pu, Am and Th is evident from the water column profiles which have similar diffusion shape profiles as other constituents originating from the sediments. The vertical eddy diffusion coefficient calculated from the Pu profile is in the same order of magnitude as reported from the H{sub 2}S profile. Decreased bottom water concentrations (but a constant water column inventory) between 1989 and 1995 as well as pore water Pu concentrations nearly identical to the overlaying bottom water indicates that the present Pu flux from the sediments are low. Contrary to Pu and Am, the water column Th inventory ({sup 232}Th and {sup 230}Th) continues to increase. The flux of {sup 232}Th from the sediments was determined from changes in water column inventory between 1989 and 1995 and from a pore water profile to be in the order of 2-8 Bq/m{sup 2}/y. 208 refs.

  7. Pyrometallurgical processes for recovery of actinide elements

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  8. Studies of actinides in a superanoxic fjord

    Water column and sediment profiles of Pu, Am, Th and U have been obtained in the superanoxic Framvaren fjord, southern Norway. The concentration of bomb test fallout Pu, Am as well as 'dissolved' Th in the bottom water are the highest recorded in the marine environment. The behaviour of the actinides in the anoxic water mass is to a large extent governed by the behaviour of the colloidal material. Ultrafiltration reveals that 40-60% of the actinides are associated to the large colloids, surprisingly this is valid also for U. The sediment acts as a source for Pu, Am, and Th to the water column but primarily as a sink for U. The remobilization of Pu, Am and Th is evident from the water column profiles which have similar diffusion shape profiles as other constituents originating from the sediments. The vertical eddy diffusion coefficient calculated from the Pu profile is in the same order of magnitude as reported from the H2S profile. Decreased bottom water concentrations (but a constant water column inventory) between 1989 and 1995 as well as pore water Pu concentrations nearly identical to the overlaying bottom water indicates that the present Pu flux from the sediments are low. Contrary to Pu and Am, the water column Th inventory (232Th and 230Th) continues to increase. The flux of 232Th from the sediments was determined from changes in water column inventory between 1989 and 1995 and from a pore water profile to be in the order of 2-8 Bq/m2/y. 208 refs

  9. Archetypes for actinide-specific chelating agents

    The complexes of uranium and thorium with monomeric hydroxamic acids can serve as archetypes for an optimized macrochelate designed for tetravalent actinides. The eight-coordinate complexes, Th(i-PrN(O)C(O)R)4, where R = tert-butyl or R = neopentyl, have been synthesized and their structures have been determined by x-ray diffraction. The bulky alkyl substituents impart remarkable volatility and hydrocarbon solubility to these complexes, and the steric interactions of these substituents largely determine the structures. When R = tert-butyl, the substituents occupy the corners of a tetrahedron and force the complex into a distorted cubic geometry with crystallographic S4 symmetry. Insertion of a methylene group between the carbonyl carbon and the tert-butyl group relaxes the steric requirements, and the coordination polyhedron of the neopentyl derivative is close to the mmmm isomer of the trigonal-faced dodecahedron. Uranium tetrachloride was quantitatively oxidized via an oxygen transfer reaction with two equivalents of N-phenylbenzohydroxamic acid anion (PBHA) in tetrahydrofuran (THF) to form UO2 Cl(PBHA)(THF)2 and benzanilide. The structure of the uranyl complex has been determined from x-ray diffraction data; the linear uranyl ion is surrounded by a planar pentagonal array composed of two hydroxamate oxygen atoms, a chloride ion and two THF oxygens, such that the chloride ion is opposite the hydroxamate group. That the THF and phenyl rings are twisted from this equatorial plane limits the molecular geometry to that of the C1 point group. Some aspects of the chemistry of hydroxamic acids and of their incorporation into molecules that may serve as precursors of tetravalent actinide specific sequestering agents have also been investigated

  10. Radiochemical studies of neutron deficient actinide isotopes

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, 242Bk, was produced with a cross-section of approximately 10 μb in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, αxn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,αxn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z1 + Z2 = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,αxn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of 228Pu, 230Pu, 232Cm, or 238Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes

  11. Pyrometallurgical processes for recovery of actinide elements

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  12. Radiochemical studies of neutron deficient actinide isotopes

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  13. Solvent extraction process for partitioning actinides from HLLW

    A description and review of the solvent extraction process for partitioning actinides from HLLW is presented. TRUEX process, DIDPA process, DIAMEX process, TRPO process as well as related An (III)/Ln(III) separation process are briefly discussed

  14. Actinide targets for the synthesis of super-heavy elements

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Burns, J. D.; Ezold, J. G.; Felker, L. K.; Hogle, S. L.; Rykaczewski, K. P.

