WorldWideScience

Sample records for actin cytoskeleton reorganization

  1. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H. [de Duve Institute, Universite catholique de Louvain, Avenue Hippocrate, B-1200 Brussels (Belgium); Horman, Sandrine, E-mail: sandrine.horman@uclouvain.be [Institute of Experimental and Clinical Research - Pole of Cardiovascular Research, Universite catholique de Louvain, Avenue Hippocrate, B-1200 Brussels (Belgium)

    2010-06-04

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca{sup 2+}-dependent AMPK activation via calmodulin-dependent protein kinase kinase-{beta}(CaMKK{beta}), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKK{beta} inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  2. Jak3 enables chemokine-dependent actin cytoskeleton reorganization by regulating cofilin and Rac/Rhoa GTPases activation.

    Xochitl Ambriz-Peña

    Full Text Available We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3⁻/⁻ lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3⁻/⁻ lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines.

  3. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes.

    Duan, Yi; Gotoh, Nanami; Yan, Qingshang; Du, Zhaopeng; Weinstein, Alan M; Wang, Tong; Weinbaum, Sheldon

    2008-08-12

    In this study, we demonstrate that fluid shear stress (FSS)-induced actin cytoskeletal reorganization and junctional formation in renal epithelial cells are nearly completely opposite the corresponding changes in vascular endothelial cells (ECs) [Thi MM et al. (2004) Proc Natl Acad Sci USA 101:16483-16488]. Mouse proximal tubule cells (PTCs) were subjected to 5 h of FSS (1 dyn/cm(2)) to investigate the dynamic responses of the cytoskeletal distribution of filamentous actin (F-actin), ZO-1, E-cadherin, vinculin, and paxillin to FSS. Immunofluorescence analysis revealed that FSS caused basal stress fiber disruption, more densely distributed peripheral actin bands (DPABs), and the formation of both tight junctions (TJs) and adherens junctions (AJs). A dramatic reinforcement of vinculin staining was found at the cell borders as well as the cell interior. These responses were abrogated by the actin-disrupting drug, cytochalasin D. To interpret these results, we propose a "junctional buttressing" model for PTCs in which FSS enables the DPABs, TJs, and AJs to become more tightly connected. In contrast, in the "bumper-car" model for ECs, all junctional connections were severely disrupted by FSS. This "junctional buttressing" model explains why a FSS of only 1/10 of that used in the EC study can cause a similarly dramatic, cytoskeletal response in these tall, cuboidal epithelial cells; and why junctional buttressing between adjacent cells may benefit renal epithelium in maximizing flow-activated, brush border-dependent, transcellular salt and water reabsorption. PMID:18685100

  4. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes.

    Yu, Seon-Mi; Cho, Hongsik; Kim, Gwang-Hoon; Chung, Ki-Wha; Seo, Sung-Yum; Kim, Song-Ja

    2016-04-01

    Osteoarthritis is a nonrheumatologic joint disease characterized by progressive degeneration of the cartilage extracellular matrix. Berberine (BBR) is an isoquinoline alkaloid used in traditional Chinese medicine, the majority of which is extracted from Huang Lian (Coptis chinensis). Although numerous studies have revealed the anticancer activity of BBR, its effects on normal cells, such as chondrocytes, and the molecular mechanisms underlying its actions remain elusive. Therefore, we examined the effects of BBR on rabbit articular chondrocytes, and the underlying molecular mechanisms, focusing on actin cytoskeletal reorganization. BBR induced dedifferentiation by inhibiting activation of phosphoinositide-3(PI3)-kinase/Akt and p38 kinase. Furthermore, inhibition of p38 kinase and PI3-kinase/Akt with SB203580 and LY294002, respectively, accelerated the BBR-induced dedifferentiation. BBR also caused actin cytoskeletal architecture reorganization and, therefore, we investigated if these effects were involved in the dedifferentiation. Disruption of the actin cytoskeleton by cytochalasin D reversed the BBR-induced dedifferentiation by activating PI3-kinase/Akt and p38 kinase. In contrast, the induction of actin filament aggregation by jasplakinolide accelerated the BBR-induced dedifferentiation via PI3-kinase/Akt inhibition and p38 kinase activation. Taken together, these data suggest that BBR strongly induces dedifferentiation, and actin cytoskeletal reorganization is a crucial requirement for this effect. Furthermore, the dedifferentiation activity of BBR appears to be mediated via PI3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. PMID:26851252

  5. GRP75 upregulates clathrin-independent endocytosis through actin cytoskeleton reorganization mediated by the concurrent activation of Cdc42 and RhoA.

    Chen, Hang; Gao, Zhihui; He, Changzheng; Xiang, Rong; van Kuppevelt, Toin H; Belting, Mattias; Zhang, Sihe

    2016-05-01

    Therapeutic macromolecules are internalized into the cell by either clathrin-mediated endocytosis (CME) or clathrin-independent endocytosis (CIE). Although some chaperone proteins play an essential role in CME (e.g. Hsc70 in clathrin uncoating), relatively few of these proteins are functionally involved in CIE. We previously revealed a role for the mitochondrial chaperone protein GRP75 in heparan sulfate proteoglycan (HSPG)-mediated, membrane raft-associated macromolecule endocytosis. However, the mechanism underlying this process remains unclear. In this study, using a mitochondrial signal peptide-directed protein trafficking expression strategy, we demonstrate that wild-type GRP75 expression enhanced the uptakes of HSPG and CIE marker cholera toxin B subunit but impaired the uptake of CME marker transferrin. The endocytosis regulation function of GRP75 is largely mediated by its subcellular location in mitochondria and is essentially determined by its ATPase domain. Interestingly, the mitochondrial expression of GRP75 or its ATPase domain significantly stimulates increases in both RhoA and Cdc42 activation, remarkably induces stress fibers and enhances filopodia formation, which collectively results in the promotion of CIE, but the inhibition of CME. Furthermore, silencing of Cdc42 or RhoA impaired the ability of GRP75 overexpression to increase CIE. Therefore, these results suggest that endocytosis vesicle enrichment of GRP75 by mitochondria trafficking upregulates CIE through an actin cytoskeleton reorganization mechanism mediated by the concurrent activation of Cdc42 and RhoA. This finding provides novel insight into organelle-derived chaperone signaling and the regulation of different endocytosis pathways in cells. PMID:27090015

  6. Dynamic organization of actin cytoskeleton during the polarity formation and germination of pollen protoplasts

    XU Xia; Zl Huijun; SUN Yina; REN Haiyun

    2004-01-01

    The formation of the polarity of pollen protoplast and the dynamics of actin cytoskeleton were observed by non-fixation, Alexa-Phalloidin probing and confocal laser scanning microscopy. Our results showed that the protoplast obtained from stored pollen contained numerous crystalline fusiform bodies to constitute a storage form of actin. When dormant pollen was hydrated, the actin cytoskeleton forms a fine network spreading uniformly in the protoplast. In the process of polarity formation and germination of pollen protoplast, actin filaments marshaled slowly to the brim, and then formed multilayer continuous actin filament bundles surrounding the cortical of the protoplast. When the protoplast was exposed to actin filament-disrupting drugs, such as Latrunculin A and Cytochalasin D, continuously arranged actin bundles were disturbed and in this condition, the protoplast could not germinate. But when exposed to actin filament stabiling drug-phalliodin, the dynamics of actin filaments in the protoplasts behaved normally and the protoplasts could germinate normally. These results were also confirmed by the pharmacology experiments on pollen grains. And when Latrunculin A or Cytochalasin D was washed off, the ratio of pollen germination was resumed partly. All the results above show that the dynamic organization of the actin cytoskeleton are critical in the cell polarity formation and germination of pollen protoplast, and that the reorganization of actin cytoskeleton is mainly due to the rearrangement of actin filament arrays.

  7. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes

  8. Dynamics and Regulation of Actin Cytoskeleton in Plant Cells

    Ren Haiyun

    2007-01-01

    @@ The actin cytoskeleton constituted of globular actin (G-actin) is a ubiquitous component of eukaryotic cells and plays crucial roles in diverse physiological processes in plant cells, such as cytoplasmic streaming, organelle and nucleus positioning, cell morphogenesis, cell division, tip growth, etc.

  9. The Role of Actin Cytoskeleton in Memory Formation in Amygdala.

    Lamprecht, Raphael

    2016-01-01

    The central, lateral and basolateral amygdala (BLA) nuclei are essential for the formation of long-term memories including emotional and drug-related memories. Studying cellular and molecular mechanisms of memory in amygdala may lead to better understanding of how memory is formed and of fear and addiction-related disorders. A challenge is to identify molecules activated by learning that subserve cellular changes needed for memory formation and maintenance in amygdala. Recent studies show that activation of synaptic receptors during fear and drug-related learning leads to alteration in actin cytoskeleton dynamics and structure in amygdala. Such changes in actin cytoskeleton in amygdala are essential for fear and drug-related memories formation. Moreover, the actin cytoskeleton subserves, after learning, changes in neuronal morphogenesis and glutamate receptors trafficking in amygdala. These cellular events are involved in fear and drug-related memories formation. Actin polymerization is also needed for the maintenance of drug-associated memories in amygdala. Thus, the actin cytoskeleton is a key mediator between receptor activation during learning and cellular changes subserving long-term memory (LTM) in amygdala. The actin cytoskeleton may serve as a target for pharmacological treatment of fear memory associated with fear and anxiety disorders and drug addiction to prevent the debilitating consequences of these diseases. PMID:27065800

  10. The actin Cytoskeleton in Root Hairs: a cell elongation device

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  11. Interconnection between actin cytoskeleton and plant defense signaling

    Janda, Martin; Matoušková, J.; Burketová, Lenka; Valentová, O.

    2014-01-01

    Roč. 9, č. 11 (2014). ISSN 1559-2316 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Actin * Cytoskeleton * Pathogen Subject RIV: ED - Physiology http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25482795

  12. Effects of nitrogen ion implantation on lily pollen germination and the distribution of the actin cytoskeleton during pollen germination

    2000-01-01

    The effects of low energy nitrogen ion implantation on lily (Lilium davidii Duch.) pollen germination and the distribution of the actin cytoskeleton during pollen germination have been studied. Preliminary results showed that the ratio of pollen germination increased from (16.0±1.6)% to (27.0±2.1)% when implanted with nitrogen ions by 100 keV and a dose of 1013 ions/cm2. Further experiments were performed by staining the actin filaments in pollen with rhodamine-phalloidin and detected by using laser confocol microscopy. After hydration for 10 h, the actin filaments in ion implanted pollen grains tended to form thick bundles oriented in parallel or ring shape at the germinal furrow, indicating that the effect of nitrogen ion implantation on the germination of pollen might be mediated by reorganization of the actin cytoskeleton.

  13. Calponin 3 regulates actin cytoskeleton rearrangement in trophoblastic cell fusion.

    Shibukawa, Yukinao; Yamazaki, Natsuko; Kumasawa, Keiichi; Daimon, Etsuko; Tajiri, Michiko; Okada, Yuka; Ikawa, Masahito; Wada, Yoshinao

    2010-11-15

    Cell-cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted BeWo cell fusion. CNN3 at the cytoplasmic face of cytoskeleton was dislocated from F-actin with forskolin treatment and diffused into the cytoplasm in a phosphorylation-dependent manner. Phosphorylation sites were located at Ser293/296 in the C-terminal region, and deletion of this region or site-specific disruption of Ser293/296 suppressed syncytium formation. These CNN3 mutants were colocalized with F-actin and remained there after forskolin treatment, suggesting that dissociation of CNN3 from F-actin is modulated by the phosphorylation status of the C-terminal region unique to CNN3 in the CNN family proteins. The mutant missing these phosphorylation sites displayed a dominant negative effect on cell fusion, while replacement of Ser293/296 with aspartic acid enhanced syncytium formation. These results indicated that CNN3 regulates actin cytoskeleton rearrangement which is required for the plasma membranes of trophoblasts to become fusion competent. PMID:20861310

  14. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: Actin or reactin’?

    Rothenfluh, Adrian; Cowan, Christopher W.

    2013-01-01

    Neurons rely on their cytoskeleton to give them shape and stability, and on cytoskeletal dynamics for growth and synaptic plasticity. Because drug addiction is increasingly seen as the inappropriate learning of strongly reinforcing stimuli, the role of the cytoskeleton in shaping drug memories has been of increasing interest in recent years. Does the cytoskeleton have an active role in shaping these memories, and to what extent do alterations in the cytoskeleton reflect the acute actions of drug exposure, or homeostatic reactions to the chronic exposure to drugs of abuse? Here we will review recent advances in understanding the role of the cytoskeleton in the development of drug addiction, with a focus on actin filaments, as they have been studied in greater detail. PMID:23428655

  15. Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers

    Ketelaar, T.; Honing, van der H.S.; Emons, A.M.C.

    2010-01-01

    In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be conside

  16. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Justine R. Stehn; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.; Fath, Thomas; Schevzov, Galina; Gunning, Peter W.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to...

  17. Aspects of plant cell growth and the actin cytoskeleton: lessons from root hairs

    Ruijter, de N.C.A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes. Before cel

  18. Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells.

    Jay Shankar

    Full Text Available Epithelial-mesenchymal transition (EMT is associated with loss of the cell-cell adhesion molecule E-cadherin and disruption of cell-cell junctions as well as with acquisition of migratory properties including reorganization of the actin cytoskeleton and activation of the RhoA GTPase. Here we show that depolymerization of the actin cytoskeleton of various metastatic cancer cell lines with Cytochalasin D (Cyt D reduces cell size and F-actin levels and induces E-cadherin expression at both the protein and mRNA level. Induction of E-cadherin was dose dependent and paralleled loss of the mesenchymal markers N-cadherin and vimentin. E-cadherin levels increased 2 hours after addition of Cyt D in cells showing an E-cadherin mRNA response but only after 10-12 hours in HT-1080 fibrosarcoma and MDA-MB-231 cells in which E-cadherin mRNA level were only minimally affected by Cyt D. Cyt D treatment induced the nuclear-cytoplasmic translocation of EMT-associated SNAI 1 and SMAD1/2/3 transcription factors. In non-metastatic MCF-7 breast cancer cells, that express E-cadherin and represent a cancer cell model for EMT, actin depolymerization with Cyt D induced elevated E-cadherin while actin stabilization with Jasplakinolide reduced E-cadherin levels. Elevated E-cadherin levels due to Cyt D were associated with reduced activation of Rho A. Expression of dominant-negative Rho A mutant increased and dominant-active Rho A mutant decreased E-cadherin levels and also prevented Cyt D induction of E-cadherin. Reduced Rho A activation downstream of actin remodelling therefore induces E-cadherin and reverses EMT in cancer cells. Cyt D treatment inhibited migration and, at higher concentrations, induced cytotoxicity of both HT-1080 fibrosarcoma cells and normal Hs27 fibroblasts, but only induced mesenchymal-epithelial transition in HT-1080 cancer cells. Our studies suggest that actin remodelling is an upstream regulator of EMT in metastatic cancer cells.

  19. Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton

    Sackmann, E.; Bausch, A. R.; Vonna, L.

    1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex

  20. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  1. Aspects of plant cell growth and the actin cytoskeleton: lessons from root hairs

    Ruijter, de, A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes. Before cell growth takes place, a new cell is formed by cell division. The orientation of the division plane most often predicts the orientation of cell expansion, and a correct positioning of the division p...

  2. Probing the role of the actin cytoskeleton during regulated exocytosis by intravital microscopy

    Milberg, Oleg; Tora, Muhibullah; Shitara, Akiko; Masedunskas, Andrius; Weigert, Roberto

    2014-01-01

    The actin cytoskeleton plays a fundamental role in controlling several steps during regulated exocytosis. Here we describe a combination of procedures that are aimed at studying the dynamics and the mechanism of the actin cytoskeleton in the salivary glands of live rodents, a model for exocrine secretion. Our approach relies on intravital microscopy, an imaging technique that enables imaging biological events in live animals at a subcellular resolution, and it is complemented by the use of ph...

  3. Regulation of actin cytoskeleton architecture by Eps8 and Abi1

    Miller Jeffrey R

    2005-10-01

    Full Text Available Abstract Background The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive. Results Here, we show that Eps8 promotes the assembly of actin rich filopodia-like structures and actin cables in cultured mammalian cells and Xenopus embryos, respectively. The morphology of actin structures induced by Eps8 was modulated by interactions with Abi1, which stimulated formation of actin cables in cultured cells and star-like structures in Xenopus. The actin stars observed in Xenopus animal cap cells assembled at the apical surface of epithelial cells in a Rac-independent manner and their formation was accompanied by recruitment of N-WASP, suggesting that the Eps8/Abi1 complex is capable of regulating the localization and/or activity of actin nucleators. We also found that Eps8 recruits Dishevelled to the plasma membrane and actin filaments suggesting that Eps8 might participate in non-canonical Wnt/Polarity signaling. Consistent with this idea, mis-expression of Eps8 in dorsal regions of Xenopus embryos resulted in gastrulation defects. Conclusion Together, these results suggest that Eps8 plays multiple roles in modulating actin filament organization, possibly through its interaction with distinct sets of actin regulatory complexes. Furthermore, the finding that Eps8 interacts with Dsh and induced gastrulation defects provides evidence that Eps8 might participate in non-canonical Wnt signaling to control cell movements during vertebrate development.

  4. Regulation of T cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm

    Beemiller, Peter; Krummel, Matthew F.

    2013-01-01

    Summary The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering, signalosome assembl, y and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has considered actin largely for its ‘scaffolding’ function. We examine the roles of the actin cytoskeleton in TCR signaling and immune synapse formation with an emphasis on how poroelasticity, an ensemble feature of actin dynamics with the cytosol, relates to how T cells respond to stimulation. PMID:24117819

  5. Regulation of T-cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm.

    Beemiller, Peter; Krummel, Matthew F

    2013-11-01

    The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering signalosome assembly and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has considered actin largely for its 'scaffolding' function. We examine the roles of the actin cytoskeleton in TCR signaling and immune synapse formation with an emphasis on how poroelasticity, an ensemble feature of actin dynamics with the cytosol, relates to how T cells respond to stimulation. PMID:24117819

  6. Two-Photon Correlation Spectroscopy in Single Dendritic Spines Reveals Fast Actin Filament Reorganization during Activity-Dependent Growth.

    Jian-Hua Chen

    Full Text Available Two-photon fluorescence correlation spectroscopy (2P-FCS within single dendritic spines of living hippocampal pyramidal neurons was used to resolve various subpopulations of mobile F-actin during activity-dependent structural changes such as potentiation induced spine head growth. Two major classes of mobile F-actin were discovered: very dynamic and about a hundred times less dynamic F-actin. Spine head enlargement upon application of Tetraethylammonium (TEA, a protocol previously used for the chemical induction of long-term potentiation (cLTP strictly correlated to changes in the dynamics and filament numbers in the different actin filament fractions. Our observations suggest that spine enlargement is governed by a mechanism in which longer filaments are first cut into smaller filaments that cooperate with the second, increasingly dynamic shorter actin filament population to quickly reorganize and expand the actin cytoskeleton within the spine head. This process would allow a fast and efficient spine head enlargement using a major fraction of the actin filament population that was already present before spine head growth.

  7. Regulation of T cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm

    Beemiller, Peter; Krummel, Matthew F.

    2013-01-01

    The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering, signalosome assembl, y and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has ...

  8. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  9. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton.

    Zheng, Kai; Kitazato, Kaio; Wang, Yifei; He, Zhendan

    2016-09-01

    Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies. PMID:25853495

  10. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: Actin or reactin’?

    Rothenfluh, Adrian; Cowan, Christopher W.

    2013-01-01

    Neurons rely on their cytoskeleton to give them shape and stability, and on cytoskeletal dynamics for growth and synaptic plasticity. Because drug addiction is increasingly seen as the inappropriate learning of strongly reinforcing stimuli, the role of the cytoskeleton in shaping drug memories has been of increasing interest in recent years. Does the cytoskeleton have an active role in shaping these memories, and to what extent do alterations in the cytoskeleton reflect the acute actions of d...

  11. Design and evaluation of Actichip, a thematic microarray for the study of the actin cytoskeleton

    Chalmel Frédéric

    2007-08-01

    Full Text Available Abstract Background The actin cytoskeleton plays a crucial role in supporting and regulating numerous cellular processes. Mutations or alterations in the expression levels affecting the actin cytoskeleton system or related regulatory mechanisms are often associated with complex diseases such as cancer. Understanding how qualitative or quantitative changes in expression of the set of actin cytoskeleton genes are integrated to control actin dynamics and organisation is currently a challenge and should provide insights in identifying potential targets for drug discovery. Here we report the development of a dedicated microarray, the Actichip, containing 60-mer oligonucleotide probes for 327 genes selected for transcriptome analysis of the human actin cytoskeleton. Results Genomic data and sequence analysis features were retrieved from GenBank and stored in an integrative database called Actinome. From these data, probes were designed using a home-made program (CADO4MI allowing sequence refinement and improved probe specificity by combining the complementary information recovered from the UniGene and RefSeq databases. Actichip performance was analysed by hybridisation with RNAs extracted from epithelial MCF-7 cells and human skeletal muscle. Using thoroughly standardised procedures, we obtained microarray images with excellent quality resulting in high data reproducibility. Actichip displayed a large dynamic range extending over three logs with a limit of sensitivity between one and ten copies of transcript per cell. The array allowed accurate detection of small changes in gene expression and reliable classification of samples based on the expression profiles of tissue-specific genes. When compared to two other oligonucleotide microarray platforms, Actichip showed similar sensitivity and concordant expression ratios. Moreover, Actichip was able to discriminate the highly similar actin isoforms whereas the two other platforms did not. Conclusion Our

  12. Actin Cytoskeleton Contributes to the Elastic Modulus of Embryonic Tendon During Early Development

    Schiele, Nathan R.; von Flotow, Friedrich; Tochka, Zachary L.; Hockaday, Laura A.; Marturano, Joseph E.; Thibodeau, Jeffrey J.; Kuo, Catherine K.

    2016-01-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. PMID:25721681

  13. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns.

    Jessica L Henty-Ridilla

    Full Text Available Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence that the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs during pattern-triggered immunity (PTI and perturbations by effector proteins during effector-triggered susceptibility (ETS. We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.

  14. Live cell tracking of symmetry break in actin cytoskeleton triggered by abrupt changes in micromechanical environments.

    Inoue, S; Frank, V; Hörning, M; Kaufmann, S; Yoshikawa, H Y; Madsen, J P; Lewis, A L; Armes, S P; Tanaka, M

    2015-12-01

    With the aid of stimulus-responsive hydrogel substrates composed of ABA triblock copolymer micelles, we monitored the morphological dynamics of myoblast (C2C12) cells in response to an abrupt change in the substrate elasticity by live cell imaging. The remodeling of actin cytoskeletons could be monitored by means of transient transfection with LifeAct-GFP. Dynamic changes in the orientational order of actin filaments were characterized by an order parameter, which enables one to generalize the mechanically induced actin cytoskeletons as a break of symmetry. The critical role that acto-myosin complexes play in the morphological transition was verified by the treatment of cells with myosin II inhibitor (blebbistatin) and the fluorescence localization of focal adhesion contacts. Such dynamically tunable hydrogels can be utilized as in vitro cellular micro-environments that can exert time-dependent stimuli to mechanically regulate target cells. PMID:26347909

  15. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP2 and PIP3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  16. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton.

    Patrick Garland

    Full Text Available Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate, which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm

  17. Multiple roles for the actin cytoskeleton during regulated exocytosis

    Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto

    2012-01-01

    Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytosk...

  18. Calponin 3 Regulates Actin Cytoskeleton Rearrangement in Trophoblastic Cell Fusion

    Shibukawa, Yukinao; Yamazaki, Natsuko; Kumasawa, Keiichi; Daimon, Etsuko; Tajiri, Michiko; Okada, Yuka; Ikawa, Masahito; Wada, Yoshinao

    2010-01-01

    Cell–cell fusion is an intriguing differentiation process, essential for placental development and maturation. A proteomic approach identified a cytoplasmic protein, calponin 3 (CNN3), related to the fusion of BeWo choriocarcinoma cells. CNN3 was expressed in cytotrophoblasts in human placenta. CNN3 gene knockdown promoted actin cytoskeletal rearrangement and syncytium formation in BeWo cells, suggesting CNN3 to be a negative regulator of trophoblast fusion. Indeed, CNN3 depletion promoted Be...

  19. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics.

    Zhu, Jinsheng; Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Di Donato, Martin; Ge, Pei; Oehri, Jacqueline; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H; Pollmann, Stephan; Azzarello, Elisa; Mancuso, Stefano; Ferro, Noel; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland; Friml, Jiří; Thomas, Clément; Geisler, Markus

    2016-04-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  20. Retinoids and glucocorticoids have opposite effects on actin cytoskeleton rearrangement in hippocampal HT22 cells.

    Hélène, Roumes; Julie, Brossaud; Aloïs, Lemelletier; Marie-Pierre, Moisan; Véronique, Pallet; Anabelle, Redonnet; Jean-Benoît, Corcuff

    2016-02-01

    A chronic excess of glucocorticoids elicits deleterious effects in the hippocampus. Conversely, retinoic acid plays a major role in aging brain plasticity. As synaptic plasticity depends on mechanisms related to cell morphology, we investigated the involvement of retinoic acid and glucocorticoids in the remodelling of the HT22 neurons actin cytoskeleton. Cells exhibited a significantly more elongated shape with retinoic acid and a rounder shape with dexamethasone; retinoic acid reversed the effects of dexamethasone. Actin expression and abundance were unchanged by retinoic acid or dexamethasone but F-actin organization was dramatically modified. Indeed, retinoic acid and dexamethasone increased (70 ± 7% and 176 ± 5%) cortical actin while retinoic acid suppressed the effect of dexamethasone (90 ± 6%). Retinoic acid decreased (-22 ± 9%) and dexamethasone increased (134 ± 16%) actin stress fibres. Retinoic acid also suppressed the effect of dexamethasone (-21 ± 7%). Spectrin is a key protein in the actin network remodelling. Its abundance was decreased by retinoic acid and increased by dexamethasone (-21 ± 11% and 52 ± 10%). However, retinoic acid did not modify the effect of dexamethasone (48 ± 7%). Calpain activity on spectrin was increased by retinoic acid and decreased by dexamethasone (26 ± 14% and -57 ± 5%); retinoic acid mildly but significantly modified the effect of dexamethasone (-44 ± 7%). The calpain inhibitor calpeptin suppressed the effects of retinoic acid and dexamethasone on cell shape and actin stress fibres remodelling but did not modify the effects on cortical actin. Retinoic acid and dexamethasone have a dramatic but mainly opposite effect on actin cytoskeleton remodelling. These effects originate, at least partly, from calpain activity. PMID:26748244

  1. The Actin Cytoskeleton as a Therapeutic Target for the Prevention of Relapse to Methamphetamine Use.

    Young, Erica J; Briggs, Sherri B; Miller, Courtney A

    2015-01-01

    A high rate of relapse is a defining characteristic of substance use disorder for which few treatments are available. Exposure to environmental cues associated with previous drug use can elicit relapse by causing the involuntary retrieval of deeply engrained associative memories that trigger a strong motivation to seek out drugs. Our lab is focused on identifying and disrupting mechanisms that support these powerful consolidated memories, with the goal of developing therapeutics. A particularly promising mechanism is regulation of synaptic dynamics by actin polymerization within dendritic spines. Emerging evidence indicates that memory is supported by structural and functional plasticity dendritic spines, for which actin polymerization is critical, and that prior drug use increases both spine and actin dynamics. Indeed we have found that inhibiting amygdala (AMY) actin polymerization immediately or twenty-four hours prior to testing disrupted methamphetamine (METH)-associated memories, but not food reward or fear memories. Furthermore, METH training increased AMY spine density which was reversed by actin depolymerization treatment. Actin dynamics were also shifted to a more dynamic state by METH training. While promising, actin polymerization inhibitors are not a viable therapeutic, as a multitude of peripheral process (e.g. cardiac function) rely on dynamic actin. For this reason, we have shifted our focus upstream of actin polymerization to nonmuscle myosin II. We and others have demonstrated that myosin IIb imparts a mechanical force that triggers spine actin polymerization in response to synaptic stimulation. Similar to an actin depolymerizing compound, pre-test inhibition of myosin II ATPase activity in the AMY produced a rapid and lasting disruption of drug-seeking behavior. While many questions remain, these findings indicate that myosin II represents a potential therapeutic avenue to target the actin cytoskeleton and disrupt the powerful, extinction

  2. Sla2p Is Associated with the Yeast Cortical Actin Cytoskeleton via Redundant Localization Signals

    Yang, Shirley; Cope, M. Jamie T.V.; Drubin, David G.

    1999-01-01

    Sla2p, also known as End4p and Mop2p, is the founding member of a widely conserved family of actin-binding proteins, a distinguishing feature of which is a C-terminal region homologous to the C terminus of talin. These proteins may function in actin cytoskeleton-mediated plasma membrane remodeling. A human homologue of Sla2p binds to huntingtin, the protein whose mutation results in Huntington’s disease. Here we establish by immunolocalization that Sla2p is a component of the yeast cortical a...

  3. Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells

    Jin, S.; Shimizu, M.; Balasubramanyam, A.; Epstein, H. F.

    2000-01-01

    DMPK, the product of the DM locus, is a member of the same family of serine-threonine protein kinases as the Rho-associated enzymes. In DM, membrane inclusions accumulate in lens fiber cells producing cataracts. Overexpression of DMPK in cultured lens epithelial cells led to apoptotic-like blebbing of the plasma membrane and reorganization of the actin cytoskeleton. Enzymatically active DMPK was necessary for both effects; inactive mutant DMPK protein did not produce either effect. Active RhoA but not constitutive GDP-state mutant protein produced similar effects as DMPK. The similar actions of DMPK and RhoA suggest that they may function in the same regulatory network. The observed effects of DMPK may be relevant to the removal of membrane organelles during normal lens differentiation and the retention of intracellular membranes in DM lenses. Copyright 2000 Wiley-Liss, Inc.

  4. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton

    von Nandelstadh, Pernilla; Gucciardo, Erika; Lohi, Jouko; Li, Rui; Sugiyama, Nami; Carpen, Olli; Lehti, Kaisa

    2014-01-01

    Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP–negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain–containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion. PMID:24989798

  5. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  6. Multiple CaMKII Binding Modes to the Actin Cytoskeleton Revealed by Single-Molecule Imaging.

    Khan, Shahid; Conte, Ianina; Carter, Tom; Bayer, K Ulrich; Molloy, Justin E

    2016-07-26

    Localization of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to dendritic spine synapses is determined in part by the actin cytoskeleton. We determined binding of GFP-tagged CaMKII to tag-RFP-labeled actin cytoskeleton within live cells using total internal reflection fluorescence microscopy and single-molecule tracking. Stepwise photobleaching showed that CaMKII formed oligomeric complexes. Photoactivation experiments demonstrated that diffusion out of the evanescent field determined the track lifetimes. Latrunculin treatment triggered a coupled loss of actin stress fibers and the colocalized, long-lived CaMKII tracks. The CaMKIIα (α) isoform, which was previously thought to lack F-actin interactions, also showed binding, but this was threefold weaker than that observed for CaMKIIβ (β). The βE' splice variant bound more weakly than α, showing that binding by β depends critically on the interdomain linker. The mutations βT287D and αT286D, which mimic autophosphorylation states, also abolished F-actin binding. Autophosphorylation triggers autonomous CaMKII activity, but does not impair GluN2B binding, another important synaptic protein interaction of CaMKII. The CaMKII inhibitor tatCN21 or CaMKII mutations that inhibit GluN2B association by blocking binding of ATP (βK43R and αK42M) or Ca(2+)/calmodulin (βA303R) had no effect on the interaction with F-actin. These results provide the first rationale for the reduced synaptic spine localization of the αT286D mutant, indicating that transient F-actin binding contributes to the synaptic localization of the CaMKIIα isoform. The track lifetime distributions had a stretched exponential form consistent with a heterogeneously diffusing population. This heterogeneity suggests that CaMKII adopts different F-actin binding modes, which is most easily rationalized by multiple subunit contacts between the CaMKII dodecamer and the F-actin cytoskeleton that stabilize the initial weak (micromolar

  7. Tumor metastatic promoter ABCE1 interacts with the cytoskeleton protein actin and increases cell motility.

    Han, Xu; Tian, Ye; Tian, Dali

    2016-06-01

    ABCE1, a member of the ATP-binding cassette (ABC) family, is a candidate tumor metastatic promoter in lung cancer. Overexpression of ABCE1 is correlated with aggressive growth and metastasis in lung cancer cells. However, the exact mechanism remains unclear. In the present study, GST pull-down assay provided evidence of the possible interaction between ABCE1 and β-actin using GST-ABCE1 as a bait protein. Co-immunoprecipitation manifested ABCE1 formed complexes with β-actin in vivo. ABCE1 overexpression significantly increased the migration of lung cancer cells which may be attributed to the promotion of F-actin rearrangements. Taken together, these data suggest that overexpression of ABCE1 produces an obvious effect on the motility of lung cancer cells through cytoskeleton rearrangement. PMID:27109616

  8. Coronin Promotes the Rapid Assembly and Cross-linking of Actin Filaments and May Link the Actin and Microtubule Cytoskeletons in Yeast

    Goode, Bruce L.; Wong, Jonathan J.; Butty, Anne-Christine; Peter, Matthias; McCormack, Ashley L.; Yates, John R.; Drubin, David G.; Barnes, Georjana

    1999-01-01

    Coronin is a highly conserved actin-associated protein that until now has had unknown biochemical activities. Using microtubule affinity chromatography, we coisolated actin and a homologue of coronin, Crn1p, from Saccharomyces cerevisiae cell extracts. Crn1p is an abundant component of the cortical actin cytoskeleton and binds to F-actin with high affinity (K d 6 × 10−9 M). Crn1p promotes the rapid barbed-end assembly of actin filaments and cross-links filaments into bundles and more complex ...

  9. Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

    L. López-Contreras

    2013-01-01

    Full Text Available Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  10. Cytoskeleton reorganization and ultrastructural damage induced by gliadin in a three-dimensional in vitro model

    Ersilia Dolfini; Leda Roncoroni; Luca Elli; Chiara Fumagalli; Roberto Colombo; Simona Ramponi; Fabio Forlani; Maria Teresa Bardella

    2005-01-01

    AIM: To evaluate the interplay between gliadin and LoVo cells and the direct effect of gliadin on cytoskeletal patterns.METHODS: We treated LoVo multicellular spheroids with digested bread wheat gliadin in order to investigate their morphology and ultrastructure (by means of light microscopy and scanning electron microscopy), and the effect of gliadin on actin (phalloidin fluorescence)and the tight-junction protein occludin and zonula occluden-1.RESULTS: The treated spheroids had deep holes and surface blebs, whereas the controls were smoothly surfaced ovoids. The incubation of LoVo spheroids with gliadin decreased the number of intracellular actin filaments, impaired and disassembled the integrity of the tight-junction system.CONCLUSION: Our data obtained from an "in vivolike" polarized culture system confirm the direct noxious effect of gliadin on the cytoskeleton and tight junctions of epithelial cells. Unlike two-dimensional cell culture systems, the use of multicellular spheroids seems to provide a suitable model for studying cell-cell interactions.

  11. Human Muscle LIM Protein Dimerizes along the Actin Cytoskeleton and Cross-Links Actin Filaments

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André; Thomas, Clément

    2014-01-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin f...

  12. The Dynamic Pollen Tube Cytoskeleton: Live Cell Studies Using Actin-Binding and Microtubule-Binding Reporter Proteins

    Alice Y. Cheung; Qiao-hong Duan; Silvia Santos Costa; Barend H.J.de Graaf; Veronica S.Di Stilio; Jose Feijo; Hen-Ming Wu

    2008-01-01

    Pollen tubes elongate within the pistil to transport sperm cells to the embryo sac for fertilization.Growth occurs exclusively at the tube apex,rendering pollen tube elongation a most dramatic polar cell growth process.A hall-mark pollen tube feature is its cytoskeleton,which comprises elaborately organized and dynamic actin microfilaments and microtubules.Pollen tube growth is dependent on the actin cytoskeleton;its organization and regulation have been exalined extensively by various approaches.including fluorescent protein labeled actin-binding proteins in live cell studies.Using the previously described GFP-NtADF1 and GFP-LIADF1, and a new actin reporter protein NtPLIM2b-GFP,we re-affirm that the predominant actin structures in elongating tobacco and lily pollen tubes are long,streaming actin cables along the pollen tube shank,and a subapical structure comprising shorter actin cables.The subapical collection of actin microfilaments undergoes dynamic changes,giving rise to the appearance of structures that range from basket-or funnel-shaped,mesh-like to a subtle ring.NtPLIM2b-GFP is used in combination with a guanine nucleotide exchange factor for the Rho GTPases,AtROP-GEF1,to illustrate the use of these actin reporter proteins to explore the linkage between the polar cell growth process and its actin cytoskeleton.Contrary to the actin cytoskeleton,microtubules appear not to play a direct role in supporting the polar cell growth process in angiosperm pollen tubes.Using a microtubule reporter protein based on the microtubule end-binding protein from Arabidopsis AtEB1,GFP-AtEB1,we show that the extensive microtubule network in elongating pollen tubes displays varying degrees of dynamics.These reporter proteins provide versatile tools to explore the functional connection between major structural and signaling components of the polar pollen tube growth process.

  13. Post-polymerization crosstalk between the actin cytoskeleton and microtubule network.

    Joo, E Emily; Yamada, Kenneth M

    2016-05-01

    Cellular cytoskeletal systems play many pivotal roles in living organisms by controlling cell shape, division, and migration, which ultimately govern morphology, physiology, and functions of animals. Although the cytoskeletal systems are distinct and play different roles, there is growing evidence that these diverse cytoskeletal systems coordinate their functions with each other. This coordination between cytoskeletal systems, often termed cytoskeletal crosstalk, has been identified when the dynamic state of one individual system affects the other system. In this review, we briefly describe some well-established examples of crosstalk between cytoskeletal systems and then introduce a newly discovered form of crosstalk between the actin cytoskeleton and microtubule network that does not appear to directly alter polymerization or depolymerization of either system. The biological impact and possible significance of this post-polymerization crosstalk between actin and microtubules will be discussed in detail. PMID:27058810

  14. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis

  15. Actin re-organization induced by Chlamydia trachomatis serovar D--evidence for a critical role of the effector protein CT166 targeting Rac.

    Jessica Thalmann

    Full Text Available The intracellular bacterium Chlamydia trachomatis causes infections of urogenital tract, eyes or lungs. Alignment reveals homology of CT166, a putative effector protein of urogenital C. trachomatis serovars, with the N-terminal glucosyltransferase domain of clostridial glucosylating toxins (CGTs. CGTs contain an essential DXD-motif and mono-glucosylate GTP-binding proteins of the Rho/Ras families, the master regulators of the actin cytoskeleton. CT166 is preformed in elementary bodies of C. trachomatis D and is detected in the host-cell shortly after infection. Infection with high MOI of C. trachomatis serovar D containing the CT166 ORF induces actin re-organization resulting in cell rounding and a decreased cell diameter. A comparable phenotype was observed in HeLa cells treated with the Rho-GTPase-glucosylating Toxin B from Clostridium difficile (TcdB or HeLa cells ectopically expressing CT166. CT166 with a mutated DXD-motif (CT166-mut exhibited almost unchanged actin dynamics, suggesting that CT166-induced actin re-organization depends on the glucosyltransferase motif of CT166. The cytotoxic necrotizing factor 1 (CNF1 from E. coli deamidates and thereby activates Rho-GTPases and transiently protects them against TcdB-induced glucosylation. CNF1-treated cells were found to be protected from TcdB- and CT166-induced actin re-organization. CNF1 treatment as well as ectopic expression of non-glucosylable Rac1-G12V, but not RhoA-G14A, reverted CT166-induced actin re-organization, suggesting that CT166-induced actin re-organization depends on the glucosylation of Rac1. In accordance, over-expression of CT166-mut diminished TcdB induced cell rounding, suggesting shared substrates. Cell rounding induced by high MOI infection with C. trachomatis D was reduced in cells expressing CT166-mut or Rac1-G12V, and in CNF1 treated cells. These observations indicate that the cytopathic effect of C. trachomatis D is mediated by CT166 induced Rac1 glucosylation

  16. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells

    Bhanu Neupane

    2015-09-01

    Full Text Available Stimulated emission depletion (STED microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante and live rat chondrosarcoma cells (RCS transfected with actin-green fluorescent protein (GFP. Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed.

  17. Ion Implantation Hampers Pollen Tube Growth and Disrupts Actin Cytoskeleton Organization in Pollen Tubes of Pinus thunbergii

    LI Guoping; HUANG Qunce; YANG Lusheng; QIN Guangyong

    2008-01-01

    Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin cytoskeleton in the pollen tube cell were investigated using a confocal laser scanning microscope after fluorescence labeling. Treatment with ion implanta-tion significantly blocked pollen tube growth. Confocal microscopy showed that ion implantation disrupted actin filament cytoskeleton organization in the pollen tube. It was found that there was a distinct correlation between the inhibition of pollen tube growth and the disruption of actin cytoskeleton organization, indicating that an intact actin cytoskeleton is essential for con-tinuous pollen tube elongation in Pinus thunbergii. Although the detailed mechanism for the ion-implantation-induced bioeffect still remains to be elucidated, the present study assumes that the cytoskeleton system in pollen grains may provide a key target in response to ion beam im-plantation and is involved in mediating certain subsequent cytological changes.

  18. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells

    Rieder Gabriele

    2011-11-01

    Full Text Available Abstract Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS and the effector protein cytotoxin-associated gene A (CagA of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.

  19. Effects of altered gravity on the cell cycle, actin cytoskeleton and proteome in Physarum polycephalum

    He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing

    Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS

  20. From filaments to function:The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity

    Katie Porter; Brad Day

    2016-01-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, develop-ment and movement, gene expression and signal transduc-tion, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activa-tion of specific signaling responses following pathogen perception. B4ased on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens.

  1. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  2. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  3. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton

    Joseph S. Stephan

    2015-06-01

    Full Text Available The mouse cytoplasmic polyadenylation element-binding protein 3 (CPEB3 is a translational regulator implicated in long-term memory maintenance. Invertebrate orthologs of CPEB3 in Aplysia and Drosophila are functional prions that are physiologically active in the aggregated state. To determine if this principle applies to the mammalian CPEB3, we expressed it in yeast and found that it forms heritable aggregates that are the hallmark of known prions. In addition, we confirm in the mouse the importance of CPEB3’s prion formation for CPEB3 function. Interestingly, deletion analysis of the CPEB3 prion domain uncovered a tripartite organization: two aggregation-promoting domains surround a regulatory module that affects interaction with the actin cytoskeleton. In all, our data provide direct evidence that CPEB3 is a functional prion in the mammalian brain and underline the potential importance of an actin/CPEB3 feedback loop for the synaptic plasticity underlying the persistence of long-term memory.

  4. Spatial constraints and the organization of the cytoskeleton

    Ga^rlea, I.C.

    2015-01-01

    The shape of animal cells is in controlled by a network of filamentous polymers called the cytoskeleton. The two main components of the cytoskeleton are actin filaments and microtubules. These polymers continuously reorganize in order to performed their diverse cellular functions. For example, in pr

  5. Unveiling interactions among mitochondria, caspase-like proteases, and the actin cytoskeleton during plant programmed cell death (PCD.

    Christina E N Lord

    Full Text Available Aponogeton madagascariensis produces perforations over its leaf surface via programmed cell death (PCD. PCD begins between longitudinal and transverse veins at the center of spaces regarded as areoles, and continues outward, stopping several cells from these veins. The gradient of PCD that exists within a single areole of leaves in an early stage of development was used as a model to investigate cellular dynamics during PCD. Mitochondria have interactions with a family of proteases known as caspases, and the actin cytoskeleton during metazoan PCD; less is known regarding these interactions during plant PCD. This study employed the actin stain Alexa Fluor 488 phalloidin, the actin depolymerizer Latrunculin B (Lat B, a synthetic caspase peptide substrate and corresponding specific inhibitors, as well as the mitochondrial pore inhibitor cyclosporine A (CsA to analyze the role of these cellular constituents during PCD. Results depicted that YVADase (caspase-1 activity is higher during the very early stages of perforation formation, followed by the bundling and subsequent breakdown of actin. Actin depolymerization using Lat B caused no change in YVADase activity. In vivo inhibition of YVADase activity prevented PCD and actin breakdown, therefore substantiating actin as a likely substrate for caspase-like proteases (CLPs. The mitochondrial pore inhibitor CsA significantly decreased YVADase activity, and prevented both PCD and actin breakdown; therefore suggesting the mitochondria as a possible trigger for CLPs during PCD in the lace plant. To our knowledge, this is the first in vivo study using either caspase-1 inhibitor (Ac-YVAD-CMK or CsA, following which the actin cytoskeleton was examined. Overall, our findings suggest the mitochondria as a possible upstream activator of YVADase activity and implicate these proteases as potential initiators of actin breakdown during perforation formation via PCD in the lace plant.

