WorldWideScience

Sample records for actinides recovery rar

  1. Effects of CdCl{sub 2} on the Residual Actinides Recovery (RAR) System of a Spent LiCl-KCl Salt

    Shim, J.B.; Han, K.S.; Kim, S.H.; Paek, S.W.; Kwon, S.W.; Kim, J.G.; Kim, K.R.; Chung, H.; Lee, H.S.; Ahn, D.H. [Korea Atomic Energy Research Institute (KAERI), Daedeok Daero 1045, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2009-06-15

    For a promising pyro-partitioning process it is necessary to find an effective method for a recovery of the residual actinides from a spent salt resulting from an electrowinning step prior to a removal of all the fission products in a waste salt treatment step. Recently, KAERI has established a residual actinides recovery (RAR) scheme by combining an electrolysis using a liquid cadmium cathode (LCC) to collect most of the residual actinides in a spent salt phase and an oxidation of a part of the rare earth fission products co-deposited onto a LCC by a CdCl{sub 2} oxidant. Eventually, only the rare earth metal chloride products can be transferred into the waste salt treatment step. In this paper, some results obtained from RAR experiments using a CdCl{sub 2} oxidant will be discussed. Oxidation experiments by adding the CdCl{sub 2} oxidant into a salt containing a molten Cd metals alloy which was obtained by an electrodeposition of metal chlorides onto a LCC were carried out to confirm the residual concentration of the actinides in the salt to maintain it at a value less than 100 ppm. Uranium and some typical rare earths (RE) such as Nd, Ce, La, Gd, and Y were used for the experiments. Cyclic voltammetry (CV) results revealed interesting behaviors upon the shape (single or multiple) of the redox peaks of the rare earth metals and the distribution of the metals between two phases depending on the amount of CdCl{sub 2} present in a salt phase. Presence of CdCl{sub 2} leads to multiple CV peaks of the RE elements from a single CV peak shape in the absence of CdCl{sub 2} in the LiCl-KCl salt. It provides useful information, in that controlling the amount of CdCl{sub 2} by adding or exhausting it would be one of the important keys to determine an optimal operation condition of the RAR system (authors)

  2. Commercial Application of the RAR Sulfur Recovery and Tail Gas Treating Process

    Guo Hong; Zhang Songping

    2003-01-01

    The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with the 1.2Mt/a diesel hydrofining unit. The process unit calibration data have revealed that the recovery of total sulfur reaches 99.86%, which is 6.65 percentage points higher than that before application of the RAR technology. The SO2 content in vented tail gas is 0.27 t/d, which is much less than the latest emission standard prescribed by the State. The factors that can affect the unit operation have been analyzed and corresponding measures have been suggested including the necessity to improve the control over the reaction temperature in the tail gas hydrogenation unit.

  3. Pyrochemical recovery of actinides

    This report discusses an important advantage of the Integral Fast Reactor (IFR) which is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material

  4. Actinide recovery from pyrochemical residues

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 62- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO3-4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  5. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  6. Actinide recovery techniques utilizing electromechanical processes

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  7. Recovery of actinides from spent nuclear fuel by pyrochemical reprocessing

    The Partitioning and Transmutation (P and T) strategy is based on reduction of the long-term radiotoxicity of spent nuclear fuel by recovery and recycling of plutonium and minor actinides, i.e. Np, Am and Cm. Regardless if transmutation of actinides is conceived by a heterogeneous accelerator driven system, fast reactor concept or as integrated waste burning with a homogenous recycling of all actinides, the reprocessed fuels used are likely to be significantly different from the commercial fuels of today. Because of the fuel type and the high burn-up reached, traditional hydrometallurgical reprocessing such as used today might not be the most adequate method. The main reasons are the low solubility of some fuel materials in acidic aqueous solutions and the limited radiation stability of the organic solvents used in extraction processes. Therefore, pyrochemical separation techniques are under development worldwide, usually based on electrochemical methods, reductive extraction in a high temperature molten salt solvent or fluoride volatility techniques. The pyrochemical reprocessing developed in ITU is based on electrorefining of metallic fuel in molten LiCl-KCl using solid aluminium cathodes. This is followed by a chlorination process for the recovery of actinides from formed actinide-aluminium alloys, and exhaustive electrolysis is proposed for the clean-up of salt from the remaining actinides. In this paper, the main achievements in the electrorefining process are summarised together with results of the most recent experimental studies on characterisation of actinides-aluminium intermetallic compounds. U, Np and Pu alloys were investigated by electrochemical techniques using solid aluminium electrodes and the alloys formed by electrodeposition of the individual actinides were analysed by XRD and SEM-EDX. Some thermodynamic properties were determined from the measurements (standard electrode potentials, Gibbs energy, enthalpy and entropy of formation) as well as

  8. Pyrometallurgical processes for recovery of actinide elements

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository

  9. Pyrometallurgical processes for recovery of actinide elements

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  10. Actinides recovery by solvent extraction in NEXT process

    Concerning the advanced aqueous reprocessing system named NEXT process, the behavior of actinide elements was investigated in main two extraction processes of NEXT process, i.e. the simplified PUREX process for U, Pu and Np recovery, and SETFICS process for Am and Cm recovery. For optimizing the simplified PUREX flowsheet, counter current experiments with centrifugal contactors were carried out under the condition with high HNO3 concentration in the feed solution or scrubbing solution. These experimental results showed the large contribution of HNO3 concentration at the extraction section to Np oxidation and extraction, and the effectiveness of high HNO3 concentration in the feed solution, which might bring the acceleration of the Np oxidation in the feed solution as well as at the extraction section in the centrifugal contactors. In the SETFICS process of a high-loading flowsheet, Am and Cm could be recovered as An(III) product solution. Although Cs was decontaminated well, the decontamination factor of Nd was less than that in the past experiment. (author)

  11. Study on remain actinides recovery in pyro reprocessing

    The spent fuel reprocessing by dry process called pyro reprocessing have been studied. Most of U, Pu and MA (minor actinides) from the spent fuel will be recovered and be fed back to the reactor as new fuel. Accumulation of remain actinides will be separated by extraction process with liquid cadmium solvent. The research was conducted by computer simulation to calculate the stage number required. The calculation's results showed on the 20 stages extractor more than 99% actinides can be separated. (author)

  12. Actinide partitioning and recovery of valuables from HLW

    The Indian nuclear power programme is sustained by adoption of a closed fuel cycle where in the fissile and fertile materials are recycled by reprocessing of spent fuel. The reprocessing step leads to the generation of high level waste which is presently vitrified using borosilicate matrices. With the nuclear power profile on the brink of an exponential increase, it becomes imperative to consider and adopt cross-cut technologies that would not only lead to a substantial reduction in repository capacity both in terms of volumes and thermal loads but also lead to a reduction in radiotoxicity of the waste forms. Partitioning of high level waste (HLW) is the first step towards achieving the above objectives. Developmental efforts in the last decade have placed partitioning of high level waste in the realms of practical application. This paper will present a compilation of various R and D efforts on development of processes and technologies under consideration for partitioning of high level waste in the Indian context. While numerous laboratory trials are being pursued, some of them which have matured for plant scale demonstration are related to partitioning of actinides from acidic high level waste and recovery of cesium and strontium from high level waste. A structured R and D framework has been worked out to develop deployable processes and technologies for their demonstration on engineering scale. One of the most defining step in this work is selection of potentially successful extraction system based on the systematic study on the extraction properties and their optimization for full scale studies. (author)

  13. Waste management analysis for the nuclear fuel cycle: actinide recovery from combustible waste, October 1977-March 1978

    Evaluation of the Ce(IV)-NHO3 system for recovery of actinides from incinerator ash is continuing. High-fired americium-traced plutonium oxide was completely solubilized in this system and recovery of actinides from incinerator ash was greater than or equal to 95%. Recovery of solubilized plutonium was done by solvent extraction using tributyl phosphate. Tervalent actinides will be recovered by a bidentate organophosphorus solvent extractant. The Ce(IV)-HNO3 system was compared with the F--HNO3 system now in common use. Advantages of the former include less equipment corrosion, no volatilization of silica, and better recovery of actinide in the initial contact. However, additional contacts do not significantly improve recovery (because silica is not solubilized), and the system requires a large liquid/solid ratio for efficient actinide recovery

  14. Extraction of DBP and MBP from actinides: application to the recovery of actinides from TBP--Na2CO3 scrub solutions

    A flowsheet for the recovery of actinides from TBP--Na2CO3 scrub waste solutions has been developed, based on batch extraction data, and tested, using laboratory scale counter-current extraction techniques. The process utilizes 2-ethyl-1-hexanol (2-EHOH) to extract the TBP degradation products (HDBP and H2MBP) from acidified Na2CO3 scrub waste leaving the actinides in the aqueous phase. Dibutyl and monobutyl phosphoric acids are attached to the 2-EHOH molecules through hydrogen bonds. These hydrogen bonds also diminish the ability of the HDBP and H2MBP to complex actinides and thus all actinides remain in the aqueous raffinate. Dilute sodium hydroxide solutions can be used to back-extract the dibutyl and monobutyl phosphoric acid esters as their sodium salts. The 2-EHOH can then be recycled. After extraction of the acidified carbonate waste with 2-EHOH, the actinides may be readily extracted from the raffinate with DHDECMP or, in the case of tetra- and hexavalent actinides, with TBP. The alcohol extraction (ARALEX) process is relatively simple and involves inexpensive and readily available chemicals. The ARALEX process can also be applied to other actinide waste streams which contain appreciable concentrations of polar organic compounds that interfere with conventional actinide ion exchange and liquid--liquid extraction procedures

  15. Ten years of experience in extraction chromatographic processes for the recovery, separation and purification of actinides elements

    Ten years ago the extraction chromatographic technique was developed for preparative purposes and is now applied for all chemicals separations needed for the production of actinides isotopes. That technique appears to be simple and flexible. It can be used for the production of microgram to kilogram amounts of actinide isotopes. This paper focuses on the experience gained and describes some peculiar production of actinide isotopes solved by using extraction chromatographic technique. After a review of extracting molecules and equipment, treatment of irradiated targets (preparation of Pu 238 and removal of neptunium, production of Am 243 and Cm 244), recovery of actinides from alpha aqueous wastes (preparation of Am 241) and recovery of decay products from aged actinide stocks (recovery of Am 241 from Pu stocks, of U 234 from Pu 238 stocks) are described

  16. Recovery of actinides from actinide–aluminium alloys by chlorination: Part II

    Souček, P., E-mail: pavel.soucek@ec.europa.eu [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Génie Chimique (LGC), Département Procédés Electrochimiques, CNRS-UMR 5503, Université de Toulouse III – Paul Sabatier, 31062 Toulouse Cedex 9 (France); Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide–aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl–KCl. In the present work, the most important steps of this route were experimentally tested using U–Pu–Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl{sub 3} formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl{sub 3} alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  17. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less

  18. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  19. Recovery of actinides from TBP-Na2Co3 scrub-waste solutions: the ARALEX process

    A flowsheet for the recovery of actinides from TBP-Na2CO3 scrub-waste solutions has been developed, based on batch extraction data, and tested, using laboratory-scale countercurrent extraction techniques. The process, called the ARALEX process, uses 2-ethyl-1-hexanol (2-EHOH) to extract the TBP degradation products (HDBP and H2MBP) from acidified Na2CO3 scrub waste leaving the actinides in the aqueous phase. Dibutyl and monobutyl phosphoric acids are attached to the 2-EHOH molecules through hydrogen bonds, which also diminish the ability of the HDBP and H2MBP to complex actinides. Thus all actinides remain in the aqueous raffinate. Dilute sodium hydroxide solutions can be used to back-extract the dibutyl and monobutyl phosphoric acid esters as their sodium salts. The 2-EHOH can then be recycled. After extraction of the acidified carbonate waste with 2-EHOH, the actinides may be readily extracted from the raffinate with DHDECMP or, in the case of tetra- and hexavalent actinides, with TBP. The ARALEX process can also be applied to other actinide waste streams which contain appreciable concentrations of polar organic compounds (e.g., detergents) that interfere with conventional actinide ion exchange and liquid-liquid extraction procedures. 20 figures, 6 tables

  20. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    Allender, Jeffrey S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bridges, Nicholas J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Loftin, Bradley M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dunsmuir, Michael D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-14

    Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in Savannah River Site (SRS) reactors in the 1970s under extremely high neutron-flux conditions and produced, virtually, the world's supply of plutonium-244, an isotope of key importance to high-precision actinide measurement and other scientific and nonproliferation uses; and curium highly enriched in heavy isotopes (e.g., curium-246 and curium-248). In 2015 and 2016, SRNL is pursuing tasks that would reduce program risk and budget requirements, including further characterization of unprocessed targets; engineering studies for the use of the SRNL Shielded Cells Facility (SCF) for recovery; and development of onsite and offsite shipping methods including a replacement for the heavy (70 ton) cask previously used for onsite transfer of irradiated items at SRS. A status update is provided for the characterization, including modeling using the Monte Carlo N-Particle Transport Code (MCNP); direct non-destructive assay measurements; and cask design.

  1. Recovery of trivalent lanthanides and actinides from water deficient nitrate media by TBP-extraction

    The equilibrium distributions of trivalent lanthanides, Am and Cm were experimentally studied in the bi-phase extraction system of TBP-dodecane and molten Ca(NO3)2xxH2O (hydrate melt) having different water content. The systematics of the distribution ratios along lanthanides series was analyzed. It was found that the distribution ratios of lanthanides and actinides ar quite high and show logarithmically linear increase on log[TBP] in the low TBP concentration ( 0.1 mol/1). The influence of the water content in the hydrate melt was studied and it was shown that even a small increase of water content significantly lowers the extraction of trivalent elements. These characteristics of the TBP extraction using hydrate melt of Ca(NO3)2 were compared with TBP extraction system using concentrated nitric acid as inorganic phase. Based on the experimental results, feasibility and condition of the extraction recovery of trivalent lanthanides and actinides by the TBP from hydrate melt of Ca(NO3)2 were discussed. (author)

  2. Application of extraction chromatographic technique in the recovery of actinides from Purex waste solutions using CMPO

    Extraction chromatographic technique using octyl(phenyl)-N,N-diisobutylcarbomoylmethylphosphine oxide (CMPO) adsorbed on chromosorb-102 (CAC) has been developed as a potential alternative to the Truex process, where CMPO has been deployed as the extracting agent to recover minor actinides from the high active waste (HAW) solution of Purex origin. In this connection, the batch-wise uptake behaviour of U(VI), Pu(VI), Am(III), Eu(III), Zr(IV), Fe(III), Ru(III) and TcO4 from nitric acid medium by CAC has been studied. The uptake of actinides and lanthanides are higher than those of other fission products and inert materials. The batch-wise loading experiments in presence of Nd(III)/U(VI) have shown that at lower concentration of these metal ions, the uptake of Pu(IV), U(VI) and Am(III) are reasonably high. Studies on loading of Nd(III), U(VI) and Pu(IV) on a column containing 1.7 g CAC have shown that Nd(III) (30 mg) and U(VI) (90 mg) could be loaded, while Pu(IV) (∼0.6 mg) was loaded on a small column containing 100 mg CAC without any breakthrough. Further, a synthetic HAW solution and the actual Purex HAW solution were loaded on a CAC column. The effluents did not contain any alpha activity above the background level. The activities could subsequently be eluted with 0.04 M HNO3 (Am and RE), 0.01 M oxalic acid (Pu) and 0.25 MNa2CO3 solution (U(VI)). The recoveries of these metal ions were found to be > 99%. The eluted Am and rare earth fraction is an important source for 147Pm. This process is amenable for further scaling up. (author). 17 refs., 5 figs., 8 tabs

  3. Recovery of minor actinides from spent fuel using TPEN-immobilized gels

    Koyama, S.; Suto, M.; Ohbayashi, H. [Oarai Research and Development Center, Japan Atomic Energy Agency, Oarai (Japan); Oaki, H. [Solutions Research Organization, Tokyo Institute of Technology, Tokyo (Japan); Takeshita, K. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2013-07-01

