WorldWideScience

Sample records for actinide level density

  1. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Wiedeking M.

    2012-02-01

    Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  2. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Wilson, J. N.; Gunsing, F.; Bernstein, L.; Bürger, A.; Görgen, A.; Thompson, I. J.; Guttormssen, M.; Larsen, A.-C.; Mansouri, P.; Renstrøm, T.; Rose, S. J.; Siem, S.; Wiedeking, M.; Wiborg, T.

    2012-02-01

    Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x) and 232Th(3He,x) reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  3. Self-interaction corrected local spin density calculations of actinides

    Petit, Leon; Svane, Axel; Szotek, Z;

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration of the...

  4. Actinides and fission products partitioning from high level liquid waste

    The presence of small amount of mixed actinides and long-lived heat generators fission products as 137Cs and 90Sr are the major problems for safety handling and disposal of high level nuclear wastes. In this work, actinides and fission products partitioning process, as an alternative process for waste treatment is proposed. First of all, ammonium phosphotungstate (PWA), a selective inorganic exchanger for cesium separation was chosen and a new procedure for synthesizing PWA into the organic resin was developed. An strong anionic resin loaded with tungstate or phosphotungstate anion enables the precipitation of PWA directly in the resinous structure by adding the ammonium nitrate in acid medium (R-PWA). Parameters as W/P ratio, pH, reactants, temperature and aging were studied. The R-PWA obtained by using phosphotungstate solution prepared with W/P=9.6, 9 hours digestion time at 94-106 deg C and 4 to 5 months aging time showed the best capacity for cesium retention. On the other hand, Sr separation was performed by technique of extraction chromatography, using DH18C6 impregnated on XAD7 resin as stationary phase. Sr is selectively extracted from acid solution and >99% was recovered from loaded column using distilled water as eluent. Concerning to actinides separations, two extraction chromatographic columns were used. In the first one, TBP(XAD7) column, U and Pu were extracted and its separations were carried-out using HNO3 and hydroxylamine nitrate + HNO3 as eluent. In the second one, CMP0-TBP(XAD7) column, the actinides were retained on the column and the separations were done by using (NH4)2C2O4 , DTPA, HNO3 and HCl as eluent. The behavior of some fission products were also verified in both columns. Based on the obtained data, actinides and fission products Cs and Sr partitioning process, using TBP(XAD7) and CMP0-TBP(XAD7) columns for actinides separation, R-PWA column for cesium retention and DH18C6(XAD7) column for Sr isolation was performed. (author)

  5. Tables of nuclear level density parameters

    The Renormalized Gas Model (RGM) has been used to calculate single particle level density parameters for more than 2000 nucleides over the range 9<=Z<=126 (15<=A<=338). Three separate tables present the elements on or near the valley of beta stability, neutron-rich fission fragment nucleides, and transitional nuclei, actinides and light-mass super heavy elements. Each table identifies the nucleus in terms of Z and N and presents the RGM deformation energy of binding, the total RGM structural energy correction over the free gas Fermi surface, and the level density parameter

  6. Nuclear level density predictions

    Bucurescu Dorel; von Egidy Till

    2015-01-01

    Simple formulas depending only on nuclear masses were previously proposed for the parameters of the Back-Shifted Fermi Gas (BSFG) model and of the Constant Temperature (CT) model of the nuclear level density, respectively. They are now applied for the prediction of the level density parameters of all nuclei with available masses. Both masses from the new 2012 mass table and from different models are considered and the predictions are discussed in connection with nuclear regions most affected ...

  7. Nuclear level density

    Experimental data show that the number of nuclear states increases rapidly with increasing excitation energy. The properties of highly excited nuclei are important for many nuclear reactions, mainly those that go via processes of the compound nucleus type. In this case, it is sufficient to know the statistical properties of the nuclear levels. First of them is the function of nuclear levels density. Several theoretical models which describe the level density are presented. The statistical mechanics and a quantum mechanics formalisms as well as semi-empirical results are analysed and discussed. (Author)

  8. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  9. Fission level density and barrier parameters for actinide neutron-induced cross section calculations. Final report of research contract 8832/RB. Time period covered: 15 December 1995 - 14 June 1998

    Fission and total level densities modelling approach was developed. Neutron-induced fission cross section data for incident energies from 10 keV up to emissive fission threshold were employed to extract level density and fission barrier parameters. In particular, fission barrier parameters (inner barrier height, outer barrier height, curvatures) were extracted for altogether 49 isotopes of Th, Pa, U, Np, Pu, Am, Cm, Bk, and Cf. The adopted level density modelling approach and fission barrier parametrization was supported by calculations of fission cross section data above the emissive fission threshold, up to 20 MeV neutron incident energy. (author)

  10. Partial level densities

    Methods for calculating partial level densities for use in pre-equilibrium model calculations are described. The RIPL Starter File includes a Fortran code avrigeanu.for by M. Avrigeanu for using various equidistant and Fermi-gas single-particle models, including models that incorporate pairing and shell effects within closed-form treatments and a Fortran code capote-micro.for by R. Capote, which uses a microscopic theory based on a convolution of shell-model single-particle states with BCS pairing. (author)

  11. Density functional theory calculations of the redox potentials of actinide(VI)/actinide(V) couple in water

    The measured redox potential of an actinide at an electrode surface involves the transfer of a single electron from the electrode surface on to the actinide center. Before electron transfer takes place, the complexing ligands and molecules of solvation need to become structurally arranged such that the electron transfer is at its most favorable. Following the electron transfer, there is further rearrangement to obtain the minimum energy structure for the reduced state. As such, there are three parts to the total energy cycle required to take the complex from its ground state oxidized form to its ground state reduced form. The first part of the energy comes from the structural rearrangement and solvation energies of the actinide species before the electron transfer or charge transfer process; the second part, the energy of the electron transfer; the third part, the energy required to reorganize the ligands and molecules of solvation around the reduced species. The time resolution of electrochemical techniques such as cyclic voltammetry is inadequate to determine to what extent bond and solvation rearrangement occurs before or after electron transfer; only for a couple to be classed as reversible is it fast in terms of the experimental time. Consequently, the partitioning of the energy theoretically is of importance to obtain good experimental agreement. Here we investigate the magnitude of the instantaneous charge transfer through calculating the fast one electron reduction energies of AnO2(H2O)n2+, where An = U, Np, and Pu, for n = 4-6, in solution without inclusion of the structural optimization energy of the reduced form. These calculations have been performed using a number of DFT functionals, including the recently developed functionals of Zhao and Truhlar. The results obtained for calculated electron affinities in the aqueous phase for the AnO2(H2O)52+/+ couples are within 0.04 V of accepted experimental redox potentials, nearly an order of magnitude

  12. Isopiestic density law of actinide nitrates applied to criticality calculations

    Up to now, criticality safety experts used density laws fitted on experimental data and applied them in and outside the measurement range. Depending on the case, such an approach could be wrong for nitrate solutions. Seven components are concerned: UO2(NO3)2, U(NO3)4, Pu(NO3)4, Pu(NO3)3, Th(NO3)4, Am(NO3)3 and HNO3. To get rid of this problem, a new methodology based on the thermodynamic concept of binary electrolytes solutions mixtures at constant water activity, so called 'isopiestic' solutions, has been developed by IRSN to calculate the nitrate solutions density. This article shortly presents the theoretical aspects of the method, its qualification using benchmarks and its implementation in IRSN graphical user interface. (author)

  13. Experimental level-structure determination in odd-odd actinide nuclei

    The status of experimental determination of level structure in odd-odd actinide nuclei is reviewed. A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei is applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation are derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings are used. Calculated and experimental level structures for 238Np, 244Am, and 250Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Applications of this modeling technique are discussed

  14. Strontium and Actinide Separations from High Level Nuclear Waste Solutions using Monosodium Titanate - Actual Waste Testing

    Peters, T.B.; Barnes, M.J.; Hobbs,D.T.; Walker, D.D.; Fondeur, F.F.; Norato, M.A.; Pulmano, R.L.; Fink, S.D.

    2005-11-01

    Pretreatment processes at the Savannah River Site will separate {sup 90}Sr, alpha-emitting and radionuclides (i.e., actinides) and {sup 137}Cs prior to disposal of the high-level nuclear waste. Separation of {sup 90}Sr and alpha-emitting radionuclides occurs by ion exchange/adsorption using an inorganic material, monosodium titanate (MST). Previously reported testing with simulants indicates that the MST exhibits high selectivity for strontium and actinides in high ionic strength and strongly alkaline salt solutions. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from actual waste solutions. These tests evaluated the effects of ionic strength, mixing, elevated alpha activities, and multiple contacts of the waste with MST. Tests also provided confirmation that MST performs well at much larger laboratory scales (300-700 times larger) and exhibits little affinity for desorption of strontium and plutonium during washing.

  15. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    Garza, Alejandro J; Scuseria, Gustavo E

    2015-01-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The $f^0$ actinyl series (UO$_2^{2+}$, NpO$_2^{2+}$, PuO$_2^{2+}$), the isoelectronic NUN, and Thorium (ThO, ThO$^{2+}$) and Nobelium (NoO, NoO$_2$) oxides are studied.

  16. Level densities in nuclear physics

    In the independent-particle model nucleons move independently in a central potential. There is a well-defined set of single- particle orbitals, each nucleon occupies one of these orbitals subject to Fermi statistics, and the total energy of the nucleus is equal to the sum of the energies of the individual nucleons. The basic question is the range of validity of this Fermi gas description and, in particular, the roles of the residual interactions and collective modes. A detailed examination of experimental level densities in light-mass system is given to provide some insight into these questions. Level densities over the first 10 MeV or so in excitation energy as deduced from neutron and proton resonances data and from spectra of low-lying bound levels are discussed. To exhibit some of the salient features of these data comparisons to independent-particle (shell) model calculations are presented. Shell structure is predicted to manifest itself through discontinuities in the single-particle level density at the Fermi energy and through variatons in the occupancy of the valence orbitals. These predictions are examined through combinatorial calculations performed with the Grover [Phys. Rev., 157, 832(1967), 185 1303(1969)] odometer method. Before the discussion of the experimenta results, statistical mechanical level densities for spherical nuclei are reviewed. After consideration of deformed nuclei, the conclusions resulting from this work are drawn. 7 figures, 3 tables

  17. STRONTIUM AND ACTINIDE SEPARATIONS FROM HIGH LEVEL NUCLEAR WASTE SOLUTIONS USING MONOSODIUM TITANATE 1. SIMULANT TESTING

    HOBBS, D. T.; BARNES, M. J.; PULMANO, R. L.; MARSHALL, K. M.; EDWARDS, T. B.; BRONIKOWSKI, M. G.; FINK, S. D.

    2005-04-14

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 137}Cs, {sup 90}Sr and alpha-emitting radionuclides (i.e., actinides) prior to disposal. Separation processes planned at SRS include caustic side solvent extraction, for {sup 137}Cs removal, and ion exchange/sorption of {sup 90}Sr and alpha-emitting radionuclides with an inorganic material, monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu and {sup 240}Pu. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from simulated waste solutions. These tests evaluated the influence of ionic strength, temperature, solution composition and the oxidation state of plutonium.

  18. New density functional theory approaches for enabling prediction of chemical and physical properties of plutonium and other actinides.

    Mattsson, Ann Elisabet

    2012-01-01

    Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia's capabilities to support engineering sciences. This capability is based on amending experimental data with information gained from computational investigations, in parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A prominent materials area where such computational investigations are hard to perform today because of limited accuracy is actinide and lanthanide materials. The Science of Extreme Environment Lab Directed Research and Development project described in this Report has had the aim to cure this accuracy problem. We have focused on the two major factors which would allow for accurate computational investigations of actinide and lanthanide materials: (1) The fully relativistic treatment needed for materials containing heavy atoms, and (2) the needed improved performance of DFT exchange-correlation functionals. We have implemented a fully relativistic treatment based on the Dirac Equation into the LANL code RSPt and we have shown that such a treatment is imperative when calculating properties of materials containing actinides and/or lanthanides. The present standard treatment that only includes some of the relativistic terms is not accurate enough and can even give misleading results. Compared to calculations previously considered state of the art, the Dirac treatment gives a substantial change in equilibrium volume predictions for materials with large spin-orbit coupling. For actinide and lanthanide materials, a Dirac treatment is thus a fundamental requirement in any computational investigation, including those for DFT-based EOS construction. For a full capability, a DFT functional capable of describing strongly correlated systems such as actinide materials need to be developed. Using the previously successful subsystem functional scheme developed by Mattsson et.al., we have created such a functional. In

  19. Investigations of actinides in the context of final disposal of high-level radioactive waste - trivalent actinides in aqueous solution

    This contribution presents a small piece of research work at KIT-INE dealing with the speciation of redox sensitive trivalent actinides like Pu(III), Np(III), and U(III) in aqueous solution. The redox preparation, stabilization, and speciation of trivalent actinide in aqueous systems are discussed here. The reductants investigated were rongalite, HYA (hydroxylamine hydrochloride), and AHA (acetohydroxamic acid). The time dependence of An(III) stability at different pH values was investigated. The An(III) species in aqueous solution have been characterized by UV-Vis and XANES spectroscopy. A broader overview of the work at KIT-INE is given in the oral presentation at the NUCAR2013 conference. (author)

  20. Investigations of actinides in the context of final disposal of high-level radioactive waste. Trivalent actinides in aqueous solution

    The speciation of redox sensitive trivalent actinides Pu(III), Np(III), and U(III) has been studied in aqueous solution. The redox preparation, stabilization, and speciation of these trivalent actinides in aqueous systems are discussed here. The reductants investigated were rongalite, hydroxylamine hydrochloride, and acetohydroxamic acid and the An(III) species have been characterized by UV-Vis and XANES spectroscopy. The results show that the effectiveness of stabilization decreases generally in the order Pu(III) > Np(III) > U(III) and that the effectiveness of each reducing agent depends on the experimental conditions. More than 80 % of Pu(III) aquo species have been stabilized up to pH 5.5, whereas the Np(III) aquo ion could be stabilized in a pH range 0-2.5, and U(III) aquo ion is sufficiently stable at pH 1.0 and below over time periods suitable for experiments. However, this study gives a basis for the characterisation of the trivalent lighter actinides involved in complexation, sorption, and solid formation reactions in the future. (author)

  1. R and D for actinide partitioning and recovery of valuables from high level waste using radiotracers

    In the context of growing world population with rapidly increasing energy needs and the threat of global warming due to CO2 emission (caused by fossil fuel burning), the nuclear energy may be an attractive option particularly in the developing countries. Recycling of fuel is a unique feature of nuclear power technology which makes it a favourable choice with respect to conservation of energy resources. Steady growth of global fuel reprocessing activities (6000 tHM/annum) implies a vital role of separation science in developing efficient procedures for the separation and purification of actinides and in devising safe procedures for the management of nuclear waste arising at different stages of the PUREX process. High Level Waste (HLW) comprising of the concentrate of the raffinate of the co-extraction cycle (with over 95% of the total radioactivity produced in the burn up process in reactor) need to be isolated from the biosphere. There is a consensus among the waste management technologists that the safest route to achieve this, is to deposit it in a stable geological formation after it's immobilization in suitable glass/Synroc matrix. It ensures that any risk from exposure due to accidental intervention or natural disturbance is minimized. Risk perception is essentially due to the large radiological toxicity associated with alpha emitters like 237Np, 241Am, 243Am and 245Cm. Isotopes of Pu (left unrecovered) present in HLW also contribute towards radiological toxicity. In view of the high cost involved and the need for continuous surveillance, several countries are considering modifying their reprocessing schemes to partition (isolate) long-lived actinides from HLW. Since the volume of the actinide oxides (which retain major fraction of the radio toxicity of HLW) is significantly lower as compared to the other metal oxides present in HLW, such an approach is expected to reduce the cost of immobilization as well as of disposal (in geological repository) and

  2. Partitioning of actinides from high-level waste streams of Purex process using mixtures of CMPO and TBP in dodecane

    The extraction of actinides from high active aqueous raffinate waste (HAW) as well as high-level waste (HLW) solutions arising from Purex processing of thermal reactor fuels has been studied using a mixture of octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) and TBP in dodecane. The results on the extraction and stripping of actinides, lanthanides, and other fission products are discussed. Optimum conditions are proposed for the efficient recovery of residual actinides from HAW and HLW streams by CMPO extraction followed by their selective stripping with suitable reagents. Experiments on the extraction and separation of actinides and lanthanides by CMPO in the presence of TBP in dodecane have also been carried out with U(VI) and Nd(III) to arrive at the limiting conditions for avoiding third-phase formation

  3. Extraction of actinides from high level waste streams of purex process using mixtures of CMPO and TBP in dodecane

    The extraction of actinides from high-active aqueous raffinate waste (HAW) as well as high level waste (HLW) solutions arising from Purex processing of thermal reactor fuels has been studied using a mixture of octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and TBP in dodecane. The results on the extraction and striping of actinides, lanthanides and other fission products have been discussed in this report and optimum conditions have been proposed for the efficient recovery of residual actinides from HAW and HLW streams by CMPO extraction and for their selective stripping with suitable reagents. Experiments on the extraction and separation of actinides and lanthanides by CMPO in the presence of TBP in dodecane have also been carried out with U(VI) and Nd(III) to arrive at the limiting conditions for avoiding third phase formation. (author). 18 refs., 5 figs., 10 tabs

  4. Evaluation of chelation concentration and cation separation of actinides at ultra-trace levels in urine matrix

    The feasibility of measuring picogram levels of actinides in a urine matrix using ion chromatography coupled on-line to an inductively coupled plasma quadrupole mass spectrometer (IC-Q-ICPMS) was investigated. A chelation column for separation of matrix ions and preconcentration of the actinides was combined with a cation-exchange column for separation of the actinides. Sample preparation required simple addition of ammonium acetate to adjust the pH of the urine matrix. Spike solutions containing 232Th, 237Np, 238U, 239Pu, and 241Am were added to undiluted urine, diluted urine (1 : 9) and water. This approach enhanced the signal sensitivities of all the tested actinides over two orders of magnitude in the water matrix, while certain elements (especially Am) can still be effectively concentrated in undiluted urine. (author)

  5. Plutonium, americium and other actinides on Belarus territory: source, levels, risks

    For Belarus it was showed that in result of falling during nuclear trials happened contamination of upper soil layer by transuranium elements with medium level of contamination for 239,240Pu 53±17 Bq/m2. After Chernobyl accident this characteristic equal 1.1· Bq/m2 on the south of Belarus. In result accident it was revealed 17 actinides. For Chernobyl falling was determined big contents of 241Pu that will lead to maximum value of 241Am in 2059, which will be more in 2,5 times than 239,240Pu

  6. Radium institute research on actinide separation from high-level waste. Review

    Development of efficient technologies for recovery of long-lived radionuclides from high-level wastes (HLW) is urgent for implementation of the promising management methods (transmutation and disposal), as well as for existing practice of HLW management. In Russia at 'Mayak' radiochemical plant since 1996 there has been in operation the industrial facility UE-35 which provides the recovery of cesium and strontium from HLW. The next stage is aimed at development and implementation of actinide separation technology from HLW. For this purpose the following four processes are studied and tested: processes based on chlorinated cobalt dicarbollide (ChCoDiC-process), isoamyldialkyl-phosphine oxide (POR-process), diphenyldibutylcarbamoylphosphine oxide (modified TRUEX-process) and mixture of ChCoDiC, carbamoylphosphine oxide (CMPO) and polyethylene glycol (PEG) (UNEX-process). After comprehensive study of extraction, physico-chemical and operational properties of selected extraction systems, testing of processes was conducted at test facilities with the use of actual or simulated HLW. Mixer-settlers and centrifugal contactors were used as extraction equipment in these tests. The test results show that the ChCoDiC-process can afford recovery of transplutonium and rare-earth elements (TPE and REE) from HLW and separation of them into fractions. POR-process and modified TRUEX-process enable to recover from HLW uranium, neptunium, plutonium, TPE, REE and technetium with the possibility for production of individual fractions. UNEX-process permits to attain simultaneous recovery of actinides, REE, cesium and strontium from HLW. During tests the potentialities of UNEX-process for obtaining such fractions as cesium, cesium+strontium and actinides+REE at stripping stage were demonstrated as well. (author)

