WorldWideScience

Sample records for actinide burning experiment

  1. Actinide burning and waste disposal

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  2. The ALMR actinide burning system

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives

  3. PWRs potentialities for minor actinides burning

    In the frame of the SPIN program at CEA, the impacts of the minor actinides (MA) incineration in PWRs are analysed. The aim is to reduce the mass, the potential radiotoxicity level. The recycling of all actinide elements is evaluated in a PWR nuclear yard. A sensitivity study is done to evaluate the incineration for each minor actinide element. This gives the most efficient way of incineration for each MA elements in a PWR and helps to design a PWR burner. This burner is disposed in a PWR nuclear system in which the actinides are recycled until equilibrium. (author)

  4. PWRs potentialities for minor actinides burning

    In the frame of the SPIN program at CEA, the impacts of the Minor Actinides (MA) incineration in PWRs are analysed. The aim is to reduce the mass and the potential radiotoxicity level. This study is done separately one on the Plutonium recycling. But the plutonium is essential. Thus, the recycling of all Actinide elements is evaluated in a PWR nuclear yard. A sensitivity study is done to evaluate the incineration for each Minor Actinide element. This gives us the most efficient way of incineration for each MA element in a PWR and help us to design a PWR burner. This burner is disposed in a PWR nuclear system in which the Actinides are recycled until equilibrium. (authors). 2 refs

  5. INERT-MATRIX FUEL: ACTINIDE ''BURNING'' AND DIRECT DISPOSAL

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers

  6. A fast lead-cooled incinerator for economical actinide burning

    A fast lead-cooled modular reactor is proposed as an efficient incinerator of plutonium and minor actinides (MAs) for application to advanced fuel cycles devoted to transmutation. This actinide burner reactor (ABR) is loaded only with transuranics (TRU) in a fertile-free Zr-based metallic fuel to maximize the incineration rates and features (a) streaming fuel assemblies that enhance neutron leakage to achieve favorable neutronic feedbacks and (b) a double-entry control rod system that reduces reactivity perturbations during seismic events and flattens the axial power profile. A detailed neutronic analysis shows that the delayed neutron fraction is comparable to that of fast reactors and that negative reactivity feedbacks from lead voiding, Doppler, fuel thermal expansion and core radial expansion lead to safety characteristics similar to those of the Integral Fast Reactor. The ABR TRU destruction rate is the same as that of the ATW and fuel cycle cost analysis shows potential for economical accomplishment of the transmutation mission compared to other proposed actinide burning options. (author)

  7. Effects of actinide burning on waste disposal at Yucca Mountain

    Release rates of 15 radionuclides from waste packages expected to result from partitioning and transmutation of Light-Water Reactor (LWR) and Actinide-Burning Liquid-Metal Reactor (ALMR) spent fuel are calculated and compared to release rates from standard LWR spent fuel packages. The release rates are input to a model for radionuclide transport from the proposed geologic repository at Yucca Mountain to the water table. Discharge rates at the water table are calculated and used in a model for transport to the accessible environment, defined to be five kilometers from the repository edge. Concentrations and dose rates at the accessible environment from spent fuel and wastes from reprocessing, with partitioning and transmutation, are calculated. Partitioning and transmutation of LWR and ALMR spent fuel reduces the inventories of uranium, neptunium, plutonium, americium and curium in the high-level waste by factors of 40 to 500. However, because release rates of all of the actinides except curium are limited by solubility and are independent of package inventory, they are not reduced correspondingly. Only for curium is the repository release rate much lower for reprocessing wastes

  8. Effects of actinide burning on waste disposal at Yucca Mountain

    Partitioning the actinides in spent fuel and transmuting them in actinide-burning liquid-metal reactors (ALMRs) is a potential method of reducing public risks from the geologic disposal of nuclear waste. In this paper, the authors present a comparison of radionuclide releases from burial at Yucca Mountain of spent fuel and of ALMR wastes. Two waste disposal schemes are considered. In each, the heat generation of the wastes at emplacement is 9.88 x 107 W, the maximum for the repository. In the first scheme, the repository contains 86,700 tonnes of initial heavy metal (IHM) of light water reactor (LWR) spent fuel. In the second scheme, all current LWRs operate for a 40-yr lifetime, producing a total of 84,000 tonnes IHM of spent fuel. This spent fuel is treated using a pyrochemical process in which 98.4% of the uranium and 99.8% of the neptunium, plutonium, americium, and curium are extracted and fabricated into ALMR fuel, with the reprocessing wastes destined for the repository. The ALMR requires this fuel for its startup and first two reloads; thereafter, it is self-sufficient. Spent ALMR fuel is also pyrochemically reprocessed: 99.9% of the transuranics is recovered and recycled into ALMR fuel, and the wastes are placed in the repository. Thus, in the second scheme, the repository contains the wastes from reprocessing all of the LWR spent fuel plus the maximum amount of ALMR reprocessing wastes allowed in the repository based on its heat generation limit

  9. Use of fast-spectrum reactors for actinide burning

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  10. Optimizing advanced liquid metal reactors for burning actinides

    In this report, the process to design an Advanced Liquid Metal Reactor (ALMR) for burning the transuranic part of nuclear waste is discussed. The influence of design parameters on ALMR burner performance is studied and the results are incorporated in a design schedule for optimizing ALMRs for burning transuranics. This schedule is used to design a metallic and an oxide fueled ALMR burner to burn as much as possible transurancis. The two designs burn equally well. (orig.)

  11. Burning of actinides: A complementary waste management option?

    The TRU actinide are building up at a rate of about 90 tHM per year. Approximately 45 tHM will remain occluded in the spent fuel structures, leaving about 45 tHM available; 92% as recycled plutonium and 8% as minor actinides (neptunium, americium, curium) immobilized in vitrified waste. There is renewed interest in partitioning and transmutation (P and T), largely because of difficulties encountered throughout the world in finding suitable geologic formations in locations which are acceptable to the public. In 1988, the Japanese Atomic Energy Commission launched a very important and comprehensive R and D program. The general strategy of introducing Partitioning and Transmutation (P and T) as an alternative waste management option is based on the radiological benefit which is expected from such a venture. The selection of the actinides and long-lived fission products which are beneficial to eliminate by transmutation depends upon a number of technical factors, including hazard and decontamination factors, and the effect of geological confinement. There are two ways to approach the separation of minor actinides and long-lived fission products from reprocessing streams: by modifying the current processes in order to reroute the critical nuclides into a single solution, for example high-level liquid waste, and use this as a source for partitioning processes; and by extension of the conventional PUREX process to all minor actinides and long-lived fission products in second generation reprocessing plants. Prior to the implementation of one of these schemes, it seems obvious to improve the separation yield of plutonium from HLW within the presently running plants. Actinide P and T is not an alternative long-term waste management option. Rather, it is a complementary technique to geologic disposal capable of further decreasing the radiological impact of the fuel cycle over the very long term. 1 tab

  12. Fertile-Free Fast Lead-Cooled Incinerators for Efficient Actinide Burning

    Fertile-free fast lead-cooled modular reactors are proposed as efficient incinerators of plutonium and minor actinides (MAs) for application to advanced fuel cycles devoted to transmutation. Two concepts are presented: (1) an actinide burner reactor, designed to incinerate mostly plutonium and some MAs, and (2) a minor actinide burner reactor, devoted to burning mostly minor actinides and some plutonium. These transuranics are loaded in a fertile-free Zr-based metallic fuel to maximize the incineration rate. Both designs feature streaming fuel assemblies that enhance neutron leakage to achieve favorable neutronic feedback and a double-entry control rod system that reduces reactivity perturbations during seismic events and flattens the axial power profile. A detailed neutronic analysis shows that both designs have favorable neutronic characteristics and reactivity feedback mechanisms that yield passive safety features comparable to those of the Integral Fast Reactor. A safety analysis presents the response of the burners to anticipated transients without scram on the basis of (1) the integral parameter approach and (2) simulations of thermal-hydraulic accident scenario conditions. It is shown that both designs have large thermal margins that lead to safe shutdown without structural damage to the core components for a large spectrum of unprotected transients. Furthermore, the actinide destruction rates are comparable to those of the accelerator transmutation of waste concept, and a fuel cycle cost analysis shows the potential for economical accomplishment of the transmutation mission compared to other proposed actinide-burning options

  13. Enhanced minor actinide burning core for closed fuel cycle

    This paper presents core concepts enhancing TRU burning or MA transmutation in sodium cooled reactor satisfying the void reactivity requirements. In this study, two concepts of transmutation system are considered; in the first system TRUs are burned only by ARR whose target is maximizing TRU burning. The second is a system that Pu is burned by LWR and ARR, Am is transmuted by ARR whose target is maximizing Am transmutation. Therefore some innovative and challenging technologies have been examined under the safety requirements; MA burning fuel with 50% TRU fraction, moderator pin, fuel of high Am fraction, and Am blanket. According to the detailed calculation of high TRU contained oxide core with moderator pins of 12% arranged driver fuel assemblies, the TRU conversion ratio decreases to 0.33 and the TRU burning capability is improved to 67 kg/TWeh. Deploying Am blanket which is oxide fuel with Am 50% and U 50%, the total of Am transmutation capability of oxide fueled core becomes 69 kg/TWeh. (author)

  14. Study on burn-up credit and minor actinide in post-irradiation analysis

    Accuracy of burnup calculation for actinide is very important as to the study of burn-up credit. For minor-actinides such as Am243 and Cm244, however, typical burnup calculation codes are not accurate enough. The accuracy for both nuclides was studied by using the SWAT code. The study showed that the C/E values of both nuclides could be improved at the same time by changing the cross section of Pu242. A study of burnup calculation related to the cross section of Pu242 should be performed to improve the accuracy for both nuclides. (author)

  15. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  16. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing

  17. Utilization of fast reactor excess neutrons for burning minor actinides and long lived FPs

    An evaluation is made on a large MOX fuel fast reactor's capability of burning minor actinides and long lived fission products (FPs) without imposing penalties on core nuclear and safety characteristics. The excess neutrons generated in the fast reactor core are fully utilized not only to generate the fissile material but also to transmute the minor actinides and long lived FPs. The FP target assemblies which consist of Tc-99 and I-129 are loaded into the selected blanket positions whereas the minor actinides are loaded to the rest of the blanket. A long term FP accumulation scenario is also considered in the mix of FP burner fast reactor and non-burner LWRs. (author)

  18. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  19. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  20. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E. [Idaho National Engineering and Environment Lab., Advanced Nuclear Energy, Idaho (United States)

    2001-07-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  1. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to “incinerate” or “transmutate” the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  2. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver (INEEL); J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas (MIT)

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  3. New Developments in Actinides Burning with Symbiotic LWR-HTR-GCFR Fuel Cycles

    The long-term radiotoxicity of the final waste is currently the main drawback of nuclear power production. Particularly, isotopes of Neptunium and Plutonium along with some long-lived fission products are dangerous for more than 100000 years. 96% of spent Light Water Reactor (LWR) fuel consists of actinides, hence it is able to produce a lot of energy by fission if recycled. Goals of Generation IV Initiative are reduction of long-term radiotoxicity of waste to be stored in geological repositories, a better exploitation of nuclear fuel resources and proliferation resistance. Actually, all these issues are intrinsically connected with each other. It is quite clear that these goals can be achieved only by combining different concepts of Gen. IV nuclear cores in a 'symbiotic' way. Light-Water Reactor - (Very) High Temperature Reactor ((V)HTR) - Fast Reactor (FR) symbiotic cycles have good capabilities from the viewpoints mentioned above. Particularly, HTR fuelled by Plutonium oxide is able to reach an ultra-high burn-up and to burn Neptunium and Plutonium effectively. In contrast, not negligible amounts of Americium and Curium build up in this core, although the total mass of Heavy Metals (HM) is reduced. Americium and Curium are characterised by an high radiological hazard as well. Nevertheless, at least Plutonium from HTR (rich in non-fissile nuclides) and, if appropriate, Americium can be used as fuel for Fast Reactors. If necessary, dedicated assemblies for Minor Actinides (MA) burning can be inserted in Fast Reactors cores. This presentation focuses on combining HTR and Gas Cooled Fast Reactor (GCFR) concepts, fuelled by spent LWR fuel and depleted uranium if need be, to obtain a net reduction of total mass and radiotoxicity of final waste. The intrinsic proliferation resistance of this cycle is highlighted as well. Additionally, some hints about possible Curium management strategies are supplied. Besides, a preliminary assessment of different chemical forms of

  4. New Developments in Actinides Burning with Symbiotic LWR-HTR-GCFR Fuel Cycles

    Bomboni, Eleonora [Department of Mechanical, Nuclear and Production Engineering (DIMNP), Via Diotisalvi 2 - 56100 Pisa (Italy)

    2008-07-01

    The long-term radiotoxicity of the final waste is currently the main drawback of nuclear power production. Particularly, isotopes of Neptunium and Plutonium along with some long-lived fission products are dangerous for more than 100000 years. 96% of spent Light Water Reactor (LWR) fuel consists of actinides, hence it is able to produce a lot of energy by fission if recycled. Goals of Generation IV Initiative are reduction of long-term radiotoxicity of waste to be stored in geological repositories, a better exploitation of nuclear fuel resources and proliferation resistance. Actually, all these issues are intrinsically connected with each other. It is quite clear that these goals can be achieved only by combining different concepts of Gen. IV nuclear cores in a 'symbiotic' way. Light-Water Reactor - (Very) High Temperature Reactor ((V)HTR) - Fast Reactor (FR) symbiotic cycles have good capabilities from the viewpoints mentioned above. Particularly, HTR fuelled by Plutonium oxide is able to reach an ultra-high burn-up and to burn Neptunium and Plutonium effectively. In contrast, not negligible amounts of Americium and Curium build up in this core, although the total mass of Heavy Metals (HM) is reduced. Americium and Curium are characterised by an high radiological hazard as well. Nevertheless, at least Plutonium from HTR (rich in non-fissile nuclides) and, if appropriate, Americium can be used as fuel for Fast Reactors. If necessary, dedicated assemblies for Minor Actinides (MA) burning can be inserted in Fast Reactors cores. This presentation focuses on combining HTR and Gas Cooled Fast Reactor (GCFR) concepts, fuelled by spent LWR fuel and depleted uranium if need be, to obtain a net reduction of total mass and radiotoxicity of final waste. The intrinsic proliferation resistance of this cycle is highlighted as well. Additionally, some hints about possible Curium management strategies are supplied. Besides, a preliminary assessment of different chemical

  5. Optimization studies for the prism alternative oxide core, and its response to the actinide burning strategy

    The PRISM advanced liquid metal reactor is designed by General Electric in a reference solution equipped by a metal fuelled core. An alternative oxide core is studied by General Electric and ENEA in the frame of a collaboration existing since 1989. This paper deals with the ENEA contribution on the oxide solution, aimed at the core optimization both from safety parameters and fuel cycle economy points of view. Moreover, synthetic information about ENEA evaluations about the minor actinide burning capability of the PRISM oxide core are given. (author)

  6. Review of Integral Experiments for Minor Actinide Management

    Spent nuclear fuel contains minor actinides (MAs) such as neptunium, americium and curium, which require careful management. This becomes even more important when mixed oxide (MOX) fuel is being used on a large scale since more MAs will accumulate in the spent fuel. One way to manage these MAs is to transmute them in nuclear reactors, including in light water reactors, fast reactors or accelerator-driven subcritical systems. The transmutation of MAs, however, is not straightforward, as the loading of MAs generally affects physics parameters, such as coolant void, Doppler and burn-up reactivity. This report focuses on nuclear data requirements for minor actinide management, the review of existing integral data and the determination of required experimental work, the identification of bottlenecks and possible solutions, and the recommendation of an action programme for international co-operation. (authors)

  7. Minor actinide burning in dedicated lead-bismuth cooled fast reactors

    The destruction of minor actinides (MA) in dedicated burners is of contemporary interest in Europe and Japan because it requires the deployment of smaller number of special transmutation facilities. A major fraction of Pu from spent LWR fuel can be then burned in PWRs (or fast reactors) using dedicated fertile-free fuel assemblies. However, the design of MA burning fast spectrum cores poses significant challenges because of deterioration of key safety parameters, in particular of the coolant void coefficient. This study proposes the concept of an lead-bismuth eutectic (LBE)-cooled dedicated MA burner having metallic fuel (MA-Pu-Zr) and streaming assemblies to attain acceptable coolant void worth performance. It is shown that a large 1800 MWth fertile-free core containing 37 wt% TRU with very high fraction of MA(59 wt%) from LWR spent fuel can be burned in a first cycle for 700 EFPDs with a very small reactivity swing: less than βeff. Moreover, the reactivity void worth is negative for a fully voided core when all surrounding coolant is kept at reference density. However, the core reactivity increases as coolant density falls from the reference value of 10.25 to 6 g/cm3. Because its coolant density coefficient value is less than that of a sodium cooled IFR, the concept provides good potential for the achievement of self-regulation characteristics in unprotected events, provided that small negative fuel temperature feedback can be maintained. (authors)

  8. Advanced tokamak burning plasma experiment

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  9. Monte Carlo modeling of minor actinide burning in fissile spallation targets

    Minor actinides (MA) present a harmful part of spent nuclear fuel due to their long half-lives and high radio-toxicity. Neutrons produced in spallation targets of Accelerator Driven Systems (ADS) can be used to transmute and burn MA. Non-fissile targets are commonly considered in ADS design. However, additional neutrons from fission reactions can be used in targets made of fissile materials. We developed a Geant4-based code MCADS (Monte Carlo model for Accelerator Driven Systems) for simulating neutron production and transport in different spallation targets. MCADS is suitable for calculating spatial distributions of neutron flux and energy deposition, neutron multiplication factors and other characteristics of produced neutrons and residual nuclei. Several modifications of the Geant4 source code described in this work were made in order to simulate targets containing MA. Results of MCADS simulations are reported for several cylindrical targets made of U+Am, Am or Am2O3 including more complicated design options with a neutron booster and a reflector. Estimations of Am burning rates are given for the considered cases. (authors)

  10. Parents’ experience confronting child burning situation

    Valdira Vieira de Oliveira; Ariadne da Silva Fonseca; Maísa Tavares de Souza Leite; Luciana Soares dos Santos; Adélia Dayane Guimarães Fonseca; Conceição Vieira da Silva Ohara

    2016-01-01

    Objective: to understand experiences of parents in a child burning situation during the hospitalization process. Methods: phenomenological research in view of Martin Heidegger, held with seven assisting parents at a pediatrics unit of a general hospital in Montes Claros. The information was obtained by phenomenological interview, containing the question guide: “What does it mean to you being with a son who is suffering with burns?”. Results: during the experience, parents revealed anguish, fe...

  11. Actinide-handling experience for training and education of future expert under J-ACTINET

    Summer schools for future experts have successfully been completed under Japan Actinide Network (J-ACTINET) for the purpose of development of human resources who are expected to be engaged in every areas of actinide-research/engineering. The first summer school was held in Ibaraki-area in August 2009, followed by the second one in Kansai-area in August 2010. Two summer schools have focused on actual experiences of actinides in actinide-research fields for university students and young researchers/engineers as an introductory course of actinide-researches. Many efforts were made to awaken interests into actinide-researches inside the participants during short periods of schools, 3 to 4 days. As actinides must be handled inside special apparatuses such as an air-tight globe-box with well-trained and qualified technicians, programs were optimized for effective experiences of actinides-handling. Several quasi actinide-handling experiences at the actinide-research fields have attracted attentions of participants at the first school in Ibaraki-area. The actual experiments using actinides-containing solutions have been carried out at the second school in Kansai-area. Future summer schools will be held every year for the sustainable human resource development in various actinide-research fields, together with other training and education programs conducted by the J-ACTINET. (author)

  12. Minor actinide transmutation in a board type sodium cooled breed and burn reactor core

    Highlights: • A 1250 MWt board type sodium cooled breed and burn reactor core is further designed. • MCNP–ORIGEN coupled code MCORE is applied to perform neutronics and depletion calculation. • Transmutation efficiency and neutronic safety parameters are compared under different MA weight fraction. - Abstract: In this paper, a board type sodium cooled breed and burn reactor core is further designed and applied to perform minor actinide (MA) transmutation. MA is homogeneously loaded in all the fuel sub-assemblies with a weight fraction of 2.0 wt.%, 4.0 wt.%, 6.0 wt.%, 8.0 wt.%, 10.0 wt.% and 12.0 wt.%, respectively. The transmutation efficiency, transmutation amount, power density distribution, neutron fluence distribution and neutronic safety parameters, such as reactivity, Doppler feedback, void worth and delayed neutron fraction, are compared under different MA weight fraction. Neutronics and depletion calculations are performed based on the self-developed MCNP–ORIGEN coupled code with the ENDF/B-VII data library. In the breed and burn reactor core, a number of breeding sub-assemblies are arranged in the inner core in a board type way (scatter load) to breed, and a number of absorbing sub-assemblies are arranged in the inner side of the outer core to absorb neutrons and reduce power density in this area. All the fuel sub-assemblies (ignition and breeding sub-assemblies) are shuffled from outside in. The core reached asymptotically steady state after about 22 years, and the average and maximum discharged burn-up were about 17.0% and 35.3%, respectively. The transmutation amount increased linearly with the MA weight fraction, while the transmutation rate parabolically varied with the MA weight fraction. Power density in ignition sub-assembly positions increased with the MA weight fraction, while decreased in breeding sub-assembly positions. Neutron fluence decreased with the increase of MA weight fraction. Generally speaking, the core reactivity and void

  13. Multi-nucleon transfer experiments in the actinide region

    Geibel, Kerstin; Reiter, Peter; Birkenbach, Benedikt [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Valiente-Dobon, Jose Javier; Recchia, Francesco [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (Italy); Gadea, Andres [IFIC, CSIC-Universidad de Valencia (Spain); Lenzi, Silvia [Dipartimento di Fisica, University of Padova (Italy)

    2012-07-01

    Two experiments at the PRISMA-CLARA-Setup at the LNL in Legnaro were analysed focussing on the target-like reaction products in the actinide region after multi-nucleon transfer reactions. Both experiments use {sup 238}U as target; a {sup 70}Zn-beam with 460 MeV and a {sup 136}Xe-beam with 926 MeV were employed. Kinematic correlations between the reaction partners are used to obtain information about the unobserved target-like reaction products by the analysis of the beam-like particles identified with the PRISMA-spectrometer. Clean {gamma}-spectra from neutron-rich actinide nuclei are obtained with the CLARA-array. An extension of the ground state rotational band in {sup 240}U and insights in neutron-rich Th-isotopes were achieved. Based on relative cross section distributions for various reaction channels the perspectives and limitations for in-beam {gamma}-spectroscopy with this experimental method in this mass region are discussed.