    A series of separation experiments was performed in order to study the recovery process for minor actinides (MAs), such as americium (Am) and curium (Cm), from the actual spent fuel by using an extraction chromatographic technique. N,N,N',N'-tetrakis-(4-propenyloxy-2-pyridylmethyl) ethylenediamine (TPPEN) is an N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) analogue consisting of an incorporated pyridine ring that acts as not only a ligand but also as a site for polymerization and crosslinking of the gel. The TPPEN and N-isopropylacrylamide (NIPA) were dissolved into dimethylformamide (DMF, Wako Co., Ltd.) and a silica beads polymer, and then TTPEN was immobilized chemically in a polymer gel (so called TPEN-gel). Mixed oxide (MOX) fuel, which was highly irradiated up to 119 GWD/MTM in the experimental fast reactor Joyo, was used as a reference spent fuel. First, uranium (U) and plutonium (Pu) were separated from the irradiated fuel using an ion-exchange method, and then, the platinum group elements were removed by CMPO to leave a mixed solution of MAs and lanthanides. The 3 mol% TPPEN-gel was packed with as an extraction column (CV: 1 ml) and then rinsed by 0.1 M NaNO{sub 3}(pH 4.0) for pH adjustment. After washing the column by 0.01 M NaNO{sub 3} (pH 4.0), Eu was detected and the recovery rate reached 93%. The MAs were then recovered by changing the eluent to 0.01 M NaNO{sub 3} (pH 2.0), and the recovery rate of Am was 48 %. The 10 mol% TPPEN-gel was used to improve adsorption coefficient of Am and a condition of eluent temperature was changed in order to confirm the temperature swing effect on TPEN-gel for MA. More than 90% Eu was detected in the eluent after washing with 0.01 M NaNO{sub 3} (pH 3.5) at 5 Celsius degrees. Americium was backwardly detected and eluted continuously during the same condition. After removal of Eu, the eluent temperature was changed to 32 Celsius degrees, then Am was detected (pH 3.0). Finally remained

  4. R and D for actinide partitioning and recovery of valuables from high level waste using radiotracers

    In the context of growing world population with rapidly increasing energy needs and the threat of global warming due to CO2 emission (caused by fossil fuel burning), the nuclear energy may be an attractive option particularly in the developing countries. Recycling of fuel is a unique feature of nuclear power technology which makes it a favourable choice with respect to conservation of energy resources. Steady growth of global fuel reprocessing activities (6000 tHM/annum) implies a vital role of separation science in developing efficient procedures for the separation and purification of actinides and in devising safe procedures for the management of nuclear waste arising at different stages of the PUREX process. High Level Waste (HLW) comprising of the concentrate of the raffinate of the co-extraction cycle (with over 95% of the total radioactivity produced in the burn up process in reactor) need to be isolated from the biosphere. There is a consensus among the waste management technologists that the safest route to achieve this, is to deposit it in a stable geological formation after it's immobilization in suitable glass/Synroc matrix. It ensures that any risk from exposure due to accidental intervention or natural disturbance is minimized. Risk perception is essentially due to the large radiological toxicity associated with alpha emitters like 237Np, 241Am, 243Am and 245Cm. Isotopes of Pu (left unrecovered) present in HLW also contribute towards radiological toxicity. In view of the high cost involved and the need for continuous surveillance, several countries are considering modifying their reprocessing schemes to partition (isolate) long-lived actinides from HLW. Since the volume of the actinide oxides (which retain major fraction of the radio toxicity of HLW) is significantly lower as compared to the other metal oxides present in HLW, such an approach is expected to reduce the cost of immobilization as well as of disposal (in geological repository) and

  5. Method for the recovery of actinide elements from nuclear reactor waste

    A process is described for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid

  6. Zirconium and technetium recovery and partitioning in the presence of actinides in modified Purex process for ATW program. Final report

    Dzekun, E.G.; Fedorov, Y.S.; Galkin, B.Y.; Lyubtsev, R.I.; Mashkin, A.N.; Mishin, E.N.; Zilberman, B.Y. [Radievyj Inst., Leningrad (Russian Federation)

    1994-12-31

    The modified Purex process flowsheet is based on combination of all irradiated materials, their joint dissolution and reprocessing as a NPP spent fuel solution with abnormal Pu content after addition of recycled depleted U concentrate. Some groups of long-lived radionuclides could be completely recovered and localized at the stage of extraction reprocessing using 30% TBP. Studies were conducted for 10 y to develop the process for recovery, concentration, and localization of U, Pu, Np, Tc, and Zr within 1st extraction cycle. Actinides are recovered from high-level raffinate of this cycle after evaporation and feed adjustment. Results in this report show that combined deep recovery of several elements from highly irradiated materials by TBP extraction, for further transmutation, is possible. Selective stripping of Zr from solvent phase containing U, Pu, Np, and Tc is quite effective. Development of the modified Purex process is not complete; main problem to be solved should be oxide separation from the loop and permissible storage duration before reprocessing and reuse in the loop.

  7. HAL-RAR PROCEDURE IN HEMORRHOIDAL DISEASE MANAGEMENT

    D. Lăzescu; Gabriela Canschi; B. Ţuţuianu; V. Munteanu; Gabriela Prepeliţă; Claudia Luncă; Irina Ristescu

    2010-01-01

    Introduction: HAL-RAR is a new, minimally invasive, safe and efficient tehniques in the treatment of hemorrhoidal disease who combines in one procedure HAL (Hemorrhoidal Artery Ligation) with mucopexy (RAR), prolapsed piles “lifting”. Methods: We performed HAL-RAR procedure on 118 patients (50 females and 68 males) with ages between 21 and 76 years with hemorrhoids grade II-IV (4,23% grade II, 24,57% grade III and 71,18% grade IV). Postoperative follow-up consisted in examination a week after...

  8. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  9. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  10. Actinides-1981

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  11. Actinides-1981

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  12. HAL-RAR PROCEDURE IN HEMORRHOIDAL DISEASE MANAGEMENT

    D. Lăzescu

    2010-08-01

    Full Text Available Introduction: HAL-RAR is a new, minimally invasive, safe and efficient tehniques in the treatment of hemorrhoidal disease who combines in one procedure HAL (Hemorrhoidal Artery Ligation with mucopexy (RAR, prolapsed piles “lifting”. Methods: We performed HAL-RAR procedure on 118 patients (50 females and 68 males with ages between 21 and 76 years with hemorrhoids grade II-IV (4,23% grade II, 24,57% grade III and 71,18% grade IV. Postoperative follow-up consisted in examination a week after procedure, then interrogatory and/or examination at 1,6 and 12 months thereafter, postoperative comfort, professional reimbursement and patient satisfaction were the main parameters we checked out. Results: After procedure 80 of 118 patients had pain for 1-3 days, 35 patients between 3 and 7 days and 3 of them for more than 7 days. Most of operated patients (66,10% returned to work in the first 3 days after procedure, 25,42% after 3-7 days and only 8,48% after more than 7 days. HAL-RAR promptly resolved all patients’ complaints; postoperative complications were less and minor, recurrence occurred only in 2 of 118 treated patients and satisfaction level was consistently high. Conclusions: HAL-RAR method is a minimally invasive method, less painful, applicable to ambulatory patient which provides a good alternative to any of the other methods of treatment of symptomatic hemorrhoids. Although the rate of relapse of hemorrhoidal disease requires a longer record and remains a subject assessed, no major complications and, especially, no risk sphincter distance and the possibility to repeat the procedure in case of recurrence.

  13. Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia.

    Alcalay, M; Zangrilli, D; Fagioli, M; Pandolfi, P P; Mencarelli, A; Lo Coco, F; Biondi, A; Grignani, F; Pelicci, P G

    1992-06-01

    Two chimeric genes, PML-RAR alpha and RAR alpha-PML, are formed as a consequence of the acute promyelocytic leukemia (APL)-specific reciprocal translocation of chromosomes 15 and 17 [t(15;17)]. PML-RAR alpha is expressed as a fusion protein. We investigated the organization and expression pattern of the RAR alpha-PML gene in a series of APL patients representative of the molecular heterogeneity of the t(15;17) and found (i) two types of RAR alpha-PML mRNA junctions (RAR alpha exon 2/PML exon 4 or RAR alpha exon 2/PML exon 7) that maintain the RAR alpha and PML longest open reading frames aligned and are the result of chromosome 15 breaking at two different sites; and (ii) 10 different RAR alpha-PML fusion transcripts that differ for the assembly of their PML coding exons. A RAR alpha-PML transcript was present in most, but not all, APL patients. PMID:1317574

  14. The technical development and application of a recirculating aquaculture respirometer system (RARS) for fish metabolism studies

    Stiller, Kevin Torben

    2016-01-01

    In dieser Arbeit wurde ein Recirculating Aquaculture Respirometre System (RARS) technisch entwickelt und die Einsatzmöglichkeiten in verschiedenen metabolischen Studien an Fischen unter Einbeziehung der Futtermittelverwertung evaluiert. Kapitel 1 stellt das RARS und die eingebauten online Messgeräte vor. Die Funktionalität des RARS wurde durch einige Beispielmessungen an Regenbogenforellen (Oncorhynchus mykiss) und Steinbutt, (Scophthalmus maximus) gezeigt. Im Kapitel 2 wurden über 8 W...

  15. Actinide recycle

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  16. Study on the relationship between the RAR-β gene expressive defection and its methylation

    高艳萍; 李敏; 张颖颖; 王翰; 贺小红; 王泽华

    2007-01-01

    Objective To observe the expression of RAR-β gene in SiHa, HeLa,C33A and CasKi cell lines of cervical carcinoma and to investigate the role of methylated RAR-β in its expressive defection. Methods Reverse transcription polymerase chain reaction (RT-PCR) was used to analyze the mRNA expression of RAR-β gene. Immunohistochemistry and Western Blot were used to analyze the protein expression of RAR-β gene in four cervical cancer cell lines as well as the influence of 5-Aza-cdR on gene expressive defection. Meth...

  17. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements.

    Chatagnon, Amandine; Veber, Philippe; Morin, Valérie; Bedo, Justin; Triqueneaux, Gérard; Sémon, Marie; Laudet, Vincent; d'Alché-Buc, Florence; Benoit, Gérard

    2015-05-26

    In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status. PMID:25897113

  18. Actinide burning and waste disposal

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  19. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  20. The lanthanides and actinides

    This paper relates the chemical properties of the actinides to their position in the Mendeleev periodic system. The changes in the oxidation states of the actinides with increasing atomic number are similar to those of the 3d elements. Monovalent and divalent actinides are very similar to alkaline and alkaline earth elements; in the 3+ and 4+ oxidation states they resemble d elements in the respective oxidation states. However, in their highest oxidation states the actinides display their individual properties with only a slight resemblance to d elements. Finally, there is a profound similarity between the second half of the actinides and the first half of the lanthanides

  1. Subdural effusions and lack of early pontocerebellar hypoplasia in siblings with RARS2 mutations.

    Kastrissianakis, Katherina; Anand, Geetha; Quaghebeur, Gerardine; Price, Sue; Prabhakar, Prab; Marinova, Jasmina; Brown, Garry; McShane, Tony

    2013-12-01

    Mutations in the recently described RARS2 gene encoding for mitochondrial arginyl-transfer RNA synthetase give rise to a disorder characterised by early onset seizures, progressive microcephaly and developmental delay. The disorder was named pontocerebellar hypoplasia type 6 (PCH6) based on the corresponding radiological findings observed in the original cases. We report two siblings with the RARS2 mutation who displayed typical clinical features of PCH6, but who had distinct neuroimaging features. Early scans showed marked supratentorial, rather than infratentorial, atrophy, and the pons remained preserved throughout. One sibling also had bilateral subdural effusions at presentation. The deceleration in head growth pointed to an evolving genetic/metabolic process giving rise to cerebral atrophy and secondary subdural effusions. RARS2 mutations should be considered in infants presenting with seizures, subdural effusions, decelerating head growth and evidence of cerebral atrophy even in the absence of pontocerebellar hypoplasia on imaging. PMID:24047924

  2. Low Resolution Structure of RAR1-GST-Tag Fusion Protein in Solution

    RAR1 is a protein required for resistance mediated by many R genes and function upstream of signaling pathways leading to H2O2 accumulation. The structure and conformation of RAR1-GST-Tag fusion protein from barley (Hordeum vulgare) in solution was studied by the small angle scattering of synchrotron radiation. It was found that the dimer of RAR1-GST-Tag protein is characterized in solution by radius of gyration RG = 6.19 nm and maximal intramolecular vector Dmax = 23 nm. On the basis of the small angle scattering of synchrotron radiation SAXS data two bead models obtained by ab initio modeling are proposed. Both models show elongated conformations. We also concluded that molecules of fusion protein form: dimers in solution via interaction of GST domains. (authors)

  3. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements

    Chatagnon, Amandine; Veber, Philippe; Morin, Valérie; Bedo, Justin; Triqueneaux, Gérard; Sémon, Marie; Laudet, Vincent; D'Alché-Buc, Florence; Benoit, Gérard

    2015-01-01

    In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated w...

  4. Actinide environmental chemistry

    In order to predict release and transport rates, as well as design cleanup and containment methods, it is essential to understand the chemical reactions and forms of the actinides under aqueous environmental conditions. Four important processes that can occur with the actinide cations are: precipitation, complexation, sorption and colloid formation. Precipitation of a solid phase will limit the amount of actinide in solution near the solid phase and have a retarding effect on release and transport rates. Complexation increases the amount of actinide in solution and tends to increase release and migration rates. Actinides can sorb on to mineral or rock surfaces which tends to retard migration. Actinide ions can form or become associated with colloidal sized particles which can, depending on the nature of the colloid and the solution conditions, enhance or retard migration of the actinide. The degree to which these four processes progress is strongly dependent on the oxidation state of the actinide and tends to be similar for actinides in the same oxidation state. In order to obtain information on the speciation of actinides in solution, i.e., oxidation state, complexation form, dissolved or colloidal forms, the use of absorption spectroscopy has become a method of choice. The advent of the ultrasensitive, laser induced photothermal and fluorescence spectroscopies has made possible the detection and study of actinide ions at the parts per billion level. With the availability of third generation synchrotrons and the development of new fluorescence detectors, X-ray absorption spectroscopy (XAS) is becoming a powerful technique to study the speciation of actinides in the environment, particularly for reactions at the solid/solution interfaces. (orig.)

  5. Sequential analysis of selected actinides in urine

    The monitoring of personnel by urinalysis for suspected contamination by actinides necessitated the development and implementation of an analytical scheme that will separate and identify alpha emitting radionuclides of these elements. The present work deals with Pu, Am, and Th. These elements are separated from an ashed urine sample by means of coprecipitation and ion exchange techniques. The final analysis is carried out by electroplating the actinides and counting in a α-spectrometer. Mean recoveries of these elements from urine are: Pu 64%, Am 74% and Th 69%. (auth)

  6. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  7. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH)2D3, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion

  8. Research in actinide chemistry

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH-, CO32-, PO43-, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  9. Separations chemistry for actinide elements: Recent developments and historical perspective

    With the end of the cold war, the principal mission in actinide separations has changed from production of plutonium to cleanup of the immense volume of moderately radioactive mixed wastes which resulted from fifty years of processing activities. In order to approach the cleanup task from a proper perspective, it is necessary to understand how the wastes were generated. Most of the key separations techniques central to actinide production were developed in the 40's and 50's for the identification and production of actinide elements. Total actinide recovery, lanthanide/actinide separations, and selective partitioning of actinides from inert constituents are currently of primary concern. To respond to the modern world of actinide separations, new techniques are being developed for separations ranging from analytical methods to detect ultra-trace concentrations (for bioassay and environmental monitoring) to large-scale waste treatment procedures. In this report, the history of actinide separations, both the basic science and production aspects, is examined and evaluated in terms of contemporary priorities

  10. Control mechanisms of mutability: Studies on the (radiation-resistant) mutant rar-2 of Drosophila melanogaster

    The author attempts a quantitative description of the resistance factor of the 2nd chromosome (rar-2) on the mutation rate after irradiation, an explanation of the mechanism of action via an analysis of induced numerical aberration, and an analysis of the genetic position of this factor and its delimination with the aid of phenotypically visible markers. A comparison of the two strains ROeI0 and ROeI40 was to help to investigate possible modifications of the resistance factor in the strain ROeI40, obtained by further selection from ROeI0. There was no difference between the two strains as far as the effects of the resistance factor rar-2 were concerned. (orig./MG)

  11. Research in actinide chemistry

    1991-01-01

    This report contains research results on studies of inorganic and organic complexes of actinide and lanthanide elements. Special attention is given to complexes of humic acids and to spectroscopic studies.