    2015-12-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  15. Distribution of actinide elements in sediments: leaching studies

    Previous investigations have shown that Fe and Mn oxides and organic matter can significantly influence the behavior of Pu and other actinides in the environment. A sequential leaching procedure has been developed in order to investigate the solid phase distribution of the actinides in riverine and marine sediments. Seven different sedimentary fractions are defined by this leaching experiment: an exchangeable metals fraction, an organic fraction, a carbonate fraction, a Mn oxide fraction, an amorphous Fe fraction, a crystalline Fe oxide fraction and a lattice-held or residual fraction. There is also the option of including a metal sufide fraction. A preliminary experiment, analyzing only the metals and not the actinide elements, indicates that this leaching procedure (with some modifications) is a viable procedure. The subsequent data should result in information concerning the geochemical history and behavior of these actinide elements in the environment

  16. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  17. Use of fast-spectrum reactors for actinide burning

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  18. In-situ mineralization of actinides with phytic acid

    A new approach to the remediation of actinide contamination is described. A hydrolytically unstable organophosphorus compound, phytic acid, is introduced into the contaminated environment. In the short term (up to several hundred years), phytate acts as a cation exchanger to absorb mobile actinide ions from ground waters. Ultimately, phytate decomposes to release phosphate and promote the formation of insoluble phosphate mineral phases, considered an ideal medium to immobilize actinides, as it forms compounds with the lowest solubility of any candidate mineral species. This overview will discuss the rate of hydrolysis of phytic acid, the formation of lanthanide/actinide phosphate mineral forms, the cation exchange behavior of insoluble phytate, and results from laboratory demonstration of the application to soils from the Fernald site

  19. Element Partitioning in Glass-Ceramic Designed for Actinides Immobilization

    2008-01-01

    <正>Glass-ceramics were designed for immobilization of actinides. In order to immobilizing more wastes in the matrix and to develop the optimum formulation for the glass-ceramic, it is necessary to study the

  20. An atomic beam source for actinide elements: concept and realization

    For ultratrace analysis of actinide elements and studies of their atomic properties with resonance ionization mass spectroscopy (RIMS), efficient and stable sources of actinide atomic beams are required. The thermodynamics and kinetics of the evaporation of actinide elements and oxides from a variety of metals were considered, including diffusion, desorption, and associative desorption. On this basis various sandwich-type filaments were studied. The most promising system was found to consist of tantalum as the backing material, an electrolytically deposited actinide hydroxide as the source of the element, and a titanium covering layer for its reduction to the metal. Such sandwich sources were experimentally proven to be well suited for the production of atomic beams of plutonium, curium, berkelium and californium at relatively low operating temperatures and with high and reproducible yields. (orig.)

  1. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  2. Leaching of actinides from nuclear waste glass: French experience

    The activity concentration versus time of a typical LWR glass shows that after 300 years most of the activity is attributable to three actinides (Np, Pu and Am) and to 99Tc. This activity decreases slowly, and some 50.000 years are necessary before the activity concentration drops to the level of the richest natural ores. This paper reviews the current state of knowledge concerning the kinetics of actinide release from glass subjected to aqueous leaching

  3. Recovery of actinides from spent nuclear fuel by pyrochemical reprocessing

    The Partitioning and Transmutation (P and T) strategy is based on reduction of the long-term radiotoxicity of spent nuclear fuel by recovery and recycling of plutonium and minor actinides, i.e. Np, Am and Cm. Regardless if transmutation of actinides is conceived by a heterogeneous accelerator driven system, fast reactor concept or as integrated waste burning with a homogenous recycling of all actinides, the reprocessed fuels used are likely to be significantly different from the commercial fuels of today. Because of the fuel type and the high burn-up reached, traditional hydrometallurgical reprocessing such as used today might not be the most adequate method. The main reasons are the low solubility of some fuel materials in acidic aqueous solutions and the limited radiation stability of the organic solvents used in extraction processes. Therefore, pyrochemical separation techniques are under development worldwide, usually based on electrochemical methods, reductive extraction in a high temperature molten salt solvent or fluoride volatility techniques. The pyrochemical reprocessing developed in ITU is based on electrorefining of metallic fuel in molten LiCl-KCl using solid aluminium cathodes. This is followed by a chlorination process for the recovery of actinides from formed actinide-aluminium alloys, and exhaustive electrolysis is proposed for the clean-up of salt from the remaining actinides. In this paper, the main achievements in the electrorefining process are summarised together with results of the most recent experimental studies on characterisation of actinides-aluminium intermetallic compounds. U, Np and Pu alloys were investigated by electrochemical techniques using solid aluminium electrodes and the alloys formed by electrodeposition of the individual actinides were analysed by XRD and SEM-EDX. Some thermodynamic properties were determined from the measurements (standard electrode potentials, Gibbs energy, enthalpy and entropy of formation) as well as