  14. Preliminary results of the MARIOS experiment on minor actinide bearing blanket concept

    Americium is a strong contributor to the long-term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like 241Am is, therefore, an option for the reduction of radiotoxicity, residual power packages as well as the repository area. One of the most attractive possibilities to burn MA is represented by the minor actinides bearing blanket (MABB) concept. In this option, MA is diluted in a UO2 matrix and irradiated for a long time (4 100 EFPD) into radial blankets at the periphery of the outer core of a sodium fast reactor. The MARIOS irradiation experiment is the latest of a series of experiments on americium transmutation (e.g. EFTTRA-T4, EFTTRA-T4bis, HELIOS). Moreover, the MARIOS experiment, together with the DIAMINO experiment, which is in progress at the OSIRIS reactor in France, is dealing with the study of the in-pile behaviour of UO2 containing minor actinides (MA) in order to gain knowledge on the role of the microstructure and of the temperature on gas release and on fuel swelling for the MABB concept. The MARIOS experiment is carried out in the framework of the 4-year project FAIRFUELS of the EURATOM 7. Framework Programme (FP7). The MARIOS experiment was conducted at the HFR (high flux reactor) in Petten (The Netherlands) and started in March 2011. It has been planned that the experiment will last 11 cycles, corresponding approximately to 11 months. This paper covers the description and the objectives of the experiment, as well as the preliminary results in terms of first assessment and temperature recording. (authors)

  15. Ability to burn plutonium and minor actinides. Interest of accelerator driven system compared to critical reactor

    In the frame of the French Act of December 1991, EDF is presently assessing the interest of Acceleration Driven System (ADS) for the Transmutation of the Plutonium and Minor Actinides (MA) produced by its park of nuclear reactors. The studies presented here assess the efficiency of ADS and critical reactors to incinerate Pu and MA (Minor Actinides) and the potential interest of ADS for that purpose. (author)

  16. Medical management of radiation burns - some experiences

    Localized exposure resulting in radiation burns are serious injuries, seen not only in this country but all over the world. All of these injuries have resulted from accidents in Industrial Radiography (non-destructive testing). In our country all these injuries have occurred in the private sectors who handle these radiography sources. These sources can be of Iridium-192 or Cobalt-60. Some of these accidents have occurred involving trained radiographers but sometimes casual workers have been exposed. Skin is highly vulnerable to the external radiation exposure. Damage of varying extent can be seen following radiotherapy and accidents involving X- and gamma-ray sources. The reaction is related to the absorbed dose, which in turn is dependent upon the energy of radiation and weather it is particulate or electromagnetic radiation. Beta particles give up their energy within a short range and hence are more hazardous. Radiation burns develop slowly and blister formation occurs usually after 4 weeks. After exposure the skin response occurs in the form of transient erythema, fixed erythema, transepidermal burns, full thickness radiation burns and epilation. In radiation accidents, particularly those involving X-ray machines, the patients may not be aware of the time of accident and the dose may not be known in those circumstances. The medical management and treatment of such patients, therefore, has its own challenges. This talk will share some experiences on treatment of radiation injuries. (author)

  17. Possibilities to optimize sodium cooled fast reactors with respect to Actinide burning

    The optimization of fast reactor cores with respect to the destruction of Minor Actinides starts from the question, whether the neutron spectrum can be hardened by changing the core geometry, core size or fuel type. Spectrum hardening would increase the destruction (fission) of actinides compared to their further production due to capture processes. Reference point of this study is the European Fast Reactor EFR. It is shown that a flat core geometry with metal fuel would offer an optimum and that small power units, i. e. smaller cores are most favourable

  18. Leaching of actinides from nuclear waste glass: French experience

    The activity concentration versus time of a typical LWR glass shows that after 300 years most of the activity is attributable to three actinides (Np, Pu and Am) and to 99Tc. This activity decreases slowly, and some 50.000 years are necessary before the activity concentration drops to the level of the richest natural ores. This paper reviews the current state of knowledge concerning the kinetics of actinide release from glass subjected to aqueous leaching

  19. Nuclear data needs for the analysis of generation and burn-up of actinide isotopes in nuclear reactors

    A reliable prediction of the in-pile and out-of-pile physics characteristics of nuclear fuel is one of the objectives of present-day reactor physics. The paper describes the main production paths of important actinides for light water and fast breeder reactors. The accuracy of recent nuclear data is examined by comparisons of theoretical predictions with the results from post-irradiation analysis of nuclear fuel from power reactors, and partly with results obtained in zero-power facilities. A world-wide comparison of nuclear data to be used in large fast power reactor burn-up and long term considerations is presented. The needs for further improvement of nuclear data are discussed. (orig.)

  20. Conceptual Neutronic Design of a Lead-Bismuth-Cooled Actinide Burning Reactor

    A conceptual design of a lead-bismuth-eutectic (LBE)-cooled actinide burner core with innovative streaming fuel assemblies (FAs) is described. The 1800-MW(thermal) core employs metallic, fertile-free fuel where the transuranics (plutonium plus minor actinides) are dispersed in a zirconium matrix. The core contains 157 streaming FAs that enhance neutron streaming by employing gas-filled, sealed streaming tubes at the FA periphery and center. The large reactivity excess at the beginning of life is compensated for by a system of double-entry control rods. The arrangement of top-entry and bottom-entry control rods in a staggered pattern allows the achievement of a very uniform axial power profile and a small reactivity change from control rod driveline expansion. The reactor can operate with an 18- to 24-month cycle length.Safety is provided through negative reactivity coefficients and tight neutronic coupling. The void coefficient is negative for a partially as well as a fully voided core. The effective delayed neutron fraction is 25% less than that of typical oxide-fueled fast reactors, making the requirements on reactor control performance more demanding. The Doppler coefficient is negative with a magnitude appreciably lower than the typical values of oxide fuels in sodium-cooled reactors, but comparable to the values observed in integral fast reactor (IFR) cores with metallic U-Pu-Zr fuels. The fuel thermal expansion coefficient is also negative, having a magnitude approximately equal to the Doppler coefficient. In terms of the transuranic destruction rate per MW(thermal) per effective full-power year, the design is comparable to accelerator-driven systems (ADSs). Long-lived fission products also can be transmuted, albeit at lower incineration efficiency than in ADSs

  1. TRIGA criticality experiment for testing burn-up calculations

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz [Jozef Stefan Institute, Reactor Physics Division, Ljubljana (Slovenia)

    1999-07-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  2. Burns

    ... Chemical burns Burns can be the result of: House and industrial fires Car accidents Playing with matches ... hairs Burned lips and mouth Coughing Difficulty breathing Dark, black-stained mucus Voice changes Wheezing

  3. Adult burn survivors' personal experiences of rehabilitation: an integrative review.

    Kornhaber, R; Wilson, A; Abu-Qamar, M Z; McLean, L

    2014-02-01

    Burn rehabilitation is a lengthy process associated with physical and psychosocial problems. As a critical area in burn care, the aim was to systematically synthesise the literature focussing on personal perceptions and experiences of adult burn survivors' rehabilitation and to identify factors that influence their rehabilitation. Studies were identified through an electronic search using the databases: PubMed, CINAHL, EMBASE, Scopus, PsycINFO and Trove of peer reviewed research published between 2002 and 2012 limited to English-language research with search terms developed to reflect burn rehabilitation. From the 378 papers identified, 14 research papers met the inclusion criteria. Across all studies, there were 184 participants conducted in eight different countries. The reported mean age was 41 years with a mean total body surface area (TBSA) burn of 34% and the length of stay ranging from one day to 68 months. Significant factors identified as influential in burn rehabilitation were the impact of support, coping and acceptance, the importance of work, physical changes and limitations. This review suggests there is a necessity for appropriate knowledge and education based programmes for burn survivors with consideration given to the timing and delivery of education to facilitate the rehabilitation journey. PMID:24050979

  4. Nurses' emotional experience of caring for children with burns.

    Hilliard, Carol

    2012-02-01

    AIMS AND OBJECTIVES: The aim of this phenomenological study was to explore the emotions experienced by children\\'s nurses when caring for children with burns, in addition to ascertaining how the nurses dealt with these emotions. BACKGROUND: The nature of nursing practice is such that it inevitably generates some form of emotional response in nurses. The literature reveals that the manner nurses deal with their emotional experiences can impact on their nursing care. DESIGN: The study used Husserlian phenomenology to explore the emotional experiences of eight purposively selected children\\'s nurses who have worked on the burns unit of an Irish paediatric hospital. METHODS: Data were collected using in-depth, unstructured interviews and analysed using Colaizzi\\'s seven stage framework. RESULTS: The phenomenon of participants\\' emotional experiences is captured in four themes: (1) caring for children with burns, (2) supporting parents, (3) sustaining nurses\\' emotional well-being, and (4) learning to be a burns nurse. Nursing children with burns generated a myriad of emotions for participants. Burns dressing-changes, managing burn-related pain, supporting parents and the impact of busy workloads on the emotional care of children and their parents emerged as the most emotionally challenging aspects of participants\\' role. Participants recognised the need to manage their emotional responses and spoke of the benefits of a supportive nursing team. CONCLUSIONS: The findings offer insights into both the rewarding and challenging aspects of nursing children with burns. Nurses in this environment must be supported to recognise and manage their emotional responses to their work. RELEVANCE TO CLINICAL PRACTICE: Helping nurses to manage the emotional consequences of their work will help to sustain their emotional well-being, enhance the care received by children and also enable nurses to support parents in their role as partners in care.

  5. Ten years of experience in extraction chromatographic processes for the recovery, separation and purification of actinides elements

    Ten years ago the extraction chromatographic technique was developed for preparative purposes and is now applied for all chemicals separations needed for the production of actinides isotopes. That technique appears to be simple and flexible. It can be used for the production of microgram to kilogram amounts of actinide isotopes. This paper focuses on the experience gained and describes some peculiar production of actinide isotopes solved by using extraction chromatographic technique. After a review of extracting molecules and equipment, treatment of irradiated targets (preparation of Pu 238 and removal of neptunium, production of Am 243 and Cm 244), recovery of actinides from alpha aqueous wastes (preparation of Am 241) and recovery of decay products from aged actinide stocks (recovery of Am 241 from Pu stocks, of U 234 from Pu 238 stocks) are described

  6. Minor Actinide Burning in Thermal Reactors. A Report by the Working Party on Scientific Issues of Reactor Systems

    The actinides (or actinoids) are those elements in the periodic table from actinium upwards. Uranium (U) and plutonium (Pu) are two of the principal elements in nuclear fuel that could be classed as major actinides. The minor actinides are normally taken to be the triad of neptunium (Np), americium (Am) and curium (Cm). The combined masses of the remaining actinides (i.e. actinium, thorium, protactinium, berkelium, californium, einsteinium and fermium) are small enough to be regarded as very minor trace contaminants in nuclear fuel. Those elements above uranium in the periodic table are known collectively as the transuranics (TRUs). The operation of a nuclear reactor produces large quantities of irradiated fuel (sometimes referred to as spent fuel), which is either stored prior to eventual deep geological disposal or reprocessed to enable actinide recycling. A modern light water reactor (LWR) of 1 GWe capacity will typically discharge about 20-25 tonnes of irradiated fuel per year of operation. About 93-94% of the mass of uranium oxide irradiated fuel is comprised of uranium (mostly 238U), with about 4-5% fission products and ∼1% plutonium. About 0.1-0.2% of the mass is comprised of neptunium, americium and curium. These latter elements accumulate in nuclear fuel because of neutron captures, and they contribute significantly to decay heat loading and neutron output, as well as to the overall radio-toxic hazard of spent fuel. Although the total minor actinide mass is relatively small - approximately 20-25 kg per year from a 1 GWe LWR - it has a disproportionate impact on spent fuel disposal, and thus the longstanding interest in transmuting these actinides either by fission (to fission products) or neutron capture in order to reduce their impact on the back end of the fuel cycle. The combined masses of the trace actinides actinium, thorium, protactinium, berkelium and californium in irradiated LWR fuel are only about 2 parts per billion, which is far too low for

  7. Comparative analysis of the efficiency of minor actinide burning in the accelerator-driven system and critical reactors within various scenarios for closing the nuclear fuel cycle

    The choice of efficient types of systems for the utilization of long-lived radioactive wastes (RW) of nuclear power is one of the highest priority concerns in nuclear sphere. The accelerator-driven systems (ADS) with heavy liquid metal coolant (HLMC) and fast neutron spectrum are considered among the most efficient nuclear devices for burning minor actinides (MA). Results of numerical studies for the optimization of characteristics of an ADS-system with lead-bismuth coolant for burning minor actinides produced in the open fuel cycle of thermal reactors have been summarized. Criteria of efficiency of MA burning have been determined (time of transmutation, etc.). It has been shown that neutronic characteristics ensuring nuclear safety in an analogous critical reactor - MA burner - are significantly inferior vs. fast critical reactor with UO2 fuel. In order to define whether or not it is justified to use ADS in different scenarios for the nuclear fuel cycle closure, a comparative study has been fulfilled on radiation and technological characteristics of spent fuel from subcritical reactor ADS and on fuel from other nuclear facilities. The VVER-1000 reactor and the variant of fast reactor with lead-bismuth coolant were chosen for the comparison. SVBR-100 reactor can be considered as a prototype of the latter facility. Two options of closing the fuel cycle have been analyzed: the variant with recycling U,Pu without MA, the variant with total recycling of U and all transuranic isotopes (Pu, Np, Am, Cm). The differences have been defined in terms of specific values of radioactivity, residual heat release, intensity of sources of neutrons and gamma-radiation of spent fuel. (author)

  8. Heavy coolant fast neutron reactor BRUS-150 for minor actinides burning and U-233 build-up

    The present paper deals with the calculational research into the performance of fast reactor BRUS-150 cooled with liquid metal coolant eutectic lead-bismuth alloy with reference to minor actinides (Np, Am, Cm) transmutation and isotopic pure U 233 build up. (authors). 10 refs., 2 figs

  9. TRIGA Mark II Criticality Benchmark Experiment with Burned Fuel

    The experimental results of criticality benchmark experiments performed at the Jozef Stefan Institute TRIGA Mark II reactor are presented. The experiments were performed with partly burned fuel in two compact and uniform core configurations in the same arrangements as were used in the fresh fuel criticality benchmark experiment performed in 1991. In the experiments, both core configurations contained only 12 wt% U-ZrH fuel with 20% enriched uranium. The first experimental core contained 43 fuel elements with average burnup of 1.22 MWd or 2.8% 235U burned. The last experimental core configuration was composed of 48 fuel elements with average burnup of 1.15 MWd or 2.6% 235U burned. The experimental determination of keff for both core configurations, one subcritical and one critical, are presented. Burnup for all fuel elements was calculated in two-dimensional four-group diffusion approximation using the TRIGLAV code. The burnup of several fuel elements was measured also by the reactivity method

  10. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  11. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  12. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  13. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL's Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  14. Comparison of MCB and FISPACT burn-up performances using the HELIOS experiment technical specifications

    Highlights: ► The burn-up analysis of HELIOS using MCB and FISPACT. ► New method of branching ratio estimation. ► Usage of JEF2.2 and JEFF3.1 cross-section libraries. ► Power calculations using Qfiss and KERMA factors. ► Highest differences for Am242m. - Abstract: The objective of the HELIOS experiment was to test innovative, uranium-free nuclear fuel containing americium and to study helium release and fuel swelling behaviour during irradiation. The experiment consisted of irradiation of five fuel samples, each containing various initial concentrations of Pu and Am in different inert matrices. The irradiation was performed in the High Flux Reactor (HFR) at Petten during nine cycles (i.e. about nine months) for a total duration of 240 equivalent full-power days. The neutronic calculations play an important role in preparation and analysis of the irradiation experiments. Therefore, this paper presents an explicit burn-up analysis of the HELIOS samples using two numerical tools, the MCB and FISPACT codes. The focus of this calculation is on the concentrations of Pu, minor actinides (MAs) and He during irradiation time and on total sample power due to nuclear reactions and decay. Particular attention was paid to Am242m, the fission cross-section of which is significant in the thermal neutron spectrum. The MCB code incorporates an improved method of producing this, which was subsequently tested and qualified. The sensitivity of the nuclide evolution to the choice of JEF2.2 and JEFF3.1 transport cross-section libraries was also investigated.

  15. Burns

    ... touching the stove This list is not all-inclusive. You can also burn your airways if you ... extinguishers in key locations at home, work, and school. Remove electrical cords from floors and keep them ...

  16. Our experience with caustic oesophageal burn in South of Iran

    Seyed M. V. Hosseini

    2011-01-01

    Full Text Available Context: The alkaline oesophageal burn (EB is a very debilitating injury and common in the southern rural area of Iran, where the air conditioning systems are cleaned with an alkaline liquid, which is accidentally ingested by children. Aims: The aim is to share our experiences with caustic injury in children. Settings and Design : A ′before′ and ′after′ clinical trial. Materials and Methods: From November 2006-2009, 35 cases of alkaline burns were referred to our center. All underwent flexible endoscopy and thereafter received steroid, antibiotic and H2 blocker. They subsequently underwent rigid oesophagoscopy, with grade IIb or higher burns, for inserting the two different kinds of stents. Results: Four out of 10 (GIIa < underwent dilatation occasionally. Fifteen (GIIb with early large stent (eight weeks developed complications (three antral contractures, one oesophagotracheal fistula, one tracheobronchial fistula, three perforations, three deaths, and the remaining cases had not undergone dilatation yet. Four out of 10 with (GIIb, who had small stents (Six months and early gastrostomy needed dilatation every four to six weeks and all recovered, with no significant complications. Conclusions: Early use of gastrostomy prevents malnutrition in patients. Small size stents are much more tolerable for a prolonged time are not obstructed by saliva that washes the wall of the damaged oesophagus continuously and promotes healing.

  17. Alpha-particle Measurements Needed for Burning Plasma Experiments

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor

  18. Alpha-particle Measurements Needed for Burning Plasma Experiments

    Kenneth M. Young

    2001-09-26

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor.

  19. Studies on removing actinides from HLLW with TRPO. The inactive experiment using centrifugal contactors for separation

    The inactive experiment of removing actinides from simulated HLLW by TRPO process is completed. When the simulated HLLW is three times diluted and HNO3 concentration is adjusted to 1.0 mol/l, 99.9% of Zr and Nd (simulate Np, Pu and Am) are removed from the simulated HLLW with twelve extraction stages and four scrub stages. 60% of Fe extracted into the organic phase is scrubbed out, so that the entering of too much Fe into the following step is avoided. Nd and Zr are separated into two groups by stripping with concentrated nitric acid and oxalic acid. The cross contamination between them is small. The concentration profile of nitric acid, Nd, Zr, etc. in various stages and their distribution in different process stream solutions are presented

  20. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  1. A transition cycle strategy to enhance minor actinide burning potential in the pan-shape LMR core

    This study summarizes the neutronic performances and fuel cycle behaviors of the pan-shape transuranic (TRU) burner core from the initial core through the end of a core life. The cycle-by-cycle evolution of isotopic compositions and neutronics characteristics are compared with those calculated from the analysis of an assumed equilibrium cycle. The amount of burnt TRU per cycle after Cycle 8 turned out to be comparable to that of the equilibrium cycle, while the isotopic compositions and the resulting neutronics performances up to about Cycle 20 have shown considerable deviations from those of the equilibrium cycle. The reference core in this analysis has been designed to meet a target sodium void reactivity at the end of the equilibrium cycle by reducing the active core height. Since the core isotopic loading approaches that of the equilibrium cycle after many cycles of operation, significant margins to the target sodium void reactivity are noted in the early cycles. This finding has led to the loading of concentrated minor actinides (MA) relative to the Pu isotopes in the first three cycles. Thereafter, they are homogeneously self-recycled with the external feed TRU makeup composed of typical LWR discharge TRU compositions. The transition cycle analysis with the higher MA loading reveals that the total MA consumed through 50 cycles of operation is 1.89 times larger than the case for the constant external feed makeup TRU with a typical LWR discharge compositions, without exceeding the sodium void reactivity observed in the equilibrium cycle

  2. Nurses' experience of caring for burn injured children in pain.

    Olsson, Andrea

    2011-01-01

    Abstract: Aim: To illuminate how nurses working with burn injured children describe their care for burn injured children in pain during dressing procedures and which conditions and obstacles nurses express they are working under in order to proceed with giving care. Method: Semi-structured qualitative interviews with eight nurses at a pediatric burn ward in Dar es Salaam. Interviews were recorded, transcribed and processed by manifest content analysis. Result: Three themes were derived and i...