  12. Subsurface Biogeochemistry of Actinides

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  13. Supercritical fluid extraction studies on actinides

    Uranyl nitrate and plutonium in its Pu (III) as well Pu (IV) form loaded onto a tissue paper was extracted completed from paper, glass, stainless steel as well as teflon matrices using modified SC-CO2. A further investigation on recovery of actinides independent of their drying period is expected to culminate into developing an universal procedure to handle Pu bearing waste for its recovery irrespective of its drying history and oxidation states. Such endeavors ultimately lead to the potential utility of the SFE technology for efficient nuclear waste management

  14. Actinide removal from nitric acid waste streams

    Actinide separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve plutonium secondary recovery and americium removal from nitric acid waste streams generated by plutonium purification operations. Capacity and breakthrough studies show anion exchange with Dowex 1x4 (50 to 100 mesh) to be superior for secondary recovery of plutonium. Extraction chromatography with TOPO(tri-n-octyl-phosphine oxide) on XAD-4 removes the final traces of plutonium, including hydrolytic polymer. Partial neutralization and solid supported liquid membrane transfer removes americium for sorption on discardable inorganic ion exchangers, potentially allowing for non-TRU waste disposal

  15. Actinide isotopic analysis systems

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  16. Use of fast-spectrum reactors for actinide burning

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  17. Radiochemistry and actinide chemistry

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 1012, are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  18. Measurements of the counting statistics on RAR-2497 and DEF x-ray film

    X-ray film is commonly used to diagnose high temperature plasmas. Quantitative analysis of the recorded film exposure requires knowledge of the counting statistics inherent to each particular film type. To address this issue, RAR-2497 and DEF film were exposed on a Manson x-ray source for multiple fluence values and photon energies. The fluctuations in the measured intensity were found by determining the statistical distribution of the recorded photon intensity using Henke's calibration tables to relate the net film density to the incident intensity. The resulting measurements of the statistical fluctuations in photon intensity are presented for each film type

  19. Measurements of the counting statistics on RAR-2497 and DEF x-ray film

    Dunham, Greg; Rochau, G. A.; Lake, P.; Nielsen-Weber, L.; Schuster, D.

    2004-10-01

    X-ray film is commonly used to diagnose high temperature plasmas. Quantitative analysis of the recorded film exposure requires knowledge of the counting statistics inherent to each particular film type. To address this issue, RAR-2497 and DEF film were exposed on a Manson x-ray source for multiple fluence values and photon energies. The fluctuations in the measured intensity were found by determining the statistical distribution of the recorded photon intensity using Henke's calibration tables to relate the net film density to the incident intensity. The resulting measurements of the statistical fluctuations in photon intensity are presented for each film type.

  20. La carrera rarámuri como metáfora de resistencia cultural

    Acuña Delgado, Ángel; Acuña Gómez, Guillermo

    2009-01-01

    ¡Quien no aguanta no vale! Dice un viejo principio rarámuri, grupo étnico ubicado en la Sierra Tarahumara, dentro de la Sierra Madre Occidental del Estado Chihuahua en México. Inmerso en un entorno ambiental ecológicamente duro para la supervivencia, se asume la idea de que “para vivir hay que ser resistente”, y así soportar la falta de agua y alimentos provocada por la sequía, el intenso frío nocturno del invierno o las largas travesías por montaña. Desde centenares de años, h...

  1. ACTINET: a European Network for Actinide Sciences

    Full text of publication follows: The research in Actinide sciences appear as a strategic issue for the future of nuclear systems. Sustainability issues are clearly in connection with the way actinide elements are managed (either addressing saving natural resource, or decreasing the radiotoxicity of the waste). The recent developments in the field of minor actinide P and T offer convincing indications of what could be possible options, possible future processes for the selective recovery of minor actinides. But they point out, too, some lacks in the basic understanding of key-issues (such as for instance the control An versus Ln selectivity, or solvation phenomena in organic phases). Such lacks could be real obstacles for an optimization of future processes, with new fuel compounds and facing new recycling strategies. This is why a large and sustainable work appears necessary, here in the field of basic actinide separative chemistry. And similar examples could be taken from other aspects of An science, for various applications (nuclear fuel or transmutation targets design, or migration issues,): future developments need a strong, enlarged, scientific basis. The Network ACTINET, established with the support of the European Commission, has the following objectives: - significantly improve the accessibility of the major actinide facilities to the European scientific community, and form a set of pooled facilities, as the corner-stone of a progressive integration process, - improve mobility between the member organisations, in particular between Academic Institutions and National Laboratories holding the pooled facilities, - merge part of the research programs conducted by the member institutions, and optimise the research programs and infrastructure policy via joint management procedures, - strengthen European excellence through a selection process of joint proposals, and reduce the fragmentation of the community by putting critical mass of resources and expertise on

  2. Actinide separative chemistry

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  3. Satellite-based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum

    REN Lin; MAO Zhihua; HUANG Haiqing; GONG Fang

    2010-01-01

    Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360~. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.

  4. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    Pope, N.G.; Yarbro, S.L.; Schreiber, S.B.; Day, R.S.

    1992-03-01

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas.

  5. An introduction to the Advanced Testing Line for Actinide Separations (ATLAS)

    The Advanced Testing Line for Actinide Separations (ATLAS) will evaluate promising plutonium recovery process modifications and new technologies. It combines advances in process chemistry, process control, process analytical chemistry, and process engineering. ATLAS has a processing capability equal to other recovery systems but without the pressure to achieve predetermined recovery quotas

  6. Photochemistry of the actinides

    It has been found that all three major actinides have a useful variety of photochemical reactions which could be used to achieve a separations process that requires fewer reagents. Several features merit enumerating: (1) Laser photochemistry is not now as uniquely important in fuel reprocessing as it is in isotopic enrichment. The photochemistry can be successfully accomplished with conventional light sources. (2) The easiest place to apply photo-reprocessing is on the three actinides U, Pu, and Np. The solutions are potentially cleaner and more amenable to photoreactions. (3) Organic-phase photoreactions are probably not worth much attention because of the troublesome solvent redox chemistry associated with the photochemical reaction. (4) Upstream process treatment on the raffinate (dissolver solution) may never be too attractive since the radiation intensity precludes the usage of many optical materials and the nature of the solution is such that light transmission into it might be totally impossible

  7. Recovering actinide values

    Actinide values are recovered from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorus extractants such as tri-n butyl phosphate (TBP) and dihexyl-N, N-diethyl carbamylmethylene phosphonate (DHDECMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant can be recycled after stripping the degradation products with a neutral sodium carbonate solution. (author)

  8. Actinides: why are they important biologically

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  9. Expression of a retinoic acid receptor (RAR)-like protein in the embryonic and adult nervous system of a protostome species.

    Carter, Christopher J; Rand, Christopher; Mohammad, Imtiaz; Lepp, Amanda; Vesprini, Nicholas; Wiebe, Olivia; Carlone, Robert; Spencer, Gaynor E

    2015-01-01

    The vitamin A metabolite, retinoic acid, is an important molecule in nervous system development and regeneration in vertebrates. Retinoic acid signaling in vertebrates is mediated by two classes of nuclear receptors, the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Recently, evidence has emerged to suggest that many effects of retinoic acid are conserved between vertebrate and invertebrate nervous systems, even though the RARs were previously thought to be a vertebrate innovation and to not exist in non-chordates. We have cloned a full-length putative RAR from the CNS of the mollusc Lymnaea stagnalis (LymRAR). Immunoreactivity for the RAR protein was found in axons of adult neurons in the central nervous system and in growth cones of regenerating neurons in vitro. A vertebrate RAR antagonist blocked growth cone turning induced by exogenous all-trans retinoic acid, possibly suggesting a role for this receptor in axon guidance. We also provide immunostaining evidence for the presence of RAR protein in the developing, embryonic CNS, where it is also found in axonal processes. Using qPCR, we determined that LymRAR mRNA is detectable in the early veliger stage embryo and that mRNA levels increase significantly during embryonic development. Putative disruption of retinoid signaling in Lymnaea embryos using vertebrate RAR antagonists resulted in abnormal eye and shell development and in some instances completely halted development, resembling the effects of all-trans retinoic acid. This study provides evidence for RAR functioning in a protostome species. PMID:25504929

  10. Photoelectron spectra of actinide compounds

    A brief overview of the application of photoelectron spectroscopy is presented for the study of actinide materials. Phenomenology as well as specific materials are discussed with illustrative examples

  11. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  12. Optical techniques for actinide research

    In recent years, substantial gains have been made in the development of spectroscopic techniques for electronic properties studies. These techniques have seen relatively small, but growing, application in the field of actinide research. Photoemission spectroscopies, reflectivity and absorption studies, and x-ray techniques will be discussed and illustrative examples of studies on actinide materials will be presented

  13. Automated pressurized injection system for the separation of actinides by extraction chromatography

    This article describes a novel separation scheme developed for an automated system to efficiently separate actinides in individual fractions. The automated pressurized injection (PI) system developed allows precise collection of high-purity actinide fractions (?99 %) at elevated flow rates (15-30 mL min-1) using two extraction chromatographic TEVA and DGA resins. This system is sufficiently robust to enable the use of highly viscous acid media, limit acid corrosion, and tolerate large amount of gases generated by redox reactions by some of the reagents. The PI system was successfully applied to the separation of actinides in individual fractions (recovery yield ≥97 % for Th, U, Np, Pu, and Am) and shows the absence of cross contamination even with highly concentrated actinide solutions. The methodology was also applied to the measurement of actinides in large spiked soil samples. (author)

  14. Rapid determination of alpha emitters using Actinide resin.

    Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

    2004-01-01

    The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed. PMID:15177360

  15. Managing Inventories of Heavy Actinides

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  16. The separation of lanthanides and actinides in supercritical fluid carbon dioxide

    Supercritical fluid carbon dioxide presents an attractive alternative to conventional solvents for recovery of the actinides and lanthanides. Carbon dioxide is a good solvent for fluorine and phosphate-containing ligands, including the traditional tributylphosphate ligand used in process-scale uranium separations. Actinide and lanthanide oxides may even be directly dissolved in carbon dioxide containing the complexes formed between these ligands and mineral acids, obviating the need for large volumes of acids for leaching and dissolution, and the corresponding organic liquid-liquid solvent extraction solutions. Examples of the application of this novel technology for actinide and lanthanide separations are presented. (author)

  17. Concentration of actinides in the food chain

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  18. Calorimetric assay of minor actinides

    Rudy, C.; Bracken, D.; Cremers, T.; Foster, L.A.; Ensslin, N.

    1996-12-31

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques.

  19. Calorimetric assay of minor actinides

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques

  20. Actinides and the environment

    The book combines in one volume the opinions of experts regarding the interaction of radionuclides with the environment and possible ways to immobilize and dispose of nuclear waste. The relevant areas span the spectrum from pure science, such as the fundamental physics and chemistry of the actinides, geology, environmental transport mechanisms, to engineering issues such as reactor operation and the design of nuclear waste repositories. The cross-fertilization between these various areas means that the material in the book will be accessible to seasoned scientists who may wish to obtain an overview of the current state of the art in the field of environmental remediation of radionuclides, as well as to beginning scientists embarking on a career in this field. refs

  1. Activation of Nuclear Receptors RAR, RXR, and LXR Does Not Reduce Cuprizone-Induced Demyelination in Mice

    Davina Kruczek; Tim Clarner; Cordian Beyer; Markus Kipp; Jörg Mey

    2015-01-01

    Experiments with animal models of multiple sclerosis have shown that the expression of retinoid X receptors (RXR) increases during demyelination and that RXR is involved in the regulation of remyelination. After ligand binding RXRs form heterodimeric transcription factors with other nuclear receptor (NR) families including the retinoic acid receptors (RAR) and liver X receptors (LXR). We tested whether activation of these nuclear receptor complexes reduces pathological demyelination using the...

  2. Electrochemistry of actinide and lanthanide in molten salt system

    In the partition and transmutation processes of reprocessing of spent fuel or radioactive waste in nuclear power plant, the dry type reprocessing method using molten salt and liquid metal as a solvent is studied. Most especially researches on the electrolysis of the actinide nitride in the molten salts corresponding to reprocessing of nitride fuel cannot be found. This report is a research result about the electro-chemical behavior of actinide and lanthanide on the electrode in molten LiCL-KCL eutectic system. When anode potential was less than -0.4V in recovery of U metal by the molten salt electrolysis of UN, the electrolysis efficiency of the recovery is not influenced by the generation of UNCL and the oxidation-reduction reaction of U4+/U3+. Moreover, generation of a chlorination nitride was not seen in the case where PuN and NpN are used. (H. Katsuta)

  3. Environmental research on actinide elements

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  4. Properties of minor actinide nitrides

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  5. THERMODYNAMICS OF THE ACTINIDES

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated from spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)

  6. Rapid assessment response (RAR study: drug use and health risk - Pretoria, South Africa

    Trautmann Franz

    2011-06-01

    Full Text Available Abstract Background Within a ten year period South Africa has developed a substantial illicit drug market. Data on HIV risk among drug using populations clearly indicate high levels of HIV risk behaviour due to the sharing of injecting equipment and/or drug-related unprotected sex. While there is international evidence on and experience with adequate responses, limited responses addressing drug use and drug-use-related HIV and other health risks are witnessed in South Africa. This study aimed to explore the emerging problem of drug-related HIV transmission and to stimulate the development of adequate health services for the drug users, by linking international expertise and local research. Methods A Rapid Assessment and Response (RAR methodology was adopted for the study. For individual and focus group interviews a semi-structured questionnaire was utilised that addressed key issues. Interviews were conducted with a total of 84 key informant (KI participants, 63 drug user KI participants (49 males, 14 females and 21 KI service providers (8 male, 13 female. Results and Discussion Adverse living conditions and poor education levels were cited as making access to treatment harder, especially for those living in disadvantaged areas. Heroin was found to be the substance most available and used in a problematic way within the Pretoria area. Participants were not fully aware of the concrete health risks involved in drug use, and the vague ideas held appear not to allow for concrete measures to protect themselves. Knowledge with regards to substance related HIV/AIDS transmission is not yet widespread, with some information sources disseminating incorrect or unspecific information. Conclusions The implementation of pragmatic harm-reduction and other evidence-based public health care policies that are designed to reduce the harmful consequences associated with substance use and HIV/AIDS should be considered. HIV testing and treatment services also need to

  7. Extraction studies on the partitioning of actinides from HLW

    TRUEX process uses Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) for the partitioning of actinides from acidic waste. CMPO is one of the most effective organophosphorus compounds. CMPO has drawbacks like third phase formation. A two-step process is developed using TBP and CMPO as extractants. The first step of the proposed process is a 'uranium depletion step' in which uranium in HLW is removed using 30% TBP in n-dodecane. Neptunium and plutonium, extracted in TBP, are recovered using a mixture of hydrogen peroxide (0.25 M) and ascorbic acid (0.05 M) in 2.0 M nitric acid medium. Neptunium and plutonium are reduced to Np(V) and Pu(III). Americium and curium as well as traces of uranium, neptunium and plutonium are partitioned in the second step. The separation of neptunium and plutonium from large quantities of uranium from loaded TBP will simplify their further separation. Use of citrate containing buffer solution for the recovery of actinides extracted in CMPO-TBP phase eliminates the problem of reflux of americium. This reduces the generation of secondary wastes. The process has been standardised based on the data generated in the batch and counter-current studies. Solvent extraction studies have also been carried out using a mixture of di-(2-ethylhexyl)phosphoric acid (HDEHP) and CMPO in n-paraffin. It is seen that the actinides can be extracted even from solutions of HLW at high acid concentration of 3 M using the mixed extractant. Plutonium is also stripped along with the trivalent actinides. This mixed solvent may find useful applications in the partitioning of actinides from waste solutions. Supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin uses solution of CMPO in n-dodecane with polytetrafluoroethylene support and a mixture of citric acid, formic acid and hydrazine hydrate as a receiving phase. Studies indicated good transport of actinides across the membrane from nitric acid

  8. RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES

    Maxwell, S.