  6. Regulation of retinoschisin secretion in Weri-Rb1 cells by the F-actin and microtubule cytoskeleton.

    Eiko Kitamura

    Full Text Available Retinoschisin is encoded by the gene responsible for X-linked retinoschisis (XLRS, an early onset macular degeneration that results in a splitting of the inner layers of the retina and severe loss in vision. Retinoschisin is predominantly expressed and secreted from photoreceptor cells as a homo-oligomer protein; it then associates with the surface of retinal cells and maintains the retina cellular architecture. Many missense mutations in the XLRS1 gene are known to cause intracellular retention of retinoschisin, indicating that the secretion process of the protein is a critical step for its normal function in the retina. However, the molecular mechanisms underlying retinoschisin's secretion remain to be fully elucidated. In this study, we investigated the role of the F-actin cytoskeleton in the secretion of retinoschisin by treating Weri-Rb1 cells, which are known to secrete retinoschisin, with cytochalasin D, jasplakinolide, Y-27632, and dibutyryl cGMP. Our results show that cytochalasin D and jasplakinolide inhibit retinoschisin secretion, whereas Y-27632 and dibutyryl cGMP enhance secretion causing F-actin alterations. We also demonstrate that high concentrations of taxol, which hyperpolymerizes microtubules, inhibit retinoschisin secretion. Our data suggest that retinoschisin secretion is regulated by the F-actin cytoskeleton, that cGMP or inhibition of ROCK alters F-actin structure enhancing the secretion, and that the microtubule cytoskeleton is also involved in this process.

  7. Spatial constraints and the organization of the cytoskeleton

    Ga^rlea, I.C.

    2015-01-01

    The shape of animal cells is in controlled by a network of filamentous polymers called the cytoskeleton. The two main components of the cytoskeleton are actin filaments and microtubules. These polymers continuously reorganize in order to performed their diverse cellular functions. For example, in processes such as cell migration actin filaments grow against the membrane, creating flat protrusions called lamellipodia. The lamellipodia enable the cells to move over surfaces. Microtubules are a ...

  8. The Actin-Cytoskeleton Pathway and Its Potential Role in Inflammatory Bowel Disease-Associated Human Colorectal Cancer

    Kanaan, Ziad; Qadan, Motaz; Eichenberger, Maurice Robert; Galandiuk, Susan

    2010-01-01

    Introduction: To improve our understanding of the various clinical phenotypes in inflammatory bowel disease (IBD)-associated colorectal cancer (CRC) and provide potential targets for early diagnosis and future therapy, we sought to identify new candidate genes and molecular pathways involved in the pathogenesis and progression of this disorder. Recent evidence has implicated the actin-cytoskeleton pathway in the development of metastatic sporadic CRC through cytoskeletal proteins such as fasc...

  9. Dynamic Regulation of Activated Leukocyte Cell Adhesion Molecule–mediated Homotypic Cell Adhesion through the Actin CytoskeletonV⃞

    Nelissen, Judith M. D. T.; Peters, Inge M.; de Grooth, Bart G.; Van Kooyk, Yvette; Figdor, Carl G.

    2000-01-01

    Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM–ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM–ALCAM interactions....

  10. MiR-221 influences effector functions and actin cytoskeleton in mast cells.

    Ramon J Mayoral

    Full Text Available Mast cells have essential effector and immunoregulatory functions in IgE-associated allergic disorders and certain innate and adaptive immune responses, but the role of miRNAs in regulating mast cell functions is almost completely unexplored. To examine the role of the activation-induced miRNA miR-221 in mouse mast cells, we developed robust lentiviral systems for miRNA overexpression and depletion. While miR-221 favored mast cell adhesion and migration towards SCF or antigen in trans-well migration assays, as well as cytokine production and degranulation in response to IgE-antigen complexes, neither miR-221 overexpression, nor its ablation, interfered with mast cell differentiation. Transcriptional profiling of miR-221-overexpressing mast cells revealed modulation of many transcripts, including several associated with the cytoskeleton; indeed, miR-221 overexpression was associated with reproducible increases in cortical actin in mast cells, and with altered cellular shape and cell cycle in murine fibroblasts. Our bioinformatics analysis showed that this effect was likely mediated by the composite effect of miR-221 on many primary and secondary targets in resting cells. Indeed, miR-221-induced cellular alterations could not be recapitulated by knockdown of one of the major targets of miR-221. We propose a model in which miR-221 has two different roles in mast cells: in resting cells, basal levels of miR-221 contribute to the regulation of the cell cycle and cytoskeleton, a general mechanism probably common to other miR-221-expressing cell types, such as fibroblasts. Vice versa, upon induction in response to mast cell stimulation, miR-221 effects are mast cell-specific and activation-dependent, contributing to the regulation of degranulation, cytokine production and cell adherence. Our studies provide new insights into the roles of miR-221 in mast cell biology, and identify novel mechanisms that may contribute to mast cell-related pathological

  11. Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

    Hyoun-Sub Lim

    2013-03-01

    Full Text Available Barley stripe mosaic virus (BSMV induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW. BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

  12. EFFECTS OF ESTETROL ON MIGRATION AND INVASION IN T47-D BREAST CANCER CELLS THROUGH THE ACTIN CYTOSKELETON

    Maria Silvia eGiretti

    2014-05-01

    Full Text Available Estetrol (E4 is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2 on T47-D estrogen receptor (ER positive breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, redistribution of actin fibers towards the cell membrane was observed. However, when E4 was added to E2, a inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrin-radixin-moesin (ERM family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr558, which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of ERα. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulatory actions of E2. This contributes to the emerging hypothesis that E4 may be a naturally occurring estrogen receptor modulator in the breast.

  13. Effects of Estetrol on Migration and Invasion in T47-D Breast Cancer Cells through the Actin Cytoskeleton.

    Giretti, Maria Silvia; Montt Guevara, Maria Magdalena; Cecchi, Elena; Mannella, Paolo; Palla, Giulia; Spina, Stefania; Bernacchi, Guja; Di Bello, Silvia; Genazzani, Andrea Riccardo; Genazzani, Alessandro D; Simoncini, Tommaso

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor (ER) modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2) on T47-D ER+ breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, re-distribution of actin fibers toward the cell membrane was observed. However, when E4 was added to E2, an inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrin-radixin-moesin family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr(558), which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of estrogen receptor-α. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulatory actions of E2. This contributes to the emerging hypothesis that E4 may be a naturally occurring ER modulator in the breast. PMID:24904530

  14. Extra-nuclear signaling of progesterone receptor to breast cancer cell movement and invasion through the actin cytoskeleton.

    Xiao-Dong Fu

    Full Text Available Progesterone plays a role in breast cancer development and progression but the effects on breast cancer cell movement or invasion have not been fully explored. In this study, we investigate the actions of natural progesterone and of the synthetic progestin medroxyprogesterone acetate (MPA on actin cytoskeleton remodeling and on breast cancer cell movement and invasion. In particular, we characterize the nongenomic signaling cascades implicated in these actions. T47-D breast cancer cells display enhanced horizontal migration and invasion of three-dimensional matrices in the presence of both progestins. Exposure to the hormones triggers a rapid remodeling of the actin cytoskeleton and the formation of membrane ruffles required for cell movement, which are dependent on the rapid phosphorylation of the actin-regulatory protein moesin. The extra-cellular small GTPase RhoA/Rho-associated kinase (ROCK-2 cascade plays central role in progesterone- and MPA-induced moesin activation, cell migration and invasion. In the presence of progesterone, progesterone receptor A (PRA interacts with the G protein G alpha(13, while MPA drives PR to interact with tyrosine kinase c-Src and to activate phosphatidylinositol-3 kinase, leading to the activation of RhoA/ROCK-2. In conclusion, our findings manifest that progesterone and MPA promote breast cancer cell movement via rapid actin cytoskeleton remodeling, which are mediated by moesin activation. These events are triggered by RhoA/ROCK-2 cascade through partially differing pathways by the two compounds. These results provide original mechanistic explanations for the effects of progestins on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers.

  15. Preparing a discreet escape: Microsporidia reorganize host cytoskeleton prior to non-lytic exit from C. elegans intestinal cells.

    Szumowski, Suzannah C; Estes, Kathleen A; Troemel, Emily R

    2012-10-01

    Intracellular pathogens commonly invade and replicate inside of intestinal cells and exit from these cells is a crucial step in pathogen transmission. For convenience, studies of intracellular pathogens are often conducted using in vitro cell culture systems, which unfortunately lack important features of polarized, intact intestinal epithelial cells. The nematode C. elegans provides a tractable system to study intracellular pathogens in vivo, where features of differentiated epithelial cells are easily visualized. In a recent paper, we used C. elegans as a host organism to study the exit strategy of Nematocida parisii, a naturally occurring intracellular pathogen in the microsporidia phylum. We showed that N. parisii remodels the C. elegans host cytoskeleton, and then exits host cells in an actin-dependent, non-lytic fashion. These findings illuminate key details about the transmission of microsporidia, which are poorly understood but ubiquitous pathogens. More generally, these findings have implications for exit strategies used by other intracellular pathogens that also infect epithelial cells. PMID:24058850

  16. Correlated light and electron microscopy observations of the uterine epithelial cell actin cytoskeleton using fluorescently labeled resin-embedded sections.

    Moore, Chad L; Cheng, Delfine; Shami, Gerald J; Murphy, Christopher R

    2016-05-01

    In order to perform correlative light and electron microscopy (CLEM) more precisely, we have modified existing specimen preparation protocols allowing fluorescence retention within embedded and sectioned tissue, facilitating direct observation across length scales. We detail a protocol which provides a precise correlation accuracy using accessible techniques in biological specimen preparation. By combining a pre-embedding uranyl acetate staining step with the progressive lowering of temperature (PLT) technique, a methacrylate embedded tissue specimen is ultrathin sectioned and mounted onto a TEM finder grid for immediate viewing in the confocal and electron microscope. In this study, the protocol is applied to rat uterine epithelial cells in vivo during early pregnancy. Correlative overlay data was used to track changes in filamentous actin that occurs in these cells from fertilization (Day 1) to implantation on Day 6 as part of the plasma membrane transformation, a process essential in the development of uterine receptivity in the rat. CLEM confirmed that the actin cytoskeleton is disrupted as apical microvilli are progressively lost toward implantation, and revealed the thick and continuous terminal web is replaced by a thinner and irregular actin band, with individually distinguishable filaments connecting actin meshworks which correspond with remaining plasma membrane protrusions. PMID:26930006

  17. Calponin isoforms CNN1, CNN2 and CNN3: Regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells.

    Liu, Rong; Jin, J-P

    2016-07-01

    Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and many types of non-muscle cells. Three homologous genes, CNN1, CNN2 and CNN3, encoding calponin isoforms 1, 2, and 3, respectively, are present in vertebrate species. All three calponin isoforms are actin-binding proteins with functions in inhibiting actin-activated myosin ATPase and stabilizing the actin cytoskeleton, while each isoform executes different physiological roles based on their cell type-specific expressions. Calponin 1 is specifically expressed in smooth muscle cells and plays a role in fine-tuning smooth muscle contractility. Calponin 2 is expressed in both smooth muscle and non-muscle cells and regulates multiple actin cytoskeleton-based functions. Calponin 3 participates in actin cytoskeleton-based activities in embryonic development and myogenesis. Phosphorylation has been extensively studied for the regulation of calponin functions. Cytoskeleton tension regulates the transcription of CNN2 gene and the degradation of calponin 2 protein. This review summarizes our knowledge learned from studies over the past three decades, focusing on the evolutionary lineage of calponin isoform genes, their tissue- and cell type-specific expressions, structure-function relationships, and mechanoregulation. PMID:26970176

  18. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton.

    Cheng Cui

    2013-11-01

    Full Text Available Planar cell polarity (PCP regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin

  19. Association of thrombospondin-1 with the actin cytoskeleton of human thrombin-activated platelets through an alphaIIbbeta3- or CD36-independent mechanism.

    Saumet, Anne; Jesus, Nando de; Legrand, Chantal; Dubernard, Véronique

    2002-01-01

    Thrombospondin-1 (TSP-1) is an adhesive glycoprotein which, when secreted from alpha-granules of activated platelets, can bind to the cell surface and participate in platelet aggregate formation. In this study, we show that thrombin activation leads to the rapid and specific association of a large amount of secreted alpha-granular TSP-1 with the actin cytoskeleton. This cytoskeletal association of TSP-1 was correlated with platelet secretion, but not aggregation, and was inhibited by cytochalasin D, an inhibitor of actin polymerization. Association of TSP-1 with the actin cytoskeleton was mediated by membrane receptors, as shown by using MAII, a TSP-1-specific monoclonal antibody that inhibited both TSP-1 surface binding to activated platelets and cytoskeletal association. TSP-1 and its potential membrane receptors, e.g. alphaIIbbeta3 integrin, CD36 and CD47, concomitantly associated with the actin cytoskeleton. However, studies on platelets from a patient with type I Glanzmann's thrombasthenia lacking alphaIIbbeta3 and another with barely detectable CD36 showed normal TSP-1 surface expression and association with the actin cytoskeleton. Likewise, no involvement of CD47 in TSP-1 association with the actin cytoskeleton could be inferred from experiments with control platelets using the function-blocking anti-CD47 antibody B6H12. Finally, assembly of signalling complexes, as observed through translocation of tyrosine-phosphorylated proteins and kinases to the actin cytoskeleton, was found to occur in concert with cytoskeletal association of TSP-1, in control platelets as well as in thrombasthenic and CD36-deficient platelets. Our results imply a role for the actin cytoskeleton in the membrane-surface expression process of TSP-1 molecules and suggest a possible coupling of TSP-1 receptors to signalling events occurring independently of alphaIIbbeta3 or CD36. These results provide new insights into the link between surface-bound TSP-1 and the contractile actin

  20. Rab11 and actin cytoskeleton participate in Giardia lamblia encystation, guiding the specific vesicles to the cyst wall.

    Araceli Castillo-Romero

    Full Text Available BACKGROUND: Giardia passes through two stages during its life cycle, the trophozoite and the cyst. Cyst formation involves the synthesis of cyst wall proteins (CWPs and the transport of CWPs into encystation-specific vesicles (ESVs. Active vesicular trafficking is essential for encystation, but the molecular machinery driving vesicular trafficking remains unknown. The Rab proteins are involved in the targeting of vesicles to several intracellular compartments through their association with cytoskeletal motor proteins. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we found a relationship between Rab11 and the actin cytoskeleton in CWP1 transport. Confocal microscopy showed Rab11 was distributed throughout the entire trophozoite, while in cysts it was translocated to the periphery of the cell, where it colocalized with ESVs and microfilaments. Encystation was also accompanied by changes in rab11 mRNA expression. To evaluate the role of microfilaments in encystation, the cells were treated with latrunculin A. Scanning electron microscopy showed this treatment resulted in morphological damages to encysted parasites. The intensity of fluorescence-labeled Rab11 and CWP1 in ESVs and cyst walls was reduced, and rab11 and cwp1 mRNA levels were down-regulated. Furthermore, knocking down Rab11 with a hammerhead ribozyme resulted in an up to 80% down-regulation of rab11 mRNA. Although this knockdown did not appear lethal for trophozoites and did not affect cwp1 expression during the encystation, confocal images showed CWP1 was redistributed throughout the cytosol. CONCLUSIONS AND SIGNIFICANCE: Our results indicate that Rab11 participates in the early and late encystation stages by regulating CWP1 localization and the actin-mediated transport of ESVs towards the periphery. In addition, alterations in the dynamics of actin affected rab11 and cwp1 expression. Our results provide new information about the molecules involved in Giardia encystation and

  1. Antiepileptic teratogen valproic acid (VPA) modulates organisation and dynamics of the actin cytoskeleton

    Walmod, P S; Skladchikova, G; Kawa, A;

    1999-01-01

    control cells and cells treated with VPA, indicating that VPA affected the cytoskeletal determinants of cell morphology. Furthermore, VPA treatment induced an increase of F-actin, and of FAK, paxillin, vinculin, and phosphotyrosine in focal adhesion complexes. These changes were accompanied by increased...... adhesion of VPA-treated cells to the extracellular matrix. Treatment with an RGD-containing peptide reducing integrin binding to components of the extracellular matrix partially reverted the motility inhibition induced by VPA, indicating that altered adhesion contributed to, but was not the sole reason for......, VPA caused a redistribution of the actin severing protein gelsolin, and left the cells unable to respond to treatment with a gelsolin-peptide known to reduce the amount of gelsolin bound to phosphatidylinositol bisphosphate (PIP2), leaving a larger amount of the protein in a potential actin binding...

  2. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  3. Actin cytoskeleton-dependent pathways for ADMA-induced NF-κB activation and TGF-β high expression in human renal glomerular endothelial cells

    Liyan Wang; Dongliang Zhang; Junfang Zheng; Yiduo Feng; Yu Zhang; Wenhu Liu

    2012-01-01

    Asymmetric dimethylarginine (ADMA),an endogenous nitric oxide synthase inhibitor,is considered to be an independent risk factor in the progression of chronic kidney diseases (CKD).It can induce kidney fibrosis by increasing transforming growth factor (TGF)-β1 expression,but its molecular mechanism is unclear.The aim of the present study was to investigate the role of actin cytoskeleton in ADMA-induced TGF-β1 high expression in human renal glomerular endothelial cells (HRGECs).The structure of stress fibers was visualized by immunofluorescence,nuclear factor-κB (NF-κB) DNA-binding activity was assessed by an electrophoretic mobility shift assay and TGF-β1 expression was assessed by western blot analysis.Results showed that ADMA induced the assembly of stress fibers,DNA binding of NF-κB,and increasing expression of TGF-β1.When the dynamics of actin cytoskeleton was perturbed by the actin-depolymerizing agent cytochalasin D and the actin-stabilizing agent jasplakinolide,or ablation of stress fiber bundles by the nicotineamide adenine dinucleotide phosphate oxidase inhibitor apocynin and p38 mitogen-activated protein kinase inhibitor SB203580,ADMA-induced DNA binding of NF-κB and TGF-β1 expression were inhibited.These results revealed an actin cytoskeleton-dependent mechanism in ADMA-induced NF-κB activation and TGF-β1 high expression in HRGECs.The specific targeting of the actin cytoskeleton may be a useful strategy to prevent ADMA-activated kidney fibrosis in CKD.

  4. Imaging the fine-scale structure of the cellular actin cytoskeleton by Single Particle Tracking and Atomic Force Microscopy

    Mustata, Gina-Mirela

    It has been proposed that diffusion in the plasma membrane of eukaryotic cells it is compartmentalized due to the interaction with the underlying actin-based membrane skeleton that comes into close proximity to the lipid bilayer. The cytoskeleton is a dynamic structure that maintains cell shape, enables cell motion, and plays important roles in both intra-cellular transport and cellular division. We show here the evidence of plasma membrane compartmentalization using Single Particle Tracking (SPT) and Atomic Force Microscopy (AFM) imaging. SPT of Quantum dot labeled lipid in the plasma membrane of live normal rat kidney cells show compartments ranging from 325 nm to 391 nm depending on the sampling time. Using AFM imaging of live NRK cell in the presence of phalloidin, the membrane compartmentalization it is visible with the average size of the compartments of 325 +/- 10 nm (the main peak is centered at 260 nm). Further, the underlying membrane skeleton in fixed cells was directly imaged after partial removal of the plasma membrane to reveal size of the membrane skeleton meshwork of 339 +/- 10 nm. A new method of measuring the characteristics of the actin meshwork was proposed. Probing the local compliance of the plasma membrane through the deflection of a soft AFM cantilever we can expect that the stiffness of the membrane will be higher at locations directly above a cortical actin. This new method provided information about the structure of the skeletal meshwork of neuronal cell body predicting an average compartment size of about 132 nm. This was confirmed through SPT of QD-lipid incorporated into the neuronal cell membrane.

  5. A Dual Role for Melatonin in Medaka Ovulation: Ensuring Prostaglandin Synthesis and Actin Cytoskeleton Rearrangement in Follicular Cells.

    Ogiwara, Katsueki; Takahashi, Takayuki

    2016-03-01

    Understanding the direct effects of melatonin on vertebrate ovulation remains a challenge. The present study provides the first characterization of the role of melatonin in ovulation using the teleost medaka. The melatonin receptor antagonist luzindole inhibited in vitro follicle ovulation. In the preovulatory follicles, arylalkylamineN-acetyltransferase 1a and hydroxyindole-O-methyltransferase 2, the enzymes responsible for melatonin synthesis, were expressed in the granulosa cells throughout the 24 h spawning cycle. The granulosa cells of the follicle also expressed the melatonin receptor 1a-a. An in vitro characterization study using medaka OLHNI-2 cells revealed that melatonin and luzindole act as an agonist and an antagonist, respectively, of the melatonin receptor. The intracellular cAMP levels in these cells were reduced after melatonin treatment. The expression of cytosolic phospholipase A2 group 4a (Pla2g4a), the enzyme producing arachidonic acid (cyclooxygenase-2 substrate), was inhibited in the granulosa cells in luzindole-treated follicles. Follicular prostaglandin E2levels and in vitro follicle ovulation were suppressed in follicles isolated at 12 h prior to ovulation and incubated with the Pla2g4a inhibitor AACOCF3. The G-actin:F-actin ratios in follicular cells increased with approaching ovulation, but this increase was suppressed after luzindole treatment. The phosphorylation of moesin, an ezrin-radixin-moesin protein, was inhibited in the follicular cells in luzindole-treated follicles. These results indicate a dual role for melatonin in medaka ovulation: melatonin ensures prostaglandin E2synthesis throughout the spawning cycle and induces actin cytoskeleton rearrangement in the follicular cells at ovulation. PMID:26864196

  6. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion

    Delorme-Walker, Violaine; Abrivard, Marie; Lagal, Vanessa; Anderson, Karen; Perazzi, Audrey; Gonzalez, Virginie; Page, Christopher; Chauvet, Juliette; Ochoa, Wendy; Volkmann, Niels; Hanein, Dorit; Tardieux, Isabelle

    2012-01-01

    Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite–cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization ...

  7. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton

    Jürgen Bolz

    2014-07-01

    Full Text Available Disrupted-in-Schizophrenia 1 (DISC1 is a risk gene for a spectrum of major mental disorders. It has been shown to regulate radial migration as well as dendritic arborization during neurodevelopment and corticogenesis. In a previous study we demonstrated through in vitro experiments that DISC1 also controls the tangential migration of cortical interneurons originating from the medial ganglionic eminence (MGE. Here we first show that DISC1 is necessary for the proper tangential migration of cortical interneurons in the intact brain. Expression of EGFP under the Lhx6 promotor allowed us to analyze exclusively interneurons transfected in the MGE after in utero electroporation. After 3 days in utero, DISC1 deficient interneurons displayed prolonged leading processes and, compared to control, fewer neurons reached the cortex. Time-lapse video microscopy of cortical feeder-layers revealed a decreased migration velocity due to a reduction of soma translocations. Immunostainings indicated that DISC1 is co-localized with F-actin in the growth cone-like structure of the leading process. DISC1 knockdown reduced F-actin levels whereas the overall actin level was not altered. Moreover, DISC1 knockdown also decreased levels of phosphorylated Girdin, which cross-links F-actin, as well as the Girdin-activator pAkt. In contrast, using time-lapse video microscopy of fluorescence-tagged tubulin and EB3 in fibroblasts, we found no effects on microtubule polymerization when DISC1 was reduced. However, DISC1 affected the acteylation of microtubules in the leading processes of MGE-derived cortical interneurons. Together, our results provide a mechanism how DISC1 might contribute to interneuron migration thereby explaining the reduced number of specific classes of cortical interneurons in some DISC1 mouse models.

  8. N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton

    Anand Appakkudal R

    2013-01-01

    Full Text Available Abstract Background Slit2 is a ~ 200 kDa secreted glycoprotein that has been recently shown to regulate immune functions. However, not much is known about its role in HIV (human immunodeficiency virus-1 pathogenesis. Results In the present study, we have shown that the N-terminal fragment of Slit2 (Slit2N (~120 kDa inhibits replication of both CXCR4 and CCR5-tropic HIV-1 viruses in T-cell lines and peripheral blood T-cells. Furthermore, we demonstrated inhibition of HIV-1 infection in resting CD4+ T-cells. In addition, we showed that Slit2N blocks cell-to-cell transmission of HIV-1. We have shown that Slit2N inhibits HIV-1 infection by blocking viral entry into T-cells. We also ruled out Slit2N-mediated inhibition of various other steps in the life cycle including binding, integration and viral transcription. Elucidation of the molecular mechanism revealed that Slit2N mediates its functional effects by binding to Robo1 receptor. Furthermore, we found that Slit2N inhibited Gp120-induced Robo1-actin association suggesting that Slit2N may inhibit cytoskeletal rearrangements facilitating HIV-1 entry. Studies into the mechanism of inhibition of HIV-1 revealed that Slit2N abrogated HIV-1 envelope-induced actin cytoskeletal dynamics in both T-cell lines and primary T-cells. We further showed that Slit2N specifically attenuated the HIV-1 envelope-induced signaling pathway consisting of Rac1, LIMK and cofilin that regulates actin polymerization. Conclusions Taken together, our results show that Slit2N inhibits HIV-1 replication through novel mechanisms involving modulation of cytoskeletal dynamics. Our study, thus, provides insights into the role of Slit2N in HIV-1 infection and underscores its potential in limiting viral replication in T-cells.

  9. Dictyostelium Dock180-related RacGEFs Regulate the Actin Cytoskeleton during Cell Motility

    Para, Alessia; Krischke, Miriam; Merlot, Sylvain; Shen, Zhouxin; Oberholzer, Michael; Lee, Susan; Briggs, Steven; Firtel, Richard A.

    2009-01-01

    Cell motility of amoeboid cells is mediated by localized F-actin polymerization that drives the extension of membrane protrusions to promote forward movements. We show that deletion of either of two members of the Dictyostelium Dock180 family of RacGEFs, DockA and DockD, causes decreased speed of chemotaxing cells. The phenotype is enhanced in the double mutant and expression of DockA or DockD complements the reduced speed of randomly moving DockD null cells' phenotype, suggesting that DockA ...

  10. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton

    Shupliakov, Oleg; Bloom, Ona; Gustafsson, Jenny S;

    2002-01-01

    the site of synaptic vesicle recycling, the endocytic zone. Compounds interfering with actin function, including phalloidin, the catalytic subunit of Clostridium botulinum C2 toxin, and N-ethylmaleimide-treated myosin S1 fragments were microinjected into the axon. In unstimulated, phalloidin...... fragments caused accumulation of aggregates of synaptic vesicles between the endocytic zone and the vesicle cluster, suggesting that vesicle transport was inhibited. Phalloidin, as well as C2 toxin, also caused changes in the structure of clathrin-coated pits in stimulated synapses. Our data provide...

  11. Oxidative stress and alterations in actin cytoskeleton trigger glutathione efflux in Saccharomyces cerevisiae.

    Bradamante, Silvia; Villa, Alessandro; Versari, Silvia; Barenghi, Livia; Orlandi, Ivan; Vai, Marina

    2010-12-01

    A marked deficiency in glutathione (GSH), the most abundant antioxidant in living systems, plays a major role in aging and the pathogenesis of diseases ranging from neurological disorders to early atherosclerosis and the impairment of various immunological functions. In an attempt to shed light on GSH homeostasis, we carried out the space experiment SCORE (Saccharomyces cerevisiae oxidative stress response evaluation) during the FOTON-M3 mission. Microgravity and hyperoxic conditions induced an enormous extracellular release of GSH from S. cerevisiae cells (≈40% w/dw), changed the distribution of the buds, and activated the high osmolarity glycerol (HOG) and cell integrity/PKC pathways, as well as protein carbonylation. The results from the single spaceflight experiment were validated by a complete set of experiments under conditions of simulated microgravity and indicate that cytoskeletal alterations are mainly responsible for the observed effects. The results of ground experiments in which we induced cytoskeletal modifications by means of treatment with dihydrocytochalasin B (DHCB), a potent inhibitor of actin polymerisation, or (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632), a selective ROCK (Rho-associated coiled-coil forming protein serine/threonine kinase) inhibitor, confirmed the role of actin in GSH efflux. We also found that the GSH release can be inhibited using the potent chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). PMID:20708643

  12. The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton

    Basseres, Eugene; Coppotelli, Giuseppe; Pfirrmann, Thorsten;

    2010-01-01

    Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria monocyto...... findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH-L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria-based drug delivery systems.......Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria...

  13. BLOC-1 Brings Together the Actin and Microtubule Cytoskeletons to Generate Recycling Endosomes.

    Delevoye, Cédric; Heiligenstein, Xavier; Ripoll, Léa; Gilles-Marsens, Floriane; Dennis, Megan K; Linares, Ricardo A; Derman, Laura; Gokhale, Avanti; Morel, Etienne; Faundez, Victor; Marks, Michael S; Raposo, Graça

    2016-01-11

    Recycling endosomes consist of a tubular network that emerges from vacuolar sorting endosomes and diverts cargoes toward the cell surface, the Golgi, or lysosome-related organelles. How recycling tubules are formed remains unknown. We show that recycling endosome biogenesis requires the protein complex BLOC-1. Mutations in BLOC-1 subunits underlie an inherited disorder characterized by albinism, the Hermansky-Pudlak Syndrome, and are associated with schizophrenia risk. We show here that BLOC-1 coordinates the kinesin KIF13A-dependent pulling of endosomal tubules along microtubules to the Annexin A2/actin-dependent stabilization and detachment of recycling tubules. These components cooperate to extend, stabilize and form tubular endosomal carriers that function in cargo recycling and in the biogenesis of pigment granules in melanocytic cells. By shaping recycling endosomal tubules, our data reveal that dysfunction of the BLOC-1-KIF13A-Annexin A2 molecular network underlies the pathophysiology of neurological and pigmentary disorders. PMID:26725201

  14. Effect of the ulcerogenic agents ethanol, acetylsalicylic acid and taurocholate on actin cytoskeleton and cell motility in cultured rat gastric mucosal cells

    Siamak Bidel; Harri Mustonen; Giti Khalighi-Sikaroudi; Eero Lehtonen; Pauli Puolakkainen; Tuula Kiviluoto; Eero Kivilaakso

    2005-01-01

    AIM: To assess the effects of ulcerogenic agents on actin cytoskeleton and cell motility and the contribution of oxidative stress.METHODS: Rat gastric mucosal cell monolayers were cultured on coverslips. The cells were exposed, with or without allopurinol (2 mmol/L), for 15 min to ethanol (10-150 mL/L), ASA (1-20 mmol/L) or taurocholate (1-20 mmol/L), then the cells were processed for actin and vinculin staining. Cell migration after wounding was also measured.RESULTS: Exposure to 10 mL/L ethanol caused divergence of zonula adherens-associated actin bundles of adjacent cells and decreased rate of migration. These actions were opposed by xanthine oxidase inhibitor allopurinol. Exposure to 50 mL/L ethanol induced degradation and divergence of zonula adherens-associated vinculin from adjacent cells,which was, again, partially reverted by allopurinol. With 1 mmol/L ASA actin filaments became shorter and thicker.However, higher concentrations (10, 20 mmol/L) of ASA returned microfilaments thinner and longer, and decreased rate of migration. Zonula adherens-associated actin bundles were moderately distorted with 10 mmol/L ASA and with 10 mmol/L taurocholate. Exposure to taurocholate provoked changes resembling those of ASA. Taurocholate 5-20 mmol/L decreased the rate of migration dose dependently. The effects of ASA and taurocholate were not prevented by allopurinol.CONCLUSION: All ulcerogenic agents decreased the rate of migration dose dependently and induced divergence of zonula adherens-associated actin bundles of adjacent cells.In addition, ethanol and ASA caused degradation of actin cytoskeleton. Oxidative stress seems to underlie ethanol,but not ASA or taurocholate, induced cytoskeletal damage.

  15. p95-APP1 links membrane transport to Rac-mediated reorganization of actin

    Di Cesare, A; Paris, S; Albertinazzi, C;

    2000-01-01

    Motility requires protrusive activity at the cellular edge, where Rho family members regulate actin dynamics. Here we show that p95-APP1 (ArfGAP-putative, Pix-interacting, paxillin-interacting protein 1), a member of the GIT1/PKL family, is part of a complex that interacts with Rac. Wild-type and...

  16. Antiamoebic Activity of Adenophyllum aurantium (L.) Strother and Its Effect on the Actin Cytoskeleton of Entamoeba histolytica

    Herrera-Martínez, Mayra; Hernández-Ramírez, Verónica I.; Hernández-Carlos, Beatriz; Chávez-Munguía, Bibiana; Calderón-Oropeza, Mónica A.; Talamás-Rohana, Patricia

    2016-01-01

    In Mexico, the Adenophyllum aurantium (L.) Strother plant is consumed as an infusion to treat intestinal diseases such as amoebiasis, which is an endemic health problem in Mexico and other countries. However, the effect of A. aurantium on Entamoeba histolytica, the causative agent of amoebiasis, is unknown. An aerial part methanolic extract (AaMeA), a root methanolic extract (AaMeR) and a root ethyl acetate extract (AaEaR) were tested on E. histolytica trophozoites. AaMeA and AaMeR did not show antiproliferative activity; however, AaEaR exhibited an in vitro GI50 of 230 μg/ml, and it was able to inhibit the differentiation of Entamoeba invadens trophozoites into cysts. The intraperitoneal administration of AaEaR (2.5 or 5 mg) to hamsters that were infected with E. histolytica inhibited the development of amoebic liver abscesses in 48.5 or 89.0% of the animals, respectively. Adhesion to fibronectin and erythrophagocytosis were 28.7 and 37.5% inhibited by AaEaR, respectively. An ultrastructure analysis of AaEaR-treated trophozoites shows a decrease in the number of vacuoles but no apparent cell damage. Moreover, this extract affected the actin cytoskeleton structuration, and it prevented the formation of contractile rings by mechanism(s) that were independent of reactive oxygen species and RhoA activation pathways. 13C NMR data showed that the major compounds in the AaEaR extract are thiophenes. Our results suggest that AaEaR may be effective in treatments against amoebiasis, nevertheless, detailed toxicity studies on thiophenes, contained in AaEaR, are required to avoid misuse of this vegetal species. PMID:27445810

  17. Antiamoebic Activity of Adenophyllum aurantium (L.) Strother and Its Effect on the Actin Cytoskeleton of Entamoeba histolytica.

    Herrera-Martínez, Mayra; Hernández-Ramírez, Verónica I; Hernández-Carlos, Beatriz; Chávez-Munguía, Bibiana; Calderón-Oropeza, Mónica A; Talamás-Rohana, Patricia

    2016-01-01

    In Mexico, the Adenophyllum aurantium (L.) Strother plant is consumed as an infusion to treat intestinal diseases such as amoebiasis, which is an endemic health problem in Mexico and other countries. However, the effect of A. aurantium on Entamoeba histolytica, the causative agent of amoebiasis, is unknown. An aerial part methanolic extract (AaMeA), a root methanolic extract (AaMeR) and a root ethyl acetate extract (AaEaR) were tested on E. histolytica trophozoites. AaMeA and AaMeR did not show antiproliferative activity; however, AaEaR exhibited an in vitro GI50 of 230 μg/ml, and it was able to inhibit the differentiation of Entamoeba invadens trophozoites into cysts. The intraperitoneal administration of AaEaR (2.5 or 5 mg) to hamsters that were infected with E. histolytica inhibited the development of amoebic liver abscesses in 48.5 or 89.0% of the animals, respectively. Adhesion to fibronectin and erythrophagocytosis were 28.7 and 37.5% inhibited by AaEaR, respectively. An ultrastructure analysis of AaEaR-treated trophozoites shows a decrease in the number of vacuoles but no apparent cell damage. Moreover, this extract affected the actin cytoskeleton structuration, and it prevented the formation of contractile rings by mechanism(s) that were independent of reactive oxygen species and RhoA activation pathways. (13)C NMR data showed that the major compounds in the AaEaR extract are thiophenes. Our results suggest that AaEaR may be effective in treatments against amoebiasis, nevertheless, detailed toxicity studies on thiophenes, contained in AaEaR, are required to avoid misuse of this vegetal species. PMID:27445810

  18. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  19. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  20. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  1. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric).

    Schrey, Silvia D; Salo, Vanamo; Raudaskoski, Marjatta; Hampp, Rüdiger; Nehls, Uwe; Tarkka, Mika T

    2007-08-01

    The actin cytoskeleton (AC) of fungal hyphae is a major determinant of hyphal shape and morphogenesis, implicated in controlling tip structure and secretory vesicle delivery. Hyphal growth of the ectomycorrhizal fungus Amanita muscaria and symbiosis formation with spruce are promoted by the mycorrhiza helper bacterium Streptomyces sp. AcH 505 (AcH 505). To investigate structural requirements of growth promotion, the effect of AcH 505 on A. muscaria hyphal morphology, AC and actin gene expression were studied. Hyphal diameter and mycelial density decreased during dual culture (DC), and indirect immunofluorescence microscopy revealed that the dense and polarised actin cap in hyphal tips of axenic A. muscaria changes to a loosened and dispersed structure in DC. Supplementation of growth medium with cell-free bacterial supernatant confirmed that reduction in hyphal diameter and AC changes occurred at the same stage of growth. Transcript levels of both actin genes isolated from A. muscaria remained unaltered, indicating that AC changes are regulated by reorganisation of the existing actin pool. In conclusion, the AC reorganisation appears to result in altered hyphal morphology and faster apical extension. The thus improved spreading of hyphae and increased probability to encounter plant roots highlights a mechanism behind the mycorrhiza helper effect. PMID:17632722

  2. The geodiamolide H, derived from Brazilian sponge Geodia corticostylifera, regulates actin cytoskeleton, migration and invasion of breast cancer cells cultured in three-dimensional environment.

    Freitas, Vanessa M; Rangel, Marisa; Bisson, Letícia F; Jaeger, Ruy G; Machado-Santelli, Gláucia M

    2008-09-01

    We are investigating effects of the depsipeptide geodiamolide H, isolated from the Brazilian sponge Geodia corticostylifera, on cancer cell lines grown in 3D environment. As shown previously geodiamolide H disrupts actin cytoskeleton in both sea urchin eggs and breast cancer cell monolayers. We used a normal mammary epithelial cell line MCF 10A that in 3D assay results formation of polarized spheroids. We also used cell lines derived from breast tumors with different degrees of differentiation: MCF7 positive for estrogen receptor and the Hs578T, negative for hormone receptors. Cells were placed on top of Matrigel. Spheroids obtained from these cultures were treated with geodiamolide H. Control and treated samples were analyzed by light and confocal microscopy. Geodiamolide H dramatically affected the poorly differentiated and aggressive Hs578T cell line. The peptide reverted Hs578T malignant phenotype to polarized spheroid-like structures. MCF7 cells treated by geodiamolide H exhibited polarization compared to controls. Geodiamolide H induced striking phenotypic modifications in Hs578T cell line and disruption of actin cytoskeleton. We investigated effects of geodiamolide H on migration and invasion of Hs578T cells. Time-lapse microscopy showed that the peptide inhibited migration of these cells in a dose-dependent manner. Furthermore invasion assays revealed that geodiamolide H induced a 30% decrease on invasive behavior of Hs578T cells. Our results suggest that geodiamolide H inhibits migration and invasion of Hs578T cells probably through modifications in actin cytoskeleton. The fact that normal cell lines were not affected by treatment with geodiamolide H stimulates new studies towards therapeutic use for this peptide. PMID:18330887

  3. Apical Invasion of Intestinal Epithelial Cells by Salmonella typhimurium Requires Villin to Remodel the Brush Border Actin Cytoskeleton

    Lhocine, Nouara; Arena, Ellen T.; Bomme, Perrine; Ubelmann, Florent; Prévost, Marie-Christine; Robine, Sylvie; Sansonetti, Philippe J.

    2015-01-01

    Summary Salmonella invasion of intestinal epithelial cells requires extensive, though transient, actin modifications at the site of bacterial entry. The actin-modifying protein villin is present in the brush border where it participates in the constitution of microvilli and in epithelial restitution after damage through its actin-severing activity. We investigated a possible role for villin in Salmonella invasion. The absence of villin, which is normally located at the bacterial entry site, l...

  4. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin.

    Barak, L S; Yocum, R R; Nothnagel, E A; Webb, W W

    1980-01-01

    An active fluorescent derivative of the actin-binding mushroom toxin phallacidin has been synthesized. Convenient methods were developed to stain actin cytoskeletal structures in living and fixed cultured animal cells and actively streaming algal cells. Actin binding specificity was demonstrated by competitive binding experiments and comparative staining of well-known structures. Large populations of living animal cells in culture were readily stained by using a relatively mild lysolecithin p...

  5. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function

    Kawaguchi, Nobuko; Sundberg, Christina; Kveiborg, Marie;

    2003-01-01

    Changes in cell shape are a morphological hallmark of differentiation. In this study we report that the expression of ADAM12, a disintegrin and metalloprotease, dramatically affects cell morphology in preadipocytes, changing them from a flattened, fibroblastic appearance to a more rounded shape. We...... early adipocyte differentiation....

  6. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells

    Mounier, Joëlle; Popoff, Michel R.; Enninga, Jost; Frame, Margaret C; Sansonetti, Philippe J.; Van Nhieu, Guy Tran

    2009-01-01

    Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial ...

  7. The IpaC Carboxyterminal Effector Domain Mediates Src-Dependent Actin Polymerization during Shigella Invasion of Epithelial Cells

    Mounier, Joëlle; Popoff, Michel R.; Enninga, Jost; Frame, Margaret C; Sansonetti, Philippe J.; Van Nhieu, Guy Tran

    2009-01-01

    Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial ...

  8. Quantitative insights into actin rearrangements and bacterial target site selection fromSalmonella Typhimurium infection of micropatterned cells

    Vonaesch, Pascale; Cardini, Steven; Sellin, Mikael E.; Goud, Bruno; Hardt, Wolf-Dietrich; Schauer, Kristine

    2013-01-01

    Reorganization of the host cell actin cytoskeleton is crucial during pathogen invasion. We established micropatterned cells as a standardized infection model for cell invasion to quantitatively study actin rearrangements triggered by Salmonella Typhimurium (S. Tm). Micropatterns of extracellular matrix proteins force cells to adopt a reproducible shape avoiding strong cell-to-cell variations, a major limitation in classical cell culture conditions. S. Tm induced F-actin-rich ruffles and invad...

  9. Involvement of the actin cytoskeleton and p21rho-family GTPases in the pathogenesis of the human protozoan parasite Entamoeba histolytica

    G.D. Godbold

    1998-08-01

    Full Text Available It has been estimated that infection with the enteric protozoan parasite Entamoeba histolytica kills more than 50,000 people a year. Central to the pathogenesis of this organism is its ability to directly lyse host cells and cause tissue destruction. Amebic lesions show evidence of cell lysis, tissue necrosis, and damage to the extracellular matrix. The specific molecular mechanisms by which these events are initiated, transmitted, and effected are just beginning to be uncovered. In this article we review what is known about host cell adherence and contact-dependent cytolysis. We cover the involvement of the actin cytoskeleton and small GTP-binding proteins of the p21rho-family in the process of cell killing and phagocytosis, and also look at how amebic interactions with molecules of the extracellular matrix contribute to its cytopathic effects.

  10. Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis

    Sekiya-Kawasaki, Mariko; Groen, Aaron Chris; Cope, M. Jamie T.V.; Kaksonen, Marko; Watson, Hadiya A.; Zhang, Chao; Shokat, Kevan M.; Wendland, Beverly; McDonald, Kent L.; McCaffery, J. Michael; Drubin, David G.

    2003-01-01

    We used chemical genetics to control the activity of budding yeast Prk1p, which is a protein kinase that is related to mammalian GAK and AAK1, and which targets several actin regulatory proteins implicated in endocytosis. In vivo Prk1p inhibition blocked pheromone receptor endocytosis, and caused cortical actin patches to rapidly aggregate into large clumps that contained Abp1p, Sla2p, Pan1p, Sla1p, and Ent1p. Clump formation depended on Arp2p, suggesting that this phenotype might result from...