  4. Electronic structure and properties of rare earth and actinide intermetallics

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  5. Limitations of actinide recycle and waste disposal consequences

    The paper emphasizes the impact of Light Water Reactor - Mixed Oxides introduction on the subsequent actinide management and fate of reprocessed and depleted uranium. The spent fuel from LWR-MOX contains in principle 75% of the initially produced plutonium. This new source term has to be considered together with the minor actinides from the conventional reprocessing. Subsequent LWR-MOX reprocessing in the first step in a very long term Pu + minor actinides management. Recycling of Pu + minor actinides in fast reactors to significantly reduce the Pu and minor actinides inventory (e.g. a factor of 10) is a very slow process which requires the development and operation of a large park of actinide burner reactors during an extended period of time. The overall feasibility of the P and T option will greatly depend on the massive introduction during the next century of fast neutron reactors as a replacement to the present LWR generation of nuclear power plants. (authors). 11 refs., 6 tabs., 2 figs

  6. Research on the actinide chemistry in Nuclear Fuel Cycle

    Fundamental technique to measure chemical behaviors and properties of lanthanide and actinide in radioactive waste is necessary for the development of pryochemical process. First stage, the electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipments, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media. In the second stage, measurement system for physical properties at pyrochemical process such as viscosity, melting point and conductivity is established, and property database at different compositions of lanthanide and actinide is collected. And, both interactions between elements and properties with different potential are measured at binary composition of actinide-lanthanide in molten salt using electrochemical/spectroscopic integrated measurement system.

  7. The effect of corrosion product colloids on actinide transport

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption Rd values of ≥ 5 x 106 ml g-1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  8. The Actinide User Laboratory at ITU-Karlsruhe

    The interest in actinide materials arises mainly from their fundamental physics and chemistry and the complexity of their behaviour as illustrated through numerous papers of this conference. Such research also impacts on nuclear fuel technology and the problem of nuclear waste and long-term storage. Despite the great interest in the actinides the number of Laboratories equipped to handle these materials is steadily decreasing due to heavy and costly security requirements. The Institute for Transuranium Elements (ITU) is a Laboratory of the Joint Research Centre of the European Commission which addresses a large number of questions related to actinides, both basic and applied, and is the only non-classified Laboratory in Europe where research on appreciable quantities of transuranium materials is conducted across a wide range of chemistry and physics. In order to keep alive an essential and exciting field of research in physic and chemistry, we have decided to offer access to our facilities to external users through an Actinide User Laboratory. Materials preparation facilities and a suite of instruments, together with expert technical assistance, are available for conducting basic or applied research studies. The Actinide User Laboratory is selected as a user facility to participate in the European Community - Access to Research Infrastructures action of the Improving Human Potential Programme (IHP) which supports access to our actinide facility for the selected users teams, travel and subsistence fees of visiting scientists. The programme is open to EC users and to scientists of the associated states. (author)

  9. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    Perkasa, Y. S. [Department of Physics, Sunan Gunung Djati State Islamic University Bandung, Jl. A.H Nasution No. 105 Cibiru, Bandung (Indonesia); Waris, A., E-mail: awaris@fi.itb.ac.id; Kurniadi, R., E-mail: awaris@fi.itb.ac.id; Su' ud, Z., E-mail: awaris@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa No. 10 Bandung 40132 (Indonesia)

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  10. Supercritical fluid extraction of actinide element complexes. II. SCF of actinide complexes with β-diketones

    Data on solubility of β-diketones complexes with uranium (VI), plutonium, neptunium, and americium in supercritical carbon dioxide (SC-CO2) are presented. It is established that content of actinide complexes with β-diketones in SC-CO2 can achieve 10-100 g/l. Complexes with dipivaloylmethane, trifluoroacetylacetone and hexafluoroacetylacetone and adducts with tributylphosphate and water in particular are the most highly soluble in it. Residues of complexes after dissolution in SC-CO2 are investigated spectroscopically

  11. Actinide production in 136Xe bombardments of 249Cf

    The production cross sections for the actinide products from 136Xe bombardments of 249Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these 136Xe + 249Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the 136Xe + 248Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs

  12. Interaction of actinides with amino acids: from peptides to proteins

    Structural information on complexes of actinides with molecules of biological interest is required to better understand the mechanisms of actinides transport in living organisms, and can contribute to develop new decorporation treatments. Our study is about Th(IV), Np(IV), Pu(IV) and uranyl(VI) cations, which have a high affinity for some protein domains, and Fe(III), which is the natural cation of these biological systems. In this work, chelation of actinides has been brought to light with UV-visible-Near Infra Red spectroscopy, NMR, EPR, and ultrafiltration. Determination of the structure of the complexation site has been undertaken with Exafs measurements, and of the tertiary structure of the protein with SANS measurements. The first approach was to describe the interaction modes between actinides and essential chemical functions of proteins. Thus, the Ac-AspAspProAspAsp-NH2 peptide was studied as a possible chelate of actinides. Polynuclear species with μ-oxo or μ-hydroxo bridges were identified. The iron complex is binuclear, and the actinide ones have a higher nuclearity. The second approach was to study a real case of complexation of actinide with a protein: transferrin. Results show that around physiological ph a mononuclear complex is formed with Np(IV) and Pu(IV), while transferrin does not complex Th(IV) in the same conditions. Characteristic distances of M-transferrin complexes (M = Fe, Np, Pu) were determined. Moreover, the protein seems to be in its close conformation with Pu(IV), and in its open form with Np(IV) and UO22+. (author)

  13. Actinides in irradiated graphite of RBMK-1500 reactor

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  14. Magnetic form factor studies of actinide compounds

    Some results obtained at ILL on Actinide compound form factors are reviewed. In the paramagnetic NpO2 single crystal (5mg), an induced magnetic moment of 0.07μsub(B) was obtained at 4.2K (4.6T). In the ferromagnetic phase of NpAs2 single crystal (0.2mm3), the magnetic moment (1.46μsub(B)/Np atom) has been found fixed along the [001] direction. In both cases, the Np form factors fit satisfactorily the Np4+ form factor calculated with relativistic atomic wave functions. The Fermi length for Np was deduced (b(Np) = 1.015(15)10-12cm). In the paramagnetic Laves phase UNi2 compound, equally small moments are observed on U atom (0.013(1)μsub(B)) and on Ni atom (0.016(1)μsub(B)) confirming important changes in 3d band structure of Ni by hybridization with U electrons

  15. Fast neutron scattering on actinide nuclei

    More and more sophisticated neutron experiments have been carried out with better samples in several laboratories and it was necessary to intercompare them. In this respect, let us quote for example (n,n'e) and (n,n'#betta#) measurements. Moreover, high precision (p,p), (p,p') and (p,n) measurements have been made, thus supplementing neutron experiments in the determination of the parameters of the optical model, still widely used to describe the neutron-nucleus interaction. The optical model plays a major role and it is therefore essential to know it well. The spherical optical model is still very useful, especially because of its simplicity and of the relatively short calculation times, but is obviously insufficient to treat deformed nuclei such as actinides. For accurate calculations about these nuclei, it is necessary to use a deformed potential well and solve a set of coupled equations, hence long computational times. The importance of compound nucleus formation at low energy requires also a good knowledge of the statistical model together with that of all the reaction mechanisms which are involved, including fission for which an accurate barrier is necessary and, of course, well-adjusted level densities. The considerations form the background of the Scientific Programme set up by a Programme Committee whose composition is given further on in this book

  16. Microbial transformations of actinides in the environment

    The diversity of microorganisms is still far from understood, although many examples of the microbial biotransformation of stable, pollutant and radioactive elements, involving Bacteria, Archaea and Fungi, are known. In estuarine sediments from the Irish Sea basin, which have been labelled by low level effluent discharges, there is evidence of an annual cycle in Pu solubility, and microcosm experiments have demonstrated both shifts in the bacterial community and changes in Pu solubility as a result of changes in redox conditions. In the laboratory, redox transformation of both U and Pu by Geobacter sulfurreducens has been demonstrated and EXAFS spectroscopy has been used to understand the inability of G. sufurreducens to reduce Np(V). Fungi promote corrosion of metallic U alloy through production of a range of carboxylic acid metabolites, and are capable of translocating the dissolved U before precipitating it externally to the hyphae, as U(VI) phosphate phases. These examples illustrate the far-reaching but complex effects which microorganisms can have on actinide behaviour.

  17. Criticality and thermal analyses of separated actinides

    Curium and americium pose special problems in the chemical preparation of spent fuel for transmutation. Once separated from the other actinides, the isotopes can lead to nuclear fission with the subsequent release of a large amount of radiation. A neutron criticality code was used to determine keff for varying quantities of Cm2O3 and Am2O3 held within spherical or cylindrical containers. These geometries were investigated both in air and in water. Recommendations are made on the maximum amount of Cm2O3 and Am2O3 that can be safely stored or handled before encountering criticality. Several isotopes of curium and americium also generate a significant amount of heat by radioactive decay. If kilogram quantities are stored in a container, for example, the material may heat to an equilibrium temperature that exceeds its melting temperature. The heat generation of curium and americium present even more restriction on the mass of that can safely be contained in one location. (author)