    2010-06-01

    A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

  9. Promising pyrochemical actinide/lanthanide separation processes using aluminum

    Thermodynamic calculations have shown that aluminum is the most promising metallic solvent or support for the separation of actinides (An)from lanthanides (Ln). In molten fluoride salt, the technique of reductive extraction is under development in which the separation is based on different distributions of An and Ln between the salt and metallic Al phases. In this process molten aluminum alloy acts as both a reductant and a solvent into which the actinides are selectively extracted. It was demonstrated that a one-stage reductive extraction process, using a concentrated solution, allows a recovery of more than 99.3% of Pu and Am. In addition excellent separation factors between Pu and Ln well above 103 were obtained. In molten chloride media similar separations are developed by constant current electrorefining between a metallic alloy fuel (U60Pu20-Zr10Am2Nd3.5Y0.5Ce0.5Gd0.5) and an Al solid cathode. In a series of demonstration experiments, almost 25 g of metallic fuel was reprocessed and actinides collected as An-Al alloys on the cathode. Analysis of the An-Al deposits confirmed that an excellent An/Ln separation (An/Ln mass ratio = 2400) had been obtained. These results show that Al is a very promising material to be used in pyrochemical reprocessing of actinides. (authors)

  10. Kinetics of actinide complexation reactions

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions

  11. 33rd Actinide Separations Conference

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  12. Thermal-hydraulics of actinide burner reactors

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  13. Actinides and Life's Origins.

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  14. ALMR potential for actinide consumption

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  15. Actinide cation-cation complexes

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+·UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+·UO22+, NpO2+·Th4+, PuO2+·UO22+, and PuO2+·Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M-1

  16. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  17. Orbital effects in actinide systems

    Actinide magnetism presents a number of important challenges; in particular, the proximity of 5f band to the Fermi energy gives rise to strong interaction with both d and s like conduction electrons, and the extended nature of the 5f electrons means that they can interact with electron orbitals from neighboring atoms. Theory has recently addressed these problems. Often neglected, however, is the overwhelming evidence for large orbital contributions to the magnetic properties of actinides. Some experimental evidence for these effects are presented briefly in this paper. They point, clearly incorrectly, to a very localized picture for the 5f electrons. This dichotomy only enhances the nature of the challenge

  18. Fabrication of actinide mononitride fuel

    Fabrication of actinide mononitride fuel in JAERI is summarized. Actinide mononitride and their solid solutions were fabricated by carbothermic reduction of the oxides in N2 or N2-H2 mixed gas stream. Sintering study was also performed for the preparation of pellets for the property measurements and irradiation tests. The products were characterized to be high-purity mononitride with a single phase of NaCl-type structure. Moreover, fuel pins containing uranium-plutonium mixed nitride pellets were fabricated for the irradiation tests in JMTR and JOYO. (author)

  19. Actinide partitioning-transmutation program final report. I. Overall assessment

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99Tc and 129I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  20. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  1. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SFLn/Am obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as a Zr

  2. Research on the chemical speciation of actinides

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  3. Environmental research on actinide elements

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  4. ENDF/B-V actinides

    This document summarizes the contents of the actinides part of the ENDF/B-V nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available from the IAEA Nuclear Data Section. (author)

  5. Activation of Nuclear Receptors RAR, RXR, and LXR Does Not Reduce Cuprizone-Induced Demyelination in Mice

    Davina Kruczek

    2015-06-01

    Full Text Available Experiments with animal models of multiple sclerosis have shown that the expression of retinoid X receptors (RXR increases during demyelination and that RXR is involved in the regulation of remyelination. After ligand binding RXRs form heterodimeric transcription factors with other nuclear receptor (NR families including the retinoic acid receptors (RAR and liver X receptors (LXR. We tested whether activation of these nuclear receptor complexes reduces pathological demyelination using the cuprizone mouse model. Cuprizone, which causes oligodendrocyte degeneration, was given for three weeks as a food additive. For the activation of nuclear receptors mice were treated with daily i.p. injections of agonists for RXR (9-cis RA, RAR (all-trans RA, and LXR (T0901317. Myelin status, oligodendrocyte survival, astrogliosis, microglial activation, and axon density were monitored with immunohistochemistry and evaluated quantitatively. Three weeks of cuprizone feeding caused severe demyelination and significantly raised the number of Iba1 immunoreactive microglia cells in the caudal corpus callosum. This increase of microglia activity was reduced with 9-cis RA treatment but was enhanced with all-trans RA and was not affected by T0901317. Nuclear receptor activation did not influence the degree of demyelination, oligodendrocyte survival, astrogliosis, or axonal preservation. We conclude that RXR activation, although affecting Iba1-positive microglia, does not protect oligodendrocytes from cuprizone toxicity and does not induce compensatory mechanisms in the initial phase of demyelination.

  6. Danza de matachines. Estructura y función entre los rarámuri de la sierra Taraumara

    Ángel Acuña Delgado

    2008-01-01

    Full Text Available Introducida por los misioneros en tiempo de conquista, la danza de matachines posee actualmente mucha vigencia dentro del pueblo Rarámuri, habitante de la Sierra Tarahumara, situada al suroeste del estado Chihuahua en México. Desde su llegada a la región a principios del siglo XVII y hasta el momento presente, ésta modalidad dancística ha experimentado numerosos cambios en sus formas y sus sentidos, pudiéndose apreciar gran diversidad en su desarrollo dentro de las propias comunidades rarámuri. En este ensayo centraremos la atención en el contexto festivo donde los matachines tienen lugar, así como en la estructura y funciones generales que esta danza desempeña en el pueblo que la pone en escena. Todo lo cual nos llevará finalmente a reflexionar sobre los préstamos culturales y la tradición reinventada en la búsqueda de sentidos.

  7. Promoter hypermethylation profile of ER-α, RAR-β, MGMT and P16INK4a genes in oral squamous cell carcinoma%OSCC中ER-α、RAR-β、MGMT及P16INK4a基因启动子甲基化的临床研究

    薛万林; 刘春利

    2012-01-01

    Objective: To explore the status of promoter hypermethylation of several genes in oral squamous cell carcinoma (OSCC). Method: In this study, the hypermethylation profile in the promoter region of P16INK4a,RAR-β. MGMT and ER-α genes was investigated in twenty male patients with primary OSCC and two OSCC cell lines. Result: The incidence of hypermethylation in patients was 10 % (2 of 20) for pl6INK4a, 10 % (2 of 20) for MGMT,40 % (8 of 20) for RAR-p and 55 % (11 of 20) for ER-αgene respectively. Aberrant promoter hypermethylation was found for RAR-β and ER-α genes,but not for P16INK4a and MGMT genes in both GNM and TSCCa cell lines. Conclusion: Our results indicate that epigenetic alteration of RAR-β and ER-α genes in OSCC is a more frequent event than P16INK4a and MGMT genes, suggesting the critical importance of promoter hypermethylation at RAR-β and ER-α genes.%目的:探讨肿瘤相关基因ER-α、RAR-β、MGMT及P16INK4a启动子在口腔鳞状细胞癌(OSCC)组织中的甲基化状态.方法:20例病理确诊为OSCC的组织切片,经酶消化法提取组织DNA后双硫法检测ER-α、RAR-β、MGMT及P16INK4a基因启动子的甲基化状态,比较分析4种基因启动子甲基化状态和临床病理参数的相关性.结果:20例中,P16INK4a、MGMT启动子甲基化发生率均为10%,RAR-β启动子甲基化发生率为40%,ER-α启动子甲基化发生率为55%,两株OSCC细胞系中,ER-α、RAR-β启动子均出现甲基化,而MGMT及P16INK4a启动子均未见甲基化.结论:RAR-β、ER-α基因启动子的甲基化较P16INK4a、MGMTg更为常见,提示前两者可能在OSCC的发生中具有更重要的作用.

  8. Actinides recycling assessment in a thermal reactor

    Highlights: • Actinides recycling is assessed using BWR fuel assemblies. • Four fuel rods are substituted by minor actinides rods in a UO2 and in a MOX fuel assembly. • Performance of standard fuel assemblies and the ones with the substitution is compared. • Reduction of actinides is measured for the fuel assemblies containing minor actinides rods. • Thermal reactors can be used for actinides recycling. - Abstract: Actinides recycling have the potential to reduce the geological repository burden of the high-level radioactive waste that is produced in a nuclear power reactor. The core of a standard light water reactor is composed only by fuel assemblies and there are no specific positions to allocate any actinides blanket, in this assessment it is proposed to replace several fuel rods by actinides blankets inside some of the reactor core fuel assemblies. In the first part of this study, a single uranium standard fuel assembly is modeled and the amount of actinides generated during irradiation is quantified for use it as reference. Later, in the same fuel assembly four rods containing 6 w/o of minor actinides and using depleted uranium as matrix were replaced and depletion was simulated to obtain the net reduction of minor actinides. Other calculations were performed using MOX fuel lattices instead of uranium standard fuel to find out how much reduction is possible to obtain. Results show that a reduction of minor actinides is possible using thermal reactors and a higher reduction is obtained when the minor actinides are embedded in uranium fuel assemblies instead of MOX fuel assemblies

  9. Solvent extraction and liquid membrane transport studies of actinides using novel extractants

    For the safe management of radioactive wastes, 'Partitioning and Transmutation' (P and T) is being proposed as a strategy for the mitigation of long term hazards due to minor actinides (MA) and long lived fission products. This requires selective recovery of minor actinides from acidic feeds and thus necessitates development of extractants for their preferential extraction from high level waste. Several 'green' extractants such as functionalized malonamides and diglycolamides (DGA) have shown highly encouraging results. Out of the malonamides, DMDBTDMA and DMDOHEMA have been extensively tested for their actinide partitioning behaviour. Several diglycolamide extractants such as TPDGA, THDGA, TODGA, T2EHDGA and TDDGA have also been evaluated for their extraction properties. Interesting extraction properties of TODGA has led to thorough investigation of this reagent for the development of 'actinide partitioning' flow sheets at various laboratories. Liquid membrane separation of actinides from synthetic high level waste (SHLW) solution has also been carried out and shown highly promising results at significantly lower VOC inventories. About 20 L SHLW has been processed using hollow fiber supported liquid membrane technique. Novel DGA functionalized tripodal and calix(4)arene ligands were also evaluated for the extraction of actinides and fission products. The extraction mechanism was found to be entirely different with the calix(4)arene based DGA ligands as compared to those observed with extractants such as TODGA. Room temperature ionic liquids containing diglycolamide extractants have shown exceptionally high distribution coefficients and the results indicate possibility of selective recovery of Am from acidic waste solutions. Task specific ionic liquids containing DGA functional group have also been evaluated for actinide extraction under varying experimental conditions. (author)

  10. Synergistic extraction of actinides : Part II. Tetra-and trivalent actinides

    A detailed discussion on the synergistic solvent extraction behaviour of tetra- and trivalent actinide ions is presented. Structural aspects of the natural donor adducts of the tetravalent actinide ion chelates involved in synergism are also discussed. (author)

  11. Spin Hamiltonians for actinide ions

    The breakdown of Russel Saunders coupling for correlated f-levels of actinide ions is due to both spin orbit coupling and the crystalline electric field (CEF). Experiments on curium, an S-state ion in the metal for which the CEF is weak indicate a g-factor close to the Russel-Saunders value. Spin-orbit coupling is therefore too weak to produce jj coupling. This suggests a model for magnetic actinide ions in which the CEF ground multiplet is well separated from higher levels, completely determining thermodynamic magnetic properties. On this basis simplified spin Hamiltonians are derived for GAMMA1-GAMMA5 ground states in order to interpret thermodynamic measurements and ordering phenomena. (author)

  12. Actinide chemistry in ionic liquids.

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  13. Actinide Waste Forms and Radiation Effects

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  14. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES

    Maxwell, S.; Culligan, B.; Noyes, G.

    2009-11-09

    A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

  15. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  16. Anthropogenic Actinides in the Environment

    The use of nuclear energy and the testing of nuclear weapons have led to significant releases of anthropogenic isotopes, in particular a number of actinide isotopes generally not abundant in nature. Most prominent amongst these are 239Pu, 240Pu, and 236U. The study of these actinides in nature has been an active field of study ever since. Measurements of actinides are applied to nuclear safeguards, investigating the sources of contamination, and as a tracer for a number of erosion and hydrology studies. Accelerator Mass Spectrometry (AMS) is ideally suited for these studies and generally offers higher sensitivities than competing techniques, like ICP-MS or decay counting. Recent advances in AMS allow the study of “minor” plutonium isotopes (241Pu, 242Pu, and 244Pu). Furthermore, 236U can now be measured at the levels expected from the global stratospheric fall-out of the atmospheric nuclear weapon tests in the 1950s and 1960s. Even the pre-anthropogenic isotope ratios could be within reach. However, the distribution and abundance levels of these isotopes are not well known yet. I will present an overview of the field, and in detail two recent studies on minor plutonium isotopes and 236U, respectively.(author)

  17. Microfacies of the Triassic limestones in the Izvorul Malului klippe (Rarău Syncline, Transylvanian Nappes, Eastern Carpathians, Romania

    Daniela Alexandra POPESCU

    2008-06-01

    Full Text Available The Transylvanian Nappes belongs to the Central – East – Carpathian Nappes System (the Dacides Medianes which forms. The Transylvanian Nappes have a superior position in the Carpahian tectonic system that favored their fragmentation in the obduction process and slow gravitational decollement. This process makes difficult to establish the exclusively Mesozoic Transylvaniansedimentary series, especially because the majority of the litostratigraphic members occur only as isolated klippe in the Hauterivian-Aptian wildflysh filling (the superior formationbelonging to the Bucovinian Nappe of the Rarău Syncline.The allochtonous sedimentary succesion of the Transylvanian Nappes is almost exclusively represented by pelagic carbonate deposits. The amazing fossil diversity offeredmainly by the klippes of the Rarău Syncline facilitated the reconstruction of the Triassic lithological column which contains all stratigraphical terms confirmed by a rich paleontological material. The Upper Triassic carbonate deposits cropp out in few metric (Piatra Zimbrului, Popii Rarăului or submetric blocks (the klippes on the Cailor, Măceş, Izvorul Malului brooks,on the springs of the Timon brook etc. occuring in the Rarău Syncline. The studied limestone klippe is located on the left side of the Izvorul Malului brook, about 2,5 – 3 km up from his confluence with the Moldova river. The klippe which is almosttotally exploited consists of few white and gray limestone submetric blocks with Halobia. Microcrystalline carbonates are represented by muddy sediments accumulated in lowenergyquiet waters on the sea floor. The sediment consists of skeletal debris and unattachedprecipitates or of attached non-sketetal precipitates. The last two cases corespond to theautochthonous organomicrites and are characterized by common peloidal fabric. Theformation of peloids requires low or moderate rates of sediment input.Tethyan Carnian, Norian and Rhaetian carbonate