  11. Cellular prion protein is required for neuritogenesis: fine-tuning of multiple signaling pathways involved in focal adhesions and actin cytoskeleton dynamics

    Alleaume-Butaux A

    2013-07-01

    Full Text Available Aurélie Alleaume-Butaux,1,2 Caroline Dakowski,1,2 Mathéa Pietri,1,2 Sophie Mouillet-Richard,1,2 Jean-Marie Launay,3,4 Odile Kellermann,1,2 Benoit Schneider1,2 1INSERM, UMR-S 747, 2Paris Descartes University, Sorbonne Paris Cité, UMR-S 747, 3Public Hospital of Paris, Department of Biochemistry, INSERM UMR-S 942, Lariboisière Hospital, Paris, France; 4Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland Abstract: Neuritogenesis is a dynamic phenomenon associated with neuronal differentiation that allows a rather spherical neuronal stem cell to develop dendrites and axon, a prerequisite for the integration and transmission of signals. The acquisition of neuronal polarity occurs in three steps: (1 neurite sprouting, which consists of the formation of buds emerging from the postmitotic neuronal soma; (2 neurite outgrowth, which represents the conversion of buds into neurites, their elongation and evolution into axon or dendrites; and (3 the stability and plasticity of neuronal polarity. In neuronal stem cells, remodeling and activation of focal adhesions (FAs associated with deep modifications of the actin cytoskeleton is a prerequisite for neurite sprouting and subsequent neurite outgrowth. A multiple set of growth factors and interactors located in the extracellular matrix and the plasma membrane orchestrate neuritogenesis by acting on intracellular signaling effectors, notably small G proteins such as RhoA, Rac, and Cdc42, which are involved in actin turnover and the dynamics of FAs. The cellular prion protein (PrPC, a glycosylphosphatidylinositol (GPI-anchored membrane protein mainly known for its role in a group of fatal neurodegenerative diseases, has emerged as a central player in neuritogenesis. Here, we review the contribution of PrPC to neuronal polarization and detail the current knowledge on the signaling pathways fine-tuned by PrPC to promote neurite sprouting, outgrowth, and maintenance. We emphasize that Pr

  12. Yersinia outer protein YopE affects the actin cytoskeleton in Dictyostelium discoideum through targeting of multiple Rho family GTPases

    Vlahou, Georgia

    2009-07-14

    Abstract Background All human pathogenic Yersinia species share a virulence-associated type III secretion system that translocates Yersinia effector proteins into host cells to counteract infection-induced signaling responses and prevent phagocytosis. Dictyostelium discoideum has been recently used to study the effects of bacterial virulence factors produced by internalized pathogens. In this study we explored the potential of Dictyostelium as model organism for analyzing the effects of ectopically expressed Yersinia outer proteins (Yops). Results The Yersinia pseudotuberculosis virulence factors YopE, YopH, YopM and YopJ were expressed de novo within Dictyostelium and their effects on growth in axenic medium and on bacterial lawns were analyzed. No severe effect was observed for YopH, YopJ and YopM, but expression of YopE, which is a GTPase activating protein for Rho GTPases, was found to be highly detrimental. GFP-tagged YopE expressing cells had less conspicuous cortical actin accumulation and decreased amounts of F-actin. The actin polymerization response upon cAMP stimulation was impaired, although chemotaxis was unaffected. YopE also caused reduced uptake of yeast particles. These alterations are probably due to impaired Rac1 activation. We also found that YopE predominantly associates with intracellular membranes including the Golgi apparatus and inhibits the function of moderately overexpressed RacH. Conclusion The phenotype elicited by YopE in Dictyostelium can be explained, at least in part, by inactivation of one or more Rho family GTPases. It further demonstrates that the social amoeba Dictyostelium discoideum can be used as an efficient and easy-to-handle model organism in order to analyze the function of a translocated GAP protein of a human pathogen.

  13. Yersinia outer protein YopE affects the actin cytoskeleton in Dictyostelium discoideum through targeting of multiple Rho family GTPases

    Rivero Francisco

    2009-07-01

    Full Text Available Abstract Background All human pathogenic Yersinia species share a virulence-associated type III secretion system that translocates Yersinia effector proteins into host cells to counteract infection-induced signaling responses and prevent phagocytosis. Dictyostelium discoideum has been recently used to study the effects of bacterial virulence factors produced by internalized pathogens. In this study we explored the potential of Dictyostelium as model organism for analyzing the effects of ectopically expressed Yersinia outer proteins (Yops. Results The Yersinia pseudotuberculosis virulence factors YopE, YopH, YopM and YopJ were expressed de novo within Dictyostelium and their effects on growth in axenic medium and on bacterial lawns were analyzed. No severe effect was observed for YopH, YopJ and YopM, but expression of YopE, which is a GTPase activating protein for Rho GTPases, was found to be highly detrimental. GFP-tagged YopE expressing cells had less conspicuous cortical actin accumulation and decreased amounts of F-actin. The actin polymerization response upon cAMP stimulation was impaired, although chemotaxis was unaffected. YopE also caused reduced uptake of yeast particles. These alterations are probably due to impaired Rac1 activation. We also found that YopE predominantly associates with intracellular membranes including the Golgi apparatus and inhibits the function of moderately overexpressed RacH. Conclusion The phenotype elicited by YopE in Dictyostelium can be explained, at least in part, by inactivation of one or more Rho family GTPases. It further demonstrates that the social amoeba Dictyostelium discoideum can be used as an efficient and easy-to-handle model organism in order to analyze the function of a translocated GAP protein of a human pathogen.

  14. The Role of the Actin Cytoskeleton and Lipid Rafts in the Localization and Function of the ABCC1 Transporter

    Jan Willem Kok

    2014-01-01

    Full Text Available ATP-binding cassette (ABC transporters are known to be important factors in multidrug resistance of tumor cells. Lipid rafts have been implicated in their localization in the plasma membrane, where they function as drug efflux pumps. This specific localization in rafts may support the activity of ABC/Abc transporters. This raises questions regarding the nature and composition of the lipid rafts that harbor ABC/Abc transporters and the dependence of ABC/Abc transporters—concerning their localization and activity—on lipid raft constituents. Here we review our work of the past 10 years aimed at evaluating whether ABC/Abc transporters are dependent on a particular membrane environment for their function. What is the nature of this membrane environment and which of the lipid raft constituents are important for this dependency? It turns out that cortical actin is of major importance for stabilizing the localization and function of the ABC/Abc transporter, provided it is localized in an actin-dependent subtype of lipid rafts, as is the case for human ABCC1/multidrug resistance-related protein 1 (MRP1 and rodent Abcc1/Mrp1 but not human ABCB1/P-glycoprotein (PGP. On the other hand, sphingolipids do not appear to be modulators of ABCC1/MRP1 (or Abcc1/Mrp1, even though they are coregulated during drug resistance development.

  15. Reciprocal regulation of actin cytoskeleton remodelling and cell migration by Ca2+ and Zn2+: role of TRPM2 channels.

    Li, Fangfang; Abuarab, Nada; Sivaprasadarao, Asipu

    2016-05-15

    Cell migration is a fundamental feature of tumour metastasis and angiogenesis. It is regulated by a variety of signalling molecules including H2O2 and Ca(2+) Here, we asked whether the H2O2-sensitive transient receptor potential melastatin 2 (TRPM2) Ca(2+) channel serves as a molecular link between H2O2 and Ca(2+) H2O2-mediated activation of TRPM2 channels induced filopodia formation, loss of actin stress fibres and disassembly of focal adhesions, leading to increased migration of HeLa and prostate cancer (PC)-3 cells. Activation of TRPM2 channels, however, caused intracellular release of not only Ca(2+) but also of Zn(2+) Intriguingly, elevation of intracellular Zn(2+) faithfully reproduced all of the effects of H2O2, whereas Ca(2+) showed opposite effects. Interestingly, H2O2 caused increased trafficking of Zn(2+)-enriched lysosomes to the leading edge of migrating cells, presumably to impart polarisation of Zn(2+) location. Thus, our results indicate that a reciprocal interplay between Ca(2+) and Zn(2+) regulates actin remodelling and cell migration; they call for a revision of the current notion that implicates an exclusive role for Ca(2+) in cell migration. PMID:27068538

  16. Hypothyroidism decreases proinsulin gene expression and the attachment of its mRNA and eEF1A protein to the actin cytoskeleton of INS-1E cells

    F. Goulart-Silva

    2011-10-01

    Full Text Available The actions of thyroid hormone (TH on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a proinsulin mRNA expression, b proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c actin cytoskeleton arrangement, and d proinsulin mRNA poly(A tail length modulation in INS-1E cells cultured in different media containing: i normal fetal bovine serum - FBS (control; ii normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii FBS depleted of TH for 24 h (Tx. A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.

  17. Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined slit.

    Spuul, Pirjo; Chi, Pei-Yin; Billottet, Clotilde; Chou, Chia-Fu; Génot, Elisabeth

    2016-02-01

    The study of cell behavior in constricted environment is particularly relevant to our understanding of the mechanisms of cell invasion. In this regard, microfluidic systems offer promising platforms as microfabricated fluidic chips provide well-controlled physical, chemical and confined environments to study cell phenotype and behavior. Here, we report a fast and effective manufacturing process of user-friendly microfluidic chips ideally suited for quantitative live cell analysis in combination with immunofluorescence microscopy. The chip body, made of polydimethylsiloxane, is composed of two incubation chambers connected by one rectangular intermediate entry channel which provides access to a series of transversal slits where the observation can be made. The height of the slit is designed to be slightly smaller than that of the cells under study. To validate the chip performance, we analyzed the reorganization of the cytoskeleton of endothelial cells under various degree of spatial confinement. We illustrate how the constricted environment affects endothelial cell behavior in inducing the formation of podosomes. Moreover, the process was stimulated further when the surface of the slit was coated with a thin layer of fibronectin. The study demonstrates the suitability of this technological process for cost-effective fabrication of custom-made single-use chips for biological applications. PMID:26342258

  18. Hypothyroidism decreases proinsulin gene expression and the attachment of its mRNA and eEF1A protein to the actin cytoskeleton of INS-1E cells

    Goulart-Silva, F.; C. Serrano-Nascimento; Nunes, M.T.

    2011-01-01

    The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cyto...

  19. Role of actin in auxin transport and transduction of gravity

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  20. Actin, RhoA, and Rab11 Participation during Encystment in Entamoeba invadens

    M. Herrera-Martínez

    2013-01-01

    Full Text Available In the genus Entamoeba, actin reorganization is necessary for cyst differentiation; however, its role is still unknown. The aim of this work was to investigate the role of actin and encystation-related proteins during Entamoeba invadens encystation. Studied proteins were actin, RhoA, a small GTPase involved through its effectors in the rearrangement of the actin cytoskeleton; Rab11, a protein involved in the transport of encystation vesicles; and enolase, as an encystment vesicles marker. Results showed a high level of polymerized actin accompanied by increased levels of RhoA-GTP during cell rounding and loss of vacuoles. Cytochalasin D, an actin polymerization inhibitor, and Y27632, an inhibitor of RhoA activity, reduced encystment in 80%. These inhibitors also blocked cell rounding, disposal of vacuoles, and the proper formation of the cysts wall. At later times, F-actin and Rab11 colocalized with enolase, suggesting that Rab11 could participate in the transport of the cyst wall components through the F-actin cytoskeleton. These results suggest that actin cytoskeleton rearrangement is playing a decisive role in determining cell morphology changes and helping with the transport of cell wall components to the cell surface during encystment of E. invadens.

  1. Natural transformation occurs independently of the essential actin-like MreB cytoskeleton in Legionella pneumophila

    Juan, Pierre-Alexandre; Attaiech, Laetitia; Charpentier, Xavier

    2015-01-01

    Natural transformation is the process by which bacteria can actively take up and integrate exogenous DNA thereby providing a source of genetic diversity. Under specific growth conditions the coordinated expression of several genes – a situation referred to as “competence” – allows bacteria to assemble a highly processive and dedicated system that can import high molecular weight DNA. Within the cell these large imported DNA molecules are protected from degradation and brought to the chromosome for recombination. Here, we report elevated expression of mreB during competence in the Gram-negative pathogen Legionella pneumophila. Interestingly a similar observation had previously been reported in the distantly-related Gram-positive organism Bacillus subtilis. MreB is often viewed as the bacterial actin homolog contributing to bacterial morphogenesis by coordinating peptidoglycan-synthesising complexes. In addition MreB is increasingly found to be involved in a growing number of processes including chromosome segregation and motor-driven motility. Using genetic and pharmacological approaches, we examined the possible role of MreB during natural transformation in L. pneumophila. Our data show that natural transformation does not require MreB dynamics and exclude a direct role of MreB filaments in the transport of foreign DNA and its recombination in the chromosome. PMID:26526572

  2. p140Cap regulates memory and synaptic plasticity through Src-mediated and citron-N-mediated actin reorganization.

    Repetto, Daniele; Camera, Paola; Melani, Riccardo; Morello, Noemi; Russo, Isabella; Calcagno, Eleonora; Tomasoni, Romana; Bianchi, Federico; Berto, Gaia; Giustetto, Maurizio; Berardi, Nicoletta; Pizzorusso, Tommaso; Matteoli, Michela; Di Stefano, Paola; Missler, Markus; Turco, Emilia; Di Cunto, Ferdinando; Defilippi, Paola

    2014-01-22

    A major challenge in the neuroscience field is the identification of molecules and pathways that control synaptic plasticity and memory. Dendritic spines play a pivotal role in these processes, as the major sites of excitatory synapses in neuronal communication. Previous studies have shown that the scaffold protein p140Cap localizes into dendritic spines and that its knockdown negatively modulates spine shape in culture. However, so far, there is no information on its in vivo relevance. By using a knock-out mouse model, we here demonstrate that p140Cap is a key element for both learning and synaptic plasticity. Indeed, p140Cap(-/-) mice are impaired in object recognition test, as well as in LTP and in LTD measurements. The in vivo effects of p140Cap loss are presumably attenuated by noncell-autonomous events, since primary neurons obtained from p140Cap(-/-) mice show a strong reduction in number of mushroom spines and abnormal organization of synapse-associated F-actin. These phenotypes are most likely caused by a local reduction of the inhibitory control of RhoA and of cortactin toward the actin-depolymerizing factor cofilin. These events can be controlled by p140Cap through its capability to directly inhibit the activation of Src kinase and by its binding to the scaffold protein Citron-N. Altogether, our results provide new insight into how protein associated with dynamic microtubules may regulate spine actin organization through interaction with postsynaptic density components. PMID:24453341

  3. Deregulation of the actin cytoskeleton and macropinocytosis in response to phorbol ester by the mutant protein kinase C gamma that causes spinocerebellar ataxia type 14

    Kazuhiro eYamamoto

    2014-04-01

    Full Text Available Several missense mutations in the protein kinase Cγ (γPKC gene have been found to cause spinocerebellar ataxia type 14 (SCA14, an autosomal dominant neurodegenerative disease. γPKC is a neuron-specific member of the classical PKCs and is activated and translocated to subcellular regions as a result of various stimuli, including diacylglycerol synthesis, increased intracellular Ca2+ and phorbol esters. We investigated whether SCA14 mutations affect the γPKC-related functions by stimulating HeLa cells with TPA (12-O-tetradecanoylpholbol 13-acetate, a type of phorbol ester. Wild-type (WT γPKC-GFP was translocated to the plasma membrane within 10 min of TPA stimulation, followed by its perinuclear translocation and cell shrinkage, in a PKC kinase activity- and microtubule-dependent manner. On the other hand, although SCA14 mutant γPKC-GFP exhibited a similar translocation to the plasma membrane, the subsequent perinuclear translocation and cell shrinkage were significantly impaired in response to TPA. Translocated WT γPKC colocalized with F-actin and formed large vesicular structures in the perinuclear region. The uptake of FITC-dextran, a marker of macropinocytosis, was promoted by TPA stimulation in cells expressing WT γPKC, and FITC-dextran was surrounded by γPKC-positive vesicles. Moreover, TPA induced the phosphorylation of MARCKS, which is a membrane-substrate of PKC, resulting in the translocation of phosphorylated MARCKS to the perinuclear region, suggesting that TPA induces macropinocytosis via γPKC activation. However, TPA failed to activate macropinocytosis and trigger the translocation of phosphorylated MARCKS in cells expressing the SCA14 mutant γPKC. These findings suggest that γPKC is involved in the regulation of the actin cytoskeleton and macropinocytosis in HeLa cells, while SCA14 mutant γPKC fails to regulate these processes due to its reduced kinase activity at the plasma membrane. This property might be involved in

  4. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L. (Queensland); (Aust. Synch.)

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  5. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments

  6. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    Kraning-Rush, Casey M.; Carey, Shawn P.; Califano, Joseph P.; Smith, Brooke N.; Reinhart-King, Cynthia A.

    2011-02-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.

  7. Cytoskeleton dynamics: Fluctuations within the network

    Out-of-equilibrium systems, such as the dynamics of a living cytoskeleton (CSK), are inherently noisy with fluctuations arising from the stochastic nature of the underlying biochemical and molecular events. Recently, such fluctuations within the cell were characterized by observing spontaneous nano-scale motions of an RGD-coated microbead bound to the cell surface [Bursac et al., Nat. Mater. 4 (2005) 557-561]. While these reported anomalous bead motions represent a molecular level reorganization (remodeling) of microstructures in contact with the bead, a precise nature of these cytoskeletal constituents and forces that drive their remodeling dynamics are largely unclear. Here, we focused upon spontaneous motions of an RGD-coated bead and, in particular, assessed to what extent these motions are attributable to (i) bulk cell movement (cell crawling), (ii) dynamics of focal adhesions, (iii) dynamics of lipid membrane, and/or (iv) dynamics of the underlying actin CSK driven by myosin motors

  8. Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response

    Thirone, Ana C P; Speight, Pam; Zulys, Matthew;

    2009-01-01

    treatment. Inhibition of cofilin phosphorylation by Y-27632 prevented the hyperosmolarity-provoked F-actin increase. Taken together, cofilin is necessary for maintaining the osmotic responsiveness of the cytoskeleton in tubular cells, and the Rho/ROCK/LIMK-mediated cofilin phosphorylation is a key mechanism......Hyperosmotic stress induces cytoskeleton reorganization and a net increase in cellular F-actin, but the underlying mechanisms are incompletely understood. While de novo F-actin polymerization likely contributes to the actin response, the role of F-actin severing is unknown. To address this problem...... cofilin. Here we show that hyperosmolarity induced rapid, sustained and reversible phosphorylation of cofilin in kidney tubular (LLC-PK1 and MDCK) cells. Hyperosmolarity-provoked cofilin phosphorylation was mediated by the Rho/Rho kinase (ROCK)/LIM Kinase (LIMK) but not the Rac/PAK/LIMK pathway, because a...

  9. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis.

    Bhat, Sehar Saleem; Parray, Arif Ali; Mushtaq, Umar; Fazili, Khalid Majid; Khanday, Firdous Ahmad

    2016-06-01

    Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis. PMID:27048259

  10. Dynamics of active actin networks

    Koehler, Simone

    2014-03-01

    Local mechanical and structural properties of a eukaryotic cell are determined by its cytoskeleton. To adapt to their environment, cells rely on constant self-organized rearrangement processes of their actin cytoskeleton. To shed light on the principles underlying these dynamic self-organization processes we investigate a minimal reconstituted active system consisting of actin filaments, crosslinking molecules and molecular motor filaments. Using quantitative fluorescence microscopy and image analysis, we show, that these minimal model systems exhibit a generic structure formation mechanism. The competition between force generation by molecular motors and the stabilization of the network by crosslinking proteins results in a highly dynamic reorganization process which is characterized by anomalous transport dynamics with a superdiffusive behavior also found in intracellular dynamics. In vitro, these dynamics are governed by chemical and physical parameters that alter the balance of motor and crosslinking proteins, such as pH. These findings can be expected to have broad implications in our understanding of cytoskeletal regulation in vivo.

  11. The role of actin networks in cellular mechanosensing

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  12. Characterization of engineered actin binding proteins that control filament assembly and structure.

    Crista M Brawley

    Full Text Available BACKGROUND: Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate. METHODOLOGY/PRINCIPAL FINDINGS: We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs, are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively. CONCLUSIONS/SIGNIFICANCE: From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly.

  13. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation

    Barres, Romain; Grémeaux, Thierry; Gual, Philippe;

    2006-01-01

    and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin......APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays...

  14. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  15. Identification of Dynamic Changes in Proteins Associated with the Cellular Cytoskeleton after Exposure to Okadaic Acid

    Peter Roepstorff

    2013-05-01

    Full Text Available Exposure of cells to the diarrhetic shellfish poison, okadaic acid, leads to a dramatic reorganization of cytoskeletal architecture and loss of cell-cell contact. When cells are exposed to high concentrations of okadaic acid (100–500 nM, the morphological rearrangement is followed by apoptotic cell death. Okadaic acid inhibits the broad acting Ser/Thr protein phosphatases 1 and 2A, which results in hyperphosphorylation of a large number of proteins. Some of these hyperphosphorylated proteins are most likely key players in the reorganization of the cell morphology induced by okadaic acid. We wanted to identify these phosphoproteins and searched for them in the cellular lipid rafts, which have been found to contain proteins that regulate cytoskeletal dynamics and cell adhesion. By using stable isotope labeling by amino acids in cell culture cells treated with okadaic acid (400 nM could be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton, microtubules and cell adhesion structures. A large number of these okadaic acid-regulated proteins have previously also been shown to be similarly regulated prior to cell proliferation and migration. Our results suggest that okadaic acid activates general cell signaling pathways that induce breakdown of the cortical actin cytoskeleton and cell detachment.

  16. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    Rasmussen Izabela

    2010-09-01

    Full Text Available Abstract Background Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton. Results Here, we in addition to toxins use conditional expression of the major actin regulatory protein LIM kinase-1 (LIMK1, and shRNA knock-down of cofilin to modulate the cellular F/G-actin ratio in the Ra2 microglia cell line, and we use Fluorescence Recovery after Photobleaching (FRAP in β-actin-YFP-transduced cells to obtain a dynamic measure of actin recovery rates (actin turn-over rates in different F/G-actin states of the actin cytoskeleton. Our data demonstrate that stimulated NADPH oxidase function was severely impaired only at extreme actin recovery rates and F/G-actin ratios, and surprisingly, that any moderate changes of these parameters of the actin cytoskeleton invariably resulted in an increased NADPH oxidase activity. Conclusion moderate actin polymerization and depolymerization both increase the FMLP and PMA-stimulated NADPH oxidase activity of microglia, which is directly correlated with neither actin recovery rate nor F/G- actin ratio. Our results indicate that NADPH oxidase functions in an enhanced state of activity in stimulated phagocytes despite widely different states of the actin cytoskeleton.

  17. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways

    Bosse, Tanja; Ehinger, Julia; Czuchra, Aleksandra;

    2007-01-01

    Activation of c-Met, the hepatocyte growth factor (HGF)/scatter factor receptor induces reorganization of the actin cytoskeleton, which drives epithelial cell scattering and motility and is exploited by pathogenic Listeria monocytogenes to invade nonepithelial cells. However, the precise...... required the simultaneous inactivation of both Cdc42 and PI3-kinase signaling. Moreover, Cdc42 activation was fully independent of PI3-kinase activity, whereas the latter partly depended on Cdc42. Finally, Cdc42 function did not require its interaction with the actin nucleation-promoting factor N...

  18. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesi...

  19. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd2+-associated cytoskeletal reorganization. Low concentrations of Cd2+ (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd2+-dependent effect, as only Cd2+ concentrations above 2 μM were sufficient to increase ROS. However, low [Cd2+] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd2+ exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd2+ concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations. • Glutathionylation requires glutathione synthesis but is

  20. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    Choong, Grace; Liu, Ying; Xiao, Weiqun; Templeton, Douglas M., E-mail: doug.templeton@utoronto.ca

    2013-10-15

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd{sup 2+}-associated cytoskeletal reorganization. Low concentrations of Cd{sup 2+} (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd{sup 2+}-dependent effect, as only Cd{sup 2+} concentrations above 2 μM were sufficient to increase ROS. However, low [Cd{sup 2+}] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd{sup 2+} exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd{sup 2+} concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations.

  1. LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells

    Salker, Madhuri S.; Schierbaum, Nicolas; Alowayed, Nour; Singh, Yogesh; Mack, Andreas F.; Stournaras, Christos; Schäffer, Tilman E.; Lang, Florian

    2016-01-01

    LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage. PMID:27404958

  2. aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition.

    Eno, Celeste; Solanki, Bharti; Pelegri, Francisco

    2016-05-01

    Embryos from females homozygous for a recessive maternal-effect mutation in the gene aura exhibit defects including reduced cortical integrity, defective cortical granule (CG) release upon egg activation, failure to complete cytokinesis, and abnormal cell wound healing. We show that the cytokinesis defects are associated with aberrant cytoskeletal reorganization during furrow maturation, including abnormal F-actin enrichment and microtubule reorganization. Cortical F-actin prior to furrow formation fails to exhibit a normal transition into F-actin-rich arcs, and drug inhibition is consistent with aura function promoting F-actin polymerization and/or stabilization. In mutants, components of exocytic and endocytic vesicles, such as Vamp2, Clathrin and Dynamin, are sequestered in unreleased CGs, indicating a need for CG recycling in the normal redistribution of these factors. However, the exocytic targeting factor Rab11 is recruited to the furrow plane normally at the tip of bundling microtubules, suggesting an alternative anchoring mechanism independent of membrane recycling. A positional cloning approach indicates that the mutation in aura is associated with a truncation of Mid1 interacting protein 1 like (Mid1ip1l), previously identified as an interactor of the X-linked Opitz G/BBB syndrome gene product Mid1. A Cas9/CRISPR-induced mutant allele in mid1ip1l fails to complement the originally isolated aura maternal-effect mutation, confirming gene assignment. Mid1ip1l protein localizes to cortical F-actin aggregates, consistent with a direct role in cytoskeletal regulation. Our studies indicate that maternally provided aura (mid1ip1l) acts during the reorganization of the cytoskeleton at the egg-to-embryo transition and highlight the importance of cytoskeletal dynamics and membrane recycling during this developmental period. PMID:26965374

  3. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    Wang, Daojing; Huang, Jing; Hu, Zhi

    2011-11-15

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.

  4. Gem GTPase acts upstream Gmip/RhoA to regulate cortical actin remodeling and spindle positioning during early mitosis.

    Andrieu, Guillaume; Quaranta, Muriel; Leprince, Corinne; Cuvillier, Olivier; Hatzoglou, Anastassia

    2014-11-01

    Gem is a small guanosine triphosphate (GTP)-binding protein within the Ras superfamily, involved in the regulation of voltage-gated calcium channel activity and cytoskeleton reorganization. Gem overexpression leads to stress fiber disruption, actin and cell shape remodeling and neurite elongation in interphase cells. In this study, we show that Gem plays a crucial role in the regulation of cortical actin cytoskeleton that undergoes active remodeling during mitosis. Ectopic expression of Gem leads to cortical actin disruption and spindle mispositioning during metaphase. The regulation of spindle positioning by Gem involves its downstream effector Gmip. Knockdown of Gmip rescued Gem-induced spindle phenotype, although both Gem and Gmip accumulated at the cell cortex. In addition, we implicated RhoA GTPase as an important effector of Gem/Gmip signaling. Inactivation of RhoA by overexpressing dominant-negative mutant prevented normal spindle positioning. Introduction of active RhoA rescued the actin and spindle positioning defects caused by Gem or Gmip overexpression. These findings demonstrate a new role of Gem/Gmip/RhoA signaling in cortical actin regulation during early mitotic stages. PMID:25173885

  5. Dispersion relations of cytoskeleton dynamics

    Wang R

    2016-01-01

    Full Text Available Ru Wang,1,2 Lei Lei,3 Shamira Sridharan,1,3 Yingxiao Wang,3 Alex J Levine,4,5 Gabriel Popescu,1,3,6 1Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, 2Department of Mechanical Science and Engineering, 3Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 4Department of Chemistry and Biochemistry, 5Department of Physics and Astronomy, University of California, Los Angeles, CA, 6Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA Abstract: While it is well known that the cytoskeleton plays a fundamental role in maintaining cell shape, performing cell division, and intracellular transport, its spatiotemporal dynamics are insufficiently understood. The dispersion relation, which is fundamental for understanding the connection between spatial and temporal scales of a dynamic system, was employed here for the first time to study the activity of actin and microtubules. Using green fluorescence protein for time-lapse imaging of the cytoskeleton, we showed that the dispersion relation can distinguish between diffusive and active transport of actin and microtubule filaments. Our analysis revealed that along the filaments, the transport was deterministic, as one might expect as the result of the active polymerization process, while across the filaments diffusion was dominant. Furthermore, using drugs to block the polymerization–depolymerization of both actin and microtubules, we measured that the transport immediately became diffusive, as expected. However, unexpectedly, our results indicated that within a few minutes from blocking its polymerization, actin recovered an active transport component. This deterministic component vanished upon treatment with nocodazole, indicating that fragments of actin were actively transported along microtubules. Because it provides information over broad temporal and spatial scales

  6. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    Rasmussen Izabela; Pedersen Line H; Byg Luise; Suzuki Kazuhiro; Sumimoto Hideki; Vilhardt Frederik

    2010-01-01

    Abstract Background Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton. Results Here, we in addition to toxins use conditional expression of the ma...

  7. Tubulin and actin interplay at the T cell and Antigen-presenting cell interface

    Noa B Martín-Cófreces

    2011-07-01

    Full Text Available T cells reorganize their actin and tubulin-based cytoskeletons to provide a physical basis to the immune synapse. However, growing evidence shows that their roles on T cell activation are more dynamic than merely serving as tracks or scaffold for different molecules. The cross-talk between both skeletons may be important for the formation and movement of the lamella at the IS by increasing the adhesion of the T cell to the APC, thus favoring the transport of components towards the plasma membrane and in turn regulating the T-APC intercellular communication. Microtubules and F-actin appear to be essential for the transport of the different signaling microclusters along the membrane, therefore facilitating the propagation of the signal. Finally, they can also be important for regulating the endocytosis, recycling and degradation of the TCR signaling machinery, thus helping both to sustain the activated state and to switch it off.

  8. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  9. Sla1p Is a Functionally Modular Component of the Yeast Cortical Actin Cytoskeleton Required for Correct Localization of Both Rho1p-GTPase and Sla2p, a Protein with Talin Homology

    Ayscough, Kathryn R.; Eby, Jennifer J.; Lila, Thomas; Dewar, Hilary; Kozminski, Keith G.; Drubin, David G.

    1999-01-01

    SLA1 was identified previously in budding yeast in a genetic screen for mutations that caused a requirement for the actin-binding protein Abp1p and was shown to be required for normal cortical actin patch structure and organization. Here, we show that Sla1p, like Abp1p, localizes to cortical actin patches. Furthermore, Sla1p is required for the correct localization of Sla2p, an actin-binding protein with homology to talin implicated in endocytosis, and the Rho1p-GTPase, which is associated wi...

  10. Subcortical cytoskeleton periodicity throughout the nervous system.

    D'Este, Elisa; Kamin, Dirk; Velte, Caroline; Göttfert, Fabian; Simons, Mikael; Hell, Stefan W

    2016-01-01

    Superresolution fluorescence microscopy recently revealed a ~190 nm periodic cytoskeleton lattice consisting of actin, spectrin, and other proteins underneath the membrane of cultured hippocampal neurons. Whether the periodic cytoskeleton lattice is a structural feature of all neurons and how it is modified when axons are ensheathed by myelin forming glial cells is not known. Here, STED nanoscopy is used to demonstrate that this structure is a commonplace of virtually all neuron types in vitro. To check how the subcortical meshwork is modified during myelination, we studied sciatic nerve fibers from adult mice. Periodicity of both actin and spectrin was uncovered at the internodes, indicating no substantial differences between unmyelinated and myelinated axons. Remarkably, the actin/spectrin pattern was also detected in glial cells such as cultured oligodendrocyte precursor cells. Altogether our work shows that the periodic subcortical cytoskeletal meshwork is a fundamental characteristic of cells in the nervous system and is not a distinctive feature of neurons, as previously thought. PMID:26947559

  11. A spatiotemporal characterization method for the dynamic cytoskeleton.

    Alhussein, Ghada; Shanti, Aya; Farhat, Ilyas A H; Timraz, Sara B H; Alwahab, Noaf S A; Pearson, Yanthe E; Martin, Matthew N; Christoforou, Nicolas; Teo, Jeremy C M

    2016-05-01

    The significant gap between quantitative and qualitative understanding of cytoskeletal function is a pressing problem; microscopy and labeling techniques have improved qualitative investigations of localized cytoskeleton behavior, whereas quantitative analyses of whole cell cytoskeleton networks remain challenging. Here we present a method that accurately quantifies cytoskeleton dynamics. Our approach digitally subdivides cytoskeleton images using interrogation windows, within which box-counting is used to infer a fractal dimension (Df ) to characterize spatial arrangement, and gray value intensity (GVI) to determine actin density. A partitioning algorithm further obtains cytoskeleton characteristics from the perinuclear, cytosolic, and periphery cellular regions. We validated our measurement approach on Cytochalasin-treated cells using transgenically modified dermal fibroblast cells expressing fluorescent actin cytoskeletons. This method differentiates between normal and chemically disrupted actin networks, and quantifies rates of cytoskeletal degradation. Furthermore, GVI distributions were found to be inversely proportional to Df , having several biophysical implications for cytoskeleton formation/degradation. We additionally demonstrated detection sensitivity of differences in Df and GVI for cells seeded on substrates with varying degrees of stiffness, and coated with different attachment proteins. This general approach can be further implemented to gain insights on dynamic growth, disruption, and structure of the cytoskeleton (and other complex biological morphology) due to biological, chemical, or physical stimuli. © 2016 Wiley Periodicals, Inc. PMID:27015595

  12. Nodularin Exposure Induces SOD1 Phosphorylation and Disrupts SOD1 Co-localization with Actin Filaments

    Kari E. Fladmark

    2012-12-01

    Full Text Available Apoptotic cell death is induced in primary hepatocytes by the Ser/Thr protein phosphatase inhibiting cyanobacterial toxin nodularin after only minutes of exposure. Nodularin-induced apoptosis involves a rapid development of reactive oxygen species (ROS, which can be delayed by the Ca2+/calmodulin protein kinase II inhibitor KN93. This apoptosis model provides us with a unique population of highly synchronized dying cells, making it possible to identify low abundant phosphoproteins participating in apoptosis signaling. Here, we show that nodularin induces phosphorylation and possibly also cysteine oxidation of the antioxidant Cu,Zn superoxide dismutase (SOD1, without altering enzymatic SOD1 activity. The observed post-translational modifications of SOD1 could be regulated by Ca2+/calmodulin protein kinase II. In untreated hepatocytes, a high concentration of SOD1 was found in the sub-membranous area, co-localized with the cortical actin cytoskeleton. In the early phase of nodularin exposure, SOD1 was found in high concentration in evenly distributed apoptotic buds. Nodularin induced a rapid reorganization of the actin cytoskeleton and, at the time of polarized budding, SOD1 and actin filaments no longer co-localized.

  13. Actin-dependent mechanisms in AMPA receptor trafficking

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  14. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  15. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility

    Gallo, Gianluca; Yee, Hal F.; Letourneau, Paul C.

    2002-01-01

    Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon ...

  16. Quantitative analyses of the plant cytoskeleton reveal underlying organizational principles

    Breuer, David; Sampathkumar, Arun; Hollandt, Florian; Persson, Staffan; Nikoloski, Zoran

    2015-01-01

    The actin and microtubule cytoskeletons are vital structures for cell growth and development across all species. While individual molecular mechanisms underpinning actin and microtubule dynamics have been intensively studied, principles that govern the cytoskeleton organization remain largely unexplored. Here, we captured biologically relevant characteristics of the plant cytoskeleton through a network-driven imaging-based approach allowing to quantitatively assess dynamic features of the cytoskeleton. By introducing suitable null models, we demonstrate that the plant cytoskeletal networks exhibit properties required for efficient transport, namely, short average path lengths and high robustness. We further show that these advantageous features are maintained during temporal cytoskeletal re-arrangements. Interestingly, man-made transportation networks exhibit similar properties, suggesting general laws of network organization supporting diverse transport processes. The proposed network-driven analysis can be ...

  17. Membrane tension and cytoskeleton organization in cell motility

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity. (topical review)

  18. Actinic Cheilitis

    ... actinic cheilitis. Overview Actinic cheilitis, sometimes known as "farmer's lip" or "sailor's lip," is a precancerous condition ... Last Updated: 22 Dec 2008 Information for other ages: Table of Contents: Overview Who's At Risk Signs ...

  19. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor

    Norris Vic

    2013-02-01

    Full Text Available Abstract Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined.

  20. Packaging of actin into Ebola virus VLPs

    Harty Ronald N

    2005-12-01

    Full Text Available Abstract The actin cytoskeleton has been implicated in playing an important role assembly and budding of several RNA virus families including retroviruses and paramyxoviruses. In this report, we sought to determine whether actin is incorporated into Ebola VLPs, and thus may play a role in assembly and/or budding of Ebola virus. Our results indicated that actin and Ebola virus VP40 strongly co-localized in transfected cells as determined by confocal microscopy. In addition, actin was packaged into budding VP40 VLPs as determined by a functional budding assay and protease protection assay. Co-expression of a membrane-anchored form of Ebola virus GP enhanced the release of both VP40 and actin in VLPs. Lastly, disruption of the actin cytoskeleton with latrunculin-A suggests that actin may play a functional role in budding of VP40/GP VLPs. These data suggest that VP40 may interact with cellular actin, and that actin may play a role in assembly and/or budding of Ebola VLPs.

  1. The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells

    Synek, Lukáš; Sekereš, Juraj; Žárský, Viktor

    2014-01-01

    Roč. 4, JAN 2014 (2014). ISSN 1664-462X R&D Projects: GA ČR GPP501/11/P853 Institutional support: RVO:61389030 Keywords : exocyst * actin cytoskeleton * microtubule cytoskeleton Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.948, year: 2014

  2. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  3. Drilling reorganizes

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  4. Actinic keratosis

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... laser treatment called photodynamic therapy Chemical peels Skin creams such as 5-fluorouracil (5-FU) and imiquimod

  5. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. PMID:27095262

  6. Staining Fission Yeast Filamentous Actin with Fluorescent Phalloidin Conjugates.

    Hagan, Iain M

    2016-01-01

    The Schizosaccharomyces pombe filamentous (F)-actin cytoskeleton drives cell growth, morphogenesis, endocytosis, and cytokinesis. The protocol described here reveals the distribution of F-actin in fixed cells through the use of fluorescently conjugated phalloidin. Simultaneous staining of cell wall landmarks (with calcofluor) and chromatin (with 4',6-diamidino-2-phenylindole, or DAPI) makes this rapid staining procedure highly effective for staging cell cycle progression, monitoring morphogenetic abnormalities, and assessing the impact of environmental and genetic changes on the integrity of the F-actin cytoskeleton. PMID:27250943

  7. Calcium-Actin Waves and Oscillations of Cellular Membranes

    Veksler, Alex; Gov, Nir S.

    2009-01-01

    We propose a mechanism for the formation of membrane oscillations and traveling waves, which arise due to the coupling between the actin cytoskeleton and the calcium flux through the membrane. In our model, the fluid cell membrane has a mobile but constant population of proteins with a convex spontaneous curvature, which act as nucleators of actin polymerization and adhesion. Such a continuum model couples the forces of cell-substrate adhesion, actin polymerization, membrane curvature, and th...

  8. MICAL, the Flavoenzyme Participating in Cytoskeleton Dynamics

    Daniela Zucchini

    2013-03-01

    Full Text Available MICAL (from the Molecule Interacting with CasL indicates a family of recently discovered cytosolic, multidomain proteins, which uniquely couple an N-terminal FAD-containing monooxygenase-like domain to typical calponine homology, LIM and coiled-coil protein-interaction modules. Genetic and cell biology approaches have demonstrated an essential role of the catalytic activity of the monooxygenase-like domain in transducing the signal initiated by semaphorins interaction with their plexin receptors, which results in local actin cytoskeleton disassembly as part of fundamental processes that include differentiation, migration and cell-cell contacts in neuronal and non-neuronal cell types. This review focuses on the structure-function relations of the MICAL monooxygenase-like domain as they are emerging from the available in vitro studies on mouse, human and Drosophila MICAL forms that demonstrated a NADPH-dependent actin depolymerizing activity of MICAL. With Drosophila MICAL forms, actin depolymerization was demonstrated to be associated to conversion of Met44 to methionine sulfone through a postulated hydroxylating reaction. Arguments supporting the concept that MICAL effect on F-actin may be reversible will be discussed.

  9. Actin dynamics and the elasticity of cytoskeletal networks

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  10. Cytoskeleton and Cell Motility

    Risler, Thomas

    2011-01-01

    The present article is an invited contribution to the Encyclopedia of Complexity and System Science, Robert A. Meyers Ed., Springer New York (2009). It is a review of the biophysical mechanisms that underly cell motility. It mainly focuses on the eukaryotic cytoskeleton and cell-motility mechanisms. Bacterial motility as well as the composition of the prokaryotic cytoskeleton is only briefly mentioned. The article is organized as follows. In Section III, I first present an overview of the diversity of cellular motility mechanisms, which might at first glance be categorized into two different types of behaviors, namely "swimming" and "crawling". Intracellular transport, mitosis - or cell division - as well as other extensions of cell motility that rely on the same essential machinery are briefly sketched. In Section IV, I introduce the molecular machinery that underlies cell motility - the cytoskeleton - as well as its interactions with the external environment of the cell and its main regulatory pathways. Sec...

  11. Boolean gates on actin filaments

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  12. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules

    Roman ePleskot

    2014-01-01

    Full Text Available The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several actin-binding proteins, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.

  13. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter.

    Leite, Sérgio Carvalho; Sampaio, Paula; Sousa, Vera Filipe; Nogueira-Rodrigues, Joana; Pinto-Costa, Rita; Peters, Luanne Laurel; Brites, Pedro; Sousa, Mónica Mendes

    2016-04-19

    The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings. PMID:27068466

  14. Orientational Order of the Lamellipodial Actin Network as Demonstrated in Living Motile CellsV⃞

    Alexander B. Verkhovsky; Chaga, Oleg Y.; Schaub, Sébastien; Svitkina, Tatyana M.; Meister, Jean-Jacques; Borisy, Gary G.

    2003-01-01

    Lamellipodia of crawling cells represent both the motor for cell advance and the primary building site for the actin cytoskeleton. The organization of actin in the lamellipodium reflects actin dynamics and is of critical importance for the mechanism of cell motility. In previous structural studies, the lamellipodial actin network was analyzed primarily by electron microscopy (EM). An understanding of lamellipodial organization would benefit significantly if the EM data were complemented and p...

  15. Actin based processes that could determine the cytoplasmic architecture of plant cells

    Honing; Emons, A.M.C.; Ketelaar, M.J.

    2007-01-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on...

  16. VISUALIZATION OF DYNAMIC ORGANIZATION OF CYTOSKELETON GELS IN LIVING CELLS BY HYBRID-SPM

    K.Kawabata; Y.Sado; M.Nagayama; T.Nitta; K.Nemoto; Y.Koyama; H.Haga

    2003-01-01

    We succeeded in performing of hybrid Scanning Probe Microscopy (hybrid-SPM) in which mechanical-SPM and fluorescence microscopy are combined. This technique is able to measure simultaneously mechanical properties and distribution of cytoskeletons of living cells by using green fluorescent protein. We measured evolution of both local elasticity and distributions of actin stress fibers in an identical fibroblast living in physiological conditions. The SPM experiments revealed that stiffer lines develop in living cells, which correspond to actin stress fibers. The elasticity of the actin stress fibers is as high as 100 kPa. We discuss mechanical effects on the development of actin filament networks.

  17. 25 Years of Tension over Actin Binding to the Cadherin Cell Adhesion Complex: The Devil is in the Details.

    Nelson, W James; Weis, William I

    2016-07-01

    Over the past 25 years, there has been a conceptual (re)evolution in understanding how the cadherin cell adhesion complex, which contains F-actin-binding proteins, binds to the actin cytoskeleton. There is now good synergy between structural, biochemical, and cell biological results that the cadherin-catenin complex binds to F-actin under force. PMID:27166091

  18. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD toxin.

    Elena Kudryashova

    Full Text Available Actin Crosslinking Domain (ACD is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5 = 30 µM reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+-GTP to support crosslinking, but the kinetic parameters (K(M = 8 µM and 50 µM for ATP and GTP, respectively suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  19. CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors.

    Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly

    2016-02-01

    Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. PMID:26776730

  20. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  1. A Robust Actin Filaments Image Analysis Framework.

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-08-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in

  2. A Robust Actin Filaments Image Analysis Framework

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  3. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing

    Gupta, Mukund; Sarangi, Bibhu Ranjan; Deschamps, Joran; Nematbakhsh, Yasaman; Callan-Jones, Andrew; Margadant, Felix; Mège, René-Marc; Lim, Chwee Teck; Voituriez, Raphaël; Ladoux, Benoît

    2015-06-01

    Matrix rigidity sensing regulates a large variety of cellular processes and has important implications for tissue development and disease. However, how cells probe matrix rigidity, and hence respond to it, remains unclear. Here, we show that rigidity sensing and adaptation emerge naturally from actin cytoskeleton remodelling. Our in vitro experiments and theoretical modelling demonstrate a biphasic rheology of the actin cytoskeleton, which transitions from fluid on soft substrates to solid on stiffer ones. Furthermore, we find that increasing substrate stiffness correlates with the emergence of an orientational order in actin stress fibres, which exhibit an isotropic to nematic transition that we characterize quantitatively in the framework of active matter theory. These findings imply mechanisms mediated by a large-scale reinforcement of actin structures under stress, which could be the mechanical drivers of substrate stiffness-dependent cell shape changes and cell polarity.