  3. Systems Analysis of a Compact Next Step Burning Plasma Experiment

    S.C. Jardin; C.E. Kessel; D. Meade; C. Neumeyer

    2002-02-06

    A new burning plasma systems code (BPSC) has been developed for analysis of a next step compact burning plasma experiment with copper-alloy magnet technology. We consider two classes of configurations: Type A, with the toroidal field (TF) coils and ohmic heating (OH) coils unlinked, and Type B, with the TF and OH coils linked. We obtain curves of the minimizing major radius as a function of aspect ratio R(A) for each configuration type for typical parameters. These curves represent, to first order, cost minimizing curves, assuming that device cost is a function of major radius. The Type B curves always lie below the Type A curves for the same physics parameters, indicating that they lead to a more compact design. This follows from that fact that a high fraction of the inner region, r < R-a, contains electrical conductor material. However, the fact that the Type A OH and TF magnets are not linked presents fewer engineering challenges and should lead to a more reliable design. Both the Type A and Type B curves have a minimum in major radius R at a minimizing aspect ratio A typically above 2.8 and at high values of magnetic field B above 10 T. The minimizing A occurs at larger values for longer pulse and higher performance devices. The larger A and higher B design points also have the feature that the ratio of the discharge time to the current redistribution time is largest so that steady-state operation can be more realistically prototyped. A sensitivity study is presented for the baseline Type A configuration showing the dependence of the results on the parameters held fixed for the minimization study.

  4. Alpha Heating and TN Burn in NIF Experiments

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Merrill, Frank; Cerjan, Charlie; Batha, Steven

    2015-11-01

    Sustainable TN burn requires alpha-particle energy deposition in the hot fuel. Recently, we developed an analytic model to estimate the neutron yield generated by the alpha-particle energy deposited in the hot spot, in terms of the measured total neutron yield, the adiabat of the cold fuel and the peak implosion kinetic energy of the pusher. Our alpha heating model has been applied to a number of inertial confinement fusion capsule experiments performed at the National Ignition Facility (NIF). Our model predictions are consistent with the post-shot calibrated code simulations and experimental data. We have also studied the uncertainty and sensitivities of alpha heating on various physics parameters, such as the adiabat of cold fuel, total neutron yield and peak implosion velocity. Our analysis demonstrates that the alpha particle heating was appreciable in only high-foot experiments. Based on our work, we will discuss paths and parameters to reach ignition at NIF (LA-UR-15-25507). This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  5. Combining theoretical chemistry and Xanes multi-edge experiments to probe actinide valence states

    Both structural and electronic properties of the actinide cations are of fundamental interest in order to describe the intramolecular interactions. The 5f and 6d orbitals are the first partially or totally vacant states of these elements and their properties reflect the nature of the actinide-ligand bond. Because of its chemical and orbital selectivities, XANES spectroscopy is useful to probe the actinides' frontier orbitals and then understand the cation reactivity toward chelating ligands. The actinide L3 edge contains structural information on the coordination polyhedron because of important scattering features. But very little electronic information can be extracted, due to the short core-hole lifetime, broadening the edge signal. On the other hand, the actinide M4,5 edges provide a better resolution and allow one to achieve electronic and structural information. Furthermore, coupling simulations of the experimental spectra and quantum chemical calculations lead to quantitative information such as the determination of the actinide coordination sphere and its effective charge. (authors)

  6. Combining theoretical chemistry and Xanes multi-edge experiments to probe actinide valence states

    Fillaux, C.; Guilbaud, Ph.; Guillaumont, D.; Moisy, Ph.; Den Auwer, Ch. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS), 30 - Marcoule (France); Berthet, J.C. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules (DSM/DRECAM/SCM), 91 - Gif sur Yvette (France); Conradsonc, St.D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Hennig, C. [Forschungszentrum Rossendorf, ROBL at ESRF, 38 - Grenoble (France); Roques, J.; Simoni, E. [Institut de Physique Nucleaire, 91 - Orsay (France); Shuh, D.K.; Tyliszczak, T.; Castro-Rodriguez, I. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2007-10-15

    Both structural and electronic properties of the actinide cations are of fundamental interest in order to describe the intramolecular interactions. The 5f and 6d orbitals are the first partially or totally vacant states of these elements and their properties reflect the nature of the actinide-ligand bond. Because of its chemical and orbital selectivities, XANES spectroscopy is useful to probe the actinides' frontier orbitals and then understand the cation reactivity toward chelating ligands. The actinide L3 edge contains structural information on the coordination polyhedron because of important scattering features. But very little electronic information can be extracted, due to the short core-hole lifetime, broadening the edge signal. On the other hand, the actinide M4,5 edges provide a better resolution and allow one to achieve electronic and structural information. Furthermore, coupling simulations of the experimental spectra and quantum chemical calculations lead to quantitative information such as the determination of the actinide coordination sphere and its effective charge. (authors)

  7. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  8. The Newfoundland in-situ Oil Burn Experiment - NOBE

    A group of over 25 Canadian and US agencies conducted a major offshore oil spill burn near Newfoundland. Over 20 vesels, 7 aircraft, and 230 people were involved in this test, the largest of its kind ever conducted. The burn involved release of two oil spills of ca 50 tons each into a towed fireproof boom. Each burn lasted over an hour. The burn plume was sampled using remote-controlled helicopters and a blimp, and air emissions were monitored downwind from remote controlled boats which also took water samples and temperatures. Over 200 sensors or samplers were used; these will yield data on over 2,000 parameters or substances. Preliminary results are reported. Burning occurred outside the boom due to some initial oil splashover, but this did not result in sheening or significant oil loss. The scaling of burns from test tanks to on-sea burns did not always hold true. Quantitative analytical data showed that emissions from this in-situ fire were less than expected; all measured compounds and parameters were below health concern levels beyond ca 150 m from the fire and very little was detected beyond 500 m. Polycyclic aromatic hydrocarbons (PAH) were found to be lower in the soot than in the starting oil and were consumed by the fire to a large degree. Particulates were found to be of concern only up to 150 m downwind at sea level. Combustion gases did not reach levels of concern and volatile organics were in high concentrations but less than those emitted from a non-burning spill. No compounds of concern could be detected in the water samples. Burn residue samples had lower PAH levels than the starting oil. Generally, burning oil spills at sea was found to be feasible and practical. 2 refs., 9 figs., 3 tabs

  9. Clinical Experience with Chitosan Matrix and Cultured Fibroblasts for Burns

    Gaziza Danlybayeva

    2014-12-01

    Full Text Available Introduction. Burns are an important public health challenge due to the frequency of getting burns in day-to-day life, occupational hazards, and catastrophes. Treatment of burns is complex and is associated with high morbidity and mortality. Duration and complexity of burn treatment require finding new ways of curing and rehabilitating burns. The result of burn treatment plays a significant role in post-traumatic status of a patient and his or her consequent adaptation in society. Chitosan is a natural safe non-toxic product compatible with human tissues, characterized by hydrosorbid, anticoagulant, antibacterial, and wound healing features. The study aims to  show a clinical application of chitosan-pectin scaffold with cultured human skin fibroblasts in the treatment of deep burns.Methods. The substrate was prepared by dissolving 3% chitosan in 0.5N acetic acid, which was then mixed with 3% solution of pectin dissolved in distillated water. Chitosan film was formed in a Petri dish for 20-24 hours at 20-25 °C. After drying the film, cultured allogeneic fibroblasts (patent number RK-25091 were seeded on its surface.Results. The results from an in vitro culture study showed that human allogeneic fibroblasts could adhere well and grow on the selected scaffold with a typical morphology. During autodermoplasty surgery, cultured allogeneic fibroblasts were applied on granulating wounds of 9 patients with IIIA to IVB degree burns and limited donor resources. Wounds treated with the fibroblast-seeded scaffold among all patients provided the highest level of re-epithelialization (day 5, in comparison to cell-free scaffold (day 7 and untreated surface of wounds (day 10.Conclusion. Our results indicate the potential use of chitosan for wound healing due to its allogenic fibroblast adherence to scaffolding as well as high epithelization. This warrants further studies on chitosan for use in wounds resulting from third and fourth degree burns.

  10. Field experiment determinations of distribution coefficients of actinide elements in alkaline lake environments

    Measurements of the radioisotope concentrations of a number of elements (Am, Pu, U, Pa, Th, Ac, Ra, Po, Pb, Cs, and Sr) in the water and sediments of a group of alkaline (pH = 9-10), saline lakes demonstrate greatly enhanced soluble-phase concentrations of elements with oxidation states of (III)-(VI) as the result of complexing by carbonate ion. Ratios of soluble radionuclide concentrations in Mono Lake to those in seawater ([CO32-] in Mono Lake = 200 times that of seawater) were: Pu(approx. =10), 238U(approx. =150), 231Pa, 228Th, 230Th(approx. =103), and 232Th(approx. =105). Effective distribution coefficients of these radionuclides in high CO32- environments are several orders of magnitude lower (i.e., less particle reactive) than in most other natural waters. The importance of CO32- ion on effective K/sub d/ values was also strongly suggested by laboratory experiments in which most of the dissolved actinide elements became adsorbed to particles after a water sample normally at a pH of 10 was acidified, stripped of all CO2, and then returned to pH 10 by adding NH4OH. Furthermore, the effect of complexation by organic ligands is of secondary importance in the presence of appreciable carbonate ion concentration. Neither pure phase solubility calculations nor laboratory scale K/sub d/ determinations accurately predicted the measured natural system concentrations. Therefore, measurements of the distribution of radionuclides in natural systems are essential for assessment of the likely fate of potential releases from high level waste repositories to groundwater. 50 references, 31 figures, 43 tables

  11. Challenges of Transferring Burn Victims to Hospitals: Experiences of Emergency Medical Services Personnel.

    Khankeh, Hamid Reza; Froutan, Razieh; Fallahi-Khoshknab, Masoud; Ahmadi, Fazlollah; Norouzi, Kian

    2016-01-01

    A thorough understanding of experiences of Emergency Medical Services (EMS) personnel related to the field transfer of burn victims can be used as a prerequisite of quality improvement of pre-hospital clinical care for these kinds of victims. The aim of the present study was to explore the experiences of EMS personnel during transferring burn victims. In this qualitative research, content analysis was performed to explore the experiences and perceptions of a purposeful sample of Iranian EMS personnel (n = 32). Data collection continued until a point of saturation was reached. Data was collected using in-depth semi-structured interview and field observations and analyzed by qualitative inductive content analysis.After data analyzing from experiences of pre-hospital emergency personnel during transferring burn victims 7 subcategories were developed and classified into three main categories as challenges of transferring burn victim including; risks during patient transfer, restrictions in the admission of burn victims and uncertainties about patient referral. This study showed that different factors affect the quality of pre-hospital clinical services to the field transfer of burn victims that should be considered to improve the quality of pre-hospital clinical care of burn victims in dynamic programs. Further investigation is needed to explore the process of these crucial services. PMID:27241432

  12. Sibling experiences after a major childhood burn injury.

    Lehna, Carlee

    2010-01-01

    The purpose of this research project was to understand, primarily from the sibling perspective, the effect of a child's major burn injury on his or her sibling. A mixed method qualitative dominant design was implemented using the life story method for the qualitative portion. Additionally, the Sibling Relationship Questionnaire -Revised (SRQ-R) was used as a structured interview guide and for calculating scoring data to explore sibling relationship factors of warmth/closeness, rivalry, conflict, and relative status/power. Participants from 22 family cases (one or multiple family members) and 40 individuals were interviewed. To capture impact on the family over time, interviews began a minimum of two years post-burn. The central thematic pattern for the sibling relationship in families having a child with a major burn injury was that of normalization. Two components of normalization were described: areas of normalization and the process of adjustment. Areas of normalization were found in play and other activities, in school and work, and in family relations with siblings. The process of adjustment was varied and often gradual, involved school and work re-entry, and in some instances, seemed to change life perspective. Clinical implications in providing family-centered care can focus on promoting normalization by assessing and supporting siblings who may only be occasionally seen in the hospital or clinic. PMID:21067076

  13. Clinical Experience in Using the Water Jet in Burn Wound Debridement

    Yang, J.-Y.; Hwuang, J.-Y.; Chuang, S.-S.

    2007-01-01

    Summary Water jets have been used in many areas of surgery. Recently a new surgical debridement device was launched onto the market - VersajetTM. VersajetTM is a unique hydrosurgical device that uses a precise jet of water to simultaneously hold, cut, and remove devitalized or necrotic tissue. This paper describes our experience with ten patients comparing Weck knives with the newly designed hydrosurgical device when debriding burn wounds. The patients' age ranged from 27 to 60 yr (average, 37.8 yr) and the burn wounds treated were between 3 and 7% total body surface area, involving the face, abdomen, and limbs. The hydrosurgical system is a very useful tool for irregular and complex burn wound debridement. This paper represents the first written clinical experience utilizing hydrosurgery in the burn wound management in an Eastern country. PMID:21991073

  14. ["Raw and charred flesh": the experience of burned women in Northeast Brazil].

    Arruda, Cristiani Nobre de; Braide, Andrea Stopglia Guedes; Nations, Marilyn

    2014-10-01

    In Northeast Brazil, death from burns is a widespread, pervasive threat to poor women. This anthropological study describes the experience of personal suffering among female burn patients. In 2009, six "information-rich" cases were investigated at the Burn Center in Fortaleza, Ceará State, Brazil. Open ethnographic interviews with key informants, narratives of lived experiences, and participant observation at the clinic and patients' home were conducted. The methods included content analysis, systems of signs, meanings, and actions, and contextualized semantic interpretation. The emerging metaphors are embued with the cultural meaning of "monstrosity" and gender violence by fire - inscribed mercilessly in the woman's body. "Accidents" caused by flammable liquids (alcohol) hide the cruel reality of "raw and charred flesh". The scars can disfigure the victims as "non-persons", destroying their moral reputation and leading to social rejection. In the Brazilian Northeast, the social vulnerability caused by sequelae from burns demands a policy for humanized care. PMID:25388309

  15. Actinides-1981

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  16. Actinides-1981

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  17. High-burn-up fuels for fast reactors. Past experience and novel applications

    Fast reactors in the U.S. routinely achieved fuel burn-ups of 10%, with some fuel able to reach peak burn-ups of 20%, notably in the Experimental Breeder Reactor II and the Fast Flux Test Facility. Maximum burn-up has historically been constrained by chemical and mechanical interactions between the fuel and its cladding, and to some extent by radiation damage and thermal effects (e.g., radiation-induced creep, thermal creep, and radiation embrittlement) that cause the cladding to weaken. Although fast reactors have used several kinds of fuel - including oxide, metal alloy, carbide, and nitride - the vast majority of experience with fast reactors has been using oxide (including mixed oxide) and metal-alloy fuels based on uranium. Our understanding of high-burn-up operation is also limited by the fact that breeder reactor programs have historically assumed that their fuel would eventually undergo reprocessing; the programs thus have not made high burn-up a top priority. Recently a set of novel designs have emerged for fast reactors that require little initial enrichment and no reprocessing. These reactors exploit a concept known as a traveling wave (sometimes referred to as a breed-and-burn wave, fission wave, or nuclear-burning wave). By breeding and using its own fuel in place as it operates, a traveling-wave reactor can obtain burn-ups that approach 50%, well beyond the current base of knowledge and experience. Our computational work on the physics of traveling-wave reactors shows that they require metal-alloy fuel to provide the margins of reactivity necessary to sustain a breed-and-burn wave. This paper reviews operating experience with high-burn-up fuels and the technical feasibility of moving to a qualitatively new burn-up regime. We discuss our calculations on traveling-wave reactors, including those concerning the possible use of thorium. The challenges associated with high burn-up and fluence in fuels and materials are also discussed. (author)

  18. ITER-FEAT - The future international burning plasma experiment - Overview

    The focus of effort in the ITER Engineering Design Activities (EDA) since 1998 has been the development of a new design to meet revised technical objectives and a cost reduction target of about 50% of the previously accepted cost estimate. Drawing on the design solutions already developed and using the latest physics results and outputs from technology R and D projects, the Joint Central Team and Home Teams, working jointly, have been able to converge towards a new design which will allow the exploration of a range of burning plasma conditions, with a capacity to progress towards possible modes of steady state operation. As such the new ITER design, whilst having reduced technical objectives from its predecessor, will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy. The main features of the current design and of its projected performance are introduced and the outlook for construction and operation is summarised. (author)

  19. Overview of the South American biomass burning analysis (SAMBBA) field experiment

    Morgan, W. T.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Johnson, B. T.; Haywood, J. M.; Freitas, S.; Longo, K.; Artaxo, P.; Coe, H.

    2013-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth's radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.

  20. Last French experiments in order to evaluate the burning possibilities of three water in oil emulsions

    Experiments were conducted to investigate the burning of oil slicks at sea. Three representative crude oils were selected and weathered for periods of 24, 48, and 72 h at ambient temperatures of 14-20 degree C. Samples were taken and water added to make up 20%, 30%, or 40% water. The samples were then emulsified using a centrifugal pump. In-situ burning trials were then conducted using 20 liters of emulsion spread on the surface of 1.7 m2 of water. The effects on burning efficiency of various types of sorbents including bulk polypropylene, peat derivative, and vegetable fiber were also examined. Ignition time, burning time, weight of residue, wind, and smoke characteristics were measured. With no water in the crude, the burn efficiency ranged from 80% to 90%; aging only affected the flame propagation and speed of combustion. Medium crudes containing up to 40% water could be burnt for a maximum aging time of 48 h. Heavier crudes were very difficult to burn after 48 h aging even with only 20% water content. Gelled diesel fuel was found to be a good initiator of combustion. Considering the high speed of emulsification of many crudes, the results show that there are limited cases where in-situ burning can be applicable from an operational point of view. 7 figs., 5 tabs

  1. Solubility and speciation of actinides in salt solutions and migration experiments of intermediate level waste in salt formations

    A comprehensive study into the solubility of the actinides americium and plutonium in concentrated salt solutions, the release of radionuclides from various forms of conditioned ILW and the migration behaviour of these nuclides through geological material specific to the Gorleben site in Lower Saxony is described. A detailed investigation into the characterization of four highly concentrated salt solutions in terms of their pH, Eh, inorganic carbon contents and their densities is given and a series of experiments investigating the solubility of standard americium(III) and plutonium(IV) hydroxides in these solutions is described. Transuranic mobility studies for solutions derived from the standard hydroxides through salt and sand have shown the presence of at least two types of species present of widely differing mobility; one migrating with approximately the same velocity as the solvent front and the other strongly retarded. Actinide mobility data are presented and discussed for leachates derived from the simulated ILW in cement and data are also presented for the migration of the fission products in leachates derived from real waste solidified in cement and bitumen. Relatively high plutonium mobilities were observed in the case of the former and in the case of the real waste leachates, cesium was found to be the least retarded. The sorption of ruthenium was found to be largely associated with the insoluble residues of the natural rock salt rather than the halite itself. (orig./RB)

  2. Physics Basis and Simulation of Burning Plasma Physics for the Fusion Ignition Research Experiment (FIRE)

    The FIRE [Fusion Ignition Research Experiment] design for a burning plasma experiment is described in terms of its physics basis and engineering features. Systems analysis indicates that the device has a wide operating space to accomplish its mission, both for the ELMing H-mode reference and the high bootstrap current/high beta advanced tokamak regimes. Simulations with 1.5D transport codes reported here both confirm and constrain the systems projections. Experimental and theoretical results are used to establish the basis for successful burning plasma experiments in FIRE

  3. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  4. Mesoscale experiments help to evaluate in-situ burning of oil spills

    Burning of spilled oil has distinct advantages over other cleanup countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue by-products. Disadvantages include the dispersal of the combustion products into the air. Mesoscale and laboratory experiments have been conducted to measure the burning characteristics of crude oil fires. Measurements on crude oil pool fires from 0.4 m to 17.2 m in effective diameter were made to obtain data on the rate of burning, heat release rate, composition of the combustion products, and downwind dispersion of the products. The smaller experiments were performed in laboratories at the National Institute of Standards and Technology and the Fire Research Institute in Japan; and the larger ones at the US Coast Guard Fire Safety and Test Detachment in Mobile, Alabama. From these experiments, the value for surface regression rate of a burning crude oil spill was found to be 0.055 mm/s. A major concern for public safety is the content and extent of the smoke plume from the fires. Smoke yield, the fraction of the oil mass burned that is emitted as particulate, was found to be 13 percent. A large-eddy simulation calculation method for smoke plume trajectory and smoke particulate deposition developed by NIST showed that the smoke particulate deposition from a 114 m2 burn would occur in striations over a long, slender area 3.2 km wide and 258 km downwind of the burn

  5. Monte Carlo Simulation of the TRIGA Mark II Benchmark Experiment with Burned Fuel

    Monte Carlo calculations of a criticality experiment with burned fuel on the TRIGA Mark II research reactor are presented. The main objective was to incorporate burned fuel composition calculated with the WIMSD4 deterministic code into the MCNP4B Monte Carlo code and compare the calculated keff with the measurements. The criticality experiment was performed in 1998 at the ''Jozef Stefan'' Institute TRIGA Mark II reactor in Ljubljana, Slovenia, with the same fuel elements and loading pattern as in the TRIGA criticality benchmark experiment with fresh fuel performed in 1991. The only difference was that in 1998, the fuel elements had on average burnup of ∼3%, corresponding to 1.3-MWd energy produced in the core in the period between 1991 and 1998. The fuel element burnup accumulated during 1991-1998 was calculated with the TRIGLAV in-house-developed fuel management two-dimensional multigroup diffusion code. The burned fuel isotopic composition was calculated with the WIMSD4 code and compared to the ORIGEN2 calculations. Extensive comparison of burned fuel material composition was performed for both codes for burnups up to 20% burned 235U, and the differences were evaluated in terms of reactivity. The WIMSD4 and ORIGEN2 results agreed well for all isotopes important in reactivity calculations, giving increased confidence in the WIMSD4 calculation of the burned fuel material composition. The keff calculated with the combined WIMSD4 and MCNP4B calculations showed good agreement with the experimental values. This shows that linking of WIMSD4 with MCNP4B for criticality calculations with burned fuel is feasible and gives reliable results

  6. Pain and anxiety experiences of South African adult burn injury patients during physiotherapy management

    L.D. Morris

    2010-02-01

    Full Text Available A dequate management of procedural pain during physiotherapy management plays an important role in building a trusting relationship betweenthe burn victim and the physiotherapist, and in ensuring desirable functional outcomes. However, the burn pain management regimens currently utilized inburn units, primarily consist of traditional pharmacologic analgesics which areassociated with numerous side-effects and alone are often reported as inadequateto alleviate procedural pain, warranting safer and effective adjunct therapies.Prior to the introduction and implementation of adjunct therapies into a developing world, it is imperative that the current situation in a burn unit, in terms of whether or not the pain management regimens in place are adequate, is first assessed, due to cost concerns. The following short report exemplifies the pain and anxiety experiences of a small number of burn injury patients during physiotherapy at the Tygerberg Hospital adult burn unit, South A frica.  It was hypothesized that the results of this study would underpin whether adult burn injury patients in a developing countryrequire adjunct therapies during physiotherapy management to supplement traditional pharmacologic analgesics inmanaging their procedural pain and subsequent anxiety.