  18. Electrochemical decontamination system for actinide processing gloveboxes

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  19. Molecular structure of actinides in biochemistry

    In case of internal contamination, drugs used for decorporation are scarce and do not act very specifically. For instance the sole de-corporating drug recommended for plutonium decontamination is a water-soluble ligand named DTPA (Diethylene-Triamino-Pentaacetate). The transport of DTPA to its organ-target and its bio-availability on the spot are not satisfactorily understood. The conventional method to develop new ligands is based on molecular approaches but it is not sufficient. A new method that combines methods from structural biochemistry with methods of bio-inorganic chemistry and with methods from physico-chemistry (particularly X-ray absorption spectroscopy) is so far the best way to understand molecular speciation and to detail the local arrangement of atoms around a cation for instance, which are valuable information to understand the behaviour of a ligand. EXAFS (Extended X-ray Absorption Fine structure Spectroscopy) measurements suggest that during the formation of a complex involving an actinide (An) and a ligand, the inter-atomic distance An-O decreases when the atomic number of the cation increases while it is the reverse in the case of An-N

  20. Photofission of actinide and pre-actinide nuclei in the quasideuteron and delta energy regions

    Berman, B L; Cole, P L; Dodge, W R; Feldman, G; Sanabria, J C; Kolb, N; Pywell, R E; Vogt, J; Nedorezov, V; Sudov, A; Kezerashvili, G Ya

    1999-01-01

    The photofission cross sections for the actinide nuclei sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 sup , sup 2 sup 3 sup 8 U, and sup 2 sup 3 sup 7 Np have been measured from 68 to 264 MeV and those for the pre-actinide nuclei sup 1 sup 9 sup 7 Au and sup N sup A sup T Pb from 122 to 222 MeV at the Saskatchewan Accelerator Laboratory, using monoenergetic tagged photons and novel parallel-plate avalanche detectors for the fission fragments. The aim of the experiment was to obtain a comprehensive and self-consistent data set and to investigate previous anomalous results in this energy region. The fission probability for transuranic nuclei is expected to be close to unity here. However, important discrepancies have been confirmed for sup 2 sup 3 sup 7 Np and sup 2 sup 3 sup 2 Th, compared with sup 2 sup 3 sup 8 U, which have serious implications for the inferred total photoabsorption strengths, and hence call into question the 'Universal Curve' for photon absorption at these energies. High-s...

  1. Potential radiation dose from eating fish exposed to actinide contamination

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1980-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, /sup 239,240/Pu and /sup 241/Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (approx.1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs.

  2. The actinides-a beautiful ending of the Periodic Table

    The 5f elements, actinides, show many properties which have direct correspondence to the 4f transition metals, the lanthanides. The remarkable similarity between the solid state properties of compressed Ce and the actinide metals is pointed out in the present paper. The α-γ transition in Ce is considered as a Mott transition, namely, from delocalized to localized 4f states. An analogous behavior is also found for the actinide series, where the sudden volume increase from Pu to Am can be viewed upon as a Mott transition within the 5f shell as a function of the atomic number Z. On the itinerant side of the Mott transition, the earlier actinides (Pa-Pu) show low symmetry structures at ambient conditions; while across the border, the heavier elements (Am-Cf) present the dhcp structure, an atomic arrangement typical for the trivalent lanthanide elements with localized 4f magnetic moments. The reason for an isostructural Mott transition of the f electron in Ce, as opposed to the much more complicated cases in the actinides, is identified. The strange appearance of the δ-phase (fcc) in the phase diagram of Pu is another consequence of the border line behavior of the 5f electrons. The path leading from δ-Pu to α-Pu is identified

  3. Rapid determination of alpha emitters using Actinide resin.

    Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

    2004-01-01

    The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed. PMID:15177360

  4. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs

  5. Potential radiation dose from eating fish exposed to actinide contamination

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of 238U, 238Pu, /sup 239,240/Pu and 241Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (∼1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs

  6. The actinides-a beautiful ending of the Periodic Table

    Johansson, Boerje [Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)], E-mail: borje.johansson@fysik.uu.se; Li, Sa [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden); Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2007-10-11

    The 5f elements, actinides, show many properties which have direct correspondence to the 4f transition metals, the lanthanides. The remarkable similarity between the solid state properties of compressed Ce and the actinide metals is pointed out in the present paper. The {alpha}-{gamma} transition in Ce is considered as a Mott transition, namely, from delocalized to localized 4f states. An analogous behavior is also found for the actinide series, where the sudden volume increase from Pu to Am can be viewed upon as a Mott transition within the 5f shell as a function of the atomic number Z. On the itinerant side of the Mott transition, the earlier actinides (Pa-Pu) show low symmetry structures at ambient conditions; while across the border, the heavier elements (Am-Cf) present the dhcp structure, an atomic arrangement typical for the trivalent lanthanide elements with localized 4f magnetic moments. The reason for an isostructural Mott transition of the f electron in Ce, as opposed to the much more complicated cases in the actinides, is identified. The strange appearance of the {delta}-phase (fcc) in the phase diagram of Pu is another consequence of the border line behavior of the 5f electrons. The path leading from {delta}-Pu to {alpha}-Pu is identified.