  4. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin

    Emma J McGhie; Hayward, Richard D.; Koronakis, Vassilis

    2001-01-01

    Pathogen-induced remodelling of the host cell actin cytoskeleton drives internalization of invasive Salmon ella by non-phagocytic intestinal epithelial cells. Two Salmonella actin-binding proteins are involved in internalization: SipC is essential for the process, while SipA enhances its efficiency. Using purified SipC and SipA proteins in in vitro assays of actin dynamics and F-actin bundling, we demonstrate that SipA stimulates substantially SipC-mediated nucleation of actin polymerization....

  5. Cytoskeleton in Pollen and Pollen Tubes of Ginkgo biloba L.

    Jun-Mei LIU; Hong ZHANG; Yan LI

    2005-01-01

    The distribution of F-actin and microtubules was investigated in pollen and pollen tubes of Ginkgo biloba L. using a confocal laser scanning microscope after fluorescence and immunofluorescence labeling. A dense F-actin network was found in hydrated Ginkgo pollen. When Ginkgo pollen was germinating,F-actin mesh was found under the plasma membrane from which the pollen tube would emerge. After pollen germination, F-actin bundles were distributed axially in long pollen tubes of G. biloba. Thick F-actin bundles and network were found in the tip of the Ginkgo pollen tube, which is opposite to the results reported for the pollen tubes of some angiosperms and conifers. In addition, a few circular F-actin bundles were found in Ginkgo pollen tubes. Using immunofluorescence labeling, a dense microtubule network was found in hydrated Ginkgo pollen under confocal microscope. In the Ginkgo pollen tube, the microtubules were distributed along the longitudinal axis and extended to the tip. These results suggest that the cytoskeleton may have an essential role in the germination of Ginkgo pollen and tube growth.

  6. STED Nanoscopy Reveals the Ubiquity of Subcortical Cytoskeleton Periodicity in Living Neurons

    Elisa D’Este

    2015-03-01

    Full Text Available In the axons of cultured hippocampal neurons, actin forms various structures, including bundles, patches (involved in the preservation of neuronal polarity, and a recently reported periodic ring-like structure. Nevertheless, the overlaying organization of actin in neurons and in the axon initial segment (AIS is still unclear, due mainly to a lack of adequate imaging methods. By harnessing live-cell stimulated emission depletion (STED nanoscopy and the fluorescent probe SiR-Actin, we show that the periodic subcortical actin structure is in fact present in both axons and dendrites. The periodic cytoskeleton organization is also found in the peripheral nervous system, specifically at the nodes of Ranvier. The actin patches in the AIS co-localize with pre-synaptic markers. Cytosolic actin organization strongly depends on the developmental stage and subcellular localization. Altogether, the results of this study reveal unique neuronal cytoskeletal features.

  7. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin

  8. Competition of two distinct actin networks for actin defines a bistable switch for cell polarization

    Lomakin, Alexis J.; Lee, Kun-Chun; Han, Sangyoon J.; Bui, D A.; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-01-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype upon relaxation of the actomyosin cytoskeleton. We find that myosin-II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. At low contractility regimes epithelial cells polarize in a front-back manner due to emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin-II from the front to the back of the cell, where the motor locally “locks” actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high contractility-driven cell motion is inefficient. PMID:26414403

  9. Actin based processes that could determine the cytoplasmic architecture of plant cells

    Honing, van der H.S.; Emons, A.M.C.; Ketelaar, M.J.

    2007-01-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells t

  10. The role of the cytoskeleton in the gravisensing and graviresponse mechanisms of plant roots

    Blancaflor, E.; Hou, G.; Mohamalawari, D.

    The cytoskeleton has been proposed to be a major player in the process of gravitropism. A major approach to determine the role of the cytoskeleton in gravitropism has been to use cytoskeletal disrupting drugs. Several investigators have reported that actin or microtubule inhibitors do not prevent root gravitropism therefore they concluded that the cytoskeleton is not involved in this process. However, some recent studies indicate that actin inhibitors promote gravitropism in both roots and shoots. To further investigate the significance of these observations, we studied the effect of various cytoskeletal inhibitors on roots grown on a clinostat in an effort to analyze other p rameters used to assay for gravisensitivity (e.g.a presentation time). Latrunculin B (LB) an actin-disrupting drug enhanced the gravisensitivity of a variety of roots as evident from the comparison of presentation times in LB-treated versus untreated roots . The microtubule inhibitor oryzalin did not have any significant effect on gravitropic sensitivity. Interestingly, roots treated with LB consistently showed hyper-gravitropic responses. Roots gravistimulated for 5-10 min and then rotated on a clinostat displayed extensive curvature. Application of LB specifically to the cap or elongation zone (EZ) of maize roots caused the disruption of the actin cytoskeleton, and such disruption was confined to regions of localized LB application. Only roots with disrupted actin in the cap displayed enhanced gravitropic sensitivity further emphasizing the importance of the root cap actin cytoskeleton in mediating gravitropism. The myosin inhibitor 2,3-butanedione monoxime (BDM) did not alter the sensitivity of roots to gravity suggesting that the hypergravitropic responses resulting from the disruption of actin filaments may not involve myosin motors. The increased sensitivity of roots to gravity after disruption of actin filaments suggests that an intact actin cytoskeleton in the cap is involved in

  11. Cysteine-rich protein 1 (CRP1 regulates actin filament bundling

    Fraley Tamara S

    2005-12-01

    Full Text Available Abstract Background Cysteine-rich protein 1 (CRP1 is a LIM domain containing protein localized to the nucleus and the actin cytoskeleton. CRP1 has been demonstrated to bind the actin-bundling protein α-actinin and proposed to modulate the actin cytoskeleton; however, specific regulatory mechanisms have not been identified. Results CRP1 expression increased actin bundling in rat embryonic fibroblasts. Although CRP1 did not affect the bundling activity of α-actinin, CRP1 was found to stabilize the interaction of α-actinin with actin bundles and to directly bundle actin microfilaments. Using confocal and photobleaching fluorescence resonance energy transfer (FRET microscopy, we demonstrate that there are two populations of CRP1 localized along actin stress fibers, one associated through interaction with α-actinin and one that appears to bind the actin filaments directly. Consistent with a role in regulating actin filament cross-linking, CRP1 also localized to the membrane ruffles of spreading and PDGF treated fibroblasts. Conclusion CRP1 regulates actin filament bundling by directly cross-linking actin filaments and stabilizing the interaction of α-actinin with actin filament bundles.

  12. Mechanisms of Rickettsia parkeri invasion of host cells and early actin-based motility

    Reed, Shawna

    2012-01-01

    Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Spotted fever group (SFG) Rickettsia hijack the host actin cytoskeleton to invade, move within, and spread between eukaryotic host cells during their obligate intracellular life cycle. Rickettsia express two bacterial proteins that can activate actin polymerization: RickA activates the host actin-nucleating Arp2/3 complex while Sca2 directly...

  13. Opposing Roles for Actin in Cdc42p PolarizationD⃞

    Irazoqui, Javier E.; Howell, Audrey S.; Theesfeld, Chandra L.; Lew, Daniel J.

    2005-01-01

    In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399–416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization si...

  14. Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo

    Tran, Duy T.; Masedunskas, Andrius; Weigert, Roberto; Ten Hagen, Kelly G.

    2015-01-01

    The actin cytoskeleton plays crucial roles in many cellular processes, including regulated secretion. However, the mechanisms controlling F-actin dynamics in this process are largely unknown. Through 3D time-lapse imaging in a secreting organ, we show that F-actin is actively disassembled along the apical plasma membrane at the site of secretory vesicle fusion and re-assembled directionally on vesicle membranes. Moreover, we show that fusion pore formation and PIP2 redistribution precedes act...

  15. Sequence and comparative genomic analysis of actin-related proteins.

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-12-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4. PMID:16195354

  16. Simultaneous Tracking of 3D Actin and Microtubule Strains in Individual MLO-Y4 Osteocytes under Oscillatory Flow

    Baik, Andrew D.; Qiu, Jun; Hillman, Elizabeth M. C.; Dong, Cheng; Guo, X. Edward

    2013-01-01

    Osteocytes in vivo experience complex fluid shear flow patterns to activate mechanotransduction pathways. The actin and microtubule (MT) cytoskeletons have been shown to play an important role in the osteocyte’s biochemical response to fluid shear loading. The dynamic nature of physiologically relevant fluid flow profiles (i.e., 1 Hz oscillatory flow) impedes the ability to image and study both actin and MT cytoskeletons simultaneously in the same cell with high spatiotemporal resolution. To ...

  17. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton

    Ly, Donald L.; Waheed, Faiza; Lodyga, Monika; Speight, Pam; Masszi, András; Nakano, Hiroyasu; Hersom, Maria Nathalie Selch; Pedersen, Stine Helene Falsig; Szászi, Katalin; Kapus, András

    2013-01-01

    Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactiv......Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin......-dependent transcription through the cis-element CArG box. Silencing or pharmacological inhibition of MRTF prevents the osmotic stimulation of CArG-dependent transcription and renders the cells susceptible to osmotic shock-induced structural damage. Interestingly, strong hyperosmolarity promotes proteasomal degradation of...

  18. Formation of actin networks in microfluidic concentration gradients

    Strelnikova, Natalja; Herren, Florian; Schoenenberger, Cora-Ann; Pfohl, Thomas

    2016-05-01

    The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  19. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  20. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G. U.; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  1. Cytoskeleton in gravisensing and signal transductionof lower plants

    Braun, M.

    Characean rhizoids and protonemata are favourable cell types for studying tip growth and gravisensing. Both processes are highly dependent on the actin cytoskeleton. The multiple functions and different arrangements of actin in both cell types are regulated by the concerted action of actin-binding proteins. Monomer- binding profilin is distributed evenly throughout the cytoplasm and is likely to be involved in the regulation of the polymerization state of actin. Actin-severing ADF, spectrin- and actinin-like epitopes concentrate in a central prominent spot in the apex of both cell types, where they colocalize with a dense, spherical actin array and a unique aggregation of endoplasmic reticulum (ER), the structural center of the tip - growth organizing Spitzenkörper. The ER aggregate disintegrates and immuno- localization of the actin-binding proteins fails when tip growth is arrested; the epitopes reappear when tip growth resumes. Actin filaments form a meshwork of axially oriented filaments in the subapical zone and focus in this central apical area which seems to represent their apical polymerization site. The rapid turn-over and rearrangement of actin might be under control of ADF and profilin. Spectrin- and actinin-like proteins are candidates for establishing the actin-mediated anchoring and maintaining of the ER aggregate. They could also provide a mechanism for recruiting specific membrane proteins that create the particular physiological environment for gravity-oriented tip growth. The positioning and sedimentation of statoliths in the subapical region (crucial for gravisensing) is highly coordinated by actomyosin. Non-invasive infrared laser micromanipulation techniques, centri- fugation and experiments in microgravity revealed that reorientation of the growth direction was initiated when at least 2-3 statoliths were directed to specific areas of the plasma membrane by actomyosin and gravitational forces. The statolith-sensitive area is confined to the

  2. TRPV4 Regulates Breast Cancer Cell Extravasation, Stiffness and Actin Cortex.

    Lee, Wen Hsin; Choong, Lee Yee; Mon, Naing Naing; Lu, SsuYi; Lin, Qingsong; Pang, Brendan; Yan, Benedict; Krishna, Vedula Sri Ram; Singh, Himanshu; Tan, Tuan Zea; Thiery, Jean Paul; Lim, Chwee Teck; Tan, Patrick Boon Ooi; Johansson, Martin; Harteneck, Christian; Lim, Yoon Pin

    2016-01-01

    Metastasis is a significant health issue. The standard mode of care is combination of chemotherapy and targeted therapeutics but the 5-year survival rate remains low. New/better drug targets that can improve outcomes of patients with metastatic disease are needed. Metastasis is a complex process, with each step conferred by a set of genetic aberrations. Mapping the molecular changes associated with metastasis improves our understanding of the etiology of this disease and contributes to the pipeline of targeted therapeutics. Here, phosphoproteomics of a xenograft-derived in vitro model comprising 4 isogenic cell lines with increasing metastatic potential implicated Transient Receptor Potential Vanilloid subtype 4 in breast cancer metastasis. TRPV4 mRNA levels in breast, gastric and ovarian cancers correlated with poor clinical outcomes, suggesting a wide role of TRPV4 in human epithelial cancers. TRPV4 was shown to be required for breast cancer cell invasion and transendothelial migration but not growth/proliferation. Knockdown of Trpv4 significantly reduced the number of metastatic nodules in mouse xenografts leaving the size unaffected. Overexpression of TRPV4 promoted breast cancer cell softness, blebbing, and actin reorganization. The findings provide new insights into the role of TRPV4 in cancer extravasation putatively by reducing cell rigidity through controlling the cytoskeleton at the cell cortex. PMID:27291497

  3. PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance

    Rocha-Perugini, Vera; Gordon-Alonso, Mónica; Sánchez-Madrid, Francisco

    2014-01-01

    The actin cytoskeleton plays a key role during the replication cycle of human immunodeficiency virus-1 (HIV-1). HIV-1 infection is affected by cellular proteins that influence the clustering of viral receptors or the subcortical actin cytoskeleton. Several of these actin-adaptor proteins are controlled by the second messenger phosphatidylinositol 4,5-biphosphate (PIP2), an important regulator of actin organization. PIP2 production is induced by HIV-1 attachment and facilitates viral infection. However, the importance of PIP2 in regulating cytoskeletal proteins and thus HIV-1 infection has been overlooked. This review examines recent reports describing the roles played by actin-adaptor proteins during HIV-1 infection of CD4+ T cells, highlighting the influence of the signaling lipid PIP2 in this process. PMID:24768560

  4. Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCδ activation is associated with phosphorylated adducin.

    Kong-Nan Zhao

    Full Text Available Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505 activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505 phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.

  5. The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512

    Hassan Mziaut

    2016-08-01

    Conclusion: Our findings show that villin controls the size of the F-actin cages restricting SGs and, thus, regulates their dynamics and availability for exocytosis. Evidence that villin acts downstream of Ica512 also indicates that SGs directly influence the remodeling properties of the cortical actin cytoskeleton for tight control of insulin secretion.

  6. Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity.

    Jones, Steven L; Svitkina, Tatyana M

    2016-01-01

    The axon initial segment (AIS) is a specialized structure in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in neurons is ideal for its two major functions: it serves as the site of action potential firing and helps to maintain neuron polarity. It has become increasingly clear that the AIS cytoskeleton is fundamental to AIS functions. In this review, we discuss current understanding of the AIS cytoskeleton with particular interest in its unique architecture and role in maintenance of neuron polarity. The AIS cytoskeleton is divided into two parts, submembrane and cytoplasmic, based on localization, function, and molecular composition. Recent studies using electron and subdiffraction fluorescence microscopy indicate that submembrane cytoskeletal components (ankyrin G, βIV-spectrin, and actin filaments) form a sophisticated network in the AIS that is conceptually similar to the polygonal/triangular network of erythrocytes, with some important differences. Components of the AIS cytoplasmic cytoskeleton (microtubules, actin filaments, and neurofilaments) reside deeper within the AIS shaft and display structural features distinct from other neuronal domains. We discuss how the AIS submembrane and cytoplasmic cytoskeletons contribute to different aspects of AIS polarity function and highlight recent advances in understanding their AIS cytoskeletal assembly and stability. PMID:27493806

  7. Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity

    Svitkina, Tatyana M.

    2016-01-01

    The axon initial segment (AIS) is a specialized structure in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in neurons is ideal for its two major functions: it serves as the site of action potential firing and helps to maintain neuron polarity. It has become increasingly clear that the AIS cytoskeleton is fundamental to AIS functions. In this review, we discuss current understanding of the AIS cytoskeleton with particular interest in its unique architecture and role in maintenance of neuron polarity. The AIS cytoskeleton is divided into two parts, submembrane and cytoplasmic, based on localization, function, and molecular composition. Recent studies using electron and subdiffraction fluorescence microscopy indicate that submembrane cytoskeletal components (ankyrin G, βIV-spectrin, and actin filaments) form a sophisticated network in the AIS that is conceptually similar to the polygonal/triangular network of erythrocytes, with some important differences. Components of the AIS cytoplasmic cytoskeleton (microtubules, actin filaments, and neurofilaments) reside deeper within the AIS shaft and display structural features distinct from other neuronal domains. We discuss how the AIS submembrane and cytoplasmic cytoskeletons contribute to different aspects of AIS polarity function and highlight recent advances in understanding their AIS cytoskeletal assembly and stability. PMID:27493806

  8. Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons

    Vladimir eSytnyk

    2016-02-01

    Full Text Available Cell adhesion molecules of the immunoglobulin superfamily (IgSF including the neural cell adhesion molecule (NCAM and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  9. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  10. Isolation and identification of actin-binding proteins in Plasmodium falciparum by affinity chromatography

    Claudia Forero

    2000-06-01

    Full Text Available The invasion of the erythrocyte by Plasmodium falciparum depends on the ability of the merozoite to move through the membrane invagination. This ability is probably mediated by actin dependent motors. Using affinity columns with G-actin and F-actin we isolated actin binding proteins from the parasite. By immunoblotting and immunoprecipitation with specific antibodies we identified the presence of tropomyosin, myosin, a-actinin, and two different actins in the eluate corresponding to F-actin binding proteins. In addition to these, a 240-260 kDa doublet, different in size from the erythrocyte spectrin, reacted with an antibody against human spectrin. All the above mentioned proteins were metabolically radiolabeled when the parasite was cultured with 35S-methionine. The presence of these proteins in P. falciparum is indicative of a complex cytoskeleton and supports the proposed role for an actin-myosin motor during invasion.

  11. Differential effects of LifeAct-GFP and actin-GFP on cell mechanics assessed using micropipette aspiration

    Sliogeryte, Kristina; Stephen D Thorpe; Wang, Zhao; Thompson, Clare L.; Gavara, Nuria; Knight, Martin M.

    2016-01-01

    The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hM...

  12. Differential requirements for actin during yeast and mammalian endocytosis.

    Aghamohammadzadeh, Soheil; Ayscough, Kathryn R

    2009-08-01

    Key features of clathrin-mediated endocytosis have been conserved across evolution. However, endocytosis in Saccharomyces cerevisiae is completely dependent on a functional actin cytoskeleton, whereas actin appears to be less critical in mammalian cell endocytosis. We reveal that the fundamental requirement for actin in the early stages of yeast endocytosis is to provide a strong framework to support the force generation needed to direct the invaginating plasma membrane into the cell against turgor pressure. By providing osmotic support, pressure differences across the plasma membrane were removed and this reduced the requirement for actin-bundling proteins in normal endocytosis. Conversely, increased turgor pressure in specific yeast mutants correlated with a decreased rate of endocytic patch invagination. PMID:19597484

  13. Nanosecond electric pulses trigger actin responses in plant cells

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  14. Nanosecond electric pulses trigger actin responses in plant cells

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca [Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Hohenberger, Petra [Botanical Institute I, University of Karlsruhe, Karlsruhe Institute of Technology, Kaiserstr. 2, 76128 Karlsruhe (Germany); Wegner, Lars H. [Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Botanical Institute I, University of Karlsruhe, Karlsruhe Institute of Technology, Kaiserstr. 2, 76128 Karlsruhe (Germany); Frey, Wolfgang [Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Nick, Peter, E-mail: peter.nick@bio.uni-karlsruhe.de [Botanical Institute I, University of Karlsruhe, Karlsruhe Institute of Technology, Kaiserstr. 2, 76128 Karlsruhe (Germany)

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  15. Structure of the F-actin-tropomyosin complex.

    von der Ecken, Julian; Müller, Mirco; Lehman, William; Manstein, Dietmar J; Penczek, Pawel A; Raunser, Stefan

    2015-03-01

    Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss, familial thoracic aortic aneurysms and dissections, and multiple variations of myopathies. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin. Although crystal structures for monomeric actin (G-actin) are available, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 Å in complex with tropomyosin at a resolution of 6.5 Å, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify map density corresponding to ADP and Mg(2+) and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin-tropomyosin with its position in our previously determined F-actin-tropomyosin-myosin structure reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted

  16. Actin Filament Bundles in Drosophila Wing Hairs: Hairs and Bristles Use Different Strategies for Assembly

    Guild, Gregory M.; Connelly, Patricia S.; Ruggiero, Linda; Vranich, Kelly A.; Tilney, Lewis G.

    2005-01-01

    Actin filament bundles can shape cellular extensions into dramatically different forms. We examined cytoskeleton formation during wing hair morphogenesis using both confocal and electron microscopy. Hairs elongate with linear kinetics (∼1 μm/h) over the course of ∼18 h. The resulting structure is vividly asymmetric and shaped like a rose thorn—elongated in the distal direction, curved in two dimensions with an oval base and a round tip. High-resolution analysis shows that the cytoskeleton for...

  17. Computational analysis of viscoelastic properties of crosslinked actin networks.

    Taeyoon Kim

    2009-07-01

    Full Text Available Mechanical force plays an important role in the physiology of eukaryotic cells whose dominant structural constituent is the actin cytoskeleton composed mainly of actin and actin crosslinking proteins (ACPs. Thus, knowledge of rheological properties of actin networks is crucial for understanding the mechanics and processes of cells. We used Brownian dynamics simulations to study the viscoelasticity of crosslinked actin networks. Two methods were employed, bulk rheology and segment-tracking rheology, where the former measures the stress in response to an applied shear strain, and the latter analyzes thermal fluctuations of individual actin segments of the network. It was demonstrated that the storage shear modulus (G' increases more by the addition of ACPs that form orthogonal crosslinks than by those that form parallel bundles. In networks with orthogonal crosslinks, as crosslink density increases, the power law exponent of G' as a function of the oscillation frequency decreases from 0.75, which reflects the transverse thermal motion of actin filaments, to near zero at low frequency. Under increasing prestrain, the network becomes more elastic, and three regimes of behavior are observed, each dominated by different mechanisms: bending of actin filaments, bending of ACPs, and at the highest prestrain tested (55%, stretching of actin filaments and ACPs. In the last case, only a small portion of actin filaments connected via highly stressed ACPs support the strain. We thus introduce the concept of a 'supportive framework,' as a subset of the full network, which is responsible for high elasticity. Notably, entropic effects due to thermal fluctuations appear to be important only at relatively low prestrains and when the average crosslinking distance is comparable to or greater than the persistence length of the filament. Taken together, our results suggest that viscoelasticity of the actin network is attributable to different mechanisms depending on

  18. The actin binding protein adseverin regulates osteoclastogenesis.

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W P; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  19. The actin binding protein adseverin regulates osteoclastogenesis.

    Siavash Hassanpour

    Full Text Available Adseverin (Ads, a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG. Ads is induced during OCG downstream of RANK-ligand (RANKL stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.

  20. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  1. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  2. The contribution of cytoskeleton networks to stretch is strain dependent

    Nnetu, Kenechukwu David; Kießling, Tobias; Stange, Roland; Käs, Josef

    2011-03-01

    The interaction between the cytoskeleton filaments in a cell provides it with mechanical stability and enables it to remodel its shape. The rheological response of cells has been characterized either as viscoelastic or soft-glassy which neglects the molecular origin of cell response. In this work, by using a large amount of cells (>10,000 in total) exceeding previous statistics by a decade, we link observed cell response to its molecular origin by showing that actin and microtubule networks maintain the mechanical integrity of cells in a strain dependent manner. While the actin network solely regulated cell deformation at small strain, the microtubule network was responsible for cell relaxation. At large strain, actin and microtubule networks dominated cell response with microtubules having a bipolar effect on cells upon stabilization. This effect could explain the relapse of some cancer after chemotherapy treatment using Taxol thus providing a bridge between soft condense matter physics and systems biology. This work was supported by the ESF-BuildMoNa and Exprimage (funded by the German Federal Ministry of Education and Research (BMBF)).

  3. Unraveling the enigma: Progress towards understanding the Coronin family of actin regulators

    Chan, Keefe T.; Sarah J. Creed; Bear, James E.

    2011-01-01

    Coronins are a conserved family of actin cytoskeleton regulators that promote cell motility and modulate other actin-dependent processes. Although these proteins have been known for twenty years, substantial progress has been made in the last five years towards understanding coronins. Here, we review this progress, place it into the context of what was already known and pose several questions that remain to be addressed. In particular, we cover the emerging consensus about the role of Type I ...

  4. Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds.

    Kwon, Mijung; Bagonis, Maria; Danuser, Gaudenz; Pellman, David

    2015-08-10

    Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin "clouds" are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10's role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles. PMID:26235048

  5. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    Chen, Li; Shi, Kaikai; Frary, Charles Edward;

    2015-01-01

    Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene...... expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...... polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1...

  6. LOS ALAMOS: Reorganization

    Full text: A few months ago Los Alamos National Laboratory embarked on a major reorganization. All upper management was invited to submit their resignations and reapply for new positions, of which there are only about one third as many. This action was coordinated with an attractive early retirement incentive so that displaced managers, as well as any other employee, could choose to retire if they were unhappy with the reorganization, or for any other reason. About 850 of the Lab's 7,700 employees have chosen retirement. MP (Meson or Medium Energy Physics) and AT (Accelerator Technology) Divisions have been combined into the AOT (Accelerator Operations and Technology) Division. Stanley O. Schriber is its new Director. AOT Division is responsible for operations and improvements at the Los Alamos Meson Physics Facility (LAMPF) and supports traditional users, LANSCE (the Los Alamos Neutron Scattering Center), and the emerging neutron applications community. Advanced accelerator development, including beam transport theory, instrumentation, free electron laser technology, and engineering for research, defence, industrial, and medical applications will be a major focus

  7. Rho proteins − the key regulators of cytoskeleton in the progression of mitosis and cytokinesis

    Anna Klimaszewska

    2011-11-01

    Full Text Available The Rho proteins are members of the Ras superfamily of small GTPases. They are thought to be crucial regulators of multiple signal transduction pathways that influence a wide range of cellular functions, including migration, membrane trafficking, adhesion, polarity and cell shape changes. Thanks to their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho GTPases are known to regulate mitosis and cytokinesis progression. These proteins are required for formation and rigidity of the cortex during mitotic cell rounding, mitotic spindle formation and attachment of the spindle microtubules to the kinetochore. In addition, during cytokinesis, they are involved in promoting division plane determination, contractile ring and cleavage furrow formation and abscission. They are also known as regulators of cell cycle progression at the G1/S and G2/M transition. Thus, the signal transduction pathways in which Rho proteins participate, appear to connect dynamics of actin and microtubule cytoskeletons to cell cycle progression. We review the current state of knowledge concerning the molecular mechanisms by which Rho GTPase signaling regulates remodeling of actin and microtubule cytoskeletons in order to control cell division progression.

  8. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression

    Scheuring, David; Löfke, Christian; Krüger, Falco; Kittelmann, Maike; Eisa, Ahmed; Hughes, Louise; Smith, Richard S.; Hawes, Chris; Schumacher, Karin; Kleine-Vehn, Jürgen

    2016-01-01

    The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin–myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth. PMID:26715743

  9. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  10. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Thompson Erik W

    2009-07-01

    Full Text Available Abstract Background A feature of epithelial to mesenchymal transition (EMT relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1 and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4 and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4. Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse

  11. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  12. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  13. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin

  14. Calcium-actin waves and oscillations of cellular membranes.

    Veksler, Alex; Gov, Nir S

    2009-09-16

    We propose a mechanism for the formation of membrane oscillations and traveling waves, which arise due to the coupling between the actin cytoskeleton and the calcium flux through the membrane. In our model, the fluid cell membrane has a mobile but constant population of proteins with a convex spontaneous curvature, which act as nucleators of actin polymerization and adhesion. Such a continuum model couples the forces of cell-substrate adhesion, actin polymerization, membrane curvature, and the flux of calcium through the membrane. Linear stability analysis shows that sufficiently strong coupling among the calcium, membrane, and protein dynamics may induce robust traveling waves on the membrane. This result was checked for a reduced feedback scheme and is compared to the results without the effects of calcium, where permanent phase separation without waves or oscillations is obtained. The model results are compared to the published observations of calcium waves in cell membranes, and a number of testable predictions are proposed. PMID:19751660

  15. Spiral actin-polymerization waves can generate amoeboidal cell crawling

    Amoeboidal cell crawling on solid substrates is characterized by protrusions that seemingly appear randomly along the cell periphery and drive the cell forward. For many cell types, it is known that the protrusions result from polymerization of the actin cytoskeleton. However, little is known about how the formation of protrusions is triggered and whether the appearance of subsequent protrusions is coordinated. Recently, the spontaneous formation of actin-polymerization waves was observed. These waves have been proposed to orchestrate the cytoskeletal dynamics during cell crawling. Here, we study the impact of cytoskeletal polymerization waves on cell migration using a phase-field approach. In addition to directionally moving cells, we find states reminiscent of amoeboidal cell crawling. In this framework, new protrusions are seen to emerge from a nucleation process, generating spiral actin waves in the cell interior. Nucleation of new spirals does not require noise, but occurs in a state that is apparently displaying spatio-temporal chaos. (paper)

  16. The cytoskeleton of digitonin-treated rat hepatocytes.

    Fiskum, G; Craig, S W; Decker, G L; Lehninger, A L

    1980-06-01

    Treatment of isolated rat hepatocptes with low concentrations of digitonin increases the permeability of the plsma membrane to cytosolic proteins without causing release of organelles such as mitochondria into the surrounding medium. Electron microscopy showed that treatment of the cells with increasing concentations of digitonin results in a progressive loss in the continuity of the plasma membrane, while most other aspects of cellular morphology remain normal. Depletion of background staining material from the cytosol by digitonin treatment of the cells greatly enhances the visualization of the cytoskeleton. The use of this technique, together with immunofluorescent light microscopy, has verified the presence of an actin-containing filamentous network at the hepatocyte cortex as well as intermediate filaments distributed throughout the cell. Digitonin is thus useful both for selectively permeabilizing the plasma membrane and for intensifying the appearance of intracellular structures such as microfilaments that are normally difficult to observe in cells such as hepatocytes. PMID:6997878

  17. Interfacial models of nerve fiber cytoskeleton.

    Malev, V V; Gromov, D B; Komissarchik YaYu; Brudnaya, M S

    1992-01-01

    A new approach, basing on a resemblance between cytoskeleton structures associated with plasma membranes and interfacial layers of coexisting phases, is proposed. In particular, a lattice model, similar to those of the theory of surface properties of pure liquids and nonelectrolyte solutions (Ono, S., and S. Kondo. 1960. Handbuch der Physik.), has been developed to describe nerve fiber cytoskeleton. The preliminary consideration of the model shows the existence of submembrane cytoskeleton hav...

  18. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling

    Pakhomov, Andrei G.; Xiao, Shu; Pakhomova, Olga N.; Semenov, Iurii; Kuipers, Marjorie A.; Ibey, Bennett L.

    2014-01-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PR...

  19. Pn-AMP1, a Plant Defense Protein, Induces Actin Depolarization in Yeasts

    Koo, Ja Choon; Lee, Boyoung; Young, Michael E.; Koo, Sung Chul; Cooper, John A.; Baek, Dongwon; Lim, Chae Oh; Lee, Sang Yeol; Yun, Dae-Jin; Cho, Moo Je

    2004-01-01

    Pn-AMP1, Pharbitis nil antimicrobial peptide 1, is a small cysteine-rich peptide implicated in host-plant defense. We show here that Pn-AMP1 causes depolarization of the actin cytoskeleton in Saccharomyces cerevisiae and Candida albicans. Pn-AMP1 induces rapid depolarization of actin cables and patches within 15 min. Increased osmolarity or temperature induces transient actin depolarization and results in increased sensitivity to Pn-AMP1, while cells conditioned to these stresses show less se...

  20. Contractile actin cables induced by Bacillus anthracis lethal toxin depend on the histone acetylation machinery.

    Rolando, Monica; Stefani, Caroline; Doye, Anne; Acosta, Maria I; Visvikis, Orane; Yevick, Hannah G; Buchrieser, Carmen; Mettouchi, Amel; Bassereau, Patricia; Lemichez, Emmanuel

    2015-10-01

    It remains a challenge to decode the molecular basis of the long-term actin cytoskeleton rearrangements that are governed by the reprogramming of gene expression. Bacillus anthracis lethal toxin (LT) inhibits mitogen-activated protein kinase (MAPK) signaling, thereby modulating gene expression, with major consequences for actin cytoskeleton organization and the loss of endothelial barrier function. Using a laser ablation approach, we characterized the contractile and tensile mechanical properties of LT-induced stress fibers. These actin cables resist pulling forces that are transmitted at cell-matrix interfaces and at cell-cell discontinuous adherens junctions. We report that treating the cells with trichostatin A (TSA), a broad range inhibitor of histone deacetylases (HDACs), or with MS-275, which targets HDAC1, 2 and 3, induces stress fibers. LT decreased the cellular levels of HDAC1, 2 and 3 and reduced the global HDAC activity in the nucleus. Both the LT and TSA treatments induced Rnd3 expression, which is required for the LT-mediated induction of actin stress fibers. Furthermore, we reveal that treating the LT-intoxicated cells with garcinol, an inhibitor of histone acetyl-transferases (HATs), disrupts the stress fibers and limits the monolayer barrier dysfunctions. These data demonstrate the importance of modulating the flux of protein acetylation in order to control actin cytoskeleton organization and the endothelial cell monolayer barrier. PMID:26403219

  1. Radiation-induced myosin IIA expression stimulates collagen type I matrix reorganization

    Background and purpose: Extracellular matrix (ECM) reorganization critically contributes to breast cancer (BC) progression and radiotherapy response. We investigated the molecular background and functional consequences of collagen type I (col-I) reorganization by irradiated breast cancer cells (BCC). Materials and methods: Radiation-induced (RI) col-I reorganization was evaluated for MCF-7/6, MCF-7/AZ, T47D and SK-BR-3 BCC. Phase-contrast microscopy and a stressed matrix contraction assay were used for visualization and quantification of col-I reorganization. Cell–matrix interactions were assessed by the inhibition of β1 integrin (neutralizing antibody ‘P5D2’) or focal adhesion kinase (FAK; GSK22560098 small molecule kinase inhibitor). The role of the actomyosin cytoskeleton was explored by western blotting analysis of myosin II expression and activity; and by gene silencing of myosin IIA and pharmacological inhibition of the actomyosin system (blebbistatin, cytochalasin D). BCC death was evaluated by propidium iodide staining. Results: We observed a radiation dose-dependent increase of col-I reorganization by BCC. β1 Integrin/FAK-mediated cell–matrix interactions are essential for RI col-I reorganization. Irradiated BCC are characterized by increased myosin IIA expression and myosin IIA-dependent col-I reorganization. Moreover, RI col-I reorganization by BCC is associated with decreased BCC death, as suggested by pharmacological targeting of the β1 integrin/FAK/myosin IIA pathway. Conclusions: Our data indicate the role of myosin IIA in col-I reorganization by irradiated BCC and reciprocal BCC death

  2. Dimeric WH2 repeats of VopF sequester actin monomers into non-nucleating linear string conformations: An X-ray scattering study.

    Avvaru, Balendu Sankara; Pernier, Julien; Carlier, Marie-France

    2015-05-01

    VopF and VopL are highly similar virulence-factors of Vibrio cholerae and Vibrio parahaemolyticus respectively that disrupt the host's actin cytoskeleton, using a unique organization in dimerized WH2 repeats. Association of dimerized WH2 domains with the barbed face of actin confers multifunctional activities to VopF in vitro, including G-actin sequestration and filament nucleation, barbed end tracking and uncapping. Here, small angle X-ray scattering (SAXS) measurements of complexes of VopF with actin and structural modeling reveal that VopF stabilizes linear actin-strings that differ from canonical actin filament architectures but represent non-polymerizable sequestered forms of actin. The results exclude that VopL binds the pointed end of actin filaments in the template filament nucleation mechanism derived from crystallographic studies. PMID:25818509

  3. A Guide to School District Reorganization.

    Warner, Allan K.

    School district reorganization is a process that requires considerable planning. This guide provides information on school district reorganization in the state of Nebraska, to interested boards of education and county and citizen reorganization committees. Topics discussed include planning for reorganization, establishing citizen committees, using…

  4. Cytoskeleton and Golgi-apparatus interactions: a two-way road of function and structure

    Egea G

    2015-01-01

    Full Text Available Gustavo Egea,1 Carla Serra-Peinado,1 María P Gavilan,2 Rosa M Rios21Departament de Biologia Cel·lular, Immulogia i Neurociències, Facultat de Medicina and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS, Universitat de Barcelona, Barcelona, Spain; 2Departamento de Señalización Celular, CSIC-Centro Andaluz de Biomedicina y Medicina Regenerativa (CABIMER, Seville, SpainAbstract: The Golgi apparatus is the result of a complex and dynamic interaction between a large variety of molecules that determine its architecture, protein and lipid transports, and those that integrate signals from outside and inside the cell. The cytoskeleton facilitates the functional integration of all these processes. Association and coordination between microtubules and actin filaments, as well as their respective binding and regulatory proteins, are clearly necessary for Golgi structure and function. Protein sorting, membrane fission and fusion, and the motion of Golgi-derived transport carriers are all affected by both cytoskeleton elements.Keywords: cytoskeleton, Golgi apparatus, membrane trafficking, secretory pathway, actin, microtubules

  5. Pathogenesis of common glomerular diseases – role of the podocyte cytoskeleton

    Kumagai T

    2012-10-01

    Full Text Available Takanori Kumagai, Flaviana Mouawad, Tomoko TakanoDepartment of Medicine, McGill University Health Centre, Montreal, Quebec, CanadaAbstract: Glomerulus is the filtration unit of the kidney where the first step of urine formation takes place. In the glomerulus, water and small molecules including waste products of the body are filtered into the urine, while large molecules essential for body function such as albumin are retained. When this barrier function of the kidney is impaired, protein leakage into the urine (proteinuria occurs. Proteinuria is not only a hallmark of many glomerular diseases but also a prognostic marker of kidney disease progression. Visceral glomerular epithelial cells (commonly called podocytes are known to have an important role in the maintenance of glomerular barrier function. In the last decade, remarkable progress has been made in podocyte biology, mainly led by the discoveries of important proteins that work together to maintain the intricate morphology and function of podocytes. Most of these so-called podocyte proteins modulate the actin cytoskeleton either directly or indirectly. The aim of the current review is to discuss the pathogenesis of common glomerular diseases with a particular focus on the role of the actin cytoskeleton in podocytes. The diseases covered include minimal change disease, focal segmental glomerulosclerosis (idiopathic and hereditary, membranous nephropathy, hypertensive glomerulosclerosis, and diabetic nephropathy.Keywords: glomerular disease, podocyte, cytoskeleton, proteinuria

  6. Impacts of aluminum on the cytoskeleton of the maize root apex. short-term effects on the distal part of the transition zone

    Sivaguru; Baluska; Volkmann; Felle; Horst

    1999-03-01

    Using monoclonal tubulin and actin antibodies, Al-mediated alterations to microtubules (MTs) and actin microfilaments (MFs) were shown to be most prominent in cells of the distal part of the transition zone (DTZ) of an Al-sensitive maize (Zea mays L.) cultivar. An early response to Al (1 h, 90 μM) was the depletion of MTs in cells of the DTZ, specifically in the outermost cortical cell file. However, no prominent changes to the MT cytoskeleton were found in elongating cells treated with Al for 1 h in spite of severe inhibition of root elongation. Al-induced early alterations to actin MFs were less dramatic and consisted of increased actin fluorescence of partially disintegrated MF arrays in cells of the DTZ. These tissue- and development-specific alterations to the cytoskeleton were preceded by and/or coincided with Al-induced depolarization of the plasma membrane and with callose formation, particularly in the outer cortex cells of the DTZ. Longer Al supplies (>6 h) led to progressive enhancements of lesions to the MT cytoskeleton in the epidermis and two to three outer cortex cell files. Our data show that the cytoskeleton in the cells of the DTZ is especially sensitive to Al, consistent with the recently proposed specific Al sensitivity of this unique, apical maize root zone. PMID:10069846

  7. A role for the actin-bundling protein l-plastin in the regulation of leukocyte integrin function

    Jones, Samuel L.; Wang, Jun; Turck, Christoph W; Brown, Eric J.

    1998-01-01

    Regulation of leukocyte integrin avidity is a crucial aspect of inflammation and immunity. The actin cytoskeleton has an important role in the regulation of integrin function, but the cytoskeletal proteins involved are largely unknown. Because inflammatory stimuli that activate integrin-mediated adhesion in human polymorphonuclear neutrophils (PMN) and monocytes cause phosphorylation of the actin-bundling protein l-plastin, we tested whether l-plastin phosphorylation was involved in integrin ...

  8. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  9. Spatial Organization of the Cytoskeleton enhances Cargo Delivery to Specific Target Areas on the Plasma Membrane of Spherical Cells

    Hafner, Anne E

    2016-01-01

    Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc.) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell's specific spatial organization of the cytoskeleton we formulate a random velocity...

  10. The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts.

    Thirukonda, Gnanasagar J; Uehara, Shunsuke; Nakayama, Takahiro; Yamashita, Teruhito; Nakamura, Yukio; Mizoguchi, Toshihide; Takahashi, Naoyuki; Yagami, Kimitoshi; Udagawa, Nobuyuki; Kobayashi, Yasuhiro

    2016-07-01

    The cytoskeletal organization of osteoclasts is required for bone resorption. Binding of dynamin with guanosine triphosphate (GTP) was previously suggested to be required for the organization of the actin cytoskeleton. However, the role of the GTPase activity of dynamin in the organization of the actin cytoskeleton as well as in the bone-resorbing activity of osteoclasts remains unclear. This study investigated the effects of dynasore, an inhibitor of the GTPase activity of dynamin, on the bone-resorbing activity of and actin ring formation in mouse osteoclasts in vitro and in vivo. Dynasore inhibited the formation of resorption pits in osteoclast cultures by suppressing actin ring formation and rapidly disrupting actin rings in osteoclasts. A time-lapse image analysis showed that dynasore shrank actin rings in osteoclasts within 30 min. The intraperitoneal administration of dynasore inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced trabecular bone loss in mouse femurs. These in vitro and in vivo results suggest that the GTPase activity of dynamin is critical for the bone-resorbing activity of osteoclasts and that dynasore is a seed for the development of novel anti-resorbing agents. PMID:26063501

  11. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    Huan Lu

    Full Text Available Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin. Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.

  12. Chaperonin filaments: The archael cytoskeleton

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  13. ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor.

    Valentina Marchesin

    Full Text Available Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.

  14. Stiffening of Red Blood Cells Induced by Disordered Cytoskeleton Structures: A Joint Theory-experiment Study

    Lai, Lipeng; Lim, Chwee Teck; Cao, Jianshu

    2015-01-01

    The functions and elasticities of the cell are largely related to the structures of the cytoskeletons underlying the lipid bi-layer. Among various cell types, the Red Blood Cell (RBC) possesses a relatively simple cytoskeletal structure. Underneath the membrane, the RBC cytoskeleton takes the form of a two dimensional triangular network, consisting of nodes of actins (and other proteins) and edges of spectrins. Recent experiments focusing on the malaria infected RBCs (iRBCs) showed that there is a correlation between the elongation of spectrins in the cytoskeletal network and the stiffening of the iRBCs. Here we rationalize the correlation between these two observations by combining the worm-like chain (WLC) model for single spectrins and the Effective Medium Theory (EMT) for the network elasticity. We specifically focus on how the disorders in the cytoskeletal network affect its macroscopic elasticity. Analytical and numerical solutions from our model reveal that the stiffness of the membrane increases with ...

  15. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging

    Corydon, Thomas J; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela

    2016-01-01

    campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker......Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight...... protein for the visualization of F-actin during the 24(th) DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31(st...

  16. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes

    Díaz-Chiguer, Dylan L; Hernández-Luis, Francisco; Nogueda-Torres, Benjamín; Castillo, Rafael; Reynoso-Ducoing, Olivia; Hernández-Campos, Alicia; Ambrosio, Javier R

    2014-01-01

    Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target. PMID:25317703

  17. Temperature response of the neuronal cytoskeleton mapped via atomic force and fluorescence microscopy

    Spedden, Elise; Staii, Cristian

    2013-01-01

    Neuronal cells change their growth properties in response to external physical stimuli such as variations in external temperature, stiffness of the growth substrate, or topographical guidance cues. Detailed knowledge of the mechanisms that control these biomechanical responses is necessary for understanding the basic principles that underlie neuronal growth and regeneration. Here, we present elasticity maps of living cortical neurons (embryonic rat) as a function of temperature, and correlate these maps to the locations of internal structural components of the cytoskeleton. Neurons display a significant increase in the average elastic modulus upon a decrease in ambient temperature from 37{\\deg}C to 25{\\deg}C. We demonstrate that the dominant mechanism by which the elasticity of the neurons changes in response to temperature is the stiffening of the actin components of the cytoskeleton induced by myosin II. We also report a reversible shift in the location and composition of the high-stiffness areas of the neu...