  7. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  8. Predicting the behavior of magnetic reconnection processes in fusion burning plasma experiments

    Critical stability issues involving magnetic reconnection, which are likely to influence the successful operation of burning plasma experiments, are addressed. In particular, we discuss: 1) sawtooth oscillations; 2) nonlinear tearing mode stability, including neo-classical effects; reconnection near the X-points of magnetic separatrices. (author)

  9. Burning a Candle in a Vessel, a Simple Experiment with a Long History

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume…

  10. Clinical characteristics and treatment of burn wound sepsis in extensive burn patients: successful experience with eight cases

    柴家科; 盛志勇; 杨红明

    2000-01-01

    Eight burn wound sepsis patients, in which 6 cases were diagnosed as MODS and two as septic shock, were treated consecutively in our hospital from September 1997 to October 1998. The plasma concentration of IL-6, IL-8, TNFα and LPS were assayed before and after surgical intervention, as well as when the patients' vital signs became stable. The results showed: ①The patients' conditions abruptly deteriorated when the burn wound sepsis emerged;②The major cause related to burn wound sepsis was extensive burn injuries, with large areas of deep burn remaining open; ③Although wound swabs taken on admission revealed the presence of colonization by many pathogenic bacteria, Pseudomonas aeruginosa was one of the most frequent bacteria isolated from the subeschar tissue; ④The plasma concentrations of IL-6, IL-8, TNF and LPS before surgical intervention were significantly higher than that after surgical intervention (P<0.05) ;⑤The lowest level of the inflammatory mediators was observed when the patients' conditions became stable, as compared with before surgical intervention (P<0. 001).These findings suggest that the clinical characteristics of burn wound sepsis are abrupt deterioration of the general condition and prominent septic symptoms, often complicated by MODS. The main cause of burn wound sepsis is the presence of a large area of open deep burn wounds, which should be excised and covered early. LPS and pro-inflammatory mediators play an important role in the pathogenesis of burn wound sepsis. Although success in treating these patients is the result of appropriate application of multiple treatments, early, aggressive and thorough surgical excision of invasive burn infectious tissue and closure of wound play a crucial role in the successful treatment of patients complicated by burn wound sepsis. Other treatments are adjuvant but also important.

  11. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  12. Engineering of a compact D-T burning experiment

    The main design characteristics of a compact experiment whose purpose is to attain the conditions under which the plasma heating due to the fusion reaction products is substantial, are presented. The relevant magnet systems have been optimized in order to produce a plasma column that can be adiabatically compressed from 109 cm to 74 cm. In the compressed stage plasma currents up to 4.5 MA can be induced in a plasma cross-section of 25 X 33 cm2. Therefore, the air-core transformer and equilibrium field systems are designed to supply up to 11 volt-sec for each discharge and the toroidal magnet can produce fields in the range 12 to 15T on the magnetic axis, while the average current density in the relevant copper turns is in the range 12 to 15 kA/cm2 that is below the values reached in the Alcator C device of MIT. The results of a complete structural analysis that evaluates the stress distribution (including that of thermal origin) during a typical plasma discharge are reported

  13. ALMR potential for actinide consumption

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  14. Actinide recycle

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  15. Characterization of actinide physics specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    The United States and the United Kingdom are engaged in a joint research program in which samples of the higher actinides are irradiated in the Dounreay Prototype Fast Reactor in Scotland. The purpose of the porogram is (1) to study the materials behavior of selected higher actinide fuels and (2) to determine the integral cross sections of a wide variety of the higher actinide isotopes. Samples of the actinides are incorporated in fuel pins inserted in the core. For the fuel study, the actinides selected are 241Am and 244Cm in the form of Am2O3, Cm2O3, and Am6Cm(RE)7O21, where (RE) represents a mixture of lanthanides. For the cross-section determinations, the samples are milligram quantities of actinide oxides of 248Cm, 246Cm, 244Cm, 243Cm, 243Am, 241Am, 244Pu, 242Pu, 241Pu, 240Pu, 239Pu, 238Pu, 237Np, 238U, 236U, 235U, 234U, 233U, 232Th, 230Th, and 231Pa encapsulated in vanadium. Coincident with the irradiations, neutron flux and energy spectral measurements are made with vanadium-encapsulated dosimeter materials located within the same fuel pins

  16. MANTRA: An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Youinou, G.; Vondrasek, R.; Veselka, H.; Salvatores, M.; Paul, M.; Pardo, R.; Palmiotti, G.; Palchan, T.; Nusair, O.; Nimmagadda, J.; Nair, C.; Murray, P.; Maddock, T.; Kondrashev, S.; Kondev, F. G.; Jones, W.; Imel, G.; Glass, C.; Fonnesbeck, J.; Berg, J.; Bauder, W.

    2014-05-01

    This paper presents an update of an on-going collaborative INL-ANL-ISU integral reactor physics experiment whose objective is to infer the effective neutron capture cross sections for most of the actinides of importance for reactor physics and fuel cycle studies in both fast and epithermal spectra. Some fission products are also being considered. The principle of the experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation together with the neutron fluence will allow inference of effective neutron capture cross-sections in different neutron spectra.

  17. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations

  18. OUTCOME OF PHYSICAL THERAPY AND SPLINTING IN HAND BURNS INJURY. OUR LAST FOUR YEARS’ EXPERIENCE

    Rrecaj, Shkurta; Hysenaj, Hajrie; Martinaj, Merita; Murtezani, Ardiana; Ibrahimi-Kacuri, Dafina; Haxhiu, Bekim; Buja, Zene

    2015-01-01

    Objective: Burn injuries in hands are much more complex and the appearance of contractures is a common complication. Hand burn injuries often result in limited functionality, flexion and extension of fingers and present a major hindrance in rehabilitation. The aim of physical therapy and splinting after hand burn injury is to maintain mobility, prevent the development of the contracture and to promote the functionality of hand and good cosmetic results. The purpose of this study is to presents our experience of 38 children with hand burn injuries, admitted and treated at the Department of Plastic Surgery, UCCK-Pristina, Kosovo, during the years 2012-2015. Methods: Physical therapy is focused on active/passive range of motion in affected joints, management of cicatrix, strengthening exercise, coordination and use of splints for correction contractures. Patients were evaluated in three, six months and the definitive evaluation is done after 9 months of physical therapy and splinting. Results: We have improvement in range of motion (ROM), functionality, coordination, muscle force, decrease of keloids scars. Conclusion: This study shows the importance of physical therapy and splinting, achieving good results in preventing contracture, improving range of motion, muscle force and good cosmetic results. PMID:26889095

  19. Ximedon Administration in Complex Treatment of Chemical Burns of Esophagus and Stomach in Experiment

    Rukevich S.G.

    2014-03-01

    Full Text Available The aim of the investigation was to study in experiment the morphological changes in rat esophageal and gastric tissues after chemical burn using a regeneration enhancing agent (Ximedon against the background of medical treatment. Materials and Methods. Esophageal and gastric chemical burns were modeled on Wistar white rats (n=70 by 30% acetic acid. The survivors were divided into three groups: a control group (without therapy, a standard treatment group (the rats were administered cefotaxime and prednisolone intraperitoneally and an experimental group (cefotaxime, prednisolone, Ximedon intraperitoneally. The results were assessed morphologically and morphometrically on day 13, 19 and 40. Conclusion. Esophageal and gastric mucosa thickness after chemical burn does not recover under any treatment. Antibiotics and corticosteroids taken after burn inhibit inflammation in tissues, but do not prevent scar tissue development in muscularis mucosae. A long term (6 weeks of Ximedon therapy along with standard therapy results in complete recovery of esophageal and gastric mucous structure and significantly suppresses a scarring process in muscular elements.

  20. Estimate of preliminary experiments to study the burn-up of gadolinium as a poison

    Full text: Proposed preliminary experiments to determine the burn-up of Gd2O3 as a poison in different reactors are discussed. Estimates are given of parameters such as the weight of the sample to be irradiated, irradiation and decay times, expected activity and photon spectrum. 1 g samples of natural UO2 with 8 % of Gd2O3, 3 days irradiation time and 30 days decay time are recommended

  1. Safety considerations in design of fast spectrum ads for transuranic or minor actinide burning: a status report on activities of the OECD/Nea expert group

    The Nuclear Development Committee of the OECD/NEA convened an expert group for a 'Comparative Study of Accelerator Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles'. The expert group has studied complexes (i.e. energy parks) of fission-based energy production and associated waste management facilities comprised of thermal and fast reactors, and ADS. With a goal to minimise transuranic (TRU) flows to the repository per unit of useful energy provided by the complex, the expert group has studied homogenous and heterogeneous recycle of TRU and minor actinides (MA) in the facilities of the complex using aqueous or dry recycle in single and double strata architectures. In the complexes considered by the expert group the ADS is always assigned a TRU or MA (and sometimes a LLFP) incineration mission - with useful energy production only as a secondary ADS goal to partially offset the cost of its construction and operation. Ancillary issues have also been considered - including ADS safety challenges and strategies for resolving them. This paper reports on the status of the expert group's considerations of ADS safety strategy. (author)

  2. Actinide and fission product evolution benchmarking with Vandellos II (PWR-Spain) measured isotopic values with considering all the burn-up history with consecutive calculation

    At this study, isotopic evolution of the sample E58-263 of assembly WZR0058 of Vandellos Unit II (PWR-Spain) is calculated with MONTEBURNS code system. The sample was exposed with different neutron spectrum because of its different core location at fuel different cycles. At fuel calculation, all fuel cycle burn-up history of Use sample is 1 considered consecutively by using the 'remove' and 'add' option of the MONTEBURNS code. The calculated results are compared with fuel measurement and with cycle by cycle calculation methodology results.

  3. First burnup credit application including actinides and fission products for transport and storage cask by using French experiments

    The burnup credit (BUC) methodology for a transport and storage cask application, including actinides and fission products, is implemented at AREVA TN using the French BUC calculation route for pressurized water reactor (PWR) UO2 used fuel. The methodology is based on the connection of the French depletion code DARWIN2 and the French criticality safety package CRISTAL V1. The BUC methodology includes the experimental validation of the computation codes dedicated to the calculation of the used fuel inventory calculations. Indeed, the results of the comparison calculation–experiment (C-E)/E allow to determine either a set of isotopic correction factors (ICFs) for the BUC nuclides considered in the criticality calculation or keff-penalty terms directly used for the definition of the keff-acceptance criterion for the criticality assessment of the transport and storage cask. These ICFs or keff-penalty terms are one of the key of the BUC method to guarantee the conservativeness of the fuel reactivity in safety-criticality calculations using BUC approach. A French BUC program has been developed at CEA/Cadarache in the framework of the CEA-AREVA collaboration in order to validate fuel inventory calculations. This program involves two kinds of experiments: chemical analyses and microprobe measurements of PWR irradiated fuel pins (French PIE program) on one hand, and reactivity worth measurements of the BUC nuclides in the MINERVE reactor on the other hand. This paper highlights, through a first industrial AREVA TN's application of the BUC method, including fission products, that the French PIE program and reactivity worth measurements in MINERVE reactor are suitable for the implementation of BUC in transport and storage cask applications loaded with PWR UO2 used fuels assemblies. (author)

  4. Recent progress in trans-actinide chemistry: cutting-edge chemistry experiments with heaviest elements

    Motivated by the recent claims from the Flerov Laboratory of Nuclear Reactions (FLNR) at Dubna, Russia, on the discovery of several long-lived isotopes of elements up to atomic number 118, chemists have started to develop ideas about possible future investigations on chemical properties of these new members of the periodic table. Most of these elements should exhibit chemical properties typical for p-elements. Theoretical calculations indicate that element 114, due to a strong spin-orbit splitting and its filled 7p1/2 subshell, should reveal a rather noble behaviour, possibly being like a noble-gas. The same is already expected for element 112 with its filled 6d10 shell. In the course of previous studies of element 108 (hassium) a technique has been developed to investigate this element in form of its very volatile tetroxide. This technique, called IVO (In-situ Volatilisation and On-line detection) is able to separate continuously and detect on-line and SF-decaying products in a thermo-chromatographic device. IVO was used in recent years to investigate chemical properties of element 112, assumed it to be gaseous in an inert gas and containment (e.g. quartz) at ambient conditions. Since a prediction claimed that this element should interact with noble metal surfaces (e.g. Au) with an adsorption enthalpy between those of the systems Hg on Au and Rn on Au a detector array was built (COLD), composed of PIN diodes covered with a thin Au layer, along which a temperature gradient was applied between room temperature and -185 0C. A first chemical investigation of element 112 performed at FLNR with a slightly different gas chemical technique indicated that this element does not behave like Hg but more like Rn. In two more recent IVO experiments controversial results were obtained. In a first experiment the data were interpreted as an indication for a behaviour of element like Rn and seemed to confirm the data. In a second experiment, however, this observation could not be

  5. Preparation of actinide specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    A joint research program involving the United States and the United Kingdom was initiated about four years ago for the purpose of studying the fuel behavior of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of integral cross sections of a wide variety of higher actinide isotopes (physics specimens) was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the fuel pellets and physics samples. The higher actinide samples chosen for the fuel study were 241Am and 244Cm in the forms of Am2O3, Cm2O3, and Am6Cm(RE)7O21, where (RE) represents a mixture of lanthanides. Milligram quantities of actinide oxides of 248Cm, 246Cm, 244Cm, 243Cm, 243Am, 241Am, 244Pu, 242Pu, 241Pu, 240Pu, 239Pu, 238Pu, 237Np, 238U, 236U, 235U, 234U, 233U, 232Th, 230Th, and 231Pa were encapsulated to obtain nuclear cross section and reaction rate data for these materials

  6. Fiber scintillator/streak camera detector for burn history measurement in inertial confinement fusion experiment

    To measure the burn history in an inertial confinement fusion experiment, we have developed a new neutron detector based on plastic scintillation fibers. Twenty-five fiber scintillators were arranged in a geometry compensation configuration by which the time-of-flight difference of the neutrons is compensated by the transit time difference of light passing through the fibers. Each fiber scintillator is spliced individually to an ultraviolet optical fiber that is coupled to a streak camera. We have demonstrated a significant improvement of sensitivity compared with the usual bulk scintillator coupled to a bundle of the same ultraviolet fibers. copyright 1997 American Institute of Physics

  7. Ground based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    J. Brito

    2014-05-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the Southwestern part of the Brazilian Amazon forest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground based measurements over Brazil, aiming to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼1000 cm−3 to peaks of up to 35 000 cm−3 during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed on average at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent Black Carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of Biomass Burning Organic Aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol

  8. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  9. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  10. Plutonium and minor actinide utilisation in a pebble-bed high temperature reactor

    Petrov, B. Y.; Kuijper, J. C.; Oppe, J.; De Haas, J. B. M. [Nuclear Research and Consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2012-07-01

    This paper contains results of the analysis of the pebble-bed high temperature gas-cooled PUMA reactor loaded with plutonium and minor actinide (Pu/MA) fuel. Starting from knowledge and experience gained in the Euratom FP5 projects HTR-N and HTR-N1, this study aims at demonstrating the potential of high temperature reactors to utilize or transmute Pu/MA fuel. The work has been performed within the Euratom FP6 project PUMA. A number of different fuel types and fuel configurations have been analyzed and compared with respect to incineration performance and safety-related reactor parameters. The results show the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burnup of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burnup and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the 'wallpaper' fuel does not have advantage over the standard fuel design in this respect. After 100 years of decay following the fuel discharge, the total amount of actinides remains almost unchanged for all of the fuel types considered. Among the plutonium isotopes, only the amount of Pu-241 is reduced significantly due to its relatively short half-life. (authors)

  11. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    1985-11-01

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.

  12. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the first two of the five technical sessions. The first one being the BCX overview, the second on the BCX candidate materials. The remaining three sessions in volume two are on the plasma materials interaction issues, research facilities and small working group meeting on graphite, beryllium, advanced materials and future collaborations

  13. Burn-Up Determination by High Resolution Gamma Spectrometry: Axial and Diametral Scanning Experiments

    In the gamma spectrometric determination of burn-up the use of a single fission product as a monitor of the specimen fission rate is subject to errors caused by activity saturation or, in certain cases, fission product migration. Results are presented of experiments in which all the resolvable gamma peaks in the fission product spectrum have been used to calculate the fission rate; these results form a pattern which reflect errors in the literature values of the gamma branching ratios, fission yields etc., and also represent a series of empirical correction factors. Axial and diametral scanning experiments on a long-irradiated low-enrichment fuel element are also described and demonstrate that it is possible to differentiate between fissions in U-235 and in Pu-239 respectively by means of the ratios of the Ru-106 activity to the activities of the other fission products

  14. Ex-vessel remote maintenance development plans for the Burning Plasma Experiment

    Remote maintenance (RM) is fundamental to the basic design requirements of the Burning Plasma Experiment (BPX), and an extensive RM development and demonstration program is planned to meet these requirements. The program first draws from the experience base that exists in the fission community and Europe's Joint European Torus (JET) Project. Successful solutions are applied where possible and, in many cases, improved in order to achieve the performance demanded by a multiyear program that must be capable of efficiently executing RM procedures. Early, concurrent efforts in the design and fabrication of prototype remote handling (RH) equipment, remote tooling, and maintainable machine components will precede an extensive use of mock-up equipment in order to test, develop, and demonstrate the technology. 7 refs,. 5 figs

  15. Ex-vessel remote maintenance development plans for the burning plasma experiment

    This paper reports on remote maintenance (RM) which is fundamental to the basic design requirements of the Burning Plasma Experiment (BPX), and an extensive RM development and demonstration program is planned to meet these requirements. The program first draws from the experience base that exists in the fission community and Europe's Joint European Torus (JET) Project. Successful solutions are applied where possible and, in many cases, improved in order to achieve the performance demanded by a multiyear program that must be capable of efficiently executing RM procedures. Early, concurrent efforts in the design and fabrication of prototype remote handling (RH) equipment,r emote tooling, and maintainable machine components will precede an extensive use of mock-up equipment in order to test, develop, and demonstrate the technology

  16. HIV seroprevalence and its effect on outcome of moderate to severe burn injuries: A Ugandan experience

    Ssentongo Robert; Chalya Phillipo L; Kakande Ignatius

    2011-01-01

    Abstract Background HIV infection in a patient with burn injuries complicates the care of both the patient and the treating burn team. This study was conducted to establish the prevalence of HIV among burn patients in our setting and to compare the outcome of these patients who are HIV positive with those who are HIV negative. Methods This was a prospective cohort study involving burn injury patients admitted to Mulago Hospital between November 2005 and February 2006. Patients were stratified...