  7. Actinide separation of high-level waste using solvent extractants on magnetic microparticles

    Polymeric-coated ferromagnetic particles with an absorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted by tributyl phosphate (TBP) are being evaluated for application in the separation and the recovery of low concentrations of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can be recovered from the waste solution using a magnet. The effectiveness of the extractant-absorbed particles at removing transuranics (TRU) from simulated solutions and various nitric acid solutions was measured by gamma and liquid scintillation counting of plutonium and americium. The HNO3 concentration range was 0.01 M to 6M. The partition coefficients (Kd) for various actinides at 2M HNO3 were determined to be between 3,000 and 30,000. These values are larger than those projected for TRU recovery by traditional liquid/liquid extraction. Results from transmission electron microscopy indicated a large dependence of Kd on relative magnetite location within the polymer and the polymer surface area. Energy disperse spectroscopy demonstrated homogeneous metal complexation on the polymer surface with no metal clustering. The radiolytic stability of the particles was determined by using 60Co gamma irradiation under various conditions. The results showed that Kd more strongly depends on the nitric acid dissolution rate of the magnetite than the gamma irradiation dose. Results of actinide separation from simulated high-level waste representative of that at various DOE sites are also discussed

  8. Experimental level densities of atomic nuclei

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)

  9. Experimental level densities of atomic nuclei

    Guttormsen, M.; Bello Garrote, F.L.; Eriksen, T.K.; Giacoppo, F.; Goergen, A.; Hagen, T.W.; Klintefjord, M.; Larsen, A.C.; Nyhus, H.T.; Renstroem, T.; Rose, S.J.; Sahin, E.; Siem, S.; Tornyi, T.G.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Aiche, M.; Ducasse, Q.; Jurado, B. [University of Bordeaux, CENBG, CNRS/IN2P3, B.P. 120, Gradignan (France); Bernstein, L.A.; Bleuel, D.L. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Byun, Y.; Voinov, A. [Ohio University, Department of Physics and Astronomy, Athens, Ohio (United States); Gunsing, F. [CEA Saclay, DSM/Irfu/SPhN, Cedex (France); Lebois, L.; Leniau, B.; Wilson, J. [Institut de Physique Nucleaire d' Orsay, Orsay Cedex (France); Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West (South Africa)

    2015-12-15

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)

  10. Bulk separation of actinides and lanthanides from actual high level liquid waste of PUREX origin using tetra-(2-ethylhexyl) diglycolamide

    Partitioning and transmutation of minor actinides is emerging as one of the preferred options for the management of high level liquid waste (HLLW) generated during the reprocessing of spent nuclear fuel. Various processes viz., DIAMEX process, TRUEX process etc. have been developed and are being tested for their use in actual application. Of late, a new class of extractant, diglycolamides, with good radiation and chemical stability and complete incinerability has emerged as the front runner for partitioning. This paper deals with the testing of indigenous and bulk synthesized N,N,N',N' tetra-(2-ethylhexyl) diglycolamide (TEHDGA) for the bulk separation of actinides and lanthanides (An and Ln) from actual HLLW

  11. Actinide recycle

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  12. Extraction chromatographic separation of minor actinides from PUREX high-level wastes using CMPO

    An extraction chromatographic technique using octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) adsorbed on chromosorb-102 (CAC) has been tested as an alternative to the TRUEX solvent extraction process, where CMPO has been used as the extracting agent to recover minor actinides from high-activity waste (HAW) solutions of PUREX origin. The batchwise uptake behavior of U(VI), Pu(IV), Am(III), Eu(III), Zr(IV), Fe(III), Ru(III), and TcO4- from a nitric acid medium by CAC has been studied. The uptake of actinides and lanthanides are higher than those of other fission products and inert materials. The batchwise loading experiments in the presence of Nd(III)/U(VI) have shown that at lower concentrations of these metal ions, the uptake of Pu(IV), U(VI), and Am(III) are reasonably high. Studies on loading of Nd(III), U(VI), and Pu(IV) on a column containing 1.7 g of CAC have shown that Nd(III) (30 mg) and U(VI) (90 mg) could be loaded, while Pu(IV) (∼0.6) was loaded on a small column containing 100 mg of CAC without any break-through. Further, a synthetic HAW solution as such and the actual PUREX HAW solution, after depleting the uranium content by a 30% tributyl-phosphate contact, were loaded on a CAC column. The effluents did not contain any alpha activity above the background level. The activities could subsequently be eluted with 0.0.4 M HNO3 (americium and rare earths), 0.01 M oxalic acid (plutonium), and 0.25 M Na2CO3 [U(VI)]. The recoveries of these metal ions were found to be >99%

  13. Partial level densities for nuclear data calculations

    Avrigeanu, M

    1998-01-01

    The main formalisms of partial level densities (PLD) used in preequilibrium nuclear reaction models, based on the equidistant spacing model (ESM), are considered. A collection of FORTRAN77 functions for PLD calculation by using 14 formalisms for the related partial-state densities is provided and 28 sample cases (73 versions) are described. The results are given in graphic form too. Composite (recommended) formulas, which include the optional use of various corrections, i.e. the advanced pairing and shell correction in addition to the Pauli effect, and average energy-dependent single-particle level densities for the excited particles and holes, are also given. The formalism comprises the density of particle-hole bound states, and the effects of an exact correction for the Pauli-exclusion principle are considered. Keywords: Partial nuclear level density; Nuclear level density; Single-particle level density; Equidistant-spacing model; Preequilibrium emission; Nuclear reactions

  14. The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste

    It has often been suggested that the potential hazard to man from the disposal of high-level radioactive waste could be reduced by removing a substantial fraction of the actinide elements. In this report the effects of actinide separation on the radiological consequences of one of the disposal options currently under consideration, that of burial in deep geologic formations, are examined. The results show that the potential radiological impact of geologic disposal of high-level waste arises from both long-lived fission products and actinides (and their daughter radionuclides). Neither class of radionuclides is of overriding importance and actinide separation would therefore reduce the radiological impact to only a limited extent and over limited periods. There might be a case for attempting to reduce doses from 237Np. To achieve this it appears to be necessary to separate both neptunium and its precursor element americium. However, there are major uncertainties in the data needed to predict doses from 237Np; further research is required to resolve these uncertainties. In addition, consideration should be given to alternative methods of reducing the radiological impact of geologic disposal. The conclusions of this assessment differ considerably from those of similar studies based on the concept of toxicity indices. Use of these indices can lead to incorrect allocation of research and development effort. (author)

  15. Actinides geochemical database for performance analysis of high-level radioactive waste repositories and the program to increase its confidence

    Japan Nuclear Cycle Development Institute (JNC) published a second progress report (H12 report) in 1999 to clarify the technical confidence of the concept and technical bases for site selection and safety standards for high-level radioactive waste (HLW) geological disposal and Japan. A law for HLW final disposal was legislated based on the knowledge of the H12 report and an implementing body was established in 2000 by the law. Thus the HLW disposal program in Japan has been entered into the implementation phase. The thermodynamic database (TDB) and the sorption database (SDB) for actinides have been developed in performance analysis of the H12 report. The TDB for actinides are based on reliable measurement data, a thermodynamic models and chemical analogy. The SDB for actinides was developed and selection of distribution coefficient (Kd) was carried out under consideration of repository conditions. The validity of these databases was checked through individual migration experiments. JNC has started the work program using the QUALITY' (Quantitative Assessment Radionuclide Migration Experiment Facility) since 1999, in which we have systematically obtained migration data for radionuclides including actinides under reducing conditions. This facility enables to supply the reliable migration data widely applicable in Japanese geological conditions. (author)

  16. Vibrational state contribution to nuclear level density

    The different simple methods for evaluation of vibrational enhancement factor of nuclear level density with allowance for collective state damping are considered and compared. A practical method for calculation of nuclear level density is recommended taking into account quadrupole and octupole vibrational states. (author)

  17. Uncertainties in exposures, contamination level and doses after inhalation of actinides

    In France, after occupational exposure to radioactive aerosols, committed doses are currently calculated by an ascending approach from biological data to estimate the initial contamination using dose per unit intake (DPUI). Specific DPUI can be calculated depending on the contamination. This paper is an overview on uncertainties in exposure level, biokinetics of radionuclides and doses after inhalation exposure to aerosol containing actinides. Data reported in the literature and those obtained in studies which are still in progress are described. A comparison of the uncertainties has been done after an ascending and a descending approach. In this later case, aerosol deposition within the respiratory tract is estimated from air sampling at the work place (estimate of the activity of the aerosol). The largest uncertainties were calculated after a descending application of the models. The results here reported pointed out the need of the knowledge of the uncertainties for a realistic interpretation of the results obtained after dose calculation, as well as the application limits of some ICRP models. Moreover, difficulties to estimate risk of cancer from doses are pointed out, which are mainly associated with the heterogeneity of the distribution of alpha dose within the different target regions of the respiratory tract. (authors)

  18. Nuclear level density: Shell-model approach

    Sen'kov, Roman; Zelevinsky, Vladimir

    2016-06-01

    Knowledge of the nuclear level density is necessary for understanding various reactions, including those in the stellar environment. Usually the combinatorics of a Fermi gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally used parameters are also compared with standard phenomenological approaches.

  19. Collective enhancement in nuclear level densities

    Empirical estimations of the rotational and vibrational enhancement in the nuclear level density obtained from the analysis of the fragmentation cross sections for 238U projectile are discussed. (author)

  20. Decay calculations on medium-level and actinide-containing wastes from the LWR fuel cycle. Pt. 1

    A number of basic data on medium-level and actinide-containing waste streams from the LWR fuel cycle were evaluated and the activity and thermal decay power were calculated for the nuclide inventories of cladding hulls and fuel assembly structural materials, for feed clarification sludge, medium-level aqueous process waste, low-level solid transuranium waste and for medium-level reactor operating waste. The activity as a function of decay time of the medium-level wastes decreases within 500 to 600 years by 1 to 3 orders of magnitude and is at the same time about 1 to 2 orders of magnitude lower than the activity of the high-level waste. The thermal decay power of the medium-level wastes decreases after 10 to 100 years by about 3 orders of magnitude and is about a factor of 10 to 100 less than that of high-level waste. In the very long term the residual activity (and thermal power) decreases only slowly due to the long halflives of the dominant actinides. The activity after more that 1000 years is about 1 to 2 orders of magnitude lower than that of high-level waste, the low-level transuranium waste by a factor 10 to 4, respectively. The activity per unit volume of the packaged waste of the medium-level and actinide-containing wastes because of the bigger volume of the conditioned wastes is lower by 2 to 4 orders of magnitude up to about 500 years. After more than 1000 years the activities per unit volume are lower by a factor of 20 to 200 than that of high-level waste. (orig.)

  1. Actinide environmental chemistry

    In order to predict release and transport rates, as well as design cleanup and containment methods, it is essential to understand the chemical reactions and forms of the actinides under aqueous environmental conditions. Four important processes that can occur with the actinide cations are: precipitation, complexation, sorption and colloid formation. Precipitation of a solid phase will limit the amount of actinide in solution near the solid phase and have a retarding effect on release and transport rates. Complexation increases the amount of actinide in solution and tends to increase release and migration rates. Actinides can sorb on to mineral or rock surfaces which tends to retard migration. Actinide ions can form or become associated with colloidal sized particles which can, depending on the nature of the colloid and the solution conditions, enhance or retard migration of the actinide. The degree to which these four processes progress is strongly dependent on the oxidation state of the actinide and tends to be similar for actinides in the same oxidation state. In order to obtain information on the speciation of actinides in solution, i.e., oxidation state, complexation form, dissolved or colloidal forms, the use of absorption spectroscopy has become a method of choice. The advent of the ultrasensitive, laser induced photothermal and fluorescence spectroscopies has made possible the detection and study of actinide ions at the parts per billion level. With the availability of third generation synchrotrons and the development of new fluorescence detectors, X-ray absorption spectroscopy (XAS) is becoming a powerful technique to study the speciation of actinides in the environment, particularly for reactions at the solid/solution interfaces. (orig.)

  2. Geochemistry of actinides. Application to the storage of high level radioactive wastes. Under the supervision of Mr Michel Treuil

    This collective research report first addresses the chemistry of actinides with a description of their atomic orbitals and the study of their behaviour in solution. The author addresses several aspects: historical overview on actinides, radioactivity, chemical reactions in aqueous solution, redox chemistry, speciation in solution with respect to water characteristics in deep storage conditions. The second part gathers several studies performed on a natural laboratory (the Oklo site in which nuclear reactions occurred about 2 billions years ago) and reports the modelling of radionuclide transfer within a geological system (the model is applied to the Oklo site). The third part addresses issues related to the nuclear fuel cycle, and the storage modes and materials envisaged and involved regarding the storage of high level radioactive wastes, notably in France

  3. Combinatorial nuclear level-density model

    A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei

  4. Combinatorial nuclear level-density model

    Uhrenholt, H. [Mathematical Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Åberg, S., E-mail: sven.aberg@matfys.lth.se [Mathematical Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden); Dobrowolski, A. [Institut Fizyki, UMCS Lublin, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Døssing, Th. [Niels Bohr Institute, Blegdamsvej 17, Copenhagen (Denmark); Ichikawa, T. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Möller, P. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-09-02

    A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei.

  5. Parity dependence of nuclear level densities

    High resolution proton resonance data have been examined for a possible parity dependence of nuclear level densities. Five spin-parity combinations--1/2+, 1/2-, 3/2-, 3/2+, and 5/2+--have been analyzed for three datasets--44Ca(p,p), 48Ti(p,p), and 56Fe(p,p). Much of the uncertainty in the level density arises from the determination of the fraction of levels that are not observed. The missing fraction of levels was determined by (a) the standard width analysis method that assumes a Porter-Thomas distribution for the reduced widths and (b) a recently developed method that analyzes the spacing distribution and assumes the Wigner distribution for the nearest-neighbor spacings. There are indications of parity dependence of the level densities for several of the spin-parity combinations

  6. Spectral properties of actinide materials: Charge density self-consistent LDA+Hubbard I method in FP-LAPW basis

    We provide a numerically efficient procedure to perform LDA+Hubbard I calculations including self-consistency over the charge density in the FP-LAPW basis. The method is applied to Pu, Am, and PuAm and PuCe alloys. Our results for valence photoemission spectra (PES) agree with experimental data and with previous LDA+DMFT calculations. Analysis of the J=5/2 and J=7/2 contributions to the f-occupation supports the intermediate-coupling picture of f-states in heavy actinides. The electronic specific heat coefficient is calculated for PuAm and PuCe alloys in reasonable agreement with recent experiments. We show that Pu atoms keep their mixed-valence character in these alloys. Next, we study electronic and spectral properties of Pu-based superconductor PuCoGa5 and obtain good agreement with experimental PES. Finally, we analyze surface effects. In Pu monolayer, we find substantial modification of PES due to 5f-electron localization consistent with experimental observations.

  7. Contribution of the ''simple solutions'' concept to estimate density of actinides concentrated solutions

    In order to calculate criticality parameters of nuclear fuel solution systems, number density of nuclides are needed and they are generally estimated from density equations. Most of the relations allowing the calculation of the density of aqueous solutions containing the electrolytes HNO3-UO2(NO3)2-Pu(NO3)4, usually called 'nitrate dilution laws' are strictly empirical. They are obtained from a fit of assumed polynomial expressions on experimental density data. Out of their interpolation range, such mathematical expressions show discrepancies between calculated and experimental data appearing in the high concentrations range. In this study, a physico-chemical approach based on the isopiestic mixtures rule is suggested. The behaviour followed by these mixtures was first observed in 1936 by Zdanovskii and expressed as: 'Binary solutions (i.e. one electrolyte in water) having a same water activity are mixed without variation of this water activity value'. With regards to this behaviour, a set of basic thermodynamic expressions has been pointed out by Ryazanov and Vdovenko in 1965 concerning enthalpy, entropy, volume of mixtures, activity and osmotic coefficient of the components. In particular, a very simple relation for the density is obtained from the volume mixture expression depending on only two physico-chemical variables: i) concentration of each component in the mixture and in their respectively binary solutions having the same water activity as the mixture and ii), density of each component respectively in the binary solution having the same water activity as the mixture. Therefore, the calculation needs the knowledge of binary data (water activity, density and concentration) of each component at the same temperature as the mixture. Such experimental data are largely published in the literature and are available for nitric acid and uranyl nitrate. Nevertheless, nitric acid binary data show large discrepancies between the authors and need to be revised. In the

  8. DENSITY-FUNCTIONAL STUDY OF Zr-BASED ACTINIDE ALLOYS: 2. U-Pu-Zr SYSTEM

    Landa, A; Soderlind, P; Turchi, P; Vitos, L; Ruban, A

    2009-02-09

    Density-functional theory, previously used to describe phase equilibria in the U-Zr alloys [1], is applied to study ground state properties of the bcc U-Pu-Zr solid solutions. Calculated heats of formation of the Pu-U and Pu-Zr alloys are in a good agreement with CALPHAD assessments. We found that account for spin-orbit coupling is important for successful description of Pu-containing alloys.

  9. Computational Study of Covalency and Complexation in Actinides using Static and Dynamic Simulation and Topological Density Analysis

    Kirker, I. D. J.

    2013-01-01

    The separation of minor actinides such as americium and curium from other actinide and lanthanide-bearing components of used nuclear fuel is a necessary part of post-processing and recycling this fuel into storable components and new fuel material. Separation ratios can be optimised using a comprehensive understanding of the differences between these elements and their aqueous chemistry. This work uses computational simulation to investigate bonding behaviour and covalency differences between...

  10. Statistical nuclear properties (level densities, spin distributions)

    A general overview is given on the phenomenological methods used to describe the level densities in nuclei. Two well-known two-parameter formulas of level densities, the Back-Shifted Fermi Gas (BSFG) model and the Constant Temperature (CT) model, were used. A common ingredient of both is the spin distribution function, which contains in Ericsons's parametrization the spin-cutoff parameter σ. A realistic description of the parameters of both spin distribution function and the two level density models has been obtained by fitting the experimental data of 310 nuclei between 18F and 251Cf, consisting of the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energy. We determine a simple formula for the spin-cutoff parameter as a function of mass number and excitation energy. Also, an even-odd spin staggering in the spin distribution of the even-even nuclei was observed, and described with a simple formula. Using this newly defined spin distribution function, an empirical set of parameters of the BSFG and CT models was determined by fitting both the low-energy levels and the neutron resonance spacings. For these parameters, simple formulas were proposed that involve only quantities available from the mass tables, and allow reasonable estimations of the level density parameters for nuclei far from stability. Both the BSFG and CT models describe equally well the level densities at energies up to at least the neutron binding energy. Finally, we discuss recent experimental evidence that the CT model is the more correct description of the nuclei in the low-excitation energy (pairing) regime.

  11. Level density parameters for Fermi gas model

    Zhuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi

    1986-08-01

    Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D/sub 0/, radiative capture width GAMMA/sup 0//sub ..gamma../ at neutron binding energy and cumulative level number N/sub 0/ at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilberg--Cameron and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G--C formula are adjusted and a new set of level density parameters is obtained. The parameters in this work are more suitable to fit new measurements.