  18. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells

    Sampathkumar, A.; Gutierrez, R.; McFarlane, H.E.; Bringmann, M.; Lindeboom, J.J.; Emons, A.M.C.; Samuels, L.; Ketelaar, T.; Ehrhardt, D.W.; Persson, S.

    2013-01-01

    The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In

  19. The anti-actin drugs latrunculin and cytochalasin affect the maturation of spruce somatic embryos in different ways

    Vondráková, Zuzana; Eliášová, Kateřina; Vágner, Martin

    2014-01-01

    Roč. 221, MAY 2014 (2014), s. 90-99. ISSN 0168-9452 R&D Projects: GA MŠk 7AMB12FR017 Institutional support: RVO:61389030 Keywords : Somatic embryogenesis * Cytoskeleton * Actin Subject RIV: GK - Forestry Impact factor: 3.607, year: 2014

  20. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Kathleen A Estes

    2011-09-01

    Full Text Available The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  1. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Estes, Kathleen A; Szumowski, Suzannah C; Troemel, Emily R

    2011-09-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo. PMID:21949650

  2. Opposing Roles for Actin in Cdc42p PolarizationD⃞

    Irazoqui, Javier E.; Howell, Audrey S.; Theesfeld, Chandra L.; Lew, Daniel J.

    2005-01-01

    In animal and fungal cells, the monomeric GTPase Cdc42p is a key regulator of cell polarity that itself exhibits a polarized distribution in asymmetric cells. Previous work showed that in budding yeast, Cdc42p polarization is unaffected by depolymerization of the actin cytoskeleton (Ayscough et al., J. Cell Biol. 137, 399–416, 1997). Surprisingly, we now report that unlike complete actin depolymerization, partial actin depolymerization leads to the dispersal of Cdc42p from the polarization site in unbudded cells. We provide evidence that dispersal is due to endocytosis associated with cortical actin patches and that actin cables are required to counteract the dispersal and maintain Cdc42p polarity. Thus, although Cdc42p is initially polarized in an actin-independent manner, maintaining that polarity may involve a reinforcing feedback between Cdc42p and polarized actin cables to counteract the dispersing effects of actin-dependent endocytosis. In addition, we report that once a bud has formed, polarized Cdc42p becomes more resistant to dispersal, revealing an unexpected difference between unbudded and budded cells in the organization of the polarization site. PMID:15616194

  3. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  4. Kindlin-2 directly binds actin and regulates integrin outside-in signaling.

    Bledzka, Kamila; Bialkowska, Katarzyna; Sossey-Alaoui, Khalid; Vaynberg, Julia; Pluskota, Elzbieta; Qin, Jun; Plow, Edward F

    2016-04-11

    Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2(+/-)mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK(47)/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK(47)/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK(47)/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses. PMID:27044892

  5. EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica.

    Nitesh Kumar

    2014-09-01

    Full Text Available Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.

  6. The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells

    Fan, Lifei; Pellegrin, Stephanie; Scott, Alice; Mellor, Harry

    2010-01-01

    Actin stress fibers are fundamental components of the actin cytoskeleton that produce contractile force in non-muscle cells. The formation of stress fibers is controlled by the small GTPase RhoA and two highly related proteins, RhoB and RhoC. Together, this subgroup of actin-regulatory proteins represents the canonical pathway of stress-fiber formation. Here, we show that the Rif GTPase is an alternative trigger of stress-fiber formation in epithelial cells. Rif is distantly related to RhoA; ...

  7. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  8. Cytosolic pressure provides a propulsive force comparable to actin polymerization during lamellipod protrusion

    Manoussaki, Daphne; Shin, William D.; Waterman, Clare M.; Chadwick, Richard S.

    2015-07-01

    Does cytosolic pressure facilitate f-actin polymerization to push the leading edge of a cell forward during self-propelled motion? AFM force-distance (f-d) curves obtained from lamellipodia of live cells often exhibit a signal from which the tension, bending modulus, elastic modulus and thickness in the membrane-cortex complex can be estimated close to the contact point. These measurements permit an estimate of the cytosolic pressure via the canonical Laplace force balance. The deeper portion of the f-d curve allows estimation of the bulk modulus of the cytoskeleton after removal of the bottom effect artifact. These estimates of tension, pressure, cortex thickness and elastic moduli imply that cytosolic pressure both pushes the membrane forward and compresses the actin cortex rearward to facilitate f-actin polymerization. We also estimate that cytosolic pressure fluctuations, most likely induced by myosin, provide a propulsive force comparable to that provided by f-actin polymerization in a lamellipod.

  9. Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin

    Wang, Qiang; Xie, Yi; Du, Quan-Sheng; Wu, Xiao-Jun; FENG, XU; Mei, Lin; McDonald, Jay M.; Xiong, Wen-Cheng

    2003-01-01

    Osteoclast activation is important for bone remodeling and is altered in multiple bone disorders. This process requires cell adhesion and extensive actin cytoskeletal reorganization. Proline-rich tyrosine kinase 2 (PYK2), a major cell adhesion–activated tyrosine kinase in osteoclasts, plays an important role in regulating this event. The mechanisms by which PYK2 regulates actin cytoskeletal organization and osteoclastic activation remain largely unknown. In this paper, we provide evidence tha...

  10. Effects of Mechanical Stretching on the Morphology and Cytoskeleton of Vaginal Fibroblasts from Women with Pelvic Organ Prolapse

    Sumei Wang

    2015-04-01

    Full Text Available Mechanical load and postmenopausal hypoestrogen are risk factors for pelvic organ prolapse (POP. In this study, we applied a 0.1-Hz uniaxial cyclic mechanical stretching (CS with 10% elongation and 10−8 M 17-β-estradiol to vaginal fibroblasts isolated from postmenopausal women with or without POP to investigate the effects of CS and estrogen on cell morphology and cytoskeletons of normal and POP fibroblasts. Under static culture condition, POP fibroblasts exhibited lower cell circularity and higher relative fluorescence intensities (RFIs of F-actin, α-tubulin and vimentin. When cultured with CS, all fibroblasts grew perpendicular to the force and exhibited a decreased cell projection area, cell circularity and increased cell length/width ratio; normal fibroblasts exhibited increased RFIs of all three types of cytoskeleton, and POP fibroblasts exhibited a decreased RFI of F-actin and no significant differences of α-tubulin and vimentin. After being cultured with 17-β-estradiol and CS, normal fibroblasts no longer exhibited significant changes in the cell projection area and the RFIs of F-actin and α-tubulin; POP fibroblasts exhibited no significant changes in cell circularity, length/width ratio and F-actin even with the increased RFIs of α-tubulin and vimentin. These findings suggest that POP fibroblasts have greater sensitivity to and lower tolerance for mechanical stretching, and estrogen can improve the prognosis.

  11. Effects of mechanical stretching on the morphology and cytoskeleton of vaginal fibroblasts from women with pelvic organ prolapse.

    Wang, Sumei; Zhang, Zhenyu; Lü, Dongyuan; Xu, Qiuxiang

    2015-01-01

    Mechanical load and postmenopausal hypoestrogen are risk factors for pelvic organ prolapse (POP). In this study, we applied a 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10⁻⁸ M 17-β-estradiol to vaginal fibroblasts isolated from postmenopausal women with or without POP to investigate the effects of CS and estrogen on cell morphology and cytoskeletons of normal and POP fibroblasts. Under static culture condition, POP fibroblasts exhibited lower cell circularity and higher relative fluorescence intensities (RFIs) of F-actin, α-tubulin and vimentin. When cultured with CS, all fibroblasts grew perpendicular to the force and exhibited a decreased cell projection area, cell circularity and increased cell length/width ratio; normal fibroblasts exhibited increased RFIs of all three types of cytoskeleton, and POP fibroblasts exhibited a decreased RFI of F-actin and no significant differences of α-tubulin and vimentin. After being cultured with 17-β-estradiol and CS, normal fibroblasts no longer exhibited significant changes in the cell projection area and the RFIs of F-actin and α-tubulin; POP fibroblasts exhibited no significant changes in cell circularity, length/width ratio and F-actin even with the increased RFIs of α-tubulin and vimentin. These findings suggest that POP fibroblasts have greater sensitivity to and lower tolerance for mechanical stretching, and estrogen can improve the prognosis. PMID:25923074

  12. Alpha-herpesvirus infection induces the formation of nuclear actin filaments.

    Feierbach, Becket; Piccinotti, Silvia; Bisher, Margaret; Denk, Winfried; Enquist, Lynn W

    2006-08-01

    Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process. PMID:16933992

  13. Double localization of F-actin in chemoattractant-stimulated polymorphonuclear leucocytes.

    Lepidi, H; Benoliel, A M; Mege, J L; Bongrand, P; Capo, C

    1992-09-01

    Uniform concentrations of chemoattractants such as formylpeptides induced a morphological polarization of human polymorphonuclear leucocytes (PMNs) and a concentration of F-actin at the cell front. They also induced a transient increase in filamentous actin (F-actin) which preceded the cell shape change. We combined fluorescence microscopy and image analysis to study the localization of F-actin, as revealed by a specific probe (bodipyTM phallacidin) in suspended PMNs stimulated by chemoattractants. F-actin exhibited remarkable concentration in focal points after a 30 s exposure to 10(-8) M formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe), although no shape change of PMNs was detectable. A 10-min incubation with formylpeptide (10(-6) to 10(-9) M) induced the morphological polarization of PMNs and the appearance of a principal focus of F-actin in the cell head region and a secondary focus in the cell posterior end. The distribution of F-actin-associated fluorescence in 2D images of polarized PMNs might be due to an actual concentration of F-actin in privileged areas, to a local concentration of plasma membrane drawing filamentous actin or to variations in the cell volume. Then, we studied the distribution of a cytoplasmic marker, fluorescein diacetate and a membrane probe, TMA-DPH, in unstimulated rounded PMNs and in spherical and morphologically polarized PMNs stimulated by formylpeptide. The distribution of neither of these probes was correlated with F-actin distribution, especially in rounded PMNs stimulated 30 s with 10(-8) M fMet-Leu-Phe, suggesting that F-actin was concentrated in two foci located in the cell head region and in the cell posterior end. In addition, zymosan-activated serum induced the morphological polarization of PMNs and the appearance of two foci of filamentous actin, demonstrating that binding of formylpeptide to its specific receptor was not required for F-actin reorganization. We conclude that the accumulation of F-actin probably

  14. Control of actin-based motility through localized actin binding

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it, if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disc. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young’s modulus of the actin network and can explain several aspects of actin-based motility. (paper)

  15. Study of the influence of actin-binding proteins using linear analyses of cell deformability.

    Plaza, Gustavo R; Uyeda, Taro Q P; Mirzaei, Zahra; Simmons, Craig A

    2015-07-21

    The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing. PMID:26059185

  16. Novel anti-HIV therapeutics targeting chemokine receptors and actin regulatory pathways.

    Spear, Mark; Guo, Jia; Wu, Yuntao

    2013-11-01

    The human immunodeficiency virus-1 (HIV-1) infects helper CD4(+) T cells, and causes CD4(+) T-cell depletion and immunodeficiency. In the past 30 years, significant progress has been made in antiretroviral therapy, and the disease has become manageable. Nevertheless, an effective vaccine is still nowhere in sight, and a cure or a functional cure awaits discovery. Among possible curative therapies, traditional antiretroviral therapy, mostly targeting viral proteins, has been proven ineffective. It is possible that targeting HIV-dependent host cofactors may offer alternatives, both for preventing HIV transmission and for forestalling disease progression. Recently, the actin cytoskeleton and its regulators in blood CD4(+) T cells have emerged as major host cofactors that could be targeted. The novel concept that the cortical actin is a barrier to viral entry and early post-entry migration has led to the nascent model of virus-host interaction at the cortical actin layer. Deciphering the cellular regulatory pathways has manifested exciting prospects for future therapeutics. In this review, we describe the study of HIV interactions with actin cytoskeleton. We also examine potential pharmacological targets that emerge from this interaction. In addition, we briefly discuss several actin pathway-based anti-HIV drugs that are currently in development or testing. PMID:24117829

  17. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse

    Hartzell, Catherine A; Jankowska, Katarzyna I; Burkhardt, Janis K; Lewis, Richard S

    2016-01-01

    T cell receptor (TCR) engagement opens Ca2+ release-activated Ca2+ (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca2+ influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca2+-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca2+ as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca2+ influx may modulate TCR signaling. DOI: http://dx.doi.org/10.7554/eLife.14850.001 PMID:27440222

  18. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse.

    Hartzell, Catherine A; Jankowska, Katarzyna I; Burkhardt, Janis K; Lewis, Richard S

    2016-01-01

    T cell receptor (TCR) engagement opens Ca(2+) release-activated Ca(2+) (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca(2+) influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca(2+)-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca(2+) as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca(2+) influx may modulate TCR signaling. PMID:27440222

  19. The pathogen-actin connection: A platform for defense signaling in plants

    Day, B; Henty, Jessica L; Porter, K J; Staiger, Chris J

    2011-09-08

    The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.

  20. Reorganization: premises, processes, and pitfalls.

    Jacobson, S.

    1994-01-01

    As the technological environment changes and libraries assume new and more active roles in their institutions, the traditional library hierarchy ceases to be an effective organizational structure. Guided by theories that emphasize teamwork, quality, and employee empowerment and participation, libraries are developing flatter, more networked organizations. The Health Sciences Library at Columbia University in New York, New York, recently underwent a reorganization in an effort to become a more...

  1. The cytoskeleton significantly impacts invasive behavior of biological cells

    Fritsch, Anatol; Käs, Josef; Seltman, Kristin; Magin, Thomas

    2014-03-01

    Cell migration is a key determinant of cancer metastasis and nerve regeneration. The role of the cytoskeleton for the epithelial-meschenymal transition (EMT), i.e, for invasive behavior of cells, is only partially understood. Here, we address this issue in cells lacking all keratins upon genome engineering. In contrast to prediction, keratin-free cells show a 60% higher deformability compared to less pronounced softening effects for actin depolymerization. To relate these findings with functional consequences, we use invasion and three-dimensional growth assays. These reveal higher invasiveness of keratin-free cells. This study supports the view that downregulation of keratins observed during EMT directly contributes to the migratory and invasive behavior of tumor cells. Cancer cells that effectively move through tissues are softer and more contractile than cells that stay local in tissues. Soft and contractile avoids jamming. Naturally, softness has to have its limits. So neuronal growth cones are too soft to carry large loads to move efficiently through scar tissue, which is required for nerve regeneration. In synopsis, the physical bounds that the functional modules of a moving cell experience in tissues may provide an overarching motif for novel approaches in diagnosis and therapy.

  2. Coupled actin-lamin biopolymer networks and protecting DNA

    Zhang, Tao; Rocklin, D. Zeb; Mao, Xiaoming; Schwarz, J. M.

    The mechanical properties of cells are largely determined by networks of semiflexible biopolymers forming the cytoskeleton. Similarly, the mechanical properties of cell nuclei are also largely determined by networks of semiflexible biopolymers forming the nuclear cytoskeleton. In particular, a network of filamentous lamin sits just inside the inner nuclear membrane to presumably protect the heart of the cell nucleus--the DNA. It has been demonstrated over the past decade that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins bridging the outer and inner nuclear membranes, known as the LINC complex. We, therefore, probe the consequences of such a coupling in a model biopolymer network system via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the actin cytoskeletal network. We find, for example, that the force transmission across the coupled system can depend sensitively on the concentration of LINC complexes. Such study could have implications for mechanical mechanisms of the regulation of transcription since DNA couples to lamin via lamin-binding domains so that deformations in the lamin network may result in deformations in the DNA.

  3. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  4. Perturbation of host cell cytoskeleton by cranberry proanthocyanidins and their effect on enteric infections.

    Kevin Harmidy

    Full Text Available Cranberry-derived compounds, including a fraction known as proanthocyanidins (PACs exhibit anti-microbial, anti-infective, and anti-adhesive properties against a number of disease-causing organisms. In this study, the effect of cranberry proanthocyanidins (CPACs on the infection of epithelial cells by two enteric bacterial pathogens, enteropathogenic Escherichia coli (EPEC and Salmonella Typhimurium was investigated. Immunofluorescence data showed that actin pedestal formation, required for infection by enteropathogenic Escherichia coli (EPEC, was disrupted in the presence of CPACs. In addition, invasion of HeLa cells by Salmonella Typhimurium was significantly reduced, as verified by gentamicin protection assay and immunofluorescence. CPACs had no effect on bacterial growth, nor any detectable effect on the production of bacterial effector proteins of the type III secretion system. Furthermore, CPACs did not affect the viability of host cells. Interestingly, we found that CPACs had a potent and dose-dependent effect on the host cell cytoskeleton that was evident even in uninfected cells. CPACs inhibited the phagocytosis of inert particles by a macrophage cell line, providing further evidence that actin-mediated host cell functions are disrupted in the presence of cranberry CPACs. Thus, although CPAC treatment inhibited Salmonella invasion and EPEC pedestal formation, our results suggest that this is likely primarily because of the perturbation of the host cell cytoskeleton by CPACs rather than an effect on bacterial virulence itself. These findings have significant implications for the interpretation of experiments on the effects of CPACs on bacteria-host cell interactions.

  5. TccP2 of O157:H7 and Non-O157 Enterohemorrhagic Escherichia coli (EHEC): Challenging the Dogma of EHEC-Induced Actin Polymerization▿

    Ogura, Yoshitoshi; Ooka, Tadasuke; Whale, Andrew; Garmendia, Junkal; Beutin, Lothar; Tennant, Sharon; Krause, Gladys; Morabito, Stefano; Chinen, Isabel; Tobe, Toru; Abe, Hiroyuki; Tozzoli, Rosangela; Caprioli, Alfredo; Rivas, Marta; Robins-Browne, Roy

    2006-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) trigger actin polymerization at the site of bacterial adhesion by inducing different signaling pathways. Actin assembly by EPEC requires tyrosine phosphorylation of Tir, which subsequently binds the host adaptor protein Nck. In contrast, TirEHEC O157 is not tyrosine phosphorylated and instead of Nck utilizes the bacterially encoded Tir-cytoskeleton coupling protein (TccP)/EspFU, which mimics the function of ...

  6. Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells

    Malgorzata Kloc

    2012-10-01

    Full Text Available The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization and negatively regulates cell motility via regulation of RhoA
    expression. We studied the organization of actin and cytokeratin cytoskeleton and the expression of TCTP, p53,
    cyclin A, RhoA and actin in HIO180 non-transformed ovarian epithelial cells, and OVCAR3 and SKOV3 (expressing
    low level of inducible p53 ovarian epithelial cancer cells with different metastatic potential. Immunostaining
    and ultrastructural analyses illustrated a dramatic difference in the organization of the cytokeratin and actin
    filaments in non-transformed versus cancer cell lines. We also determined that there is an inverse relationship between
    the level of TCTP/RhoA and actin/p53/cyclin A expression in ovarian cancer cell lines. This previously unidentified
    negative relationship between TCTP/RhoA and actin/p53/cyclin A may suggest that this interaction is linked
    with the high aggressiveness of ovarian cancers.The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization

  7. AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells

    Naofumi Yui

    2012-02-01

    Remodeling of the actin cytoskeleton is required for vasopressin (VP-induced aquaporin 2 (AQP2 trafficking. Here, we asked whether VP and forskolin (FK-mediated F-actin depolymerization depends on AQP2 expression. Using various MDCK and LLC-PK1 cell lines with different AQP2 expression levels, we performed F-actin quantification and immunofluorescence staining after VP/FK treatment. In MDCK cells, in which AQP2 is delivered apically, VP/FK mediated F-actin depolymerization was significantly correlated with AQP2 expression levels. A decrease of apical membrane associated F-actin was observed upon VP/FK treatment in AQP2 transfected, but not in untransfected cells. There was no change in basolateral actin staining under these conditions. In LLC-PK1 cells, which deliver AQP2 basolaterally, a significant VP/FK mediated decrease in F-actin was also detected only in AQP2 transfected cells. This depolymerization response to VP/FK was significantly reduced by siRNA knockdown of AQP2. By immunofluorescence, an inverse relationship between plasma membrane AQP2 and membrane-associated F-actin was observed after VP/FK treatment again only in AQP2 transfected cells. This is the first report showing that VP/FK mediated F-actin depolymerization is dependent on AQP2 protein expression in renal epithelial cells, and that this is not dependent on the polarity of AQP2 membrane insertion.

  8. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  9. Size distribution of linear and helical polymers in actin solution analyzed by photon counting histogram.

    Terada, Naofumi; Shimozawa, Togo; Ishiwata, Shin'ichi; Funatsu, Takashi

    2007-03-15

    Actin is a ubiquitous protein that is a major component of the cytoskeleton, playing an important role in muscle contraction and cell motility. At steady state, actin monomers and filaments (F-actin) coexist, and actin subunits continuously attach and detach at the filament ends. However, the size distribution of actin oligomers in F-actin solution has never been clarified. In this study, we investigated the size distribution of actin oligomers using photon-counting histograms. For this purpose, actin was labeled with a fluorescent dye, and the emitted photons were detected by confocal optics (the detection volume was of femtoliter (fL) order). Photon-counting histograms were analyzed to obtain the number distribution of actin oligomers in the detection area from their brightness, assuming that the brightness of an oligomer was proportional to the number of protomers. We found that the major populations at physiological ionic strength were 1-5mers. For data analysis, we successfully applied the theory of linear and helical aggregations of macromolecules. The model postulates three states of actin, i.e., monomers, linear polymers, and helical polymers. Here we obtained three parameters: the equilibrium constants for polymerization of linear polymers, K(l)=(5.2 +/- 1.1) x 10(6) M(-1), and helical polymers, K(h)=(1.6 +/- 0.5) x 10(7) M(-1); and the ratio of helical to linear trimers, gamma = (3.6 +/- 2.3) x 10(-2). The excess free energy of transforming a linear trimer to a helical trimer, which is assumed to be a nucleus for helical polymers, was calculated to be 2.0 kcal/mol. These analyses demonstrate that the oligomeric phase at steady state is predominantly composed of linear 1-5mers, and the transition from linear to helical polymers occurs on the level of 5-7mers. PMID:17172301

  10. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies. PMID:27041483

  11. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions.

    Di Venosa, Gabriela; Perotti, Christian; Batlle, Alcira; Casas, Adriana

    2015-08-01

    It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed. PMID:25832889

  12. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging.

    Corydon, Thomas J; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela

    2016-01-01

    Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24(th) DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31(st) parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization. PMID:26818711

  13. Calcium and actin in the saga of awakening oocytes

    Santella, Luigia, E-mail: santella@szn.it; Limatola, Nunzia; Chun, Jong T.

    2015-04-24

    The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm–egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent “excitable media” that quickly respond to the stimulus with the Ca{sup 2+} swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca{sup 2+} signals and in the control of monospermic fertilization. - Highlights: • Besides microtubules, microfilaments may anchor the nucleus to oocyte surface. • The cortical Ca{sup 2+} flash and wave at fertilization mirror electrical membrane change. • Artificial egg activation lacks microvilli extension in the perivitelline space. • Calcium is necessary but not sufficient for cortical granules exocytosis. • Actin cytoskeleton modulates Ca{sup 2+} release at oocyte maturation

  14. Calcium and actin in the saga of awakening oocytes

    The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm–egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent “excitable media” that quickly respond to the stimulus with the Ca2+ swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca2+ signals and in the control of monospermic fertilization. - Highlights: • Besides microtubules, microfilaments may anchor the nucleus to oocyte surface. • The cortical Ca2+ flash and wave at fertilization mirror electrical membrane change. • Artificial egg activation lacks microvilli extension in the perivitelline space. • Calcium is necessary but not sufficient for cortical granules exocytosis. • Actin cytoskeleton modulates Ca2+ release at oocyte maturation and fertilization

  15. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling. PMID:26900020

  16. The Interference of Selected Cytotoxic Alkaloids with the Cytoskeleton: An Insight into Their Modes of Action.

    Wang, Xiaojuan; Tanaka, Mine; Krstin, Sonja; Peixoto, Herbenya Silva; Wink, Michael

    2016-01-01

    Alkaloids, the largest group among the nitrogen-containing secondary metabolites of plants, usually interact with several molecular targets. In this study, we provide evidence that six cytotoxic alkaloids (sanguinarine, chelerythrine, chelidonine, noscapine, protopine, homoharringtonine), which are known to affect neuroreceptors, protein biosynthesis and nucleic acids, also interact with the cellular cytoskeleton, such as microtubules and actin filaments, as well. Sanguinarine, chelerythrine and chelidonine depolymerized the microtubule network in living cancer cells (Hela cells and human osteosarcoma U2OS cells) and inhibited tubulin polymerization in vitro with IC50 values of 48.41 ± 3.73, 206.39 ± 4.20 and 34.51 ± 9.47 μM, respectively. However, sanguinarine and chelerythrine did not arrest the cell cycle while 2.5 μM chelidonine arrested the cell cycle in the G₂/M phase with 88.27% ± 0.99% of the cells in this phase. Noscapine and protopine apparently affected microtubule structures in living cells without affecting tubulin polymerization in vitro, which led to cell cycle arrest in the G2/M phase, promoting this cell population to 73.42% ± 8.31% and 54.35% ± 11.26% at a concentration of 80 μM and 250.9 μM, respectively. Homoharringtonine did not show any effects on microtubules and cell cycle, while the known microtubule-stabilizing agent paclitaxel was found to inhibit tubulin polymerization in the presence of MAPs in vitro with an IC50 value of 38.19 ± 3.33 μM. Concerning actin filaments, sanguinarine, chelerythrine and chelidonine exhibited a certain effect on the cellular actin filament network by reducing the mass of actin filaments. The interactions of these cytotoxic alkaloids with microtubules and actin filaments present new insights into their molecular modes of action. PMID:27420038

  17. Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae

    1993-01-01

    Abplp is a yeast cortical actin-binding protein that contains an SH3 domain similar to those found in signal transduction proteins that function at the membrane/cytoskeleton interface. Although no detectable phenotypes are associated with a disruption allele of ABP1, mutations that create a requirement for this protein have now been isolated in the previously identified gene SAC6 and in two new genes, SLA1 and SLA2. The SAC6 gene encodes yeast fimbrin, an actin filament-bundling protein. Null...

  18. Isoflurane Impairs Immature Astroglia Development In Vitro: The Role of Actin Cytoskeleton

    Lunardi, Nadia; Hucklenbruch, Christoph; Latham, Janelle R.; Scarpa, Joseph.; Jevtovic-Todorovic, Vesna

    2011-01-01

    General anesthetics, either alone or in combination, can be detrimental to the developing mammalian brain and induce extensive apoptotic degeneration of immature neurons when they are administered at the peak of synaptogenesis. Because neuron development and normal functions depend on the integrity and astroglia, we sought to determine whether general anesthesia also causes disturbances in the early development of astroglia. Using isoflurane, an inhaled anesthetic that is highly toxic to imma...

  19. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton

    Joseph S. Stephan; Luana Fioriti; Nayan Lamba; Luca Colnaghi; Kevin Karl; Irina L. Derkatch; Eric R. Kandel

    2015-01-01

    The mouse cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a translational regulator implicated in long-term memory maintenance. Invertebrate orthologs of CPEB3 in Aplysia and Drosophila are functional prions that are physiologically active in the aggregated state. To determine if this principle applies to the mammalian CPEB3, we expressed it in yeast and found that it forms heritable aggregates that are the hallmark of known prions. In addition, we confirm in the mouse the im...

  20. Activated radixin is essential for GABAA receptor α5 subunit anchoring at the actin cytoskeleton

    Loebrich, Sven; Bähring, Robert; Katsuno, Tatsuya; Tsukita, Sachiko; Kneussel, Matthias

    2006-01-01

    Neurotransmitter receptor clustering is thought to represent a critical parameter for neuronal transmission. Little is known about the mechanisms that anchor and concentrate inhibitory neurotransmitter receptors in neurons. GABAA receptor (GABAAR) α5 subunits mainly locate at extrasynaptic sites and are thought to mediate tonic inhibition. Notably, similar as synaptic GABAARs, these receptor subtypes also appear in cluster formations at neuronal surface membranes and are of particular interes...

  1. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons

    Cytoskeleton disruption is a process by which oxidative stress disrupts cellular function. This study compares and contrasts the effect of oxidative stress on the three major cytoskeleton filaments, microfilaments (MFs), microtubule (MT), and vimentin in human cortical neuronal cell line (HCN2). HCN2 cells were treated with 100 μM tertiary butylhydroperoxide (t-BuOOH), a free radical generating neurotoxin for 1, 3, or 6 h. Cell viability studies demonstrated significant cell death although the morphology studies showed that there was a substantial loss in neurites of neurons treated with t-BuOOH for 6 h. Because the cytoskeleton plays a role in neurite outgrowth, the effect of oxidative stress on the cytoskeletal was studied. In neurons subjected to oxidative stress for 30 min or 1 h, there were no major changes in microfilament distribution though there was altered distribution of microtubule and vimentin filaments as compared to controls. However, loss and disruption of all the three cytoskeletal filaments was observed at later times (3 and 6 h), which was confirmed by Western Blot analysis. Further studies were done to measure the gene expression levels of actin, tubulin, and vimentin. Results indicated that the overall loss of the cytoskeletal proteins in neurons treated with free radical generating toxin might not be a direct result of the downregulation of the cytoskeletal genes. This study shows that free radical generation in human neurons leads to the disruption of the cytoskeleton, though there may be a difference in the susceptibility to oxidative stress among the individual components of the cytoskeletal filaments

  2. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin [(Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA]. Immunoprecipitation of SIg from the detergent soluble fraction of 35S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal

  3. Alix regulates cortical actin and the spatial distribution of endosomes.

    Cabezas, Alicia; Bache, Kristi G; Brech, Andreas; Stenmark, Harald

    2005-06-15

    Alix/AIP1 is a proline-rich protein that has been implicated in apoptosis, endocytic membrane trafficking and viral budding. To further elucidate the functions of Alix, we used RNA interference to specifically suppress its expression. Depletion of Alix caused a striking redistribution of early endosomes from a peripheral to a perinuclear location. The redistribution of endosomes did not affect transferrin recycling or degradation of endocytosed epidermal growth factor receptors, although the uptake of transferrin was mildly reduced when Alix was downregulated. Quantitative immunoelectron microscopy showed that multivesicular endosomes of Alix-depleted cells contained normal amounts of CD63, whereas their levels of lysobisphosphatidic acid were reduced. Alix depletion also caused an accumulation of unusual actin structures that contained clathrin and cortactin, a protein that couples membrane dynamics to the cortical actin cytoskeleton. Our results suggest that Alix functions in the actin-dependent intracellular positioning of endosomes, but that it is not essential for endocytic recycling or for trafficking of membrane proteins between early and late endosomes in non-polarised cells. PMID:15914539

  4. Dynamic Actin Controls Polarity Induction de novo in Protoplasts

    Beatrix Zaban; Jan Maisch; Peter Nick

    2013-01-01

    Cell polarity and axes are central for plant morphogenesis.To study how polarity and axes are induced de novo,we investigated protoplasts of tobacco Nicotiana tabacum cv.BY-2 expressing fluorescentlytagged cytoskeletal markers.We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages.The synthesis of a new cell wall marks the transition to the first stage of regeneration,and proceeds after a long preparatory phase within a few minutes.During this preparatory phase,the nucleus migrates actively,and cytoplasmic strands remodel vigorously.We probed this system for the effect of anti-cytoskeletal compounds,inducible bundling of actin,RGD-peptides,and temperature.Suppression of actin dynamics at an early stage leads to aberrant tripolar cells,whereas suppression of microtubule dynamics produces aberrant sausagelike cells with asymmetric cell walls.We integrated these data into a model,where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis.Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments,and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  5. Prediction and dissection of widely-varying association rate constants of actin-binding proteins.

    Xiaodong Pang

    Full Text Available Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k(a = k(a0 e(-ΔG(el*/k(BT, where k(a0 is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k(a variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.

  6. Probing the effect of elevated cholesterol on the mechanical properties of membrane-cytoskeleton by optical tweezers

    Rajkumar, Arun S.; Muley, Ajit; Chatterjee, Suvro; Jaffar Ali, B. M.

    2010-08-01

    The composition of the cell membrane and the surrounding physiological factors determine the nature and dynamics of membrane-cytoskeleton coupling. Mechanical strength of a cell is mainly derived from such coupling. In this article, we investigate the effect of extra cellular cholesterol on the membrane-cytoskelaton connectivity of single cell endothelium and consequent remodeling of its mechanical properties. Using optical tweezers as a force probe, we have measured membrane stiffness (km), membrane microviscosity (ηeff ) and the two-dimensional shear modulus (G'(f)) as a function of extracellular cholesterol in the range of 0.1mM to 6mM. We find that membrane stiffness and shear modulus are dependent on cholesterol-induced membrane-cytoskeletal organization. Further, by disrupting the membranecytoskeletal connectivity with Cytochalasin D, an actin delpolymerizing molecule, we recover pure membrane behaviour devoid of any cytoskeleton attachment. However, behaviour of ηeff was found to be unaffected by disruption of membrane-cytoskeleton organization. We infer that cholesterol is playing a distinct role in modulating membrane organization and membrane-cytoskeleton connectivity independently. We further discuss implications of our approach in characterizing cellular mechanics.

  7. The interaction between the adaptor protein APS and Enigma is involved in actin organisation

    Barres, Romain; Gonzalez, Teresa; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2005-01-01

    APS (adaptor protein with PH and SH2 domains) is an adaptor protein phosphorylated by several tyrosine kinase receptors including the insulin receptor. To identify novel binding partners of APS, we performed yeast two-hybrid screening. We identified Enigma, a PDZ and LIM domain-containing protein...... that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin...... receptor, Enigma and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not...

  8. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression

    Deeks, M.J.; Cvrčková, F.; Machesky, M. L.; Mikitova, V.; Ketelaar, T.; Žárský, Viktor; Davies, B.; Hussey, P.J.

    2005-01-01

    Roč. 168, č. 3 (2005), s. 529-540. ISSN 0028-646X R&D Projects: GA ČR GA204/02/1461; GA ČR GA204/05/0268 Institutional research plan: CEZ:AV0Z50380511 Keywords : actin * Arabidopsis * cytoskeleton Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.285, year: 2005

  9. The Cortical Actin Determines Different Susceptibility of Naïve and Memory CD4+ T Cells to HIV-1 Cell-to-Cell Transmission and Infection

    Permanyer, Marc; Pauls, Eduardo; Badia, Roger; Esté, José A; Ballana, Ester

    2013-01-01

    Memory CD4+ T cells are preferentially infected by HIV-1 compared to naïve cells. HIV-1 fusion and entry is a dynamic process in which the cytoskeleton plays an important role by allowing virion internalization and uncoating. Here, we evaluate the role of the cortical actin in cell-to-cell transfer of virus antigens and infection of target CD4+ T cells. Using different actin remodeling compounds we demonstrate that efficiency of HIV-internalization was proportional to the actin polymerization...

  10. Actin disassembly 'clock' and membrane tension determine cell shape and turning: a mathematical model

    Motile cells regulate their shape and movements largely by remodeling the actin cytoskeleton. Principles of this regulation are becoming clear for simple-shaped steadily crawling cells, such as fish keratocytes. In particular, the shape of the leading edge and sides of the lamellipodium-cell motile appendage-is determined by graded actin distribution at the cell boundary, so that the denser actin network at the front grows, while sparser actin filaments at the sides are stalled by membrane tension. Shaping of the cell rear is less understood. Here we theoretically examine the hypothesis that the cell rear is shaped by the disassembly clock: the front-to-rear lamellipodial width is defined by the time needed for the actin-adhesion network to disassemble to the point at which the membrane tension can crush this network. We demonstrate that the theory predicts the observed cell shapes. Furthermore, turning of the cells can be explained by biases in the actin distribution. We discuss experimental implications of this hypothesis.

  11. A LIM Domain Protein from Tobacco Involved in Actin-Bundling and Histone Gene Transcription

    Danièle Moes; Sabrina Gatti; Céline Hoffmann; Monika Dieterle; Flora Moreau; Katrin Neumann; Marc Schumacher

    2013-01-01

    The two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear distribution,suggesting that,in addition to their previously described roles in actin cytoskeleton organization,they participate in nuclear processes.Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters,we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA.Using both green fluorescent protein (GFP) fusion-and immunology-based strategies,we provide clear evidence that NtWLIM2 localizes to the actin cytoskeleton,the nucleus,and the nucleolus.Interestingly,the disruption of the actin cytoskeleton by latrunculin B significantly increases NtWLIM2 nuclear fraction,pinpointing a possible novel cytoskeletal-nuclear crosstalk.Biochemical and electron microscopy experiments reveal the ability of NtWLIM2 to directly bind to actin filaments and to crosslink the latter into thick actin bundles.Electrophoretic mobility shift assays show that NtWLIM2 specifically binds to the conserved octameric cis-elements (Oct) of the Arabidopsis histone H4A748 gene promoter and that this binding largely relies on both LIM domains.Importantly,reporter-based experiments conducted in Arabidopsis and tobacco protoplasts confirm the ability of NtWLIM2 to bind to and activate the H4A748 gene promoter in live cells.Expression studies indicate the constitutive presence of NtWLIM2 mRNA and NtWLIM2 protein during tobacco BY-2 cell proliferation and cell cycle progression,suggesting a role of NtWLIM2 in the activation of basal histone gene expression.Interestingly,both live cell and in vitro data support NtWLIM2 di/oligomerization.We propose that NtWLIM2 functions as an actin-stabilizing protein,which,upon cytoskeleton remodeling,shuttles to the nucleus in order to modify gene expression.

  12. Cytoskeleton and Early Development in Fucoid Algae

    2007-01-01

    Cell polarization and asymmetric cell divisions play important roles during development in many multicellular eukaryotes.Fucoid algae have a long history as models for studying early developmental processes, probably because of the ease with which zygotes can be observed and manipulated in the laboratory. This review discusses cell polarization and asymmetric cell divisions in fucoid algal zygotes with an emphasis on the roles played by the cytoskeleton.

  13. Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure.

    Priyanka Pravincumar

    Full Text Available BACKGROUND: Living cells are subjected to external and internal mechanical stresses. The effects of these stresses on the deformation and subsequent biological response of the cells remains unclear. This study tested the hypothesis that the rate at which pressure (or stress is applied influence the viscoelastic properties of the cell associated with differences in the dynamics of the actin cytoskeleton. PRINCIPAL FINDING: Micropipette aspiration was used to determine the instantaneous and equilibrium moduli and the viscosity of isolated chondrocytes based on the standard linear solid (SLS model and a variation of this incorporating Boltzmann superposition. Cells were visualised for 180 seconds following aspiration to 7 cmH(2O at 0.35, 0.70 and 5.48 cmH(2O/sec. Cell recovery was then examined for a further 180 seconds once the pressure had been removed. Reducing the rate of application of pressure reduced the levels of cell deformation and recovery associated with a significant increase in modulus and viscosity. Using GFP transfection and confocal microscopy, we show that chondrocyte deformation involves distortion, disassembly and subsequent reassembly of the cortical actin cytoskeleton. At faster pressure rates, cell deformation produced an increase in cell volume associated with membrane bleb formation. GFP-actin transfection inhibited the pressure rate dependent variation in cell mechanics indicating that this behaviour is regulated by GFP-sensitive actin dynamics. CONCLUSION: We suggest that slower rates of aspiration pressure enable greater levels of cortical actin distortion. This is partially inhibited by GFP or faster aspiration rates leading to membrane bleb formation and an increase in cell volume. Thus the rate of application of pressure regulates the viscoelastic mechanical properties of living cells through pressure rate sensitive differences in actin dynamics. Therefore cells appear softer when aspirated at a faster rate in

  14. Photovoltaic industry, towards a reorganization

    During the first semester 2011 the sales of photovoltaic equipment have dropped unexpectedly, certainly due to the harsh winter in Europe and the reduction of the policy of financial incentives in some countries. This drop in demand has triggered such a drop in prices that some manufacturers face financial difficulties, for instance the American Evergreen Solar was declared bankrupt in mid august 2011. Today the production of solar panels exceeds the demand. The third term of 2011 shows an improvement but the sector will not escape a reorganization: there are too many manufacturers, some will disappear, other will merge, the biggest will stay. Some economists see the future market divided into 2 sectors: one sector dedicated to the mass production of classical solar panels at very low cost, this sector will be occupied mainly by Chinese companies and another sector demanding a more specialized know-how will be driven by American, Japanese and European companies. (A.C.)

  15. RNase L Interacts with Filamin A To Regulate Actin Dynamics and Barrier Function for Viral Entry

    Siddiqui, Mohammad Adnan; Dayal, Shubham; Naji, Merna; Ezelle, Heather J.; Zeng, Chun; Zhou, Aimin; Hassel, Bret A.

    2014-01-01

    ABSTRACT The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents. PMID:25352621

  16. Simultaneous tracking of 3D actin and microtubule strains in individual MLO-Y4 osteocytes under oscillatory flow.

    Baik, Andrew D; Qiu, Jun; Hillman, Elizabeth M C; Dong, Cheng; Guo, X Edward

    2013-02-22

    Osteocytes in vivo experience complex fluid shear flow patterns to activate mechanotransduction pathways. The actin and microtubule (MT) cytoskeletons have been shown to play an important role in the osteocyte's biochemical response to fluid shear loading. The dynamic nature of physiologically relevant fluid flow profiles (i.e., 1Hz oscillatory flow) impedes the ability to image and study both actin and MT cytoskeletons simultaneously in the same cell with high spatiotemporal resolution. To overcome these limitations, a multi-channel quasi-3D microscopy technique was developed to track the actin and MT networks simultaneously under steady and oscillatory flow. Cells displayed high intercellular variability and intracellular cytoskeletal variability in strain profiles. Shear Exz was the predominant strain in both steady and oscillatory flows in the form of viscoelastic creep and elastic oscillations, respectively. Dramatic differences were seen in oscillatory flow, however. The actin strains displayed an oscillatory strain profile more often than the MT networks in all the strains tested and had a higher peak-to-trough strain magnitude. Taken together, the actin networks are the more responsive cytoskeletal networks in osteocytes under oscillatory flow and may play a bigger role in mechanotransduction pathway activation and regulation. PMID:23352617

  17. The yeast actin-related protein Arp2p is required for the internalization step of endocytosis.

    Moreau, V; Galan, J M; Devilliers, G; Haguenauer-Tsapis, R; Winsor, B

    1997-01-01

    The Saccharomyces cerevisiae actin-related protein Arp2p is an essential component of the actin cytoskeleton. We have tested its potential role in the endocytic and exocytic pathways by using a temperature-sensitive allele, arp2-1. The fate of the plasma membrane transporter uracil permease was followed to determine whether Arp2p plays a role in the endocytic pathway. Inhibition of normal endocytosis as revealed by maintenance of active uracil permease at the plasma membrane and strong protec...

  18. Roles of the cytoskeleton and of Protein Phosphorylation Events in the Osmotic Stress Response in EEL Intestinal Epithelium

    Lionetto, Maria G; Pedersen, Stine F; Hoffmann, Else K;

    2002-01-01

    The eel intestinal epithelium responds to an acute hypertonic challenge by a biphasic increase of the rate of Cl(-) absorption (measured as short circuit current, Isc, and creating a negative transepithelial potential, V(te), at the basolateral side of the epithelium). While the first, transient....../threonine phosphorylation events in the osmotic stress-induced ion transport in the eel intestinal epithelium, focusing on the sustained RVI phase, as well as on the previously uncharacterized response to hypotonic stress. The study was carried out using confocal laser scanning microscopy, a quantitative F-actin assay......-actin and microtubules. In addition, the shrinkage-induced activation of NKCC appears to require the activity of both PKC and MLCK. It is suggested that NKCC regulation by hypertonic stress involves an interaction between the cytoskeleton and protein phosphorylation events....

  19. 2',3'-Cyclic nucleotide 3'-phosphodiesterase binds to actin-based cytoskeletal elements in an isoprenylation-independent manner.