  18. PWRs potentialities for minor actinides burning

    In the frame of the SPIN program at CEA, the impacts of the minor actinides (MA) incineration in PWRs are analysed. The aim is to reduce the mass, the potential radiotoxicity level. The recycling of all actinide elements is evaluated in a PWR nuclear yard. A sensitivity study is done to evaluate the incineration for each minor actinide element. This gives the most efficient way of incineration for each MA elements in a PWR and helps to design a PWR burner. This burner is disposed in a PWR nuclear system in which the actinides are recycled until equilibrium. (author)

  19. Research on the chemical speciation of actinides

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  20. Long-term plant availability of actinides

    Environmental releases of actinide elements raise issues about which data are very limited. Quantitative information is required to assess the long-term behavior of actinides and their potential hazards resulting from the transport through food chains leading to man. Of special interest is the effect of time on the changes in the availability of actinide elements for uptake by plants from soil. This study provides valuable information on the effects of weathering and aging on the uptake of actinides from soil by range and crop plants grown under realistic field conditions

  1. Chemistry of actinides and fission products

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  2. The behaviour of selected fission products and actinides on UTEVA® resin

    The behaviour of selected fission product elements and actinides on UTEVA® resin in HCl and HNO3 media was determined by loading a mixed solution of Sr, Y, Zr, Mo, Ag, Cd, Cs, Ba, Ce, Eu, Tb, U, Np and Pu on to UTEVA® resin. The columns were eluted with decreasing concentrations of each acid. This investigation used stable elemental standards for the fission product elements and radioactive tracers for the actinide elements. The eluted fractions were analysed using ICP-OES and ICP-MS to determine the recovery of the elements across the fractions. A comparison using valency adjustment for the separation of Pu and Np is also reported. (author)

  3. Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight

    Wielgus Susan M

    2008-01-01

    Full Text Available Abstract Background Late blight is the most serious potato disease world-wide. The most effective and environmentally sound way for controlling late blight is to incorporate natural resistance into potato cultivars. Several late blight resistance genes have been cloned recently. However, there is almost no information available about the resistance pathways mediated by any of those genes. Results We previously cloned a late blight resistance gene, RB, from a diploid wild potato species Solanum bulbocastanum. Transgenic potato lines containing a single RB gene showed a rate-limiting resistance against all known races of Phytophthora infestans, the late blight pathogen. To better understand the RB-mediated resistance we silenced the potato Rar1 and Sgt1 genes that have been implicated in mediating disease resistance responses against various plant pathogens and pests. The Rar1 and Sgt1 genes of a RB-containing potato clone were silenced using a RNA interference (RNAi-based approach. All of the silenced potato plants displayed phenotypically normal growth. The late blight resistance of the Rar1 and Sgt1 silenced lines were evaluated by a traditional greenhouse inoculation method and quantified using a GFP-tagged P. infestans strain. The resistance of the Rar1-silenced plants was not affected. However, silencing of the Sgt1 gene abolished the RB-mediated resistance. Conclusion Our study shows that silencing of the Sgt1 gene in potato does not result in lethality. However, the Sgt1 gene is essential for the RB-mediated late blight resistance. In contrast, the Rar1 gene is not required for RB-mediated resistance. These results provide additional evidence for the universal role of the Sgt1 gene in various R gene-mediated plant defense responses.

  4. An improved radiochemical method for the isolation of uranium from other actinides in urine

    The Bioassay Laboratory at CRNL estimates uranium in urine by extraction with TBP (tributyl phosphate) and alpha counting. Studies performed on this method revealed several disadvantages: other actinides follow uranium and the overall recovery of uranium is not high. Cross-contamination studies showed that plutonium-239, neptunium-237, thorium-natural and curium-244 were all present in the final uranium source (Pu-239, 60 percent; Np-237, 48 percent; Th-nat, 40 percent; Cm-244, 15 percent). The overall uranium recovery was about 60 percent. The method has since been modified to improve the uranium recovery to 85 +- 5 percent and completely eliminate actinide cross-contamination by the inclusion of some selective co-precipitation steps after the TBP extractions have been carried out

  5. Partitioning of actinides from high-level waste streams of Purex process using mixtures of CMPO and TBP in dodecane

    The extraction of actinides from high active aqueous raffinate waste (HAW) as well as high-level waste (HLW) solutions arising from Purex processing of thermal reactor fuels has been studied using a mixture of octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) and TBP in dodecane. The results on the extraction and stripping of actinides, lanthanides, and other fission products are discussed. Optimum conditions are proposed for the efficient recovery of residual actinides from HAW and HLW streams by CMPO extraction followed by their selective stripping with suitable reagents. Experiments on the extraction and separation of actinides and lanthanides by CMPO in the presence of TBP in dodecane have also been carried out with U(VI) and Nd(III) to arrive at the limiting conditions for avoiding third-phase formation

  6. Extraction of actinides from high level waste streams of purex process using mixtures of CMPO and TBP in dodecane

    The extraction of actinides from high-active aqueous raffinate waste (HAW) as well as high level waste (HLW) solutions arising from Purex processing of thermal reactor fuels has been studied using a mixture of octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and TBP in dodecane. The results on the extraction and striping of actinides, lanthanides and other fission products have been discussed in this report and optimum conditions have been proposed for the efficient recovery of residual actinides from HAW and HLW streams by CMPO extraction and for their selective stripping with suitable reagents. Experiments on the extraction and separation of actinides and lanthanides by CMPO in the presence of TBP in dodecane have also been carried out with U(VI) and Nd(III) to arrive at the limiting conditions for avoiding third phase formation. (author). 18 refs., 5 figs., 10 tabs

  7. Calculated Atomic Volumes of the Actinide Metals

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  8. Environmental chemistry of the actinide elements

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  9. PIE analysis for minor actinide

    Minor actinide (MA) is generated in nuclear fuel during the operation of power reactor. For fuel design, reactivity decrease due to it should be considered. Out of reactors, MA plays key role to define the property of spent fuel (SF) such as α-radioactivity, neutron emission rate, and criticality of SF. In order to evaluate the calculation codes and libraries for predicting the amount of MA, comparison between calculation results and experimentally obtained data has been conducted. In this report, we will present the status of PIE data of MA taken by post irradiation examinations (PIE) and several calculation results. (author)

  10. Actinide co-conversion by internal gelation

    Suitable microstructures and homogenous microspheres of actinide compounds are of interest for future nuclear fuel or transmutation target concepts to prevent the generation and dispersal of actinide powder. Sol-gel routes are being investigated as one of the possible solutions for producing these compounds. Preliminary work is described involving internal gelation to synthesize mixed compounds including minor actinides, particularly mixed actinide or mixed actinide-inert element compounds. A parameter study is discussed to highlight the importance of the initial broth composition for obtaining gel microspheres without major defects (cracks, craters, etc.). In particular, conditions are defined to produce gel beads from Zr(IV)/Y(III)/Ce(III) or Zr(IV)/An(III) systems. After gelation, the heat treatment of these microspheres is described for the purpose of better understanding the formation of cracks after calcination and verifying the effective synthesis of an oxide solid-solution. (authors)

  11. Actinides analysis by accelerator mass spectrometry

    At the ANTARES accelerator at ANSTO a new beamline has been commissioned, incorporating new magnetic and electrostatic analysers, to optimise the efficiency for Actinides detection by Accelerator Mass Spectrometry (AMS). The detection of Actinides, particularly the isotopic ratios of uranium and plutonium, provide unique signatures for nuclear safeguards purposes. We are currently engaged in a project to evaluate the application of AMS to the measurement of Actinides in environmental samples for nuclear safeguards. Levels of certain fission products, Actinides and other radioactive species can be used as indicators of undeclared nuclear facilities or activities, either on-going or in the past Other applications of ultra-sensitive detection of Actinides are also under consideration. neutron-attenuation images of a porous reservoir rock

  12. Actinide ion sensor for pyroprocess monitoring

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  13. Partitioning technologies and actinide science: towards pilot facilities in Europe (ACSEPT project)

    ACSEPT is an essential contribution to the demonstration, in the long term, of the potential benefits of actinide recycling to minimize the burden on the geological repositories. To succeed, ACSEPT is organized into three technical domains: (i) Considering technically mature aqueous separation processes, ACSEPT works to optimize and select the most promising ones dedicated either to actinide partitioning or to grouped actinide separation. A substantial review was undertaken either to be sure that the right molecule families are being studied, or, on the contrary, to identify new candidates. Results of the first hot tests allowed the validation of some process options. (ii) Concerning pyrochemical separation processes, ACSEPT is focused on the enhancement of the two reference cores of process selected within EUROPART with specific attention to the exhaustive electrolysis in molten chloride (quantitative recovery of the actinides with the lowest amount of fission products) and to actinide back-extraction from an An-Al alloy. R and D efforts are also brought to key scientific and technical issues compulsory for building a complete separation process (head-end steps, salt treatment for recycling and waste management). (iii) By integrating all the experimental results within engineering and systems studies, both in hydro and pyro domains, ACSEPT will deliver relevant flowsheets and recommendations to prepare for future demonstration at a pilot level, in relation with strategies developed through the SNE-TP. In addition, a training and education programme is implemented to share the knowledge among the partitioning community and the future generations of researchers

  14. Rapid radiochemical method for determination of actinides in emergency concrete and brick samples

    Highlights: → A rapid fusion method was tested on concrete and brick samples. → Actinides were determined rapidly using the fusion plus extraction chromatography and alpha spectrometry. → Stacked TEVA, TRU and DGA rein cartridges were used with rapid flow rates. → High chemical yields, effective removal of interferences and very good results were obtained. - Abstract: A new rapid method for the determination of actinides in emergency concrete and brick samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or nuclear accident occurs, there will be a urgent need for rapid analyses of many different environmental matrices, including building materials such as concrete and brick, to support dose mitigation and environmental clean-up. The new method for actinides in concrete and brick method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with stacked TEVA, TRU and DGA Resin cartridges. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. The determination of actinides in concrete and brick sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles are effectively digested.

  15. The ALMR actinide burning system

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives

  16. Predictors of survival in refractory anemia with ring sideroblasts and thrombocytosis (RARS-T) and the role of next-generation sequencing.

    Patnaik, Mrinal M; Lasho, Terra L; Finke, Christy M; Hanson, Curtis A; King, Rebecca L; Ketterling, Rhett P; Gangat, Naseema; Tefferi, Ayalew

    2016-05-01

    Refractory anemia with ring sideroblasts and thrombocytosis (RARS-T) shares overlapping features of myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). RARS-T is characterized by SF3B1 and JAK2 mutations and prognosis is considered to be better than MDS but not as good as MPN. The objective of the study was to identify predictors of survival in RARS-T. We analyzed clinical and laboratory variables in 82 patients and applied a 27-gene NGS assay to 48 marrow samples obtained at diagnosis. 94% of patients had ≥1 mutations; common mutations being: SF3B1 85%, JAK2V617F 33%, ASXL1 29%, DNMT3A 13%, SETBP1 13% and TET2 10%. In a multivariable survival analysis (n = 82), anemia (P = 0.02) [HBNGS information (n = 48), univariate analysis showed association between poor survival and presence of SETBP1 (P = 0.04) or ASXL1 (P = 0.08) mutations whereas the absence of these mutations (ASXL1wt/SETBP1wt) was favorable (P = 0.04); the number of concurrent mutations did not provide additional prognostication (P = 0.3). We developed a HR-weighted prognostic model, with 2 points for an abnormal karyotype, 1 point for either ASXL1 and/or SETBP1 mutations, and 1 point for a HB level < 10 gm/dl, which effectively stratified patients into three risk categories; low (0 points), intermediate (1 point) and high (≥2 points), with median survivals of 80, 42 and 11 months respectively (P = 0.01). In summary, we confirm the unique mutational landscape in RARS-T and provide a novel mutation-enhanced prognostic model. Am. J. Hematol. 91:492-498, 2016. © 2016 Wiley Periodicals, Inc. PMID:26874914

  17. Experimental studies of actinides in molten salts

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  18. Experimental studies of actinides in molten salts

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  19. Spin and orbital moments in actinide compounds

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    -electron band-structure calculations, is that the orbital moments of the actinide 5f electrons are considerably reduced from the values anticipated by a simple application of Hund's rules. To test these ideas, and thus to obtain a measure of the hybridization, we have performed a series of neutron scattering...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced as...

  20. Actinide chemistry in the far field

    The environmental chemistry of the actinides is complicated due both to the extensive redox and coordination chemistry of the elements and also to the complexity of the reactive phases encountered in natural environments. In the far field, interactions with reactive surfaces, coatings and colloidal particles will play a crucial role in controlling actinide mobility. By virtue of both their abundance and reactivity; clays and other layer aluminosilicate minerals, hydrous oxides and organic matter (humic substances) are all identified as having the potential to react with actinide ions and some possible modes of interaction are described, together with experimental evidence for their occurrence. (author)

  1. Electronic structure and magnetic properties of actinides

    The study of the actinide series shows the change between transition metal behavior and lanthanide behavior, between constant weak paramagnetism for thorium and strong Curie-Weiss paramagnetism for curium. Curium is shown to be the first metal of the actinide series to be magnetically ordered, its Neel temperature being 52K. The magnetic properties of the actinides depending on all the peripheral electrons, their electronic structure was studied and an attempt was made to determine it by means of a phenomenological model. Attempts were also made to interrelate the different physical properties which depend on the outer electronic structure

  2. Endohedral Fullerenes with Actinide-Actinide Bonds: Unwilling Bonding in U2@C80

    Foroutan-Nejad, C.; Patzschke, M.; Straka, Michal

    Opole: -, 2014. [MMNB 2014. Polish-Taiwanese Conference. From Molecular Modeling to Nano- and Biotechnology . 04.09.2014-06.09.2014, Opole] R&D Projects: GA ČR(CZ) GA14-03564S Grant ostatní: European Social Fund(XE) CZ.1.07/2.3.00/30.009 Institutional support: RVO:61388963 Keywords : endohedral actinide fullerene * U-U bonding * actinide-actinide bonding Subject RIV: CF - Physical ; Theoretical Chemistry

  3. PF-4 actinide disposition strategy

    The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

  4. Subsurface interactions of actinide species and microorganisms. Implications for the bioremediation of actinide-organic mixtures

    By reviewing how microorganisms interact with actinides in subsurface environments, the way how bioremediation controls the fate of actinides is assessed. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. The way how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility is described. Why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions is explained. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. Development of mathematical models that link microbiological and geochemical reactions is described. Throughout, the key research needs are identified. (author)

  5. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  6. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  7. Actinide consumption: Nuclear resource conservation without breeding

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs

  8. On a fast reactor cycle scheme that incorporates a thoria-based minor actinide-containing cermet fuel

    A fast reactor cycle scheme that incorporates a thoria-based minor actinide-containing cermet fuel is given. The present cermet fuel consists of an oxide solid solution of Th and minor actinides and Mo-inert matrix. It has been proposed as a high-performance device that can enhance minor actinide incineration in a fast reactor cycle. It is used in an independent small sub-cycle, whereby dedicated cycle technologies are adopted. Two-step reprocessing process was proposed for the present cermet fuel; it consists of a pre-removal of Mo-inert matrix and an actinide recovery. A preliminary test for the pre-removal of Mo-inert matrix was carried out using a surrogate cermet fuel. Burnup characteristics of a fast reactor core loaded with the cermet fuel were investigated by using neutronic calculation codes. It was revealed that a heterogeneous composition of Mo-inert in inner and outer cores may lead to an effective transmutation of minor actinides and a flattered power density. It was concluded that the present cermet fuel was potentially promising as a high-performance incineration device of minor actinides for fast reactors. (author)

  9. Overview of actinide chemistry in the WIPP

    Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  10. PWRs potentialities for minor actinides burning

    In the frame of the SPIN program at CEA, the impacts of the Minor Actinides (MA) incineration in PWRs are analysed. The aim is to reduce the mass and the potential radiotoxicity level. This study is done separately one on the Plutonium recycling. But the plutonium is essential. Thus, the recycling of all Actinide elements is evaluated in a PWR nuclear yard. A sensitivity study is done to evaluate the incineration for each Minor Actinide element. This gives us the most efficient way of incineration for each MA element in a PWR and help us to design a PWR burner. This burner is disposed in a PWR nuclear system in which the Actinides are recycled until equilibrium. (authors). 2 refs

  11. Electronic structure and correlation effects in actinides

    Albers, R.C.