  12. Solubility and speciation of actinides in salt solutions and migration experiments of intermediate level waste in salt formations

    A comprehensive study into the solubility of the actinides americium and plutonium in concentrated salt solutions, the release of radionuclides from various forms of conditioned ILW and the migration behaviour of these nuclides through geological material specific to the Gorleben site in Lower Saxony is described. A detailed investigation into the characterization of four highly concentrated salt solutions in terms of their pH, Eh, inorganic carbon contents and their densities is given and a series of experiments investigating the solubility of standard americium(III) and plutonium(IV) hydroxides in these solutions is described. Transuranic mobility studies for solutions derived from the standard hydroxides through salt and sand have shown the presence of at least two types of species present of widely differing mobility; one migrating with approximately the same velocity as the solvent front and the other strongly retarded. Actinide mobility data are presented and discussed for leachates derived from the simulated ILW in cement and data are also presented for the migration of the fission products in leachates derived from real waste solidified in cement and bitumen. Relatively high plutonium mobilities were observed in the case of the former and in the case of the real waste leachates, cesium was found to be the least retarded. The sorption of ruthenium was found to be largely associated with the insoluble residues of the natural rock salt rather than the halite itself. (orig./RB)

  13. The effects of actinide separation on the radiological consequences of disposal of high-level radioactive waste on the ocean bed

    One option in the management of high-level radioactive wastes is to separate the actinides prior to vitrification and disposal. This option is examined in the context of disposal of high-level wastes on the deep ocean bed. The initial quantity of waste corresponds to the generation of 1000 GW(e)y of nuclear energy, and the actinide-separation process is assumed to remove 99% of all elements of atomic number greater than that of actinium. The models used to describe the dispersion of activity from a single disposal site on the bed of the Atlantic Ocean represent both local dispersion and long-term mixing. Collective doses and doses to individuals are calculated for six potential pathways: ingestion of fish, crustacea, molluscs, plankton and seaweed, and external irradiation from contaminated beach sediments. The period from 400 to 1,000,000 years after disposal is considered. The potential radiological impact from disposal of high-level waste without separation of actinides on the ocean bed arises from the actinides; isotopes of americium, neptunium and plutonium give the highest doses. Actinide separation would reduce these doses in proportion to the effectiveness of the separation process, until doses become determined by fission products rather than actinides: the achievable dose reduction would be a factor of approximately a hundred, or less for certain pathways. This reduction applies only to doses to the public from waste disposal: no account was taken of doses arising from the separation process itself or from the management of the separated actinides. The results of the assessment are contrasted with those of similar studies based on toxicity indices. Major deficiencies are identified in the use of toxicity indices as a basis for decision-making. (author)

  14. Separation of actinides and long-lived fission products from high-level radioactive wastes (a review)

    The management of high-level radioactive wastes is facilitated, if long-lived and radiotoxic actinides and fission products are separated before the final disposal. Especially important is the separation of americium, curium, plutonium, neptunium, strontium, cesium and technetium. The separated nuclides can be deposited separately from the bulk of the high-level waste, but their transmutation to short-lived nuclides is a muchmore favourable option. This report reviews the chemistry of the separation of actinides and fission products from radioactive wastes. The composition, nature and conditioning of the wastes are described. The main attention is paid to the solvent extraction chemistry of the elements and to the application of solvent extraction in unit operations of potential partitioning processes. Also reviewed is the behaviour of the elements in the ion exchange chromatography, precipitation, electrolysis from aqueous solutions and melts, and the distribution between molten salts and metals. Flowsheets of selected partitioning processes are shown and general aspects of the waste partitioning are shortly discussed. (orig.)

  15. Leaching of actinides and technetium from simulated high-level waste glass

    Leach tests were conducted using a modified version of the IAEA procedure to study the behavior of glass waste-solution interactions. Release rates were determined for Tc, U, Np, Pu, Am, Cm, and Si in the following solutions: WIPP B salt brine, NaCl (287 g/l), NaCl (1.76 g/1), CaCl2 (1.66 g/l), NaHCO3 (2.52 g/l), and deionized water. The leach rates for all elements decreased an order of magnitude from their initial values during the first 20 to 30 days leaching time. The sodium bicarbonate solution produced the highest elemental release rates, while the saturated salt brine and deionized water in general gave the lowest release. Technetium has the highest initial release of all elements studied. The technetium release rates, however, decreased by over four orders of magnitude in 150 days of leaching time. In the prepared glass, technetium was phase separated, concentrating on internal pore surfaces. Neptunium, in all cases except CaCl2 solution, shows the highest actinide release rate. In general, curium and uranium have the lowest release rates. The range of actinide release rates is from 10-5 to 10-8 g/cm2/day. 25 figures, 7 tables

  16. Studies on actinide partitioning of high level waste solutions by technical scale solid phase extraction

    The twin column concept is designed to enhance the field of application of front chromatography. Operating in that mode, we could demonstrate, that the concentration curve of the chromatographic column effluent is composed of two fractions, the wall and interior fraction, having each a breakthrough volume at CBT/Cfeed = 50 % for the interior fraction (VBT) and CBO/Cfeed = φP/φC for the wall fraction (VBO). The corresponding volume ratio amounts to π/(π+2) = 0.61. On this basis, we established a chromatographic array composed of feed tank - 1. column - detector - 2. column - product tank and loaded the 1. column, until 1.22 VBT of feed has been conveyed through the column set. Then, CBO has been reached in the 2. column effluent. We can, thus, control the process below the detection limits of commercially available monitors. We employed the concept, to investigate the long-term behaviour of extractants recommended for the HLW partitioning. We could demonstrate, that CMPO appears to be an adequate extractant for partitioning HLW solutions in an actinide/lanthanide fraction and a fission/corrosion product fraction. However, we could not confirm, that (C1-C6H4)2=PS2H is sufficiently stable to maintain the chemical properties required for an actinide/lanthanide fractionation. We used one column filling with 10 g CMPO to process in total 1001 feed, thus economizing our studies. (author)

  17. Actinides-1981

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  18. Actinides-1981

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  19. Actinide partitioning by TODGA hollow fiber supported liquid membrane: a cold test with simulated high level waste

    Transport behaviour of lanthanides from PHWR-Simulated High Level Waste (SHLW) was investigated using hollow fibre supported liquid membrane (HFSLM) containing 0.1M TODGA (N,N,N',N'-tetraoctyl diglycolamide) + 0.5M DHOA (N,N-dihexyl octanamide) as the carrier. The transport studies were conducted on 20 litres scale as a cold test with PHWR-SHLW. All the lanthanides could be quantitatively transported into the strip phase in 18hrs. None of the other elements were transported except small quantities of Sr and Mo. The system showed reasonably good stability studied up to 72 hrs of continuous operation. The results suggested the possible application of TODGA-HFSLM system for the recovery of minor actinides from high level wastes. (author)

  20. Thermal-hydraulics of actinide burner reactors

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  1. Optimization of parameters of alpha spectrometry with silicon detector for low level measurements of actinides in environmental samples

    Determination of actinides in environmental and biological samples is an important activity of radiation protection program at nuclear energy facilities. High resolution alpha spectrometry with passivated ion implanted Silicon detectors is widely used for the determination of actinides concentration. Low levels of activity concentrations in these samples often require long counting duration of a few days to obtain accurate and statistically significant data for further impact assessment. In alpha spectrometry, the chamber in which Si detector operated is a critical component and maintained at a desired vacuum for minimizing the alpha particle attenuation. Experimental evaluation of variations in energy resolution and tailing of alpha spectra was investigated under different chamber air pressures from about 6.7 Pa to more than 2700 Pa under the chamber hold mode and pump electrically switched off conditions. As part of validation, data collected on an IAEA inter-comparison exercise sample are presented under short and long counting durations with pump operating and switched off conditions respectively. It has been observed that the FWHM values do not significantly degrade, to impact the low and medium level concentration alpha spectra, for variations in vacuum chamber pressures from about 6.7 Pa to 2700 Pa. - Highlights: ► Several parameters relevant to low level alpha spectrometry have been investigated and appropriately optimized. ► The most important parameter has been the influence of chamber pressure on resolution when the chamber is in hold mode while the vacuum pump is electrically switched off for more than 40 h. ► Samples were counted for about 4 day for low levels of detection. Efficiency, tail length, detector size and other parameters were evaluated.

  2. Subsurface Biogeochemistry of Actinides

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  3. The many-body level density

    We investigate the many-body level density ρMB for fermion and boson gases. We establish its behavior as a function of the temperature and the number of particles. We deal with correction terms due to finite number of particles effects for ρMB: for fermions, it seems that it exists only one behavior. We propose a semiclassical expression of ρMB for two types of particles with an angular momentum. It is decomposed into a smooth part coming from the saddle point method plus corrective terms due to the expansion of the number of partitions for two types of particles and an oscillating part coming from the fluctuations of the single-particle level density. Our model is validated by a numerical study. For the case of the atomic nucleus, the oscillating part of ρMB is controlled by a temperature factor which depends on the chaotic or integrable nature of the system and on the fluctuation of the ground state energy. This leads to consider in more detail this last quantity. For an isolated system, we give the general expression of the mean value for fixed potentials. We treat the self-bound system case through the example of the three dimensional harmonic oscillator (3DHO). Furthermore we study the oscillating part of ρMB for bosons in the low temperature regime for billiards and for isotropic 3DHO. We note the oscillations disappear leading to a power law correction. In the case of the isotropic 3DHO, these corrections have the same order of magnitude as the smooth part. In the same way, for the high temperature regime we show the oscillating part of ρMB is exponentially negligible compared to the smooth part. (author)

  4. Decay calculations on medium-level and actinide-containing wastes from the LWR fuel cycle. Pt. 2

    1. The radiotoxicity index as inherent property of the radionuclide inventory was calculated for medium-level and actinide-containing wastes. The calculations were based on the annual limits of intake of the German Radiation Protection Ordinance as well as the new values of annual limits of intake from ICRP-30. The latter imply a higher rating of the toxicity of transuranium nuclides and a lower rating of Sr-90, Tc-99, and Ra-226. Thus, the annual radiotoxicity index is controlled by the transuranics after 10 to 100 years. 2. From the comparison of the radiotoxicity index of conditional and packed wastes with the same volume of uranium ore, it was evaluated that the relative radiotoxicity of the medium-level wastes decreases below the level of pitchblende after less than 100 years and below a 3% uranium ore after less than 2000 of decay. However, based on ICRP-30, the relative radiotoxicity index decreases below the level of pitchblende after 1000 years and decays to the level of the 3% uranium ore at about 105 years. 3. The comparison of the radiotoxicity concentration of the total disposal layer with a uranium ore deposit shows that the radiotoxicity concentration based on ICRP-30 of the self-heating wastes placed in single boreholes decays within 2000 years (high level waste within 3000 years) below the level of a uranium ore deposit of 0.2% uranium. The radiotoxicity concentration of the medium-level process waste and the alpha-waste disposed off in disposal chambers decreases to the level of a uranium ore deposit with 0.4 to 6% uranium after about 104 years, and 1% after about 105 years. (orig./HP)

  5. Management-retrieval system of the level density parameter library

    The level density parameter sub-library of Chinese evaluated nuclear parameter library (CENPL) contains eight sets of the level density parameters commonly used in the nuclear data evaluations and calculations, and some important experimental data related to the level density. The author presents an introduction to the management-retrieval system of the library

  6. Nuclear Level Density at High Spin and Excitation Energy

    A.N. Behkami; Z. Kargar

    2001-01-01

    The intensive studies of equilibrium processes in heavy-ion reaction have produced a need for information on nuclear level densities at high energies and spins. The Fermi gas level density is often used in investigation of heavy-ion reaction studies. Some papers have claimed that nuclear level densities might deviate substantially from the Fermi gas predications at excitations related to heavy-ion reactions. The formulae of calculation of the nuclear level density based on the theory of superconductivity are presented, special attention is paid to the dependence of the level density on the angular momentum. The spin-dependent nuclear level density is evaluated using the pairing interaction. The resulting level density for an average spin of 52h is evaluated for 155Er and compared with experimental data. Excellent agreement between experiment and theory is obtained.``

  7. Demonstration of modifier-free trivalent actinide partitioning from simulated high-level liquid waste using unsymmetrical diglycolamide

    Partitioning of trivalent lanthanides and actinides from fast-reactor (FR) simulated high-level liquid waste (SHLLW) has been demonstrated, for the first time, using a modifier-free unsymmetrical diglycolamide, N,N,-didodecyl-N',N'-dioctyl- 3-oxapentane-1,5-diamide (D3DODGA), in n-dodecane (n-DD). The extraction behavior of various metal ions present in the FR-SHLLW was studied using a solution of 0.1 M D3DODGA/n-DD. The extraction of Am(III) was accompanied by the co-extraction of all lanthanides and unwanted metal ions such as Zr(IV), Y(III), and Pd(II) from FR-SHLLW. The coextraction of unwanted metal ions was minimized by adding suitable aqueous soluble complexing agents. The stripping of Am(III) and Ln(III) from the loaded organic phase was studied using dilute nitric acid. Based on those results, a counter-current mixer-settler run was performed in a 20-stage mixer-settler. (author)

  8. Research on GSM level density formula and its parameters

    The Generalized Superfluid Model (GSM) level density formula has been studied. On the basis of the average neutron resonance level spacing D0 and cumulative level number N0 which were evaluated by ourselves, a set of GSM level density parameters has been obtained. These parameters have been included in the initial data file of IAEA's Reference Input Parameter Library (RIPL)

  9. Studies on the separation of minor actinides from high-level wastes by extraction chromatography using novel silica-based extraction resins

    Wei, Y.; Kumagai, M; Takashima, Y.; Modolo, G.; R. Odoj

    2000-01-01

    To develop an advanced partitioning process by extraction chromatography using a minimal organic solvent and compact equipment to separate minor actinides such as Am and Cm from nitrate acidic high-level waste (HLW) solution, several novel silica-based extraction resins have been prepared by impregnating organic extractants into the styrene-divinylbenzene copolymer, which is immobilized in porous silica particles (SiO2-P). The extractants include octyl(phenyl)-N, N-diisobutylcarbamoylmethylph...

  10. Adaptation of ICP-AES in lead cell facility in Chemistry Group, IGCAR and analysis of simulated high level waste as a part of the studies on minor actinide partitioning

    The spent fuel discharged from the nuclear reactor contains unused uranium and plutonium, and Np, Am, Cm called as minor actinides and fission products. Spent fuel is dissolved in nitric acid. U and Pu are recovered by a solvent extraction process known as PUREX process using 1.1 M TBP as extractant. The raffinate rejected is known as High Level Liquid Waste which is a complex mixture of minor actinides, corrosion products, and fission products. Partitioning of minor actinides (MA) and its transmutation is a viable strategy for the safe management of high level liquid waste (HLLW)

  11. New developments and methodology for actinide measurements at ultra trace levels using ICP-MS

    For safeguards purposes, there is a real need for accurate and reliable measurements of plutonium isotopes at the lowest level in environmental samples. It is of prime necessity to detect the ultra-trace levels with the best confidence in order to avoid any false positive or negative detection. To do this, an analytical methodology devoted to plutonium measurements at femtogram levels in environmental samples has been optimised. This methodology is based on the combination of an efficient radiochemistry and of a very sensitive ICP-MS detection. This work first identifies and quantifies the polyatomic interferences that occur at m/z = 239. Heavy elements like mercury can generate 199Hg40Ar+ at a rate ranging from 10-4 to 10-3. These interfering elements concentrations in purified solutions have been determined at trace (pg.ml-1) levels but their contributions need anyway to be corrected. Then, our method for determining plutonium detection limits on real samples is described. It is based on the combination of standard deviations over uranium hydride, abundance sensitivity, impurities from 242Pu isotopic dilution tracer corrections, and standard deviation over count rates of selected neighbouring (241-247) masses acquired during the measurements of the samples. The specific radiochemistry, devoted to ultra-trace measurements is presented. The different sources of contamination have been quantified. The crucial step for uranium elimination from purified solution has been identified to be the rinsing of anionic chromatography column with adequate volume of 8M HNO3. Micro-nebulisers can be used, down to 50μl.min-1 in operational conditions. Metrological settings of ICP-MS have to be optimised, especially dead time and mass bias correction. Finally we investigated the potentialities of the coupling of femtosecond laser ablation system and ICP-MS as an alternative to TIMS with respect to particle analysis. Preliminary results appear to be very promising because LA

  12. Increased indoor Rn levels due to actinide containing mineral collections displayed in living areas

    Collection of crystals ranging from quartz to U or Th containing minerals is a widespread spare time activity in Switzerland. Radon emanation from stones displayed in showcases in the living area may contribute considerably to elevated Rn levels in the indoor air. Time-averaged Rn gas measurements in 35 homes of subscribers to a journal for mineral collectors showed an unexpected statistically significant increase of 98 Bq m-3 in the Rn level of the room containing the collections compared to the levels measured in a control room on the same floor. Using ICRP Publication 50 conversion factors for indoor exposure to Rn decay products, the additional effective dose equivalent contracted was estimated to amount to an average of 2.7 mSv y-1. Although the 220Rn emanation rate, as measured in the display cases, was considerable in several cases, the dose from 220Rn decay products in the living area remained always a small fraction of the Rn dose. Remedial actions for crystal collections containing considerable amounts of U- or Th-based minerals are suggested

  13. Rotational modes contribution to the observed level density

    Attempt is made to apply the level density systematics within the framework of the generalized superfluid model to the A<150 region. The analysis of some properties of these nuclei (e.g. deformation energy, neutron resonance density, neutron evaporation spectra) shows the existence of large groups of nuclei, for which the contribution of rotational modes to their level density is considerable (in spite of the traditional classification according to low-lying discrete level spectra). (author)

  14. New developments and methodology for actinide measurements at ultra trace levels

    Full text: The methodology developed in our laboratory is based on the combination of radiochemistry conducted in the cleanest laboratories, prior to measurements using mass spectrometers with detection limits in the sub femtogram range. The work describes first the different radiochemical procedures that are needed to completely purify a sample. When femtogram levels of 239Pu or 240Pu have to be measured, the matrix and uranium have to be completely removed. First to avoid the interferences generated on 239Pu by uranium hydrides i.e. 238UH and secondly to avoid the interferences of polyatomics generated by lead, bismuth, mercury...The contribution of 199Hg40Ar, 204Hg35Cl or 202Hg37Cl on 239Pu have been quantified and it is close to 10-6. Consequently, the radiochemistry, mainly based on anionic chromatography performed using ultra-pure reagents at crucial steps is detailed, leading to blanks with no more than ppt levels of 238U, lead, bismuth and mercury. Then, the way to improve the performance of mass spectrometers, ICP-MS and TIMS is described. Very low ICP-MS detection limits are a combination of very high sensitivity, low backgrounds and very low sample consumption. Low consumption is achieved by using micro nebulisers with a flow rate which doesn't exceed 50μl.min-1 without decreasing sensitivity. Enhancement of sensitivity with micro nebulisers is then possible by using desolvating systems that completely remove water from the sample, resulting in an increase in sensitivity by a factor of ten. Better performance of ICP-MS is also achievable when a collision cell is added, in order to decrease uranium hydrides and other polyatomics. Concerning TIMS, which generally suffers from a lack in sensitivity, total consumption of sample was studied in order to get better detection limits with respect to uranium isotopes and specifically 236U. The performance of TIMS and ICP-MS in terms of detection limits, precision, reliability, mass bias and isotopic fractionation

  15. Electronic structure and core-level spectra of light actinide dioxides in the dynamical mean-field theory

    Kolorenč, Jindřich; Shick, Alexander; Lichtenstein, A.I.

    2015-01-01

    Roč. 92, č. 8 (2015), "085125-1"-"085125-10". ISSN 1098-0121 R&D Projects: GA ČR GC15-05872J Institutional support: RVO:68378271 Keywords : electronic-structure calculations * dynamical mean-field theory * Mott insulators * actinides * oxides * photoemission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  16. Research on the chemical speciation of actinides

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  17. Limits of thermodynamic models for nuclear level densities

    The current status of thermodynamic models as applied to nuclear level densities is reviewed. Considerable refinement has taken place during the last fifteen years, with the result that some of the undesirable assumptions originally required by the model are no longer necessary. Some problems remain, however, particularly in calculating level densities for deformed nuclei. Furthermore, some related parameters, such as the positive-parity negative-parity ratio for levels and the spin cutoff parameter are more sensitive to the presence of two-body interactions than the total level density. Improvement in characterization of nuclear level densities will require use of techniques which can incorporate the effects of two-body interactions in the level density calculation. 25 references

  18. Actinide recovery techniques utilizing electromechanical processes

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  19. Actinide production in 136Xe bombardments of 249Cf

    The production cross sections for the actinide products from 136Xe bombardments of 249Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these 136Xe + 249Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the 136Xe + 248Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs

  20. Ultra-low level (pg/L) actinide determinations and superior isotope ratio precisions by quadrupole ICP-MS

    A very high sensitivity, quadrupole-based inductively coupled plasma mass spectrometer (ICP-MS) has been developed and employed to measure very low concentrations (pg/L) of various actinides in solution. The detection capabilities of the instrument are shown using a variety of sample introduction methods, including simple direct sample nebulization, higher efficiency sample nebulization, and column preconcentration. This allowed three sigma detection limits in the range from 33 to 0.07 pg/L to be achieved, using short integration times, for a number of actinides. In addition, the improved sensitivity allowed isotope ratio measurements to be undertaken with good precision, (0.05 to 0.2%) at low concentrations (0.5 to 5 microg/L), without requiring long acquisition times. The results of isotope ratio measurements on silver, lead, and NIST natural lead standard SRM 981 will be reported

  1. Systematic study of neutron induced reactions of the actinide nuclei

    Maslov, V.M. [Akadehmiya Navuk Belarusi, Minsk (Belarus). Inst. Radyyatsyjnykh Fizika-Khimichnykh Prablem; Kikuchi, Yasuyuki

    1996-06-01

    A statistical theory is used for the calculation of the neutron-induced reaction cross sections of actinide nuclides from 10 keV up to 20 MeV. Available experimental data bases for major actinides were extensively used to develop theoretical tools for consistent evaluation of neutron data of minor actinides. The approach employed up to the second chance fission threshold is based on the full-scale Hauser-Feshbach theory, a phenomenological modelling of level densities, the giant dipole resonance model for gamma-ray emission, the double-humped fission barrier model and the coupled channel optical model calculations. The pairing, collective and shell effects are introduced into the level density model for equilibrium and saddle point deformations. Step-like structures observed in fission cross section of {sup 235}U around 1 MeV incident neutron energies are interpreted as due to pairing effects. Pairing correlation parameters are adjusted to fit the fission cross section slope in the first plateau region. The level density collective effect inclusion influences drastically the extracted experimental fission barrier parameters due to the inner saddle point asymmetry. The shell effects dumping is manifested as a consistent fit of fission data above the second chance fission threshold. In case of minor actinides, fission data fits are used as a constraint for capture and inelastic scattering cross section predictions. The capture cross sections were analyzed with the allowance for (n,{gamma}n`) and (n,{gamma}f) reactions. To fit the high-energy tails in the (n,2n) reaction, the pre-equilibrium processes in the neutron channel were included. All these effects were modelled, and the model parameters were obtained using major actinides neutron data. The resulted parameter systematics were applied for analysis of available data and prediction of capture, inelastic scattering, (n,2n), (n,3n) reaction and fission cross sections. (J.P.N.). 87 refs.