  7. Prompt Fission Neutron Spectra of Actinides

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  8. Ventilation system of actinides handling facility in Oarai-branch of Tohoku University

    We have reported the development of the facility for handling actinides in Tohoku University at the second KAERI-JAERI joint seminar on PIE technology. Actinide isotopes have most hazardous α-radioactivity. Therefore, a specially designed facility is necessary to carry out experimental study for actinide physics and chemistry. In this paper, we will describe the ventilation system and monitoring system for actinide handling facility. (author)

  9. Removal of actinides from nuclear reprocessing wastes: a pilot plant study using non-radioactive simulants

    Nuclear fuel reprocessing wastes generated at the ICPP contain small amounts of actinides, primarily Pu and Am. Removal of these actinides reduces the long term storage hazards of the waste. The development of a flowsheet to remove trivalent actinides is discussed in this paper. Pilot plant studies used actinide simulants. As a result of these studies, the Height of a Transfer Unit (HTU) was selected as the better measure of pulse column separation efficiency

  10. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  11. Actinide consumption: Nuclear resource conservation without breeding

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs

  12. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  13. Assessment of plutonium and minor actinides insertions in HTR

    Based in the specifications of the high temperature reactor - HTR developed by H. J. Ruetten and K. Haas (Nucl. Eng. and Design: 195, 353-360, 2000), it was studied the possibility of insertion of minor actinides in this type of reactor. In this first study, carried out with the WIMSD5 code, the effective multiplication factor and the temperature reactivity coefficient had been evaluated. The behavior of the multiplication factor with fuel burnup for the standard fuel composition (with PuO2) as well as for the case with the insertion of minor actinides originated from a PWR spent fuel, was as expected. The results suggest the possibility of insertion of joint plutonium and minor actinides in the fuel composition. (author)

  14. Actinide transmutation in the advanced liquid metal reactor (ALMR)

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. The current reference design is a 471 MWt modular reactor loaded with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and makeup. Actinide transmutation may be accomplished in the ALMR by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behaviour throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. (author). 3 refs, 6 figs, 3 tabs

  15. Advancing the scientific basis of trivalent actinide-lanthanide separations

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl-). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  16. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on the authors' experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA3 as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  17. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  18. Laser resonant-ionization mass spectrometry of actinides

    Laser resonant-ionization mass spectrometry has been used to determine small amounts of actinides. The high sensitivity and selectivity of this method has been achieved by three-step photoionization of actinide atoms followed by time-of-flight measurement. The laser system for photoionization consists of a pulsed copper vapour laser of 30 W average power at a pulse repetition rate of 6.5 kHz which is coupled to three dye lasers. The time-of-flight spectrometer has a mass resolution of about 2500. Resonance signals with count rates of several kilohertz were obtained with actinide samples of 1010-1012 atoms yielding a detection limit of 108 atoms in the sample. With some improvements a detection sensitivity of about 106 atoms of plutonium, americium and curium should be reached. (orig.)

  19. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  20. Systematic view of optical absorption spectra in the actinide series

    In recent years sufficient new spectra of actinides in their numerous valence states have been measured to encourage a broader scale analysis effort than was attempted in the past. Theoretical modelling in terms of effective operators has also undergone development. Well established electronic structure parameters for the trivalent actinides are being used as a basis for estimating parameters in other valence states and relationships to atomic spectra are being extended. Recent contributions to our understanding of the spectra of 4+ actinides have been particularly revealing and supportive of a developing general effort to progress beyond a preoccupation with modelling structure to consideration of the much broader area of structure-bonding relationships. We summarize here both the developments in modelling electronic structure and the interpretation of apparent trends in bonding. 60 refs., 9 figs., 1 tab

  1. Removal of actinides from nuclear fuel reprocessing wastes using an organophosphorous extractant

    By removing actinides from nuclear fuel reprocessing wastes, long term waste storage hazards are reduced. A solvent extraction process to remove actinides has been demonstrated in miniature mixer-settlers and in simulated columns using actinide feeds. Nonradioactive pilot plant results have established the feasibility of using pulse columns for the process