    1998-12-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related.

  12. Preparation of actinide targets by electrodeposition

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  13. Actinide research to solve some practical problems

    The following topics are discussed: generation of plutonium inventories by nuclear power plants; resettlement of the Marshallese Islanders into an actinide contaminated environment; high radiation background areas of the world; and radiation hazards to uranium miners

  14. Advanced Aqueous Separation Systems for Actinide Partitioning

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  15. BWR Assembly Optimization for Minor Actinide Recycling

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  16. Superconductivity in rare earth and actinide compounds

    Rare earth and actinide compounds and the extraordinary superconducting and magnetic phenomena they exhibit are surveyed. The rare earth and actinide compounds described belong to three classes of novel superconducting materials: high temperature, high field superconductors (intermetallics and layered cuprates); superconductors containing localized magnetic moments; heavy fermion superconductors. Recent experiments on the resistive upper critical field of high Tc cuprate superconductors and the peak effect in the critical current density of the f-electron superconductor CeRu2 are discussed. (orig.)

  17. Lanthanides and actinides in ionic liquids

    Binnemans, Koen

    2007-01-01

    This lecture gives an overview of the research possibilities offered by combining f-elements (lanthanides and actinides) with ionic liquids [1] Many ionic liquids are solvents with weakly coordinating anions. Solvation of lanthanide and actinide ions in these solvents is different from what is observed in conventional organic solvents and water. The poorly solvating behavior can also lead to the formation of coordination compounds with low coordination numbers. The solvation of f-elements can...

  18. New molecules to separate actinides: the picolinamides

    The reprocessing of spent fuel is made with the Purex process, funded on liquid-liquid extraction of uranium nitrates(VI) and plutonium nitrates(IV) by the BTP (tributyl phosphate). To improve this proceeding, we look for extractants which allow, beyond U and Pu extractions, these of actinides (II) and allow separation of the whole actinides from the fission products, which have an important fraction of lanthanides. A new family seems to give good results: the picolinamides

  19. Lattice effects in the light actinides

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated

  20. Recent progress in actinide borate chemistry.

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-10-21

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials. PMID:21915396

  1. Evaluation of actinide partitioning and transmutation

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  2. Separation of actinides using hollow fiber supported liquid membranes

    Hollow fiber supported liquid membrane (HFSLM) studies were carried out using TODGA (N,N,N',N'-tetraoctyl diglycolamide) - DHOA (di-n-hexyloctanamide) - NPH (normal paraffin hydrocarbon) and Cyanex-301-n-dodecane as carriers. The first carrier was employed to recover trivalent actinides and lanthanides from simulated high level waste (SHLW) of pressurized heavy water reactor (PHWR) origin. Subsequently, the mutual separation of the actinides and the lanthanides was demonstrated with the second carrier (Cyanex-301-n-dodecane). Quantitative transport of Am(III) and Nd(III) was observed in 45 min from a feed solution (500 mL) containing 1 g/L Nd spiked with 241Am at 3 M HNO3. Similarly, all the lanthanides (La, Ce, Pr, Nd and Sm) and tracer Am(III) were quantitatively recovered in 30 min from SHLW. No significant transport of other metal ions present in SHLW was observed. Quantitative and selective recovery of Am(III) was achieved by Cyanex-301-n-dodecane from feed solution containing 1 g/L total lanthanides spiked with 241Am tracer. The physical stability of HFSLM was reasonably good during continuous operation for over 72 h. Radiolytic stability of solvent and hollow fibre module up to 500 kGy dose was also satisfactory. (orig.)

  3. Macroporus resins in actinide separations (Preprint No. IT-4)

    The present paper attempts to review the studies reported on the use of macroporous resins for separation of actinides. The literature data reveal that the macroporous resins are superior in many ways, to gel type resins. This is primarily due to the improvement in the rate of absorption and desorption as the result of the availability of a large surface area as a consequence of macroporous structure. By and large, the investigations have been limited only to laboratory studies. Uranium leach liquor processing and the isolated example of neptunium recovery, are the only plant scale applications of macroporous resins, besides their routine use in water treatment in the commercial water reactors. (author). 65 refs., 11 tables

  4. Radioecology of the actinide elements

    Research progress is reported in sections entitled: scope of studies supported by the Department of Energy; oxidation state diagrams are a potential tool for studying the redox chemistry of Pu in natural waters; studies are initiated to investigate the effect of pH and organic matter on the distribution coefficients of Cm with natural sediments; the relative distributions of resuspended and direct deposited Pu in a corn canopy are quantified; the retention of Pu surface contamination by corn plants is being studied; Pu concentrations in tobacco are being determined; concentrations of Pu per unit mass and per unit surface area are compared for subterranean crops; models of Pu behavior in agricultural crops are being validated; distribution of aerially released Pu in loblolly pine plantations is independent of deposition rate; investigation of the effects of chelate and redox potential of the uptake of Pu and Cm by rice is underway; studies of Cm cycling in a floodplain forest have been initiated; the effects of unusually large Pu deposition onto a wheat ecosystem are being studied using computer simulations; long-term kinetic models of Pu behavior in plant-soil systems are being developed; scope of studies supported by the Nuclear Regulatory Commission; growth form of broadleaf crop may affect Pu contents; root uptake of Pu and Cm measured for rice root uptake of Pu and Cm measured for rice; long-term actinide uptake study is continuing at SREL; and uranium cycling in major southeastern agricultural crops being studied

  5. Actinide transmutation in nuclear reactors

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  6. Demonstration of Minor Actinide separation from a genuine PUREX raffinate by TODGA/TBP and SANEX reprocessing

    Magnusson, D. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340 D-76125 Karlsruhe (Germany); Chalmers University of Technology, Nuclear Chemistry, Deparment of Chemical and Biological Engineering, Gothenburg (Sweden); Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340 D-76125 Karlsruhe (Germany); Modolo, G. [Forschungszentrum Juelich, Institute for Energy Research, Safety Research and Reactor Technology, D-52425 Juelich (Germany); Sorel, C. [Commissariat a l' Energie Atomique Valrho (CEA), DRCP/SCPS, BP17171, 30207 Bagnols-sur-Ceze (France)

    2008-07-01

    A genuine High Active Raffinate was produced from small scale Purex reprocessing of a UO{sub 2} spent fuel solution and used as feed for a subsequent TODGA/TBP process. In this process, efficient recovery of the trivalent Minor Actinides (MA) actinides could be demonstrated using a hot cell set-up of 32 centrifugal contactor stages. The feed decontamination factors obtained for Am and Cm were in the range of 4.10{sup 4} which corresponds to a recovery of more than 99.99 % in the product fraction. Trivalent lanthanides and Y were co-extracted, otherwise only a small part of the Ru ended up in the product. The collected actinide/lanthanide fraction was later used as feed for a Sanex (separation of actinides from lanthanides) process based on the CyMe{sub 4}-BTBP ligand. Preliminary results show recoveries of more than 99.9 % of Am, Cm and less than 0.1 % of the major lanthanides in the product. (authors)

  7. Use of fast reactors for actinide transmutation

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  8. Waste disposal aspects of actinide separation

    Two recent NRPB reports are summarized (Camplin, W.C., Grimwood, P.D. and White, I.F., The effects of actinide separation on the radiological consequences of disposal of high-level radioactive waste on the ocean bed, Harwell, National Radiological Protection Board, NRPB-R94 (1980), London, HMSO; Hill, M.D., White, I.F. and Fleishman, A.B., The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste. Harwell, National Radiological Protection Board, NRPB-R95 (1980), London, HMSO). They describe preliminary environmental assessments relevant to waste arising from the reprocessing of PWR fuel. Details are given of the modelling of transport of radionuclides to man, and of the methodology for calculating effective dose equivalents in man. Emphasis has been placed on the interaction between actinide separation and the disposal options rather than comparison of disposal options. The reports show that the effects of actinide separation do depend on the disposal method. Conditions are outlined where the required substantial further research and development work on actinide separation and recycle would be justified. Toxicity indices or 'toxic potentials' can be misleading and should not be used to guide research and development. (U.K.)

  9. Solubility of actinide surrogates in nuclear glasses

    This paper discusses the results of a study of actinide surrogates in a nuclear borosilicate glass to understand the effect of processing conditions (temperature and oxidizing versus reducing conditions) on the solubility limits of these elements. The incorporation of cerium oxide, hafnium oxide, and neodymium oxide in this borosilicate glass was investigated. Cerium is a possible surrogate for tetravalent and trivalent actinides, hafnium for tetravalent actinides, and neodymium for trivalent actinides. The material homogeneity was studied by optical, scanning electron microscopy. Cerium LIII XANES spectroscopy showed that the Ce3+/Cetotal ratio increased from about 0.5 to 0.9 as the processing temperature increased from 1100 to 1400 deg. C. Cerium LIII XANES spectroscopy also confirmed that the increased Ce solubility in glasses melted under reducing conditions was due to complete reduction of all the cerium in the glass. The most significant results pointed out in the current study are that the solubility limits of the actinide surrogates increases with the processing temperature and that Ce3+ is shown to be more soluble than Ce4+ in this borosilicate glass

  10. TUCS/phosphate mineralization of actinides

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  11. New reagents for actinide-lanthanide group separations

    Organic extractants which possess nitrogen or sulfur donor atoms preferentially complex the trivalent actinide. They are potential reagents for actinide lanthanide group separations, which can be performed at low pH without the addition of inorganic salts

  12. Recovery of trans-plutonium elements

    The object of this work is to study the recovery of americium and curium from the fission-product solution obtained from the processing of irradiated fuel elements made of natural metallic uranium alloyed with aluminium, iron and silicon; these elements have been subjected to an average irradiation of 4000 MW days/ton in a gas-graphite type reactor having a thermal power of 3.7 MW/ton of uranium. The process used consists of 3 extraction cycles and one americium-curium separation: - 1) extraction cycle in 40 per cent TBP: extraction of actinides and lanthanides; elimination of fission products; - 2) extraction cycle in 8 per cent D2EHPA: decontamination from the fission products, decontamination of actinides from lanthanides; - 3) extraction cycle in 40 per cent TBP: separation of the complexing agent and concentration of the actinides; - 4) americium-curium separation by precipitation. (authors)

  13. La t??cnica del parto y la obstetricia en la sociedad rar??muri de la sierra Tarahumara (M??xico)

    G??mez Molina, Estrella; Acu??a Delgado, ??ngel

    2010-01-01

    Dentro del proyecto de investigaci??n sobre la construcci??n social y cultural del cuerpo rar??muri (pueblo amerindio del norte de M??xico adaptado a zona monta??osa), llevado a cabo entre 2001 y 2005, ofrecemos aqu?? los resultados, desde un punto de vista descriptivo, sobre los rasgos m??s caracter??sticos del proceso que rodea el embarazo y nacimiento de un nuevo ser. Apoyados en una metodolog??a estrictamente etnogr??fica, basada en el intenso y sistem??tico trabajo de campo, responderemo...

  14. Separation of actinides with alkylpyridinium salts

    Various f-elements are separated as anionic complexes from both acidic and alkaline solutions by precipitation with alkylpyridinium salts. The precipitates are also cationic surfactants where the simple counter-ion (e.g. nitrate or chloride) is replaced by the negatively charged complex anion of an actinide or lanthanide. The low solubility of these precipitates is explained by a strong affinity of divalent complex counter-ions of f-elements to the quaternary nitrogen. Precipitations in solutions of nitric acid allow to separate tetravalent f-elements from other metals, in alkaline carbonate solutions tetravalent and hexavalent actinides are precipitated simultaneously. The last procedure yields precipitates, which are very intimate mixtures of hexavalent and tetravalent actinides. This allows to prepare mixed oxides in a simple way. (author) 6 refs.; 3 figs.; 3 tabs

  15. Minior Actinide Doppler Coefficient Measurement Assessment

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  16. Research on Actinides in Nuclear Fuel Cycles

    The electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipment, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media

  17. Neutron scattering studies of the actinides

    The electronic structure of actinide materials presents a unique example of the interplay between localized and band electrons. Together with a variety of other techniques, especially magnetization and the Mossbauer effect, neutron studies have helped us to understand the systematics of many actinide compounds that order magnetically. A direct consequence of the localization of 5f electrons is the spin-orbit coupling and subsequent spin-lattice interaction that often leads to strongly anisotropic behavior. The unusual phase transition in UO2, for example, arises from interactions between quadrupole moments. On the other hand, in the monopnictides and monochalcogenides, the anisotropy is more difficult to understand, but probably involves an interaction between actinide and anion wave functions. A variety of neutron experiments, including form-factor studies, critical scattering and measurements of the elementary excitations have now been performed, and the conceptual picture emerging from these studies will be discussed

  18. Coordination chemistry for new actinide separation processes

    The amount of wastes and the number of chemical steps can be decreased by replacing the PUREX process extractant (TBP) by, N.N- dialkylamides (RCONR'2). Large amounts of deep underground storable wastes can be stored into sub-surface disposals if the long lived actinide isotopes are removed. Spent nuclear fuels reprocessing including the partitioning of the minor actinides Np, Am, Cm and their transmutation into short half lives fission products is appealing to the public who is not favorable to the deep underground storage of large amounts of long half lived actinide isotopes. In this paper coordination chemistry problems related to improved chemical separations by solvent extraction are presented. 2 tabs.; 4 refs

  19. Spin-Orbit Coupling in Actinide Cations

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.; Jensen, Hans Jorgen A.; Knecht, Stefan

    2012-09-01

    The limiting case of Russell-Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin-orbit splitting is large enough to cause a significantly reduced spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell.

  20. Spin-orbit coupling in actinide cations

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.; Jensen, Hans Jørgen Aa.; Knecht, Stefan

    2012-09-01

    The limiting case of Russell-Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin-orbit splitting is large enough to cause a significantly reduced spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell.

  1. Actinide and fission product separation and transmutation

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  2. Actinide phosphonate complexes in aqueous solutions

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO3H2) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described

  3. Actinide elements in aquatic and terrestrial environments

    Progress is reported on the following research projects: water-sediment interactions of U, Pu, Am, and Cm; relative availability of actinide elements from abiotic to aquatic biota; comparative uptake of transuranic elements by biota bordering Pond 3513; metabolic reduction of 239Np from Np(V) to Np(IV) in cotton rats; evaluation of hazards associated with transuranium releases to the biosphere; predicting Pu in bone; adsorption--solubility--complexation phenomena in actinide partitioning between sorbents and solution; comparative soil extraction data; and comparative plant uptake data

  4. Actinide and fission product separation and transmutation

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  5. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  6. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life VHTR Configurations: Designs, Advantages and Limitations

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  7. Recycling the actinides, the cornerstone of any sustainable nuclear fuel cycles

    The sustainability of the current nuclear fuel cycles is not completely achieved since they do not optimise the consumption of natural resource (only a very small part of uranium is burnt) and they do not ensure a complete and efficient recycling of the potential energetic material like the actinides. Promoting nuclear energy as a future energy source requires proposing new nuclear systems that could meet the criteria of sustainability in terms of durability, bearability and liveability. In particular, it requires shifting towards more efficient fuel cycles, in which natural resources are saved, nuclear waste are minimised, efficiently confined and safely disposed of, in which safety and proliferation-resistance are more than ever ensured. Such evolution will require (i) as a mandatory step, evolutionary recycling of the major actinides U and Pu up to their optimized use as energetic materials using fast neutron spectra, (ii) as an optional step, the implementation of the recycling of minor actinides which are the main contributors to the long term heat power and radiotoxicity of nuclear waste. Both options will require fast neutrons reactors to ensure an efficient consumption of actinides. In such a context, the back-end of the fuel cycle will be significantly modified: implementation of advanced treatment/recycling processes, minor-actinides recovery and transmutation, production of lighter final waste requiring lower repository space. In view of the 2012 French milestones in the framework of the 2006 Waste Management Act, this paper will depict the current state of development with regards with these perspectives and will enlighten the consequences for the subsequent nuclear waste management. (authors)

  8. Actinide recycle in LMFBRs as a waste management alternative

    Beaman, S.L.