  17. Actinides reduction by recycling in a thermal reactor

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  18. Direct access to burning spherical tokamak experiment by pulsed high-power heating of magnetic reconnection

    The merging/ reconnection startup of high-beta ST has been developed in the TS-3/4 experiments, leading us to its new extension to the pulsed high-power heating for burning plasma formation. Two STs were produced inductively by swing-down of two or four PF coil currents without using any center solenoid (CS) and they were merged together for high-power reconnection heating. The reconnection outflow speed equals to the Alfven speed under no guiding field condition. The outflow energy is converted mostly into ion thermal energy through ion viscosity and/or fast shock, indicating that the ion temperature increment (and the thermal energy increment) scales with squares of reconnecting magnetic field (Alfven speed). This unique method has the highest heating power MW-GW among all CS-less startups and the heating time much shorter than the energy confinement time and the electron-ion collision time. These facts indicate that the merging of two STs possibly provides a direct path to the burning plasma formation. The TS-3/4 scaling data suggest that two merging STs with B=1-3T, n=1020m-3 will be transformed into an ITER-like ST with T∼20keV within reconnection time. (author)

  19. A review of the plasma-material interaction problems for reacting and burning plasma experiments

    Serious problems have to be faced at present in linking present plasma research to fusion reactor engineering. Even in fusion devices of the near-term and of the next generation which aim to evaluate the fusion engineering feasibility of burning plasma experiments such as TFTR, JET, R-tokamak, ZEPHYR and INTOR, plasma-material interactions cause many technological difficulties such as large heat loads, large erosion rates, large magnetic forces and large induced radioactivities. Moreover, impurity control, tritium handling, ash exhaust and refuelling need to be solved by realistic methods with technological justifications. Since present fusion approaches might not give hopeful predictions to an economical, safe, and reliable fusion reactor, it is most important at present to find a possible window of promising fusion research. In this paper, we review technological restrictions from viewpoints of plasma-material interactions, then discuss the fusion research and related material investigations that are necessary to realize reasonable fusion reactor concepts. (orig.)

  20. Prescribed burning experiences in Italy: an integrated approach to prevent forest fires

    Ascoli D

    2012-02-01

    Full Text Available Prescribed burning is used in many geographical areas for multiple and integrated objectives (wildfire prevention, habitat conservation, grazing management. In Europe the collaboration between researchers and fire professionals has brought to implement this technique over increasing areas (~104 ha year-1, effectively and efficiently. In Italy prescribed burning has not been much studied and it is rarely applied. A new interest is recently rising. Some Regions particularly threatened by wildfires have updated their legislation and set up procedures to authorize prescribed fire experiments and interventions. From 2004 to 2011 several scientific, operative and training experiences have been carried out at a regional level (Basilicata, Campania, Friuli Venezia Giulia, Piemonte, Sardegna, Toscana. The present paper aims to: (i document and compare these regional programs; (ii discuss their frameworks and limitations; (iii provide information about objectives, prescriptions, methods and results. The study has involved Universities, Forest Corps, Civil Protection, Municipalities, Parks and professionals from Italy and other Countries. Interventions have regarded integrated objectives (fire hazard reduction; habitat conservation; forest and grazing management, and involved several vegetation types (broadleaved and conifer forests; Mediterranean and Continental shrublands; grasslands. Studies on fire behaviour and ecology have helped to set prescriptions for specific objectives and environments. Results have been transferred to professionals through training sessions. Several common elements are outlined: integrated objectives, multidisciplinary character, training and research products. Ecological questions, certification to the use of fire, communication to local communities and the proposal of new studies, are some of the issues outlined in the discussion. The present study is the first review at national level and we hope it will help to deepen the

  1. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    J. Brito

    2014-11-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent black carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the

  2. 33rd Actinide Separations Conference

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  3. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  4. Energetic particle physics in fusion research in preparation for burning plasma experiments

    The area of energetic particle (EP) physics in fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by Heidbrink and Sadler (1994 Nucl. Fusion 34 535). That review coincided with the start of deuterium–tritium (DT) experiments on the Tokamak Fusion Test Reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the ‘sea’ of Alfvén eigenmodes (AEs), in particular by the toroidicity-induced AE (TAE) modes and reversed shear AEs (RSAEs). In the present paper we attempt a broad review of the progress that has been made in EP physics in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus), including stellarator/helical devices. Introductory discussions on the basic ingredients of EP physics, i.e., particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others, are given to help understanding of the advanced topics of EP physics. At the end we cover important and interesting physics issues related to the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor). (review)

  5. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at

  6. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  7. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti

    2011-08-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  8. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  9. OUTCOME OF PHYSICAL THERAPY AND SPLINTING IN HAND BURNS INJURY. OUR LAST FOUR YEARS’ EXPERIENCE

    Rrecaj, Shkurta; Hysenaj, Hajrie; Martinaj, Merita; Murtezani, Ardiana; Ibrahimi-Kacuri, Dafina; Haxhiu, Bekim; Buja, Zene

    2015-01-01

    Objective: Burn injuries in hands are much more complex and the appearance of contractures is a common complication. Hand burn injuries often result in limited functionality, flexion and extension of fingers and present a major hindrance in rehabilitation. The aim of physical therapy and splinting after hand burn injury is to maintain mobility, prevent the development of the contracture and to promote the functionality of hand and good cosmetic results. The purpose of this study is to present...

  10. Advanced Recycling Reactor with Minor Actinide Fuel

    The Advanced Recycling Reactor (ARR) with minor actinide fuel has been studied. This paper presents the pre-conceptual design of the ARR proposed by the International Nuclear Recycling Alliance (INRA) for FOA study sponsored by DOE of the United States of America (U.S.). Although the basic reactor concept is technically mature, it is not suitable for commercial use due to the need to reduce capital costs. As a result of INRA's extensive experience, it is anticipated that a non-commercial ARR1 will be viable and meet U.S. requirements by 2025. Commercial Advanced Recycling Reactor (ARR) operations are expected to be feasible in competition with LWRs by 2050, based on construction of ARR2 in 2035. The ARR based on the Japan Sodium-cooled Fast Reactor (JSFR) is a loop-typed sodium cooled reactor with MOX fuel that is selected because of much experience of SFRs in the world. Major features of key technology enhancements incorporated into the ARR are the following: Decay heat can be removed by natural circulation to improve safety. The primary cooling system consists of two-loop system and the integrated IHX/Pump to improve economics. The steam generator with the straight double-walled tube is used to improve reliability. The reactor core of the ARR1 is 70 cm high and the volume fraction of fuel is 31.6%. The conversion ratio of fissile is set up less than 0.65 and the amount of burned TRU is 45-51 kg/TWeh. According to survey of more effective TRU burning core, the oxide fuel core containing high TRU (MA 15%, Pu 35% average) with moderate pins of 12% arranged driver fuel assemblies can decrease TRU conversion ratio to 0.33 and improve TRU burning capability to 67 kg/TWeh. The moderator can enhance TRU burning, while increasing the Doppler effect and reducing the positive sodium void effect. High TRU fraction promotes TRU burning by curbing plutonium production. High Am fraction and Am blanket promote Am transmutation. The ARR1 consists of a reactor building (including

  11. An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    Lin, Neng-Huei; Tsay, Si-Chee; Maring, Hal B.; Yen, Ming-Cheng; Sheu, Guey-Rong; Wang, Sheng-Hsiang; Chi, Kai Hsien; Chuang, Ming-Tung; Ou-Yang, Chang-Feng; Fu, Joshua S.; Reid, Jeffrey S.; Lee, Chung-Te; Wang, Lin-Chi; Wang, Jia-Lin; Hsu, Christina N.; Sayer, Andrew M.; Holben, Brent N.; Chu, Yu-Chi; Nguyen, Xuan Anh; Sopajaree, Khajornsak; Chen, Shui-Jen; Cheng, Man-Ting; Tsuang, Ben-Jei; Tsai, Chuen-Jinn; Peng, Chi-Ming; Schnell, Russell C.; Conway, Tom; Chang, Chang-Tang; Lin, Kuen-Song; Tsai, Ying I.; Lee, Wen-Jhy; Chang, Shuenn-Chin; Liu, Jyh-Jian; Chang, Wei-Li; Huang, Shih-Jen; Lin, Tang-Huang; Liu, Gin-Rong

    2013-01-01

    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and

  12. Experiment and Reactive-Burn Modeling in the RDX Based Explosive XTX 8004

    Johnson, Carl; Murphy, Mike; Gustavsen, Rick; Jackson, Scott; Vincent, Samuel

    2015-06-01

    XTX 8004 consists of 80 wt. % cyclotrimethylenetrinitramine (RDX), and 20 wt. % Sylgard 182, a silicone rubber used as a binder. Nominal density is 1.5 g/cm3. Uncured XTX 8004 is putty like and can be molded or extruded. The XTX 8004 detonation product Hugoniot calibration was obtained from cylinder tests using a genetic algorithm approach to parameterize a Jones-Wilkins-Lee (JWL) equation of state. Additionally, we conducted four gas-gun experiments that were instrumented with embedded electromagnetic particle velocity gauges. These provided wave profiles to which we calibrated an Ignition and Growth reactive burn (IGRB) model in ALE3D for 1-D shock to detonation transitions. Further, acceptor and donor XTX 8004 were extruded into opposite sides of a monolithic polymethylmethacrylate (PMMA) block with a known thickness of PMMA forming the attenuator plate, the so-called monolithic gap test (MGT). Detonation and initiation in the XTX 8004 was recorded using multiple ultra-high-speed images of the position of the shock front in the PMMA. Input to the acceptor charge was estimated from stress wave profiles photographed inside the attenuator as well as with photonic Doppler velocimetry (PDV) measurements of the free surface velocity beneath the attenuator plate. Results were simulated using IGRB in ALE3D. Parameterization of IGRB to 1-D vs. 2-D experiments will be discussed.

  13. The lanthanides and actinides

    This paper relates the chemical properties of the actinides to their position in the Mendeleev periodic system. The changes in the oxidation states of the actinides with increasing atomic number are similar to those of the 3d elements. Monovalent and divalent actinides are very similar to alkaline and alkaline earth elements; in the 3+ and 4+ oxidation states they resemble d elements in the respective oxidation states. However, in their highest oxidation states the actinides display their individual properties with only a slight resemblance to d elements. Finally, there is a profound similarity between the second half of the actinides and the first half of the lanthanides

  14. Optimized feedback control system modeling of resistive wall modes for burning plasmas experiments

    Katsuro-Hopkins, Oksana Nikolaevna

    A numerical study of active feedback control system performance and optimization for tokamak Resistive Wall Modes (RWM) is the subject of this thesis. The ability to accurately model and predict the performance of an active MHD control systems is critical to present and future advanced confinement scenarios and fusion reactor design studies. The computer code VALEN has been designed to calculate the performance of a MHD feedback control system in an arbitrary geometry. The simulation of realistic effects in feedback systems, such as noise, time delays and filters is of particular importance. In this work realistic measurement noise analysis was added to VALEN and used to design the RWM feedback control amplifier power level for the DIII-D experiment. Modern control theory based on a state-space formulation obtained from VALEN was applied to design an Optimal Controller and Observer based on a reduced VALEN model. A quantitative low order model of the VALEN state space was derived from the high dimensional intrinsic state space structure of the VALEN using methods of a balanced realization and matched DC gain truncation. These techniques for the design of an optimal controller and optimal observer were applied to models of the DIII-D and ITER experiments and showed an order of magnitude reduction of the required control coil current and voltage in the presence of white noise as compared to a traditional, classical PID controller. This optimal controller for the ITER burning plasma experiment was robust from the no-wall pressure limit to a pressure value well above those achieved with a classical PID controller and could approach the ideal wall limit.

  15. An overview of the burning plasma experiment (BPX) vacuum vessel system

    The mission of the Burning Plasma Experiment (BPX) Project is to develop an understanding of the physics of self-heated fusion plasmas and to demonstrate the production of substantial amounts of fusion power. The Vacuum Vessel System (VVS), which consists of the vacuum vessel assembly, divertor and first wall assemblies and the in-vessel remote maintenance (IVRM( capabilities is a major system of the BPX machine. This paper provides an overview of the VVS. The basic parameters, which significantly influence the design, are presented. The comprehensive research and development program which has been established to support the VVS design is summarized. A discussion is provided of the functional requirements of the divertor and the first wall and the machine operating modes as they relate to the divertor and limiter design. The divertor and first wall material requirements are identified and a description of their respective configurations is also included. The vacuum vessel assembly provides both the high vacuum environment required for plasma operation and the primary containment for tritium. A discussion of the engineering requirements, material selection rationale and the configuration of the vacuum vessel is provided. The BPX machine must be designed and configured for remote inspection, maintenance and repair. Remote maintenance requirements related to the VVS are satisfied by the IVRM capability which is briefly discussed

  16. About the Toroidal Magnetic Field of a Tokamak Burning Plasma Experiment with Superconducting Coils

    In tokamaks, the strong dependence on the toroidal magnetic field of both plasma pressure and energy confinement is what makes possible the construction of small and relatively inexpensive burning plasma experiments using high-field resistive coils. On the other hand, the toroidal magnetic field of tokamaks using superconducting coils is limited by the critical field of superconductivity. In this article, we examine the relative merit of raising the magnetic field of a tokamak plasma by increasing its aspect ratio at a constant value of the peak field in the toroidal magnet. Taking ITER-FEAT as an example, we find that it is possible to reach thermonuclear ignition using an aspect ratio of approximately 4.5 and a toroidal magnetic field of 7.3 T. Under these conditions, fusion power density and neutron wall loading are the same as in ITER [International Thermonuclear Experimental Reactor], but the normalized plasma beta is substantially smaller. Furthermore, such a tokamak would be able to reach an energy gain of approximately 15 even with the deterioration in plasma confinement that is known to occur near the density limit where ITER is forced to operate

  17. Spin and orbital moments in actinide compounds

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    -electron band-structure calculations, is that the orbital moments of the actinide 5f electrons are considerably reduced from the values anticipated by a simple application of Hund's rules. To test these ideas, and thus to obtain a measure of the hybridization, we have performed a series of neutron scattering...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced as...

  18. Building a multidisciplinary team for burn treatment – Lessons learned from the Montreal tendon transfer experience

    Karam, E.; Lévesque, M.C.; Jacquemin, G.; Delure, A.; Robidoux, I.; Laramée, M.T.; Odobescu, A.; Harris, P. G.; Danino, A.M.

    2014-01-01

    Multidisciplinary teams (MDTs) represent a recognized component of care in the treatment of complex conditions such as burns. However, most institutions do not provide adequate support for the formation of these teams. Furthermore, the majority of specialists lack the managerial skills required to create a team and have difficulties finding the proper tools. Our objective is to provide an insight for health care professionals, who wish to form a MDT for burn treatment, on the challenges that ...

  19. Application of Haddon’s matrix in qualitative research methodology: an experience in burns epidemiology

    Deljavan R

    2012-07-01

    Full Text Available Reza Deljavan,1 Homayoun Sadeghi-Bazarganim,2,3 Nasrin Fouladim,4 Shahnam Arshi,5 Reza Mohammadi61Injury Epidemiology and Prevention Research Center, 2Neuroscience Research Center, Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz, Iran; 3Public Health Department, Karolinska Institute, Stockholm, Sweden; 4Ardabil University of Medical Sciences, Ardabil, Iran; 5Shahid Beheshti University of Medical Sciences, Tehran, Iran; 6Public Health Department, Karolinska Institute, Stockholm, SwedenBackground: Little has been done to investigate the application of injury specific qualitative research methods in the field of burn injuries. The aim of this study was to use an analytical tool (Haddon’s matrix through qualitative research methods to better understand people’s perceptions about burn injuries.Methods: This study applied Haddon’s matrix as a framework and an analytical tool for a qualitative research methodology in burn research. Both child and adult burn injury victims were enrolled into a qualitative study conducted using focus group discussion. Haddon’s matrix was used to develop an interview guide and also through the analysis phase.Results: The main analysis clusters were pre-event level/human (including risky behaviors, belief and cultural factors, and knowledge and education, pre-event level/object, pre-event phase/environment and event and post-event phase (including fire control, emergency scald and burn wound management, traditional remedies, medical consultation, and severity indicators. This research gave rise to results that are possibly useful both for future injury research and for designing burn injury prevention plans.Conclusion: Haddon’s matrix is applicable in a qualitative research methodology both at data collection and data analysis phases. The study using Haddon’s matrix through a qualitative research methodology yielded substantially rich information regarding burn injuries

  20. Prescribed burning experiences in Italy: an integrated approach to prevent forest fires

    Ascoli D; Catalanotti A; Valese E; Cabiddu S; Delogu G; Driussi M; Esposito A; Leone V; Lovreglio R; Marchi E; Mazzoleni S; Rutigliano FA; Strumia S; Bovio G

    2012-01-01

    Prescribed burning is used in many geographical areas for multiple and integrated objectives (wildfire prevention, habitat conservation, grazing management). In Europe the collaboration between researchers and fire professionals has brought to implement this technique over increasing areas (~104 ha year-1), effectively and efficiently. In Italy prescribed burning has not been much studied and it is rarely applied. A new interest is recently rising. Some Regions particularly threatened by wild...

  1. Bare soil erosion modelling with rainfall simulations: experiments on crop and recently burned areas

    Catani, F.; Menci, S.; Moretti, S.; Keizer, J.

    2006-12-01

    The use of numerical models is of fundamental importance in the comprehension and prediction of soil erosion. At the very basis of the calibration process of the numerical models are the direct measurements of the governing parameters, carried out during field or laboratory tests. To measure and model soil erosion rainfall simulations can be used, that allow the reproduction of project rainfall having chosen characteristics of intensity and duration. The main parameters that rainfall simulators can measure are hydraulic conductivity, parameters of soil erodibility, rate and features of splash erosion, discharge coefficient and sediment yield. Other important parameters can be estimated during the rainfall simulations through the use of photogrammetric instruments able to memorize high definition stereographic models of the soil plot under analysis at different time steps. In this research rainfall simulator experiments (rse) were conducted to measure and quantify runoff and erosion processes on selected bare soil plots. The selected plots are located in some vineyards, olive groves and crops in central Italy and in some recently burned areas in north-central Portugal, affected by a wildfire during early July 2005 and, at the time, largely covered by commercial eucalypt plantations. On the Italian crops the choice of the rainfall intensities and durations were performed on the basis of the previous knowledge of the selected test areas. The procedure was based on an initial phase of soil wetting and a following phase of 3 erosion cycles. The first should reproduce the effects of a normal rainfall with a return time of 2 years (23 mm/h). The second should represent a serious episode with a return time of 10 years (34 mm/h). The third has the objective to reproduce and understand the effects of an intense precipitation event, with a return time of 50 years (41 mm/h). During vineyards experiments some photogrammetric surveys were carried out as well. In the Portugal

  2. Use of fast reactors for actinide transmutation

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  3. Overview of a prescribed burning experiment within a boreal forest in Finland

    Virkkula, A.; Levula, J.; Pohja, T.; Aalto, P. P.; Keronen, P.; Schobesberger, S.; Clements, C. B.; Pirjola, L.; Kieloaho, A.-J.; Kulmala, L.; Aaltonen, H.; Patokoski, J.; Pumpanen, J.; Rinne, J.; Ruuskanen, T.; Pihlatie, M.; Manninen, H. E.; Aaltonen, V.; Junninen, H.; Petäjä, T.; Backman, J.; Dal Maso, M.; Nieminen, T.; Olsson, T.; Grönholm, T.; Kerminen, V.-M.; Schultz, D. M.; Kukkonen, J.; Sofiev, M.; de Leeuw, G.; Bäck, J.; Hari, P.; Kulmala, M.

    2013-08-01

    A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha-1). The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000-3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s-1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1-2 × 106 cm-3 in the plume at a distance of 100-200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker) were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land) measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC flux was observed after the

  4. Overview of a prescribed burning experiment within a boreal forest in Finland

    A. Virkkula

    2013-08-01

    Full Text Available A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha−1. The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000–3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s−1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1–2 × 106 cm−3 in the plume at a distance of 100–200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC

  5. Physics studies of higher actinide consumption in an LMR

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  6. Superconductivity in rare earth and actinide compounds

    Rare earth and actinide compounds and the extraordinary superconducting and magnetic phenomena they exhibit are surveyed. The rare earth and actinide compounds described belong to three classes of novel superconducting materials: high temperature, high field superconductors (intermetallics and layered cuprates); superconductors containing localized magnetic moments; heavy fermion superconductors. Recent experiments on the resistive upper critical field of high Tc cuprate superconductors and the peak effect in the critical current density of the f-electron superconductor CeRu2 are discussed. (orig.)

  7. Actinide environmental chemistry

    In order to predict release and transport rates, as well as design cleanup and containment methods, it is essential to understand the chemical reactions and forms of the actinides under aqueous environmental conditions. Four important processes that can occur with the actinide cations are: precipitation, complexation, sorption and colloid formation. Precipitation of a solid phase will limit the amount of actinide in solution near the solid phase and have a retarding effect on release and transport rates. Complexation increases the amount of actinide in solution and tends to increase release and migration rates. Actinides can sorb on to mineral or rock surfaces which tends to retard migration. Actinide ions can form or become associated with colloidal sized particles which can, depending on the nature of the colloid and the solution conditions, enhance or retard migration of the actinide. The degree to which these four processes progress is strongly dependent on the oxidation state of the actinide and tends to be similar for actinides in the same oxidation state. In order to obtain information on the speciation of actinides in solution, i.e., oxidation state, complexation form, dissolved or colloidal forms, the use of absorption spectroscopy has become a method of choice. The advent of the ultrasensitive, laser induced photothermal and fluorescence spectroscopies has made possible the detection and study of actinide ions at the parts per billion level. With the availability of third generation synchrotrons and the development of new fluorescence detectors, X-ray absorption spectroscopy (XAS) is becoming a powerful technique to study the speciation of actinides in the environment, particularly for reactions at the solid/solution interfaces. (orig.)