    De Angelis, D A; Braun, P E

    1996-09-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is an isoprenylated protein enriched in myelin and oligodendrocytes but also present in several other tissues at low levels. CNP binds avidly to membranes and in addition possesses several characteristics of cytoskeletal proteins. The role of isoprenylation in the association of CNP with the cytoskeleton was analyzed by ectopic expression in L cells of epitope-tagged CNP1 and a non-isoprenylated mutant CNP1. Using nonionic detergent extraction, drug-mediated cytoskeletal disruption, and coimmunoprecipitation with an anti-actin antibody, we show that CNP1 is associated with actin-based cytoskeletal elements independently of its isoprenylation status. A control protein, p21c-H-ras, which is also modified by isoprenylation at its carboxyl-terminus, does not bind to cytoskeletal structures as judged by the same criteria. We present a model that accounts for the association of CNP1 with membranes and the cytoskeleton. PMID:8752099

  20. Farthest First Clustering in Links Reorganization

    Deepshree A. Vadeyar

    2014-07-01

    Full Text Available Website can be easily design but to efficient user navigation is not a easy task since user behavior is keep changing and developer view is quite different from what user wants, so to improve navigation one way is reorganization of website structure. For reorganization here proposed strategy is farthest first traversal clustering algorithm perform clustering on two numeric parameters and for finding frequent traversal path of user Apriori algorithm is used. Our aim is to perform reorganization with fewer changes in website structure.

  1. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks.

    Osmanagic-Myers, Selma; Rus, Stefanie; Wolfram, Michael; Brunner, Daniela; Goldmann, Wolfgang H; Bonakdar, Navid; Fischer, Irmgard; Reipert, Siegfried; Zuzuarregui, Aurora; Walko, Gernot; Wiche, Gerhard

    2015-11-15

    Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility. Plectin-deficient endothelial cell layers were more leaky and showed reduced mechanical resilience in fluid-shear stress and mechanical stretch experiments. We suggest that the distorted AJs and upregulated actin stress fibres in plectin-deficient cells are rooted in perturbations of the vimentin cytoskeleton, as similar phenotypes could be mimicked in wild-type cells by disruption of vimentin filaments. In vivo studies in endothelium-restricted conditional plectin-knockout mice revealed significant distortions of AJs in stress-prone aortic arch regions and increased pulmonary vascular leakage. Our study opens a new perspective on cytoskeleton-controlled vascular permeability, where a plectin-organized vimentin scaffold keeps actomyosin contractility 'in-check' and maintains AJ homeostasis. PMID:26519478

  2. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    José B Gama

    2014-08-01

    Full Text Available Buruli ulcer (BU is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1 and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1. In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  3. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Gama, José B; Ohlmeier, Steffen; Martins, Teresa G; Fraga, Alexandra G; Sampaio-Marques, Belém; Carvalho, Maria A; Proença, Fernanda; Silva, Manuel T; Pedrosa, Jorge; Ludovico, Paula

    2014-08-01

    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis. PMID:25101965

  4. The cytoskeleton of chondrocytes of Sepia officinalis (Mollusca, Cephalopoda: an immunocytochemical study

    F Leone

    2009-06-01

    Full Text Available Our previous electron microscope study showed that chondrocytes from cephalopod cartilage possess a highly developed cytoskeleton and numerous cytoplasmic processes that ramify extensively through the tissue. We have now carried out a light microscope immunocytochemical study of chondrocytes from the orbital cartilage of Sepia officinalis to obtain indications as to the nature of the cytoskeletal components. We found clear positivity to antibodies against mammalian tubulin, vimentin, GFAP, and actin, but not keratin. The simultaneous presence of several cytoskeletal components is consistent with the hypothesis that cephalopod chondrocytes have the characteristics of both chondrocytes and osteocytes of vertebrates, which endow the tissue as a whole with some of the properties of vertebrate bone. We confirm, therefore, the presence in molluscs of the ubiquitous cytoskeletal proteins of metazoan cells that have remained highly conserved throughout phylogenetic evolution.

  5. Cucurbitacin covalent bonding to cysteine thiols: the filamentous-actin severing protein Cofilin1 as an exemplary target

    Gabrielsen, M.; Schuldt, M.; Munro, J; Borucka, D.; Cameron, J.; Baugh, M.; Mleczak, A; Lilla, S.; Morrice, N.; Olson, M.F.

    2013-01-01

    Background: Cucurbitacins are a class of triterpenoid natural compounds with potent bioactivities that led to their use as traditional remedies, and which continue to attract considerable attention as chemical biology tools and potential therapeutics. One obvious target is the actin-cytoskeleton; treatment with cucurbitacins results in cytoskeletal rearrangements that impact upon motility and cell morphology. Findings: Cucurbitacin reacted with protein cysteine thiols as well as dithiothr...

  6. Epistemological Pluralism: Reorganizing Interdisciplinary Research

    F. Stuart Chapin III

    2008-12-01

    Full Text Available Despite progress in interdisciplinary research, difficulties remain. In this paper, we argue that scholars, educators, and practitioners need to critically rethink the ways in which interdisciplinary research and training are conducted. We present epistemological pluralism as an approach for conducting innovative, collaborative research and study. Epistemological pluralism recognizes that, in any given research context, there may be several valuable ways of knowing, and that accommodating this plurality can lead to more successful integrated study. This approach is particularly useful in the study and management of social–ecological systems. Through resilience theory's adaptive cycle, we demonstrate how a focus on epistemological pluralism can facilitate the reorganization of interdisciplinary research and avoid the build-up of significant, but insufficiently integrative, disciplinary-dominated research. Finally, using two case studies—urban ecology and social–ecological research in Alaska—we highlight how interdisciplinary work is impeded when divergent epistemologies are not recognized and valued, and that by incorporating a pluralistic framework, these issues can be better explored, resulting in more integrated understanding.

  7. Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells.

    Arlek M González-Jamett

    Full Text Available Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin's ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands.

  8. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila.

    Shruti Haralalka

    Full Text Available The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs, and cell adhesion molecules Kin-of-IrreC (Kirre and Sticks-and-stones (Sns on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and

  9. Progresses in studies of nuclear actin

    ZHU Xiaojuan; ZENG Xianlu; SONG Zhaoxia; HAO Shui

    2004-01-01

    Actin is a protein abundant in cells. Recently, it has been proved to be universally existent in the nuclei of many cell types. Actin and actin-binding proteins, as well as actin-related proteins, are necessary for the mediation of the conformation and function of nuclear actin, including the transformation of actin between unpolymerized and polymerized, chroinatin remodeling, regulation of gene expression and RNA processing as well as RNA transportation. In this paper, we summarized the progresses in the research of nu clear actin.

  10. Possible interrelationship between changes in F-actin and myosin II, protein phosphorylation, and cell volume regulation in Ehrlich ascites tumor cells

    Pedersen, S F; Hoffmann, E K

    2002-01-01

    Osmotic shrinkage of Ehrlich ascites tumor cells (EATC) elicited translocation of myosin II from the cytosol to the cortical region, and swelling elicits concentration of myosin II in the Golgi region. Rho kinase and p38 both appeared to be involved in shrinkage-induced myosin II reorganization. In...... effects on F-actin. The subsequent F-actin depolymerization, however, appeared MLCK- and PKC-dependent, and the initial swelling-induced F-actin depolymerization was MLCK-dependent; both effects were apparently secondary to kinase-mediated effects on cell volume changes. NHE1 in EATC is activated both by...

  11. Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration

    Xavier, Charles Peter; Rastetter, Raphael H.; Bloemacher, Margit; Morgan Beesly, Reginald Owen; Fernández Fernández, María Pilar; Wang, Conan; Osman, Asiah; Miyata, Yoshihiko; (et al.)

    2012-01-01

    CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. A...

  12. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  13. Differential effects of LifeAct-GFP and actin-GFP on cell mechanics assessed using micropipette aspiration.

    Sliogeryte, Kristina; Thorpe, Stephen D; Wang, Zhao; Thompson, Clare L; Gavara, Nuria; Knight, Martin M

    2016-01-25

    The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hMSCs) were analysed using micropipette aspiration and the effective cellular equilibrium and instantaneous moduli calculated using the standard linear solid model. We show that LifeAct-GFP provides clearer visualisation of F-actin organisation and dynamics. Furthermore, LifeAct-GFP does not alter effective cellular mechanical properties whereas actin-GFP expression causes an increase in the cell modulus. Interestingly, LifeAct-GFP expression did produce a small (~10%) increase in the percentage of cells exhibiting aspiration-induced membrane bleb formation, whilst actin-GFP expression reduced blebbing. Further studies examined the influence of LifeAct-GFP in other cell types, namely chondrogenically differentiated hMSCs and murine chondrocytes. LifeAct-GFP also had no effect on the moduli of these non-blebbing cells for which mechanical properties are largely dependent on the actin cortex. In conclusion we show that LifeAct-GFP enables clearer visualisation of actin organisation and dynamics without disruption of the biomechanical properties of either the whole cell or the actin cortex. Thus the study provides new evidence supporting the use of LifeAct-GFP rather than actin-GFP for live cell microscopy and the study of cellular mechanobiology. PMID:26792287

  14. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  15. Live Cell Imaging of Actin Dynamics in the Filamentous Fungus Aspergillus nidulans.

    Schultzhaus, Zachary; Quintanilla, Laura; Hilton, Angelyn; Shaw, Brian D

    2016-04-01

    Hyphal cells of filamentous fungi grow at their tips in a method analogous to pollen tube and root hair elongation. This process, generally referred to as tip growth, requires precise regulation of the actin cytoskeleton, and characterizing the various actin structures in these cell types is currently an active area of research. Here, the actin marker Lifeact was used to document actin dynamics in the filamentous fungus Aspergillus nidulans. Contractile double rings were observed at septa, and annular clusters of puncta were seen subtending growing hyphal tips, corresponding to the well-characterized subapical endocytic collar. However, Lifeact also revealed two additional structures. One, an apical array, was dynamic on the face opposite the tip, while a subapical web was dynamic on the apical face and was located several microns behind the growth site. Each was observed turning into the other over time, implying that they could represent different localizations of the same structure, although hyphae with a subapical web grew faster than those exhibiting an apical array. The subapical web has not been documented in any filamentous fungus to date, and is separate from the networks of F-actin seen in other tip-growing organisms surrounding septa or stationary along the plasmalemma. PMID:26879694

  16. Dynamin-Actin Cross Talk Contributes to Phagosome Formation and Closure.

    Marie-Anaïs, Florence; Mazzolini, Julie; Herit, Floriane; Niedergang, Florence

    2016-05-01

    Phagocytosis is a mechanism used by macrophages to internalize and eliminate microorganisms or cellular debris. It relies on profound rearrangements of the actin cytoskeleton that is the driving force allowing plasma membrane extension around the particle. The closure step of phagocytosis, however, remains poorly defined. We used a dedicated experimental setup with Total Internal Reflection Fluorescence Microscopy (TIRFM) to monitor phagosome formation and closure in three dimensions in living cells. We show that dynamin-2, which mediates the scission of endocytic vesicles, was recruited early and concomitantly with actin during phagosome formation. Dynamin-2 accumulated at the site of phagosome closure in living macrophages. Inhibition of its activity with dominant negative mutants or drugs demonstrated that dynamin-2 is implicated in actin dynamics and pseudopod extension. Depolymerization of actin led to impaired dynamin-2 recruitment or activity. Finally, we show that dynamin-2 plays a critical role in the effective scission of the phagosome from the plasma membrane. Thus, we establish that a cross talk between actin and dynamin takes place for phagosome formation and closure before dynamin functions for scission. PMID:26847957

  17. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    Dong-Hua Chen

    2013-10-01

    Full Text Available Calcium (Ca2+ plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.

  18. Regulation of blood-testis barrier by actin binding proteins and protein kinases.

    Li, Nan; Tang, Elizabeth I; Cheng, C Yan

    2016-03-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases. PMID:26628556

  19. Stiffening of Red Blood Cells Induced by Cytoskeleton Disorders: A Joint Theory-Experiment Study.

    Lai, Lipeng; Xu, Xiaofeng; Lim, Chwee Teck; Cao, Jianshu

    2015-12-01

    The functions and elasticities of the cell are largely related to the structures of the cytoskeletons underlying the lipid bilayer. Among various cell types, the red blood cell (RBC) possesses a relatively simple cytoskeletal structure. Underneath the membrane, the RBC cytoskeleton takes the form of a two-dimensional triangular network, consisting of nodes of actins (and other proteins) and edges of spectrins. Recent experiments focusing on the malaria-infected RBCs (iRBCs) show that there is a correlation between the elongation of spectrins in the cytoskeletal network and the stiffening of the iRBCs. Here we rationalize the correlation between these two observations by combining the wormlike chain model for single spectrins and the effective medium theory for the network elasticity. We specifically focus on how the disorders in the cytoskeletal network affect its macroscopic elasticity. Analytical and numerical solutions from our model reveal that the stiffness of the membrane increases with increasing end-to-end distances of spectrins, but has a nonmonotonic dependence on the variance of the end-to-end distance distributions. These predictions are verified quantitatively by our atomic force microscopy and micropipette aspiration measurements of iRBCs. The model may, from a molecular level, provide guidelines for future identification of new treatment methods for RBC-related diseases, such as malaria infection. PMID:26636940

  20. Role of cytoskeleton network in anisosmotic volume changes of intact and permeabilized A549 cells.

    Platonova, Alexandra; Ponomarchuk, Olga; Boudreault, Francis; Kapilevich, Leonid V; Maksimov, Georgy V; Grygorczyk, Ryszard; Orlov, Sergei N

    2015-10-01

    Recently we found that cytoplasm of permeabilized mammalian cells behaves as a hydrogel displaying intrinsic osmosensitivity. This study examined the role of microfilaments and microtubules in the regulation of hydrogel osmosensitivity, volume-sensitive ion transporters, and their contribution to volume modulation of intact cells. We found that intact and digitonin-permeabilized A549 cells displayed similar rate of shrinkage triggered by hyperosmotic medium. It was significantly slowed-down in both cell preparations after disruption of actin microfilaments by cytochalasin B, suggesting that rapid water release by intact cytoplasmic hydrogel contributes to hyperosmotic shrinkage. In hyposmotic swelling experiments, disruption of microtubules by vinblastine attenuated the maximal amplitude of swelling in intact cells and completely abolished it in permeabilized cells. The swelling of intact cells also triggered ~10-fold elevation of furosemide-resistant (86)Rb+ (K+) permeability and the regulatory volume decrease (RVD), both of which were abolished by Ba2+. Interestingly, RVD and K+ permeability remained unaffected in cytocholasin/vinblastine treated cells demonstrating that cytoskeleton disruption has no direct impact on Ba2+-sensitive K+-channels involved in RVD. Our results show, for the first time, that the cytoskeleton network contributes directly to passive cell volume adjustments in anisosmotic media via the modulation of the water retained by the cytoplasmic hydrogel. PMID:26171817

  1. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response

    Heather J. Ezelle

    2016-01-01

    Full Text Available The interferon (IFN-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3 inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX, a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.

  2. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response.

    Ezelle, Heather J; Malathi, Krishnamurthy; Hassel, Bret A

    2016-01-01

    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2'-5'-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed. PMID:26760998

  3. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum.

    Mayne, Richard; Adamatzky, Andrew; Jones, Jeff

    2015-01-01

    The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently 'intelligent' behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton-a ubiquitous cellular protein scaffold whose functions are manifold and essential to life-and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness. PMID:26478782

  4. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes.

    Qian, A R; Wang, L; Gao, X; Zhang, W; Hu, L F; Han, J; Li, J B; Di, S M; Shang, Peng

    2012-01-01

    Diamagnetic levitation technology is a novel simulated weightless technique and has recently been applied in life-science research. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels, namely, μg (diamagnetic levitation), 1g, and 2g for diamagnetic materials. In this study, the effects of LG-HMF on the activity, morphology, and cytoskeleton (actin filament, microtubules, and vimentin intermediate filaments) in osteocyte - like cell line MLO-Y4 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, hematoxylin-eosin (HE) staining, and laser scanning confocal microscopy (LSCM), respectively. The changes induced by LG-HMF in distribution and expression of focal adhesion (FA) proteins, including vinculin, paxillin, and talin in MLO-Y4 were determined by LSCM and Western blotting. The results showed that LG-HMF produced by superconducting magnet had no lethal effects on MLO-Y4. Compared to control, diamagnetic levitation (μg) affected MLO-Y4 morphology, nucleus size, cytoskeleton architecture, and FA proteins distribution and expression. The study indicates that osteocytes are sensitive to altered gravity and FA proteins (vinculin, paxillin, and talin) may be involved in osteocyte mechanosensation. The diamagnetic levitation may be a novel ground-based space-gravity simulator and can be used for biological experiment at cellular level. PMID:21216704

  5. Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell.

    Janmaleki, M; Pachenari, M; Seyedpour, S M; Shahghadami, R; Sanati-Nezhad, A

    2016-01-01

    This study focused on the effects of simulated microgravity (s-μg) on mechanical properties, major cytoskeleton biopolymers, and morphology of endothelial cells (ECs). The structural and functional integrity of ECs are vital to regulate vascular homeostasis and prevent atherosclerosis. Furthermore, these highly gravity sensitive cells play a key role in pathogenesis of many diseases. In this research, impacts of s-μg on mechanical behavior of human umbilical vein endothelial cells were investigated by utilizing a three-dimensional random positioning machine (3D-RPM). Results revealed a considerable drop in cell stiffness and viscosity after 24 hrs of being subjected to weightlessness. Cortical rigidity experienced relatively immediate and significant decline comparing to the stiffness of whole cell body. The cells became rounded in morphology while western blot analysis showed reduction of the main cytoskeletal components. Moreover, fluorescence staining confirmed disorganization of both actin filaments and microtubules (MTs). The results were compared statistically among test and control groups and it was concluded that s-μg led to a significant alteration in mechanical behavior of ECs due to remodeling of cell cytoskeleton. PMID:27581365

  6. Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes.

    Moscatelli, A; Idilli, A I; Rodighiero, S; Caccianiga, M

    2012-09-01

    Pollen tube growth depends on the integrity of the actin cytoskeleton that regulates cytoplasmic streaming and secretion. To clarify whether actin also plays a role in pollen tube endocytosis, Latrunculin B (LatB) was employed in internalisation experiments with tobacco pollen tubes, using the lipophilic dye FM4-64 and charged nanogold. Time-lapse analysis and dissection of endocytosis allowed us to identify internalisation pathways with different sensitivity to LatB. Co-localisation experiments and ultrastructural observations using positively charged nanogold revealed that LatB significantly inhibited endocytosis in the pollen tube shank, affecting internalisation of the plasma membrane (PM) recycled for secretion, as well as that conveyed to vacuoles. In contrast, endocytosis of negatively charged nanogold in the tip, which is also conveyed to vacuoles, was not influenced. Experiments of fluorescence recovery after photobleaching (FRAP) of the apical and subapical PM revealed domains with different rates of fluorescence recovery and showed that these differences depend on the actin cytoskeleton integrity. These results show the presence of distinct degradation pathways by demonstrating that actin-dependent and actin-indepedent endocytosis both operate in pollen tubes, internalising tracts of PM to be recycled and broken down. Intriguingly, although most studies concentrate on exocytosis and distension in the apex, the present paper shows that uncharacterised, actin-dependent secretory activity occurs in the shank of pollen tubes. PMID:22288466

  7. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane - a minimally invasive investigation by STED-FCS

    Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian

    2015-06-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.

  8. Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions.

    Thommie Karlsson

    Full Text Available All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia, and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i AQP9 induced and accumulated in filopodia, (ii AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.

  9. Regulation of water flow by actin-binding protein-induced actin gelatin.

    Ito, T.; Suzuki, A.; Stossel, T. P.

    1992-01-01

    Actin filaments inhibit osmotically driven water flow (Ito, T., K.S. Zaner, and T.P. Stossel. 1987. Biophys. J. 51: 745-753). Here we show that the actin gelation protein, actin-binding protein (ABP), impedes both osmotic shrinkage and swelling of an actin filament solution and reduces markedly the concentration of actin filaments required for this inhibition. These effects depend on actin filament immobilization, because the ABP concentration that causes initial impairment of water flow by a...

  10. A Multimodular Tensegrity Model of an Actin Stress Fiber

    Luo, Yaozhi; Xu, Xian; Lele, Tanmay; Kumar, Sanjay; Ingber, Donald E.

    2008-01-01

    Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model also can explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors, and represent a new handle on multi-scale modeling of living materials. PMID:18632107

  11. A role for the cytoskeleton in STAT5 activation in MCF7 human breast cancer cells stimulated with EGF.

    Lopez-Perez, Mario; Salazar, Eduardo Perez

    2006-01-01

    A rapid increase in the tyrosine phosphorylation of signal transducers and activators of transcription (STAT) proteins has been extensively documented in cells stimulated with cytokines and growth factors. However, the mechanisms by which these transcription factors translocate to the nucleus have not been studied in detail. Our results demonstrate that stimulation of MCF7 cells with epidermal growth factor (EGF) promoted an increase in the phosphorylation of STAT5 at Tyr-694, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. In addition, EGF stimulated STAT5 nuclear translocation and an increased in STAT5 DNA binding activity. Prevention of microtubules and microfilaments polymerization induced a partial inhibition of STAT5 nuclear translocation and STAT5 DNA binding activity. However, STAT5 phosphorylation at Tyr-694 was dependent on the integrity of microtubule network and it was independent of the integrity of actin cytoskeleton. Furthermore, EGF induced the formation of the associations STAT5-tubulin and STAT5-kinesin heavy chain in a fashion dependent of cytoskeleton integrity. In summary, our results demonstrate, for the first time, that cytoskeleton plays an important role in STAT5 activation and translocation into the nucleus in MCF7 cells stimulated with EGF. PMID:16765629

  12. Eavesdropping on the cytoskeleton: progress and controversy in the yeast morphogenesis checkpoint.

    Keaton, Mignon A; Lew, Daniel J

    2006-12-01

    The morphogenesis checkpoint provides a link between bud formation and mitosis in yeast. In this pathway, insults affecting the actin or septin cytoskeleton trigger a cell cycle arrest, mediated by the Wee1 homolog Swe1p, which catalyzes the inhibitory phosphorylation of the mitosis-promoting cyclin-dependent kinase (CDK) on a conserved tyrosine residue. Analyses of Swe1p phosphorylation have mapped 61 sites targeted by CDKs and Polo-related kinases, which control both Swe1p activity and Swe1p degradation. Although the sites themselves are not evolutionarily conserved, the control of Swe1p degradation exhibits many conserved features, and is linked to DNA-responsive checkpoints in vertebrate cells. At the 'sensing' end of the checkpoint, recent work has begun to shed light on how septins are organized and how they impact Swe1p regulators. However, the means by which Swe1p responds to actin perturbations once a bud has formed remains controversial. PMID:17055334

  13. Shigella flexneri utilize the spectrin cytoskeleton during invasion and comet tail generation

    Ruetz Tyson J

    2012-03-01

    Full Text Available Abstract Background The spectrin cytoskeleton is emerging as an important host cell target of enteric bacterial pathogens. Recent studies have identified a crucial role for spectrin and its associated proteins during key pathogenic processes of Listeria monocytogenes and Salmonella Typhimurium infections. Here we investigate the involvement of spectrin cytoskeletal components during the pathogenesis of the invasive pathogen Shigella flexneri. Results Immunofluorescent microscopy reveals that protein 4.1 (p4.1, but not adducin or spectrin, is robustly recruited to sites of S. flexneri membrane ruffling during epithelial cell invasion. Through siRNA-mediated knockdowns, we identify an important role for spectrin and the associated proteins adducin and p4.1 during S. flexneri invasion. Following internalization, all three proteins are recruited to the internalized bacteria, however upon generation of actin-rich comet tails, we observed spectrin recruitment to those structures in the absence of adducin or p4.1. Conclusion These findings highlight the importance of the spectrin cytoskeletal network during S. flexneri pathogenesis and further demonstrate that pathogenic events that were once thought to exclusively recruit the actin cytoskeletal system require additional cytoskeletal networks.

  14. Cytoskeleton as an Emerging Target of Anthrax Toxins

    Jean-Nicolas Tournier

    2012-02-01

    Full Text Available Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT and edema toxin (ET. So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity.

  15. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells

    Gao, Ying; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES. PMID:27358069

  16. The effects of 60Co γ-ray irradiation on the cytoskeleton of mouse peritoneal macrophages and human peripheral blood monocytes in vitro

    The whole mount cell electron microscopy in combination with selective extraction method for preparing cytoskeletal framework was applied. Cy toskeleton prepared by Triton X-100 treatment of mouse peritoneal macrophages and human peripheral blood monocytes appeared in electron microscopy as a highly organized and interconnected three-dimensional matrix of different fibrous elements. Since such cytoskeletons are open membrane-free system, individual fibrous organizations can be identified by specific antibodies. An indirect immunogold procedure using monoclonal anti-tubulin or anti-actin antibodies was applied to visualize tubulin-or actin-containing structures. The three-dimensional visualization of Triton X-100 resistant cytoskeletons had been used to demonstrate that different doses of 60Co γ-ray caused a distinctive and reproducible alterations of the cytoskeletons of intact mouse peritoneal macrophages and human peripheral blood monocytes in vitro. The results showed that there were some similar alterations with those caused by cytochalasin B and by colchicine. From these observations and other workers' studies, it's likely that 60Co γ-ray irradiation may inhibit cytoplasmic microtubule and microfilament assembling

  17. Mimicking the mechanical properties of the cell cortex by the self-assembly of an actin cortex in vesicles

    Luo, Tianzhi; Srivastava, Vasudha; Ren, Yixin; Robinson, Douglas N.

    2014-04-01

    The composite of the actin cytoskeleton and plasma membrane plays important roles in many biological events. Here, we employed the emulsion method to synthesize artificial cells with biomimetic actin cortex in vesicles and characterized their mechanical properties. We demonstrated that the emulsion method provides the flexibility to adjust the lipid composition and protein concentrations in artificial cells to achieve the desired size distribution, internal microstructure, and mechanical properties. Moreover, comparison of the cortical elasticity measured for reconstituted artificial cells to that of real cells, including those manipulated using genetic depletion and pharmacological inhibition, strongly supports that actin cytoskeletal proteins are dominant over lipid molecules in cortical mechanics. Our study indicates that the assembly of biological systems in artificial cells with purified cellular components provides a powerful way to answer biological questions.

  18. Arabidopsis VILLIN2 and VILLIN3 Are Required for the Generation of Thick Actin Filament Bundles and for Directional Organ Growth[C][W

    van der Honing, Hannie S.; Kieft, Henk; Emons, Anne Mie C.; Ketelaar, Tijs

    2012-01-01

    In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion. PMID:22209875

  19. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth.

    van der Honing, Hannie S; Kieft, Henk; Emons, Anne Mie C; Ketelaar, Tijs

    2012-03-01

    In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion. PMID:22209875

  20. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  1. Binding of actin by neutrophil (PMN) C3b receptor (CR1), iC3b receptor (CR3) and Fc receptor (FcR), but not by HLA class I or erythrocyte (E) CR1

    An association of PMN CR1 with actin-containing cytoskeleton has been suggested by the subplasmalemmal accumulation of actin and myosin with CR1 caps, and by the binding of cross-linked CR1 to detergent-insoluble cytoskeleton under conditions that maintain the stability of F-actin. To assess more directly the interaction of CR1 with actin, PMN detergent lysates were absorbed with the Sepharose-bound monoclonal antibodies YZ-1 anti-CR1, W6/32 anti-HLA Class I or UPC-10 anti-levan. CR1 from E lysates also was immunoadsorbed. The Sepharose beads bearing immobilized membrane proteins were incubated with 125I-labeled rabbit alveolar macrophage actin in isotonic buffer containing 0.5% NP-40, washed and assayed. PMN CR1, PMN HLA and E CR1 bound 6.7-14.2, 2.1-3.3, and 1.5-4.3 times as much actin as did the control UPC-10 beads. PMN lysates also were absorbed with immobilized 3G8.10 anti-FcR, LM2/1 anti-CR3, Yz-1 and W6/32 and the complexes were assessed for binding of 125I actin. FcR, CR3 and CR1 bound 3.4, 2.1, and 2.3 times as much actin as did control beads; HLA did not specifically bind actin. Thus, the capacity of PMN membrane proteins to bind actin correlates with their endocytic function, and CR1 exhibits cell-specific differential binding of actin

  2. A POROELASTIC MODEL FOR CELL CRAWLING INCLUDING MECHANICAL COUPLING BETWEEN CYTOSKELETAL CONTRACTION AND ACTIN POLYMERIZATION.

    Taber, L A; Shi, Y; Yang, L; Bayly, P V

    2011-01-01

    Much is known about the biophysical mechanisms involved in cell crawling, but how these processes are coordinated to produce directed motion is not well understood. Here, we propose a new hypothesis whereby local cytoskeletal contraction generates fluid flow through the lamellipodium, with the pressure at the front of the cell facilitating actin polymerization which pushes the leading edge forward. The contraction, in turn, is regulated by stress in the cytoskeleton. To test this hypothesis, finite element models for a crawling cell are presented. These models are based on nonlinear poroelasticity theory, modified to include the effects of active contraction and growth, which are regulated by mechanical feedback laws. Results from the models agree reasonably well with published experimental data for cell speed, actin flow, and cytoskeletal deformation in migrating fish epidermal keratocytes. The models also suggest that oscillations can occur for certain ranges of parameter values. PMID:21765817

  3. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers

    Yaming Jiu

    2015-06-01

    Full Text Available The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.

  4. Cortical reorganization in children with cochlear implants.

    Gilley, Phillip M; Sharma, Anu; Dorman, Michael F

    2008-11-01

    Congenital deafness leads to atypical organization of the auditory nervous system. However, the extent to which auditory pathways reorganize during deafness is not well understood. We recorded cortical auditory evoked potentials in normal hearing children and in congenitally deaf children fitted with cochlear implants. High-density EEG and source modeling revealed principal activity from auditory cortex in normal hearing and early implanted children. However, children implanted after a critical period of seven years revealed activity from parietotemporal cortex in response to auditory stimulation, demonstrating reorganized cortical pathways. Reorganization of central auditory pathways is limited by the age at which implantation occurs, and may help explain the benefits and limitations of implantation in congenitally deaf children. PMID:18775684

  5. Reorganizing the nursing home industry: a proposal.

    Shulman, D; Galanter, R

    1976-01-01

    This paper proposes a reorganization of the nursing home industry with capital facilities owned by government, but with management conducted through a system of competitive contracts with the private sector. The paper explicity demonstrates in real estate finance terms how the present system of private ownership of capital facilities inherently impedes providing a high quality of care. The authors believe that in the proposed industry reorganization, market forces, instead of working against quality care, would be supportive of quality care in a framework that would involve generally less regulation than exists today. PMID:1272543

  6. Shareholders, creditors approve utility reorganization plan

    Shareholders and all classes of secured creditors of Public Service Company of New Hampshire voted overwhelmingly last month to approve Northeast Utilities' Chapter 11 reorganization plan for PSNH, the utility announced. PSNH filed for bankruptcy protection in January 1988. Under the reorganization plan, Connecticut-based NU would acquire the utility for $2.3 billion. While PSNH's preferred and common stockholders voted to accept the proposal, holders of warrants to purchase PSNH common stock rejected the plan. Except for the votes of a group of independent power producers, PSNH's unsecured creditors also voted to accept the plan

  7. Shank–cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses

    MacGillavry, Harold D.; Kerr, Justin M.; Kassner, Josh; Frost, Nicholas A.; Blanpied, Thomas A.

    2016-01-01

    The family of Shank scaffolding molecules (comprising Shank1, 2 and 3) are core components of the postsynaptic density (PSD) in neuronal synapses. Shanks link surface receptors to other scaffolding molecules within the PSD, as well as to the actin cytoskeleton. However, determining the function of Shank proteins in neurons has been complicated because the different Shank isoforms share a very high degree of sequence and domain homology. Therefore, to control Shank content while minimizing potential compensatory effects, a miRNA-based knockdown strategy was developed to reduce the expression of all synaptically targeted Shank isoforms simultaneously in rat hippocampal neurons. Using this approach, a strong (>75%) reduction in total Shank protein levels was achieved at individual dendritic spines, prompting an approximately 40% decrease in mushroom spine density. Furthermore, Shank knockdown reduced spine actin levels and increased sensitivity to the actin depolymerizing agent Latrunculin A. A SHANK2 mutant lacking the proline-rich cortactin-binding motif (SHANK2-ΔPRO) was unable to rescue these defects. Furthermore, Shank knockdown reduced cortactin levels in spines and increased the mobility of spine cortactin as measured by single-molecule tracking photoactivated localization microscopy, suggesting that Shank proteins recruit and stabilize cortactin at the synapse. Furthermore, it was found that Shank knockdown significantly reduced spontaneous remodelling of synapse morphology that could not be rescued by the SHANK2-ΔPRO mutant. It was concluded that Shank proteins are key intermediates between the synapse and the spine interior that, via cortactin, permit the actin cytoskeleton to dynamically regulate synapse morphology and function. PMID:26547831

  8. Steady-state nuclear actin levels are determined by export competent actin pool.

    Skarp, Kari-Pekka; Huet, Guillaume; Vartiainen, Maria K

    2013-10-01

    A number of studies in the last decade have irrevocably promoted actin into a fully fledged member of the nuclear compartment, where it, among other crucial tasks, facilitates transcription and chromatin remodeling. Changes in nuclear actin levels have been linked to different cellular processes: decreased nuclear actin to quiescence and increased nuclear actin to differentiation. Importin 9 and exportin 6 transport factors are responsible for the continuous nucleocytoplasmic shuttling of actin, but the mechanisms, which result in modulated actin levels, have not been characterized. We find that in cells growing under normal growth conditions, the levels of nuclear actin vary considerably from cell to cell. To understand the basis for this, we have extensively quantified several cellular parameters while at the same time recording the import and export rates of green fluorescent protein (GFP)-tagged actin. Surprisingly, our dataset shows that the ratio of nuclear to cytoplasmic fluorescence intensity, but not nuclear shape, size, cytoplasm size, or their ratio, correlates negatively with both import and export rate of actin. This suggests that high-nuclear actin content is maintained by both diminished import and export. The high nuclear actin containing cells still show high mobility of actin, but it is not export competent, suggesting increased binding of actin to nuclear complexes. Creation of such export incompetent actin pool would ensure enough actin is retained in the nucleus and make it available for the various nuclear functions described for actin. PMID:23749625

  9. Cyclic Hydraulic Pressure and Fluid Flow Differentially Modulate Cytoskeleton Re-Organization in MC3T3 Osteoblasts

    Gardinier, Joseph D.; Majumdar, Shyama; Duncan, Randall L.; Wang, Liyun

    2009-01-01

    Mechanical loads are essential towards maintaining bone mass and skeletal integrity. Such loads generate various stimuli at the cellular level, including cyclic hydraulic pressure (CHP) and fluid shear stress (FSS). To gain insight into the anabolic responses of osteoblasts to CHP and FSS, we subjected MC3T3-E1 preosteoblasts to either FSS (12 dynes/cm2) or CHP varying from 0 to 68 kPa at 0.5 Hz. As with FSS, CHP produced a significant increase in ATP release over static controls within 5 min...

  10. Capping complex formation at the slow-growing end of the actin filament.

    Kostyukova, A S

    2008-12-01

    Actin filaments are polar; their barbed (fast-growing) and pointed (slow-growing) ends differ in structure and dynamic properties. The slow-growing end is regulated by tropomodulins, a family of capping proteins that require tropomyosins for optimal function. There are four tropomodulin isoforms; their distributions vary depending on tissue type and change during development. The C-terminal half of tropomodulin contains one compact domain represented by alternating alpha-helices and beta-structures. The tropomyosin-independent actin-capping site is located at the C-terminus. The N-terminal half has no regular structure; however, it contains a tropomyosin-dependent actin-capping site and two tropomyosin-binding sites. One tropomodulin molecule can bind two tropomyosin molecules. Effectiveness of tropomodulin binding to tropomyosin depends on the tropomyosin isoform. Regulation of tropomodulin binding at the pointed end as well as capping effectiveness in the presence of specific tropomyosins may affect formation of local cytoskeleton and dynamics of actin filaments in cells. PMID:19216712

  11. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics.

    Katie Porter

    Full Text Available The primary role of Actin-Depolymerizing Factors (ADFs is to sever filamentous actin, generating pointed ends, which in turn are incorporated into newly formed filaments, thus supporting stochastic actin dynamics. Arabidopsis ADF4 was recently shown to be required for the activation of resistance in Arabidopsis following infection with the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst expressing the effector protein AvrPphB. Herein, we demonstrate that the expression of RPS5, the cognate resistance protein of AvrPphB, was dramatically reduced in the adf4 mutant, suggesting a link between actin cytoskeletal dynamics and the transcriptional regulation of R-protein activation. By examining the PTI (PAMP Triggered Immunity response in the adf4 mutant when challenged with Pst expressing AvrPphB, we observed a significant reduction in the expression of the PTI-specific target gene FRK1 (Flg22-Induced Receptor Kinase 1. These data are in agreement with recent observations demonstrating a requirement for RPS5 in PTI-signaling in the presence of AvrPphB. Furthermore, MAPK (Mitogen-Activated Protein Kinase-signaling was significantly reduced in the adf4 mutant, while no such reduction was observed in the rps5-1 point mutation under similar conditions. Isoelectric focusing confirmed phosphorylation of ADF4 at serine-6, and additional in planta analyses of ADF4's role in immune signaling demonstrates that nuclear localization is phosphorylation independent, while localization to the actin cytoskeleton is linked to ADF4 phosphorylation. Taken together, these data suggest a novel role for ADF4 in controlling gene-for-gene resistance activation, as well as MAPK-signaling, via the coordinated regulation of actin cytoskeletal dynamics and R-gene transcription.

  12. Cytoskeleton, cytoskeletal interactions, and vascular endothelial function

    Wang J

    2012-12-01

    Full Text Available Jingli Wang,1 Michael E Widlansky1,21Department of Medicine, Cardiovascular Medicine Division, 2Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USAAbstract: Far from being inert, the vascular endothelium is a critical regulator of vascular function. While the endothelium participates in autocrine, paracrine, and endocrine signaling, it also transduces mechanical signals from the cell surface involving key cell structural elements. In this review, we discuss the structure of the vascular endothelium and its relationship to traditional cardiovascular risk factors and clinical cardiovascular events. Further, we review the emerging evidence that cell structural elements, including the glycocalyx, intercellular junctions, and cytoskeleton elements, help the endothelium to communicate with its environment to regulate vascular function, including vessel permeability and signal transduction via nitric oxide bioavailability. Further work is necessary to better delineate the regulatory relationships between known key regulators of vascular function and endothelial cell structural elements.Keywords: endothelium, shear stress, eNOS, cardiovascular risk factors, glycocalyx

  13. Cdc42 and the Actin-Related Protein/Neural Wiskott-Aldrich Syndrome Protein Network Mediate Cellular Invasion by Cryptosporidium parvum

    Chen, Xian-Ming; Huang, Bing Q.; Splinter, Patrick L.; Orth, James D.; Billadeau, Daniel D.; McNiven, Mark A.; LaRusso, Nicholas F

    2004-01-01

    Cryptosporidium parvum invasion of epithelial cells involves host cell membrane alterations which require a remodeling of the host cell actin cytoskeleton. In addition, an actin plaque, possibly associated with the dense-band region, forms within the host cytoplasm at the host-parasite interface. Here we show that Cdc42 and RhoA, but not Rac1, members of the Rho family of GTPases, are recruited to the host-parasite interface in an in vitro model of human biliary cryptosporidiosis. Interesting...

  14. Reorganizing the Biological Sciences at Berkeley.

    Trow, Martin A.

    1983-01-01

    The University of California at Berkeley's substantial reorganization of the biological sciences due to internal and external needs is chronicled, focusing on the coordinated efforts of the institution and the strong, supportive leadership of the chancellor. The story is presented as an unusual case of institutional leadership within a highly…

  15. Properties and catalytic activities of MICAL1, the flavoenzyme involved in cytoskeleton dynamics, and modulation by its CH, LIM and C-terminal domains.

    Vitali, Teresa; Maffioli, Elisa; Tedeschi, Gabriella; Vanoni, Maria A

    2016-03-01

    MICAL1 is a cytoplasmic 119 kDa protein participating in cytoskeleton dynamics through the NADPH-dependent oxidase and F-actin depolymerizing activities of its N-terminal flavoprotein domain, which is followed by calponin homology (CH), LIM domains and a C-terminal region with Pro-, Glu-rich and coiled-coil motifs. MICAL1 and truncated forms lacking the C-terminal, LIM and/or CH regions have been produced and characterized. The CH, LIM and C-terminal regions cause an increase of Km,NADPH exhibited by the NADPH oxidase activity of the flavoprotein domain, paralleling changes in the overall protein charge. The C-terminus also determines a ∼ 10-fold decrease of kcat, revealing its role in establishing an inactive/active conformational equilibrium, which is at the heart of the regulation of MICAL1 in cells. F-actin lowers Km,NADPH (10-50 μM) and increases kcat (10-25 s(-1)) to similar values for all MICAL forms. The apparent Km,actin of MICAL1 is ∼ 10-fold higher than that of the other forms (3-5 μM), reflecting the fact that F-actin binds to the flavoprotein domain in the MICAL's active conformation and stabilizes it. Analyses of the reaction in the presence of F-actin indicate that actin depolymerization is mediated by H2O2 produced by the NADPH oxidase reaction, rather than due to direct hydroxylation of actin methionine residues. PMID:26845023

  16. Gametophytic development of Brassica napus pollen in vitroenables examination of cytoskeleton and nuclear movements.

    Dubas, Ewa; Wedzony, Maria; Custers, Jan; Kieft, Henk; van Lammeren, André A M

    2012-04-01

    Isolated microspores and pollen suspension of Brassica napus "Topas" cultured in NLN-13 medium at 18°C follow gametophytic pathway and develop into pollen grains closely resembling pollen formed in planta. This culture system complemented with whole-mount immunocytochemical technology and novel confocal laser scanning optical technique enables detailed studies of male gametophyte including asymmetric division, cytoskeleton, and nuclear movements. Microtubular cytoskeleton configurationally changed in successive stages of pollen development. The most prominent role of microtubules (MTs) was observed just before and during nuclear migration at the early and mid-bi-cellular stage. At the early bi-cellular stage, parallel arrangement of cortical and endoplasmic MTs to the long axis of the generative cell (GC) as well as MTs within GC under the plasmalemma bordering vegetative cell (VC) were responsible for GC lens shape. At the beginning of the GC migration, endoplasmic microtubules (EMTs) of the VC radiated from the nuclear envelope. Most cortical and EMTs of the VC were found near the sporoderm. At the same time, pattern of MTs observed in GC was considerably different. Multiple EMTs of the GC, previously parallel aligned, reorganized, and start to surround GC, forming a basket-like structure. These results suggest that EMTs of GC provoke changes in GC shape, its detachment from the sporoderm, and play an important role in GC migration to the vegetative nucleus (VN). During the process of migration of the GC to the VC, multiple and thick bundles of MTs, radiating from the cytoplasm near GC plasma membrane, arranged perpendicular to the narrow end of the GC and organized into a "comet-tail" form. These GC "tail" MTs became shortened and the generative nucleus (GN) took a ball shape. The dynamic changes of MTs accompanied polarized distribution pattern of mitochondria and endoplasmic reticulum. In order to confirm the role of MTs in pollen development, a "whole

  17. Large Scale Computer Simulation of Erythrocyte Membranes with Explicit Cytoskeleton^

    Harvey, Cameron; Revalee, Joel; Laradji, Mohamed; Kumar, P. B. Sunil

    2008-03-01

    The erythrocyte membrane is composed essentially of a self-assembled lipid bilayer and a polymerized protein meshwork, referred to as the cytoskeleton. For the erythrocyte, the polymer meshwork is composed of spectrin and anchored to the bilayer through specialized proteins. In this investigation we extended a coarse-grained model of self-assembled lipid membranes, recently developed by us, to account for the cytoskeleton. Simulation of bilayer patches, with dimensions about 0.5 μm x 0.5 μm, were performed^ to investigate the effects of the cytoskeleton on the membrane elastic properties. The bending modulus and surface tension are extracted from the spectra of the out-of-plane thermal undulations of the membrane. Using Monte Carlo, we also extracted the compression and shear moduli. Preliminary findings suggest a measurable effect in thermal undulations resulting from the introduction of the cytoskeleton.

  18. The actin binding domain of βI-spectrin regulates the morphological and functional dynamics of dendritic spines.

    Michael W Nestor

    Full Text Available Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding proteins and small GTPases. The βI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is present in spines. To understand its function, we expressed its actin-binding domain (ABD in CA1 pyramidal neurons in hippocampal slice cultures. The ABD of βI-spectrin bundled actin in principal dendrites and was concentrated in dendritic spines, where it significantly increased the size of the spine head. These effects were not observed after expression of homologous ABDs of utrophin, dystrophin, and α-actinin. Treatment of slice cultures with latrunculin-B significantly decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of α-actinin, but not the ABD of βI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of βI-spectrin. The effects of the βI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small GTPase that co-immunoprecipitates specifically with βI-spectrin in extracts of cultured cortical neurons. Spine size was normal in cells co-expressing a dominant negative Rac3 construct with the βI-spectrin ABD. We suggest that βI-spectrin is a synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via interaction with actin and Rac3.