    1979-08-21

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs.

  9. Chemical compatibility of HLW borosilicate glasses with actinides

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 230C and 1150C. (orig.)

  10. Actinide recycle in LMFBRs as a waste management alternative

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs

  11. Demonstration of innovative partitioning processes for minor actinide recycling from high active waste solutions

    The recycling of the minor actinides (MA) using the Partitioning and Transmutation strategy (P and T) could contribute significantly to reducing the volume of high level waste in a geological repository and to decreasing the waste's longterm hazards originating from the long half-life of the actinides. Several extraction processes have been developed worldwide for the separation and recovery of MA from highly active raffinates (HAR, e.g. the PUREX raffinate). A multi-cycle separation strategy has been developed within the framework of European collaborative projects. The multi-cycle processes, on the one hand, make use of different extractants for every single process. Within the recent FP7 European research project ACSEPT (Actinide reCycling by SEParation and Transmutation), the development of new innovative separation processes with a reduced number of cycles was envisaged. In the so-called 'innovative SANEX' concept, the trivalent actinides and lanthanides are co-extracted from the PUREX raffinate by a DIAMEX like process (e.g. TODGA). Then, the loaded solvent is subjected to several stripping steps. The first one concerns selectively stripping the actinides(III) with selective water-soluble ligands (SO3-Ph-BTB), followed by the subsequent stripping of trivalent lanthanides. A more challenging route studied also within our laboratories is the direct actinide(III) separation from a PUREX-type raffinate using a mixture of CyMe4BTBP and TODGA as extractants, the so-called One cycle SANEX process. A new approach, which was also studied within the ACSEPT project, is the GANEX (Grouped ActiNide EXtraction) concept addressing the simultaneous partitioning of all transuranium (TRU) elements for their homogeneous recycling in advanced generation IV reactor systems. Bulk uranium is removed in the GANEX 1st cycle, e.g. using a monoamide extractant and the GANEX 2nd cycle then separates the TRU. A solvent composed of TODGA + DMDOHEMA in kerosene has been shown to

  12. Placental transfer of plutonium and other actinides

    The report is based on an extensive literature search. All data available from studies on placental transfer of plutonium and other actinides in man and animals have been collected and analysed, and the report presents the significant results as well as unresolved questions and knowledge gaps which may serve as a waypost to future research work. (orig./MG)

  13. Actinide and fission product partitioning and transmutation

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  14. Actinide and fission product partitioning and transmutation

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  15. Rapid determination of actinides in asphalt samples

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis. If a radiological dispersive device, improvised nuclear device or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean-up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well. (author)

  16. Treatment of actinide-containing organic waste

    A method has been developed for reducing the volume of organic wastes and recovering the actinide elements. The waste, together with gaseous oxygen (air) is introduced into a molten salt, preferably an alkali metal carbonate such as sodium carbonate. The bath is kept at 7500 - 10000C and 0.5 - 10 atm to thermally decompose and partially oxidize the waste, while substantially reducing its volume. The gaseous effluent, mainly carbon dioxide and water vapour, is vented to the atmosphere through a series of filters to remove trace amounts of actinide elements or particulate alkali metal salts. The remaining combustion products are entrained in the molten salt. Part of the molten salt-combustion product mixture is withdrawn and mixed with an aqueous medium. Insoluble combustion products are then removed from the aqueous medium and are leached with a mixture of hydrofluoric and nitric acids to solubilize the actinide elements. The actinide elements are easily recovered from the acid solution using conventional techniques. (DN)

  17. Actinide measurements by AMS using fluoride matrices

    Cornett, R. J.; Kazi, Z. H.; Zhao, X.-L.; Chartrand, M. G.; Charles, R. J.; Kieser, W. E.

    2015-10-01

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF3. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF3 precipitates were diluted about 6-8 fold with PbF2. The measured concentrations of 239,240Pu and 241Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of 239,240Pu and 241Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  18. Trends in actinide processing at Hanford

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn't eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report

  19. Report of the panel on inhaled actinides

    Some topics discussed are as follows: assessment of risks to man of inhaling actinides; use of estimates for developing protection standards; epidemiology of lung cancer in exposed human populations; development of respiratory tract models; and effects in animals: dose- and effect-modifying factors

  20. Electronic Structure of the Actinide Metals

    Johansson, B.; Skriver, Hans Lomholt

    1982-01-01

    itinerant to localized 5f electron behaviour calculated to take place between plutonium and americium. From experimental data it is shown that the screening of deep core-holes is due to 5f electrons for the lighter actinide elements and 6d electrons for the heavier elements. A simplified model for the full...

  1. Spin–orbit coupling in actinide cations

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.;

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduced...

  2. ENDF/B-5 Actinides (Rev. 86)

    This document summarizes the contents of the Actinides part of the ENDF/B-5 nuclear data library released by the US National Nuclear Data Center. This library or selective retrievals of it, are available costfree from the IAEA Nuclear Data Section upon request. The present version of the library is the Revision of 1986. (author). Refs, figs and tabs

  3. Radium institute research on actinide separation from high-level waste. Review

    Development of efficient technologies for recovery of long-lived radionuclides from high-level wastes (HLW) is urgent for implementation of the promising management methods (transmutation and disposal), as well as for existing practice of HLW management. In Russia at 'Mayak' radiochemical plant since 1996 there has been in operation the industrial facility UE-35 which provides the recovery of cesium and strontium from HLW. The next stage is aimed at development and implementation of actinide separation technology from HLW. For this purpose the following four processes are studied and tested: processes based on chlorinated cobalt dicarbollide (ChCoDiC-process), isoamyldialkyl-phosphine oxide (POR-process), diphenyldibutylcarbamoylphosphine oxide (modified TRUEX-process) and mixture of ChCoDiC, carbamoylphosphine oxide (CMPO) and polyethylene glycol (PEG) (UNEX-process). After comprehensive study of extraction, physico-chemical and operational properties of selected extraction systems, testing of processes was conducted at test facilities with the use of actual or simulated HLW. Mixer-settlers and centrifugal contactors were used as extraction equipment in these tests. The test results show that the ChCoDiC-process can afford recovery of transplutonium and rare-earth elements (TPE and REE) from HLW and separation of them into fractions. POR-process and modified TRUEX-process enable to recover from HLW uranium, neptunium, plutonium, TPE, REE and technetium with the possibility for production of individual fractions. UNEX-process permits to attain simultaneous recovery of actinides, REE, cesium and strontium from HLW. During tests the potentialities of UNEX-process for obtaining such fractions as cesium, cesium+strontium and actinides+REE at stripping stage were demonstrated as well. (author)

  4. Library of Recommended Actinide Decay Data, 2011

    A major objective of the nuclear data programme within the IAEA is to devise and promote improvements in the quality of nuclear data used in science and technology. Work of this nature was performed by participants in an IAEA coordinated research project (CRP) formulated in 2005 to produce an updated decay data library of important actinides recommended for adoption in various nuclear applications. The specific objectives of this project were to improve the accuracy of heavy element and actinide decay data in order to: determine more accurately the effects of these recommended data on fission reactor fuel cycles; aid in improved assessments of nuclear waste management procedures; provide more reliable decay data for nuclear safeguards; assess with greater confidence the environmental impact of specific actinides and other heavy element radionuclides generated through their decay chains; and extend the scientific knowledge of actinide decay characteristics for nuclear physics research and non-energy applications. Some CRP participants were able to perform a number of highly precise measurements, based on the availability of suitable source materials, and systematic in depth evaluations of the requested decay data. These requested data consisted primarily of half-lives, and α, β-, EC/β+, Auger electron, conversion electron, X ray and γ ray energies and emission probabilities, all with uncertainties expressed at the 1σ confidence level. The IAEA established a CRP entitled Updated Decay Data Library for Actinides in mid-2005. During the course of discussions at the coordinated research meetings, the participants agreed to undertake work programmes of measurements and evaluations, to be completed by the end of 2010. The results of the evaluation studies undertaken by the CRP are presented in Annex I. Annexes II-V include descriptions of the sources of the evaluated decay data and each individual evaluation process in detail, as well as data files in the Evaluated

  5. Recovery of neptunium, plutonium, and americium from highly active waste

    Trialkylphosphine oxides (TRPO) (alkyl is 6c-C8) were chosen as the extractant for the recovery of Np, Pu, and Am from highly active waste (HAW) because of its extraction ability, excellent solvent behavior, high radiolytic stability, and low cost. Process chemistry based on 30 vol % TRPO-kerosene as solvent is presented. Extraction of Am in the presence of macro amounts of neodymium, adjustment of Np valence by electrolytic reduction, selective stripping of actinides from loaded organic phase, and loading capacity of the solvent are included. Process parameters of multistage countercurrent extraction and stripping and the results of experimental verification are given. From HAW with ∼1 M nitric acid concentration, recovery of actinides is higher than 99.9%. The actinides extracted can be stripped out separately into Am, Np-Pu, and U fractions. The behavior of nonactinide HAW constituents, including Tc, is discussed

  6. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  7. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  8. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  9. Advanced Extraction Methods for Actinide/Lanthanide Separations

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  10. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  11. Minor actinide transmutation on PWR burnable poison rods

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  12. Method to determine actinide pollution in water

    This patent describes a process for measuring small amounts, of actinide pollution in fluidic samples by use of solid state track recording devices. It comprises: containing a sample to be tested, containing small amounts of less than 3E-12 Curies per cubic centimeter of actinide pollution, in a sample cell defining an internal chamber and having means for ingress and egress and means for establishing a fluidic sample therein, the sample cell being substantially transparent to thermal neutron radiation and the internal chamber defined therein being configured to constitute a fluidic sample therein as an asymptotic fluid fission source; positioning a solid state track recorder within the internal chamber defined by the sample cell, so that the solid state track recorder has a radiation viewing window through an asymptotic thickness of a fluidic sample contained in the sample cell; capturing at least an asymptotic amount of fluidic sample in the sample cell

  13. Microbial Transformations of Actinides and Other Radionuclides

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  14. Actinide and fission product separation and transmutation

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  15. Interaction of actinide cations with synthetic polyelectrolytes

    The binding of Am+3, Th+4 and UO2+2 to polymaleic acid, polyethylenemaleic acid and polymethylvinylethermaleic acid has been measured by a solvent extraction technique at 250C and either 0.02 or 0.10 M ionic strength. The solutions were buffered over a pH range such that the percent of carboxylate groups ionized ranged from 25 to 74%. The binding was described by two constants, β1 and β2, which were evaluated after correction for complexation of the actinide cations by acetate and hydrolysis. For comparable degrees of ionization, all three polyelectrolytes showed similar binding strengths. In general, these results indicated that the binding of actinides to these synthetic polyelectrolytes is basically similar to that of natural polyelectrolytes such as humic and fulvic acids. (orig.)

  16. Actinide and fission product separation and transmutation

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  17. Actinides: from heavy fermions to plutonium metallurgy

    The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe13 and UPt3. Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior

  18. Actinide co-ordination and discrimination by human transferrin

    The design and evaluation of synthetic chelating agents which are specific for the actinide(IV) ions are described. The initial approach has been based on the biological and chemical similarities of Pu(IV) and Fe(III). In particular, using a philosophy influenced by naturally occurring ferric ion chelating agents, tetracatechoylamide ligands have been developed for the actinides. The test of the degree to which there was an actinide-specific complexing agent has been based on studies using Pu4+ as a biological contaminant. For a chelating agent to be able to sequester actinides effectively, it must remove actinides from actinide(IV)-protein complexes. The complexation chemistry of Th(IV)-transferrin system is described. The evidence suggests that, based on a size criterion, Th(IV) may be a poor biological model for Pu(IV) in some cases, with U(IV) being a somewhat better model. (author)

  19. Actinide Source Term Program, position paper. Revision 1

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA open-quotes expert panelclose quotes model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the open-quotes inventory limitsclose quotes model is the only existing defensible model for the actinide source term. The model effort in progress, open-quotes chemical modeling of mobile actinide concentrationsclose quotes, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the open-quotes Inventory limitsclose quotes model

  20. Actinides reduction by recycling in a thermal reactor

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  1. Thermal properties of minor actinide targets

    Staicu, Dragos; Somers, Joseph; FERNANDEZ CARRETERO Asuncion; KONINGS Rudy

    2014-01-01

    The thermal properties of minor actinides targets for the management of high level and long lived radioactive waste are investigated. The microstructure, thermal diffusivity and specific heat of (Pu,Am)O2, (Zr,Pu,Am)O2, (Zr,Y,Am)O2, (Zr,Y,Pu,Am)O2 and CERMETS with Mo matrix are characterised in order to assess the safety limits of these materials.

  2. SPECIFIC SEQUESTERING AGENTS FOR THE ACTINIDES

    Raymond, Kenneth N.; Smith, William L.; Weitl, Frederick L.; Durbin, Patricia W.; Jones, E.Sarah; Abu-Dari, Kamal; Sofen, Stephen R.; Cooper, Stephen R.

    1979-09-01

    This paper summarizes the current status of a continuing project directed toward the synthesis and characterization of chelating agents which are specific for actinide ions - especially Pu(IV) - using a biomimetic approach that relies on the observation that Pu(IV) and Fe(III) has marked similarities that include their biological transport and distribution in mammals. Since the naturally-occurring Fe(III) sequestering agents produced by microbes commonly contain hydroxamate and catecholate functional groups, these groups should complex the actinides very strongly and macrocyclic ligands incorporating these moieties are being prepared. We have reported the isolation and structure analysis of an isostructural series of tetrakis(catecholato) complexes with the general stoichiometry Na{sub 4}[M(C{sub 6}H{sub 4}O{sub 2}){sub 4}] • 21 H{sub 2}O (M = Th, U, Ce, Hf). These complexes are structural archetypes for the cavity that must be formed if an actinide-specific sequestering agent is to conform ideally to the coordination requirements of the central metal ion. The [M(cat){sub 4}]{sup 4-} complexes have the D{sub 2d} symmetry of the trigonal-faced dodecahedron.. The complexes Th [R'C(0)N(O)R]{sub 4} have been prepared where R = isopropyl and R' = t-butyl or neopentyl. The neopentyl derivative is also relatively close to an idealized D{sub 2d} dodecahedron, while the sterically more hindered t-butyl compound is distorted toward a cubic geometry. The synthesis of a series of 2, 3-dihydroxy-benzoyl amide derivatives of linear and cyclic tetraaza- and diazaalkanes is reported. Sulfonation of these compounds improves the metal complexation and in vivo removal of plutonium from test animals. These results substantially exceed the capabilities of compounds presently used for the therapeutic treatment of actinide contamination.