  2. Actinide-handling experience for training and education of future expert under J-ACTINET

    Summer schools for future experts have successfully been completed under Japan Actinide Network (J-ACTINET) for the purpose of development of human resources who are expected to be engaged in every areas of actinide-research/engineering. The first summer school was held in Ibaraki-area in August 2009, followed by the second one in Kansai-area in August 2010. Two summer schools have focused on actual experiences of actinides in actinide-research fields for university students and young researchers/engineers as an introductory course of actinide-researches. Many efforts were made to awaken interests into actinide-researches inside the participants during short periods of schools, 3 to 4 days. As actinides must be handled inside special apparatuses such as an air-tight globe-box with well-trained and qualified technicians, programs were optimized for effective experiences of actinides-handling. Several quasi actinide-handling experiences at the actinide-research fields have attracted attentions of participants at the first school in Ibaraki-area. The actual experiments using actinides-containing solutions have been carried out at the second school in Kansai-area. Future summer schools will be held every year for the sustainable human resource development in various actinide-research fields, together with other training and education programs conducted by the J-ACTINET. (author)

  3. Fast Burner Reactor Devoted to Minor Actinide Incineration

    This study proposes a new fast reactor core concept dedicated to plutonium and minor actinide burning by transmutation. This core has a large power level of ∼1500 MW(electric) favoring the economic aspect. To promote plutonium and minor actinide burning as much as possible, total suppression of 238U, which produces 239Pu by conversion, and large quantities of minor actinides in the core are desirable. Therefore, the 238U-free fuel is homogeneously mixed with a considerable quantity of minor actinides.From the safety point of view, both the Doppler effect and the coolant (sodium) void reactivity become less favorable in a 238U-free core. To preserve these two important safety parameters on an acceptable level, a hydrogenated moderator separated from the fuel and nuclides, such as W or 99Tc, is added to the core in the place of 238U. Tungsten and 99Tc have strong capture resonances at appropriate energies, and 99Tc itself is a long-lived fission product to be transmuted with profit.This core allows the achievement of a consumption rate of ∼100 kg/TW(electric).h of transuranic elements, ∼70 kg/TW(electric).h for plutonium (due to 238U suppression), and 30 to 35 kg/TW(electric).h for minor actinides. In addition, ∼14 kg/TW(electric).h of 99Tc is destroyed when this element is present in the core (the initial loading of 99Tc is >4000 kg in the core).The activity of newly designed subassemblies has also been investigated in comparison to standard fast reactor subassemblies (neutron sources, decay heat, and gamma dose rate). Finally, a transmutation scenario involving pressurized water reactors and minor actinide-burning fast reactors has been studied to estimate the necessary proportion of burner reactors and the achievable radiotoxicity reduction with respect to a reference open cycle

  4. Sequential determination of actinides in a variety of matrices

    A large number of analytical procedures for the actinides have been published, each catering for a specific need. Due to the bioassay programme in our laboratory, a need arose for a method to determine natural (Th and U) and anthropogenic actinides (Np, Pu and Am/Cm) together in a variety of samples. The method would have to be suitable for routine application: simple, inexpensive, rapid and robust. In some cases, the amount of material available is not sufficient for the determination of separate groups of actinides, and a sequential separation and measurement of the analytes would therefore be required. The types of matrices vary from aqueous samples to radiological surveillance (urine and faeces) to environmental studies (soil, sediment and fish), but the separation procedure should be able to service all of these. The working range of the method would have to cater for lower levels of the transuranium actinides in particular sample types containing higher levels of the natural actinides (U and Th). The first analytical problem to be discussed, is how to get the different sample types into the same loading solution required by a single separation approach. This entails sample dissolution or decomposition in some cases, and pre-concentration or pre-separation in others. A separation scheme is presented for the clean separation of all the actinides in a form suitable for alpha spectrometry. The development of a single column separation of the analytes of interest are looked at, as well as observations made during the development of the separation scheme, such as concentration effects. Results for test samples and certified reference materials are be presented. (author)

  5. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  6. Study of actinides paramagnetism in solution by NMR

    Paramagnetism of actinides in solution was characterized by NMR according to two approaches. In the first approach, magnetic susceptibilities of the most stable ions in solution from uranium to californium, for various oxidation states (U(IV)-U(VI), Np(IV)-Np(V)-Np(VI), Pu(III)-Pu(IV)-Pu(VI), Am(III), Cm(III) et Cf(III)), were measured by NMR by using the Evans' method. In perchloric medium, the paramagnetic behavior of actinide cations showed significant deviations compared with lanthanides, particularly for cations at oxidation state (+III) and (+IV). In hydrochloric and nitric media, it was observed that actinide magnetic behaviors followed the order M4+ ≥ MO2+2 ≥ M3+ ≥ MO2+, corresponding to the generally admitted order concerning the complexing power of actinide cations. It was demonstrated that the presence of chloride and nitrate in solution could have an large impact on the magnetic behavior of these cations. In the second approach, chemical shifts of actinide(IV)-di-picolinate paramagnetic complexes were studied and analyzed in dimethylformamide. In these experimental conditions, the only presence of the oxidation state (+IV) in solution as well as the stability of the latter on the NMR analysis timescale were verified, in presence or not of the ligand. Paramagnetic chemical shifts of the 1:3 limit complex were studied at various temperatures. The method of separation of the contact and dipolar contributions usually used for lanthanide(III) complexes have proved not applicable in the case of actinide(IV) complexes. (author)