  8. Occupational chemical burns: a 2-year experience in the emergency department

    Touzopoulos P

    2011-10-01

    Full Text Available Panagiotis Touzopoulos1, Paul Zarogoulidis2, Alexandros Mitrakas1, Michael Karanikas1, Panagiotis Milothridis1, Dimitrios Matthaios1, Ioannis Kouroumichakis3, Stella Proikaki3, Paschalis Pavlioglou3, Nikolaos Katsikogiannis4, Theodoros C Constantinidis511st University Surgical Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, 2Pulmonary Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, 32nd Internal Medicine Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, 4Surgical Department (NHS, University General Hospital of Alexandroupolis, 5Medical School, Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, Regional Laboratory of Public Health (Eastern Macedonia-Thrace, GreeceAbstract: Chemical burn injuries are a result of exposure to acid, alkali, or organic compounds. In this retrospective study, a total of 21 patients suffering occupational chemical burns, came to the emergency room at the University General Hospital of Alexandroupolis, from 2008 to 2010; 76.2% were workers, 19% were farmers, and 4.8% were desk officers. The majority of burns were due to exposure to acid (61.9%. Upper extremities were the most frequently injured area followed by the lower extremities and thorax. None of the patients needed further hospital care, but in the follow-up, four of the patients suffered keloid. Proper surgical treatment at the emergency room decreases the length of hospital stay for patients who suffer chemically induced burns.Keywords: chemical burns, surgical treatment, labor accidents

  9. Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions

    Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi

    The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays

  10. EXPERIENCE IN TREATING SECONDARY SYSTEMIC MYCOTIC INFECTION AFTER SEVERE BURNS ASSOCIATED WITH ELECTRIC INJURY

    谢卫兴; 李秀芝

    1995-01-01

    One patient with wound surface sepsis caused by secondary pyocyanic infection after extensive burns associated with visceral injuries (peptic ulcer hemorrhage, renal insufficiency and hepatic dysfunction) and generalized candidiasis albicans was cured after anti-infection treatment with proper antibiotics, removal of the infected focus, and effective anti-fungal drugs.

  11. HIV seroprevalence and its effect on outcome of moderate to severe burn injuries: A Ugandan experience

    Ssentongo Robert

    2011-06-01

    Full Text Available Abstract Background HIV infection in a patient with burn injuries complicates the care of both the patient and the treating burn team. This study was conducted to establish the prevalence of HIV among burn patients in our setting and to compare the outcome of these patients who are HIV positive with those who are HIV negative. Methods This was a prospective cohort study involving burn injury patients admitted to Mulago Hospital between November 2005 and February 2006. Patients were stratified into HIV positive (exposed group and HIV-negative (unexposed group. Data was collected using a pre-tested coded questionnaire and analyzed using SPSS statistical computer software version 11.5. Results Of the 130 patients included in the study, 17 (13.1% patients tested HIV positive and this formed the study (exposed group. The remaining 113 patients (86.9% formed the control (unexposed group. In the HIV positive group, females outnumbered males by a ratio of 1.4:1 and the mean age was 28.4 ± 21.5 years (range 3 months-34 years. 64.7% of HIV positive patients reported to have risk factors for HIV infection. Of these, multiple sexual partners [Odds Ratio 8.44, 95% C.I. (3.87-143.23, P = 0.011] and alcoholism [Odds Ratio 8.34, 95% C.I. (5.76-17.82, P = 0.002] were found to be independently and significantly associated with increased risk to HIV infection. The mean CD4 count for HIV positive and HIV negative patients were 394 ± 328 cells/μL and 912 ± 234 cells/μL respectively which is statistically significant (P = 0.001. There was no difference in the bacteria cultured from the wounds of HIV positive and negative patients (P = 0.322. Patients with clinical signs of sepsis had lower CD4+ counts compared to patients without sepsis (P Conclusion HIV infection is prevalent among burn injury patients in our setting and thus presents an occupational hazard to health care workers who care for these patients. All burn health care workers in this region need to

  12. Cryopreserved cadaveric skin allograft for cover of excised burns wounds: early clinical experience in Singapore

    Human cadaveric skin allograft is widely and effectively used in the treatment of extensive burns. A Skin Bank was established in Singapore National Burns Centre in late 1992 to cater to this need. Due to the shortage of skin donors, it was not until early 1998 that the Skin Bank began to store cadaveric skin harvested from consent donors under the Medical Therapy, Education and Research Act. Cadaveric skin has significant clinical usefulness particularly in the treatment of severe burns. The National Burns Centre admits on the average 300 patients a year, and about 25% of which have sustained major burns (total bum area in excess of 30% BSA or full thickness in excess of 20% BSA). In many cases, the bums are too extensive for autologous skin grafts. The pivotal role of the Skin Bank allows temporary coverage of the entire open bum wound following desloughing or bum wound excision. To date six skin donations have been dealt with. The national tissue transplant team coordinated the selection and screening of these donors. The skin harvested is cryopreserved with 10% dimethyl sulphoxide (DMSO) or glycerol in DMEM. Supplementation with antibiotics is important. Storage temperature is set at -150 degree C. The procurement, processing, preservation and storage of skin allografts were according to guidelines issued by the American Association of Tissue Banks.Three patients with extensive bums (45% mean body surface area) have benefited from this stored cadaveric skin as temporary biological dressings. The technique is by no means novel but the usage of cadaveric skin represents a further treatment milestone for the severe bum injury patients at our centre

  13. Research in actinide chemistry

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH-, CO32-, PO43-, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  14. Spin Hamiltonians for actinide ions

    The breakdown of Russel Saunders coupling for correlated f-levels of actinide ions is due to both spin orbit coupling and the crystalline electric field (CEF). Experiments on curium, an S-state ion in the metal for which the CEF is weak indicate a g-factor close to the Russel-Saunders value. Spin-orbit coupling is therefore too weak to produce jj coupling. This suggests a model for magnetic actinide ions in which the CEF ground multiplet is well separated from higher levels, completely determining thermodynamic magnetic properties. On this basis simplified spin Hamiltonians are derived for GAMMA1-GAMMA5 ground states in order to interpret thermodynamic measurements and ordering phenomena. (author)

  15. Experiencia en el tratamiento de quemaduras de cuero cabelludo Scalp burns treatment experience

    N. Pereira

    2013-03-01

    Full Text Available El cuero cabelludo es la barrera más externa y más importante del cráneo y del cerebro. Si bien las quemaduras de esta zona son raras, cuando se producen suelen estar causadas por alta tensión eléctrica, fuego, líquidos hirvientes u otras fuentes de calor. El objetivo de este trabajo es presentar una serie de casos de quemaduras de cuero cabelludo tratadas en los últimos 10 años en el Hospital del Trabajador de Santiago (Chile. Se trata de un estudio descriptivo retrospectivo en el que se analizó la información demográfica y terapéutica de los pacientes que requirieron hospitalización al tiempo que se revisó la literatura al respecto. En total se registraron 2.266 consultas por quemaduras en la cabeza, de las cuales 34 fueron del cuero cabelludo y 11 requirieron hospitalización; la mayoría fueron quemaduras eléctricas, 4 casos y por fuego, otros 4 casos. En el tratamiento, destacó el uso en 1 caso de colgajo libre asociado a colgajos locales de avance. En el tratamiento de las secuelas se utilizaron expansores y posteriormente colgajos locales de avance. Sólo una pequeña parte de los pacientes que consultan por quemaduras en la cabeza corresponden a quemaduras del cuero cabelludo. La mayoría son tratadas de forma ambulatoria y no requieren acciones mayores. Los pacientes con quemaduras eléctricas suelen requerir tratamientos más agresivos. Para el tratamiento de las secuelas son preferibles los expansores y los colgajos de avance.The scalp is the most external and important barrier of the skull and brain. Burns in this area are rare, but often caused by high voltage injuries, fire, liquid or other heat sources. The aim of this paper is to present a series of cases of scalp burns of the last 10 years in the Hospital del Trabajador de Santiago (Chile. This is a retrospective and descriptive study. We analyzed the demography and treatment of patients requiring hospitalization and we reviewed the literature. There were 2

  16. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  17. [An experience of providing emergency care on the basis of Watson's theory to a toddler suffering from minor burns].

    Kuo, Ting-Ting; Sun, Hui-Lin

    2008-06-01

    This article explores the application of Watson's Caring Theory to a child suffering from minor burns injury and his mother. After the nursing process, their physical and social-psychological needs were met. A trauma accident always affects the child and the caregiver, especially the mother. Burn injury brings physical injury, pain, and loss of control to the child and makes the mother feel very guilty and lose her confidence in her ability to take care of the child. After the caring behaviors had been practiced, relationships of mutual trust were developed between the child, his mother and the primary nurse. In the child, the medical treatments were accomplished, the pain was relieved, and he resumed his communication mode. Finally, abilities to deal with burn injury were also built between the child and his mother. This experience could serve as a reference in the emergency nursing of trauma children. The focus of emergency care is not only applying scientific knowledge in the physical area, but also using the caring behaviors to meet the individual's social-psychological needs. PMID:18543193

  18. Tracing biomass burning plumes from the Southern Hemisphere during the AMMA 2006 wet season experiment

    Mari, C. H.; Cailley, G.; Corre, L.; M. Saunois; Attié, J.L.; V. Thouret; Stohl, A.

    2007-01-01

    The Lagrangian particle dispersion model FLEXPART coupled with daily active fire products provided by the MODIS instrument was used to forecast the intrusions of the southern hemispheric fire plumes in the Northern Hemisphere during the AMMA (African Monsoon Multidisciplinary Analysis) fourth airborne campaign from 25 July to 31 August 2006 (Special Operation Period SOP2_a2). The imprint of the biomass burning plumes over the Gulf of Guinea showed a well marked intraseasonal variability which...

  19. Tracing biomass burning plumes from the Southern Hemisphere during the AMMA 2006 wet season experiment

    C. H. Mari

    2008-07-01

    Full Text Available The Lagrangian particle dispersion model FLEXPART coupled with daily active fire products provided by the MODIS instrument was used to forecast the intrusions of the southern hemispheric fire plumes in the Northern Hemisphere during the AMMA (African Monsoon Multidisciplinary Analysis fourth airborne campaign from 25 July to 31 August 2006 (Special Operation Period SOP2_a2. The imprint of the biomass burning plumes over the Gulf of Guinea showed a well marked intraseasonal variability which is controlled by the position and strength of the southern hemispheric African Easterly Jet (AEJ-S. Three different periods were identified which correspond to active and break phases of the AEJ-S: 25 July–2 August (active phase, 3 August–8 August (break phase and 9 August–31 August (active phase. During the AEJ-S active phases, the advection of the biomass burning plumes out over the Atlantic ocean was efficient in the mid-troposphere. During the AEJ-S break phases, pollutants emitted by fires were trapped over the continent where they accumulated. The continental circulation increased the possibility for the biomass burning plumes to reach the convective regions located further north. As a consequence, biomass burning plumes were found in the upper troposphere over the Gulf of Guinea during the AEJ-S break phase. Observational evidences from the ozonesounding network at Cotonou and the carbon monoxide measured by MOPITT confirmed the alternation of the AEJ-S phases with low ozone and CO in the mid-troposphere over the Gulf of Guinea during the break phase.

  20. Tracing biomass burning plumes from the Southern Hemisphere during the AMMA 2006 wet season experiment

    C. H. Mari

    2007-11-01

    Full Text Available The Lagrangian particle dispersion model FLEXPART coupled with daily active fire products provided by the MODIS instrument was used to forecast the intrusions of the southern hemispheric fire plumes in the Northern Hemisphere during the AMMA fourth airborne campaign from 25 July to 31 August 2006 (Special Operation Period SOP2_a2. The imprint of the biomass burning plumes over the Gulf of Guinea showed a well marked intraseasonal variability which is controlled by the position and strength of the southern hemispheric African Easterly Jet (AEJ-S. Three different periods were identified which correspond to active and break phases of the AEJ-S: 25 July–2 August (active phase, 3 August–8 August (break phase and 9 August–31 August (active phase. During the AEJ-S active phases, the advection of the biomass burning plumes out over the Atlantic ocean was efficient in the mid-troposphere. During the AEJ-S break phases, pollutants emitted by fires were trapped over the continent where they accumulated. The continental circulation increased the possibility for the biomass burning plumes to reach the convective regions located further north. As a consequence, biomass burning plumes were found in the upper troposphere over the Gulf of Guinea during the AEJ-S break phase. Observational evidences from the ozonesounding network at Cotonou and the carbon monoxide measured by MOPITT confirmed the alternation of the AEJ-S phases with low ozone and CO in the mid-troposphere over the Gulf of Guinea during the break phase.

  1. Epidemiology and Outcome of Chemical Burn Patients Admitted in Burn Unit of JNMC Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India: A 5-year Experience

    Akhtar, Md Sohaib; Ahmad, Imran; Khurram, M. Fahud; Kanungo, Srikanta

    2015-01-01

    Aims and Objective: The objectives of this study were to evaluate the epidemiology, clinical variable of chemical burns, and their outcomes to prevent or reduce the frequency and morbidity of such injuries. Materials and Methods: A retrospective analysis was performed on all the patients with chemical burns admitted at author's center between November 2008 and December 2013. All the patients were evaluated in terms of age, sex, total body surface area, etiology, treatment given, morbidity, mo...

  2. On the feasibility of a CANDU PHWR actinide burner

    In this work a review of the current solutions to burn the actinide i.e. the spallation method, LWR, FBR, Siemens proposal and inert matrix is presented. Finally, a proposal is made to use the CANDU PHWR for this purpose, taking into account the techniques envisaged for LWR and the prospect of the advanced fuel cycle in CANDU system. (Author) 5 Refs

  3. Recovery of actinides from spent nuclear fuel by pyrochemical reprocessing

    The Partitioning and Transmutation (P and T) strategy is based on reduction of the long-term radiotoxicity of spent nuclear fuel by recovery and recycling of plutonium and minor actinides, i.e. Np, Am and Cm. Regardless if transmutation of actinides is conceived by a heterogeneous accelerator driven system, fast reactor concept or as integrated waste burning with a homogenous recycling of all actinides, the reprocessed fuels used are likely to be significantly different from the commercial fuels of today. Because of the fuel type and the high burn-up reached, traditional hydrometallurgical reprocessing such as used today might not be the most adequate method. The main reasons are the low solubility of some fuel materials in acidic aqueous solutions and the limited radiation stability of the organic solvents used in extraction processes. Therefore, pyrochemical separation techniques are under development worldwide, usually based on electrochemical methods, reductive extraction in a high temperature molten salt solvent or fluoride volatility techniques. The pyrochemical reprocessing developed in ITU is based on electrorefining of metallic fuel in molten LiCl-KCl using solid aluminium cathodes. This is followed by a chlorination process for the recovery of actinides from formed actinide-aluminium alloys, and exhaustive electrolysis is proposed for the clean-up of salt from the remaining actinides. In this paper, the main achievements in the electrorefining process are summarised together with results of the most recent experimental studies on characterisation of actinides-aluminium intermetallic compounds. U, Np and Pu alloys were investigated by electrochemical techniques using solid aluminium electrodes and the alloys formed by electrodeposition of the individual actinides were analysed by XRD and SEM-EDX. Some thermodynamic properties were determined from the measurements (standard electrode potentials, Gibbs energy, enthalpy and entropy of formation) as well as

  4. Actinide transmutation in nuclear reactors

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  5. Research in actinide chemistry

    1991-01-01

    This report contains research results on studies of inorganic and organic complexes of actinide and lanthanide elements. Special attention is given to complexes of humic acids and to spectroscopic studies.

  6. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  7. Subsurface Biogeochemistry of Actinides

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  8. Nuclear fuel burn-up credit for criticality safety justification of spent nuclear fuel storage systems

    Burn-up credit analysis of RBMK-1000 an WWER-1000 spent nuclear fuel accounting only for actinides is carried out and a method is proposed for actinide burn-up credit. Two burn-up credit approaches are analyzed, which consider a system without and with the distribution of isotopes along the height of the fuel assembly. Calculations are performed using SCALE and MCNP computer codes

  9. Minior Actinide Doppler Coefficient Measurement Assessment

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  10. Prevention and treatment of gastrointestinal dysfunction following severe burns: A summary of recent 30-year clinical experience

    Shi-Chu Xiao, Shi-Hui Zhu, Zhao-Fan Xia, Wei Lu, Guang-Qing Wang, Dao-Feng Ben, Guang-Yi Wang, Da-Sheng Cheng

    2008-05-01

    Full Text Available AIM: To sum up the recent 30-year experience in the prevention and treatment of gastrointestinal dysfunction in severe burn patients, and propose practicable guidelines for the prevention and treatment of gastrointestinal (GI dysfunction.METHODS: From 1980 to 2007, a total of 219 patients with large area and extraordinarily large area burns (LAB were admitted, who were classified into three stages according the therapeutic protocols used at the time: Stage 1 from 1980 to 1989, stage 2 from 1990 to 1995, and stage 3 from 1996 to 2007. The occurrence and mortality of GI dysfunction in patients of the three stages were calculated and the main causes were analyzed.RESULTS: The occurrence of stress ulcer in patients with LAB was 8.6% in stage 1, which was significantly lower than that in stage 1 (P < 0.05. No massive hemorrhage from severe stress ulcer and enterogenic infections occurred in stages 2 and 3. The occurrence of abdominal distension and stress ulcer and the mortality in stage 3 patients with extraordinarily LAB was 7.1%, 21.4% and 28.5%, respectively, which were significantly lower than those in stage 1 patients (P < 0.05 or P < 0.01, and the occurrence of stress ulcer was also significantly lower than that in stage 2 patients (P < 0.05.CONCLUSION: Comprehensive fluid resuscitation, early excision of necrotic tissue, staged food ingestion, and administration of specific nutrients are essential strategies for preventing gastrointestinal complications and lowering mortality in severely burned patients.

  11. Fast Burner Reactor Devoted to Minor Actinide Incineration

    This study proposes a new fast reactor core concept dedicated to plutonium and minor actinide burning by transmutation. This core has a large power level of ∼1500 MW(electric) favoring the economic aspect. To promote plutonium and minor actinide burning as much as possible, total suppression of 238U, which produces 239Pu by conversion, and large quantities of minor actinides in the core are desirable. Therefore, the 238U-free fuel is homogeneously mixed with a considerable quantity of minor actinides.From the safety point of view, both the Doppler effect and the coolant (sodium) void reactivity become less favorable in a 238U-free core. To preserve these two important safety parameters on an acceptable level, a hydrogenated moderator separated from the fuel and nuclides, such as W or 99Tc, is added to the core in the place of 238U. Tungsten and 99Tc have strong capture resonances at appropriate energies, and 99Tc itself is a long-lived fission product to be transmuted with profit.This core allows the achievement of a consumption rate of ∼100 kg/TW(electric).h of transuranic elements, ∼70 kg/TW(electric).h for plutonium (due to 238U suppression), and 30 to 35 kg/TW(electric).h for minor actinides. In addition, ∼14 kg/TW(electric).h of 99Tc is destroyed when this element is present in the core (the initial loading of 99Tc is >4000 kg in the core).The activity of newly designed subassemblies has also been investigated in comparison to standard fast reactor subassemblies (neutron sources, decay heat, and gamma dose rate). Finally, a transmutation scenario involving pressurized water reactors and minor actinide-burning fast reactors has been studied to estimate the necessary proportion of burner reactors and the achievable radiotoxicity reduction with respect to a reference open cycle

  12. Nuclear burning in a compact scheme of inertial electrostatic confinement as imitation of stellar nucleosynthesis. Experiment and PIC modeling

    Kurilenkov, Yu K.; Tarakanov, V. P.; Karpukhin, V. T.; Gus'kov, S. Yu; Oginov, A. V.

    2015-11-01

    DD neutrons from microfusion in the interelectrode space of a table-top low energy nanosecond vacuum discharge with a deuterium-loaded Pd anode have been demonstrated earlier. The detailed particle-in-cell (PIC) simulation of the discharge experimental conditions have been developed using a fully electrodynamic code. The principal role of a virtual cathode and the corresponding deep potential well (PW) formed in the interelectrode space are recognized. The PIC modeling has allowed identifying the scheme of small-scale experiment with a rather old branch of plasma physics as inertial electrostatic confinement fusion. Deuterons being trapped by this well are accelerating up to the energies of a few tens of keV that provides the DD nuclear synthesis under head-on collisions. Meanwhile, any ions of other elements like He, C, O, Si (as main elements of different shells of stars) being placed in the PW (even with low Z charges) have to be accelerated easily up to the head-on collisions energies, which are corresponding to the temperatures of ignition Tign for different shells. We conclude that hypothesis on some imitation of different stages of stellar nucleosynthesis by nuclear burning in the potential well of virtual cathode in vacuum discharge seems to be reasonable and stimulating in the future study of complex element burning including advanced fuel like p-B11.