  3. The electrochemical properties of actinide amalgams

    Standard potentials are selected for actinides (An) and their amalgams. From the obtained results, energy characteristics are calculated and analyzed for alloy formation in An-Hg systems. It is found that solutions of the f-elements in mercury are very close in properties to amalgams of the alkali and alkaline-earth metals, except that, for the active Group III metals, the ion skeletons have a greater number of realizable charged states in the condensed phase

  4. Actinide and fission product partitioning and transmutation

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  5. The actinide waste problem in perspective

    The long lived alpha emitting actinide waste nuclides of transplutonium elements such as Np, Am, Cm etc (also called Byproduct Actinides or BPA for short) which are proposed to be disposed of as part of High Active Waste (HAW) in deep underground geological repositories has been a persistent source of concern to opponents and critics of nuclear fission energy. In this context the recent finding of the authors that each and every transuranium nuclide, without exception, can independently support a self sustaining chain reaction raises the important philosophical question: Is it justified to continue to refer to these nuclides as nuclear waste ? Our computations have revealed that the Ksub(eff) of an assembly of each of these nuclides increases linearly with the fissility parameter (Z2/A), its threshold value for Ksub(eff) to exceed unity being 34.1 for fissile (odd neutron) nuclides and 34.9 for fissible (even neutron) nuclides. In other words higher the (Z2/A) better is its performance as a fission reactor fuel. This finding suggests that the long lived actinide waste problem can be solved by separating all the actinide nuclides from the High Active Waste stream and recycling them back into any hard spectrum fission reactor. The studies strongly support the concept of partitioning-transmutation (p-t) revived with great enthusiasm in Japan under the banner of the OMEGA proposal. However it is found that there is no need to resort to any exotic devices such as proton accelerators or fusion reactor blankets for nuclear incineration. In the context of the 232Th/233U fuel cycle it is worth noting that the quantum of transuranium nuclides generated per se is smaller by several orders of magnitude as compared to that arising from 235U/238U bearing fuels. Thus on the whole it appears that in the thorium fuel cycle partitioning and recycle of byproduct nuclides would be a less cumbersome undertaking. (author). 26 refs., 6 figs., 3 tabs

  6. Actinide and fission product partitioning and transmutation

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  7. Thermodynamics and biogeochemistry of lanthanides and actinides

    Periodicity of changes in specific values of heat capacity and entropy of chemical elements, lanthanides, actinides, separating or transition elements, first of all, depending on their ordinal number, was considered. It is shown that entropy minima separate the chemical elements into light-weight and more heavy ones. The universal separation is fundamental, as it dictates the difference of the chemical elements not only in terms of thermodynamic, but also metallogenic, biogeochemical and physical properties, as well

  8. Strength of Coriolis alignment in actinide nuclei

    Analysis of aligned angular momenta i/sub α/(ω) in different rotational bands extracted from experimental data with a linear spin term approx.BI in the formulas for E/sub rot/(I) reveal that, in actinide nuclei in the levels with modest spin I< or =23, i/sub α/(ω) usually is very small (< or approx. =0.7), i.e., is much smaller than in rare earth nuclei

  9. In vitro removal of actinide (IV) ions

    Weitl, Frederick L.; Raymond, Kenneth N.

    1982-01-01

    A compound of the formula: ##STR1## wherein X is hydrogen or a conventional electron-withdrawing group, particularly --SO.sub.3 H or a salt thereof; n is 2, 3, or 4; m is 2, 3, or 4; and p is 2 or 3. The present compounds are useful as specific sequestering agents for actinide (IV) ions. Also described is a method for the 2,3-dihydroxybenzamidation of azaalkanes.

  10. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    Windt, N.F.; Williams, J.L.

    In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel contianing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  11. IAEA Activities on Assessment of Partitioning Processes for Transmutation of Actinides

    In these days of nuclear renaissance, appropriate management of radioactive materials arising from the nuclear fuel cycle back end is one of the most important issues related to the long term sustainability of nuclear energy. The present practice in the back end of the closed fuel cycle involves the recovery of uranium and plutonium from spent fuel by the aqueous based PUREX process for reuse in reactors and the conditioning of reprocessing waste into a form suitable for long term storage. The waste contains mainly fission products and transuranium elements immobilized in glass matrix. However, advanced fuel cycles incorporating partitioning of actinides along with minor actinides and their subsequent transmutation (P and T) in a fast neutron energy spectrum could be proliferation resistant and at the same time reduce the waste radiotoxicity by many orders of magnitude. Considering the importance of P and T on long term sustainability, the International Atomic Energy Agency has initiated many collaborative research programs in this area as part of our advanced fuel cycle activities. This paper presents the current and future activities on advanced partitioning methods, highlighting the challenges associated with these processes, fuel manufacturing techniques suitable for integration with reprocessing facility and the IAEA's minor actinide data base (MADB), as a part of integrated nuclear fuel cycle information system (iNFCIS). (authors)

  12. Analysis of optical properties of actinide dioxides

    Ionic calculations, symmetry considerations, and detailed analysis of reflectivity experiments have been used to identify general features of the band structure of actinide dioxides with a fluorite lattice. The ionic calculations adjust atomic energy levels by the electrostatic energies arising from long range electric fields of the ionic lattice; the labelling of high lying energy bands is determined by symmetry; experimental analysis includes the use of appropriate sum rules. A combination of these considerations enable a tentative band scheme to be constructed. It is suggested that there are filled valence bands (GAMMA15,GAMMA'25) originating in oxygen 2p-states and empty conduction bands (GAMMA1,GAMMA12,GAMMA'25) originating in actinide 7s and 6d states. The mean band gap (Penn gap) is of the order of 14 eV. The actinide f-electron states, which lie approximately 5 eV below the conduction bands, are taken to be localized - at least in UO2. (author)

  13. Actinide behavior in a freshwater pond

    Long-term investigations of solution chemistry in an alkaline freshwater pond have revealed that actinide oxidation state behavior, particularly that of plutonium, is complex. The Pu(V,VI) fraction was predominant in solution, but it varied over the entire range reported from other natural aquatic environments, in this case, as a result of intrinsic biological and chemical cycles (redox and pH-dependent phenomena). A strong positive correlation between plutonium (Pu), but not uranium (U), and hydroxyl ion over the observation period, especially when both were known to be in higher oxidation states, was particularly notable. Coupled with other examples of divergent U and Pu behavior, this result suggests that Pu(V), or perhaps a mixture of Pu(V,VI), was the prevalent oxidation state in solution. Observations of trivalent actinide sorption behavior during an algal bloom, coupled with the association with a high-molecular weight (nominally 6000 to 10,000 mol wt) organic fraction in solution, indicate that solution-detritus cycling of organic carbon, in turn, may be the primary mechanism in amercium-curium (Am-Cm) cycling. Sorption by sedimentary materials appears to predominate over other factors controlling effective actinide solubility and may explain, at least partially, the absence of an expected strong positive correlation between carbonate and dissolved U. 49 references, 6 figures, 12 tables

  14. Nuclear data for plutonium and minor actinides

    Some experience in the usage of different evaluations of neutron constants for plutonium isotopes and minor actinides (MA) is described. That experience was obtained under designing the ABBN-93 group data set which nowadays is used widely for neutronics calculations of different cores with different spectrum and shielding. Under testing of the ABBN-93 data set through different integral and macroscopic experiments the main attention was paid to fuel nuclides and cross sections for MA practically did not verify. That gave an opportunity to change MA nuclear data for more modern without verification of the hole system. This desire appeared with new data libraries JENDL-3.2, JEF-2.2 and ENDF/B-6.2, which was not accessible under designing the ABBN-93. At the same time with the reevaluation of the basic MA nuclear data the ABBN-93 and the library FOND-2 of evaluated nuclear data files, which used as the basis for retrieving of the ABBN-93 data, were added with not very important MA data. So the FOND-2 library nowadays contents nuclear data files for all actinides with the half-life time more 1 day and also those MA which produce long-life actinides

  15. BWR Assembly Optimization for Minor Actinide Recycling

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs). A top-level objective of the Advanced Fuel Cycle Systems Analysis program element of the DOE NERI program is to investigate spent fuel treatment and recycling options for current light water reactors (LWRs). Accordingly, this project targets to expand the traditional scope of nuclear fuel management optimization into the following two complementary specific objectives: (1) To develop a direct coupling between the pin-by-pin within-bundle loading control variables and core-wide (bundle-by-bundle) optimization objectives, (2) to extend the methodology developed to explicitly encompass control variables, objectives, and constraints designed to maximize minor actinide incineration in BWR bundles and cycles. The first specific objective is projected to 'uncover' dormant thermal margin made available by employing additional degrees of freedom within the optimization process, while the addition of minor actinides is expected to 'consume' some of the uncovered thermal margin. Therefore, a key underlying goal of this project is to effectively invest some of the uncovered thermal margin into achieving the primary objective.

  16. Actinide occurrences in sediments following ground disposal of acid wastes at 216-Z-9

    Liquid acid wastes from a Pu recovery facility at Hanford were released to the ground via structures collectively termed trenches from 1955 through 1962. Data are presented from a study of the microdistribution of Am and Pu in samples from the 216-Z-9 trench. Solution sediment relationships and associated actinide removal mechanisms under acid conditions were studied. Core wells were drilled into the sediments in which this covered trench is located and in the immediate vicinity to obtain samples for quantitative mineralogical analysis and comparison of sediments from various depths of contaminated and noncontaminated areas. Analytical techniques are described and results are reported

  17. Extraction studies of actinides by diisoamyl alkyl and dibutyl phenyl phosphonates from nitric acid media

    Organophosphonates are more basic than phosphates and hence were reported as superior extractants than phosphates for extraction of uranium and thorium. The extraction of metals by neutral phosphorus based extractants is due to the basic nature of phosphoryl oxygen and mainly depends on the nature of substituents attached to the phosphorus atom. Hence, there is scope to develop phosphonate extractants having tailor-made properties for actinide separation and recovery. Diisoamyl butyl, amyl and hexyl phosphonates were synthesized by the Michaelis-Beeker reaction while dibutylphenyl phosphonate (DBPP) were synthesized from their corresponding aryl phosphorichloridate and alcohol in presence of a base

  18. Ground-state electronic structure of actinide monocarbides and mononitrides

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... the localization transition. The calculated valence electron densities of states are in good agreement with photoemission data....

  19. Successive change regularity of actinide properties with atomic number

    The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f7n-orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z

  20. Advanced Aqueous Separation Systems for Actinide Partitioning

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  1. Actinide partitioning-transmutation program. Final report. VII. Long-term risk analysis of the geologic repository (appendix)

    The Chemical Technology Division of ORNL has prepared a set of documents that evaluate a partitioning-transmutation (PT) fuel cycle relative to a reference cycle employing conventional fuel-material recovery methods. The PT cycle uses enhanced recovery methods so that most of the long-lived actinides are recycled to nuclear power plants and transmuted to shorter-lived materials, thereby reducing waste toxicity. Data pertaining to the long-term risk analysis of waste generated from the PT fuel cycle are presented

  2. New ion exchangers and solvent extractants for pre-analysis separation of actinides. Annual report, June 1982-May 1983

    Prior to radiochemical determination of actinide elements such as uranium, neptunium and plutonium, an ion exchange or solvent extraction method is often employed to separate these from themselves and other interfering elements. In order to improve the separation efficiency and reduce time, cost, and liquid waste of analytical separation methods, new and better ion exchangers and solvent extractants are under evaluation. New microreticular and macroreticular anion exchange resins and bifunctional organophosphorus solvent extractants have been evaluated for uranium, neptunium and plutonium separations. Previous work comparing numerous anion exchange resins has shown the macroreticular Amberlite IRA-938 resin as having the highest actinide capacity and best elution kinetics. Recent studies have confirmed the resin has advantages over others for Pu-U separations. Work at Rocky Flats on bifunctional organophosphorus solvent extractants for the recovery and purification of actinides has led to the identification of several new separation systems applicable for radiochemical analysis. Dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP), its dibutyl analog DBDECMP, and DHDECMP-tributylphosphate (TBP) using liquid-liquid or extraction chromatography techniques are applicable for plutonium-americium and plutonium separations. Both DHDECMP and DBDECMP extract actinides strongly, extract lanthanides, iron, gallium, molybdenum, titanium, vanadium, zirconium partially, and do not extract most other elements from 5 to 7M nitric acid. With the DHDECMP-TBP and DBDECMP-TBP systems, synergistic effects have been observed for both plutonium and americium. The chemistry and application for pre-analysis separations of these solvent extraction systems are described. 11 references, 9 figures, 7 tables

  3. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  4. Chemical separation and nuclear transmutation of by-product actinides

    The paper presents the most important results and conclusions of the assessment studies carried out by the Joint Research Centre-Ispra and by other organizations on the advanced waste disposal strategy based on chemical separation of By-product Actinides (BPA's) from high level liquid waste (HLLW) and their transmutation in nuclear reactors. The technological developments required for the implementation of this strategy have been identified: they concern mainly fuel reprocessing, BPA recovery from all important waste streams and fuel refabrication. After consideration of different strategies for BPA transmutation, the homogeneous recycling in FBR's appears to be most suitable due to its transmutation rate and the compatibility of BPA's with its fuel cycle. The fuel cycle with transmutation has been compared with an advanced reference fuel cycle on the basis of costs and risks. The large effort required for the development and implementation of this new fuel cycle, the increased costs operating the fuel cycle compared with the marginal benefits in the long-term risk of geological disposal, make this strategy not very attractive

  5. Separation of actinides and fission products from carbonate containing streams

    The capacities of the anion exchange resins AG 1-X8, AG 2-X8 and Bio-Rex 5 were determined for the carbonato complexes of UO22+, NpO22+, PuO22+, Pu4+, AmO22+ and Am3+ in batch and dynamic experiments. The Bio-Rex 5 resin, used for the first time in such experiments, shows a clear superiority over the strong basic resins which have been used in the treatment of uranium ores. The influence of the ratio U : CO32-, the pH-value, the temperature, the equilibration of the resin, the contact time and the concentration of uranium to the column parameters distribution coefficient, hold back- and break through capacities have been investigated for batch and dynamic experiments. The best results were obtained for a medium with pH 6-8 and low concentrations of actinides and carbonate ions, 0.04 M and 0.12 M respectively. In order to obtain informaiton on the behaviour of the fission products occuring in the recovery of the organic phase of the Purex-process, these expected fission products were added to the uranium solution, fixed and eluted together with the uranium and Bio-Rex 5. (orig./HK)

  6. Synergistic extraction of actinides : Part I. Hexa-and pentavalent actinides

    A detailed discussion on the reported literature on the synergistic extraction of hexa- and pentavalent actinide ions, by different combinations of extractants and from different aqueous media, is presented. Structural aspects of the various complexes involved in synergism also are reviewed. A short account of the applications based on synergistic extraction is also given. (author)

  7. Extraction of actinides and lanthanides by calixarenes CMPO. Possibility to separate actinides from lanthanides (Calixpart project)

    The CALIXPART project accepted by the European Community within the framework of the 5 PCRD, relates to the 'selective extraction of minor actinides from H.A. liquid waste by organized matrices'. The objective of this new project is the selective extraction in only one step of minor actinides from a solution of fission products including lanthanides. This separation will be investigated through two strategies: - In the first one, macrocycles will be grafted with ligands containing nitrogen or sulphur which are able to discriminate actinides from lanthanides, but generally present very low distribution coefficients in strongly acidic solutions. Following the example of calixarenes CMPO, the grafting of these ligands on macrocyclic supports should increase the distribution coefficients, and thus allow to use these extractants at nitric acid concentrations up to 3 M. The nitrogen or sulphur ligands are not necessarily selective with respect to the other fission products, and the macrocyclic structure should also afford this necessary selectivity if one wishes to operate in a single step. Once americium and curium separated, the difference in size between both cations is undoubtedly sufficient to make it possible to separate them at the stripping stage. - The second strategy considered is the introduction of two types of ligands (hard and soft) on a macrocyclic structure, the first ensuring the extraction of lanthanides and trivalent actinides, the seconds bringing discrimination between these two groups of cations. (author)

  8. Transmutation of minor actinide using thorium fueled BWR core

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6th of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  9. Research needs in metabolism and dosimetry of the actinides

    The following topics are discussed: uranium mine and mill tailings; environmental standards; recommendations of NCRP and ICRP; metabolic models and health effects; life-time exposures to actinides and other alpha emitters; high-specific-activity actinide isotopes versus naturally occurring isotopic mixtures of uranium isotopes; adequacy of the n factor; and metabolism and dosimetry;

  10. Solubility of actinides and surrogates in nuclear glasses

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)