  7. Burning of actinides: A complementary waste management option?

    The TRU actinide are building up at a rate of about 90 tHM per year. Approximately 45 tHM will remain occluded in the spent fuel structures, leaving about 45 tHM available; 92% as recycled plutonium and 8% as minor actinides (neptunium, americium, curium) immobilized in vitrified waste. There is renewed interest in partitioning and transmutation (P and T), largely because of difficulties encountered throughout the world in finding suitable geologic formations in locations which are acceptable to the public. In 1988, the Japanese Atomic Energy Commission launched a very important and comprehensive R and D program. The general strategy of introducing Partitioning and Transmutation (P and T) as an alternative waste management option is based on the radiological benefit which is expected from such a venture. The selection of the actinides and long-lived fission products which are beneficial to eliminate by transmutation depends upon a number of technical factors, including hazard and decontamination factors, and the effect of geological confinement. There are two ways to approach the separation of minor actinides and long-lived fission products from reprocessing streams: by modifying the current processes in order to reroute the critical nuclides into a single solution, for example high-level liquid waste, and use this as a source for partitioning processes; and by extension of the conventional PUREX process to all minor actinides and long-lived fission products in second generation reprocessing plants. Prior to the implementation of one of these schemes, it seems obvious to improve the separation yield of plutonium from HLW within the presently running plants. Actinide P and T is not an alternative long-term waste management option. Rather, it is a complementary technique to geologic disposal capable of further decreasing the radiological impact of the fuel cycle over the very long term. 1 tab

  8. Removal of actinides from selected nuclear fuel reprocessing wastes

    The US Department of Energy awarded Oak Ridge National Laboratory a program to develop a cost-risk-benefit analysis of partitioning long-lived nuclides from waste and transmuting them to shorter lived or stable nuclides. Two subtasks of this program were investigated at Rocky Flats. In the first subtask, methods for solubilizing actinides in incinerator ash were tested. Two methods appear to be preferable: reaction with ceric ion in nitric acid or carbonate-nitrate fusion. The ceric-nitric acid system solubilizes 95% of the actinides in ash; this can be increased by 2 to 4% by pretreating ash with sodium hydroxide to solubilize silica. The carbonate-nitrate fusion method solubilizes greater than or equal to 98% of the actinides, but requires sodium hydroxide pretreatment. Two additional disadvantages are that it is a high-temperature process, and that it generates a lot of salt waste. The second subtask comprises removing actinides from salt wastes likely to be produced during reactor fuel fabrication and reprocessing. A preliminary feasibility study of solvent extraction methods has been completed. The use of a two-step solvent extraction system - tributyl phosphate (TBP) followed by extraction with a bidentate organophosphorous extractant (DHDECMP) - appears to be the most efficient for removing actinides from salt waste. The TBP step would remove most of the plutonium and > 99.99% of the uranium. The second step using DHDECMP would remove > 99.91% of the americium and the remaining plutonium (> 99.98%) and other actinides from the acidified salt waste. 8 figures, 11 tables

  9. Thermally unstable complexants/phosphate mineralization of actinides

    Nash, K. [Argonne National Lab., IL (United States)

    1996-10-01

    In situ immobilization is an approach to isolation of radionuclides from the hydrosphere that is receiving increasing attention. Rather than removing the actinides from contaminated soils, this approach transforms the actinides into intrinsically insoluble mineral phases resistant to leaching by groundwater. The principal advangates of this concept are the low cost and low risk of operator exposure and/or dispersion of the radionuclides to the wider environment. The challenge of this approach is toe accomplish the immobilization without causing collateral damage to the environment (the cure shouldn`t be worse than the disease) and verification of system performance.

  10. In vivo measurement of actinides in the human lung

    The problems associated with the in vivo detection and measurement of actinides in the human lung are discussed together with various measurement systems currently in use. In particular, the methods and calibration procedures employed at the Lawrence Livermore Laboratory, namely, the use of twin Phoswich detectors and a new, more realistic, tissue-equivalent phantom, are described. Methods for the measurement of chest-wall thickness, fat content, and normal human background counts are also discussed. Detection-efficiency values and minimum detectable activity estimates are given for three common actinides, 238Pu, 239Pu, and 241Am