  19. Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas

    Nanni, Samuel Burke; Pratt, Jonathan; Beauchemin, David; Haidara, Khadidja; Annabi, Borhane

    2016-01-01

    The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells.

  20. Electro-optical imaging of F-actin and endoplasmic reticulum in living and fixed plant cells.

    Allen, N S; Bennett, M N

    1996-01-01

    Confocal and video micrographs of living and fixed alfalfa roots, onion epithelial and pear pollen cells illustrate the architecture of the cytoskeleton and endoplasmic reticulum in plant cells. Fixation of plant tissues to preserve cytoplasmic structure poses special problems. When possible, emphasis should be placed on the imaging of structures in stained living cells over time. The early events that occur when Nod factors or bacteria elicit nodule formation in alfalfa roots will illustrate several approaches to plant cell fixation, staining and imaging. The first observable events after Nod factor stimulation occur in root hairs and are changes in rates of cytoplasmic streaming, nuclear movements, and changes in the shape of the vacuole. Within ten minutes, the endoplasmic reticulum shifts position towards the tip of the root hair. For comparison, the endoplasmic reticulum localization in pollen tubes and onion epithelial cells will be illustrated. The actin cytoskeleton undergoes a series of changes over a twelve hour period. These changes in the cytoskeleton are spatially and temporally correlated with the observed growth changes of the root hairs. This dynamic change of the actin filament and endoplasmic reticulum and associated secretory vesicles in these root hairs suggests a mechanism for the observed root hair growth changes. PMID:9601538

  1. Actinic Keratoses: A Comprehensive Update

    Ibrahim, Sherrif F.; Brown, Marc D.

    2009-01-01

    Actinic keratoses are common intra-epidermal neoplasms that lie on a continuum with squamous cell carcinoma. Tightly linked to ultraviolet irradiation, they occur in areas of chronic sun exposure, and early treatment of these lesions may prevent their progression to invasive disease. A large variety of effective treatment modalities exist, and the optimal therapeutic choice is dependent on a variety of patient- and physician-associated variables. Many established and more recent approaches ar...

  2. Reactive oxygen species (ROS)-induced actin glutathionylation controls actin dynamics in neutrophils

    Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K.; Mondal, Subhanjan; Bajrami, Besnik; Hattori, Hidenori; Jia, Yonghui; Dickinson, Bryan C.; Zhong, Jia; Ye, Keqiang; Chang, Christopher J; Ho, Ye-Shih; Zhou, Jun; Luo, Hongbo R.

    2012-01-01

    Summary The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis, and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, however the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils. PMID:23159440

  3. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells

    1983-01-01

    The microvillus cytoskeleton, isolated from chicken intestinal epithelial cell brush borders, is known to contain five major protein components, the 110,000-dalton polypeptide, villin (95,000 daltons), fimbrin (68,000 daltons), actin (43,000 daltons), and calmodulin (17,000 daltons). In this paper we describe our first step in studying the minor components of the isolated core. We have so far identified and purified an 80,000-dalton polypeptide that was present in the isolated structure in ap...

  4. ICAM-2 expression mediates a membrane-actin link, confers a nonmetastatic phenotype and reflects favorable tumor stage or histology in neuroblastoma.

    Karina Jin Yoon

    Full Text Available The actin cytoskeleton is a primary determinant of tumor cell motility and metastatic potential. Motility and metastasis are thought to be regulated, in large part, by the interaction of membrane proteins with cytoplasmic linker proteins and of these linker proteins, in turn, with actin. However, complete membrane-to-actin linkages have been difficult to identify. We used co-immunoprecipitation and competitive peptide assays to show that intercellular adhesion molecule-2 (ICAM-2/alpha-actinin/actin may comprise such a linkage in neuroblastoma cells. ICAM-2 expression limited the motility of these cells and redistributed actin fibers in vitro, and suppressed development of disseminated tumors in an in vivo model of metastatic neuroblastoma. Consistent with these observations, immunohistochemical analysis demonstrated ICAM-2 expression in primary neuroblastoma tumors exhibiting features that are associated with limited metastatic disease and more favorable clinical outcome. In neuroblastoma cell lines, ICAM-2 expression did not affect AKT activation, tumorigenic potential or chemosensitivity, as has been reported for some types of transfected cells. The observed ICAM-2-mediated suppression of metastatic phenotype is a novel function for this protein, and the interaction of ICAM-2/alpha-actinin/actin represents the first complete membrane-linker protein-actin linkage to impact tumor cell motility in vitro and metastatic potential in an in vivo model. Current work focuses on identifying specific protein domains critical to the regulation of neuroblastoma cell motility and metastasis and on determining if these domains represent exploitable therapeutic targets.

  5. The cortical actin determines different susceptibility of naïve and memory CD4+ T cells to HIV-1 cell-to-cell transmission and infection.

    Permanyer, Marc; Pauls, Eduardo; Badia, Roger; Esté, José A; Ballana, Ester

    2013-01-01

    Memory CD4+ T cells are preferentially infected by HIV-1 compared to naïve cells. HIV-1 fusion and entry is a dynamic process in which the cytoskeleton plays an important role by allowing virion internalization and uncoating. Here, we evaluate the role of the cortical actin in cell-to-cell transfer of virus antigens and infection of target CD4+ T cells. Using different actin remodeling compounds we demonstrate that efficiency of HIV-internalization was proportional to the actin polymerization of the target cell. Naïve (CD45RA+) and memory (CD45RA-) CD4+ T cells could be phenotypically differentiated by the degree of cortical actin density and their capacity to capture virus. Thus, the higher cortical actin density of memory CD4+ T cells was associated to increased efficiency of HIV-antigen internalization and the establishment of a productive infection. Conversely, the lower cortical actin density in naïve CD4+ T cells restricted viral antigen transfer and consequently HIV-1 infection. In conclusion, the cortical actin density differentially affects the susceptibility to HIV-1 infection in naïve and memory CD4+ T cells by modulating the efficiency of HIV antigen internalization. PMID:24244453

  6. Statistical Thermodynamics for Actin-Myosin Binding: The Crucial Importance of Hydration Effects.

    Oshima, Hiraku; Hayashi, Tomohiko; Kinoshita, Masahiro

    2016-06-01

    Actomyosin is an important molecular motor, and the binding of actin and myosin is an essential research target in biophysics. Nevertheless, the physical factors driving or opposing the binding are still unclear. Here, we investigate the role of water in actin-myosin binding using the most reliable statistical-mechanical method currently available for assessing biomolecules immersed in water. This method is characterized as follows: water is treated not as a dielectric continuum but as an ensemble of molecules; the polyatomic structures of proteins are taken into consideration; and the binding free energy is decomposed into physically insightful entropic and energetic components by accounting for the hydration effect to its full extent. We find that the actin-myosin binding brings large gains of electrostatic and Lennard-Jones attractive interactions. However, these gains are accompanied by even larger losses of actin-water and myosin-water electrostatic and LJ attractive interactions. Although roughly half of the energy increase due to the losses is cancelled out by the energy decrease arising from structural reorganization of the water released upon binding, the remaining energy increase is still larger than the energy decrease brought by the gains mentioned above. Hence, the net change in system energy is positive, which opposes binding. Importantly, the binding is driven by a large gain of configurational entropy of water, which surpasses the positive change in system energy and the conformational entropy loss occurring for actin and myosin. The principal physical origin of the large water-entropy gain is as follows: the actin-myosin interface is closely packed with the achievement of high shape complementarity on the atomic level, leading to a large increase in the total volume available to the translational displacement of water molecules in the system and a resultant reduction of water crowding (i.e., entropic correlations among water molecules). PMID

  7. From pollen actin to crop male sterility

    2000-01-01

    Actin plays an important role in the life activity of animal and plant cells. Pollen cells have plenty of actin whose structure and characteristics are very similar to the animal actin. The nucleotide sequence and amino acid sequence of plant actin gene are very similar to those of the animal gene. The content of pollen actin from male sterile plants is much more lower than that from its maintainer plants. The expression of actin gene is organ-specific during the plant development. The expression quantity of actin gene in pollen is much more higher than those from root, stem and leaf. The expression plasmid of the anti-sense actin gene was constructed, transferred to the protoplasts of wheat and tomato to inhibit the expression of actin gene in pollen and thus the male sterile plants of wheat and tomato were obtained. The actin in pollens from the transgenic plants was reduced significantly, whereas the pistil was not affected. This study might pave a new way to breeding male sterile lines for the application of hybrid vigor of wheat and tomato.

  8. Mesoscopic model of actin-based propulsion.

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  9. Following the Viterbi Path to Deduce Flagellar Actin-Interacting Proteins of Leishmania spp.: Report on Cofilins and Twinfilins

    Pacheco, Ana Carolina L.; Araújo, Fabiana F.; Kamimura, Michel T.; Medeiros, Sarah R.; Viana, Daniel A.; Oliveira, Fátima de Cássia E.; Filho, Raimundo Araújo; Costa, Marcília P.; Oliveira, Diana M.

    2007-11-01

    For performing vital cellular processes, such as motility, eukaryotic cells rely on the actin cytoskeleton, whose structure and dynamics are tightly controlled by a large number of actin-interacting (AIP) or actin-related/regulating (ARP) proteins. Trypanosomatid protozoa, such as Leishmania, rely on their flagellum for motility and sensory reception, which are believed to allow parasite migration, adhesion, invasion and even persistence on mammalian host tissues to cause disease. Actin can determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes, while the identification and analyses of AIPs can help to improve understanding of their mechanical properties on physiological architectures, such as the present case regarding Leishmania flagellar apparatus. This work conveniently apply bioinformatics tools in some refined pattern recognition techniques (such as hidden Markov models (HMMs) through the Viterbi algorithm/path) in order to improve the recognition of actin-binding/interacting activity through identification of AIPs in genomes, transcriptomes and proteomes of Leishmania species. We here report cofilin and twinfilin as putative components of the flagellar apparatus, a direct bioinformatics contribution in the secondary annotation of Leishmania and trypanosomatid genomes.

  10. Active Polymers Confer Fast Reorganization Kinetics

    Swanson, Douglas

    2011-01-01

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime and mean length, MFPT ~ , by analogy to 1-d Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT ~ ^{1/2}. Since to be biologically useful, structural biopolymers must typically be many monomers long, yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify active polymers' greater energy cost. PACS numbers: 87.10.Ed, 87.16.ad, 87.16.Ln

  11. The bacterial cytoskeleton modulates motility, type 3 secretion, and colonization in Salmonella.

    David M Bulmer

    2012-01-01

    Full Text Available Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system

  12. Reorganizing and restructuring the human resources function

    Alexandrina Mirela, Stan

    2010-01-01

    To determine what kind of skills (internal or external) of human resources are adequate organization can use human resources audit. Audit is an action guide that provides step by step consistency of human resources activities within the organization with legal regulations and informal practices. This paper aims to highlight the importance of human resources audit which is an essential activity and is basis for the reorganization and restructuring of human resources function.

  13. Mechanosensitive kinetic preference of actin-binding protein to actin filament

    Inoue, Yasuhiro; Adachi, Taiji

    2016-04-01

    The kinetic preference of actin-binding proteins to actin filaments is altered by external forces on the filament. Such an altered kinetic preference is largely responsible for remodeling the actin cytoskeletal structure in response to intracellular forces. During remodeling, actin-binding proteins and actin filaments interact under isothermal conditions, because the cells are homeostatic. In such a temperature homeostatic state, we can rigorously and thermodynamically link the chemical potential of actin-binding proteins to stresses on the actin filaments. From this relationship, we can construct a physical model that explains the force-dependent kinetic preference of actin-binding proteins to actin filaments. To confirm the model, we have analyzed the mechanosensitive alternation of the kinetic preference of Arp2/3 and cofilin to actin filaments. We show that this model captures the qualitative responses of these actin-binding proteins to the forces, as observed experimentally. Moreover, our theoretical results demonstrate that, depending on the structural parameters of the binding region, actin-binding proteins can show different kinetic responses even to the same mechanical signal tension, in which the double-helix nature of the actin filament also plays a critical role in a stretch-twist coupling of the filament.

  14. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading.

    Chen, Ting-Jung; Wu, Chia-Ching; Tang, Ming-Jer; Huang, Jong-Shin; Su, Fong-Chin

    2010-01-01

    Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as

  15. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading.

    Ting-Jung Chen

    Full Text Available Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs. Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT and cuboctahedron tensegrity (COT. The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area, cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then

  16. Molecular model of the microvillar cytoskeleton and organization of the brush border.

    Jeffrey W Brown

    Full Text Available BACKGROUND: Brush border microvilli are approximately 1-microm long finger-like projections emanating from the apical surfaces of certain, specialized absorptive epithelial cells. A highly symmetric hexagonal array of thousands of these uniformly sized structures form the brush border, which in addition to aiding in nutrient absorption also defends the large surface area against pathogens. Here, we present a molecular model of the protein cytoskeleton responsible for this dramatic cellular morphology. METHODOLOGY/PRINCIPAL FINDINGS: The model is constructed from published crystallographic and microscopic structures reported by several groups over the last 30+ years. Our efforts resulted in a single, unique, self-consistent arrangement of actin, fimbrin, villin, brush border myosin (Myo1A, calmodulin, and brush border spectrin. The central actin core bundle that supports the microvillus is nearly saturated with fimbrin and villin cross-linkers and has a density similar to that found in protein crystals. The proposed model accounts for all major proteinaceous components, reproduces the experimentally determined stoichiometry, and is consistent with the size and morphology of the biological brush border membrane. CONCLUSIONS/SIGNIFICANCE: The model presented here will serve as a structural framework to explain many of the dynamic cellular processes occurring over several time scales, such as protein diffusion, association, and turnover, lipid raft sorting, membrane deformation, cytoskeletal-membrane interactions, and even effacement of the brush border by invading pathogens. In addition, this model provides a structural basis for evaluating the equilibrium processes that result in the uniform size and structure of the highly dynamic microvilli.

  17. Actin gene family in Branchiostoma belched

    2016-01-01

    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  18. Impact of altered actin gene expression on vinculin, talin, cell spreading, and motility.

    Schevzov, G; Lloyd, C; Gunning, P

    1995-08-01

    Previous studies have demonstrated a strong correlation between the expression of vinculin and the shape and motility of a cell (Rodriguez Fernandez et al., 1992a, b, 1993). This hypothesis was tested by comparing the expression of vinculin and talin with the motility of morphologically altered myoblasts. These mouse C2 myoblasts were previously generated by directly perturbing the cell cytoskeleton via the stable transfection of a mutant-form of the beta-actin gene (beta sm) and three different forms of the gamma-actin gene; gamma, gamma minus 3'UTR (gamma delta'UTR), and gamma minus intron III (gamma delta IVSIII) (Schevzov et al., 1992; Lloyd and Gunning, 1993). In the case of the beta sm and gamma-actin transfectants, a two-fold decrease in the cell surface area was coupled, as predicted, with a decrease in vinculin and talin expression. In contrast, the gamma delta IVSIII transfectants with a seven-fold decrease in the cell surface area showed an unpredicted slight increase in vinculin and talin expression and the gamma delta 3'-UTR transfectants with a slight increase in the cell surface area showed no changes in talin expression and a decrease in vinculin expression. We conclude that changes in actin gene expression alone can impact on the expression of vinculin and talin. Furthermore, we observed that these actin transfectants failed to show a consistent relationship between cell shape, motility, and the expression of vinculin. However, a relationship between talin and cell motility was found to exist, suggesting a role for talin in the establishment of focal contacts necessary for motility. PMID:7646816

  19. Mechanics of membrane-cytoskeleton attachment in Paramecium

    Campillo, C.; Jerber, J.; Fisch, C.; Simoes-Betbeder, M.; Dupuis-Williams, P.; Nassoy, P.; Sykes, C.

    2012-12-01

    In this paper we assess the role of the protein MKS1 (Meckel syndrome type 1) in the cortical membrane mechanics of the ciliated protist Paramecium. This protein is known to be crucial in the process of cilium formation, and we investigate its putative role in membrane-cytoskeleton attachment. Therefore, we compare cells where the gene coding for MKS1 is silenced to wild-type cells. We found that scanning electron microscopy observation of the cell surface reveals a cup-like structure in wild-type cells that is lost in silenced cells. Since this structure is based on the underlying cytoskeleton, one hypothesis to explain this observation is a disruption of membrane attachment to the cytoskeleton in the absence of MKS1 that should affect plasma membrane mechanics. We test this by probing the mechanics of wild-type and silenced cells by micropipette aspiration. Strikingly, we observe that, at the same aspiration pressure, the membrane of silenced cells is easily aspirated by the micropipette whereas that of wild-type cells enters only at a moderate velocity, an effect that suggests a detachment of the membrane from the underlying cytoskeleton in silenced cells. We quantify this detachment by measuring the deformation of the cell cortex and the rate of cell membrane entry in the micropipette. This study offers a new perspective for the characterization of membrane-cytoskeleton attachment in protists and paves the way for a better understanding of the role of membrane-cortex attachment in cilium formation.

  20. Mechanics of membrane–cytoskeleton attachment in Paramecium

    In this paper we assess the role of the protein MKS1 (Meckel syndrome type 1) in the cortical membrane mechanics of the ciliated protist Paramecium. This protein is known to be crucial in the process of cilium formation, and we investigate its putative role in membrane–cytoskeleton attachment. Therefore, we compare cells where the gene coding for MKS1 is silenced to wild-type cells. We found that scanning electron microscopy observation of the cell surface reveals a cup-like structure in wild-type cells that is lost in silenced cells. Since this structure is based on the underlying cytoskeleton, one hypothesis to explain this observation is a disruption of membrane attachment to the cytoskeleton in the absence of MKS1 that should affect plasma membrane mechanics. We test this by probing the mechanics of wild-type and silenced cells by micropipette aspiration. Strikingly, we observe that, at the same aspiration pressure, the membrane of silenced cells is easily aspirated by the micropipette whereas that of wild-type cells enters only at a moderate velocity, an effect that suggests a detachment of the membrane from the underlying cytoskeleton in silenced cells. We quantify this detachment by measuring the deformation of the cell cortex and the rate of cell membrane entry in the micropipette. This study offers a new perspective for the characterization of membrane–cytoskeleton attachment in protists and paves the way for a better understanding of the role of membrane–cortex attachment in cilium formation. (paper)

  1. Actin gene identification from selected medicinal plants for their use as internal controls for gene expression studies

    Internal control genes are the constitutive genes which maintain the basic cellular functions and regularly express in both normal and stressed conditions in living organisms. They are used in normalization of gene expression studies in comparative analysis of target genes, as their expression remains comparatively unchanged in all varied conditions. Among internal control genes, actin is considered as a candidate gene for expression studies due to its vital role in shaping cytoskeleton and plant physiology. Unfortunately most of such knowledge is limited to only model plants or crops, not much is known about important medicinal plants. Therefore, we selected seven important medicinal wild plants for molecular identification of actin gene. We used gene specific primers designed from the conserved regions of several known orthologues or homologues of actin genes from other plants. The amplified products of 370-380 bp were sequenced and submitted to GeneBank after their confirmation using different bioinformatics tools. All the novel partial sequences of putative actin genes were submitted to GeneBank (Parthenium hysterophorus (KJ774023), Fagonia indica (KJ774024), Rhazya stricta (KJ774025), Whithania coagulans (KJ774026), Capparis decidua (KJ774027), Verbena officinalis (KJ774028) and Aerva javanica (KJ774029)). The comparisons of these partial sequences by Basic Local Alignment Search Tool (BLAST) and phylogenetic trees demonstrated high similarity with known actin genes of other plants. Our findings illustrated highly conserved nature of actin gene among these selected plants. These novel partial fragments of actin genes from these wild medicinal plants can be used as internal controls for future gene expression studies of these important plants after precise validations of their stable expression in such plants. (author)

  2. Experimental and computational assessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts.

    Fallqvist, Björn; Fielden, Matthew L; Pettersson, Torbjörn; Nordgren, Niklas; Kroon, Martin; Gad, Annica K B

    2016-06-01

    In biomechanics, a complete understanding of the structures and mechanisms that regulate cellular stiffness at a molecular level remain elusive. In this paper, we have elucidated the role of filamentous actin (F-actin) in regulating elastic and viscous properties of the cytoplasm and the nucleus. Specifically, we performed colloidal-probe atomic force microscopy (AFM) on BjhTERT fibroblast cells incubated with Latrunculin B (LatB), which results in depolymerisation of F-actin, or DMSO control. We found that the treatment with LatB not only reduced cellular stiffness, but also greatly increased the relaxation rate for the cytoplasm in the peripheral region and in the vicinity of the nucleus. We thus conclude that F-actin is a major determinant in not only providing elastic stiffness to the cell, but also in regulating its viscous behaviour. To further investigate the interdependence of different cytoskeletal networks and cell shape, we provided a computational model in a finite element framework. The computational model is based on a split strain energy function of separate cellular constituents, here assumed to be cytoskeletal components, for which a composite strain energy function was defined. We found a significant influence of cell geometry on the predicted mechanical response. Importantly, the relaxation behaviour of the cell can be characterised by a material model with two time constants that have previously been found to predict mechanical behaviour of actin and intermediate filament networks. By merely tuning two effective stiffness parameters, the model predicts experimental results in cells with a partly depolymerised actin cytoskeleton as well as in untreated control. This indicates that actin and intermediate filament networks are instrumental in providing elastic stiffness in response to applied forces, as well as governing the relaxation behaviour over shorter and longer time-scales, respectively. PMID:26766328

  3. Architecture and Connectivity Govern Actin Network Contractility.

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-01

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions. PMID:26898468

  4. Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia.

    Hernandez, Yunuen; Castillo, Cynthia; Roychowdhury, Sukla; Hehl, Adrian; Aley, Stephen B; Das, Siddhartha

    2007-01-01

    Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation. PMID:17087963

  5. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration.

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  6. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton.

    Ulbrich, Claudia; Pietsch, Jessica; Grosse, Jirka; Wehland, Markus; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hauslage, Jens; Hemmersbach, Ruth; Braun, Markus; van Loon, Jack; Vagt, Nicole; Egli, Marcel; Richter, Peter; Einspanier, Ralf; Sharbati, Soroush; Baltz, Theo; Infanger, Manfred; Ma, Xiao; Grimm, Daniela

    2011-01-01

    Extracellular matrix proteins, adhesion molecules, and cytoskeletal proteins form a dynamic network interacting with signalling molecules as an adaptive response to altered gravity. An important issue is the exact differentiation between real microgravity responses of the cells or cellular reactions to hypergravity and/or vibrations. To determine the effects of real microgravity on human cells, we used four DLR parabolic flight campaigns and focused on the effects of short-term microgravity (22 s), hypergravity (1.8 g), and vibrations on ML-1 thyroid cancer cells. No signs of apoptosis or necrosis were detectable. Gene array analysis revealed 2,430 significantly changed transcripts. After 22 s microgravity, the F-actin and cytokeratin cytoskeleton was altered, and ACTB and KRT80 mRNAs were significantly upregulated after the first and thirty-first parabolas. The COL4A5 mRNA was downregulated under microgravity, whereas OPN and FN were significantly upregulated. Hypergravity and vibrations did not change ACTB, KRT-80 or COL4A5 mRNA. MTSS1 and LIMA1 mRNAs were downregulated/slightly upregulated under microgravity, upregulated in hypergravity and unchanged by vibrations. These data indicate that the graviresponse of ML-1 cells occurred very early, within the first few seconds. Downregulated MTSS1 and upregulated LIMA1 may be an adaptive mechanism of human cells for stabilizing the cytoskeleton under microgravity conditions. PMID:21865726

  7. Gravisensing: Ionic responses, cytoskeleton and amyloplast behavior

    Allen, N.; Chattaraj, P.; Collings, D.; Johannes, E.

    In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule disrupting drugs and modifiers of cytoplasmic pH, which is a key player in early gravitropic signaling. pHc was monitored in the cells composing the maize pulvinus before and after gravistimulation. pHc changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells, where plastids slowly accumulated became more basic. The results suggest that pHc has an important role in the early signaling pathways of maize stem gravitropism. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. Microtubule distributions in tip cells were monitored over time and seen to accumulate preferentially on the lower flank of the tip filaments 30 minutes after a 90 degree turn. Using a self-referencing Ca 2 + selective ion probe, we found that growing caulonemal filaments exhibit a Ca 2 + influx at the apical dome, similar to that reported previously for other tip growing cells. However, in

  8. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis.

    Kumar, Anita; Dumasia, Kushaan; Deshpande, Sharvari; Gaonkar, Reshma; Balasinor, N H

    2016-08-01

    Actin remodeling is a vital process for signaling, movement and survival in all cells. In the testes, extensive actin reorganization occurs at spermatid-Sertoli cell junctions during sperm release (spermiation) and at inter Sertoli cell junctions during restructuring of the blood testis barrier (BTB). During spermiation, tubulobulbar complexes (TBCs), rich in branched actin networks, ensure recycling of spermatid-Sertoli cell junctional molecules. Similar recycling occurs during BTB restructuring around the same time as spermiation occurs. Actin related protein 2/3 complex is an essential actin nucleation and branching protein. One of its subunits, Arpc1b, was earlier found to be down-regulated in an estrogen-induced rat model of spermiation failure. Also, Arpc1b was found to be estrogen responsive through estrogen receptor beta in seminiferous tubule culture. Here, knockdown of Arpc1b by siRNA in adult rat testis led to defects in spermiation caused by failure in TBC formation. Knockdown also compromised BTB integrity and caused polarity defects of mature spermatids. Apart from these effects pertaining to Sertoli cells, Arpc1b reduction perturbed ability of germ cells to enter G2/M phase thus hindering cell division. In summary, Arpc1b, an estrogen responsive gene, is a regulator of spermiation, mature spermatid polarity, BTB integrity and cell division during adult spermatogenesis. PMID:27113856

  9. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise;

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...

  10. Force of an actin spring

    Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul

    2003-03-01

    The acrosomal process of the horseshoe crab sperm is a novel mechanochemical molecular spring that converts its elastic stain energy to mechanical work upon the chemical activation by Ca2+. Twisted and bent, the initial state of the acrosomal bundle features a high degree of complexity in its structure and the energy is believed to be stored in the highly strained actin filaments as an elastic potential energy. When activated, the bundle relaxes from the coil of the highly twisted and bent filaments to its straight conformation at a mean velocity of 15um/s. The mean extension velocity increases dramatically from 3um/s to 27um/s when temperature of the medium is changed from 9.6C to 32C (respective viscosities of 1.25-0.75cp), yet it exhibits a very weak dependence on changes in the medium viscosity (1cp-33cp). These experiments suggest that the uncoiling of the actin spring should be limited not by the viscosity of the medium but by the unlatching events of involved proteins at a molecular level. Unlike the viscosity-limited processes, where force is directly related to the rate of the reaction, a direct measurement is required to obtain the spring force of the acrosomal process. The extending acrosomal bundle is forced to push against a barrier and its elastic buckling response is analyzed to measure the force generated during the uncoiling.

  11. Computer Simulation of Cytoskeleton-Induced Blebbing in Lipid Membranes

    Spangler, Eric J; Revalee, Joel D; Kumar, P B Sunil; Laradji, Mohamed

    2011-01-01

    Blebs are balloon-shaped membrane protrusions that form during many physiological processes. Using computer simulation of a particle-based model for self-assembled lipid bilayers coupled to an elastic meshwork, we investigated the phase behavior and kinetics of blebbing. We found that blebs form for large values of the ratio between the areas of the bilayer and the cytoskeleton. We also found that blebbing can be induced when the cytoskeleton is subject to a localized ablation or a uniform compression. The results obtained are qualitatively in agreement with the experimental evidence and the model opens up the possibility to study the kinetics of bleb formation in detail.

  12. Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase (CDT).

    Nölke, Thilo; Schwan, Carsten; Lehmann, Friederike; Østevold, Kristine; Pertz, Olivier; Aktories, Klaus

    2016-07-12

    Hypervirulent Clostridium difficile strains, which are associated with increased morbidity and mortality, produce the actin-ADP ribosylating toxin Clostridium difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here, we show that septins (SEPT) are essential for CDT-induced protrusion formation. SEPT2, -6, -7, and -9 accumulate at predetermined protrusion sites and form collar-like structures at the base of protrusions. The septin inhibitor forchlorfenuron or knockdown of septins inhibits protrusion formation. At protrusion sites, septins colocalize with the GTPase Cdc42 (cell division control protein 42) and its effector Borg (binder of Rho GTPases), which act as up-stream regulators of septin polymerization. Precipitation and surface plasmon resonance studies revealed high-affinity binding of septins to the microtubule plus-end tracking protein EB1, thereby guiding incoming microtubules. The data suggest that CDT usurps conserved regulatory principles involved in microtubule-membrane interaction, depending on septins, Cdc42, Borgs, and restructuring of the actin cytoskeleton. PMID:27339141

  13. Studies on the actin-binding protein HS1 in platelets

    Auger Jocelyn M

    2007-11-01

    Full Text Available Abstract Background The platelet cytoskeleton mediates the dramatic change in platelet morphology that takes place upon activation and stabilizes thrombus formation. The Arp2/3 complex plays a vital role in these processes, providing the protrusive force for lamellipodia formation. The Arp2/3 complex is highly regulated by a number of actin-binding proteins including the haematopoietic-specific protein HS1 and its homologue cortactin. The present study investigates the role of HS1 in platelets using HS1-/- mice. Results The present results demonstrate that HS1 is not required for platelet activation, shape change or aggregation. Platelets from HS1-/- mice spread normally on a variety of adhesion proteins and have normal F-actin and Arp2/3 complex distributions. Clot retraction, an actin-dependent process, is also normal in these mice. Platelet aggregation and secretion is indistinguishable between knock out and littermates and there is no increase in bleeding using the tail bleeding assay. Conclusion This study concludes that HS1 does not play a major role in platelet function. It is possible that a role for HS1 is masked by the presence of cortactin.

  14. A MAP kinase dependent feedback mechanism controls Rho1 GTPase and actin distribution in yeast.

    Shuguang Guo

    Full Text Available In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK, resulting in actin depolarization and cell wall remodeling. In this study, we demonstrate a novel feedback loop in this Rho1-mediated Pkc1-MAPK pathway that involves regulation of Rom2, the guanine nucleotide exchange factor of Rho1, by Mpk1, the end kinase of the pathway. This previously unrecognized Mpk1-dependent feedback is a critical step in regulating Rho1 function. Activation of this feedback mechanism is responsible for redistribution of Rom2 and cell wall synthesis activity from the bud to cell periphery under stress conditions. It is also required for terminating Rho1 activity toward the Pkc1-MAPK pathway and for repolarizing actin cytoskeleton and restoring growth after the stressed cells become adapted.

  15. PreImplantation factor (PIF*) regulates systemic immunity and targets protective regulatory and cytoskeleton proteins.

    Barnea, Eytan R; Hayrabedyan, Soren; Todorova, Krassimira; Almogi-Hazan, Osnat; Or, Reuven; Guingab, Joy; McElhinney, James; Fernandez, Nelson; Barder, Timothy

    2016-07-01

    Secreted by viable embryos, PIF is expressed by the placenta and found in maternal circulation. It promotes implantation and trophoblast invasion, achieving systemic immune homeostasis. Synthetic PIF successfully transposes endogenous PIF features to non-pregnant immune and transplant models. PIF affects innate and activated PBMC cytokines and genes expression. We report that PIF targets similar proteins in CD14+, CD4+ and CD8+ cells instigating integrated immune regulation. PIF-affinity chromatography followed by mass-spectrometry, pathway and heatmap analysis reveals that SET-apoptosis inhibitor, vimentin, myosin-9 and calmodulin are pivotal for immune regulation. PIF acts on macrophages down-stream of LPS (lipopolysaccharide-bacterial antigen) CD14/TLR4/MD2 complex, targeting myosin-9, thymosin-α1 and 14-3-3eta. PIF mainly targets platelet aggregation in CD4+, and skeletal proteins in CD8+ cells. Pathway analysis demonstrates that PIF targets and regulates SET, tubulin, actin-b, and S100 genes expression. PIF targets systemic immunity and has a short circulating half-life. Collectively, PIF targets identified; protective, immune regulatory and cytoskeleton proteins reveal mechanisms involved in the observed efficacy against immune disorders. PMID:26944449

  16. Effects of polar cortical cytoskeleton and unbalanced cortical surface tension on intercellular bridge thinning during cytokinesis

    Li Wang; Mei-Wen An; Xiao-Na Li; Fang Yang; Yang Liu

    2011-01-01

    To probe the contributions of polar cortical cytoskeleton and the surface tension of daughter cells to intercellular bridgethinning dynamics during cytokinesis,we applied cytochalasin D (CD) or colchicine (COLC) in a highly localized manner to polar regions of dividing normal rat kidney (NRK) cells.We observed cellular morphological changes and analyzed the intercellular bridge thinning trajectories of dividing cells with different polar cortical characteristics.Global blebbistatin (BS) application was used to obtain cells losing active contractile force groups.Our results show that locally released CD or colchicine at the polar region caused inhibition of cytokinesis before ingression.Similar treatment at phases after ingression allowed completion of cytokinesis but dramatically influenced the trajectories of intercellular bridge thinning.Disturbing single polar cortical actin induced transformation of the intercellular bridge thinning process,and polar cortical tension controlled deformation time of intercellular bridges.Our study provides a feasible framework to induce and analyze the effects of local changes in mechanical properties of cellular components on single cellular cytokinesis.

  17. A radioimmunoassay for determination of anti-actin antibodies

    The reaction of spontaneously occurring human anti-actin antibodies and experimentally produced rabbit anti-actin antibodies was investigated in a solid-phase radioimmunoassay (RIA). Three structurally different in vitro forms of actin, monomeric G-actin, filamentous F-actin and aggregated denatured actin were used as antigens. Human anti-actin antibodies reacted with F- and G-actin but not with aggregated actin, while rabbit anti-actin antibodies gave a strong reaction with all 3 forms of actin indicating differences in antibody specificities. The results of the anti-actin RIA were compared with those obtained by indirect immunofluorescence (IFL) on cryostat sections of rat stomach. The anti-actin RIA discriminated between patients' sera and control sera in most cases, although the indirect IFL test gave more conclusive results. The seemingly low sensitivity of the anti-actin RIA compared with that of indirect IFL test for detection of human anti-actin antibodies is probably due to favourable antigen distribution in tissue, not available in the solid phase. The anti-actin RIA was able to detect anti-actin antibodies in 8 out of 8 immunized rabbits although only two produced antibodies detectable by indirect IFL. The differences in reactivity between the two methods may depend on the presence of aggregated denatured actin in the antigen preparation used for immunization and exposure of the corresponding antigenic determinants of actin on the solid phase. (Auth.)

  18. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Patricia F Kao

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  19. Formins: Linking Cytoskeleton and Endomembranes in Plant Cells

    Cvrčková, F.; Oulehlová, Denisa; Žárský, Viktor

    2015-01-01

    Roč. 16, č. 1 (2015), s. 1-18. E-ISSN 1422-0067 Institutional support: RVO:61389030 Keywords : formin * actin * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.862, year: 2014

  20. Live cell imaging of membrane / cytoskeleton interactions and membrane topology

    Chierico, Luca; Joseph, Adrian S.; Lewis, Andrew L.; Battaglia, Giuseppe

    2014-09-01

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts.

  1. Adenosine Diphosphate Ribosylation Factor-GTPaseActivating Protein Stimulates the Transport of AUX1Endosome, Which Relies on Actin Cytoskeletal Organization in Rice Root DevelopmentF

    Cheng Du; Yunyuan XU; Yingdian Wang; Kang Chong

    2011-01-01

    Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein,GNOM.However,the mediation of auxin influx carrier recycling is poorly understood.Here,we report that overexpression of OsAGAP,an ARF-GTPase-activating protein in rice,stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1.AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption.Furthermore,OsAGAP is involved in actin cytoskeletal organization,and its overexpression tends to reduce the thickness and bundling of actin filaments.Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells,and was only slightly promoted when the actin filaments were completely disrupted by Lat B.Thus,we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.

  2. The IDC-thesaurus and its reorganization

    Final report on the IDC-Thesaurus and its reorganization. The Thesaurus set up for documentation of chemistry and its borderline areas is built up of concept sets. These concept sets unite all synonyms and are linked by concept relations reflecting the hierarchical structure of the Thesaurus. Analysis of the polyhierarchy of the Thesaurus. Composite concepts are subdivided into their broader terms of the abstraction system. These concepts as well as words with different spelling are transferred from the retrieval Thesaurus to a Thesaurus dictionary from which a file is set up for correcting the complete documentation file. (orig.) 891 WB 892 MB

  3. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts.

    Kacena, Melissa A; Eleniste, Pierre P; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E; Mayo, Lindsey D; Bruzzaniti, Angela

    2012-05-18

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  4. Megakaryocytes Regulate Expression of Pyk2 Isoforms and Caspase-mediated Cleavage of Actin in Osteoblasts*

    Kacena, Melissa A.; Eleniste, Pierre P.; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E.; Mayo, Lindsey D.; Bruzzaniti, Angela

    2012-01-01

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  5. The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes

    Lau, Cl; O'Shea, Rd; Bischof, L;

    2011-01-01

    BACKGROUND AND PURPOSE Glutamate transporters play a major role in maintaining brain homeostasis and the astrocytic transporters, EAAT1 and EAAT2, are functionally dominant. Astrocytic excitatory amino acid transporters (EAATs) play important roles in various neuropathologies wherein astrocytes...... undergo cytoskeletal changes. Astrocytic plasticity is well documented, but the interface between EAAT function, actin and the astrocytic cytoskeleton is poorly understood. Because Rho kinase (ROCK) is a key determinant of actin polymerization, we investigated the effects of ROCK inhibitors on EAAT...... activity and astrocytic morphology. EXPERIMENTAL APPROACH The functional activity of glutamate transport was determined in murine cultured astrocytes after exposure to the ROCK inhibitors Fasudil (HA-1077) and Y27632 using biochemical, molecular and morphological approaches. Cytochemical analyses assessed...

  6. Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography.

    Eltsov, Mikhail; Dubé, Nadia; Yu, Zhou; Pasakarnis, Laurynas; Haselmann-Weiss, Uta; Brunner, Damian; Frangakis, Achilleas S

    2015-05-01

    The closure of epidermal openings is an essential biological process that causes major developmental problems such as spina bifida in humans if it goes awry. At present, the mechanism of closure remains elusive. Therefore, we reconstructed a model closure event, dorsal closure in fly embryos, by large-volume correlative electron tomography. We present a comprehensive, quantitative analysis of the cytoskeletal reorganization, enabling separated epidermal cells to seal the epithelium. After establishing contact through actin-driven exploratory filopodia, cells use a single lamella to generate 'roof tile'-like overlaps. These shorten to produce the force, 'zipping' the tissue closed. The shortening overlaps lack detectable actin filament ensembles but are crowded with microtubules. Cortical accumulation of shrinking microtubule ends suggests a force generation mechanism in which cortical motors pull on microtubule ends as for mitotic spindle positioning. In addition, microtubules orient filopodia and lamellae before zipping. Our 4D electron microscopy picture describes an entire developmental process and provides fundamental insight into epidermal closure. PMID:25893916

  7. A Hidden Markov Model for Single Particle Tracks Quantifies Dynamic Interactions between LFA-1 and the Actin Cytoskeleton

    Das, Raibatak; Cairo, Christopher W.; Coombs, Daniel

    2009-01-01

    The extraction of hidden information from complex trajectories is a continuing problem in single-particle and single-molecule experiments. Particle trajectories are the result of multiple phenomena, and new methods for revealing changes in molecular processes are needed. We have developed a practical technique that is capable of identifying multiple states of diffusion within experimental trajectories. We model single particle tracks for a membrane-associated protein interacting with a homoge...

  8. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton

    Brdičková, Naděžda; Brdička, Tomáš; Anděra, Ladislav; Špička, Jiří; Angelisová, Pavla; Milgram, S. L.; Hořejší, Václav

    2001-01-01

    Roč. 507, č. 2 (2001), s. 133-136. ISSN 0014-5793 R&D Projects: GA AV ČR IAA7052904; GA MŠk LN00A026 Institutional research plan: CEZ:AV0Z5052915 Keywords : PAG * EBP50 * ezrin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.644, year: 2001

  9. Effects of Estetrol on Migration and Invasion in T47-D Breast Cancer Cells through the Actin Cytoskeleton

    Giretti, Maria Silvia; Montt Guevara, Maria Magdalena; Cecchi, Elena; Mannella, Paolo; Palla, Giulia; Spina, Stefania; Bernacchi, Guja; Di Bello, Silvia; Genazzani, Andrea Riccardo; Genazzani, Alessandro D.; Simoncini, Tommaso

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor (ER) modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2) on T47-D E...

  10. EFFECTS OF ESTETROL ON MIGRATION AND INVASION IN T47-D BREAST CANCER CELLS THROUGH THE ACTIN CYTOSKELETON

    Maria Silvia eGiretti; Maria Magdalena eMontt Guevara; Elena eCecchi; Paolo eMannella; Giulia ePalla; Stefania eSpina; Guja eBernacchi; Silvia edi Bello; Andrea Riccardo Genazzani; Alessandro eGenazzani; Tommaso eSimoncini

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2) on T47-D estrog...

  11. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and rho GTPases in cell migration

    Stanley, Alanna; Thompson, Kerry; Hynes, Ailish;

    2014-01-01

    , these data will contribute significantly to our understanding of this intricate network under physiological conditions. Based on this, in vivo and in vitro studies can then be combined to elucidate the signaling pathways involved and their targets. Antioxid. Redox Signal. 20, 2026-2042....

  12. Reversible Disassembly of the Actin Cytoskeleton Improves the Survival Rate and Developmental Competence of Cryopreserved Mouse Oocytes

    Mullen, Steven F.; Critser, John K.; Forgacs, Gabor; Steinhardt, Richard; Hosu, Basarab Gabriel

    2008-01-01

    Effective cryopreservation of oocytes is critically needed in many areas of human reproductive medicine and basic science, such as stem cell research. Currently, oocyte cryopreservation has a low success rate. The goal of this study was to understand the mechanisms associated with oocyte cryopreservation through biophysical means using a mouse model. Specifically, we experimentally investigated the biomechanical properties of the ooplasm prior and after cryopreservation as well as the consequ...

  13. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells’ osteogenic differentiation

    Tai IC

    2015-09-01

    Full Text Available I-Chun Tai,1–3 Yao-Hsien Wang,3 Chung-Hwan Chen,3,4 Shu-Chun Chuang,3 Je-Ken Chang,3–5 Mei-Ling Ho1–3,6 1Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 2Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 3Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 4Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 5Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; 6Department of Marine Biotechnology and Resources, National Sun Yat-sen UniVersity, Kaohsiung, Taiwan Abstract: Recent studies have indicated that statins induce osteogenic differentiation both in vitro and in vivo. The molecular mechanism of statin-stimulated osteogenesis is unknown. Activation of RhoA signaling increases cytoskeletal tension, which plays a crucial role in the osteogenic differentiation of mesenchymal stem cells. We thus hypothesized that RhoA signaling is involved in simvastatin-induced osteogenesis in bone marrow mesenchymal stem cells. We found that although treatment with simvastatin shifts localization of RhoA protein from the membrane to the cytosol, the treatment still activates RhoA dose-dependently because it reduces the association with RhoGDIα. Simvastatin also increased the expression of osteogenic proteins, density of actin filament, the number of focal adhesions, and cellular tension. Furthermore, disrupting actin cytoskeleton or decreasing cell rigidity by using chemical agents reduced simvastatin-induced osteogenic differentiation. In vivo study also confirms that density of actin filament is increased in simvastatin-induced ectopic bone formation. Our study is the first to demonstrate that maintaining intact actin cytoskeletons and enhancing cell rigidity are crucial in simvastatin-induced osteogenesis. The results suggested that simvastatin, which is an

  14. Estrogen mediated protection of cytoskeleton against oxidative stress

    Darshini A Ganatra

    2013-01-01

    Interpretation & conclusions: Our findings showed that E 2 helped in preventing deteriorating effect of H 2 O 2 , inhibited cell death, apoptosis and depolymerisation of cytoskeletal proteins in LECs. However, the exact mechanism by which estrogen renders this protection to cytoskeleton of lens epithelial cells remains to be determined.