  13. Transmutations of nuclear waste. Progress report RAS programme 1995: Recycling and transmutation of actinides and fission products

    This report describes the progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1995, which is the second year of the 4-year programme 1994-1997. An extensive listing of reports and publications from 1991 to 1995 is given. Highlights in 1995 were: -The completion of the European Strategy Study on Nuclear Waste Transmutation as a result of which the understanding of transmutation of plutonium, minor actinides and long-lived fission products in thermal and fast reactors has been increased significantly. Important ECN contributions were given on Am, 99Tc and 129I transmutation options. Follow-up contracts have been obtained for the study of 100% MOX cores and accelerator-based transmutation. - Important progress in the evaluation of CANDU reactors for burning very large amounts of transuranium mixtures in inert matrices. - The first RAS irradiation experiment in the HFR, in which the transmutation of technetium and iodine was examined, has been completed and post-irradiation examination has been started. - A joint proposal of the EFTTRA cooperation for the 4th Framework Programme of the EU, to demonstrate the feasibility of the transmutation of americium in an inert matrix by an irradiation in the HFR, has been granted. - A bilateral contract with CEA has been signed to participate in the CAPRA programme, and the work in this field has been started. - The thesis work on Actinide Transmutation in Nuclear Reactor Systems was succesfully defended. New PhD studies on Pu burning in HTGR, on nuclear data for accelerator-based systems, and on the SLM-technique for separation of actinides were started. - A review study of the use of the thorium cycle as a means for nuclear waste reduction, has been completed. A follow-up of this work is embedded in an international project for the 4th Framework Programme of the EU. (orig./DG)

  14. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  15. Actinide isotopic analysis systems

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  16. Neutron scattering studies of the actinides

    The electronic structure of actinide materials presents a unique example of the interplay between localized and band electrons. Together with a variety of other techniques, especially magnetization and the Mossbauer effect, neutron studies have helped us to understand the systematics of many actinide compounds that order magnetically. A direct consequence of the localization of 5f electrons is the spin-orbit coupling and subsequent spin-lattice interaction that often leads to strongly anisotropic behavior. The unusual phase transition in UO2, for example, arises from interactions between quadrupole moments. On the other hand, in the monopnictides and monochalcogenides, the anisotropy is more difficult to understand, but probably involves an interaction between actinide and anion wave functions. A variety of neutron experiments, including form-factor studies, critical scattering and measurements of the elementary excitations have now been performed, and the conceptual picture emerging from these studies will be discussed

  17. ITER-FEAT - the future international burning plasma experiment - present status

    The focus of effort in the ITER engineering design activities (EDA) since 1998 has been the development of a new design to meet revised technical objectives and a cost reduction target of about 50% of the previously accepted cost estimate. Drawing on the design solutions already developed and qualified during the EDA and using the latest physics results and outputs from technology researched development projects, the Joint Central Team and Home Teams, working together, have been able to converge towards a design which meets, in general, the revised objectives and provides acceptable margins against the unavoidable uncertainties in performance projections. The new design will allow the exploration of a range of burning plasma conditions in which energetic α-particles are the dominant source of plasma heating and the main determinants of plasma behaviour, with the capacity to progress towards possible modes of steady state operation. Such plasma performance both necessitates, and provides a test-bed for, a range of advanced technologies required to establish fusion as a practical energy source. As such the new ITER design, whilst having reduced technical objectives from its predecessor, will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy. The main features of the current design and of its projected performance are presented and the outlook for construction and operation is discussed. (author)

  18. All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry

    Tugov, A. N.; Ryabov, G. A.; Shtegman, A. V.; Ryzhii, I. A.; Litun, D. S.

    2016-07-01

    This article presents the results of the research carried out at the All-Russia Thermal Engineering Institute (VTI) aimed at using saline coal, municipal solid waste and bark waste, sunflower husk, and nesting/ manure materials from poultry farms. The results of saline coal burning experience in Troitsk and Verkhny Tagil thermal power plants (TPP) show that when switching the boiler to this coal, it is necessary to take into account its operating reliability and environmental safety. Due to increased chlorine content in saline coal, the concentration of hydrogen chloride can make over 500 mg/m3. That this very fact causes the sharp increase of acidity in sludge and the resulting damage of hydraulic ash removal system equipment at these power stations has been proven. High concentration of HCl can trigger damage of the steam superheater due to high-temperature corrosion and result in a danger of low-temperature corrosion of air heating surfaces. Besides, increased HCl emissions worsen the environmental characteristics of the boiler operation on the whole. The data on waste-to-energy research for municipal solid waste (MSW) has been generalized. Based on the results of mastering various technologies of MSW thermal processing at special plants nos. 2 and 4 in Moscow, as well as laboratory, bench, and industrial studies, the principal technical solutions to be implemented in the modern domestic thermal power plant with the installed capacity of 24 MW and MSW as the primary fuel type has been developed. The experience of the VTI in burning various kinds of organic waste—bark waste, sunflower husk, and nesting/manure materials from poultry farms—has been analyzed.

  19. Radiochemistry and actinide chemistry

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 1012, are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  20. Actinides and Life's Origins.

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  1. Burns and epilepsy.

    Berrocal, M

    1997-01-01

    This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group. PMID:9212488

  2. Burning plasmas

    Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    1990-10-01

    The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

  3. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  4. Actinide transmutation in the advanced liquid metal reactor (ALMR)

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. The current reference design is a 471 MWt modular reactor loaded with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and makeup. Actinide transmutation may be accomplished in the ALMR by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behaviour throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. (author). 3 refs, 6 figs, 3 tabs

  5. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Bourg Stéphane; Geist Andreas; Narbutt Jerzy

    2015-01-01

    Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities strivin...

  6. Actinide separative chemistry

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  7. Burn Rehabilitation

    Koray Aydemir; Mehmet Ali Taşkaynatan

    2011-01-01

    Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The t...

  8. Actinide recovery from pyrochemical residues

    We demonstrated a new process for recovering plutonium and americium from pyrochemical waste. The method is based on chloride solution anion exchange at low acidity, or acidity that eliminates corrosive HCl fumes. Developmental experiments of the process flow chart concentrated on molten salt extraction (MSE) residues and gave >95% plutonium and >90% americium recovery. The recovered plutonium contained 62- from high-chloride low-acid solution. Americium and other metals are washed from the ion exchange column with lN HNO3-4.8M NaCl. After elution, plutonium is recovered by hydroxide precipitation, and americium is recovered by NaHCO3 precipitation. All filtrates from the process can be discardable as low-level contaminated waste. Production-scale experiments are in progress for MSE residues. Flow charts for actinide recovery from electro-refining and direct oxide reduction residues are presented and discussed

  9. The patient–body relationship and the "lived experience" of a facial burn injury: a phenomenological inquiry of early psychosocial adjustment

    McLean LM

    2015-08-01

    Full Text Available Loyola M McLean,1–3 Vanessa Rogers,3–4 Rachel Kornhaber,5–7 Marie-Therese Proctor,8 Julia Kwiet,3–4 Jeffrey Streimer,3–4 John Vanderord6 1Brain and Mind Centre and Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; 2Westmead Psychotherapy Program, Discipline of Psychiatry, Sydney Medical School, University of Sydney and Western Sydney Local Health District, Parramatta, NSW, Australia; 3Consultation-Liaison Psychiatry, Royal North Shore Hospital, Sydney, NSW, Australia; 4Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; 5School of Health Sciences, Faculty of Health, University of Tasmania, Alexandria, NSW, Australia; 6Severe Burns Injury Unit, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia; 7School of Nursing, University of Adelaide, SA, Australia; 8Graduate School of Counselling, Excelsia College, Sydney, NSW, Australia Background: Throughout development and into adulthood, a person's face is the central focus for interpersonal communication, providing an important insight into one's identity, age, sociocultural background, and emotional state. The face facilitates important social, including nonverbal, communication. Therefore, sustaining a severe burn, and in particular a facial burn, is a devastating and traumatizing injury. Burn survivors may encounter unique psychosocial problems and experience higher rates of psychosocial maladjustment, although there may be a number of potentially mediating factors. Objectives: The purpose of this phenomenological study was to examine the early recovery experience of patients with a facial burn. In particular, this study focused on how the injury impacted on the participants’ relationship with their own body and the challenges of early psychosocial adjustment within the first 4 months of sustaining the injury. Methods: In 2011, six adult participants encompassing two females and four males

  10. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...... to monitor the ignitability of oil spills....

  11. Review of actinide nitride properties with focus on safety aspects

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  12. Review of actinide nitride properties with focus on safety aspects

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  13. Vacuum system in a compact D-T burning experiment (Ignitor)

    In the present work design solutions for the vacuum system of the Ignitor Tokamak experiment are presented. We describe the main characteristics of the vacuum vessel and of the limiter due to the close relation of their construction materials with the performance of the vacuum system. The material treatments and the cleaning discharge processes are briefly discussed. The D-T mixture envisaged as the gas filler of the vessel must be considered another problem for the vacuum system, related to the tritium β- emission and to the safety protection. (orig.)

  14. Actinides reduction by recycling in a thermal reactor; Reduccion de actinidos por reciclado en un reactor termico

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  15. Impact of actinide recycle on nuclear fuel cycle health risks

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR)1 and Integral Fast Reactor (IF)2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  16. Burn Rehabilitation

    Koray Aydemir

    2011-07-01

    Full Text Available Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The term ‘burn rehabilitation’ incorporates the physical, physiological and social aspects of care. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Burn rehabilitation aims to prevent the possible complications, minimalize joint contractures and deformities, increase range of motion, control hypertrophic scarring, achieve the best possible functional capacity and to regain the patients vocational and recreational activities. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 70-7

  17. Research and development of nitride fuel cycle for TRU burning

    Susuki, Y.; Ogawa, T.; Osugi, T.; Arai, Y.; Mukaiyama, T. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1997-07-01

    The present status of the research and development of nitride fuel cycle for burning transuranium elements in actinide burner reactors and fast reactors at JAERI is described, especially focusing on the progress in the recent two years. The research and development cover fuel fabrication technology, property measurements such as thermal conductivity, basic irradiation tests at Japan Materials Testing Reactors(JMTR), electrorefining of actinide nitrides in fused salts, and the evaluation of mass balance in the reprocessing process of nitride fuel. (authors)

  18. Distribution of actinide elements in sediments: leaching studies

    Previous investigations have shown that Fe and Mn oxides and organic matter can significantly influence the behavior of Pu and other actinides in the environment. A sequential leaching procedure has been developed in order to investigate the solid phase distribution of the actinides in riverine and marine sediments. Seven different sedimentary fractions are defined by this leaching experiment: an exchangeable metals fraction, an organic fraction, a carbonate fraction, a Mn oxide fraction, an amorphous Fe fraction, a crystalline Fe oxide fraction and a lattice-held or residual fraction. There is also the option of including a metal sufide fraction. A preliminary experiment, analyzing only the metals and not the actinide elements, indicates that this leaching procedure (with some modifications) is a viable procedure. The subsequent data should result in information concerning the geochemical history and behavior of these actinide elements in the environment

  19. Photochemistry of the actinides

    It has been found that all three major actinides have a useful variety of photochemical reactions which could be used to achieve a separations process that requires fewer reagents. Several features merit enumerating: (1) Laser photochemistry is not now as uniquely important in fuel reprocessing as it is in isotopic enrichment. The photochemistry can be successfully accomplished with conventional light sources. (2) The easiest place to apply photo-reprocessing is on the three actinides U, Pu, and Np. The solutions are potentially cleaner and more amenable to photoreactions. (3) Organic-phase photoreactions are probably not worth much attention because of the troublesome solvent redox chemistry associated with the photochemical reaction. (4) Upstream process treatment on the raffinate (dissolver solution) may never be too attractive since the radiation intensity precludes the usage of many optical materials and the nature of the solution is such that light transmission into it might be totally impossible

  20. Recovering actinide values

    Actinide values are recovered from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorus extractants such as tri-n butyl phosphate (TBP) and dihexyl-N, N-diethyl carbamylmethylene phosphonate (DHDECMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant can be recycled after stripping the degradation products with a neutral sodium carbonate solution. (author)

  1. Actinides: why are they important biologically

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  2. Photoelectron spectra of actinide compounds

    A brief overview of the application of photoelectron spectroscopy is presented for the study of actinide materials. Phenomenology as well as specific materials are discussed with illustrative examples

  3. Reducing hospital infection rates in the burn unit by adherence to infection control measures: a six-year experience

    Zülal ÖZKURT; Ülkü ALTOPARLAK; YILMAZ, Sibel İBA; EROL, Serpil; Kemalettin ÖZDEN; AKÇAY, Müfide Nuran

    2012-01-01

    To show the effect of infection control measures (ICMs) on nosocomial infections (NIs) in a burn unit. Materials and methods: This study was conducted retrospectively at a 15-bed pediatric and adult burn unit, and 1329 hospitalized patients from 2003 to 2008 were enrolled. Detection and surveillance of NIs was performed by the infection control team (ICT), actively and prospectively, and was patient and laboratory based. Pan-resistant P. aeruginosa strains were seen in the unit in 2003. A p...

  4. Radiosterilization of freeze-dried human amniotic Membrane and its use in the treatment of burn wound. Algerian experience

    The present study evaluates the usefulness of human amniotic membrane as biological dressing and its efficacy in the treatment of burns comparatively to the conventional dressing. We reported the practical methods of preparation, preservation and radiation sterilisation of amnion, and the clinical results of its successful use in the treatment of 80 cases of superficial and intermediate depth dermal burns. The increased rate of healing, pain relief, good adhesion to the bed wound and absence of infection were observed

  5. ACTINET: a European Network for Actinide Sciences

    shared challenges. ACTINET is today a Consortium gathering twenty six institutions from fourteen European countries, plus ITU (JRC). The members of the network range from large national laboratories to university departments, thus bringing at the same time major experimental facilities (which can be seen as a set of 'pooled facilities'), training experience, academic and applied research capacities, within the broad area of actinide sciences. The network was launched march, 2004; after 3 'calls for proposals', about 40 research actions have been approved by a scientific committee and funded by the network. (authors)

  6. Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility

    Thomas B. Kirchner

    2002-03-22

    The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm

  7. Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility; FINAL

    The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm

  8. Final Technical Progress Report Long term risk from actinides in the environment: Modes of mobility

    The key source of uncertainty in assessing actinide mobility is the relative importance of transport by: (1) wind erosion, (2) water erosion, and (3) vertical migration. Each of these three processes depends on several environmental factors and they compete with one another. A scientific assessment of the long-term risks associated with actinides in surface soils depends on better quantifying each of these three modes of mobility. The objective from our EMSP study was to quantify the mobility of soil actinides by wind erosion, water erosion, and vertical migration at three semiarid sites where actinide mobility is a key technical, social and legal issue. This EMSP project was the first to evaluate all three factors at a site. The approach has been to investigate both short- and long-term issues based on field and lab studies and model comparisons. Our results demonstrate the importance of incorporating threshold responses into a modeling framework that accounts for environmental factors and natural disturbances that trigger large changes in actinide mobility. The study measured erosional losses of sediment and fallout cesium (an actinide analogue) from field plots located near WIPP in 1998. The results highlight the large effect of burning as a disturbance on contaminant transport and mobility via runoff and erosion. The results show that runoff, erosion, and actinide transport are (1) strongly site specific-differences in radionuclide transport between WIPP and Rocky Flats differed by a factor of twelve because of soil and vegetation differences, and (2) are strongly impacted by disturbances such as fire, which can increase runoff, erosion, and actinide transport by more than an order of magnitude. In addition, a laboratory experiment using soil columns was conducted to investigate the vertical transport of contaminants in sandy soils. Nine columns of soil collected from the vicinity of the WIPP site were prepared. The column consisted of a piece of PVC pipe 20 cm

  9. Nuclear data for plutonium and minor actinides

    Some experience in the usage of different evaluations of neutron constants for plutonium isotopes and minor actinides (MA) is described. That experience was obtained under designing the ABBN-93 group data set which nowadays is used widely for neutronics calculations of different cores with different spectrum and shielding. Under testing of the ABBN-93 data set through different integral and macroscopic experiments the main attention was paid to fuel nuclides and cross sections for MA practically did not verify. That gave an opportunity to change MA nuclear data for more modern without verification of the hole system. This desire appeared with new data libraries JENDL-3.2, JEF-2.2 and ENDF/B-6.2, which was not accessible under designing the ABBN-93. At the same time with the reevaluation of the basic MA nuclear data the ABBN-93 and the library FOND-2 of evaluated nuclear data files, which used as the basis for retrieving of the ABBN-93 data, were added with not very important MA data. So the FOND-2 library nowadays contents nuclear data files for all actinides with the half-life time more 1 day and also those MA which produce long-life actinides

  10. PUMA - plutonium and minor actinides management in thermal high-temperature reactors

    The PUMA project, a Specific Targeted Research Project (STREP) of the European Union EURATOM 6. Framework Program, is mainly aimed at providing additional key elements for the utilisation and transmutation of plutonium and minor actinides in contemporary and future (high temperature) gas-cooled (HTR) reactor designs. The project runs from September 1, 2006 until August 31, 2009. The investigation on core physics aims at optimising the coated particle (CP) fuel and reactor characteristics, and assuring nuclear stability and safety of a Pu/Ma (minor actinides) HTR core. New CP designs will be explored in order to withstand very high burn-ups and obtain optimal adaptation for disposal after irradiation. In particular, helium production in Pu and MA-based fuel will be assessed and supported by experiments. Fuel irradiation performance codes, developed and used by several organisations, will permit convergence on optimized design criteria. The impact of the introduction of Pu/MA fuel on the fuel cycle and future energy mix will be assessed

  11. Optical techniques for actinide research

    In recent years, substantial gains have been made in the development of spectroscopic techniques for electronic properties studies. These techniques have seen relatively small, but growing, application in the field of actinide research. Photoemission spectroscopies, reflectivity and absorption studies, and x-ray techniques will be discussed and illustrative examples of studies on actinide materials will be presented

  12. Tropospheric O3 over Indonesia during biomass burning events measured with GOME (Global Ozone Monitoring Experiment) and compared with trajectory analysis

    Wittrock, F.; Richter, A; J. Meyer-Arnek; Ladstätter-Weißenmayer, A.; Burrows, J.P.

    2005-01-01

    Tropospheric ozone columns of up to 50 DU were observed by GOME (Global Ozone Monitoring Experiment) above Indonesia in September 1997, while only background amounts were measured in September 1998. The Traj.x trajectory model along with BRemen's Atmospheric PHOtochemical model (BRAPHO) were used to investigate the higher than average ozone columns above Indonesia. The transport analysis reveals that biomass burning over central Africa and northern Australia does not significantly influence o...

  13. The burn-up credit physics and the 40. Minerve anniversary

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  14. Water to burn : Iceland's experiment with hydrogen points toward an oil-free world

    Kopecky, A.

    2006-01-01

    In Reykjavik, Iceland, geothermal energy provides half of the total energy consumed in the country each year. The geothermal network, along with hydroelectricity, has displaced oil as Iceland's major source of energy. Iceland has also launched an experiment to use its supplies of cheap energy to produce hydrogen power and to be oil-free by 2050. Because Iceland is a small island with a real-scale infrastructure, a lawyer representing several European auto makers approached the government in 1996 and suggested that Iceland would be the ideal testing ground for vehicles fuelled by hydrogen and fuel cells. The fuel cells powering Iceland's experiment are manufactured by Ballard Power Systems in Vancouver. However, Canada's alternative energy sector produces only 4.5 per cent of Canada's total production. The federal government appears to give preference to oil industry in subsidies each year. In doing so, large amounts of new carbon emissions are created, in defiance of the Kyoto Protocol. It was argued that oil has a built-in subsidy advantage that is not shared by other energy sources. Hydrogen offers the best substitute for petroleum in Iceland. Other candidates such as biofuels and battery-powered cars have been ruled out for Iceland because biofuels require a large agricultural land base and even the best batteries are still polluting. Critics of hydrogen argue that most of the hydrogen made today worldwide comes from natural gas and its production produces considerable amount of carbon dioxide. They argue that electricity and cleaner burning fuels such as natural gas should be conserved rather than used to make hydrogen. It was suggested that research money would be better spent on developing mass transit, energy-efficient homes and alternatives such as solar power. However, Iceland has enough untapped geothermal and hydroelectric power to produce hydrogen exclusively from electrolysis. It is estimated that Iceland could easily produce 6

  15. Burning Issue: Handling Household Burns

    ... take steps to avoid household burns. Never leave cooking food unattended on the stove. Set your water heater’s thermostat to 120 °F or lower to prevent scalding burns. And install smoke alarms on every floor of your home. Keep yourself and your family safe from unexpected ...

  16. Fuel cycle of actinide burner-reactor. Review of investigations by > program

    The problem of long-lived minor-actinides (Np, Am, Cm) transmutation is one of major part of problem of nuclear power ecological safety. The problem of Pu surpluses burning-out adjoins to this problem. Existing and perspective reactor systems could be used for it, but task of optimum organization of the external closed cycle for actinide burner reactor becomes the important aspect of transmutation problem. Since 1992, SSC RIAR has proposed the demonstration program-concept DOVITA (Dry reprocessing, Oxide fuel, Vibropac, Integral, Transmutation of Actinides), which should demonstrate opportunities of new technologies for realization of the optimized fuel cycle for actinide burner reactor. The brief review of study on DOVITA program for 5 years is given in this paper. (J.P.N.)

  17. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  18. Chemical properties of the trans-actinide elements studied in liquid phase with SISAK

    This article starts with a review of the current SISAK liquid-liquid extraction system, as used after the physical pre-separator BGS (Berkeley Gas-filled Separator) at Lawrence Berkeley National Laboratory (LBNL) for chemical studies of trans-actinide elements. Emphasis will be on new additions and developments. Then the possibilities offered by the new TASCA (Trans-Actinide Separator and Chemistry Apparatus) separator at GSI (Darmstadt, Germany) and the use of actinide targets at both GSI and LBNL are discussed with respect to future SISAK trans-actinide experiments. Finally, current and future liquid-liquid extraction systems for studying elements Rutherfordium up to Hassium are discussed. (authors)

  19. Chemical properties of the trans-actinide elements studied in liquid phase with SISAK

    Omtvedt, J.P.; Alstad, J.; Bjornstad, T.; Opel, K.; Polakova, D.; Samadani, F.; Schulz, F.; Stavsetra, L.; Zheng, L. [Oslo Univ., Centre for Accelerator based Research and Energy Physics (SAFE) (Norway); Dullmann, Ch.E; Gregorich, K.E.; Hoffman, D.C.; Nitsche, H.; Sudowe, R. [Lawrence Berkeley National Laboratory (LBNL), Nuclear Science Div., One Cyclotron Road, Berkeley, CA (United States); Dullmann, Ch.E.; Hoffman, D.C.; Nitsche, H. [California Univ., Dept. of Chemistry, Berkeley, CA (United States); Skarnemark, G. [Chalmers Univ. of Technology, Nuclear Chemistry, Dept. of Chemical and Biological Engineering (Sweden)

    2007-10-15

    This article starts with a review of the current SISAK liquid-liquid extraction system, as used after the physical pre-separator BGS (Berkeley Gas-filled Separator) at Lawrence Berkeley National Laboratory (LBNL) for chemical studies of trans-actinide elements. Emphasis will be on new additions and developments. Then the possibilities offered by the new TASCA (Trans-Actinide Separator and Chemistry Apparatus) separator at GSI (Darmstadt, Germany) and the use of actinide targets at both GSI and LBNL are discussed with respect to future SISAK trans-actinide experiments. Finally, current and future liquid-liquid extraction systems for studying elements Rutherfordium up to Hassium are discussed. (authors)

  20. Factors affecting actinide solubility in a repository for spent fuel, 1

    The main tasks in the study were to get information on the chemical conditions in a repository for spent fuel and information on factors affecting releases of actinides from spent fuel and solubility of actinides in a repository for spent fuel. The work in this field started at the Reactor Laboratory of the Technical Research Centre of Finland (VTT) in 1982. This is a report on the effects on the main parameters, Eh, pH, carbonate, organic compounds, colloids, microbes and radiation on the actinide solubility in the nearfield of the repository. Another task has been to identify available models and reported experience from actinide solubility calculations with different codes. 167 refs

  1. Role of topical heparin in the management of burns: experience in a district government hospital of Karnataka in South India

    Ashish Gupta

    2015-06-01

    Full Text Available Aim: Heparin is a multifaceted compound with uses not only as an anticoagulant, but also as an anti-inflammatory, anti-allergenic, anti-histaminic, anti-serotonin, anti-proteolytic and neoangiogenic agent. The aim of the study was to study the effect of topical heparin in the management of second-degree burns. Methods: Between December 2005 and January 2007, 60 consecutive patients, aged 10-60 years, with first-and second-degree thermal injuries ranging from 10% to 60%, were randomly enrolled in the study divided into a control group (C and a heparin group (H of 30 patients each. Results: Patients treated with topical heparin experienced statistically significant improved pain relief, faster healing, fewer complications and shorter hospital stays. The majority of the patients admitted were in an economically productive age group and were predominantly female. The distribution between the two groups according to age, type of burns and extent of burns was not statistically different. Conclusion: The current study demonstrates the efficacy of topical heparin in the treatment of first- and second-degree burns.

  2. Managing Inventories of Heavy Actinides

    The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu, 243Am, and 244/246/248Cm. No alternate supplies of these heavy actinides and no other capabilities for producing them are currently available. Some of these heavy actinide materials are important for use as feedstock for producing heavy isotopes and elements needed for research and commercial application. The rare isotope 244Pu is valuable for research, environmental safeguards, and nuclear forensics. Because the production of these heavy actinides was made possible only by the enormous investment of time and money associated with defense production efforts, the remaining inventories of these rare nuclear materials are an important part of the legacy of the Nuclear Weapons Program. Significant unique heavy actinide inventories reside in irradiated Mark-18A and Mark-42 targets at SRS and ORNL, with no plans to separate and store the isotopes for future use. Although the costs of preserving these heavy actinide materials would be considerable, for all practical purposes they are irreplaceable. The effort required to reproduce these heavy actinides today would likely cost billions of dollars and encompass a series of irradiation and chemical separation cycles for at least 50 years; thus, reproduction is virtually impossible. DOE has a limited window of opportunity to recover and preserve these heavy actinides before they are disposed of as waste. A path forward is presented to recover and manage these irreplaceable National Asset materials for future use in research, nuclear forensics, and other potential applications.

  3. Track 5: safety in engineering, construction, operations, and maintenance. Reactor physics design, validation, and operating experience. 5. A Negative Reactivity Feedback Device for Actinide Burner Cores

    Lead-bismuth eutectic (LBE) cooled reactors are of considerable interest because they may be useful for destruction of actinides in a cost-effective manner, particularly cores fueled predominantly with minor actinides, which gain reactivity with burnup. However, they also pose several design challenges: 1. a small (and perhaps even slightly positive) Doppler feedback; 2. small effective delayed neutron yield; 3. a small negative feedback from axial fuel expansion; 4. positive coolant void and temperature coefficients for conventional designs. This has motivated a search for palliative measures, leading to conceptualization of the reactivity feedback device (RFD). The RFD consists of an in-core flask containing helium gas, tungsten wool, and a small reservoir of LBE that communicates with vertical tubes housing neutron absorber floats. The upper part of these guide tubes contains helium gas that is vented into a separate, cooler ex-core helium gas plenum. The principle of operation is as follows: 1. The tungsten wool, hence the helium gas in the in-core plenum, is heated by gammas and loses heat to the walls by convection and conduction (radiation is feeble for monatomic gases and, in any event, intercepted by the tungsten wool). An energy balance determines the gas temperature, hence, pressure, which is 10 atm here. The energy loss rate can be adjusted by using xenon or a gas mixture in place of helium. The tungsten wool mass, which is 1 vol% wool here, can also be increased to increase gamma heating and further retard convection; alternatively, a Dewar flask could be used in place of the additional wool. 2. An increase in core power causes a virtually instantaneous increase in gamma flux, hence, gas heatup: The thermal time constant of the tungsten filaments and their surrounding gas film is ∼40 μs. 3. The increased gas temperature is associated with an increased gas pressure, which forces more liquid metal into the float guide tubes: LBE will rise ∼100 cm

  4. Concentration of actinides in the food chain

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  5. Calorimetric assay of minor actinides

    Rudy, C.; Bracken, D.; Cremers, T.; Foster, L.A.; Ensslin, N.

    1996-12-31

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques.

  6. Calorimetric assay of minor actinides

    This paper reviews the principles of calorimetric assay and evaluates its potential application to the minor actinides (U-232-4, Am-241, Am- 243, Cm-245, Np-237). We conclude that calorimetry and high- resolution gamma-ray isotopic analysis can be used for the assay of minor actinides by adapting existing methodologies for Pu/Am-241 mixtures. In some cases, mixtures of special nuclear materials and minor actinides may require the development of new methodologies that involve a combination of destructive and nondestructive assay techniques

  7. Actinides and the environment

    The book combines in one volume the opinions of experts regarding the interaction of radionuclides with the environment and possible ways to immobilize and dispose of nuclear waste. The relevant areas span the spectrum from pure science, such as the fundamental physics and chemistry of the actinides, geology, environmental transport mechanisms, to engineering issues such as reactor operation and the design of nuclear waste repositories. The cross-fertilization between these various areas means that the material in the book will be accessible to seasoned scientists who may wish to obtain an overview of the current state of the art in the field of environmental remediation of radionuclides, as well as to beginning scientists embarking on a career in this field. refs

  8. Burning Mouth Syndrome

    ... OralHealth > Topics > Burning Mouth Syndrome > Burning Mouth Syndrome Burning Mouth Syndrome Main Content Key Points Symptoms Diagnosis Primary and Secondary BMS Treatment Helpful Tips Key Points Burning mouth syndrome is burning pain in the mouth that may ...

  9. Analysis of optical properties of actinide dioxides

    Ionic calculations, symmetry considerations, and detailed analysis of reflectivity experiments have been used to identify general features of the band structure of actinide dioxides with a fluorite lattice. The ionic calculations adjust atomic energy levels by the electrostatic energies arising from long range electric fields of the ionic lattice; the labelling of high lying energy bands is determined by symmetry; experimental analysis includes the use of appropriate sum rules. A combination of these considerations enable a tentative band scheme to be constructed. It is suggested that there are filled valence bands (GAMMA15,GAMMA'25) originating in oxygen 2p-states and empty conduction bands (GAMMA1,GAMMA12,GAMMA'25) originating in actinide 7s and 6d states. The mean band gap (Penn gap) is of the order of 14 eV. The actinide f-electron states, which lie approximately 5 eV below the conduction bands, are taken to be localized - at least in UO2. (author)

  10. Animal Models in Burn Research

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the...

  11. Actinide behavior under final repository relevant conditions

    Experiments on the solubility behavior and the redox chemistry of actinides and long-living fission products under different geochemical boundary conditions, here on the Np(V) solubility in alkaline CaCl2 systems, provide basic information on processes that can occur in a nuclear final repository in case of water ingress. The thermodynamic constants derived from these experiments allow the geochemical modeling of these processes and a rough estimation of radionuclide solubility limits for different scenarios. Scientific research projects on this issue will reduce the uncertainties of long-term safety analyses for final repositories for high-level radioactive wastes significantly.

  12. Environmental research on actinide elements

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers

  13. Tropospheric O3 over Indonesia during biomass burning events measured with GOME (Global Ozone Monitoring Experiment and compared with trajectory analysis

    F. Wittrock

    2005-05-01

    Full Text Available Tropospheric ozone columns of up to 50 DU were observed by GOME (Global Ozone Monitoring Experiment above Indonesia in September 1997, while only background amounts were measured in September 1998. The Traj.x trajectory model along with BRemen's Atmospheric PHOtochemical model (BRAPHO were used to investigate the higher than average ozone columns above Indonesia. The transport analysis reveals that biomass burning over central Africa and northern Australia does not significantly influence ozone columns over Indonesia in September 1997. El Niño conditions, leading to extreme dryness and uncontrolled fires in Indonesia, produced ozone precursors, which are initially only slowly advected westwards to the central Indian Ocean. Joint transport and chemistry modelling was able to reproduce the spatial distribution and amounts of ozone, NO2 and formaldehyde columns over Indonesia. The chemistry modelling shows a net production of 3.1 Tg of ozone produced by biomass burning in Indonesia in September 1997. Transport analysis further reveals that ozone columns over the Indian Ocean, between 10 and 20° S can be accounted for by the mixing of air masses containing NOx from lightning over the Congo Basin with air masses containing volatile organic compounds from biomass burning.

  14. A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment

    Franklin, J. E.; J. R. Drummond; D. Griffin; J. R. Pierce; Waugh, D. L.; Palmer, P. I.; Parrington, M.; Lee, J. D.; Lewis, A. C.; A. R. Rickard; J. W. Taylor; Allan, J. D.; Coe, H.; Walker, K A; L. Chisholm

    2014-01-01

    We present measurements of a long-range smoke transport event recorded on 20-21 July 2011 over Halifax, Nova Scotia, Canada, during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign. Ground-based Fourier transform spectrometers and photometers detected air masses associated with large wild-land fires burning in eastern Manitoba and western Ontario.We investigate a plume with high trace gas amounts but...

  15. A case study of aerosol depletion in a biomass burning plume over Eastern Canada during the BORTAS field experiment

    Franklin, Jonathan E.; Griffin, Debora; Pierce, Jeffrey R.; Drummond, James R.; Waugh, David; Palmer, Paul; Chisholm, Lucy; Duck, Thomas J.; Lesins, Glen; Walker, Kaley A.; Hopper, Jason T.; Curry, Kevin R.; Sakamoto, Kimiko M.; Dan, Lin; Kliever, Jenny; O'Neill, Norm

    2013-04-01

    Wild fires started by lightning are a significant source of carbonaceous aerosols and trace gases to the atmosphere. Careful observations of biomass burning plumes are required to quantify the long range transport and chemical evolution of the outflow from these fires. During the summer of 2011 an international effort - the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) project - led by the University of Edinburgh, evaluated the chemistry and dynamics of Boreal biomass burning plumes through aircraft, satellite, and ground-based measurements. The Dalhousie Ground Station (DGS), located in Halifax, Nova Scotia, provided ground support to the BORTAS campaign. Two Fourier Transform Spectrometers (FTSs) provided solar absorption measurements of trace gases while two photometers provided aerosol optical depths. On 20 July 2011 a plume of elevated carbon monoxide and other trace gases was detected by the FTS instruments at the DGS; however, particulate data gathered from the co-located sun photometer and the Dalhousie Raman Lidar system showed no enhancement of fine-mode aerosol for the initial 7 hours of the event. After that time, particulates increased in abundance and a peak aerosol optical depth of 2.3 was measured on 21 July. FLEXPART trajectory analyses suggest that this plume originated in fires that were burning in Northwestern Ontario and Eastern Manitoba from 17 to 19 July. Despite the sparse observing network in the region, there is ample evidence of a significant lofting event via the same meso-scale convective system that tempered the burning on the 19th. We will provide an overview of this event and present evidence that precipitation scavenging was the most likely mechanism for the observed aerosol/trace gas anomaly. Support for this this research was provided by the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research Council of Canada.

  16. Properties of minor actinide nitrides

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  17. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments

    D. Streets

    2012-09-01

    Full Text Available Two historical emission inventories of black carbon (BC, primary organic carbon (OC, and SO2 emissions from land-based anthropogenic sources, ocean-going vessels, air traffic, biomass burning, and volcanoes are presented and discussed for the period 1980–2010. These gridded inventories are provided to the internationally coordinated AeroCom Phase II multi-model hindcast experiments. The horizontal resolution is 0.5°×0.5° and 1.0°×1.0°, while the temporal resolution varies from daily for volcanoes to monthly for biomass burning and aircraft emissions, and annual averages for land-based and ship emissions. One inventory is based on inter-annually varying activity rates of land-based anthropogenic emissions and shows strong variability within a decade, while the other one is derived from interpolation between decadal endpoints and thus exhibits linear trends within a decade. Both datasets capture the major trends of decreasing anthropogenic emissions over the USA and Western Europe since 1980, a sharp decrease around 1990 over Eastern Europe and the former USSR, and a steep increase after 2000 over East and South Asia. The inventory differences for the combined anthropogenic and biomass burning emissions in the year 2005 are 34% for BC, 46% for OC, and 13% for SO2. They vary strongly depending on species, year and region, from about 10% to 40% in most cases, but in some cases the inventories differ by 100% or more. Differences in emissions from wild-land fires are caused only by different choices of the emission factors for years after 1996 which vary by a factor of about 1 to 2 for OC depending on region, and by a combination of emission factors and the amount of dry mass burned for years up to 1996. Volcanic SO2 emissions, which are only provided in one inventory, include emissions from explosive, effusive, and quiescent degassing events for 1167 volcanoes.

  18. THERMODYNAMICS OF THE ACTINIDES

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated from spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)

  19. Interaction processes of tetravalent actinides in the system humic acid/quartz sand/solution

    In the present work the influence of HA on the interaction of tetravalent actinides onto quartz sand was investigated in batch and column experiments. HA can affect the sorption of actinides onto mineral surface as a complexing ligand for cations in solutions, and as an adsorbent by modifying the properties of the mineral surface. Batch experiments were performed with Th(IV) as stable tetravalent actinide element. Column experiments were carried out with uranium which is less stable in the tetravalent state under laboratory conditions. Results of the U(IV) migration were compared to the U(VI) migration. (orig.)

  20. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    Dittrich, Timothy M. [Los Alamos National Laboratory; Reimus, Paul W. [Los Alamos National Laboratory

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  1. Potential radiation dose from eating fish exposed to actinide contamination

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1980-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, /sup 239,240/Pu and /sup 241/Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (approx.1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs.

  2. Potential radiation dose from eating fish exposed to actinide contamination

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of 238U, 238Pu, /sup 239,240/Pu and 241Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (∼1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs

  3. Reduction of minor actinides for recycling in a light water reactor

    The aim of actinide transmutation from spent nuclear fuel is the reduction in mass of high-level waste which must be stored in geological repositories and the lifetime of high-level waste; these two achievements will reduce the number of repositories needed, as well as the duration of storage. The present work is directed towards the evaluation of an advanced nuclear fuel cycle in which the minor actinides (Np, Am and Cm) could be recycled to remove most of the radioactive material; a reference of actinides production in standard nuclear fuel of uranium at the end of its burning in a BWR is first established, after a design of fuel rod containing 6% of minor actinides in a matrix of uranium from the enrichment lines is proposed, then 4 fuel rods of standard uranium are replaced by 4 actinides bars to evaluate the production and transmutation of them and finally the minor actinides reduction in the fuel is evaluated. In the development of this work the calculation tool are the codes: Intrepin-3, Casmo-4 and Simulate-3. (Author)

  4. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    neutron irradiation allows to infer energy-integrated neutron cross sections, i.e. ∫₀σ(E)φ(E)dE, where φ(E) is the neutron flux “seen” by the sample. This approach, which is usually defined and led by reactor physicists, is referred to as integral and is the object of this report. These two sources of information, i.e. differential and integral, are complementary and are used by the nuclear physicists in charge of producing the evaluated nuclear data files used by the nuclear community (ENDF, JEFF…). The generation of accurate nuclear data files requires an iterative process involving reactor physicists and nuclear data evaluators. This experimental program has been funded by the ATR National Scientific User Facility (ATR-NSUF) and by the DOE Office of Science in the framework of the Recovery Act. It has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation.

  5. Kinetics of actinide complexation reactions

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions

  6. The OSMOSE Experimental Program for the qualification of integral cross sections of actinides

    continue until 2010. The reactivity worth of samples having been fabricated in CEA Marcoule from 2001 to 2005, and containing separated actinides (232Th, 233U, 234U, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 245Cm), will be measured by an oscillation technique with an overall expected accuracy better than 3%. The measurements will cover a wide range of neutron spectra: over-moderated thermal spectrum, PWR UOx standard spectrum, PWR 100% MOX spectrum and epithermal HCLWR type spectrum. The paper has the following structure: I. Introduction; II. Main goals and major stakes; III. Experimental conditions; 1. The MINERVE facility; 2. The experimental lattices; 3. The oscillation technique of measurement; 4. Calibration curves for samples measurement; 5. OSMOSE samples; IV. Conclusion. To summarize, this paper has described the OSMOSE experimental program that will be performed between 2005 and 2010 in the MINERVE facility of CEA Cadarache. It covers the majority of the actinides that concern in the reactor physics and the fuel cycle, from 232Th up to 245Cm and is therefore highly valuable for every domain of neutron study. Indeed it will allow to determine by an oscillation technique the reactivity of samples containing the separated studied actinides with an accuracy that takes into account the uncertainties on the experiments, on the calculations and on the material balance of the samples. As a consequence, the OSMOSE program will involve an improvement - at least by a factor 2 - on the main nuclear data (integral resonance, capture cross section, reproduction factor) of the studied actinides, and on a large range of neutron spectra (thermal and epithermal). A single and accurate experimental database for heavy nuclides will thus be obtained and will enrich the JEFF3 project. It will also contribute to complete the database on burn up credit studies that currently only takes into account the fission products created during the fuel

  7. Feasibility of magnetic stirring for continuous actinide oxalate precipitation process

    Methodology in vogue for conversion of actinide nitrate to its oxide is through a batch oxalate precipitation in a long reactor with a propeller type stirrer inserted from the top of the reactor. Use of electromagnetic stirrer as an alternate for the propeller type stirrer will lower the cost as well as minimize down time due to maintenance. Since continuous precipitation process can be achieved with smaller reactors, a possibility of magnetic stirring during oxalate precipitation is explored. Results of initial batch experiments with cerium nitrate as a surrogate for actinide nitrate is presented here. (author)

  8. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on the authors' experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA3 as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  9. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  10. Aggregation of erythrocytes in burn disease

    Levin, Grigory Y; Egorihina, Marpha N

    2011-01-01

    The manuscript describes experiments designed to examine factors that influence erythrocytes aggregation within the blood of burn patients. Results showed that the rate and degree of erythrocytes aggregation increased significantly in burn patients, and what is especially unfavorable for microcirculation, erythrocytes disaggregation decreased. We show that normalization of blood plasma contents completely restores erythrocytes aggregation and disaggregation of burn patients. The rate and degr...