  2. Actinides recycling assessment in a thermal reactor

    Highlights: • Actinides recycling is assessed using BWR fuel assemblies. • Four fuel rods are substituted by minor actinides rods in a UO2 and in a MOX fuel assembly. • Performance of standard fuel assemblies and the ones with the substitution is compared. • Reduction of actinides is measured for the fuel assemblies containing minor actinides rods. • Thermal reactors can be used for actinides recycling. - Abstract: Actinides recycling have the potential to reduce the geological repository burden of the high-level radioactive waste that is produced in a nuclear power reactor. The core of a standard light water reactor is composed only by fuel assemblies and there are no specific positions to allocate any actinides blanket, in this assessment it is proposed to replace several fuel rods by actinides blankets inside some of the reactor core fuel assemblies. In the first part of this study, a single uranium standard fuel assembly is modeled and the amount of actinides generated during irradiation is quantified for use it as reference. Later, in the same fuel assembly four rods containing 6 w/o of minor actinides and using depleted uranium as matrix were replaced and depletion was simulated to obtain the net reduction of minor actinides. Other calculations were performed using MOX fuel lattices instead of uranium standard fuel to find out how much reduction is possible to obtain. Results show that a reduction of minor actinides is possible using thermal reactors and a higher reduction is obtained when the minor actinides are embedded in uranium fuel assemblies instead of MOX fuel assemblies

  3. Recovering actinide values

    Actinide values are recovered from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorus extractants such as tri-n butyl phosphate (TBP) and dihexyl-N, N-diethyl carbamylmethylene phosphonate (DHDECMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant can be recycled after stripping the degradation products with a neutral sodium carbonate solution. (author)

  4. Nuclear shape transitions, level density, and underlying interactions

    Karampagia, S

    2016-01-01

    The configuration interaction approach to nuclear structure uses the effective Hamiltonian in a finite orbital space. The various parts of this Hamiltonian and their interplay are responsible for specific features of physics including the shape of the mean field and level density. This interrelation is not sufficiently understood. We intend to study phase transitions between spherical and deformed shapes driven by different parts of the nuclear Hamiltonian and to establish the presence of the collective enhancement of the nuclear level density by varying the shell-model matrix elements. Varying the interaction matrix elements we define, for nuclei in the sd and pf shells, the sectors with spherical and deformed shapes. Using the moments method that does not require the full diagonalization we relate the shape transitions with the corresponding level density. Enhancement of the level density in the low-energy part of the spectrum is observed in clear correlation with a deformation phase transition induced main...

  5. Nuclear Level Density: Shell Model vs Mean Field

    Sen'kov, Roman

    2015-01-01

    The knowledge of the nuclear level density is necessary for understanding various reactions including those in the stellar environment. Usually the combinatorics of Fermi-gas plus pairing is used for finding the level density. Recently a practical algorithm avoiding diagonalization of huge matrices was developed for calculating the density of many-body nuclear energy levels with certain quantum numbers for a full shell-model Hamiltonian. The underlying physics is that of quantum chaos and intrinsic thermalization in a closed system of interacting particles. We briefly explain this algorithm and, when possible, demonstrate the agreement of the results with those derived from exact diagonalization. The resulting level density is much smoother than that coming from the conventional mean-field combinatorics. We study the role of various components of residual interactions in the process of thermalization, stressing the influence of incoherent collision-like processes. The shell-model results for the traditionally...

  6. Pairing effect on nuclear level density parameters in 116Sn

    Pairing correlations have a special importance for many fermion systems. Pairing correlations have been successfully described by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In this work, the pairing gap parameters as a function of nuclear temperature for 116Sn have been evaluated. Then the nuclear level density and entropy have been determined using BCS Hamiltonian with inclusion of pairing effects. Also temperature dependence of level density parameters has been investigated.

  7. Parity dependence of level densities in 49V

    In this research, we have studied 48Ti(p, p1) and 48(p, p1γ) in an effort to determine the dependence of level densities on parity in the compound nucleus 49V. This nuclide was chosen because of the high level density of the 49V system (leading to good statistical accuracy) and because the target is zero spin (making the assignment of J easier). 5 refs., 3 figs

  8. Combinatorial nuclear level density by a Monte Carlo method

    Cerf, N.

    1993-01-01

    We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning t...

  9. Actinide Waste Forms and Radiation Effects

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  10. Unified model of nuclear mass and level density formulas

    Nakamura, Hisashi

    2001-03-01

    The objective of present work is to obtain a unified description of nuclear shell, pairing and deformation effects for both ground state masses and level densities, and to find a new set of parameter systematics for both the mass and the level density formulas on the basis of a model for new single-particle state densities. In this model, an analytical expression is adopted for the anisotropic harmonic oscillator spectra, but the shell-pairing correlation are introduced in a new way. (author)

  11. Unified model of nuclear mass and level density formulas

    The objective of present work is to obtain a unified description of nuclear shell, pairing and deformation effects for both ground state masses and level densities, and to find a new set of parameter systematics for both the mass and the level density formulas on the basis of a model for new single-particle state densities. In this model, an analytical expression is adopted for the anisotropic harmonic oscillator spectra, but the shell-pairing correlation are introduced in a new way. (author)

  12. PWRs potentialities for minor actinides burning

    In the frame of the SPIN program at CEA, the impacts of the minor actinides (MA) incineration in PWRs are analysed. The aim is to reduce the mass, the potential radiotoxicity level. The recycling of all actinide elements is evaluated in a PWR nuclear yard. A sensitivity study is done to evaluate the incineration for each minor actinide element. This gives the most efficient way of incineration for each MA elements in a PWR and helps to design a PWR burner. This burner is disposed in a PWR nuclear system in which the actinides are recycled until equilibrium. (author)

  13. Applications of inductively coupled plasma-mass spectrometry to the determination of actinides and fission products in high level radioactive wastes at the Savannah River Site

    Four years of experience in applying inductively coupled plasma-mass spectrometry (ICP-MS) to the analysis of actinides and fission products in high level waste (HLW) samples at the Savannah River Site has led to the development of a number of techniques to aid in the interpretation of the mass spectral data. The goal has been to develop rapid and reliable analytical procedures that provide the necessary chemical and isotopic information to answer the process needs of the customers. Techniques that have been developed include the writing of computer software to strip the experimental data from the instrumental data files into spreadsheets or into a spectral data processing package so that the raw mass spectra can be overlain for comparison or plotted with higher output resolution. These procedures have been applied to problems ranging from the analysis of the high level waste tanks to reactor moderator water as well as environmental samples. Criticality safety analyses in some HLW waste treatment processes depend upon actinide concentration and isotopic information generated by ICP-MS, particularly in tanks with high concentrations of 137Cs and 90Sr. Experimental results for a number of these applications will be presented. These procedures represent a considerable saving in time and expense as compared to conventional chemical separation followed by radiochemical analyses, as well as decreased radiation exposure for the analysts

  14. Semi-empirical nuclear level density formula with shell effects

    A semi-empirical nuclear level density formula is proposed, which takes into account the influence of nuclear shell structure on level densities and the excitation energy dependence of shell effects. The ground state shell and pairing energies enter directly into this formula, which involves three mass-independent parameters characterizing the average single-particle level density near the Fermi level and the wave length of shell oscillations. The present formulation is shown not only to give a good fit to the experimental data on neutron resonance spacings of spherical nuclei, but also provide a reliable extrapolation to higher excitation energies. The present analysis has also brought out the need to include the dependence of level density parameter 'a(underlined)' on the surface to volume ratio of nuclei. The analysis of the data for deformed nuclei with the present formulation does not indicate an enhancement of the level densities of the magnitude suggestive of a rotation degree of freedom completely decoupled from intrinsic degrees at the excitation energy equal to neutron binding energies. (author)

  15. Level density of radioactive doubly-magic nucleus 56Ni

    In this work the single particle energies are obtained by diagonalising the Nilsson Hamiltonian in the cylindrical basis and are generated up to N =11 shells for the isotopes of Ni from A = 48-70, emphasizing the three magic nuclei viz, 48Ni, 56Ni and 68Ni. The statistical quantities like excitation energy, level density parameter and nuclear level density which play the important roles in the nuclear structure and nuclear reactions can be calculated theoretically by means of the Statistical or Partition function method. Hence the statistical model approach is followed to probe the dynamical properties of the nucleus in the microscopic level

  16. Research on the chemical speciation of actinides

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  17. Road Density and Levels of Development in West Bengal

    Shamshad; Dr. Jabir Hasan Khan

    2012-01-01

    The present paper is an attempt to analyse the spatial patterns of road density, variations in the level of development and casual relationship between road density (dependent variable) and selected variables of socio-economic development (independent variables) among the districts of the state of West Bengal. The entire research work is based on secondary sources of data, collected from Census of India publications (2001), New Delhi and Bureau of Applied Economics and Statistics, West Bengal...

  18. Signature of collective enhancement in nuclear level density

    In nuclei, coupling of collective rotation and vibration with the single particle excitations causes an enhancement in the level density. For nuclei with appreciable ground state deformation, most significant contribution to the collective enhancement comes from the rotational excitations, whereas in case of spherical nuclei, the collective enhancement is likely to be due to vibrational excitations. In this paper to independently verify the status of collective enhancement, a new experiment is reported where 169Tm, 185Re, and 201Tl compound nuclei having widely different ground state deformations have been populated. The experiment was done at two energies to observe the variation, if any, of the level density parameter with energy

  19. Nuclear level density formula with shell-pairing correlation terms

    The systematics of parameters for the level density formula based on the SPC model is studied by using the neutron and the proton resonance spacings over a wide range of mass number A=40-254. The present model prediction for the level densities is superior compared with those of the traditional Fermi-gas and the KRK-model. The present improvement seems to be due to considering the shell-pairing correlation terms in the analytic expression of single-particle state, and also to no use of the prescription for the effective excitation energy by using the so-called odd-even correction energy. (author)

  20. Development of Todga extraction process for high-level liquid waste preliminary evaluation of actinide separation by calculation

    Extraction process for actinide separation from HLLW with N,N,N',N'-tetra-octyl-3-oxa-pentane-diamide (TODGA) was preliminarily evaluated by calculation of Am and Sr behaviors. Results of the calculation showed that it is possible to establish an extraction process with 0.1 M or 0.2 M TODGA in n-dodecane, where Am is extracted in a very high yield of more than 99.99% and Sr is kept in the aqueous phase in a yield of more than 99.95%. The solution volume required for the treatment of an unit amount of HLLW was also evaluated using data on extraction capacity as the first step for the estimation of the process scale. (author)

  1. Application of the triaxial quadrupole-octupole rotor to the ground and negative-parity levels of actinide nuclei

    Nadirbekov, M. S.; Minkov, N.; Strecker, M.; Scheid, W.

    2016-03-01

    In this work, we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even-even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom, we suppose that the structure of the positive- and negative-parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity, we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole-octupole triaxiality.

  2. Application of the triaxial quadrupole-octupole rotor to the ground and negative-parity levels of actinide nuclei

    Nadirbekov, M S; Strecker, M; Scheid, W

    2016-01-01

    In this work we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even-even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom we suppose that the structure of the positive- and negative- parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole-octupole triaxiality.

  3. Ground-state electronic structure of actinide monocarbides and mononitrides

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... the localization transition. The calculated valence electron densities of states are in good agreement with photoemission data....

  4. Parity dependence of the nuclear level density at high excitation

    The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E0, Γn, Jπ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)

  5. Effect of interstitial low level laser stimulation in skin density

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  6. The level density parameters for fermi gas model

    Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing DD, radiative capture width Γγ0 at neutron binding energy and cumulative level number N0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements

  7. Level density parameters for the Fermi gas model

    Zhuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi

    1988-07-01

    Nuclear level densities are a crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D/sub 0/, radiative capture width GAMMA/sup 0//sub ..gamma../ at neutron binding energy, and cumulative level number N/sub 0/ at low excitation energy. They were published during 1973 to 1983. Based on the parameters given by Gilbert-Cameron and Cook the physical quantities mentioned above are calculated. The calculated results have the obvious deviations from the experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and a new set of level density parameters is obtained. The parameters in this work are more suitable to fit new measurements.

  8. Level density parameters for the Fermi gas model

    Nuclear level densities are a crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D0, radiative capture width Γ0/sub γ/ at neutron binding energy, and cumulative level number N0 at low excitation energy. They were published during 1973 to 1983. Based on the parameters given by Gilbert-Cameron and Cook the physical quantities mentioned above are calculated. The calculated results have the obvious deviations from the experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and a new set of level density parameters is obtained. The parameters in this work are more suitable to fit new measurements

  9. Microscopic Description of Nuclear Fission: Fission Barrier Heights of Even-Even Actinides

    McDonnell, J; Schunck, N; Nazarewicz, W.

    2013-01-01

    We evaluate the performance of modern nuclear energy density functionals for predicting inner and outer fission barrier heights and energies of fission isomers of even-even actinides. For isomer energies and outer barrier heights, we find that the self-consistent theory at the HFB level is capable of providing quantitative agreement with empirical data.

  10. Experimental studies of actinides in molten salts

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  11. Experimental studies of actinides in molten salts

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  12. Actinide burning and waste disposal

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  13. ALMR potential for actinide consumption

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  14. Methods for the determination of low-level actinide concentrations and their behaviour in the aquatic environment

    Intentional and accidental releases have contaminated the environment with radionuclides, posing a potential health hazard to populations of the polluted regions. Low concentrations of the actinides in the environment and complex sample matrices have made their determination a time consuming and complicated task. Separation methods based on anion exchange and extraction chromatography were developed, and subsequently modified, for analysis of different sample matrices in this work. These methods were used for the investigations of the behaviour of actinides in the environment. Chemical properties play an important role in the phenomena affecting the migration of radionuclides. The method based on anion exchange was used to study the behaviour of U in a small U-Th deposit and also the behaviour of Pu, Am and Cm in a lake system after the Chernobyl accident. The speciation of U and Pu in natural waters has also been investigated. A trend of higher 234U/238U activity ratios with lower 238U concentrations was seen in the ground waters in the Palmottu analogue study site in southern Finland. This indicates chemical leaching of U(VI) in oxidising conditions and preferable dissolution of 234U due to the recoil effects of the alpha decay in reducing conditions. The factors affecting the distribution of U concentrations and the 234U/238U activity ratios in filtered ground water and the particulate fraction in the Palmottu are also discussed. The concentrations of Pu, Am and Cm in filtered water, particulate and surface sediment samples in Lake Paeijaenne in southern Finland have been determined. Pu, Am and Cm fallout from the Chernobyl accident was minor compared to global fallout from atmospheric nuclear weapon tests. Based on the 238Pu/239,240Pu isotopic ratio, only 10 % of the Pu in the surface layer of the bottom sediment derived from the Chernobyl accident. Three months after the accident, 73 % of the total 239,240Pu concentration was in the surface layer of the bottom

  15. Methods for the determination of low-level actinide concentrations and their behaviour in the aquatic environment

    Pilvioe, R

    1998-12-31

    Intentional and accidental releases have contaminated the environment with radionuclides, posing a potential health hazard to populations of the polluted regions. Low concentrations of the actinides in the environment and complex sample matrices have made their determination a time consuming and complicated task. Separation methods based on anion exchange and extraction chromatography were developed, and subsequently modified, for analysis of different sample matrices in this work. These methods were used for the investigations of the behaviour of actinides in the environment. Chemical properties play an important role in the phenomena affecting the migration of radionuclides. The method based on anion exchange was used to study the behaviour of U in a small U-Th deposit and also the behaviour of Pu, Am and Cm in a lake system after the Chernobyl accident. The speciation of U and Pu in natural waters has also been investigated. A trend of higher {sup 234}U/{sup 238}U activity ratios with lower {sup 238}U concentrations was seen in the ground waters in the Palmottu analogue study site in southern Finland. This indicates chemical leaching of U(VI) in oxidising conditions and preferable dissolution of {sup 234}U due to the recoil effects of the alpha decay in reducing conditions. The factors affecting the distribution of U concentrations and the {sup 234}U/{sup 238}U activity ratios in filtered ground water and the particulate fraction in the Palmottu are also discussed. The concentrations of Pu, Am and Cm in filtered water, particulate and surface sediment samples in Lake Paeijaenne in southern Finland have been determined. Pu, Am and Cm fallout from the Chernobyl accident was minor compared to global fallout from atmospheric nuclear weapon tests. Based on the {sup 238}Pu/{sup 239,240}Pu isotopic ratio, only 10 % of the Pu in the surface layer of the bottom sediment derived from the Chernobyl accident. Three months after the accident, 73 % of the total {sup 239

  16. Generalized Freud's equation and level densities with polynomial potential

    Boobna, Akshat; Ghosh, Saugata

    2013-08-01

    We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

  17. Combinatorial Level Densities from a Microscopic Relativistic Structure Model

    Pezer, R.; Ventura, A.; Vretenar, D.

    2002-01-01

    A new model for calculating nuclear level densities is investigated. The single-nucleon spectra are calculated in a relativistic mean-field model with energy-dependent effective mass, which yields a realistic density of single-particle states at the Fermi energy. These microscopic single-nucleon states are used in a fast combinatorial algorithm for calculating the non-collective excitations of nuclei. The method, when applied to magic and semi-magic nuclei, such as $^{60}$Ni, $^{114}$Sn and $...

  18. Actinides analysis by accelerator mass spectrometry

    At the ANTARES accelerator at ANSTO a new beamline has been commissioned, incorporating new magnetic and electrostatic analysers, to optimise the efficiency for Actinides detection by Accelerator Mass Spectrometry (AMS). The detection of Actinides, particularly the isotopic ratios of uranium and plutonium, provide unique signatures for nuclear safeguards purposes. We are currently engaged in a project to evaluate the application of AMS to the measurement of Actinides in environmental samples for nuclear safeguards. Levels of certain fission products, Actinides and other radioactive species can be used as indicators of undeclared nuclear facilities or activities, either on-going or in the past Other applications of ultra-sensitive detection of Actinides are also under consideration. neutron-attenuation images of a porous reservoir rock

  19. The lanthanides and actinides

    This paper relates the chemical properties of the actinides to their position in the Mendeleev periodic system. The changes in the oxidation states of the actinides with increasing atomic number are similar to those of the 3d elements. Monovalent and divalent actinides are very similar to alkaline and alkaline earth elements; in the 3+ and 4+ oxidation states they resemble d elements in the respective oxidation states. However, in their highest oxidation states the actinides display their individual properties with only a slight resemblance to d elements. Finally, there is a profound similarity between the second half of the actinides and the first half of the lanthanides

  20. Superconductivity in rare earth and actinide compounds

    Rare earth and actinide compounds and the extraordinary superconducting and magnetic phenomena they exhibit are surveyed. The rare earth and actinide compounds described belong to three classes of novel superconducting materials: high temperature, high field superconductors (intermetallics and layered cuprates); superconductors containing localized magnetic moments; heavy fermion superconductors. Recent experiments on the resistive upper critical field of high Tc cuprate superconductors and the peak effect in the critical current density of the f-electron superconductor CeRu2 are discussed. (orig.)

  1. Level density and shape changes in excited sd shell nuclei

    S Santosh Kumar

    2008-07-01

    In the present calculation we have used the Monte Carlo method of generating collective spin and total energy of the nucleus for various configurations of the system with 0 single particle states available for n number of particles. The different configurations (arrangements of occupied single particle states) leading to a particular energy and spin are then collected to get the density of states for the given energy and spin . We find that if we use the cranked Nilsson model single particle states for the rotational frequency = 0.0ħω, 0.05ħω and 0.1ħω there is a shift in the maximum density of states max with a tendency for the system to become more oblate or prolate depending on the shift in the maximum density of states as the angular momentum decreases or increases. The change in nuclear level density with collectivity, i.e. with the use of cranked Nilsson model single particle levels has been noticed.

  2. Systematics of nuclear mass and level density formulas

    Nakamura, Hisashi [Fuji Electric Co. Ltd., Kawasaki, Kanagawa (Japan)

    1998-03-01

    The phenomenological models of the nuclear mass and level density are close related to each other, the nuclear ground and excited state properties are described by using the parameter systematics on the mass and level density formulas. The main aim of this work is to provide in an analytical framework the improved energy dependent shell, pairing and deformation corrections generalized to the collective enhancement factors, which offer a systematic prescription over a great number of nuclear reaction cross sections. The new formulas are shown to be in close agreement with not only the empirical nuclear mass data but the measured slow neutron resonance spacings, and experimental systematics observed in the excitation energy dependent properties. (author)

  3. Preparation of actinide targets by electrodeposition

    Trautmann, N.; Folger, H.

    1989-10-01

    Actinide targets with varying thicknesses on different substrates have been prepared by electrodeposition either from aqueous solutions or from solutions of their nitrates in isopropyl alcohol. With these techniques the actinides can be deposited almost quantitatively on various backing materials within 15 to 30 min. Targets of thorium, uranium, neptunium, plutonium, americium, curium and californium with areal densities from almost carrier-free up to 1.4 mg/cm 2 on thin beryllium, carbon, titanium, tantalum and platinum foils have been prepared. In most cases, prior to the deposition, the actinides had to be purified chemically and for some of them, due to the limited amount of material available, recycling procedures were required. Applications of actinide targets in heavy-ion reactions are briefly discussed.

  4. Evaluation of prompt neutron spectra for minor actinide nuclei

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1997-03-01

    Measurement data on fission prompt neutron spectra of minor actinide (MA) is much little, and its accuracy is also unsufficient. Therefore, conventional evaluation value of fission spectra of MA was assumed for its nuclear temperature by using a method of determining from its systemicity owing to assumption of the Maxwell type distribution, but it can be said that this method consider fully to features of MA isotopes. In this paper, some evaluation calculation results are shown by adopting an evaluation method developed by authors and based on modified Madland Nix model and are conducted by concept of physical properties on target nuclei. As a result, by adopting the level density parameter of fission fragments, the inverse process cross section, the fission product yield distribution and the total release energy, effect of inverse process cross section, mass distribution of fission product, calculation results of Cm isotope and systemicity of fission spectra of actinide isotope were investigated. (G.K.)

  5. Nuclear level density parameter with Yukawa folded potential

    The average dependence of the single-particle level-density parameter on mass number A, isospin and deformation is determined using the Yukawa folded mean-field potential for spherical and deformed nuclei at temperatures 0 ≤ T ≤ 5 MeV and elongations ranging from oblate shapes to the scission configuration of fissioning nuclei. The results are compared with similar estimates obtained previously using the relativistic mean-field theory, the Skyrme Hartree-Fock and the Thomas-Fermi approach. (author)

  6. Decay rates of resonance states at high level density

    Rotter, Ingrid; Gorin, Thomas; Persson, E

    2010-01-01

    The time dependent Schrödinger equation of an open quantum mechanical system is solved by using the stationary bi-orthogonal eigenfunctions of the non-Hermitean time independent Hamilton operator. We calculate the decay rates at low and high level density in two different formalism. The rates are, generally, time dependent and oscillate around an average value due to the non-orthogonality of the wavefunctions. The decay law is studied disregarding the oscillations. In the one-channel case, it...

  7. Study of nuclear level densities for exotic nuclei

    M Nasri Nasrabadi

    2012-06-01

    Full Text Available Nuclear level density (NLD is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying NLD for these nuclei is of crucial importance. Also, as NLD is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating NLD for practical applications, we used exact spectra distribution (SPDM for determining NLD of two neutron and proton enriched exotic nuclei with the same mass number.

  8. Quantum-Mechanical Analysis of Single-Particle Level Density

    Stetcu, I

    1997-01-01

    A quantum-mechanical calculation of the single-particle level (s.p.l.) density $g(\\epsilon)$ is carried on by using the connection with the single-particle Green's function. The relation between the imaginary part of Green's function and single-particle wave functions is used separately for the discrete and continuous states. Within the bound-states region the imaginary part of the Green's function is calculated by using the wronskian theorem. The Green's function corresponding to the continuum is written by using the regular and Jost solutions of the radial Schrodinger equation. The smooth part of the rapidly fluctuating s.p.l. density is calculated by means of the Strutinski procedure. The continuum component of the s.p.l. density has rather close values within either exact quantum-mechanical calculations with the Woods-Saxon (WS) potential, or Thomas-Fermi approximation with WS as well as finite-square potential wells, provided that the free-gas contribution is subtracted. A similar trend is obtained by me...

  9. Statistical inference of level densities from resolved resonance parameters

    Level densities are most directly obtained by counting the resonances observed in the resolved resonance range. Even in the measurements, however, weak levels are invariably missed so that one has to estimate their number and add it to the raw count. The main categories of missinglevel estimators are discussed in the present review, viz. (I) ladder methods including those based on the theory of Hamiltonian matrix ensembles (Dyson-Mehta statistics), (II) methods based on comparison with artificial cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (III) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The language of mathematical statistics is employed to clarify the basis of, and the relationship between, the various techniques. Recent progress in the treatment of resolution effects, detection thresholds and p-wave admixture is described. (orig.)

  10. Constraining the level density using fission of lead projectiles

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2015-10-01

    The nuclear level density is one of the main ingredients for the statistical description of the fission process. In this work, we propose to constrain the description of this parameter by using fission reactions induced by protons and light ions on 208Pb at high kinetic energies. The experiment was performed at GSI (Darmstadt), where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to measure the atomic number of the two fission fragments in coincidence. This measurement permitted us to obtain with high precision the partial fission cross sections and the width of the charge distribution as a function of the atomic number of the fissioning system. These data and others previously measured, covering a large range in fissility, are compared to state-of-the-art calculations. The results reveal that total and partial fission cross sections cannot unambiguously constrain the level density at ground-state and saddle-point deformations and additional observables, such as the width of the charge distribution of the final fission fragments, are required.

  11. Noninvasive liquid level/density measurement in pressure vessels

    This research investigated and demonstrated the principles of noninvasive detection of liquid level/density variations in a nuclear reactor pressure vessel. The noninvasive signal detection technique is based on using ex-vessel fast neutron detectors to sense variations in the escape rate of fast neutrons with changes in level/density in the pressure vessel. A prototype instrumentation package, deploying four fission chambers in a string, was developed and tested at the Penn State Breazeale Nuclear Reactor, as well as in six loss-of-coolant experiments at the Loss of Fluid Test Facility of the Idaho National Engineering Laboratory, Idaho Falls, Idaho. The six loss of coolant experiments consisted of two large break and four small break simulations. The prototype instrumentation package was microcomputer based, and was designed to operate in both current and pulse models. It tracked, accurately and quickly, the hydraulic conditions in the pressure vessel during these experiments. Analysis of its response data showed clear identification of: (a) downcomer voiding and refilling, (b) core voiding and refilling, (c) combined core and downcomer voiding and refilling, (d) top-down voiding and refilling of the core, (e) bottom-up voiding and refilling of the core, and (f) boiling and frothing in the pressure vessel. A set of algorithms for online detection and tracking of departure from normal hydraulic conditions is presented

  12. Actinide production in /sup 136/Xe bombardments of /sup 249/Cf

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from /sup 136/Xe bombardments of /sup 249/Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these /sup 136/Xe + /sup 249/Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the /sup 136/Xe + /sup 248/Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs.

  13. Benchmarking mean-field approximations to level densities

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Nakada, H.

    2016-04-01

    We assess the accuracy of finite-temperature mean-field theory using as a standard the Hamiltonian and model space of the shell model Monte Carlo calculations. Two examples are considered: the nucleus 162Dy, representing a heavy deformed nucleus, and 148Sm, representing a nearby heavy spherical nucleus with strong pairing correlations. The errors inherent in the finite-temperature Hartree-Fock and Hartree-Fock-Bogoliubov approximations are analyzed by comparing the entropies of the grand canonical and canonical ensembles, as well as the level density at the neutron resonance threshold, with shell model Monte Carlo calculations, which are accurate up to well-controlled statistical errors. The main weak points in the mean-field treatments are found to be: (i) the extraction of number-projected densities from the grand canonical ensembles, and (ii) the symmetry breaking by deformation or by the pairing condensate. In the absence of a pairing condensate, we confirm that the usual saddle-point approximation to extract the number-projected densities is not a significant source of error compared to other errors inherent to the mean-field theory. We also present an alternative formulation of the saddle-point approximation that makes direct use of an approximate particle-number projection and avoids computing the usual three-dimensional Jacobian of the saddle-point integration. We find that the pairing condensate is less amenable to approximate particle-number projection methods because of the explicit violation of particle-number conservation in the pairing condensate. Nevertheless, the Hartree-Fock-Bogoliubov theory is accurate to less than one unit of entropy for 148Sm at the neutron threshold energy, which is above the pairing phase transition. This result provides support for the commonly used "back-shift" approximation, treating pairing as only affecting the excitation energy scale. When the ground state is strongly deformed, the Hartree-Fock entropy is significantly

  14. Benchmarking mean-field approximations to level densities

    Alhassid, Y; Gilbreth, C N; Nakada, H

    2015-01-01

    We assess the accuracy of finite-temperature mean-field theory using as a standard the Hamiltonian and model space of the shell model Monte Carlo calculations. Two examples are considered: the nucleus $^{162}$Dy, representing a heavy deformed nucleus, and $^{148}$Sm, representing a nearby heavy spherical nucleus with strong pairing correlations. The errors inherent in the finite-temperature Hartree-Fock and Hartree-Fock-Bogoliubov approximations are analyzed by comparing the entropies of the grand canonical and canonical ensembles, as well as the level density at the neutron resonance threshold, with shell model Monte Carlo (SMMC) calculations, which are accurate up to well-controlled statistical errors. The main weak points in the mean-field treatments are seen to be: (i) the extraction of number-projected densities from the grand canonical ensembles, and (ii) the symmetry breaking by deformation or by the pairing condensate. In the absence of a pairing condensate, we confirm that the usual saddle-point appr...

  15. Spin Hamiltonians for actinide ions

    The breakdown of Russel Saunders coupling for correlated f-levels of actinide ions is due to both spin orbit coupling and the crystalline electric field (CEF). Experiments on curium, an S-state ion in the metal for which the CEF is weak indicate a g-factor close to the Russel-Saunders value. Spin-orbit coupling is therefore too weak to produce jj coupling. This suggests a model for magnetic actinide ions in which the CEF ground multiplet is well separated from higher levels, completely determining thermodynamic magnetic properties. On this basis simplified spin Hamiltonians are derived for GAMMA1-GAMMA5 ground states in order to interpret thermodynamic measurements and ordering phenomena. (author)

  16. Research in actinide chemistry

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH-, CO32-, PO43-, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  17. PWRs potentialities for minor actinides burning

    In the frame of the SPIN program at CEA, the impacts of the Minor Actinides (MA) incineration in PWRs are analysed. The aim is to reduce the mass and the potential radiotoxicity level. This study is done separately one on the Plutonium recycling. But the plutonium is essential. Thus, the recycling of all Actinide elements is evaluated in a PWR nuclear yard. A sensitivity study is done to evaluate the incineration for each Minor Actinide element. This gives us the most efficient way of incineration for each MA element in a PWR and help us to design a PWR burner. This burner is disposed in a PWR nuclear system in which the Actinides are recycled until equilibrium. (authors). 2 refs

  18. Density and wave function analysis of actinide complexes: What can fuzzy atom, atoms-in-molecules, Mulliken, Löwdin, and natural population analysis tell us?

    Clark, Aurora E.; Sonnenberg, Jason L.; Hay, P. Jeffrey; Martin, Richard L.

    2004-08-01

    Recent advances in computational methods have made it possible to calculate the wave functions for a wide variety of simple actinide complexes. Equally important is the ability to analyze the information contained therein and produce a chemically meaningful understanding of the electronic structure. Yet the performance of the most common wave function analyses for the calculation of atomic charge and bond order has not been thoroughly investigated for actinide systems. This is particularly relevant because the calculation of charge and bond order even in transition metal complexes is known to be fraught with difficulty. Here we use Mulliken, Löwdin, natural population analysis, atoms-in-molecules (AIM), and fuzzy atom techniques to determine the charges and bond orders of UO22+, PuO22+, UO2, UO2Cl42-, UO2(CO)52+, UO2(CO)42+, UO2(CN)53-, UO2(CN)42-, UO2(OH)53-, and UO2(OH)42-. This series exhibits a clear experimental and computational trend in bond lengths and vibrational frequencies. The results indicate that Mulliken and Löwdin populations and bond orders are unreliable for the actinyls. Natural population analysis performs well after modification of the partitioning of atomic orbitals to include the 6d in the valence space. The AIM topological partitioning is insensitive to the electron donating ability of the equatorial ligands and the relative atomic volume of the formally U(VI) center is counterintuitively larger than that of O2- in the UO22+ core. Lastly, the calibrated fuzzy atom method yields reasonable bond orders for the actinyls at significantly reduced computational cost relative to the AIM analysis.

  19. Evaluation of actinide partitioning and transmutation

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  20. Molecular cluster theory of chemical bonding in actinide oxide

    The electronic structure of actinide monoxides AcO and dioxides AcO2, where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO10-6 and AcO12-8 representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carried out for NpO, in which the NpO6 cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides

  1. Anthropogenic Actinides in the Environment

    The use of nuclear energy and the testing of nuclear weapons have led to significant releases of anthropogenic isotopes, in particular a number of actinide isotopes generally not abundant in nature. Most prominent amongst these are 239Pu, 240Pu, and 236U. The study of these actinides in nature has been an active field of study ever since. Measurements of actinides are applied to nuclear safeguards, investigating the sources of contamination, and as a tracer for a number of erosion and hydrology studies. Accelerator Mass Spectrometry (AMS) is ideally suited for these studies and generally offers higher sensitivities than competing techniques, like ICP-MS or decay counting. Recent advances in AMS allow the study of “minor” plutonium isotopes (241Pu, 242Pu, and 244Pu). Furthermore, 236U can now be measured at the levels expected from the global stratospheric fall-out of the atmospheric nuclear weapon tests in the 1950s and 1960s. Even the pre-anthropogenic isotope ratios could be within reach. However, the distribution and abundance levels of these isotopes are not well known yet. I will present an overview of the field, and in detail two recent studies on minor plutonium isotopes and 236U, respectively.(author)

  2. Level Density Parameter: A Tool to Study the Particle Spectra

    The compound nucleus 76Kr* is formed in the heavy-ion fusion reactions by an asymmetric entrance channel 12C+64Zn and the symmetric entrance channel 31P+45Sc at the excitation energy of 75 MeV and angular momentum of 39 η. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evap orated after neutron emission when the system is sufficiently cooled down and the higher λ-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged particle emission.

  3. Separation of trivalent actinides and lanthanides from simulated high-level waste using cobalt bis(dicarbollide) ion derivate substituted with diphenyl-N-tert.octyl-carbamoylmethylphosphine oxide

    Selucký, P.; Lučaníková, M.; Grüner, Bohumír

    2012-01-01

    Roč. 100, č. 3 (2012), s. 179-183. ISSN 0033-8230 R&D Projects: GA MŠk LC523; GA ČR GA104/09/0668 Institutional research plan: CEZ:AV0Z40320502 Keywords : dicarbollide * CMPO * liquid-liquid extraction * actinides * lanthanides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.373, year: 2012

  4. Research in actinide chemistry

    1991-01-01

    This report contains research results on studies of inorganic and organic complexes of actinide and lanthanide elements. Special attention is given to complexes of humic acids and to spectroscopic studies.

  5. A Laplace-like formula for the energy dependence of the nuclear level density parameter

    Canbula, Bora; Canbula, Deniz; Babacan, Halil

    2014-01-01

    Collective effects in the level density are not well understood, and including these effects as enhancement factors to the level density does not produce sufficiently consistent predictions of observables. Therefore, collective effects are investigated in the level density parameter instead of treating them as a final factor in the level density. A new Laplace-like formula is proposed for the energy dependence of the level density parameter, including collective effects. A significant improvement has been achieved in agreement between observed and predicted energy levels. This new model can also be used in both structure and reaction calculations of the nuclei far from stability, especially near the drip lines.

  6. A Laplace-like formula for the energy dependence of the nuclear level density parameter

    Collective effects in the level density are not well understood, and including these effects as enhancement factors to the level density does not produce sufficiently consistent predictions of observables. Therefore, collective effects are investigated in the level density parameter instead of treating them as a final factor in the level density. A new Laplace-like formula is proposed for the energy dependence of the level density parameter, including collective effects. A significant improvement has been achieved in agreement between observed and predicted energy levels. This new model can also be used in both structure and reaction calculations of the nuclei far from stability, especially near the drip lines

  7. Work within the coordinated programme on environmental evaluation and hazard assessment of the separation of the actinides from the high-level waste from fuel reprocessing followed by either transmutation of separate disposal

    Reduction of plutonium losses in non-high-level wastes streams from fuel reprocessing is important in the conventional post-fission operations and would be essential in any actinide partitioning alternatives. The balance of input process streams and output waste streams in present reprocessing technology is compared to the balance after process modifications based on recent experimental developments. The results are showing that by the introduction of new electrochemical redox processes and non-salt-forming process chemicals the routinely generated intermediate-level waste streams from PUREX reprocessing can be avoided. Plutonium-bearing waste streams can be extensively recycled within the chemical processing

  8. Use of organophosphorus extractants impregnated on silica gel for the extraction chromatographic separation of minor actinides from high level waste solutions

    Silica-gel has been used as an inert support for the extraction chromatographic separation of actinides and lanthanides from HNO3 and synthetic high level waste (HLW) solutions. Silica-gel was impregnated with tri-butyl phosphate (TBP), to yield STBP; 2-ethylhexyl phosphonic acid, mono 2-ethylhexyl ester (KSM-17, equivalent to PC-88A), SKSM; octyl(phenyl)-N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO), SCMPO; and trialkylphosphine oxide (Cyanex-923), SCYN and sorption of Pu(IV), Am(III) and Eu(III) from HNO3 solutions was studied batchwise. Several parameters, like time of equilibration, HNO3 and Pu(IV) concentrations were varied. The uptake of Pu(IV) from 3.0M HNO3 followed the order SCMPO>SCYN>SKSM>STBP. With increasing HNO3 concentration, DPu increased up to 3.0M of HNO3 for STBP, SKSM and SCMPO and then decreased. In the case of Am and Eu with SCMPO, the D values initially increased between 0.5 to 1.0M of HNO3, remained constant up to 5.0M and then slightly decreased at 7.5M. Also, the effects of NaNO3, Nd(III) and U(VI) concentrations on the uptake of Am(III) from HNO3 solutions were evaluated. With increasing NaNO3 concentration up to 3.0M, DAm remained almost constant while it was observed that it decreases drastically by adding Nd(III) or U(VI). The uptake of Pu and Am from synthetic pressurized heavy water reactor high level waste (PHWR-HLW) in presence of high concentrations of uranium and after depleting the uranium content, and finally extraction chromatographic column separation of Pu and Am from U-depleted synthetic PHWR-HLW have been carried out. Using SCMPO, high sorption of Pu, Am and U was obtained from the U-depleted HLW solution. These metal ions were subsequently eluted using various reagents. The sorption results of the metal ions on silica-gel impregnated with several phosphorus based extractants have been compared. The uptake of Am, Pu and rare earths by SCMPO has been compared with those where CMPO was sorbed on Chromosorb-102

  9. Use of fast reactors for actinide transmutation

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  10. Waste disposal aspects of actinide separation

    Two recent NRPB reports are summarized (Camplin, W.C., Grimwood, P.D. and White, I.F., The effects of actinide separation on the radiological consequences of disposal of high-level radioactive waste on the ocean bed, Harwell, National Radiological Protection Board, NRPB-R94 (1980), London, HMSO; Hill, M.D., White, I.F. and Fleishman, A.B., The effects of actinide separation on the radiological consequences of geologic disposal of high-level waste. Harwell, National Radiological Protection Board, NRPB-R95 (1980), London, HMSO). They describe preliminary environmental assessments relevant to waste arising from the reprocessing of PWR fuel. Details are given of the modelling of transport of radionuclides to man, and of the methodology for calculating effective dose equivalents in man. Emphasis has been placed on the interaction between actinide separation and the disposal options rather than comparison of disposal options. The reports show that the effects of actinide separation do depend on the disposal method. Conditions are outlined where the required substantial further research and development work on actinide separation and recycle would be justified. Toxicity indices or 'toxic potentials' can be misleading and should not be used to guide research and development. (U.K.)

  11. Actinide isotopic analysis systems

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  12. The coupling of capillary electrophoresis-inductively coupled plasma mass spectrometer as a speciation instrument for actinides at trace level; Le couplage electrophorese capillaire-spectrometre de masse a source plasma en tant qu'instrument de speciation des actinides a l'etat de traces

    Delorme, A

    2004-07-01

    An interface between the separation technique (capillary electrophoresis) and the analytical technique (Inductively Coupled Plasma - Mass Spectrometer) was developed. In that sense, bibliographic and parametric studies allowed to define necessary conditions for the good working of both techniques. The results obtained led to the realisation of an interface capillary electrophoresis / ICP-MS (CE / ICP-MS). This one was experimentally validated on classical separations (alkalis / earth-alkalis and lanthanides) and the detection limit of the analytical system was determined equal to 4 x 10{sup -11} mol.L{sup -1} for plutonium. This result exhibits a gain in detection limit of a factor higher than 10{sup 4} compared to the capillary electrophoresis in standard detection (UV). The studies were made in order to check the capacity of the CE / ICP-MS coupling as a speciation instrument for actinides at trace level and to define the associated analytical procedures. The coupling turned out to be a suited instrument for the determination of absolute electrophoretic mobilities at infinite dilution (physico-chemical property which allows to predict the migration time of an ion under an electrical field in a given electrolyte), for the determination of thermodynamic constants and for the separation of different actinide oxidation states in solution. (author)

  13. Actinides and Life's Origins.

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  14. Electronic structure and ionicity of actinide oxides from first principles

    Petit, Leon; Svane, Axel; Szotek, Z.;

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which...... actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding...

  15. Radiochemistry and actinide chemistry

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 1012, are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  16. Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review

    Xiaoli Tan

    2010-11-01

    Full Text Available Lanthanides/actinides sorption speciation on minerals and oxides by means of time resolved laser fluorescence spectroscopy (TRLFS, extended X-ray absorption fine structure spectroscopy (EXAFS and density functional theory (DFT is reviewed in the field of nuclear disposal safety research. The theoretical aspects of the methods are concisely presented. Examples of recent research results of lanthanide/actinide speciation and local atomic structures using TRLFS, EXAFS and DFT are discussed. The interaction of lanthanides/actinides with oxides and minerals as well as their uptake are also of common interest in radionuclide chemistry. Especially the sorption and inclusion of radionuclides into several minerals lead to an improvement in knowledge of minor components in solids. In the solid-liquid interface, the speciation and local atomic structures of Eu(III, Cm(III, U(VI, and Np(IV/VI in several natural and synthetic minerals and oxides are also reviewed and discussed. The review is important to understand the physicochemical behavior of lanthanides/actinides at a molecular level in the natural environment.

  17. Stochastic estimation of nuclear level density in the nuclear shell model: An application to parity-dependent level density in 58Ni

    Noritaka Shimizu

    2016-02-01

    Full Text Available We introduce a novel method to obtain level densities in large-scale shell-model calculations. Our method is a stochastic estimation of eigenvalue count based on a shifted Krylov-subspace method, which enables us to obtain level densities of huge Hamiltonian matrices. This framework leads to a successful description of both low-lying spectroscopy and the experimentally observed equilibration of Jπ=2+ and 2− states in 58Ni in a unified manner.

  18. The electronic structure of the lanthanides and actinides, a comparison

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  19. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  20. Level density fluctuations at the bottom of a potential well

    We evaluate trace formulas for various perturbations of two-dimensional harmonic oscillators. Such systems arise naturally in the expansion of generic potentials about local minima. For large enough perturbations, the usual theory for isolated orbits applies and we can reproduce the long and medium-range oscillators in the density of states in terms of the shortest periodic orbits. For small perturbations or low energies, the Gutzwiller amplitudes diverge due to the approaching degeneracy of the harmonic oscillator. We employ a perturbative analysis of the classical dynamics to give a treatment of the trace formula that is valid near the degenerate harmonic regime. First order perturbation theory works for generic cases. For certain potentials, such as Henon-Heiles, discrete symmetries lead to a null result at first order and second order calculations are necessary to capture the dominant features. (authors)

  1. Actinides in Solution: Disproportionation, Strong Correlations, and Emergence

    Marston, Brad; Horowitz, Steven

    2010-03-01

    Plutonium in acid solutions can be found in oxidation states III through VI. There is a striking near perfect degeneracy of the reduction-oxidation (redox) potentials, each being about 1 volt. Neptunium is the only other element that approaches this degree of degeneracy. One consequence of the redox degeneracy is a marked tendency of plutonium ions to disproportionate; up to four different oxidation states can coexist simultaneously in the same solution, greatly complicating the environmental chemistry of the element. While the degeneracy could simply be a coincidence, it could also be the manifestation of a higher-level organizing principle at work. Other systems that exhibit disproportionation raise the possibility of an emergent negative-U attractive interaction. The hypothesis is tested by combining first-principles relativistic density-functional calculations using the Amsterdam Density Functional (ADF) package with exact diagonalizations of Hubbard-like models of the strong correlations between the actinide 5f electrons.

  2. Level density of $^{56}$Fe and low-energy enhancement of $\\gamma$-strength function

    Voinov, A. V.; Grimes, S. M.; Agvaanluvsan, U.; Algin, E.; Belgya, T.; Brune, C. R.; Guttormsen, M.; Hornish, M. J.; T. Massey; Mitchell, G. E.; Rekstad, J.; Schiller, A.; Siem, S.

    2006-01-01

    The $^{55}$Mn$(d,n)^{56}$Fe differential cross section is measured at $E_d=7$ MeV\\@. The $^{56}$Fe level density obtained from neutron evaporation spectra is compared to the level density extracted from the $^{57}$Fe$(^3$He,$\\alpha\\gamma)^{56}$Fe reaction by the Oslo-type technique. Good agreement is found between the level densities determined by the two methods. With the level density function obtained from the neutron evaporation spectra, the $^{56}$Fe $\\gamma$-strength function is also de...

  3. Actinide separative chemistry

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  4. Shampoo, Soy Sauce, and the Prince's Pendant: Density for Middle-Level Students

    Chandrasekhar, Meera; Litherland, Rebecca

    2006-01-01

    In this article, the authors describe a series of activities they have used with middle-level students. The first set of lessons explores density through the layering of liquids. In the second set, they use some of the same liquids to explore the density of solids. The third set investigates how temperature affects the density of…

  5. The role of the nuclear level density in spallation neutron studies

    The influence of the nuclear level density parameters of the various nuclides determined recently on the neutron yields, produced by 0.8--1.4 GeV proton bombardments of thick tungsten target, was investigated. The results show that better agreement between measurements and LAHET calculations is achieved on the basis of a new set of level density parameters

  6. IAEA advisory group meeting on basic and applied problems of nuclear level densities

    Bhat, M.R. (ed.)

    1983-06-01

    Separate entries were made in the data base for 17 of the 19 papers included. Two papers were previously included in the data base. Workshop reports are included on (1) nuclear level density theories and nuclear model reaction cross-section calculations and (2) extraction of nuclear level density information from experimental data. (WHK)

  7. A general iteration scheme for the calculation of level densities, and results using a semiclassical approximation

    A general scheme is derived to calculate m-particle n-hole fermion level densities for any single particle Hamiltonian taking into account Pauli exclusion. This technique is applied to obtain level densities of the three dimensional isotropic Harmonic Oscillator semiclassically in the Thomas-Fermi approach

  8. IAEA advisory group meeting on basic and applied problems of nuclear level densities

    Separate entries were made in the data base for 17 of the 19 papers included. Two papers were previously included in the data base. Workshop reports are included on (1) nuclear level density theories and nuclear model reaction cross-section calculations and (2) extraction of nuclear level density information from experimental data

  9. Recent advances in the microscopic calculations of level densities by the shell model Monte Carlo method

    The shell model Monte Carlo (SMMC) method enables calculations in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods, and is particularly suitable for the calculation of level densities in the presence of correlations. We review recent advances and applications of SMMC for the microscopic calculation of level densities. Recent developments include (1) a method to calculate accurately the ground-state energy of an odd-mass nucleus, circumventing a sign problem that originates in the projection on an odd number of particles, and (2) a method to calculate directly level densities, which, unlike state densities, do not include the spin degeneracy of the levels. We calculated the level densities of a family of nickel isotopes 59-64Ni and of a heavy deformed rare-earth nucleus 162Dy and found them to be in close agreement with various experimental data sets. (author)

  10. Recent Advances in the Microscopic Calculations of Level Densities by the Shell Model Monte Carlo Method

    Alhassid, Y; Liu, S; Mukherjee, A; Nakada, H

    2014-01-01

    The shell model Monte Carlo (SMMC) method enables calculations in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods, and is particularly suitable for the calculation of level densities in the presence of correlations. We review recent advances and applications of SMMC for the microscopic calculation of level densities. Recent developments include (i) a method to calculate accurately the ground-state energy of an odd-mass nucleus, circumventing a sign problem that originates in the projection on an odd number of particles, and (ii) a method to calculate directly level densities, which, unlike state densities, do not include the spin degeneracy of the levels. We calculated the level densities of a family of nickel isotopes $^{59-64}$Ni and of a heavy deformed rare-earth nucleus $^{162}$Dy and found them to be in close agreement with various experimental data sets.

  11. Photochemistry of the actinides

    It has been found that all three major actinides have a useful variety of photochemical reactions which could be used to achieve a separations process that requires fewer reagents. Several features merit enumerating: (1) Laser photochemistry is not now as uniquely important in fuel reprocessing as it is in isotopic enrichment. The photochemistry can be successfully accomplished with conventional light sources. (2) The easiest place to apply photo-reprocessing is on the three actinides U, Pu, and Np. The solutions are potentially cleaner and more amenable to photoreactions. (3) Organic-phase photoreactions are probably not worth much attention because of the troublesome solvent redox chemistry associated with the photochemical reaction. (4) Upstream process treatment on the raffinate (dissolver solution) may never be too attractive since the radiation intensity precludes the usage of many optical materials and the nature of the solution is such that light transmission into it might be totally impossible

  12. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  13. Status report on actinide and fission product transmutation studies

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  14. Actinide interactions at microbial interfaces: an interdisciplinary challenge

    An overview on the current state of knowledge of microbial actinide interaction processes is presented. Several detailed examples of the interaction of aerobic soil bacteria (Pseudomonas, Bacillus and Deinococcus strains) with uranium and plutonium are discussed. Details of the nature of the bacterial functional groups involved in the interfacial actinide interaction process are reported. Based on time-resolved laser-induced fluorescence spectroscopy (TRLFS) and synchrotron X-ray absorption spectroscopy (XANES and EXAFS) studies, molecular-level mechanistic details of the different interaction processes are discussed. Areas of this emerging field in actinide research are outlined where additional information and integrated interdisciplinary research is required

  15. Fast neutron scattering on actinide nuclei

    More and more sophisticated neutron experiments have been carried out with better samples in several laboratories and it was necessary to intercompare them. In this respect, let us quote for example (n,n'e) and (n,n'#betta#) measurements. Moreover, high precision (p,p), (p,p') and (p,n) measurements have been made, thus supplementing neutron experiments in the determination of the parameters of the optical model, still widely used to describe the neutron-nucleus interaction. The optical model plays a major role and it is therefore essential to know it well. The spherical optical model is still very useful, especially because of its simplicity and of the relatively short calculation times, but is obviously insufficient to treat deformed nuclei such as actinides. For accurate calculations about these nuclei, it is necessary to use a deformed potential well and solve a set of coupled equations, hence long computational times. The importance of compound nucleus formation at low energy requires also a good knowledge of the statistical model together with that of all the reaction mechanisms which are involved, including fission for which an accurate barrier is necessary and, of course, well-adjusted level densities. The considerations form the background of the Scientific Programme set up by a Programme Committee whose composition is given further on in this book

  16. On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f0 actinide species

    Fromager, Emmanuel; Réal, Florent; Wåhlin, Pernilla; Wahlgren, Ulf; Jensen, Hans Jørgen Aagaard

    2009-01-01

    investigation of a universal range separation. The accuracy of the currently best MC-srDFT (μ=0.3 a.u.) approach has also been tested for equilibrium geometries. Though it performs as well as wave function theory and DFT for static-correlation-free systems, it fails in describing the neptunyl (VII) ion NpO23......+ where static correlation is significant; bending is preferred at the MC-srDFT (μ=0.3 a.u.) level, whereas the molecule is known to be linear. This clearly shows the need for better short-range functionals, especially for the description of the short-range exchange. It also suggests that the bending...... tendencies observed in DFT for NpO23+ cannot be fully explained by the bad description of static correlation effects by standard functionals. A better description of the exchange seems to be essential too....

  17. Actinides: why are they important biologically

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  18. Photoelectron spectra of actinide compounds

    A brief overview of the application of photoelectron spectroscopy is presented for the study of actinide materials. Phenomenology as well as specific materials are discussed with illustrative examples

  19. Gas core reactors for actinide transmutation. [uranium hexafluoride

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  20. Separation of actinides from spent nuclear fuel: A review.

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials. PMID:27427893

  1. Nuclear level densities with pairing and self-consistent ground-state shell effects

    Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (orig.)

  2. A comparative simulation study of data-driven methods for estimating density level sets

    Saavedra-Nieves, Paula; González-Manteiga, Wenceslao; Rodríguez-Casal, Alberto

    2014-01-01

    Density level sets are mainly estimated using one of three methodologies: plug-in, excess mass, or a hybrid approach. The plug-in methods are based on replacing the unknown density by some nonparametric estimator, usually the kernel. Thus, the bandwidth selection is a fundamental problem from a practical point of view. Recently, specific selectors for level sets have been proposed. However, if some a priori information about the geometry of the level set is available, then excess mass algorit...

  3. Microscopic calculation of level densities: the shell model Monte Carlo approach

    The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 1029. We find good agreement with experimental results for both state densities and 2> (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162Dy and found it to agree well with experiments

  4. Landau theory of nuclear level density and its application in description of nuclear level density in the region of discrete and s-wave neutron resonance energies

    Elmas, A; Gonul, B

    2016-01-01

    In this work, the reliability of the Landau expression for the nuclear level density calculations is tested, for the first-time, to describe nuclear level densities of some light, intermediate mass and heavy nuclei at excitations corresponding to discrete and s-wave neutron resonance energies. The chi-2 minimizing method is used in treatment of the experimental data for the two suggested energy range of discrete energies given by Nuclear Data Sheet [1] and by the systematic for nuclear level density parametrization in [2]. Our comparison with the related data in the discrete energy range has shown that the results obtained by the Landau expression are better than those of back-shifted Fermi-gas model and constant temperature approximation. This result is also valid for some nuclei of interest when the s-wave neutron resonance level density is included to check theoretical prescriptions in the energy range from initial bound states to unbound states near the neutron binding energy.

  5. Actinides: from heavy fermions to plutonium metallurgy

    The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe13 and UPt3. Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior

  6. Beyond High-Density Lipoprotein Cholesterol Levels: Evaluating High-Density Lipoprotein Function as Influenced by Novel Therapeutic Approaches

    deGoma, Emil M.; deGoma, Rolando L.; Rader, Daniel J.

    2008-01-01

    A number of therapeutic strategies targeting high-density lipoprotein (HDL) cholesterol and reverse cholesterol transport are being developed to halt the progression of atherosclerosis or even induce regression. However, circulating HDL cholesterol levels alone represent an inadequate measure of therapeutic efficacy. Evaluation of the potential effects of HDL-targeted interventions on atherosclerosis requires reliable assays of HDL function and surrogate markers of efficacy. Promotion of macr...

  7. Bone density and hemoglobin levels in older persons: results from the InCHIANTI study.

    Cesari, Matteo; Pahor, Marco; Lauretani, Fulvio; Penninx, Brenda W H J; Bartali, Benedetta; Russo, Roberto; Cherubini, Antonio; Woodman, Richard; Bandinelli, Stefania; Guralnik, Jack M; Ferrucci, Luigi

    2005-06-01

    Hypoxemia has been recognized as a risk factor for bone loss. The aim of the present study is to investigate the relationship of bone mass and density measures with anemia and hemoglobin levels in a large sample of older community-dwelling persons. The study is based on data from 950 participants enrolled in the "Invecchiare in Chianti" (Aging in the Chianti area, InCHIANTI) study. All the analyses were performed considering continuous hemoglobin levels as well as the dichotomous anemia variable (defined according to WHO criteria as hemoglobin < 12 g/dl in women and < 13 g/dl in men). A peripheral quantitative computerized tomography (pQCT) scan of the right calf was performed in all participants to evaluate total bone density, trabecular bone density, cortical bone density, and the ratio between cortical and total bone area. Linear regression analyses were used to assess the multivariate relationship of pQCT bone measures with anemia and hemoglobin levels after adjustment for demographics, chronic conditions, muscle strength and biological variables. Participants were 75.0 (SD 6.9) years old. In our sample, 101 participants (10.6%) were anemic. In women, coefficients from adjusted linear regression analyses evaluating the association between pQCT bone measures (per SD increase) and hemoglobin levels/anemia showed significant associations of anemia with total bone density (beta = -0.335, SE = 0.163; P = 0.04) and cortical bone density (beta = -0.428, SE = 0.160; P = 0.008). Relationships with borderline significance were found for the associations of anemia with trabecular bone density and the ratio between cortical and total bone area. Significant associations were found between hemoglobin levels and trabecular bone density (beta = 0.112, SE = 0.049; P = 0.02), total bone density (beta = 0.101, SE = 0.046; P = 0.03), cortical bone density (beta = 0.100, SE = 0.046; P = 0.03) and the ratio between cortical bone and total area (beta = 0.092, SE = 0.045; P = 0

  8. Level densities and $\\gamma$-ray strength functions in Sn isotopes

    Toft, H. K.; Larsen, A.C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-01-01

    The nuclear level densities of $^{118,119}$Sn and the $\\gamma$-ray strength functions of $^{116,118,119}$Sn below the neutron separation energy are extracted with the Oslo method using the ($^3$He, \\,$\\alpha \\gamma$) and ($^3$He,$^3$He$^\\prime\\gamma$) reactions. The level density function of $^{119}$Sn displays step-like structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of $^{119}$Sn is determined to be $(1.7 \\pm 0.2)\\,k_B$. Results ...

  9. Actinide recovery from pyrochemical residues

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 62- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO3-4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  10. Leaching of actinides from nuclear waste glass: French experience

    The activity concentration versus time of a typical LWR glass shows that after 300 years most of the activity is attributable to three actinides (Np, Pu and Am) and to 99Tc. This activity decreases slowly, and some 50.000 years are necessary before the activity concentration drops to the level of the richest natural ores. This paper reviews the current state of knowledge concerning the kinetics of actinide release from glass subjected to aqueous leaching

  11. Study on Subcritical System Disposing Plutonium and High-level Actinides%次临界系统处理钚及高放锕系元素的概念研究

    沈姚崧; 刘成安

    2000-01-01

    对加速器驱动的次临界反应堆处理反应堆级钚和高放锕系废物进行了概念性设计的研究.建立了以液态铋系合金金属为载热剂的次临界堆芯模型,利用ADVBISON程序对该问题进行了数值计算,得到了满意的中子学、燃耗和放射性衰变等结果.%Disposition of the reactor-plutonium and high-level actinides by usingaccelerator-driven subcritical reactor was studied theoretically and the corresponding core model using liquid Bi-alloy as the reactor coolant was proposed. The satisfied numerical results of neutronics, burn-up and radioactivity were obtained by the ADVBISON code.

  12. Library of Recommended Actinide Decay Data, 2011

    A major objective of the nuclear data programme within the IAEA is to devise and promote improvements in the quality of nuclear data used in science and technology. Work of this nature was performed by participants in an IAEA coordinated research project (CRP) formulated in 2005 to produce an updated decay data library of important actinides recommended for adoption in various nuclear applications. The specific objectives of this project were to improve the accuracy of heavy element and actinide decay data in order to: determine more accurately the effects of these recommended data on fission reactor fuel cycles; aid in improved assessments of nuclear waste management procedures; provide more reliable decay data for nuclear safeguards; assess with greater confidence the environmental impact of specific actinides and other heavy element radionuclides generated through their decay chains; and extend the scientific knowledge of actinide decay characteristics for nuclear physics research and non-energy applications. Some CRP participants were able to perform a number of highly precise measurements, based on the availability of suitable source materials, and systematic in depth evaluations of the requested decay data. These requested data consisted primarily of half-lives, and α, β-, EC/β+, Auger electron, conversion electron, X ray and γ ray energies and emission probabilities, all with uncertainties expressed at the 1σ confidence level. The IAEA established a CRP entitled Updated Decay Data Library for Actinides in mid-2005. During the course of discussions at the coordinated research meetings, the participants agreed to undertake work programmes of measurements and evaluations, to be completed by the end of 2010. The results of the evaluation studies undertaken by the CRP are presented in Annex I. Annexes II-V include descriptions of the sources of the evaluated decay data and each individual evaluation process in detail, as well as data files in the Evaluated

  13. Optical techniques for actinide research

    In recent years, substantial gains have been made in the development of spectroscopic techniques for electronic properties studies. These techniques have seen relatively small, but growing, application in the field of actinide research. Photoemission spectroscopies, reflectivity and absorption studies, and x-ray techniques will be discussed and illustrative examples of studies on actinide materials will be presented

  14. Evaluation study on silica/polymer-based CA-BTP adsorbent for the separation of minor actinides from simulated high-level liquid wastes

    A silica/polymer-based CA-BTP/SiO2-P adsorbent was prepared to separate minor actinides and some key radionuclides from HLLW. The adsorption properties of CA-BTP/SiO2-P toward 238U(VI), 239Pu(IV), 241Am(III), 99Tc(VII), 152Eu(III), and some typical fission products were studied. CA-BTP/SiO2-P stability against c-radiation was also evaluated. It found CA-BTP/SiO2-P showed very poor adsorption abilities toward U(VI) and most experimental FPs, while CA-BTP/SiO2-P exhibited higher adsorption abilities toward 241Am(III), 239Pu(IV), and 99Tc(VII) in 0.5-1 M HNO3 solution. Moreover, dry CA-BTP/SiO2-P demonstrated no instability when the radiation dose was up to 161 kGy. CA-BTP/SiO2-P adsorbent is a potential candidate for separating 241Am(III), 239Pu(IV), and 99Tc(VII) from HLLW. (author)

  15. At last, competitive microscopic predictions of nuclear masses and nuclear level densities

    A microscopic HF-BCS formula for nuclear masses, and a new nuclear level density formula within the microscopic statistical approach and based on the above mentioned HF-BCS method, are briefly presented

  16. Level density of $^{56}$Fe and low-energy enhancement of $\\gamma$-strength function

    Voinov, A V; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T; Mitchell, G E; Rekstad, J; Schiller, A; Siem, S

    2006-01-01

    The $^{55}$Mn$(d,n)^{56}$Fe differential cross section is measured at $E_d=7$ MeV\\@. The $^{56}$Fe level density obtained from neutron evaporation spectra is compared to the level density extracted from the $^{57}$Fe$(^3$He,$\\alpha\\gamma)^{56}$Fe reaction by the Oslo-type technique. Good agreement is found between the level densities determined by the two methods. With the level density function obtained from the neutron evaporation spectra, the $^{56}$Fe $\\gamma$-strength function is also determined from the first-generation $\\gamma$ matrix of the Oslo experiment. The good agreement between the past and present results for the $\\gamma$-strength function supports the validity of both methods and is consistent with the low-energy enhancement of the $\\gamma$ strength below $\\sim 4$ MeV first discovered by the Oslo method in iron and molybdenum isotopes.

  17. Studying nuclear level densities of 238U in the nuclear reactions within the macroscopic nuclear models

    In this work the nuclear level density parameters of 238U have been extracted in the back-shifted Fermi gas model (BSFGM), as well as the constant temperature model (CTM), through fitting with the recent experimental data on nuclear level densities measured by the Oslo group. The excitation functions for 238U(p,2nα)233Pa, and 238U(p,4n)235Np reactions and the fragment yields for the fragments of the 238U(p,f) reaction have been calculated using obtained level density parameters. The results are compared to their corresponding experimental values. It was found that the extracted excitation functions and the fragment yields in the CTM coincide well with the experimental values in the low-energy region. This finding is according to the claim made by the Oslo group that the extracted level densities of 238U show a constant temperature behaviour.

  18. Study Of Cascade Intensity And Level Density Of 52V By (n, 2γ) Reaction

    The cascade intensity and level density in neutron capture reaction are reviewed cross section and gamma strength function of nuclear. This newspaper showed some results the cascade intensity and level density are reviewed cross section and gamma strength function in the lower binding energy of neutron (Bn) with 52V by Summation of Amplitudes of Coinciding Pulses method (SACP). This experiment was measured on channel 3 of the Dalat nuclear reactor. (author)

  19. A High Power Density Three-level Parallel Resonant Converter for Capacitor Charging

    Sheng, Honggang

    2009-01-01

    This dissertation proposes a high-power, high-frequency and high-density three-level parallel resonant converter for capacitor charging. DC-DC pulsed power converters are widely used in military and medical systems, where the power density requirement is often stringent. The primary means for reducing the power converter size has been to reduce loss for reduced cooling systems and to increase the frequency for reduced passive components. Three-level resonant converters, which combine the mer...

  20. The shell model Monte Carlo approach to level densities: recent developments and perspectives

    Alhassid, Y

    2016-01-01

    We review recent advances in the shell model Monte Carlo approach for the microscopic calculation of statistical and collective properties of nuclei. We discuss applications to the calculation of (i) level densities in nickel isotopes, implementing a recent method to circumvent the odd-particle sign problem; (ii) state densities in heavy nuclei; (iii) spin distributions of nuclear levels; and (iv) finite-temperature quadrupole distributions.

  1. The shell model Monte Carlo approach to level densities: Recent developments and perspectives

    Alhassid, Y. [Yale University, Center for Theoretical Physics, Sloane Physics Laboratory, New Haven, Connecticut (United States)

    2015-12-15

    We review recent advances in the shell model Monte Carlo approach for the microscopic calculation of statistical and collective properties of nuclei. We discuss applications to the calculation of i) level densities in nickel isotopes, implementing a recent method to circumvent the odd-particle sign problem; ii) state densities in heavy nuclei; iii) spin distributions of nuclear levels; and iv) finite-temperature quadrupole distributions. (orig.)

  2. The shell model Monte Carlo approach to level densities: Recent developments and perspectives

    Alhassid, Y.

    2015-12-01

    We review recent advances in the shell model Monte Carlo approach for the microscopic calculation of statistical and collective properties of nuclei. We discuss applications to the calculation of i) level densities in nickel isotopes, implementing a recent method to circumvent the odd-particle sign problem; ii) state densities in heavy nuclei; iii) spin distributions of nuclear levels; and iv) finite-temperature quadrupole distributions.

  3. Use of fast-spectrum reactors for actinide burning

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  4. Effects of level density parameter on the superheavy production in cold fusion

    Pahlavani, M. R.; Alavi, S. A.

    2014-12-01

    By using semiclassical method and considering Woods-Saxon and Coulomb potentials, the level density parameter a was calculated for three superheavy nuclei 270110, 278112 and 290116. Obtained results showed that the value of level density parameter of these nuclei is near to the simple relation a ≈ A/10. In framework of the dinuclear system model, the effects of level density parameter on the probability of the formation of a compound nucleus, the ratio of neutron emission width and fission width, and evaporation residue cross-section of three cold fusion reactions 62Ni+208Pb, 70Zn+208Pb and 82Se+208Pb, leading to superheavy elements were investigated. The findings indicate that the level density parameter play a significant role in calculations of heavy-ion fusion-fission reactions. The obtained results in the case of a = A/12 have larger values in comparison with calculated level density parameter with Woods-Saxon potential (aWS) and a = A/10. The theoretical results of the evaporation residue cross-section are very sensitive to the choice of level density parameter. The calculated values with aWS are in good agreement with experimental values.

  5. Thermal properties of minor actinide targets

    Staicu, Dragos; Somers, Joseph; FERNANDEZ CARRETERO Asuncion; KONINGS Rudy

    2014-01-01

    The thermal properties of minor actinides targets for the management of high level and long lived radioactive waste are investigated. The microstructure, thermal diffusivity and specific heat of (Pu,Am)O2, (Zr,Pu,Am)O2, (Zr,Y,Am)O2, (Zr,Y,Pu,Am)O2 and CERMETS with Mo matrix are characterised in order to assess the safety limits of these materials.

  6. Strength of Coriolis alignment in actinide nuclei

    Analysis of aligned angular momenta i/sub α/(ω) in different rotational bands extracted from experimental data with a linear spin term approx.BI in the formulas for E/sub rot/(I) reveal that, in actinide nuclei in the levels with modest spin I< or =23, i/sub α/(ω) usually is very small (< or approx. =0.7), i.e., is much smaller than in rare earth nuclei

  7. ACTINEX Programme: experimental results and conceptual solvent extraction processes for minor actinide partitioning

    An improvement in the management of high level nuclear wastes, generated by nuclear fuel reprocessing operations, may be expected by decreasing the amount of long-lived alpha emitter minor actinide (Np, Am and Cm) radionuclides contained in these wastes. This goal can be achieve by chemical and nuclear processes designed to: 1/ extract the minor actinides from the high level liquid waste; 2/ incinerate the recovered actinides into short lived radionuclides. This present paper deals with recent results obtained at the CEA in the field of minor actinide partitioning. (author). 17 refs., 2 figs

  8. Evaluation of average neutron resonance parameters of actinides with the account of experimental resolution and discrimination threshold. Final report for the period 15 December 1996 - 14 December 1997

    New evaluation of average resonance parameters for 32 isotopes of the actinide region (229Th-252Cf) was completed. Obtained values of average level spacings produce a smooth systematics of the main level density parameter. The results were included into the Starter File of the Reference Input Parameter Library (segment Average Neutron Resonances) and officially released on 15 May 1998. The numerical results are available from the Internet (http://iaeand.iaea.or.at/ripl) and on CD-ROM. (author)

  9. Characterization of actinides in simulated alkaline tank waste sludges and leach solutions

    Current plans call for an alkaline scrub of actinide-bearing sludges in the Hanford Waste tanks prior to their incorporation in glass waste forms. Though it is assumed that actinides will remain in the sludge phase during this procedure, this assumption is based on insufficient supporting thermodynamic and kinetic data. In this project the authors will investigate the fundamental chemistry of actinides in strongly alkaline solution and solid phases to strengthen the foundation and identify potential limitations of this approach. They will focus on the characterization of the leaching of actinides from simulated BiPO4, REDOX, and PUREX sludges, the identification of actinide mineral phases in the sludge simulants, and the possible solubilization of actinides by complexation and radiolysis effects. This program will provide new fundamental information on the chemical behavior and speciation of uranium, neptunium, plutonium, and americium in simulated alkaline tank waste sludges and alkaline scrub liquors. Sludge simulants will be prepared from the appropriate matrix components using published data for guidance. Actinide ions will be introduced in the oxidation states pertinent to process conditions. The authors will characterize the speciation of the actinides in the sludges using a variety of techniques. In parallel studies, they will address the chemistry of actinide ions in alkaline solutions, principally those containing chelating agents. The third critical element of this research will be to assess the impact of radiolysis on actinide behavior. By correlating actinide speciation in the solid and solution phases with sludge composition, it will be possible to predict conditions favoring mobilization (or immobilization) of actinide ions during sludge washing. The new information will increase predictability of actinide behavior during tank sludge washing, and so contribute to minimization of the volume of high level waste created

  10. Cell density related gene expression: SV40 large T antigen levels in immortalized astrocyte lines

    Jacobberger James W

    2002-04-01

    Full Text Available Abstract Background Gene expression is affected by population density. Cell density is a potent negative regulator of cell cycle time during exponential growth. Here, we asked whether SV40 large T antigen (Tag levels, driven by two different promoters, changed in a predictable and regular manner during exponential growth in clonal astrocyte cell lines, immortalized and dependent on Tag. Results Expression and cell cycle phase fractions were measured and correlated using flow cytometry. T antigen levels did not change or increased during exponential growth as a function of the G1 fraction and increasing cell density when Tag was transcribed from the Moloney Murine Leukemia virus (MoMuLV long terminal repeat (LTR. When an Rb-binding mutant T antigen transcribed from the LTR was tested, levels decreased. When transcribed from the herpes thymidine kinase promoter, Tag levels decreased. The directions of change and the rates of change in Tag expression were unrelated to the average T antigen levels (i.e., the expression potential. Conclusions These data show that Tag expression potential in these lines varies depending on the vector and clonal variation, but that the observed level depends on cell density and cell cycle transit time. The hypothetical terms, expression at zero cell density and expression at minimum G1 phase fraction, were introduced to simplify measures of expression potential.

  11. Study of the parity ratio of nuclear level density near neutron binding energy

    Now much new improved data on the s- and p- wave level spacings D0 and D1 based on neutron resonances have been accumulated and it seems quite worthwhile to check the aspect of parity dependence of nuclear level density in view of its great significance to nuclear reaction theories

  12. Orthometric corrections from leveling, gravity, density and elevation data: a case study in Taiwan

    Hwang, C.; Hsiao, Y.-S.

    2003-08-01

    A new orthometric correction (OC) formula is presented and tested with various mean gravity reduction methods using leveling, gravity, elevation, and density data. For mean gravity computations, the Helmert method, a modified Helmert method with variable density and gravity anomaly gradient, and a modified Mader method were used. An improved method of terrain correction computation based on Gaussian quadrature is used in the modified Mader method. These methods produce different results and yield OCs that are greater than 10 cm between adjacent benchmarks (separated by sim2 km) at elevations over 3000 m. Applying OC reduces misclosures at closed leveling circuits and improves the results of leveling network adjustments. Variable density yields variation of OC at millimeter level everywhere, while gravity anomaly gradient introduces variation of OC of greater than 10 cm at higher elevations, suggesting that these quantities must be considered in OC. The modified Mader method is recommended for computing OC.

  13. Nuclear level densities and gamma-ray strength functions in 44,45Sc

    Larsen, A C; Chankova, R; Lönnroth, T; Messelt, S; Ingebretsen, F; Rekstad, J; Schiller, A; Siem, S; Syed, N U H; Voinov, A

    2007-01-01

    The scandium isotopes 44,45Sc have been studied with the 45Sc(3He,alpha gamma)44Sc and 45Sc(3He,3He' gamma)45Sc reactions, respectively. The nuclear level densities and gamma-ray strength functions have been extracted using the Oslo method. The experimental level densities are compared to calculated level densities obtained from a microscopic model based on BCS quasiparticles within the Nilsson level scheme. This model also gives information about the parity distribution and the number of broken Cooper pairs as a function of excitation energy. The experimental gamma-ray strength functions are compared to theoretical models of the E1, M1, and E2 strength, and to data from (gamma,n) and (gamma,p) experiments. The strength functions show an enhancement at low gamma energies that cannot be explained by the present, standard models.

  14. Managing Inventories of Heavy Actinides

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  15. Concentration of actinides in the food chain

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  16. Calorimetric assay of minor actinides

    Rudy, C.; Bracken, D.; Cremers, T.; Foster, L.A.; Ensslin, N.

    1996-12-31

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques.

  17. Calorimetric assay of minor actinides

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques

  18. Level Densities and Radiative Strength Functions in 56FE and 57FE

    Tavukcu, E

    2002-12-10

    Understanding nuclear level densities and radiative strength functions is important for pure and applied nuclear physics. Recently, the Oslo Cyclotron Group has developed an experimental method to extract level densities and radiative strength functions simultaneously from the primary {gamma} rays after a light-ion reaction. A primary {gamma}-ray spectrum represents the {gamma}-decay probability distribution. The Oslo method is based on the Axel-Brink hypothesis, according to which the primary {gamma}-ray spectrum is proportional to the product of the level density at the final energy and the radiative strength function. The level density and the radiative strength function are fit to the experimental primary {gamma}-ray spectra, and then normalized to known data. The method works well for heavy nuclei. The present measurements extend the Oslo method to the lighter mass nuclei {sup 56}Fe and {sup 57}Fe. The experimental level densities in {sup 56}Fe and {sup 57}Fe reveal step structure. This step structure is a signature for nucleon pair breaking. The predicted pairing gap parameter is in good agreement with the step corresponding to the first pair breaking. Thermodynamic quantities for {sup 56}Fe and {sup 57}Fe are derived within the microcanonical and canonical ensembles using the experimental level densities. Energy-temperature relations are considered using caloric curves and probability density functions. The differences between the thermodynamics of small and large systems are emphasized. The experimental heat capacities are compared with the recent theoretical calculations obtained in the Shell Model Monte Carlo method. Radiative strength functions in {sup 56}Fe and {sup 57}Fe have surprisingly high values at low {gamma}-ray energies. This behavior has not been observed for heavy nuclei, but has been observed in other light- and medium-mass nuclei. The origin of this low {gamma}-ray energy effect remains unknown.

  19. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density

    Sunil Kota

    2013-01-01

    Full Text Available Background: Bone mineral densiy (BMD is known to be affected by serum 25-hydroxyvitamin D (25(OH D levels, intact parathyroid hormone (iPTH levels. Indian data pertinent to above observation is scant. Our study aimed to investigate the relationships between serum 25-hydroxyvitamin D (25(OH D levels, intact parathyroid hormone (iPTH levels and bone mineral density (BMD in a cohort of Indian patients. Materials and Methods: Adults with or without fragility fractures with low BMD at the hip or lumbar spine were evaluated clinically along with laboratory investigations. T-scores of the hip and spine were derived from BMD-DEXA (dual-energy X-ray absorptiometry. Multivariate regression models were used to investigate the relationships between serum 25(OH D, iPTH and BMD. Results: Total of 102 patients (male:female = 38:64 with a mean age of 62.5 ± 6.4 years were included in the study. Forty-four patients had osteopenia. Osteoporosis was present in 58 patients. The mean values for serum 25(OH D and iPTH levels were 21.3 ± 0.5 ng/ml and 53.1 ± 22.3 pg/ml, respectively. In 84.3% of patients, serum 25(OH D levels were below 30 ng/ml (Normal = 30-74 ng/ml, confirming vitamin D deficiency. There was no association between 25(OH D levels and BMD at the hip or lumbar spine (P = 0.473 and 0.353, respectively. Both at the hip and lumbar spine; iPTH levels, male gender, body mass index (BMI and age were found to be significant predictors of BMD. Patients with higher BMI had significantly lower BMD and T-score. At levels <30 ng/ml, 25(OH D was negatively associated with iPTH (P = 0.041. Conclusion: Among our cohort of patients with low BMD, no direct relationship between serum 25(OH D levels and BMD was observed. However, a negative correlation between iPTH and 25(OH D at serum 25(OH D concentrations <30 ng/ml. Serum iPTH levels showed a significant negative association with BMD at the hip and lumbar spine. Our findings underscore the critical role of

  20. Calculated Bulk Properties of the Actinide Metals

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  1. Actinides and the environment

    The book combines in one volume the opinions of experts regarding the interaction of radionuclides with the environment and possible ways to immobilize and dispose of nuclear waste. The relevant areas span the spectrum from pure science, such as the fundamental physics and chemistry of the actinides, geology, environmental transport mechanisms, to engineering issues such as reactor operation and the design of nuclear waste repositories. The cross-fertilization between these various areas means that the material in the book will be accessible to seasoned scientists who may wish to obtain an overview of the current state of the art in the field of environmental remediation of radionuclides, as well as to beginning scientists embarking on a career in this field. refs

  2. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056

  3. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B.; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism’s entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056

  4. Particle-hole state densities with non-equidistant single-particle levels

    Harangozo, A; Avrigeanu, M; Avrigeanu, V

    1998-01-01

    The correct use of energy-dependent single-particle level (s.p.l.) densities within particle-hole state densities based on the equidistant spacing model (ESM) is analysed. First, an analytical expression is obtained following the convolution of energy-dependent excited-particle and hole densities. Next, a comparison is made with results of the ESM formula using average s.p.l. densities for the excited particles and holes, respectively. The Fermi-gas model (FGM) s.p.l. densities calculated at the corresponding average excitation energies are used in both cases. The analysis concerns also the density of particle-hole bound states. The pairing correlations are taken into account while the comparison of various effects includes the exact correction for the Pauli exclusion principle. Quantum-mechanical s.p.l. densities and the continuum effect can also match a corresponding FGM formula, suitable for use within the average energy-dependent partial state density in multistep reaction models.

  5. Level densities of heavy nuclei in the shell model Monte Carlo approach

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Nakada, H.; Özen, C.

    2016-06-01

    Nuclear level densities are necessary input to the Hauser-Feshbach theory of compound nuclear reactions. However, the microscopic calculation of level densities in the presence of correlations is a challenging many-body problem. The configurationinteraction shell model provides a suitable framework for the inclusion of correlations and shell effects, but the large dimensionality of the many-particle model space has limited its application in heavy nuclei. The shell model Monte Carlo method enables calculations in spaces that are many orders of magnitude larger than spaces that can be treated by conventional diagonalization methods and has proven to be a powerful tool in the microscopic calculation of level densities. We discuss recent applications of the method in heavy nuclei.

  6. Nuclear level density as a tool for probing the inelastic scattering of 6He

    Canbula, Bora

    2014-01-01

    The cross sections are calculated for the both elastic and inelastic scattering of 6He from 12C and 4He. A phenomenological optical potential is used to describe the elastic scattering. 4He is taken as spherical and inelastic couplings to the first excited states of 6He and 12C are described with collective rotational model and coupled-channels method. Deformation lengths for 6He and 12C are determined from semi-classical nuclear level density model by using Laplace-like formula for the nuclear level density parameter. The comparison of the predicted and the measured cross sections are presented to test the applicability of nuclear level density model to the light exotic nuclei reactions. Good agreement is achieved between the predicted and measured cross sections.

  7. Evaluation of Phonon-level Density of UO2 by Molecular Dynamics Simulation

    Hui-fen Zhang; Gan Li; Xiao-feng Tian; Tao Gao

    2011-01-01

    Molecular dynamics calculation of UO2 in a wide temperature range are presented and discussed.The calculated lattice parameters,mean square displacements,and dynamic property of phonon-level density of the velocity auto-correlation functions for UO2 are provided.The Morelon potential and the Basak potential are employed.It confirms that the calculated lattice parameters using the Basak potential are in nearly perfect agreement with the reported values.The models successfully predict mean square displacement and Bredig transition.Furthermore,the phonon-level density of uranium dioxide are discussed.The intensity of phonon-level density increases with temperature,and the properties of UO2 are characterized by large thermal vibrations rather than extensive disorder.

  8. A theoretical study of actinide and lanthanide extraction with carbamoylmethylphosphine oxide ligands

    With the development of nuclear energy, safe disposal of the spent nuclear fuel especially high level liquid waste (HLLW) generated during the PUREX (Plutonium Uranium Extraction) process has become the key factors affecting the sustainable development of nuclear energy. The n-octyl(phenyl)-N,N-diisobutylmethylcarbamoyl phosphine oxide (CMPO) used in the so-called TRUEX (Transuranium Extraction) process was found to possess excellent extracting ability for actinide and lanthanide cations in acidic media. In this work, The UO22+, NpO2+, Pu4+, Am3+ and Eu3+ extraction complexes with CMPO and diphenyl-N,N-diisobutyl carbamoyl phosphine oxide (Ph2CMPO) have been investigated by density functional theory (DFT) in conjunction with relativistic small-core pseudopotentials. For most extraction complexes, the CMPO and Ph2CMPO molecules are coordinated as bidentate chelating ligands through the carbonyl oxygen and phosphoric oxygen atoms. The metal-ligand bonding is mainly ionic for all of these complexes. The neutral UO2L2(NO3)2, NpO2L2(NO3), PuL2(NO3)4, AmL3(NO3)3 and EuL3(NO3)3 complexes are predicted to be the most thermodynamically stable molecules according to the metal-ligand complexation reactions. As reported in the literature, the extractability of these actinides decrease in the order of Pu4+ > UO22+ > Eu3+ ≈ Am3+ > NpO2+. In addition, hydration energies may play an important role in the extractability of CMPO and Ph2CMPO for these actinide ions. In most cases, the complexes with CMPO and Ph2CMPO ligands have comparable metal-ligand binding energies, i.e., the substitution of a phenyl ring for the n-octyl at the phosphoryl group of CMPO has little influence on the extraction of these actinides and lanthanides. (author)

  9. Environmental research on actinide elements

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  10. Analysis of optical properties of actinide dioxides

    Ionic calculations, symmetry considerations, and detailed analysis of reflectivity experiments have been used to identify general features of the band structure of actinide dioxides with a fluorite lattice. The ionic calculations adjust atomic energy levels by the electrostatic energies arising from long range electric fields of the ionic lattice; the labelling of high lying energy bands is determined by symmetry; experimental analysis includes the use of appropriate sum rules. A combination of these considerations enable a tentative band scheme to be constructed. It is suggested that there are filled valence bands (GAMMA15,GAMMA'25) originating in oxygen 2p-states and empty conduction bands (GAMMA1,GAMMA12,GAMMA'25) originating in actinide 7s and 6d states. The mean band gap (Penn gap) is of the order of 14 eV. The actinide f-electron states, which lie approximately 5 eV below the conduction bands, are taken to be localized - at least in UO2. (author)

  11. BWR Assembly Optimization for Minor Actinide Recycling

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs). A top-level objective of the Advanced Fuel Cycle Systems Analysis program element of the DOE NERI program is to investigate spent fuel treatment and recycling options for current light water reactors (LWRs). Accordingly, this project targets to expand the traditional scope of nuclear fuel management optimization into the following two complementary specific objectives: (1) To develop a direct coupling between the pin-by-pin within-bundle loading control variables and core-wide (bundle-by-bundle) optimization objectives, (2) to extend the methodology developed to explicitly encompass control variables, objectives, and constraints designed to maximize minor actinide incineration in BWR bundles and cycles. The first specific objective is projected to 'uncover' dormant thermal margin made available by employing additional degrees of freedom within the optimization process, while the addition of minor actinides is expected to 'consume' some of the uncovered thermal margin. Therefore, a key underlying goal of this project is to effectively invest some of the uncovered thermal margin into achieving the primary objective.

  12. A 90 minute soccer match decreases triglyceride and low density lipoprotein but not high-density lipoprotein and cholesterol levels

    Nader - Rahnama

    2009-11-01

    Full Text Available

    • BACKGROUND: The association between the lipid profiles level and the incidence and severity of coronary heart disease (CHD is very pronounced in epidemiological studies, and an inverse relation between physical fitness and the incidence of coronary heart disease has been observed in many studies. The aim of this study was to investigate the impact of a soccer match on lipid parameters of professional soccer players.
    • METHODS: Twenty two professional soccer players participated in the study. Blood (10ml for determination of lipid profiles was obtained at rest and immediately after a 90 minute soccer match. Lipid parameters were measured using Boehringer Mannheim kits and Clinilab and BioMerieux analyser.
    • RESULTS: The results of this study showed that the triglyceride was significantly higher before the match than afterwards (159.09 ± 58.2 vs. 88.63 ± 34.1 mg/dl, p < 0.001, whereas the low-density lipoprotein (LDL was lower before the match than after it (98.04 ± 28.9 vs. 112.31 ± 30.5 mg/dl. Moreover, there were no significant differences in cholesterol concentration (171.4 ± 30.28 mg/dl vs. 173.18 ± 32.75 mg/dl and high-density lipoprotein (HDL concentration (34.04 ± 5.58 mg/dl vs. 34.4 ± 4.6 mg/dl between before and after the match.
    • CONCLUSIONS: Although the soccer competitive match has no favourable acute effect on lipid

    • Properties of minor actinide nitrides

      The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

    • Decreased high-density lipoprotein cholesterol levels in polyarticular juvenile idiopathic arthritis

      Roberta Gonçalves Marangoni

      2011-01-01

      Full Text Available OBJECTIVES: To investigate the prevalence of dyslipoproteinemia in a homogeneous cohort of polyarticular juvenile idiopathic arthritis patients. METHODS: Based on the National Cholesterol Education Program, fasting lipoprotein levels and risk levels for coronary artery disease were determined in 28 patients with polyarticular juvenile idiopathic arthritis. The exclusion criteria included diabetes, thyroid dysfunction, smoking, proteinuria, lipid-lowering drugs, and hormone/diuretic therapy. Disease activity, disease duration, and therapy with corticosteroids and/or chloroquine were defined at the time of lipid measurements. RESULTS: Dyslipoproteinemia was identified in 20 of the 28 (71% patients with polyarticular juvenile idiopathic arthritis. The primary lipoprotein risk factor was decreased high-density lipoprotein cholesterol (57%, followed by elevated levels of low-density lipoprotein cholesterol (18%, triglycerides (14%, and total cholesterol (7%. The male patients had decreased high-density lipoprotein cholesterol levels than the female patients (p5 years disease duration. CONCLUSIONS: Dyslipoproteinemia is highly prevalent in patients with polyarticular juvenile idiopathic arthritis and is primarily related to decreased high-density lipoprotein cholesterol levels; therefore, early intervention is essential.

    • Rapid determination of alpha emitters using Actinide resin.

      Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

      2004-01-01

      The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed. PMID:15177360

    • Production and measurement of minor actinides in the commercial fuel cycle

      Stanbro, W.D. [comp.

      1997-03-01

      The minor actinide elements, particularly neptunium and americium, are produced as a normal byproduct of the operation of thermal power reactors. Because of the existence of long-lived isotopes of these elements, they constitute the major sources of the residual radiation in spent fuel or in wastes resulting from reprocessing. This has led to examinations by some countries of the possibility of separating the minor actinides from waste products. The papers found in this report address the production of minor actinides in common thermal power reactors as well as approaches to measure these materials in various media. The first paper in this volume, {open_quotes}Production of Minor Actinides in the Commercial Fuel Cycle,{close_quotes} uses calculations with the ORIGEN2 reactor and decay code to estimate the amounts of minor actinides in spent fuel and separated plutonium as a function of reactor irradiation and the time after discharge. The second paper, {open_quotes}Destructive Assay of Minor Actinides,{close_quotes} describes a number of promising approaches for the chemical analysis of minor actinides in the various forms in which they are found at reprocessing plants. The next paper, {open_quotes}Hybrid KED/XRF Measurement of Minor Actinides in Reprocessing Plants,{close_quotes} uses the results of a simulation model to examine the possible applications of the hybrid KED/XRF instrument to the determination of minor actinides in some of the solutions found in reprocessing plants. In {open_quotes}Calorimetric Assay of Minor Actinides,{close_quotes} the authors show some possible extensions of this powerful technique beyond the normal plutonium assays to include the minor actinides. Finally, the last paper in this volume, {open_quotes}Environment Measurements of Transuranic Nuclides,{close_quotes} discusses what is known about the levels of the minor actinides in the environment and ways to analyze for these materials in environmental matrices.

    • Orbital-unrelaxed Lagrangian density matrices for periodic systems at the local MP2 level

      Usvyat, D; Schuetz, M [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitaetsstrasse 31, D-93040 Regensburg (Germany)], E-mail: denis.usvyat@chemie.uni-regensburg.de, E-mail: martin.schuetz@chemie.uni-regensburg.de

      2008-06-01

      In the present paper a method based on the Hylleraas functional is proposed in order to obtain correlated ground state density matrices for periodic systems at the level of local MP2. The general properties of these density matrices, namely size-extensivity, translational invariance, exponential decay of the off-diagonal elements, etc are discussed. As test examples we investigate the influence of the electron correlation on the density in diamond and strontium titanate (in the latter case via the Mulliken charges). The calculations reveal that in diamond the concentration of the electrons in the bond region decreases when the correlation is taken into account, but the change in the density relative to Hartree-Fock is small. In the case of SrTiO{sub 3}, this change is more significant and causes a lowering of the ionicity of this crystal.

    • Orbital-unrelaxed Lagrangian density matrices for periodic systems at the local MP2 level

      In the present paper a method based on the Hylleraas functional is proposed in order to obtain correlated ground state density matrices for periodic systems at the level of local MP2. The general properties of these density matrices, namely size-extensivity, translational invariance, exponential decay of the off-diagonal elements, etc are discussed. As test examples we investigate the influence of the electron correlation on the density in diamond and strontium titanate (in the latter case via the Mulliken charges). The calculations reveal that in diamond the concentration of the electrons in the bond region decreases when the correlation is taken into account, but the change in the density relative to Hartree-Fock is small. In the case of SrTiO3, this change is more significant and causes a lowering of the ionicity of this crystal

    • Characteristics of High-density Lipoprotein Subclasses Distribution for Subjects with Desirable Total Cholesterol Levels

      Xu Yanhua; Liu Yinghui; Fu Mingde; Long Shiyin; Tian Li; Jia Lianqun

      2011-01-01

      Abstract Background To investigate alteration of high density lipoproteins (HDL) subclasses distribution in different total cholesterol (TC) levels, mainly the characteristics of HDL subclasses distribution in desirable TC levels and analyze the related mechanisms. Methods ApoA-I contents of plasma HDL subclasses were determined by 2-dimensional gel electrophoresis coupled with immunodetection. 486 Chinese Adults subjects were assigned to different TC groups according to the third Report of N...

    • Theory of gravity admitting arbitrary choice of the energy density level

      Cherkas, S L

      2016-01-01

      We suggest a five-vectors theory of gravity admitting arbitrary choice of the energy density level. This theory is formulated as the constraint theory of the second kind, where the concrete values of Lagrange multipliers are evaluated. Cosmological implications of the model could be that the residual vacuum fluctuations dominate over all the universe evolution that resembles the Milne's universe.

  1. Effects of shape differences in the level densities of three formalisms on calculated cross-sections

    Effects of shape differences in the level densities of three formalisms on calculated cross-sections and particle emission spectra are described. Reactions for incident neutrons up to 20 MeV on 58Ni are chosen for illustrations. Level density parameters for one of the formalisms are determined from the available neutron resonance data for one residual nuclide in the binary channels and from fitting the measured (n,n'), (n,p) and (n,α) cross-sections for the other two residual nuclides. Level density parameters for the other two formalisms are determined such that they yield the same values as the above one at two selected energies. This procedure forces the level densities from the three formalisms used for the binary pat of the calculation to be as close as possible. The remaining differences are in their energy dependences (shapes). It is shown that these shape differences alone are enough to cause the calculated cross-sections and particle emission spectra to be different by up to 60%. (author)

  2. Effects of shape differences in the level densities of three formalisms of calculated cross sections

    Effects of shape differences in the level densities of three formalisms on calculated cross sections and particle emission spectra are described. Reactions for incident neutrons up to 20 MeV on 58Ni are chosen for illustrations. Level-density parameters for one of the formalisms are determined from the available neutron resonance data for one residual nuclide in the binary channels and from fitting the measured (n, n'), (n, p), and (n, α) cross sections for the other two residual nuclides. Level-density parameters for the other two formalisms are determined such that they yield the same values as the above one at two selected energies. This procedure forces the level densities from the three formalisms used for the binary part of the calculation to be as close as possible. The remaining differences are in their energy dependences (shapes). It is shown that these shape differences alone are enough to cause the calculated cross sections and particle emission spectra to be different by up to 60%

  3. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  4. Separation of trivalent actinides and lanthanides from simulated high-level waste using cobalt bis(dicarbollide) (1{sup -}) ion derivate substituted with diphenyl-N-tert.octyl-carbamoylmethylphosphine oxide

    Selucky, P.; Lucanikova, M. [Nuclear Research Institute, Rez near Prague (Czech Republic); Gruener, B. [Academy of Sciences of the Czech Republic, Rez near Prague (Czech Republic). Inst. of Inorganic Chemistry

    2012-07-01

    A derivative with cobalt bis(dicarbollide)(1{sup -}) ion covalently bonded with diphenyl-N-tert.octyl-carbamoylmethylphosphine oxide with a formula [(8-Ph{sub 2}P(O))-CH{sub 2}C(O)N-t-C{sub 8}H{sub 17}-(CH{sub 2}-CH{sub 2}O){sub 2}-(1,2-C{sub 2}B{sub 9}H{sub 10})(1',2'-C{sub 2}B{sub 9}H{sub 11})-3,3'-Co]{sup -} (CMPO-COSAN) has been evaluated for actinides(III)/lanthanides(III) separation from high level liquid waste (HLLW) from PUREX reprocessing. The procedures for HLLW treatment by CMPO-COSAN dissolved in low polar mixture of hexylmethylketone and hydrogenated tetrapropylene (HMK/TPH, 1:1) or polar mixture of nitrobenzene/bromoform (NB/BF, 9:1) were proposed. The good separation of Am(III)/Ln(III) from bulk of fission products was achieved. The trivalent radionuclides were effectively stripped from the loaded organic phase by using ammonium citrate or mixture of ammonium citrate and ammonium diethylenetriamine pentaacetate (DTPA). The co-extraction of some undesirable elements as Zr, Mo, Pd was suppressed using oxalic acid and HEDTA in extraction and a scrub steps. However, co-extraction of Ag has to be solved, yet. (orig.)

  5. THERMODYNAMICS OF THE ACTINIDES

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated from spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)

  6. On angular momentum and parity dependence of nuclear level densities in a simple random sampling approach

    Based on simple random sampling (SRS), we propose a Monte Carlo method for the faster computation of the smoothed part of the density of nuclear states. To test the applicability of the SRS approach we study in this framework the excitation energy (E), angular momentum (J) and parity dependence of nuclear level densities for an independent particle system. As an illustrative example, we consider a pf-shell nucleus, 48Cr. It is found that the values of a few lower order moments for the state density I(E) calculated using SRS and combinatorial (or direct counting) methods are almost the same and a locally smoothed part of the state density can be constructed using these moments in a univariate Edgeworth expansion. We calculate the energy dependent spin-cutoff factor and parity asymmetry and find that for both cases the SRS approach works quite well. We use the SRS moments to construct different forms of the bivariate distribution for I(E,M) (M is the z-component of J) namely (a) a bivariate Edgeworth expansion, (b) a product of the univariate Edgeworth expansion (I(E)) and a Gaussian form for conditional M distribution I(M vertical stroke E) and (c) a product of the univariate Edgeworth expansions for both I(E) and I(M vertical stroke E) and compare the resulting fixed-J level density Il(E,J) with the corresponding combinatorial results. (orig.)

  7. Actinides in irradiated graphite of RBMK-1500 reactor

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  8. Systematic for parity distribution in nuclear level density near neutron separation energies

    The correct form of nuclear level density function ρ(U,J,π) is required to calculate nuclear cross-sections needed for various applications ranging from reactor designing, nuclear astrophysics, etc., to transmutation of nuclear waste. The asymmetrical statistical distribution of parity of nuclear levels at low energies poses an intriguing problem leading to larger uncertainties in the calculated values of cross-sections. On the basis of high resolution data available on individual resonance parameters (Eo,Jπ,Γn) for s- and p-wave neutrons, mass and energy dependence formulae for the parity distribution in the nuclear level density have been proposed which supports the fact of equipartition of parities at high excitation energies.

  9. Systematic for parity distribution in nuclear level density near neutron separation energies

    Singhal, S.K., E-mail: s_k_singhal@yahoo.co.u [Engineering Department, Ibra College of Technology, Ministry of Manpower (Oman); Agrawal, H.M. [Physics Department, G.B. Pant University of Agriculture and Technology, Pantnagar (India)

    2011-03-01

    The correct form of nuclear level density function {rho}(U,J,{pi}) is required to calculate nuclear cross-sections needed for various applications ranging from reactor designing, nuclear astrophysics, etc., to transmutation of nuclear waste. The asymmetrical statistical distribution of parity of nuclear levels at low energies poses an intriguing problem leading to larger uncertainties in the calculated values of cross-sections. On the basis of high resolution data available on individual resonance parameters (E{sub o},J{sup {pi},{Gamma}}{sub n}) for s- and p-wave neutrons, mass and energy dependence formulae for the parity distribution in the nuclear level density have been proposed which supports the fact of equipartition of parities at high excitation energies.

  10. On the relation between the statistical γ-decay and the level density in 162Dy

    The level density of low-spin states (0-10ℎ) in 162Dy has been determined from the ground state up to approximately 6 MeV of excitation energy. Levels in the excitation region up to 8 MeV were populated by means of the 163Dy(3He, α) reaction, and the first-generation γ-rays in the decay of these states has been isolated. The energy distribution of the first-generation γ-rays provides a new source of information about the nuclear level density over a wide energy region. A broad peak is observed in the first-generation spectra, and the authors suggest an interpretation in terms of enhanced M1 transitions between different high-j Nilsson orbitals. 30 refs., 9 figs., 2 tabs