  15. Dynamics of an actin spring

    Riera, Christophe; Mahadevan, L.; Shin, Jennifer; Matsudaira, Paul

    2003-03-01

    The acrosome of the sperm of the horseshoe crab (Limulus Polyphemus) is an unusual actin based system that shows a spectacular dynamical transition in the presence of Ca++ that is present in abundance in the neighborhood of the egg. During this process, the bundle, which is initially bent and twisted uncoils and becomes straight in a matter of a few seconds. Based on microstructural data, we propose a model for the dynamics of uncoiling that is best represented by a triple-well potential corresponding to the different structural arrangements of the supertwisted filaments. Each of the false, true and coiled states corresponds to a local minimum of the energy, with the true state being the one with the lowest energy. Using an evolution equation derived by balancing torques, we investigate the nucleation and propagation of the phase transition and compare the results with those of experiments. Our model quantifies the hypothesis that the acrosomal bundle behaves like a mechano-chemical spring.

  16. Stability of the tumor suppressor merlin depends on its ability to bind paxillin LD3 and associate with β1 integrin and actin at the plasma membrane

    Maria Elisa Manetti

    2012-08-01

    The NF2 gene encodes a tumor suppressor protein known as merlin or schwannomin whose loss of function causes Neurofibromatosis Type 2 (NF2. NF2 is characterized by the development of benign tumors, predominantly schwannomas, in the peripheral nervous system. Merlin links plasma membrane receptors with the actin cytoskeleton and its targeting to the plasma membrane depends on direct binding to the paxillin scaffold protein. Exon 2 of NF2, an exon mutated in NF2 patients and deleted in a mouse model of NF2, encodes the merlin paxillin binding domain (PBD1. Here, we sought to determine the role of PBD1 in regulation of merlin stability and association with plasma membrane receptors and the actin cytoskeleton in Schwann cells. Using a fluorescence-based pulse-chase technique, we measured the half-life of Halo-tagged merlin variants carrying PBD1, exon 2, and exons 2 and 3 deletions in transiently transfected Schwann cells. We found that PBD1 alone was necessary and sufficient to increase merlin's half-life from approximately three to eleven hours. Merlin lacking PBD1 did not form a complex with surface β1 integrins or associate with the actin cytoskeleton. In addition, direct binding studies using purified merlin and paxillin domains revealed that merlin directly binds paxillin LD3 (leucine-aspartate 3 domain as well as the LD4 and LD5 domains. Together these results demonstrate that a direct interaction between merlin PBD1 and the paxillin LD3–5 domains targets merlin to the plasma membrane where it is stabilized by its association with surface β1 integrins and cortical actin.

  17. Erbium laser resurfacing for actinic cheilitis.

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA). PMID:24196339

  18. The maternal-to-zygotic transition targets actin to promote robustness during morphogenesis.

    Zheng, Liuliu; Sepúlveda, Leonardo A; Lua, Rhonald C; Lichtarge, Olivier; Golding, Ido; Sokac, Anna Marie

    2013-11-01

    Robustness is a property built into biological systems to ensure stereotypical outcomes despite fluctuating inputs from gene dosage, biochemical noise, and the environment. During development, robustness safeguards embryos against structural and functional defects. Yet, our understanding of how robustness is achieved in embryos is limited. While much attention has been paid to the role of gene and signaling networks in promoting robust cell fate determination, little has been done to rigorously assay how mechanical processes like morphogenesis are designed to buffer against variable conditions. Here we show that the cell shape changes that drive morphogenesis can be made robust by mechanisms targeting the actin cytoskeleton. We identified two novel members of the Vinculin/α-Catenin Superfamily that work together to promote robustness during Drosophila cellularization, the dramatic tissue-building event that generates the primary epithelium of the embryo. We find that zygotically-expressed Serendipity-α (Sry-α) and maternally-loaded Spitting Image (Spt) share a redundant, actin-regulating activity during cellularization. Spt alone is sufficient for cellularization at an optimal temperature, but both Spt plus Sry-α are required at high temperature and when actin assembly is compromised by genetic perturbation. Our results offer a clear example of how the maternal and zygotic genomes interact to promote the robustness of early developmental events. Specifically, the Spt and Sry-α collaboration is informative when it comes to genes that show both a maternal and zygotic requirement during a given morphogenetic process. For the cellularization of Drosophilids, Sry-α and its expression profile may represent a genetic adaptive trait with the sole purpose of making this extreme event more reliable. Since all morphogenesis depends on cytoskeletal remodeling, both in embryos and adults, we suggest that robustness-promoting mechanisms aimed at actin could be effective at

  19. Plasticity of mesenchymal stem cells under microgravity: from cytoskeletal reorganization to commitment shift

    Buravkova, Ludmila

    Mesenchymal stem cells (MSCs) can be used to examine osteogenesis of uncommitted cells maintaining the bone differentiation potential such as osteogenic gene expression, osteogenic markers, matrix maturation and mineralization. MSCs are therefore a good model for studying osteogenesis in the space environment. Recent investigations have demonstrated that MSCs change in response to microgravity and, consequently, can be involved in the development of osteopenia detected in space travelers. This is a factor that can limit human space missions due to potential risks of osteoporosis and its aftereffects during and after flight. Simulated microgravity inhibited MSC differentiation towards osteoblasts and accelerated adipocyte development due to cytoskeleton modifications, including its structure and regulation associated with signal transduction cascades. We identified transient changes in the actin cytoskeleton of non-committed human bone marrow MSCs in short-term RPM experiments. In addition, we detected transient changes in the expression of genes encoding actin cytoskeleton proteins and associated elements (ACTA1, ACTG, RHOA, CFL1, VCL). When discussing the microgravity effects on MSC osteogenic differentiation, it should be mentioned the inhibition of Runx2 and ALPL and stimulation of PPARg2 in the MSCs induced for osteogenesis. It is probable that the reciprocal regulation of the two transcription factors is a molecular mechanism underlying progenitor cell response to microgravity. It is very likely that these genes are involved in the universal circuits within which mechanical (or gravity ) signals are sensed by MSCs. Recently, the list of osteogenic markers was extended to include several new proteins as microgravity targets (proteoglycans, osteomodulin, osteoglycin). It can be believed that exposure to microgravity produces similar effects on mature bone cells (osteoblasts) and non-committed osteogenic cells (MSCs). This finds a support in the fact that

  20. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  1. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane.

    Alli, Abdel A; Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S; Ma, He-Ping; Eaton, Douglas C

    2015-09-01

    Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. PMID:26136560

  2. Workplace Re-organization and Changes in Physiological Stress Markers

    Carlsson, Rikke Hinge; Hansen, Åse Marie; Kristiansen, Jesper;

    2014-01-01

    The aim of this study was to investigate changes in physiological stress markers as a consequence of workplace reorganization. Moreover, we aimed to investigate changes in the psychosocial work environment (job strain, effortreward imbalance (ERI), in psychological distress (stress symptoms...... reorganization and changes in several physiological stress markers. However, these changes could not be explained by a significant change in psychological distress....

  3. 26 CFR 1.585-4 - Reorganizations and asset acquisitions.

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Reorganizations and asset acquisitions. 1.585-4... TAX (CONTINUED) INCOME TAXES (CONTINUED) Banking Institutions § 1.585-4 Reorganizations and asset... accounting for bad debts prior to July 11, 1969. For the taxable year 1970 through 1973, X and Y...

  4. Genome reorganization during aging of dividing cells

    The study of the effect of low dose rate ionizing radiation on the long-term proliferation of fibroblasts led to the observation that radiation accentuated the growth potential of the cells, favoring events which normally take place during division. These events could be related to the genome reorganization taking place during division. Hence, it has been hypothesized that the long-term proliferation of fibroblasts depends upon the potential for reorganization of the genome, the latter being a self-limiting process. At each division residual quantitative and qualitative changes would accumulate in chromatin, limiting the long-term potential for further rearrangements. The hypothesis was checked looking for quantitative and qualitative changes in DNA through the in vitro lifespan of human fibroblast populations. It was found that at each population doubling in 20% of the cells there is unequal distribution of DNA between sister cells. Results show that this could be due to errors in chromosome assembly and segregation, to loss of DNA, to errors during semiconservative DNA synthesis and to multiple rounds of DNA replication at a single origin. An increased alkali- and thermo-lability of chromatin was found during in vitro aging. At the ultrastructural level after mild decondensation, chromatin fibers were spaced and shorter. After Miller's spreading, most of the chromatin of old cells had lost the nucleosome organization and was fragmented. These chromatin changes became apparent only towards the end of the life span of human embryonic fibroblasts but were already present in a significant fraction of low population doubling level (PDL) fibroblasts from human adults. Almost all cells of low-PDL fibroblasts from the Werner syndrome presented these chromatin changes

  5. Reactive oxygen species (ROS)-induced actin glutathionylation controls actin dynamics in neutrophils

    Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K.; Mondal, Subhanjan; Bajrami, Besnik; Hattori, Hidenori; Jia, Yonghui; Dickinson, Bryan C; Zhong, Jia; Ye, Keqiang; Chang, Christopher J.; Ho, Ye-Shih; Zhou, Jun; Luo, Hongbo R.

    2012-01-01

    The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis, and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, however the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin poly...

  6. Nuclear actin levels as an important transcriptional switch

    Huet, Guillaume; Skarp, Kari-Pekka; Vartiainen, Maria K.

    2012-01-01

    Nuclear actin levels have recently been linked to different cellular fates, suggesting that actin could act as a switch between altered transcriptional states. Here we discuss our latest results on the mechanisms by which nuclear actin levels are regulated and their implications to the functional significance of nuclear actin.

  7. Nuclear actin levels as an important transcriptional switch

    Huet, Guillaume; Skarp, Kari-Pekka; Vartiainen, Maria K.

    2012-01-01

    Nuclear actin levels have recently been linked to different cellular fates, suggesting that actin could act as a switch between altered transcriptional states. Here we discuss our latest results on the mechanisms by which nuclear actin levels are regulated and their implications to the functional significance of nuclear actin. PMID:22771994

  8. 26 CFR 54.4980B-9 - Business reorganizations and employer withdrawals from multiemployer plans.

    2010-04-01

    ... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Business reorganizations and employer...-9 Business reorganizations and employer withdrawals from multiemployer plans. The following... affected qualified beneficiaries in the context of business reorganizations and employer withdrawals...

  9. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea).

    Souza, Ligia Cristina Kalb; Pinho, Rosana Elisa Gonçalves Gonçalves; Lima, Carla Vanessa de Paula; Fragoso, Stênio Perdigão; Soares, Maurilio José

    2013-08-01

    Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids. PMID:23903980

  10. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea

    Ligia Cristina Kalb Souza

    2013-08-01

    Full Text Available Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major, insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis and plants (Phytomonas serpens. A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.

  11. Chronic actinic damage of facial skin.

    Bilaç, Cemal; Şahin, Mustafa Turhan; Öztürkcan, Serap

    2014-01-01

    Chronic actinic damage of the skin manifests itself as extrinsic skin aging (photoaging) and photocarcinogenesis. During the last decade, substantial progress has been made in understanding cellular and molecular mechanisms of photoaging. DNA photodamage and ultraviolet-generated reactive oxygen species are the initial events that lead to most of the typical histologic and clinical manifestations of chronic photodamage of the skin. Chronic actinic damage affects all layers of the skin. Keratinocytes, melanocytes, fibroblasts, and endothelial cells are altered by ultraviolet radiation and can result in numerous changes in human skin, particularly the skin of fair-skinned individuals. These changes include actinic keratosis, thickening and wrinkling, elastosis, telengiectasia, solar comedones, diffuse or mottled hyperpigmentation, and skin cancers. There are many options in the treatment of changes caused by chronic actinic damage. The most effective measure of prevention of the photoaging and photocarcinogenesis is sun protection. PMID:25441468

  12. Actinic review of EUV masks

    Feldmann, Heiko; Ruoff, Johannes; Harnisch, Wolfgang; Kaiser, Winfried

    2010-04-01

    Management of mask defects is a major challenge for the introduction of EUV for HVM production. Once a defect has been detected, its printing impact needs to be predicted. Potentially the defect requires some repair, the success of which needs to be proven. This defect review has to be done with an actinic inspection system that matches the imaging conditions of an EUV scanner. During recent years, several concepts for such an aerial image metrology system (AIMS™) have been proposed. However, until now no commercial solution exists for EUV. Today, advances in EUV optics technology allow envisioning a solution that has been discarded before as unrealistic. We present this concept and its technical cornerstones.While the power requirement for the EUV source is less demanding than for HVM lithography tools, radiance, floor space, and stability are the main criteria for source selection. The requirement to emulate several generations of EUV scanners demands a large flexibility for the ilumination and imaging systems. New critical specifications to the EUV mirrors in the projection microscope can be satisfied using our expertise from lithographic mirrors. In summary, an EUV AIMS™ meeting production requirements seems to be feasible.

  13. Mechanism of Actin Filament Bundling by Fascin

    Jansen, Silvia; Collins, Agnieszka; Yang, Changsong; Rebowski, Grzegorz; Svitkina, Tatyana; Dominguez, Roberto (UPENN); (UPENN-MED)

    2013-03-07

    Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four {beta}-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in {beta}-trefoil domains 1 and 3. The site in {beta}-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in {beta}-trefoil-3 is related by pseudo-2-fold symmetry to that in {beta}-trefoil-1. The two sites are {approx}5 nm apart, resulting in a distance between actin filaments in the bundle of {approx}8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.

  14. Stimulation of Actin Polymerization by Filament Severing

    Carlsson, A E

    2005-01-01

    The extent and dynamics of actin polymerization in solution are calculated as functions of the filament severing rate, using a simple model of in vitro polymerization. The model is solved by both analytic theory and stochastic-growth simulation. The results show that severing essentially always enhances actin polymerization by freeing up barbed ends, if barbed-end cappers are present. Severing has much weaker effects if only pointed-end cappers are present. In the early stages of polymerizati...

  15. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  16. Sarcomeric pattern formation by actin cluster coalescence.

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  17. Mechanics of membrane-cytoskeleton attachment in Paramecium

    Campillo, Clément; Jerber, Julie; Fisch, Cathy; Simoes-Betbeder, Maria; Dupuis-Williams, Pascale; Nassoy, Pierre; Sykes, Cécile

    2012-01-01

    International audience In this paper we assess the role of the protein MKS1 (Meckel syndrome type 1) in the cortical membrane mechanics of the ciliated protist Paramecium. This protein is known to be crucial in the process of cilium formation, and we investigate its putative role in membrane-cytoskeleton attachment. Therefore, we compare cells where the gene coding for MKS1 is silenced to wild-type cells. We found that scanning electron microscopy observation of the cell surface reveals a ...

  18. Functions of the intermediate filament cytoskeleton in the eye lens

    Song, Shuhua; Landsbury, Andrew; Dahm, Ralf; Liu, Yizhi; Zhang, Qingjiong; Quinlan, Roy A.

    2009-01-01

    Intermediate filaments (IFs) are a key component of the cytoskeleton in virtually all vertebrate cells, including those of the lens of the eye. IFs help integrate individual cells into their respective tissues. This Review focuses on the lens-specific IF proteins beaded filament structural proteins 1 and 2 (BFSP1 and BFSP2) and their role in lens physiology and disease. Evidence generated in studies in both mice and humans suggests a critical role for these proteins and their filamentous poly...

  19. Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations

    Lai, Lipeng; Cao, Jianshu

    2014-07-01

    The macroscopic properties, the properties of individual components, and how those components interact with each other are three important aspects of a composited structure. An understanding of the interplay between them is essential in the study of complex systems. Using axonal cytoskeleton as an example system, here we perform a theoretical study of slender structures that can be coarse-grained as a simple smooth three-dimensional curve. We first present a generic model for such systems based on the fundamental theorem of curves. We use this generic model to demonstrate the applicability of the well-known worm-like chain (WLC) model to the network level and investigate the situation when the system is stretched by strong forces (weakly bending limit). We specifically studied recent experimental observations that revealed the hitherto unknown periodic cytoskeleton structure of axons and measured the longitudinal fluctuations. Instead of focusing on single molecules, we apply analytical results from the WLC model to both single molecule and network levels and focus on the relations between extensions and fluctuations. We show how this approach introduces constraints to possible local dynamics of the spectrin tetramers in the axonal cytoskeleton and finally suggests simple but self-consistent dynamics of spectrins in which the spectrins in one spatial period of axons fluctuate in-sync.

  20. Actin microfilaments are associated with the migrating nucleus and the cell cortex in the green alga Micrasterias. Studies on living cells.

    Meindl, U; Zhang, D; Hepler, P K

    1994-07-01

    Rhodamine-phalloidin or FITC-phalloidin has been injected in small amounts into living, developing cells of Micrasterias denticulata and the stained microfilaments visualized by confocal laser scanning microscopy. The results reveal that two different actin filament systems are present in a growing cell: a cortical actin network that covers the inner surface of the cell and is extended far into the tips of the lobes in both the growing and the nongrowing semicell; it is also associated with the surface of the chloroplast. The second actin system ensheathes the nucleus at the isthmus-facing side during nuclear migration. Its arrangement corresponds to that of the microtubule system that has been described in earlier electron microscopic investigations. The spatial correspondence between the distribution of actin filaments and microtubules suggests a cooperation between both cytoskeleton elements in generating the motive force for nuclear migration. The function of the cortical actin network is not yet clear. It may be involved in processes like transport and fusion of secretory vesicles and may also function in shaping and anchoring the chloroplast. PMID:7983159

  1. Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein

    Umeki, Nobuhisa; Hirose, Keiko; Uyeda, Taro Q. P.

    2016-01-01

    To investigate cooperative conformational changes of actin filaments induced by cofilin binding, we engineered a fusion protein made of Dictyostelium cofilin and actin. The filaments of the fusion protein were functionally similar to actin filaments bound with cofilin in that they did not bind rhodamine-phalloidin, had quenched fluorescence of pyrene attached to Cys374 and showed enhanced susceptibility of the DNase loop to cleavage by subtilisin. Quantitative analyses of copolymers made of different ratios of the fusion protein and control actin further demonstrated that the fusion protein affects the structure of multiple neighboring actin subunits in copolymers. Based on these and other recent related studies, we propose a mechanism by which conformational changes induced by cofilin binding is propagated unidirectionally to the pointed ends of the filaments, and cofilin clusters grow unidirectionally to the pointed ends following this path. Interestingly, the fusion protein was unable to copolymerize with control actin at pH 6.5 and low ionic strength, suggesting that the structural difference between the actin moiety in the fusion protein and control actin is pH-sensitive. PMID:26842224

  2. Case managers reorganize to challenge claims denials.

    1999-08-01

    A combination of diminished reimbursement, decreased funding for residency programs, an epidemic of claims denials, and the skilled nursing crisis has imperiled teaching hospitals across the country. Increasingly, these hospitals are looking to case management departments as potential saviors. In the short term, that could mean more staff and a beefier budget, but if your department can't produce, cuts later on could be drastic. The University of Pennsylvania Health System in Philadelphia lost $90 million in FY1998 and responded by cutting 1,100 positions--9% of its work force. The case management department lost eight positions and is trying to take up the slack with a massive reorganization of its care delivery system and a rigorous education program designed to reduce claims denials. At Georgetown University Medical Center in Washington, DC, however, case management staff and resources have been increased for now. The department is using its new-found prosperity to thoroughly screen all incoming patients for appropriateness of admission, upgrade its discharge planning capabilities, and hire a full-time employee to appeal denied claims. PMID:10557727

  3. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    Xiaorui Chen

    2013-06-01

    Full Text Available Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl, a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization.

  4. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells.

    Pfannes, Eva K B; Anielski, Alexander; Gerhardt, Matthias; Beta, Carsten

    2013-12-01

    Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system. PMID:24136144

  5. Stochastic simulation of biological reactions, and its applications for studying actin polymerization

    Molecular events in biological cells occur in local subregions, where the molecules tend to be small in number. The cytoskeleton, which is important for both the structural changes of cells and their functions, is also a countable entity because of its long fibrous shape. To simulate the local environment using a computer, stochastic simulations should be run. We herein report a new method of stochastic simulation based on random walk and reaction by the collision of all molecules. The microscopic reaction rate Pr is calculated from the macroscopic rate constant k. The formula involves only local parameters embedded for each molecule. The results of the stochastic simulations of simple second-order, polymerization, Michaelis–Menten-type and other reactions agreed quite well with those of deterministic simulations when the number of molecules was sufficiently large. An analysis of the theory indicated a relationship between variance and the number of molecules in the system, and results of multiple stochastic simulation runs confirmed this relationship. We simulated Ca2+ dynamics in a cell by inward flow from a point on the cell surface and the polymerization of G-actin forming F-actin. Our results showed that this theory and method can be used to simulate spatially inhomogeneous events

  6. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  7. Impairment of cytoskeleton-dependent vesicle and organelle translocation in green algae: combined use of a microfocused infrared laser as microbeam and optical tweezers.

    Holzinger, A; Monajembashi, S; Greulich, K O; Lütz-Meindl, U

    2002-11-01

    A Nd-YAG laser at 1064 nm is used as optical tweezers to move intracellular objects and a laser microbeam to cause impairment of cytoskeleton tracks and influence intracellular motions in desmidiaceaen green algae. Naturally occurring migrations of large nuclei are inhibited in Micrasterias denticulata and Pleurenterium tumidum when the responsible microtubules are targeted with a laser microbeam generating 180 mW power in the focal plane. Impairment of the microtubule tracks appears to be irreversible, as the nucleus cannot pass the former irradiated area in Pleurenterium or remains abnormally dislocated in Micrasterias. The actin filament-dependent movement of secretory vesicles and smaller particles can be manipulated by the same IR-laser at 90 mW when functioning as optical tweezers. In Closterium lunula particles are displaced from their cytoplasmic tracks for up to 10 micro m but return to their tracks immediately after removing the light pressure gained by the optical tweezers. The cytoplasmic tracks consist of actin filament cables running parallel to the longitudinal axis of Closterium cells as depicted by Alexa phalloidin staining and confocal laser scanning microscopy. Dynamics and extensibility of the cytoplasmic strands connecting particles to the tracks are also demonstrated in the area of large vacuoles which are surrounded by actin filament bundles. In Micrasterias trapping of secretory vesicles by the optical tweezers causes irreversible malformations of the cell shape. The vesicle accumulation itself dissipates within 30 s after removing the optical tweezers, also indicating reversibility of the effects induced, in the case of actin filament-mediated processes. PMID:12423258

  8. Treatment of recurrent nightmares by the dream reorganization approach.

    Palace, E M; Johnston, C

    1989-09-01

    Dream reorganization is introduced as a new theoretical and treatment approach to the alleviation of recurrent nightmares, derived from the principles of the Seligman and Yellen (1987) theory of dream construction. The cognitive-behavioral dream reorganization treatment package consists of two treatment components. Systematic desensitization with coping self-statements is employed to alter the emotional episode by counterconditioning a relaxation response to anxiety-evoking nightmare content. Guided rehearsal of mastery endings to dream content hierarchy items is added to modify the secondary visual stimuli associated with recurrent nightmares. The dream reorganization approach is presented in the case of a 10-year-old male with a fear of sleeping alone due to recurrent nightmares. Following treatment, the client reported 100% reduction in nightmares and demonstrated 100% reduction in night time arrival in the parents' room. The present report provides a theoretical rationale for dream reorganization, and future directions for research in the treatment of recurrent nightmares. PMID:2576657

  9. Prolonged reorganization of thiol-capped Au nanoparticles layered structures

    Sarathi Kundu

    2013-09-01

    Full Text Available Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001 substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

  10. An Analysis of the Bankruptcy Reorganization Procedure in China

    Fei Leng

    2013-01-01

    This paper analyzes the reorganization procedure introduced into the Chinese bankruptcy system in 2007. It shows that managers devote more effort during the reorganization than before the bankruptcy when the emergence value of the bankrupt firm is substantial. In addition, in the pre-bankruptcy period, managers were shown to input less effort under the new law than under the old law. Finally, the paper demonstrates that the market interest rate under the new bankruptcy law is not necessarily ...

  11. Functional reorganization of sensorimotor cortex in early Parkinson disease.

    Kojovic, M.; Bologna, M; Kassavetis, P.; Murase, N.; Palomar, F. J.; Berardelli, A; Rothwell, J C; Edwards, M. J.; Bhatia, K P

    2012-01-01

    OBJECTIVE: Compensatory reorganization of the nigrostriatal system is thought to delay the onset of symptoms in early Parkinson disease (PD). Here we sought evidence that compensation may be a part of a more widespread functional reorganization in sensorimotor networks, including primary motor cortex. METHODS: Several neurophysiologic measures known to be abnormal in the motor cortex (M1) of patients with advanced PD were tested on the more and less affected side of 16 newly diagnosed and dru...

  12. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils

    1984-01-01

    To determine the relationship between the state of actin polymerization in neutrophils and the formyl-methionyl-leucyl-phenylalanine (fMLP)- induced changes in the locomotive behavior of neutrophils, the mean rate of locomotion (mROL), the percent G-actin, and the relative F- actin content of neutrophils were determined. The mROL was quantified by analysis of the locomotion of individual cells; the percentage of total actin as G-actin was measured by DNase I inhibition; and the F- actin was d...

  13. The interaction between actin and FA fragment of diphtheria toxin

    Ünlü, A.; Bektaş, M.; Şener, S.; Nurten, R.

    2012-01-01

    Actin protein has many other cellular functions such as movement, chemotaxis, secretion and cytodiaresis. Besides, it have structural function. Actin is a motor protein that it has an important role in the movement process of toxin in the cell. It is known that F-actin gives carriage support during the endosomal process. Actin is found in globular (G) and filamentous (F) structure in the cell. The helix of actin occurs as a result of polymerisation of monomeric G-actin molecules through seque...

  14. Spontaneous actin dynamics in contractile rings

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  15. Mechanics and control of the cytoskeleton in Amoeba proteus.

    Dembo, M

    1989-06-01

    Many models of the cytoskeletal motility of Amoeba proteus can be formulated in terms of the theory of reactive interpenetrating flow (Dembo and Harlow, 1986). We have devised numerical methodology for testing such models against the phenomenon of steady axisymmetric fountain flow. The simplest workable scheme revealed by such tests (the minimal model) is the main preoccupation of this study. All parameters of the minimal model are determined from available data. Using these parameters the model quantitatively accounts for the self assembly of the cytoskeleton of A. proteus: for the formation and detailed morphology of the endoplasmic channel, the ectoplasmic tube, the uropod, the plasma gel sheet, and the hyaline cap. The model accounts for the kinematics of the cytoskeleton: the detailed velocity field of the forward flow of the endoplasm, the contraction of the ectoplasmic tube, and the inversion of the flow in the fountain zone. The model also gives a satisfactory account of measurements of pressure gradients, measurements of heat dissipation, and measurements of the output of useful work by amoeba. Finally, the model suggests a very promising (but still hypothetical) continuum formulation of the free boundary problem of amoeboid motion. by balancing normal forces on the plasma membrane as closely as possible, the minimal model is able to predict the turgor pressure and surface tension of A. proteus. Several dynamical factors are crucial to the success of the minimal model and are likely to be general features of cytoskeletal mechanics and control in amoeboid cells. These are: a constitutive law for the viscosity of the contractile network that includes an automatic process of gelation as the network density gets large; a very vigorous cycle of network polymerization and depolymerization (in the case of A. proteus, the time constant for this reaction is approximately 12 s); control of network contractility by a diffusible factor (probably calcium ion); and

  16. Transcriptomic effects of di-(2-ethylhexyl-phthalate in Syrian hamster embryo cells: an important role of early cytoskeleton disturbances in carcinogenesis?

    Atienzar Franck

    2011-10-01

    Full Text Available Abstract Background Di-(2-ethylhexyl-phthalate (DEHP is a commonly used plasticizer in polyvinylchloride (PVC formulations and a potentially non-genotoxic carcinogen. The aim of this study was to identify genes whose level of expression is altered by DEHP by using a global wide-genome approach in Syrian hamster embryo (SHE cells, a model similar to human cells regarding their responses to this type of carcinogen. With mRNA Differential Display (DD, we analysed the transcriptional regulation of SHE cells exposed to 0, 12.5, 25 and 50 μM of DEHP for 24 hrs, conditions which induced neoplastic transformation of these cells. A real-time quantitative polymerase chain reaction (qPCR was used to confirm differential expression of genes identified by DD. Results Gene expression profiling showed 178 differentially-expressed fragments corresponding to 122 genes after tblastx comparisons, 79 up-regulated and 43 down-regulated. The genes of interest were involved in many biological pathways, including signal transduction, regulation of the cytoskeleton, xenobiotic metabolism, apoptosis, lipidogenesis, protein conformation, transport and cell cycle. We then focused particularly on genes involved in the regulation of the cytoskeleton, one of the processes occurring during carcinogenesis and in the early steps of neoplastic transformation. Twenty one cytoskeleton-related genes were studied by qPCR. The down-regulated genes were involved in focal adhesion or cell junction. The up-regulated genes were involved in the regulation of the actin cytoskeleton and this would suggest a role of cellular plasticity in the mechanism of chemical carcinogenesis. The gene expression changes identified in the present study were PPAR-independent. Conclusion This study identified a set of genes whose expression is altered by DEHP exposure in mammalian embryo cells. This is the first study that elucidates the genomic changes of DEHP involved in the organization of the

  17. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster.

    Irene L G Newton

    2015-04-01

    Full Text Available Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic(221/+ and chic(1320/+ or villin (qua(6-396/+ either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic(221 heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.

  18. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles.

    Felipe O Bendezú

    Full Text Available The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.

  19. Plekhh2, a novel podocyte protein downregulated in human focal segmental glomerulosclerosis, is involved in matrix adhesion and actin dynamics.

    Perisic, Ljubica; Lal, Mark; Hulkko, Jenny; Hultenby, Kjell; Önfelt, Björn; Sun, Ying; Dunér, Fredrik; Patrakka, Jaakko; Betsholtz, Christer; Uhlen, Mathias; Brismar, Hjalmar; Tryggvason, Karl; Wernerson, Annika; Pikkarainen, Timo

    2012-11-01

    Pleckstrin homology domain-containing, family H (with MyTH4 domain), member 2 (Plekhh2) is a 1491-residue intracellular protein highly enriched in renal glomerular podocytes for which no function has been ascribed. Analysis of renal biopsies from patients with focal segmental glomerulosclerosis revealed a significant reduction in total podocyte Plekhh2 expression compared to controls. Sequence analysis indicated a putative α-helical coiled-coil segment as the only recognizable domain within the N-terminal half of the polypeptide, while the C-terminal half contains two PH, a MyTH4, and a FERM domain. We identified a phosphatidylinositol-3-phosphate consensus-binding site in the PH1 domain required for Plekhh2 localization to peripheral regions of cell lamellipodia. The N-terminal half of Plekkh2 is not necessary for lamellipodial targeting but mediates self-association. Yeast two-hybrid screening showed that Plekhh2 directly interacts through its FERM domain with the focal adhesion protein Hic-5 and actin. Plekhh2 and Hic-5 coprecipitated and colocalized at the soles of podocyte foot processes in situ and Hic-5 partially relocated from focal adhesions to lamellipodia in Plekhh2-expressing podocytes. In addition, Plekhh2 stabilizes the cortical actin cytoskeleton by attenuating actin depolymerization. Our findings suggest a structural and functional role for Plekhh2 in the podocyte foot processes. PMID:22832517

  20. Epstein-Barr virus LMP1 modulates lipid raft microdomains and the vimentin cytoskeleton for signal transduction and transformation.

    Meckes, David G; Menaker, Nathan F; Raab-Traub, Nancy

    2013-02-01

    The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction. PMID:23152522

  1. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3.

    Speight, Pam; Kofler, Michael; Szászi, Katalin; Kapus, András

    2016-01-01

    Myocardin-related transcription factor (MRTF) and TAZ are major mechanosensitive transcriptional co-activators that link cytoskeleton organization to gene expression. Despite many similarities in their regulation, their physical and/or functional interactions are unknown. Here we show that MRTF and TAZ associate partly through a WW domain-dependent mechanism, and exhibit multilevel crosstalk affecting each other's expression, transport and transcriptional activity. Specifically, MRTF is essential for TAZ expression; TAZ and MRTF inhibit each other's cytosolic mobility and stimulus-induced nuclear accumulation; they antagonize each other's stimulatory effect on the α-smooth muscle actin (SMA) promoter, which harbours nearby cis-elements for both, but synergize on isolated TEAD-elements. Importantly, TAZ confers Smad3 sensitivity to the SMA promoter. Thus, TAZ is a context-dependent switch during mechanical versus mechano/chemical signalling, which inhibits stretch-induced but is indispensable for stretch+TGFβ-induced SMA expression. Crosstalk between these cytoskeleton-regulated factors seems critical for fine-tuning mechanical and mechanochemical transcriptional programmes underlying myofibroblast transition, wound healing and fibrogenesis. PMID:27189435

  2. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    Picart, C.; Dalhaimer, P.; Discher, D. E.

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the ...

  3. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    Carlsson, Anders E

    2010-01-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  4. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    Carlsson, Anders E.

    2010-06-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: (a) traveling waves, (b) moving patches, and (c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism not involving myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  5. Measurement and Analysis of in vitro Actin Polymerization

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2013-01-01

    The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when ...

  6. Force Generation by Endocytic Actin Patches in Budding Yeast

    Carlsson, Anders E.; Bayly, Philip V.

    2014-01-01

    Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The def...

  7. Daylight photodynamic therapy for actinic keratosis

    Wiegell, Stine; Wulf, H C; Szeimies, R-M;

    2011-01-01

    Photodynamic therapy (PDT) is an attractive therapy for non-melanoma skin cancers including actinic keratoses (AKs) because it allows treatment of large areas; it has a high response rate and results in an excellent cosmesis. However, conventional PDT for AKs is associated with inconveniently lon...

  8. Cytoskeletal reorganizations in human umbilical vein endothelial cells as a result of cytokine exposure

    Treatment of HUVECs in culture with several cytokines and phorbol esters caused reorganizations of the actin and microtubule networks, as well as a redistribution of focal contract proteins. However, expression of the cytoskeletal proteins which link cells, via integrins, to the substrate, was not significantly affected. Indirect immunofluorescence microscopy of endothelial cells after treatment with interleukin-1 alpha and beta, gamma-interferon, tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate, and phorbol 12,13-dibutyrate allowed us to observe reductions in the areas of cell-cell contact, redistribution of the stress fiber network, and concomitant changes in focal contacts. Microtubule arrays in TNF-treated cells became bundled. Phorbol esters induced formation of microtubule organizing centers not seen in resting or TNF-treated HUVECs. Talin was distributed along stress fibers and not exclusively in focal contacts. Vitronectin receptor was observed in focal contacts, occasionally at cell-cell contacts, and in vesicular structures close to the lumenal surface, after both types of treatment. Although these morphological changes were easily observed by indirect immunofluorescence, no quantitative differences in specific cytoskeletal proteins were detected by immunoblots and [35S]cysteine metabolic labeling experiments

  9. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions

  10. Reorganization of neuronal circuits in growing visual cortex

    Keil, Wolfgang; Loewel, Siegrid; Wolf, Fred; Kaschube, Matthias

    2009-03-01

    The dynamics of reorganization of large cortical circuits is rooted in plasticity of individual synapses, but rules governing the collective behavior of large networks of neurons are only poorly understood. The postnatal brain growth partly evoked by extensive formation of new synaptic connections may expose cortical areas to a 'natural perturbation' sufficiently strong to observe signatures of large scale reorganization. Quantifying large sets of imaging data from juvenile cat visual cortex, we observe a novel mode of reorganization of domains that prefer inputs from one eye or the other. Our theoretical analysis shows that this mode can be explained quantitatively by the so called Zigzag instability, a dynamical reorganization, well-known in the field of pattern formation in physics, by which 2D isotropic Turing patterns respond to an increase in their typical spatial scale with a zigzag-like bending of domains. We point out that this instability has in fact been predicted, albeit implicitly, by most models of visual cortical development that have been proposed so far. We conclude that cortical networks can undergo large scale reorganizations during normal postnatal development.

  11. Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers.

    Adderley, Shaquria P; Lawrence, Curtis; Madonia, Eyong; Olubadewo, Joseph O; Breslin, Jerome W

    2015-07-01

    The role of the actin cytoskeleton in endothelial barrier function has been debated for nearly four decades. Our previous investigation revealed spontaneous local lamellipodia in confluent endothelial monolayers that appear to increase overlap at intercellular junctions. We tested the hypothesis that the barrier-disrupting agent histamine would reduce local lamellipodia protrusions and investigated the potential involvement of p38 mitogen-activated protein (MAP) kinase activation and actin stress fiber formation. Confluent monolayers of human umbilical vein endothelial cells (HUVEC) expressing green fluorescent protein-actin were studied using time-lapse fluorescence microscopy. The protrusion and withdrawal characteristics of local lamellipodia were assessed before and after addition of histamine. Changes in barrier function were determined using electrical cell-substrate impedance sensing. Histamine initially decreased barrier function, lamellipodia protrusion frequency, and lamellipodia protrusion distance. A longer time for lamellipodia withdrawal and reduced withdrawal distance and velocity accompanied barrier recovery. After barrier recovery, a significant number of cortical fibers migrated centrally, eventually resembling actin stress fibers. The p38 MAP kinase inhibitor SB203580 attenuated the histamine-induced decreases in barrier function and lamellipodia protrusion frequency. SB203580 also inhibited the histamine-induced decreases in withdrawal distance and velocity, and the subsequent actin fiber migration. These data suggest that histamine can reduce local lamellipodia protrusion activity through activation of p38 MAP kinase. The findings also suggest that local lamellipodia have a role in maintaining endothelial barrier integrity. Furthermore, we provide evidence that actin stress fiber formation may be a reaction to, rather than a cause of, reduced endothelial barrier integrity. PMID:25948734

  12. An Arp2/3 nucleated F-actin shell fragments nuclear membranes at nuclear envelope breakdown in starfish oocytes.

    Mori, Masashi; Somogyi, Kálmán; Kondo, Hiroshi; Monnier, Nilah; Falk, Henning J; Machado, Pedro; Bathe, Mark; Nédélec, François; Lénárt, Péter

    2014-06-16

    Animal cells disassemble and reassemble their nuclear envelopes (NEs) upon each division. Nuclear envelope breakdown (NEBD) serves as a major regulatory mechanism by which mixing of cytoplasmic and nuclear compartments drives the complete reorganization of cellular architecture, committing the cell for division. Breakdown is initiated by phosphorylation-driven partial disassembly of the nuclear pore complexes (NPCs), increasing their permeability but leaving the overall NE structure intact. Subsequently, the NE is rapidly broken into membrane fragments, defining the transition from prophase to prometaphase and resulting in complete mixing of cyto- and nucleoplasm. However, the mechanism underlying this rapid NE fragmentation remains largely unknown. Here, we show that NE fragmentation during NEBD in starfish oocytes is driven by an Arp2/3 complex-nucleated F-actin "shell" that transiently polymerizes on the inner surface of the NE. Blocking the formation of this F-actin shell prevents membrane fragmentation and delays entry of large cytoplasmic molecules into the nucleus. We observe spike-like protrusions extending from the F-actin shell that appear to "pierce" the NE during the fragmentation process. Finally, we show that NE fragmentation is essential for successful reproduction, because blocking this process in meiosis leads to formation of aneuploid eggs. PMID:24909322

  13. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island.

    Jean-Baptiste Rioux

    Full Text Available Magnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour. A large genomic island, conserved among magnetotactic bacteria, contains the genes potentially involved in magnetosome formation. One of the genes, mamK has been described as encoding a prokaryotic actin-like protein which when it polymerizes forms in the cytoplasm filamentous structures that provide the scaffold for magnetosome alignment. Here, we have identified a series of genes highly similar to the mam genes in the genome of Magnetospirillum magneticum AMB-1. The newly annotated genes are clustered in a genomic islet distinct and distant from the known magnetosome genomic island and most probably acquired by lateral gene transfer rather than duplication. We focused on a mamK-like gene whose product shares 54.5% identity with the actin-like MamK. Filament bundles of polymerized MamK-like protein were observed in vitro with electron microscopy and in vivo in E. coli cells expressing MamK-like-Venus fusions by fluorescence microscopy. In addition, we demonstrate that mamK-like is transcribed in AMB-1 wild-type and DeltamamK mutant cells and that the actin-like filamentous structures observed in the DeltamamK strain are probably MamK-like polymers. Thus MamK-like is a new member of the prokaryotic actin-like family. This is the first evidence of a functional mam gene encoded outside the magnetosome genomic island.

  14. Less is more: removing membrane attachments stiffens the RBC cytoskeleton

    Gov, Nir S.

    2007-11-01

    The polymerized network of the cytoskeleton of the red-blood cell (RBC) contains different protein components that maintain its overall integrity and attachment to the lipid bilayer. One of these key components is the band 3-ankyrin complex that attaches the spectrin filaments to the fluid bilayer. Defects in this particular component result in the shape transformation called spherocytosis, through the shedding of membrane nano-vesicles. We show here that this transition and membrane shedding can be explained through the increased stiffness of the network when the band 3-ankyrin complexes are removed. ATP-induced transient dissociations lead to network softening, which offsets the stiffening to some extent, and causes increased fragility of these mutant cells, as is observed.

  15. Less is more: removing membrane attachments stiffens the RBC cytoskeleton

    Gov, Nir S [Department of Chemical Physics, The Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel)

    2007-11-15

    The polymerized network of the cytoskeleton of the red-blood cell (RBC) contains different protein components that maintain its overall integrity and attachment to the lipid bilayer. One of these key components is the band 3-ankyrin complex that attaches the spectrin filaments to the fluid bilayer. Defects in this particular component result in the shape transformation called spherocytosis, through the shedding of membrane nano-vesicles. We show here that this transition and membrane shedding can be explained through the increased stiffness of the network when the band 3-ankyrin complexes are removed. ATP-induced transient dissociations lead to network softening, which offsets the stiffening to some extent, and causes increased fragility of these mutant cells, as is observed.

  16. Mechanism of aftered cytoskeleton organization in influenza virus infection

    The autophosphorylation was followed of cytoskeleton (CS) isolated from control chick embryo cell membranes (CS-C) and from these membranes after influenza virus adsorption (CS-V) under conditions allowing to determine the activity of a single type proteinkinase. The Ca2+ dependent calmodulin (CaM) kinase used different substrates from CS-V than did the c'AMP dependent proteinkinase. The catalytic subunit (c-subunit) of the c'AMP dependent proteinkinase added from outside phosphorylated the same polypeptides than the endogeneous c'AMP dependent proteinkinase, the further being more active than the latter. The purified influenza virus incorporated 32P in the presence of the c-subunit only. Incubation of influenza virus with the c-subunit caused morphological changes visible by electron microscopy. The pleomorphy of the particles as well as their electron transmissibility were enhanced in the result of structural alterations and rarefaction of surface spikes of the haemagglutinin and neuraminidase. The contractibility of CS isolated from normal CEC and of the CS from CEC by 15 min postinfection (p.i.) was determined according to the actomyosin ATPase activity. The ATPase activity of the cytoskeleton in the presence of the Ca2+/CaM and that in the presence of c'AMP were used as controls. The virus as well as the Ca2+/CaM increased the ATPase activity. EGTA had no effect but did not interfere with virus stimulation, while c'AMP blocked the virus-induced enhancement of the ATPase activity. (author). 3 figs., 1 tab., 36 refs

  17. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C.; Fanarraga, Mónica L.

    2016-05-01

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin

  18. The Structural Basis of Actin Organization by Vinculin and Metavinculin.

    Kim, Laura Y; Thompson, Peter M; Lee, Hyunna T; Pershad, Mihir; Campbell, Sharon L; Alushin, Gregory M

    2016-01-16

    Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin receptors through their intracellular binding partners to filamentous actin, facilitating mechanotransduction. Here we present an 8.5-Å-resolution cryo-electron microscopy reconstruction and pseudo-atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-terminal "strap" and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. We find that an analogous conformational change also occurs in the H1' helix of the tail domain of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform that suppresses actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling activity of vinculin in a tissue-specific manner, providing a mechanistic framework for understanding metavinculin mutations associated with hereditary cardiomyopathies. PMID:26493222

  19. Deprivation-induced cortical reorganization in children with cochlear implants.

    Sharma, Anu; Gilley, Phillip M; Dorman, Michael F; Baldwin, Robert

    2007-09-01

    A basic finding in developmental neurophysiology is that some areas of the cortex cortical areas will reorganize following a period of stimulus deprivation. In this review, we discuss mainly electroencephalography (EEG) studies of normal and deprivation-induced abnormal development of the central auditory pathways in children and in animal models. We describe age cut-off for sensitive periods for central auditory development in congenitally deaf children who are fitted with a cochlear implant. We speculate on mechanisms of decoupling and reorganization which may underlie the end of the sensitive period. Finally, we describe new magentoencephalography (MEG) evidence of somatosensory cross-modal plasticity following long-term auditory deprivation. PMID:17828665

  20. A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics

    Teresa T. Bonello; Miro Janco; Jeff Hook; Alex Byun; Mark Appaduray; Irina Dedova; Sarah Hitchcock-DeGregori; Hardeman, Edna C.; Justine R. Stehn; Till Böcking; Gunning, Peter W.

    2016-01-01

    The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperativ...